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Abstract

Wireless communication networks are widely deployed today and the networks are

used in many applications which require that the data transmitted be secure. Due to the

open nature of wireless systems, it is important to have a fundamental understanding

of coding schemes that allow for simultaneously secure and reliable transmission. The

information theoretic approach is able to give us this fundamental insight into the nature

of the coding schemes required for security.

The security issue is approached by focusing on the confidentiality of message

transmission and reception at the physical layer. The goal is to design coding and

signal processing schemes that provide security, in the information theoretic sense. In

so doing, we are able to prove the simultaneously secure and reliable transmission rates

for different network building blocks.

The multi-receiver broadcast channel is an important network building block,

where the rate region for the channel without security constraints is still unknown.

In the thesis this channel is investigated with security constraints, and the secure and

reliable rates are derived for the proposed coding scheme using a random coding argu-

ment.

Cooperative relaying is next applied to the wiretap channel, the fundamental phys-

ical layer model for the communication security problem, and signal processing tech-

niques are used to show that the secure rate can be improved in situations where the

secure rate was small due to the eavesdropper enjoying a more favorable channel con-

dition compared to the legitimate receiver.

Finally, structured lattice codes are used in the wiretap channel instead of unstruc-

tured random codes, used in the vast majority of the work so far. We show that lattice

coding and decoding can achieve the secrecy rate of the Gaussian wiretap channel; this

is an important step towards realizing practical, explicit codes for the wiretap channel.
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Abbreviations

AF Amplify and Forward

AWGN additive white Gaussian noise

BC broadcast channel

BCC broadcast channel with confidential messages

BEC binary erasure channel

BSC binary symmetric channel

CJ Cooperative Jamming

DF Decode and Forward

DMC discrete memoryless channel

DMS degraded message sets

IC infinite constellation

i.i.d. independent and identically distributed

KKT Karush-Kuhn-Tucker

LDPC low density parity check

MAC multiple access channel

ML maximum likelihood

MLAN modulo lattice additive noise

MRC maximum ratio combining

MMSE minimum mean square error

MSE mean square error

p.d.f. probability distribution function

p.m.f. probability mass function

RC relay channel

RHS right hand side

r.v. random variable
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SNR signal to noise ratio

TWRC two way relay channel

VNR volume to noise ratio

ZF zero forcing
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Notation

Ball(r) n-dimensional ball of radius r

conv(R) the convex hull of set C

dom(f ) domain of the function f

Ec the complement of event E

EP (.) Poltyrev exponent

Er
P (.) random coding Poltyrev exponent

Ex
P (.) expurgated Poltyrev exponent

G∗n normalised second moment of an n-dimensional sphere

G(Λ) normalised second moment of lattice Λ

hρ(Z) Renyi entropy of order ρ for random variable Z

I(.) indicator function

In n× n identity matrix

log logarithm to base 2, unless stated otherwise

Λ(n) sequence of lattices which are in the set of real vectors of length n

µ normalised volume to noise ratio of lattice Λ

µ∗(Λ(n)) unnormalized volume to noise ratio of sequence of lattices Λ(n) in the set of

real vectors of length n

modΩ Λ modulo-lattice operation with respect to lattice Λ and a fundamental region Ω

mod Λ modulo-lattice operation with respect to lattice Λ and the fundamental

Voronoi region V

∇f gradient of function f

∇2f Hessian or second derivative of function f

Ω a fundamental region of a lattice

Pe error probability

Pk(A) k-subset of the set A, the subset of A having exactly k elements
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QV(.) quantizer associated with the Voronoi region V of lattice Λ

Ru covering radius of a lattice

Rl effective radius of a lattice

R set of real numbers

Rn set of real vectors of length n

σ2(V) minimized second moment of lattice Λ with Voronoi region V

∼ according to the distribution

V Voronoi region of a lattice

X random variable X

x realization of random variable X

X alphabet set of X

X n n-th Cartesian power of X , the set of n-length sequences of elements of X

X sequence of n random variables by (X1, . . . , Xn)

x realization of the sequence of n random variables (X1, . . . , Xn), xi ∈ X

for i = 1, 2, . . . , n

Xi the subsequence of X defined as (X1, X2, . . . , Xi)

X̃i the subsequence of X defined as (Xi, . . . , Xn)

(.)T transpose operation on the argument

‖.‖ Euclidean norm of the argument

�,� generalized inequality; for vectors it denotes the element wise inequality, for

symmetric matrices, it denotes matrix inequality
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Chapter 1

Introduction

During the summer of 2006, police in Washington in the United States, tracked down a

suspected criminal to the home of an elderly lady whose wireless router was ‘hijacked’

by the real culprit for his criminal activities [4]. Due to the rapidly increasing prolifer-

ation of mobile devices and services today, including such sensitive services as mobile

online banking, this case truly sums up the fact that our wireless devices are very open

to attack. The attacks faced by the mobile terminal include active attacks, where the

malicious party takes steps to change the messages sent and received, such as our un-

fortunate case above. We also have passive attacks where the malicious party simply

listens to and then decodes the sent messages, known as eavesdropping or wiretapping.

Common security issues include active attacks such as denial of service attacks by

jamming, impersonation attacks, integrity attacks; and passive attacks such as eaves-

dropping and traffic analysis. In denial of service attacks, the attacker may use jamming

signals derived from its knowledge of the legitimate transmitters’ and receivers’ codes

and signals, or simply noise to occupy the transmitted signal band, and so disrupt com-

munication. In impersonation attacks, the attacker will pretend to be a legitimate user

and attempt to deceive the authentication system, and usually tries to capture the au-

thentication codes. The attacker may also attempt to modify confidential messages or

pass on confidential messages to other colluding nodes in an integrity attack. In eaves-

dropping, the attacker intercepts and tries to decode confidential messages sent over the

channel, to either discover the sent messages or to determine the communication pat-

terns of the legitimate users in the network. By analyzing the communication traffic,

the attacker can obtain useful information on the legitimate users in the network.

As can be seen from the security issues mentioned above, we can identify several
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common security requirements and how these can be achieved. Firstly, for resistance

to jamming, we note that it is well known that some of the communications systems

in wide use today already have inherent anti-jamming capabilities. These include the

Global System for Mobile Communications (GSM), Code Division Multiple Access

(CDMA) based systems and General Packet Radio Service (GPRS) systems in cellu-

lar mobile communications, and Orthogonal Frequency Division Multiplex (OFDM)

systems used in wireless local area networks. The GSM, CDMA and GPRS systems

all use spread spectrum techniques to combat multipath fading; at the same time, this

gives the system an inherent resistance to jamming due to the wideband nature of the

spread spectrum signal. In OFDM systems, the wideband nature of the transmitted

signal again gives anti-jamming resistance. To counter jammers further, we should

also design signals that have a low probability of detection or interception, which can

be done using pseudorandom spreading sequences to modulate the useful information,

since these spreading sequences are difficult to distinguish from white noise.

Secondly, message confidentiality can be secured by symmetric encryption. Here,

it is assumed that the legitimate transmitter-receiver pair have a shared key (hence the

name) to be kept secret from the attacker, which is used to convert the message into a

cryptogram and vice versa, while the attacker cannot break the encryption in the time

when the message can be intercepted. To achieve the encryption, operations depending

on the secret key are applied to the message one symbol at a time or on a block of sym-

bols. Examples of such encryption methods are the Data Encryption Standard and the

Advanced Encryption Standard. A disadvantage that arises from using such encryption

is that there are no mathematical proofs to exactly quantify the level of security. How-

ever, there are ways of testing the randomness of the transmitted encrypted message,

the goal being to make the encrypted message close to perfectly random.

Thirdly, key distribution can be achieved using public key cryptography, which al-

lows for a two-way conversation between the legitimate transmitter and receiver with-

out them sharing a secret key. Here, each of the legitimate parties use a private key

and a public key known to all parties, including any potential attackers. The transmitter

encrypts the confidential message using the public key, which is decrypted by the legit-

imate receiver using his own private key. The public key is designed so that, without

the knowledge of a private key, it is computationally hard for the attacker to decrypt the
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message. The transmitter and legitimate receiver also perform authentication using the

public key. An example of public key cryptography in practice is the well known RSA

scheme. If we have a restriction on the receivers such that only a one-way transmission

from the transmitter is desired, we can use broadcast encryption [82] instead. In this

case a trusted agency produces special blocks of data called session key blocks to the

transmitter and also assigns every receiver a set of keys. The transmitter processes a

session key block to obtain a session key, then encrypts the message with the session

key and sends the encrypted message, along with the session key block to the receiver.

The receiver processes the session key block to obtain the session key and decrypt the

message, and this processing is unique to each receiver. Secure communication is then

established without a two-way communication between the legitimate parties. A dis-

advantage of both public key cryptography and broadcast encryption schemes’ depen-

dence on computational hardness for security is that modern computers with increasing

computational power can conceivably break the cryptographic primitives used.

Fourthly, keys may need to be re-used several times, and this can be done by pro-

cessing the original key with simple operations or modulating the original key with

pseudorandom sequences. The disadvantages are that we might need additional proto-

cols or architecture and sometimes trusted third parties; the probability of a successful

attack increases every time a key is re-used.

Fifthly, authentication and integrity of messages can be ensured using hash func-

tions. For the authentication problem, it is possible to design authentication tags, which

are mappings of the message by a member of the universal family of hash functions,

secure (with certain probability) against an attacker with infinite computing power. An-

other class of hash functions called one-way hash functions are used to encrypt mes-

sages into much shorter message digests which have very low correlation (as a function

of the message) and are difficult to reverse, so as to ensure message integrity.

