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Based on theoretical arguments, we propose a possible route for controlling the band-gap in the

promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental

degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds

approximately to the equilibrium value given by the minimum of the theoretical inversion free

energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate

after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes

the electronic band-gap of the solid, as shown here by screened hybrid functional calculations.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692780]

The cadmium/indium thiospinel CdIn2S4 is a photosen-

sitive semiconductor with excellent light absorption proper-

ties in the visible range of the spectrum and has attracted

considerable attention in recent years due to its potential

applications in photocatalysis, high-efficiency solar cells,

light-emitting diodes, and optoelectronic devices.1–4 A

detailed understanding of the factors controlling its elec-

tronic band structure is required in order to optimize these

applications. The band gap of pure CdIn2S4 is indirect, and

values between 2.1 eV and 2.4 eV (between 2.5 and 2.7 eV

for the direct gap) have been reported by different authors.5

The electronic and optical properties of the system at room

temperature seem to depend on whether the crystal is

annealed or quenched from the synthesis temperature, which

is possibly related to changes in the cation distribution.6

In a "normal" spinel, the 2þ cations are located in the

tetrahedral sites and the 3þ cations occupy octahedral sites,

while deviation from this distribution is called "inversion."

For CdIn2S4, it is difficult to refine the Cd/In occupancies of

the tetrahedral and octahedral sites from standard diffraction

measurements because Cd2þ and In3þ are isoelectronic, but

Raman experiments suggest that some level of inversion is

present.7,8 We can write the formula unit as (Cd1�xInx)

[In2�xCdx]S4, where () represent the tetrahedral sites, [] the

octahedral sites, and x is the degree of inversion (x¼ 0 is the

normal spinel and x¼ 1 is the fully inverse spinel). The ex-

perimental value of x is 0.20.8

In this letter, we present theoretical results showing that

(1) the experimental degree of inversion degree roughly cor-

responds to thermodynamic equilibrium at the formation

temperatures of the thiospinel, thus suggesting that the distri-

bution of cations could be modified by changing the synthe-

sis temperature, and (2) that even a moderate change in the

degree of inversion leads to significant change in the band

gap of the material, which indicates a promising route for

tuning the light absorption properties of the semiconductor.

We have performed density functional theory (DFT) cal-

culations of CdIn2S4 with different inversion degrees, using

the Vienna Ab Initio Simulation Program (VASP).9 We

employed both the Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional10 and its modified version

for solids (PBEsol),11 which improves the description of cell

geometries and of phonon frequencies in solids, compared to

the standard PBE functional.12 For the direct CdIn2S4, PBE-

sol gives an equilibrium cell parameter (a¼ 10.860 Å) that is

closer than the PBE result (a¼ 11.020 Å) to the experimental

value (aexp¼ 10.831 Å, which can be obtained by extrapola-

tion to absolute zero of the temperature dependence meas-

ured by Kistaiah et al.13). The convergence of energies with

respect to cutoff energies, reciprocal space sampling density,

and other precision parameters was checked carefully. The

CdIn2S4 primitive cell contains two formula units, which

allows us to consider inversion degrees x¼ 0, 0.5, and 1. For

each value of x, there is only one symmetrically different

configurations of cations, so we calculate the inversion

energy as DEconf ðxÞ ¼ EðxÞ � Eð0Þ, where the subscript conf
indicates that this is the configurational contribution only

(vibrational contributions are discussed below).

A quadratic dependence of the inversion energy with x
has been empirically recognised by Kriessman and Harrison14

and theoretically justified by O’Neill and Navrotsky15 based

on the linear dependences with x of both the cell parameter a
and the anion position parameter u. Therefore, our three calcu-

lated inversion energies allow us to interpolate for any value

of x using a quadratic function, as shown in Fig. 1(a). The

PBE and PBEsol results are very similar in terms of energy;

therefore, the discussion below refers to the PBEsol results,

unless otherwise stated. The inversion energies are positive

for the whole range of x, and the curvature is slightly negative.

In order to test the approximation of using only one configura-

tion for the calculation of the energy for each x > 0, we have

calculated the inversion energy for x¼ 0.25 by taking the

symmetry-adapted ensemble average of all different cation

configurations16 in a cell doubled along one axis. The result,

represented as an empty circle in Fig. 1(a), is in gooda)Electronic mail: seminovski@etsit.upm.es.

0003-6951/2012/100(10)/102112/3/$30.00 VC 2012 American Institute of Physics100, 102112-1

APPLIED PHYSICS LETTERS 100, 102112 (2012)

Downloaded 28 Mar 2012 to 128.40.76.239. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3692780
http://dx.doi.org/10.1063/1.3692780
http://dx.doi.org/10.1063/1.3692780
http://dx.doi.org/10.1063/1.3692780


agreement with our quadratic interpolation based on the prim-

itive cell results.

We can now estimate the configurational free energy of

inversion DFconf ¼ DEconf � TDSconf , where

Sconf ¼ �R
h
xlnxþ ð1� xÞlnð1� xÞ

þ xln
x

2
þ ð2� xÞln 1� x

2

� �i (1)

is the ideal configurational entropy of inversion.17,18 In prac-

tice, some excess (non-ideal) contributions to the configura-

tional entropy can be expected, but our test calculations for

the ensemble of configurations with x¼ 0.25 in the double

cell show that these excess contributions are indeed small:

the difference between the temperature-dependent entropy

(as calculated using Boltzmann statistics, e.g., Ref. 19) and

the maximum entropy for the given cell and composition, is

only 2%. In the absence of inversion energies, the minimum

of the inversion free energy corresponds to the maximum of

the configurational entropy, which occurs at x¼ 2/3 (full dis-

order of the cations among all sites). However, the positive

and relatively high inversion energies imply that the minima

of the inversion free energy actually occur at much lower

values of x (e.g., x¼ 0.04 at T¼ 1000 K), as shown in Fig.