While security issues span a wide spectrum, the confidentiality of information

exchanged by mobile terminals is an important one, since the information exchanged

may be sensitive information such as bank or credit card details or protocol control

information in the medium access layer of the system, which, when captured by the

eavesdropper, can lead to further attacks. In wireless systems, an eavesdropper will be

able to intercept and decode any messages exchanged by the legitimate users as long
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as the eavesdropper is within range of the transmission. In principle, a well hidden

eavesdropper is very hard to detect. Thus wireless systems are extremely vulnerable to

the passive attacks. In our work, we want to characterize the simultaneously secure and

reliable information rates for wireless systems in the presence of passive attacks, with

the confidentiality of messages as the primary concern.

To maintain message confidentiality, a common approach is to use cryptographic

encryption, where a transmitter uses a key to encrypt the message and the legitimate

receiver uses the key to extract the message. The eavesdropper cannot extract the mes-

sage if it does not have access to the key. Usually the eavesdropper is assumed to have

limited time or computational resources to enable it to discover the key. The encryp-

tion code partly relies on computational security, so that it is ‘unbreakable’ in a limited

time.

In encryption, key encryption algorithms are used, which in some form or other

requires the secure key storage and distribution to the different users in the network

(see for example, the articles in the Special Issue on Cryptography and Security of the

Proceedings of the IEEE [87]). In wireless systems key encryption algorithms add com-

plexity and computational resources, yet are vulnerable to the keys being intercepted

by eavesdroppers. Furthermore the move towards mobile ad hoc networks and decen-

tralized networks pose more challenges for key distribution and management. We also

note that the encryption approach is designed to be insensitive to the characteristics of

the communication channel and relies on computational hardness to provide security.

An information theoretic approach to the cryptographic security problem was in-

troduced by Shannon [106], where the notion of provable information theoretic secrecy

was introduced. The model considered by Shannon, shown in Figure 1.1, assumed

noiseless links and an eavesdropper with unlimited resources. In Figure 1.1, the mes-

sage W is encoded and transmitted as Y, and since we have noiseless links, Y is

received at the decoder and the eavesdropper as well. The secret key, K, is shared be-

tween encoder and decoder while the eavesdropper has no knowledge of the key. The

secret key K represents the advantage that the legitimate transmitter-receiver pair has

over the eavesdropper in the worst case. Shannon also showed that for perfect secrecy

(no information leaking to the eavesdropper) the size of the key should be at least as

large as the size of the message.
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Encryption

W

Decryption
Y

W
^

Eavesdropper

Y

Y

K

Figure 1.1: Shannon’s secrecy system.

In the information-theoretic approach, the seminal works by Wyner [115] and

Csiszár and Körner [30] later showed that by using stochastic encoding, secure com-

munication was in fact possible without using key encryption in the presence of the

eavesdropper with unlimited resources. The unlimited resources of the eavesdropper

includes both computational resources as well as the knowledge of the coding, decod-

ing and signal processing algorithms. The difference between the models in [30, 115]

and Shannon’s secrecy system in Figure 1.1 is that there is no shared key and com-

munication takes place over noisy channels, and encryption and decryption should be

replaced by encoding and decoding. This model is known as the wiretap channel and is

shown in Figure 1.2. Thus, using channel codes and signal processing at the physical

layer, it is possible to prove as shown in [30] and [115], that secure communication

can be achieved, with simultaneous reliable communication at the legitimate receiver.

The maximum transmission rate that is achievable is known as the secrecy capacity,

which has been shown to be strictly positive whenever the eavesdropper’s observation

is ‘noisier’ than the legitimate receiver’s.

Encoder
W X Channel

Decoder
Y W

^

Eavesdropper

Z W

Figure 1.2: Wiretap channel.
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We note the following assumptions in the approach of [30, 115]. Firstly, knowl-

edge of the legitimate receiver’s and the eavesdropper’s channels are needed in the

code design. For the case of the eavesdropper, this may not be a realistic assumption.

However, there are ways to model the effects of imperfections in the channel estimate

and its effects on the secure communication rate. Secondly, the attacker is assumed to

be passive. For an active attacker, different coding techniques are required. Thirdly,

uniform random bit sequences are assumed, which may not be available in practice.

The information leaked to the eavesdropper is increased when bit sequences are not

uniform. Fourthly, the legitimate transmitter-receiver pair is assumed to be authenti-

cated to begin with; codes providing security in this context cannot provide security

against impersonation attacks, but it is expected that authentication can be provided in

the upper layers of the protocol stack.

The advantages of the channel coding information theoretic approach are that there

are no computational restrictions on the eavesdropper and the information leakage can

be quantified. The disadvantages are that, firstly, the analyses are based on average

information measures, so although we can design a coding scheme that is secure with

high probability, we may not be able to guarantee security with probability one. Sec-

ondly, the assumptions made about the communication channels may not be realistic in

practice.

-3d -d d 3d

-3d d

-d 3d

4 PAM

Coset 1

Coset 2

Figure 1.3: 4 PAM constellation and its two cosets.

Example on channel coding approach: We now give an example of how this channel

coding might be achieved in practice in a communications system. We use a simple

one-dimensional example, and consider the transmission of points from a constellation

over an additive Gaussian noise eavesdropper’s channel. The metric we will use is the

probability of correct decoding Pc,e for the eavesdropper, which is a weaker metric than
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the information leakage, but will help us to to observe the benefits of secure channel

coding. Naturally we want Pc,e to go to zero for security. Specifically, the secure

channel coding is known as coset coding, as proposed in [115]. Instead of a one-to-one

mapping from the message symbols to the transmitted codeword (constellation point),

we map each message symbol to a set of codewords (a coset), and randomly select one

of the codewords in the coset to map to a constellation point for transmission.

We now assume we want to transmit a 1-symbol message, an element from the

set {0,1}. A one-dimensional constellation is the Pulse Amplitude Modulation (PAM)

constellation shown in Figure 1.3 for 4 PAM, where d is the distance from the origin.

In the case of normal transmission, we map the set {0,1} to the 2 PAM constellation (or

binary phase shift keying), given by the central two points [−d, d]. For coset coding,

we want to map each of 0 or 1 to a coset. In this case, we let each coset have two

elements. So now we have to decompose a 4 PAM constellation into two cosets, as

shown in Figure 1.3. The reasoning for the coset decomposition is as follows: for

the set of integers Z, its cosets are 2Z and 2Z + 1, which means that the cosets are

the set of integers scaled by 2, and the set of integers scaled by 2 and translated by

one. Mapping this onto a 4 PAM constellation, we should have the first coset as the

alternate points in the constellation, and the second coset as the first coset shifted by

one constellation point. Suppose we now map 0 7→ Coset 1 and 1 7→ Coset 2, which

means that 0 7→ {−3d, d} and 1 7→ {−d, 3d}. Then we choose a point at random in

the coset and transmit it. We now analyze the probability of correct detection at the

eavesdropper. We consider the following model for the Gaussian wiretap channel

z = x+ ne, (1.1)

where x is the transmitted symbol, ne is the Gaussian noise at the eavesdropper, with

zero mean and two-sided power spectrum density N0/2. We let the energy per bit be

Eb. The energy per bit (symbol) for the constellation mapped to cosets 1 and 2 are both
d2

2
(1 + 9) = 5d2. For the symbol 0 (from coset 1), the constellation points−3d or d are

in error if they are decoded to −d or 3d. That is, they are decoded to the constellation

points in coset 2. Similarly, for the symbol 1, the constellation points −d or 3d are in

error if they are decoded to d or −3d. We focus on symbol 0 (coset 1). From Figure

1.3, the constellation point −3d is in error if the noise exceeds d or 5d, but is not in
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error if the noise exceeds 3d. Thus, following [19], the bit error probability for this

constellation point is

Pe,0,1 =
1

2
erfc

(
d√
N0

)
+

1

2
erfc

(
5d√
N0

)
− 1

2
erfc

(
3d√
N0

)

=
1

2
erfc

(√
Eb

5N0

)
+

1

2
erfc

(
5

√
Eb

5N0

)
− 1

2
erfc

(
3

√
Eb

5N0

)
. (1.2)

Here the complementary error function is defined as

erfc(x) =
2√
π

∫ ∞
x

e−u
2

du. (1.3)

Next, the constellation point d in coset 1 is in error if the noise exceeds d in either

direction, but is not in error if the noise exceeds 3d. The error probability for this

constellation point is

Pe,0,2 = 2.
1

2
erfc

(
d√
N0

)
− 1

2
erfc

(
3d√
N0

)

= erfc

(√
Eb

5N0

)
− 1

2
erfc

(
3

√
Eb

5N0

)
. (1.4)

The error probability for symbol 0 mapping to coset 1 is then Pe,0 = 1
2
Pe,0,1 + 1

2
Pe,0,2.

By symmetry, the error probability for symbol 1 mapping to coset 2 has a similar ex-

pression. Thus the probability of correct detection at the eavesdropper for the coset

code is

Pc,e = 1− 1

4

[
3erfc

(√
Eb

5N0

)
+ erfc

(
5

√
Eb

5N0

)
− 2erfc

(
3

√
Eb

5N0

)]
. (1.5)

If we did not use coset coding, but sent the information symbols using normal 2-PAM

or BPSK instead, then the probability of correct detection at the eavesdropper will be

the well known

Pc,e = 1− 1

2
erfc

(√
Eb
N0

)
. (1.6)

To illustrate the benefit of using coset coding, we plot the Pc,e for symbols sent

using coset coding and BPSK in Figure 1.4. We can observe a region where Pc,e is

lowered using coset decoding, so we can already see the benefits of coset coding using

this simple one-dimensional example. We also observe that when Eb/N0 is too high or

too low, there is no benefit in using coset coding in terms of lowering Pc,e. Also, Pc,e

is still quite high for reasonable values of Eb/N0, and this can be lowered (ideally to 0)
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Figure 1.4: Pc,e for coset code Z/2Z and 2-PAM (BPSK).

by using multidimensional lattice coding in high dimensions, as shown in [97], or later

in Chapter 5.

Using the combined key encryption-channel coding information theoretic ap-

proach, Ahlswede and Csiszár [1] and Maurer [85] showed that legitimate users in

a (possibly wireless) network can agree on a secret key used for encryption later, and

this key can be kept secret from an eavesdropper with unlimited resources. Specifically,

the legitimate receiver and the eavesdropper observe outputs of a discrete memoryless

BC which has inputs controlled by the transmitter. The legitimate transmitter-receiver

pair have sources of local randomness and communicate with each other over a pub-

lic noiseless channel, while the BC communicates messages and is used to generate

randomness. It was shown in [1, 85] that a wiretap code of [115] is an optimal key

distillation strategy and we can send secret keys uniformly to the legitimate receiver

without using the public channel. Also, the key may be interpreted as a secret message,

and feedback improves the secret key (message) capacity even if the feedback is known

by the eavesdropper. This means that the need for an advantage over the eavesdropper

in the models of [30, 115] are due to the limits of the coding schemes.

The wireless medium can be used as a source of randomness and exploited in an

opportunistic way using signal processing schemes to guarantee secrecy even if the

eavesdropper has, on average, a better signal to noise ratio (SNR) than the legitimate

receiver. We can use multiple antennas at the legitimate transmitter-receiver pair and
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beamforming in the direction that the eavesdropper either does not receive any useful

signal, or where the eavesdropper gets a lower SNR than the legitimate receiver. In this

case the secrecy capacity is positive as long as the number of antennas at the eaves-

dropper does not exceed the number of antennas at the legitimate transmitter-receiver

pair. Another scheme is the artificial noise strategy, where we send information in the

direction of the nonsingular values of legitimate user’s channel matrix and noise in all

other directions. This strategy is semi-blind in that we need knowledge of the eaves-

dropper’s channel matrix in the code design. Lastly, we can use cooperative jamming

where perhaps more than one trusted transmitters send coded jamming signals to in-

crease the confusion at the eavesdropper, and signal processing schemes can be used to

increase the secrecy capacity.

In a block fading fading channel environment where each codeword experiences

several channel realizations, secure communication is determined by the instantaneous

fading realization. We can have positive secrecy capacity for any transmit power and

channel statistics, provided that the probability that the legitimate receiver’s channel

gain exceeds the eavesdropper’s channel gain, is positive. The coding or transmission

scheme is for the transmitter to send messages during the time instants when the eaves-

dropper has a lower SNR than the legitimate receiver. Thus, even if the eavesdropper

has an average SNR better than the legitimate receiver, it is possible to attain a positive

secrecy capacity, illustrating that fading actually helps in securing communications.

The secrecy capacity is limited by the knowledge of channel state information. In the

absence of knowledge of the eavesdropper’s channel state information, we can design

a coding or transmission scheme that allocates power to the transmitter according to

the probability that the legitimate receiver’s channel gain is above some threshold to

be adjusted. In this case, we can achieve a reduced, but still positive secure rate. In

a quasi-static fading environment, where the channel fading coefficients are constant

over a codeword, but change from one codeword to another, then we can only set a

target secure rate and design a coding scheme for it, but have to accept that only at the

times when the legitimate transmitter-receiver pair enjoys a clear advantage over the

eavesdropper, then we can have positive secrecy capacity.

Finally, we should remark that information theoretic physical layer security can

be deployed in networks as an additional security in conjunction with existing cryp-
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tographic schemes to enhance the overall security of the system. We can replace the

usual channel codes and modulation schemes, which ensure reliability but not secrecy,

with ones based on wiretap codes of [30, 115]. Such codes can, at the cost of some loss

of transmission rate and increased complexity, achieve both reliability and security, and

can significantly degrade the eavesdropper’s observation of the useful message when

the legitimate transmitter-receiver pair have a better SNR than the eavesdropper. In the

case when this condition cannot be met, we could jam the eavesdropper in the areas

where he might be located. By implementing wiretap codes in a modular fashion in

the network architecture independently of the higher layer cryptographic schemes, we

can also enhance the overall security by ensuring that the eavesdropper does not have

access to an error free copy of the cryptogram.

In our work, we shall follow the information-theoretic approach of [115] and [30]

to characterize simultaneously secure and reliable information rates for wireless sys-

tems without using key agreement with different types of network architecture. Thus

the aims of our research are as follows:

1. To find fundamental limits on the reliable and secure (confidential) information

rates for multi-user wireless network building blocks and models;

2. To discover channel coding schemes that achieve the reliable and secure (confi-

dential) information rates, using random, practical or structured codes;

3. To use signal processing schemes to enhance security where a very low or no

secure rate is possible, or to mitigate the effects of the eavesdropper.

The broadcast channel (BC) and the relay channel (RC) are ubiquitous network

building blocks in wireless networks today. In Figure 1.5 we show these building blocks

at the node level.

The BC (depicted in Figure 1.5(a) for a source S and 2 receiver nodes D1 and D2)

models the downlink from a base station to mobile terminals, and is therefore a key

element in the study of multi-user networks, which helps us to see how we can carry

out the channel coding. The extension of channel coding schemes to the BC with three

or more receivers is still an open problem, with or without security constraints. The

RC is yet another important network building block, and it is depicted in Figure 1.5(b).
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Figure 1.5: (a) A broadcast channel, (b) a relay channel.

In the RC the source S sends a message to the destination D and is helped by the re-

lay node R, which cooperatively transmits the message to the destination together with

the transmitter. We will focus on the security issue for these network building blocks

in the thesis. We will assume that the the legitimate receiver has an advantage over

the eavesdropper, in that the eavesdropper’s channel is noisier than the legitimate re-

ceiver’s. We also assume knowledge of the legitimate receiver’s and the eavesdropper’s

channels, a passive eavesdropper, uniform random bit sequences as sources of random-

ness, and that authentication has already been performed. We shall see later that the

results suggest a multilevel code construction.

In the next section we will summarize the contributions of the thesis and provide

an outline of the rest of the thesis.

1.1 Contributions and Thesis Outline
In this thesis we will use the provable, information theoretic approach to the message

confidentiality problem and aim to find coding and signal processing schemes for the

BC and RC, which are ubiquitous network building blocks in wireless networks today.

We also aim to construct practical or structured codes to implement the secure coding

in the presence of an eavesdropper, still following the information theoretic approach.

In Chapter 2, we give an overview of some information theoretic and mathemat-

ical notions that will be helpful in the understanding of the thesis. In Chapter 3, we

review some basic results in information theoretic security, such as Wyner’s wiretap

channel [115] and Csiszár and Körner’s BC with confidential messages [30], the RC

with eavesdropper, and the fundamental coding technique for security.
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In Chapter 4, we study the BC under security constraints, focusing on 3 or more

receivers. In particular, we found the secure coding scheme for theK-receiver degraded

BC with private messages sent to each receiver from the transmitter and each to be kept

secret from an eavesdropper. This channel had a degradedness condition that meant

that receiver Y1 was able to decode everything receivers Y2 to YK were able to, receiver

Y2 was able to decode everything receivers Y3 to YK were able to, and so on, with the

eavesdropper the weakest among the receivers. We derived the secrecy capacity, which

is the maximum secure rate, with matching inner and outer bounds, using superposition

coding and code partitioning as our secure scheme. Next, we found the secure scheme

for a class of the general 3-receiver BC with degraded message sets, which involved

rate splitting, double binning, superposition coding and code partitioning. We found

an achievable inner bound for the case of 2 degraded message sets, where there is one

private and one common message; outer bounds were also found for special cases.

In Chapter 5, we focus on using signal processing techniques to mitigate the ef-

fect of the eavesdropper in the RC with eavesdropper setting. We were able to find

an optimal solution to the power allocation problem for a bank of relays sending a

jamming signal that also interfered with the desired transmission; a distributed imple-

mentation was also proposed. In this chapter we were able to prove the fundamental

result that relays performing cooperative jamming can improve the secrecy rate under

channel conditions that were unfavorable to the legitimate receiver, which meant that

the secrecy rate was very low or zero.

In Chapter 6, we turn our attention to constructing information theoretically se-

cure coding schemes for the Gaussian wiretap channel, a degraded wiretap channel.

We used nested lattice codes to implement the coset coding, and were able to show a

construction that achieved the secrecy rate (secrecy capacity) of the Gaussian wiretap

channel. Along the way, we showed that the information leakage to the eavesdrop-

per was small for large block length, thus showing that our construction is information

theoretically secure.

In Chapter 7, we give our conclusions and identify directions for future work.

Lastly, the contributions in this thesis resulted in the following publications:

1. L. C. Choo and K. K. Wong, ‘TheK-receiver broadcast channel with confidential

messages’, submitted to IEEE Transactions on Information Theory, Dec. 2008.
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2. G. Zheng, L. C. Choo and K. K. Wong, ‘Optimal cooperative jamming to enhance

physical layer security using relays’, IEEE Transactions on Signal Processing,

vol. 59, no. 3, pp. 1317-1322, Mar. 2011.

3. L. C. Choo and K. K. Wong, ‘On the 3-receiver broadcast channel with degraded

message sets and confidential messages’, to be submitted.

4. L. C. Choo and K. K. Wong, ‘Three-receiver broadcast channel with confidential

messages’, 10th International Symposium on Communication Theory and Appli-

cations, Ambleside, UK, 13–17 July 2009.

5. L. C. Choo and K. K. Wong, ‘Physical layer security for a 3-receiver broad-

cast channel with degraded message sets’, International Conference on Wire-

less Communications and Signal Processing 2009, 13–15 Nov., Nanjing, China,

2009.