1(b). Therefore, according to the analysis so far, which

ignores vibrational effects, the CdIn2S4 spinel would be

expected to be almost fully direct, while experimental meas-

urements suggest inversion degrees of �20%.8

In order to discuss the effect of vibrations in the thermo-

dynamics of inversion, we now examine the phonon modes

in CdIn2S4 with different degrees of inversion. For these cal-

culations, we employ density functional perturbation theory,

as implemented in VASP. We first compare the calculated

zone-centre frequencies for the direct spinel with the experi-

mental values measured using infrared and Raman spectros-

copy.7,20 Table I shows that the vibrational modes are well

described by our PBEsol calculations, with average discrep-

ancy of only 2.5%.

We then calculated the phonon frequencies in a 2� 2� 2

supercell, which is equivalent to a C-centered 2� 2� 2

sampling of the reciprocal space, thus allowing (linear) dis-

persion of the modes. From the resulting frequencies, we

obtained the vibrational contributions to the inversion free

energy in the harmonic approximation

DFvib ¼ kBT

�X
ln 2sinh

h�iðxÞ
2kBT

� �� �

�
X

ln 2sinh
h�ið0Þ
2kBT

� �� �	
(2)

for configurations with inversion degrees x¼ 0, 0.5, and 1.

Fig. 1(c) shows that the vibrational contribution to the free

energy exhibits an almost linear variation with x. The nega-

tive slope means that vibrational effects will shift the equi-

librium inversion degree towards values higher than those

FIG. 1. (a) Inversion energies as

obtained from PBE and PBEsol calcula-

tions; the open circle corresponds to the

ensemble average in a double cell with

x¼ 0.25. (b) Configurational and (c)

vibrational contributions to the inversion

free energy. (d) Total inversion free

energy; the vertical line marks the exper-

imental value of the inversion degree.

TABLE I. Calculated zone-centre phonon frequencies of normal CdIn2S4

spinel in comparison with experimental values (Refs. 7 and 20).

Mode ~� exp ðcm�1Þ ~� theo ðcm�1Þ

T1u (IR) 68 67

T2g (Raman) 93 92

T1u (IR) 171 171

Eg (Raman) 185 189

T1u (IR) 215 221

T2g (Raman) 247 239

T1u (IR) 307 296

T2g (Raman) 312 297

A1g (Raman) 366 355
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expected based on configurational contributions only. The

total (configurational þ vibrational) free energy is then plot-

ted in Fig. 1(d) as a function of x for temperatures between

900 and 1200 K. At a temperature T¼ 1200 K, which is typi-

cal for the synthesis of this type of material,13,21 the equilib-

rium degree of inversion is very close to the experimentally

observed value x¼ 0.20. This result suggests that the degree

of inversion in CdIn2S4 is thermodynamically controlled dur-

ing the solid formation.

The sensitivity of the equilibrium inversion to the tem-

perature indicates that it is possible to tune the cation distri-

bution via temperature control during the sample

preparation. For example, if the equilibration temperature is

reduced from 1200 K to 1100 K, the degree of inversion

decreases to x¼ 0.15. From these results, it can also be

expected that the degree of inversion will be higher when the

sample is quenched (cooled rapidly) instead of annealed

(cooled slowly) after its formation. In the latter case, the

slow cooling will allow the equilibration of the cation distri-

bution at lower temperatures. Experimental studies have

indeed shown a variation in the electronic and optical proper-

ties of CdIn2S4 with the cooling rate after synthesis.6

We therefore consider the effect that a change of inver-

sion degree has in the electronic properties of the material.

The electronic structure was calculated here using the Heyd-

Scuseria-Ernzerhof (HSE06) screened hybrid functional,

which includes 25% of Hartree-Fock exchange,22 yielding bet-

ter band gap predictions (although at a higher computational

cost) than standard DFT functionals.23 In fact, recent work has

shown that HSE06 gives band structures for Mg/In and Cd/In

thiospinels that are very similar to those obtained from more

computationally demanding many-body techniques.4 The cal-

culated values for the direct and indirect bandgaps are close

to, although somewhat lower than, the experimental values

measured in samples with degree of inversion x¼ 0.20

(2.1–2.4 for indirect and 2.5–2.7 for direct bandgap4). The

effect of inversion on the bandgap is found to be quite drastic,

with a decrease of almost 1 eV in both the direct and indirect

band gaps when x changes from 0 to 0.5 (Fig. 2).

This result means that any small change in the inversion

degree, achieved via temperature control during the sample

preparation, will be reflected significantly in the electronic

and optical properties of the material. The connection between

the band gap and the equilibration temperature for the cation

distribution is illustrated in the inset of Fig. 2. Lower tempera-

tures of formation, or slower cooling rates after sample prepa-

ration, should lead to wider band gaps. Therefore, our

simulations results indicate a possible route to tune the elec-

tronic properties of this interestic photovoltaic material.
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FIG. 2. Direct and indirect band gaps as a function of inversion degree,

from screened hybrid functional calculations. In the inset, the band gaps as a

function of the configurational equilibration temperature.
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