6. L. C. Choo, C. Ling and K. K. Wong, ‘Achievable Rates for Lattice Coded Gaus-

sian Wiretap Channels’, Proc. IEEE International Conference on Communica-

tions (ICC 2011),Kyoto, Japan, 5–9 June, 2011.



28

Chapter 2

Information Theory and Mathematical

Preliminaries

In this Chapter, we introduce information theoretic notions that will be used in the

rest of the thesis. We will state some essential definitions and theorems. In particular,

we will define information theoretic notions such as the entropy, mutual information

and typical sequences. The theorems will be stated without proof in general; when

extensive use of a particular theorem is needed in the thesis, a proof will be given.

For a comprehensive treatment of information theory in general, the reader may wish

to consult the reference books by Cover and Thomas [26], Csiszár and Körner [29],

Kramer, [67], Gallager [49] and Yeung [117].

2.1 Information Theoretic Notions
Besides the entropy and mutual information, we will introduce the notion of typical se-

quences. Consider an information source {Xi, i = 1, .., n}, where Xi are i.i.d. ∼ p(x),

and let the entropy of the generic r.v. X be denoted as H(X). When n is large, the

sequence drawn will have sample entropy close to the true entropy, which is called

the typical set. In particular, the probability that the sequence drawn occurs is close

to 2−nH(X) with high probability, and the total number of typical sequences is about

2nH(X). Thus the set of all sequences can be divided into the typical set, and the non-

typical set. The typical set then determines the behaviour of the large sample; in the

case of the information source {Xi, i = 1, .., n} the typical set determines the be-

haviour.

Joint typicality decoding is usually used to prove coding theorems, as an easier



2.1. Information Theoretic Notions 29

alternative to using maximum likelihood (ML) decoding. In joint typicality decoding,

we look for the codeword that is joint typical with the received sequence. By joint typi-

cality discussed later in Section 2.1.2, the received sequence and codeword will be joint

typical with high probability, so that the non-typical sequences will not be decoded, and

the probability of error will be small. We should remark that joint typicality decoding

is suboptimal, but can still achieve all rates below capacity. See Gallager [49] for an

analysis of coding theorems using ML decoding.

In the following we make the distinction between two versions of joint typ-

ical sequences, namely, letter-typical sequences (or simply typical sequences) and

entropy-typical sequences (or weakly typical sequences) [26, Ch. 3]. Letter-typical

sequences are the sequences where the relative frequency of each outcome (of the

{Xi, i = 1, .., n}) is close to the corresponding probability. Letter-typicality is re-

stricted to r.v.s with finite alphabets, but can be used to evaluate the joint typicality

when one or more of the variables is fixed. Entropy-typicality can be used for discrete

as well as continuous r.v.s, but it cannot evaluate the joint typicality when one or more

of the variables is fixed. In the thesis we will use letter-typical sequences, which we

will denote as typical sequences. We note that the class of strong typical sequences

(as elaborated by Csiszár and Körner [29] and Yeung [117]) is included in the class of

letter-typical sequences.

Logarithms are taken to base 2 or base e. When taken to base 2, the units are in

bits; when taken to base e, the units are in natural units (nats). The number of nats is

the number of bits multiplied by ln 2. In the thesis, we will assume logarithms are taken

to base 2, unless otherwise stated.

2.1.1 Entropy and Mutual Information

Entropy

For X a discrete random variable (r.v.) with probability mass function (p.m.f.) p(x) =

Pr(X = x), x ∈ X , where X is the alphabet, then the entropy is

H(X) = −
∑
x∈X

p(x) log p(x). (2.1)

The units are in bits. The conditional entropy of one r.v. Y given another X is the

expected value of the entropies of the conditional distributions, averaged over the con-
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ditioning r.v.:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(x|y) log p(x|y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

= −E[log p(Y |X)]. (2.2)

The joint entropy of X and Y with joint distribution p(x, y) is

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

= −E[log p(X, Y )]. (2.3)

We have the following properties:

0 ≤ H(X) ≤ log |X |, (2.4)

0 ≤ H(Y |X) ≤ log |Y|, (2.5)

0 ≤ H(X, Y ) ≤ log(|X |.|Y|). (2.6)

We note thatH(Y |X) = 0 if and only if for every x ∈ X there is a y so that p(y|x) = 1.

In this situation it is said that X determines Y .

The joint entropy may be expanded using the chain rule

H(X, Y ) = H(X) +H(X|Y ). (2.7)

In general, we have

H(X1, X2, ..., Xn) = H(X1) +H(X2|X1) + ...+H(Xn|X1, X2, ..., Xn−1)

=
n∑
i=1

H(Xi|Xi−1). (2.8)

Finally, if g(.) is a function whose domain is the range of X , then we have

H(X) ≥ H(g(X)), (2.9)

that is the entropy of X is greater than or equal to the entropy of a function of X .
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Mutual Information

For two r.v.s X, Y with joint p.m.f. p(x, y) and marginal p.m.f.s p(x), p(y), the mu-

tual information I(X;Y ) is the relative entropy between the joint distribution and the

product distribution p(x)p(y):

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.10)

The mutual information I(X;Y ) may also be defined as

I(X;Y ) = H(X)−H(X|Y ). (2.11)

We have the following inequalities:

I(X;Y ) ≥ 0, (2.12)

H(X, Y ) ≤ H(X) +H(Y ), (2.13)

H(X|Y ) ≤ H(X), (2.14)

with equality if and only ifX and Y are statistically independent. The inequality (2.14)

means that conditioning cannot increase the entropy. However, H(X|Y = y) may be

greater than H(X).

The mutual information may also be expanded using the chain rule:

I(X1, X2, ..., Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + ...+ I(Xn;Y |X1, X2, ..., Xn−1)

=
n∑
i=1

I(Xi;Y |Xi−1). (2.15)

The conditional mutual information of r.v.s X and Y given Z is

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= Ep(x,y,z) log
p(X, Y |Z)

p(X|Z)p(Y |Z)
, (2.16)

where the expectation is taken over the joint p.m.f. p(x, y, z).

If the r.v.s X, Y, Z form a Markov chain X → Y → Z, we have the data process-

ing inequality

I(X;Y ) ≥ I(X;Z). (2.17)
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This implies that further processing of Y will not increase the information Y carries

about X . Furthermore, we also have the inequality

I(X;Y |Z) ≤ I(X;Y ). (2.18)

If Z = g(Y ), then I(X;Y ) ≥ I(X; g(Y )).

Finally, we have the useful identity commonly referred to as the Csiszár sum iden-

tity found in Csiszár and Körner [30, Lemma 7]: For random vectors X and Y with

arbitrary joint distribution,
n∑
i=1

I(X̃i+1;Yi|Yi−1) =
n∑
i=1

I(Yi−1;Xi|X̃i+1). (2.19)

A proof may be found in [30].

2.1.2 Letter-typical Sequences

In this subsection we introduce the notion used here of letter-typical sequences (referred

to as typical sequences from here), for discrete r.v.s.1. Let N(x|x) be defined as the

number of occurrences of x over the alphabet X . That is,

N(x|x) , |{i : xi = x}|, x ∈ X . (2.20)

For ε ≥ 0, a sequence x is typical with respect to p(x) and denoted as T nε (PX) if

T nε (PX) ,
{∣∣∣∣ 1nN(x|x)− p(x)

∣∣∣∣ ≤ ε.p(x) for all x ∈ X
}
. (2.21)

For the corresponding conditions for strong typical sequences, replace the right hand

side of (2.21) with ε and add the condition that N(x|x) = 0 if p(x) = 0.

Typical sequences have properties captured in the following theorem:

Theorem 1. Let ε ≥ 0, ε→ 0 for n sufficiently large, with x ∈ T nε (PX) and X ∼ p(x).

We have

2−n(1+ε)H(X) ≤ p(x) ≤ 2−n(1−ε)H(X), (2.22)

(1− γ)2n(1−ε)H(X) ≤ |T nε (PX)| ≤ 2n(1+ε)H(X), (2.23)

1− γ ≤ Pr[X ∈ T nε (PX)] ≤ 1, (2.24)

where γ → 0 as ε→ 0 for n sufficiently large.

We note then that Pr[X ∈ T nε (PX)]→ 1 for n sufficiently large.
1For full details see Kramer [67] or El Gamal and Kim [35].
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Jointly Typical Sequences

Let N(x, y|x,y) be the number of times the pair (x, y) occurs in sequence

(x1, y1), ..., (xn, yn), that is

N(x, y|x,y) , |{i : (xi, yi) = (x, y)}| (x, y) ∈ X × Y . (2.25)

The jointly typical set with respect to p(x, y) is

T nε (PXY ) =
{

(x,y) :
∣∣∣∣ 1nN(x, y|x,y)− p(x, y)

∣∣∣∣ ≤ ε.p(x, y) for all (x, y) ∈ X × Y
}
.

(2.26)

We should note that (x,y) ∈ T nε (PXY ) means that x ∈ T nε (PX) and y ∈ T nε (PY ). For

conditional distribution p(y|x) define p(y|x) =
∏n
i=1 p(yi|xi), and

T nε (PXY |x) = {y : (x,y) ∈ T nε (PXY )} , (2.27)

where T nε (PXY |x) = ∅ if x /∈ T nε (PX). The following theorem generalizes Theorem 1

for conditional typical sequences:

Theorem 2. Let ε1, ε2 ≥ 0, ε1 < ε2, (x,y) ∈ T nε (PXY ) and (X,Y) ∼ p(x, y). Then

2−n(1+ε1)H(Y |X) ≤ p(y|x) ≤ 2−n(1−ε1)H(Y |X), (2.28)

(1− γ)2n(1−ε2)H(Y |X) ≤ |T nε2 (PXY |x)| ≤ 2n(1+ε2)H(Y |X), (2.29)

1− γ ≤ Pr[Y ∈ T nε2 (PXY |x)|X = x] ≤ 1, (2.30)

where γ → 0 as ε1, ε2 → 0 for n sufficiently large.

We now have the following theorem concerning the probability that Y is jointly

typical with respect to p(x, y), given x:

Theorem 3. For a joint distribution p(x, y) and ε1, ε2 ≥ 0, ε1 < ε2, Y ∼ p(y) and

x ∈ T nε1 (PX), we have

(1− γ)2−n[I(X;Y )+2ε2H(Y )] ≤ Pr[Y ∈ T nε2 (PXY |x)] ≤ 2−n[I(X;Y )−2ε2H(Y )], (2.31)

where γ → 0 as ε1, ε2 → 0 for n sufficiently large.

Proof. For the upper bound, we have

Pr[Y ∈ T nε2 (PXY |x)] =
∑

y∈T nε2 (PXY |x)

p(y)

(a)

≤ 2nH(Y |X)(1+ε2)2−nH(Y )(1−ε2)

≤ 2−n[I(X;Y )−2ε2H(Y )], (2.32)
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where (a) is by using (2.28) and (2.29). The lower bound may be proved similarly.

A random version of Theorem 3 with regard to the probability of (X,Y) being

joint typical with respect to p(x, y) is stated as

Theorem 4. For a joint distribution p(x, y) and ε ≥ 0, X ∼ p(x) and Y ∼ p(y), we

have

(1−γ)2−n[I(X;Y )+3εH(X,Y )] ≤ Pr[(X,Y) ∈ T nε (PXY )] ≤ 2−n[I(X;Y )−3εH(X,Y )], (2.33)

where γ → 0 as ε→ 0 for n sufficiently large.

Proof. For the upper bound, we have

Pr[(X,Y) ∈ T nε (PXY )] =
∑

(x,y)∈T nε (PXY )

p(x)p(y)

(a)

≤ 2nH(X,Y )(1+ε)2−nH(X)(1−ε)2−nH(Y )(1−ε)

≤ 2−n[I(X;Y )−3εH(X,Y )]. (2.34)

The lower bound may be proved similarly.

If the r.v.s X, Y, Z form the Markov chain X → Y → Z, we have the Markov

lemma for the probability that Z is joint typical with respect to p(x, y, z), given Y = y:

Lemma 1. Markov lemma [10]: Let ε1, ε2 ≥ 0, ε1 < ε2, (x,y) ∈ T nε1 (PXY ), and

(X,Y,Z) ∼ p(x, y, z). Then

Pr[Z ∈ T nε2 (PXY Z |x,y)|Y = y] ≥ 1− γ, (2.35)

where γ → 0 as ε1, ε2 → 0 for n sufficiently large.

Proof. It can be easily seen that

Pr[Z ∈ T nε2 (PXY Z |x,y)|Y = y]
(a)
= Pr[Z ∈ T nε2 (PXY Z |x,y)|X = x,Y = y]

(b)

≥ 1− γ, (2.36)

where (a) is by the Markov chain condition X → Y → Z and (b) is by (2.30).

Finally, for r.v.s U,X, Y following U → X → Y , a useful conditional typicality

bound concerning the probability of X being joint typical with respect to p(u, x, y)

given U = u is
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Theorem 5. For ε1, ε2 ≥ 0, ε1 < ε2, Xi ∼ p(xi|ui) for all i = 1, 2, ..., n, and (u,y) ∈

T nε1 (PUY ), we have

(1−γ)2−n[I(X;Y |U)+2ε2H(X|U)] ≤ Pr[X ∈ T nε2 (PUXY |U = u)] ≤ 2−n[I(X;Y |U)−2ε2H(X|U)],

(2.37)

where γ → 0 as ε1, ε2 → 0 for n sufficiently large.

Proof. For the upper bound, we have

Pr[X ∈ T nε2 (PUXY |U = u)] =
∑

x∈T nε2 (PUXY |u,y)

p(x|u)

(a)

≤ 2nH(X|U,Y )(1+ε2)2−nH(X|U)(1−ε2)

≤ 2−n[I(X;Y |U)−2ε2H(X|U)], (2.38)

where (a) is by using (2.28) and (2.29). The lower bound may be proved similarly.

2.1.3 Inequalities

In this section, we state some useful inequalities which we need in the thesis.

We use the version of Chebyshev’s inequality stated below.

Lemma 2. Chebyshev’s inequality [55]: Let X be a random variable with finite mean

E(X) and variance Var(X) and ν > 0. Then

Pr [|X − E(X)| ≥ νE(X)] ≤ Var(X)

(νE(X))2
, (2.39)

from which

Pr [X ≤ (1− ν)E(X)] ≤ Var(X)

(νE(X))2
, Pr [X ≥ (1 + ν)E(X)] ≤ Var(X)

(νE(X))2
.

(2.40)

Fano’s inequality provides a lower bound to the error probability Pe in the situation

when we know a r.v. X and its estimate X̂ , with both X, X̂ ∈ X .

Lemma 3. Fano’s inequality ([26, Ch. 2], [67, Appx.]): Let X, X̂ ∈ X and Pe =

Pr[X̂ 6= X]. Then we have

H2(Pe) + Pe log(|X | − 1) ≥ H(X|X̂), (2.41)

where H2(p) is the binary entropy function H2(p) = −p log p − (1 − p) log(1 − p),

p ∈ [0, 1].
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The binary entropy function H2(p) ≤ 1 for p ∈ [0, 1]. Therefore (2.41) is some-

times written as 1 + Pe log(|X | − 1) ≥ H(X|X̂).

Proof. The proof (from [67, Appx.]) is given here since we will use some variations of

it in the thesis. Define E = I(X̂ 6= X), where I(.) is the indicator function. So

E =

 1, X̂ 6= X

0, X̂ = X.
(2.42)

Now expand H(E,X|X̂) in two ways using the chain rule. Firstly,

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂) = H(X|X̂), (2.43)

since E is determined by X, X̂ . Secondly,

H(E,X|X̂) = H(E|X̂) +H(X|E, X̂)

= H(E|X̂) + Pr[E = 0]H(X|E = 0, X̂) + Pr[E = 1]H(X|E = 1, X̂)

(a)
= H(E|X̂) + Pr[E = 1]H(X|E = 1, X̂)

(b)

≤ H(E|X̂) + Pe log(|X | − 1)

≤ H(E) + Pe log(|X | − 1)

≤ H2(Pe) + Pe log(|X | − 1), (2.44)

where (a) is becauseH(X|E = 0, X̂) = 0 and (b) is becauseX takes on at most |X |−1

values, given E = 1 and X̂ . Combining the two equations, we have the lemma.

2.2 Convex Optimization
In the thesis, we shall need to solve some optimization problems. The standard form of

an optimization problem is given as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m,

hi(x) = 0, i = 1, · · · , p, (2.45)

where x ∈ Rn. The function f0 : Rn → R is the objective function, and for i =

1, · · · ,m, functions fi : Rn → R are inequality constraint functions, and functions

hi : Rn → R are equality constraint functions. Denoting the domain of function fi
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as dom(fi), the domain of the optimization problem in (2.45) is D =
⋂m
i=1 dom(fi) ∩⋂p

i=1 dom(hi). If the inequality constraint functions are convex, that is, they satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y), (2.46)

with x,y ∈ Rn and α, β ∈ R, α, β ≥ 0, α+β = 1, and the equality constraint functions

are affine, so that hi(x) = Ax−b, A ∈ Rm×n, b ∈ Rm, then the optimization problem

is called a convex optimization problem.

A feasible convex optimization problem has the general form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m,

Ax = b, (2.47)

with f1(x), · · · , fm(x) convex.

Generally, optimization problems may be hard to solve, but the class of convex

optimization problems can be solved efficiently. So, when confronted with a general

optimization problem, we can recognize or re-formulate it as a convex optimization

problem, which can be solved. In this section we give some mathematical background

on convex optimization useful to our analysis, which is from [14]. For the full details,

please refer to [14].

2.2.1 Affine and Convex Sets and Functions

Affine Sets and Functions

A setR ⊆ Rn is affine if the line between any two points x,y ∈ R, lies inR. We have,

for γ ∈ R, 0 ≤ γ ≤ 1, γx+(1−γ)y ∈ R. Thus, the affine setR with x1, · · · ,xk ∈ R

contains every affine combination2 of its points
∑k
i=1 γixi, where

∑k
i=1 γi = 1.

The function f : Rn → Rm is affine if it has the form f(x) = Ax + b, where

A ∈ Rm×n, b ∈ Rm. The function f has the form of a sum of a linear function and a

constant.

Convex Sets

A set R ⊆ Rn is convex if the line segment between any two points x,y ∈ R, lies in

R. So, for γ ∈ R, 0 ≤ γ ≤ 1, γx + (1− γ)y ∈ R. Thus an affine set is also convex.
2An affine combination is a linear combination where the sum of the coefficients in the linear com-

bination is one.
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A point z is said to be a convex combination of the points x1, · · · ,xk if it has the

form z =
∑k
i=1 γixi, where

∑k
i=1 γi = 1, and γi ≥ 0, for i = 1, · · · , k. A set is convex

if and only if it contains all convex combinations of its points.

The convex hull ofR is denoted as conv(R) and is the set of all convex combina-

tions of points inR. The convex hull is expressed as

conv(R) =

{
k∑
i=1

γixi

∣∣∣∣∣xi ∈ R, γi ≥ 0, i = 1, · · · , k,
k∑
i=1

γi = 1

}
. (2.48)

The convex hull is the smallest convex set that contains R; the convex hull is always

convex.

Cones

A cone is a set R which has the property that γx ∈ R, for every x ∈ R and γ ≥ 0.

The setR is a convex cone if it is both convex and a cone.

A point z =
∑k
i=1 γixi, with γi ≥ 0, i = 1, · · · k is a conic (or nonnegative linear)

combination of the x1, · · · ,xk. If xi ∈ R, then every conic combination of xi is ∈ R.

Also,R is a convex cone if and only if every conic combination of xi is ∈ R.

Convex Functions

A function f : Rn → R, with domain denoted as dom(f ), is convex if dom(f ) is a

convex set and y ∈ dom(f) for all x, so that

f(γx + (1− γ)x) ≤ γf(x) + (1− γ)f(y), (2.49)

where 0 ≤ γ ≤ 1. A function f is strictly convex if strict inequality holds in (2.49) for

x 6= y. A function is f is concave if −f is convex and strictly concave if −f is strictly

convex. Affine functions have equality in (2.49) so that affine functions are both convex

and concave.

Whether the function f is convex can also be determined by the first and second

order conditions.

First order conditions The first order convexity condition can be stated as follows. Let

f be differentiable so that its gradient ∇f exists at each point in dom(f ). Then f is

convex if and only if dom(f ) is convex and for all x,y ∈ dom(f), the following holds:

f(y) ≥ f(x) +∇f(x)T (y − x). (2.50)
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We also have that f is concave if and only if dom(f ) is convex and for all x,y ∈

dom(f), the following holds:

f(y) ≤ f(x) +∇f(x)T (y − x). (2.51)

Second order conditions Let f be twice differentiable so that its Hessian or second

derivative ∇2f exists at each point in dom(f ). Then f is convex if and only if dom(f )

is convex and x,y ∈ dom(f), and the Hessian is positive semi-definite

∇2f(x) � 0. (2.52)

For a function on R, this means that f ′′(x) ≥ 0, that is, the derivative is nondecreasing.

We also have that f is concave if and only if dom(f ) is convex and ∇2f(x) � 0

for all x ∈ dom(f).

Convexity-preserving operation Some operations on functions help to preserve con-

vexity, and so are useful in that we can use them to construct new convex functions.

One operation that we make use of is forming a new function from the pointwise max-

imum of some convex functions. That is, if f1, · · · , fm are convex functions then their

pointwise maximum, defined as

f(x) = max{f1(x), · · · , fm(x)}, (2.53)

is also convex. We also note that the pointwise supremum of a family of affine functions

makes up a convex function. A proof is found in [14, Section 3.2].

Quasiconvex Functions

Quasiconvex (or unimodal) functions are a generalization of convex functions; they are

useful in the sense that a global minimum is guaranteed to exist over any convex set in

the function domain. A function f : Rn → R is quasiconvex if its domain and all its

sublevel sets, defined as

Sα = {x ∈ dom(f)|f(x) ≤ α}, α ∈ R

are convex. The function f is quasiconcave if −f is quasiconvex, which means that

every superlevel set {x|f(x) ≥ α} is convex.

As an illustration, a continuous function f on R is quasiconvex if and only if at

least one of the following conditions holds:
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1. f is nondecreasing;

2. f is nonincreasing;

3. there exists a, t ∈ dom(f) so that for t ≤ a, f is nonincreasing, while for t ≥ a,

f is nondecreasing. The point a can be chosen as any point which is the global

minimizer of f .

Quasiconvex functions which are differentiable obey first and second order condi-

tions as stated below.

First order conditions: Let f : Rn → R be differentiable. Function f is quasiconvex

if and only if dom(f ) is convex and for all x,y ∈ dom(f),

f(y) ≤ f(x)⇒ ∇f(x)T (y − x) ≤ 0. (2.54)

Unlike in the case of convex function f , where ∇f(x) = 0 means that x is a global

minimizer of f , for quasiconvex f it may turn out that x is not a global minimizer of f ,

even if∇f(x) = 0. So a better set of conditions to determine quasiconcavity would be

the second order conditions.

Second order conditions: Let f : Rn → R be twice differentiable. If f is quasiconvex,

then for all x ∈ dom(f), and all y ∈ Rn, we have

yT∇f(x) = 0⇒ yT∇2f(x)y ≥ 0. (2.55)

For f on R, this reduces to

f ′(x) = 0⇒ f ′′(x) ≥ 0. (2.56)

2.2.2 Lagrange Dual Problem

The Langrangian associated with a feasible optimization problem (2.45) with optimal

value x∗ may be expressed as

L(x,λ,µ) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

µihi(x), (2.57)

with dom(L) = D × Rm × Rp, where D =
⋂m
i=1 dom(fi) ∩

⋂p
i=1 dom(hi), λi is the

Lagrange multiplier associated with inequality constraint fi(x) ≤ 0, µi is the Lagrange

multiplier associated with equality constraint hi(x) = 0.
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The Lagrangian dual function G : Rm × Rp → R is the minimum value of the

Lagrangian over x:

G(λ,µ) = inf
x∈D

L(x,λ,µ). (2.58)

For each pair (λ,µ) with λi ≥ 0 for all i, the Lagrange dual function gives a lower

bound on the optimal value of the original problem (2.45). The problem of finding the

best lower bound that can be obtained from the Lagrange dual function leads to the

optimization problem, known as the Lagrange dual problem:

maximize G(λ,µ)

subject to λi ≥ 0, i = 1, · · · ,m. (2.59)

In this context, the original optimization problem and its feasible set and optimal value

are called the primal problem, primal feasible set and primal optimal value. The optimal

pair (λ∗,µ∗) is known as the dual optimal pair.

The optimal value of the Lagrange dual problem, denoted as d∗, gives the lower

bound to the primal optimal value

d∗ ≤ x∗.

This property is called weak duality and it holds even when the original problem is not

convex. If however,

d∗ = x∗,

the bound is tight (there is zero duality gap) and we say that strong duality holds. Strong

duality does not hold in general, but when the primal problem is convex, we may have

strong duality. A useful condition for strong duality is Slater’s condition, which is

stated as: If the primal problem is convex and there exists a feasible x in the relative

interior of D, satisfying

fi(x) < 0, i = 1, · · · ,m, Ax = b, (2.60)

then strong duality holds.

If strong duality holds, it can be shown that [14, Sect. 5.5.2]

f0(x∗) = G(λ∗,µ∗), (2.61)
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which gives rise to the complementary slackness condition:

λ∗i fi(x
∗) = 0, i = 1, · · · ,m. (2.62)

If the Lagrangian L(x,λ,µ) is differentiable and strong duality holds, any pair of

primal and dual optimal points then satisfy the Karush-Kuhn-Tucker (KKT) conditions:

fi(x
∗) ≤ 0, i = 1, · · · ,m,

hi(x
∗) = 0, i = 1, · · · , p,

λ∗i ≥ 0, i = 1, · · · ,m,

λ∗i fi(x
∗) = 0, i = 1, · · · ,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑
i=1

µ∗i∇hi(x∗) = 0.

The KKT conditions are useful in solving optimization problems. When the primal

problem is convex, the KKT conditions are satisfied for the primal and dual optimal

points with zero duality gap.
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Chapter 3

Background on Information Theoretic

Security

In this Chapter we will give some background on the information theoretic approach of

Wyner [115] and Csiszár and Körner [30] to characterizing the simultaneously secure

and reliable information rates for the two fundamental channels, the wiretap channel

and the broadcast channel with confidential messages (BCC). We first set the scene with

basic definitions for the channel coding problem for the discrete memoryless channel

(DMC) that will be the basis for the analysis. Then we will describe the wiretap channel

and the BCC, before giving a survey of some of the literature of interest in this field.

3.1 Channel Coding for the Discrete Memoryless Chan-

nel
In Figure 3.1 a discrete memoryless channel is shown. The discrete memoryless chan-

nel (DMC) is a system made up of the input and output alphabets X and Y respectively,

and probability transition matrix p(y|x), for x ∈ X and y ∈ Y , with the probability

distribution of the output depending only on the input at that time instant and condition-

ally independent of previous channel inputs or outputs. It is denoted (X , p(y|x),Y).

The message W is assumed to be randomly and uniformly distributed over the set

W = {1, 2, ...,M} and is to be sent over the channel to the receiver. The message

w ∈ W is mapped by encoder f :W → X n to the codeword x ∈ X n, with the number

of channel uses given by n. The codeword x is transmitted over the DMC with transi-

tion probability p(y|x) as depicted in the figure, p(y|x) =
∏n
i=1 p(yi|xi) being the nth
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extension of the DMC (n-length sequence version of the DMC with input and output

alphabets X and Y , and probability transition matrix p(y|x)), or simply the probability

transition for n uses of the channel.

W X Y W
^

encoder
channel decoder
p(y|x)

Figure 3.1: A discrete memoryless channel.

At the receiver the received sequence y ∈ Yn is decoded by the decoder g : Yn →

W , mapping the received sequence to ŵ ∈ W , the estimate of the message. Then a

(2nR, n)-code1 at rate R for the DMC (X , p(y|x),Y) is defined as consisting of the

three items: an index setW , an encoder f , and the decoder g.

For reliable communications, we define the average probability of error for a

(2nR, n)-code with W chosen according to the uniform distribution and X being a

deterministic function of W , as

P (n)
e = Pr

[
Ŵ 6= W

]
=

1

2nR

2nR∑
w=1

Pr [ŵ 6= w] . (3.1)

A rate R is achievable if there exists a sequence of (2nR, n)-codes such that P (n)
e → 0

as n→∞. The maximum achievable rate R is the capacity C, which is the famous

C = max
p(x)

I(X;Y ). (3.2)

To show an achievable rate R, we proceed in three steps. Firstly, construct a

random code by ‘choosing’ a p.d.f. p(x) and then generating codewords (at rate R)

based on this. 2 Secondly, choose an encoding and decoding strategy. Thirdly, show

that at the decoder and using the above strategies, the P (n)
e → 0 as n→∞. Thus there

is a sequence of (2nR, n)-codes and the rate R is achievable.

The probability of error is calculated over a random code which makes the error

probability symmetrical (see (3.1)). The random coding used in the proof also facili-

tates showing the existence of a good deterministic code. We do not explicitly attempt
1Here a (2nR, n)-code is simplified notation for (

⌈
2nR

⌉
, n)-code.

2Essentially we just assume that such a p.d.f. exists and proceed with code generation. Of course,

codeword generation from this p.d.f. can be as complex or simple as desired for various types of net-

works.
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to find a practical code for the channel. The decoding uses joint typicality where we

seek the codeword jointly typical with the received sequence. Joint typicality is subop-

timal but is used due to simplicity and by the fact that it still achieves all rates below

capacity3.

Once the achievability proof is shown, we then proceed to show that any sequence

of (2nR, n)-codes with P (n)
e → 0 as n→∞must haveR ≤ C. So no rates greater than

C can be achieved. This is known as the converse proof. We note that we essentially

show an upper bound to the rates R. In other networks where possibly the achievable

rate (region) and the upper bound to the rate (region) do not match, this proof serves as

a proof for the outer bound to the rate (region).

The details of the achievability and converse proofs for the DMC may be found in

[26], [67] and we will not deal with them here.

3.1.1 Binary Channels

Binary channels are often used in coding theory; these simple channels are used to

validate the coding scheme. Two of these are shown in Figure 3.2.

0 0

1 1

1-p

1-p

p

p

(a)

0 0

1 1

1-p

1-p

e

p

(b)

p

Figure 3.2: Binary channels: (a) binary symmetric channel, (b) binary erasure channel.

The binary symmetric channel (BSC), depicted in Figure 3.2(a), is a binary chan-

nel where the input symbols are complemented with probability p. The BSC is so called

because all the rows of its probability transition matrix are permutations of each other,

and all the columns of its probability transition matrix are permutations of each other.

A general symmetric channel has this property as well.

3We will depart from using the random coding-joint typicality approach when we consider lattice

codes for the wiretap channel in Chapter 6.
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The binary erasure channel (BEC), depicted in Figure 3.2(b), is a binary chan-

nel where some of the bits are erased with probability p. The node e in the diagram

represents erasure, while the receiver will have knowledge of its erased bits.

3.1.2 Maximum Likelihood Decoding for the DMC and the Error

Exponent

When we use maximum likelihood (ML) decoding for the DMC instead of joint typical

decoding, we should use the results of Gallager [49, Ch. 5] given below to bound the

error probability, which is related to the transmission rate. When we want to bound the

error probability in terms of the error exponent, we should now take logarithms to base

e; this is helpful in emphasizing the exponential dependence of the error probability.

The rate is now in natural units and we consider codes with
⌈
enR

⌉
codewords, instead

of
⌈
2nR

⌉
codewords.

Now define an (n,R) block code as a code of block length n with
⌈
enR

⌉
code-

words. Let a DMC have transition probability matrix p(y|x) for x ∈ X and y ∈ Y ,

and consider the ensemble of (n,R) block codes where each letter of each codeword is

independently selected according to q(x). For each message m, 1 ≤ m ≤
⌈
enR

⌉
,

0 ≤ ρ ≤ 1, the ensemble average probability of error with ML decoding and

M − 1 < enR ≤M is given by

Pe,m ≤ exp {−n [Eo(ρ,q)− ρR]} , (3.3)

where

Eo(ρ,q) = − log
∑
y∈Y

[∑
x∈X

q(x)p(y|x)1/(1+ρ)

]1+ρ

, (3.4)

where the sums are taken over the channel input and output alphabets. The vector

q has elements q(x), x ∈ X . The average over the messages, for arbitrary message

probabilities p(m), is

Pe =
M∑
m=1

p(m)Pe,m ≤ exp {−n [Eo(ρ,q)− ρR]} . (3.5)

The tightest bound is obtained by maximizing over ρ and q, from which we obtain the

random coding error exponent

Er(R) = max
0≤ρ≤1

max
q

[Eo(ρ,q)− ρR] . (3.6)
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We have, for the q that maximizes the random coding error exponent,

Pe,m ≤ e−nEr(R), 1 ≤ m ≤M, (3.7)

Pe ≤ e−nEr(R). (3.8)

The exponent Er(R) > 0 for all R, 0 ≤ R < C. Furthermore, the exponent is

a convex ∪, decreasing and positive function of R for 0 ≤ R < C. Thus we can

choose codes with error probability increasing exponentially with block length n for

rates approaching capacity.

For low rates the random coding error exponent may not be accurate. The error

probability should now be bound exponentially in n, by the expurgated error exponent,

Ex(R), so that Pe,m ≤ e−nEx(R). The expurgated error exponent Ex(R) is derived

by expurgating (or removing) poor code words from the ensemble that do not satisfy

a given bound. The details may be found in [49, Sect. 5.7]. Our focus will be on

the random coding error exponent and rates close to capacity for analysis using ML

decoding in the thesis.

3.2 The Wiretap Channel
In this section we briefly look at the discrete memoryless (DM) wiretap channel, shown

in Figure 3.3. This channel is the basic channel in physical layer information theoretic

security and was originally studied by Wyner [115].

Encoder

f

W X Channel

p(y,z|x)

Decoder

g

Y W
^

Eavesdropper

Z W

Figure 3.3: The discrete memoryless wiretap channel.

We note that the DM wiretap channel is a 2-receiver DM broadcast channel with

the channel as (X , p(y, z|x),Y × Z). The probability distribution for n uses of the
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channel is

p(y, z|x) =
n∏
i=1

p(yi, zi|xi).

The confidential message W is to be sent to the legitimate receiver Y and kept secret

from the eavesdropper Z. A (2nR, n)-code for the DM wiretap channel consists of:

• The message set {1, ..., 2nR}, uniformly and randomly distributed.

• A (stochastic) encoder f : W → X n which maps message w ∈ {1, ..., 2nR} to

codeword x ∈ X n.

• A decoder at the legitimate receiver g : Yn → {1, ..., 2nR} maps the received

sequence y ∈ Yn to the estimate of the message ŵ ∈ {1, ..., 2nR}.

The eavesdropper is assumed to be passive. This channel also models the case of mul-

tiple collaborating eavesdroppers, by merging the eavesdroppers into one (a worst-case

consideration).

The reliability is still measured by the error probability (3.1). The secrecy level of

the confidential message W at the eavesdropper is measured by the equivocation rate

R(n)
e =

1

n
H(W |Z), (3.9)

where H(W |Z) is the conditional entropy of W given Z. The equivocation rate is the

uncertainty of the message W at the eavesdropper and the design goal should be to

make this as large as possible.

Rate-equivocation region If the information leaked to the eavesdropper, quantified

as 1
n
I(W ; Z) does not go to zero for n sufficiently large, we have a rate-equivocation

region that is satisfied by the rate-equivocation pair (R,Re). Now, (R,Re) is achievable

if there exists a sequence of (2nR, n)-codes such that P (n)
e → 0 as n → ∞ and the

equivocation rate satisfies

Re ≤ lim
n→∞

inf R(n)
e . (3.10)

Alternatively, we say that the rate-equivocation pair (R,Re) is achievable if there exists

a sequence of (2nR, n)-codes such that P (n)
e ≤ η and we have

1

n
H(W |Z) ≥ Re − ε1, (3.11)
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for any η, ε1 > 0 and small for n sufficiently large. The rate-equivocation region (or

capacity-equivocation region)R is the closure of all achievable rate-equivocation pairs

(R,Re).

We should note that there is a stronger notion of secrecy, which makes the equiv-

ocation rate satisfy nRe ≤ limn→∞ inf R(n)
e . That is, we consider the equivocation rate

for a block of n channel uses instead of just one. For details the reader can consult

the work of Maurer and Wolf [86]. This stronger notion of secrecy is commonly called

strong secrecy and the weaker notion described so far is commonly called weak secrecy.

Although strong secrecy is generally favored by cryptographers, we shall use the weak

secrecy notion throughout the thesis. Using strong secrecy, results from [30, 115] are

unchanged, so the coding schemes are justified.

Secrecy capacity region If the information leaked to the eavesdropper goes to zero for

n sufficiently large, we have the perfect secrecy condition, which is, for n sufficiently

large,
1

n
I(W ; Z)→ 0⇒ 1

n
H(W |Z)→ 1

n
H(W ). (3.12)

So in this case, Re = R for n sufficiently large and we have the secrecy capacity region

that is satisfied by pairs (R,R). The achievability conditions now becomes (R,R) is

achievable if there exists a sequence of (2nR, n)-codes such that P (n)
e ≤ η and we have

1

n
H(W |Z) ≥ R− ε1, (3.13)

for any η, ε1 > 0 and small for n sufficiently large. The secrecy capacity is the largest

achievable rate with perfect secrecy and is given by:

CS = max
(R,R)∈R

R. (3.14)

The original result of Wyner [115] was derived for the case when the channel from

legitimate receiver Y to eavesdropper Z is degraded4, which means that the channel

from X to Z is a noisy version of the channel from X to Y . In Theorem 6 below

we state the rate equivocation region for the discrete memoryless wiretap channel with

general conditions on the channel X to Z. We assume that the channel from X to Y

enjoys an advantage over the channel from X to Z. In particular if the channel X to Z

is less noisy than the channel X to Y then the equivocation rate Re = 0. This version
4See the Appendix A for the ordering of channels.
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is a special case of the BC with confidential messages of and is studied by Csiszár and

Körner in [29, Problem 3.4.33] and [30]. Liang et al [73] provide a helpful elaboration

of the method of [30].

Theorem 6. The rate equivocation regionR for the discrete memoryless wiretap chan-

nel is the closure of all rate-tuples (R,Re) satisfying

Re ≤R, (3.15)

0 ≤R ≤ I(V ;Y ), (3.16)

Re ≤I(V ;Y |U)− I(V ;Z|U), (3.17)

where the auxiliary random variables U , V satisfy the Markov chain condition U →

V → X → (Y, Z) and with ranges |U| ≤ |X |+ 2, |V| ≤ |X |2 + 3|X |+ 2.

The achievability proof uses rate-splitting and code partitioning (also called bin-

ning). The rate-splitting is evident in the statement of the theorem. In Theorem 6, V

represents the source message which is split into a part that can be decoded by both

receiver Y and the eavesdropper Z, represented by U , and another part which is only

to be decoded by Y .

Proof. We give an outline of only the code construction in the achievability proof of

[29], [30] so that we can have an idea of the achievable coding scheme to be used in

wiretap situations. We note that the equivocation calculation and the converse proof is

found in [29, Problem 3.4.33] and [73] and we will not repeat it here.

To prove achievability, we proceed in two steps. In the first step, we construct

a code and encoding and decoding strategy so that the conditions in Theorem 6 are

met. Then we show that the equivocation satisfies (3.11). We will focus on the code

construction here. We first note that region R is convex and use the fact that it is

sufficient to prove that (R,Re) satisfies

0 ≤R ≤ I(X;Y ), (3.18)

Re ≤I(X;Y |U)− I(X;Z|U), (3.19)

where U → X → (Y, Z) forms a Markov chain. Then, prefix a DMC with transition

probability p(x|v) to the channels p(y|x) and p(z|x) (that is, prefix V to X → (Y, Z)).

This results in channels with transition probabilities p(x|v)p(y|x) and p(x|v)p(z|x),
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and (R,Re) satisfying the conditions in Theorem 6 is contained in R. Since R is

convex, then it is sufficient to show that (R,Re) ∈ R for

Re = max
U

[I(X;Y |U)− I(X;Z|U)] ≤ R ≤ I(X;Y ). (3.20)

So fix distribution p(u)p(x|u) for U so that the maximum in (3.20) is achieved. Note

that by

I(X;Y |U)− I(X;Z|U) = I(X;Y )− I(X;Z)− [I(U ;Y )− I(U ;Z)] ≥ 0

this U must satisfy

I(U ;Y ) ≤ I(U ;Z).

To begin the code construction, split the message W into 2 parts, denoted W0 ∈

[1, ..., 2nR0 ] and W1 ∈ [1, ..., 2nR1 ] with transmission rates R0 and R1 respectively.

The receiver decodes W0,W1 at rates R0, R1 and the eavesdropper decodes W0 at rate

R0.

The codebook generation is depicted in Figure 3.4:

1. Codebook generation: Generate 2nR0 codewords u(j) independently and ran-

domly according to
∏n
i=1 p(ui). For each u(j), generate 2R1 = 2Re+R

′ code-

words x(j, k, l) independently and randomly according to
∏n
i=1 p(xi|ui), where

k = 1, ..., 2nRe , l = 1, ..., 2nR
′ . We see from Figure 3.4 that the x(j, k, l) code-

words have been partitioned into 2nRe subcodes (or bins) C(1), ..., C(2nRe), each

of size 2nR
′ . The set of subcodes is known to the encoder, decoder and eavesdrop-

per. The eavesdropper is allowed to decode the transmitted codeword (generated

from each subcode) at the capacity (or greater) of the eavesdropper’s channel,

thus it cannot decode any more information. In this way the subcode index is

protected from the eavesdropper and that is where we encode the confidential

information.

2. Encoding: Define stochastic encoder f : {1, ..., 2nRe} × {1, ..., 2nR′}. To send

k ∈ {1, ..., 2nRe}, select an index l ∈ {1, ..., 2nR′} uniformly randomly and and

send the codeword x(j, k, l).

3. Decoding: Using joint typical decoding, we have the following:
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(a) The decoder at the receiver tries to find ĵ so that (u(j),y) ∈ T nε (PUY ). The

decoder’s error probability is small if R0 < I(U ;Y ).

(b) The decoder at the receiver tries to find (k̂, l̂) so that (u(j),x(j, k, l),y) ∈

T nε (PUXY ). The decoder’s error probability is small if R1 = Re + R′ <

I(X;Y |U).

(c) The eavesdropper tries to find ĵ so that (u(j), z) ∈ T nε (PUZ). The decoder’s

error probability is small if R0 < I(U ;Z).

It may be shown (for the details refer to [29, Problem 3.4.33]) that

R′ ≥ I(X;Z|U). (3.21)

Therefore, this condition, together with the successful decoding conditions above, im-

ply that (3.20) is satisfied. We should remark that it is quite common to use the condi-

tion that R′ = I(X;Z|U)− ε′, where ε′ is small as n gets large, instead.

C(1) C(2) C(2nRe)

1 ............. 2nR'

u(j)

k:

x(j,k,l)

Figure 3.4: Codebook generation for discrete memoryless wiretap channel.

An analysis of the equivocation 1
n
H(W |Z) along the lines of [29, Problem 3.4.33]

or [73, Ch. 2] yields an equivocation rate

Re ≤ I(X;Y |U)− I(X;Z|U), (3.22)

satisfying (3.11). Combining all of the above and eliminating R′, we have that the
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regionR′, which is the closure of all rate-tuples (R,Re) satisfying

Re ≤R1,

0 ≤R0 +R1 = R,

0 ≤R0 ≤ min[I(U ;Y ), I(U ;Z)], (3.23)

0 ≤R1 ≤ I(X;Y |U),

Re ≤I(X;Y |U)− I(X;Z|U),

where the auxiliary r.v. U satisfies the Markov chain condition U → X → (Y, Z).

Performing channel prefixing as described above, we then have the region R′′, which

is the closure of all rate-tuples (R,Re) satisfying

Re ≤R1,

0 ≤R0 +R1 = R,

0 ≤R0 ≤ min[I(U ;Y ), I(U ;Z)], (3.24)

0 ≤R1 ≤ I(V ;Y |U),

Re ≤I(V ;Y |U)− I(V ;Z|U),

where the auxiliary r.v.s U, V satisfy the Markov chain condition U → V → X →

(Y, Z). Finally, eliminating R0 and R1 from the inequalities in (3.24) using Fourier-

Motzkin elimination, we can obtain the region R in Theorem 6. Thus we have shown

that (R,Re) ∈ R and the code construction for the DM wiretap channel.

Theorem 6 leads to the following Corollary which states the secrecy capacity of

the wiretap channel.

Corollary 1. The secrecy capacity of the wiretap channel is

CS = max
T→X→(Y,Z)

[I(T ;Y )− I(T ;Z)] (3.25)

where the auxiliary random variable T satisfies the Markov chain condition T → X →

(Y, Z) with range |T | ≤ |X |+ 1.

Proof. We sketch the code construction here. To achieve CS , we only need for U =

constant in Theorem 6. A coding scheme that achieves the secrecy capacity will be as

follows:
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1. Codebook generation: Define indices w ∈ {1, ..., 2nR}, and w′ ∈ {1, ..., 2nR′}.

Independently and randomly generate t(k), k ∈ {1, ..., 2nR̃} sequences by∏n
i=1 p(ti). Partition the t(k) codewords into 2nR subcodes C(1), ..., C(2nR), with

each subcode containing 2nR
′ codewords. Index the set of all the 2nR̃ codewords

as t(w,w′). The set of subcodes is known to the encoder, decoder and eaves-

dropper.

2. Encoding: Define stochastic encoder f : {1, ..., 2nR} × {1, ..., 2nR′}. To send

w ∈ {1, ..., 2nR}, select an index w′ ∈ {1, ..., 2nR′} uniformly randomly and

generate x according to
∏n
i=1 p(xi|ti) and send it.

3. Decoding: Using joint typical decoding, the legitimate decoder declares that

(ŵ, ŵ′) is sent if it is the unique index pair such that (t(ŵ, ŵ′),y) ∈ T nε (PTY ).

The legitimate decoder has low probability of error provided R̃ = R + R′ ≤

I(T ;Y ).

For each subcode C(w), the eavesdropper has on average 2nR
′+δ ≤ |t(w,w′)| ≤ 2nR

′−δ

sequences that are joint typical with z, where δ > 0 and is small for n sufficiently large.

We need to have R′ ≥ I(T ;Z) for the eavesdropper to have almost no information

about the message sent5. Combining the two conditions R + R′ ≤ I(T ;Y ) and R′ ≥

I(T ;Z), we have the statement of the corollary.

3.2.1 Gaussian and Multiple-Input Multiple-Output Wiretap

Channels

In this section, we will state some results for two important classes of wiretap channels,

namely the Gaussian wiretap channel and the Multiple-Input Multiple-Output (MIMO)

wiretap channels (or multi-antenna wiretap channels), which we will encounter in

Chapters 6 and 5, respectively. We will discuss the input distribution that achieves

secrecy capacity.

Gaussian Wiretap Channel

The Gaussian wiretap channel is studied by Leung and Hellman [70] under the same

conditions as the original wiretap channel of Wyner. That is, the eavesdropper’s channel
5Some researchers will use R′ = I(T ;Z)− ε′, ε′ → 0 for n sufficiently large, instead.
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is a degraded version of the legitimate user’s channel. The channel model is

Y = X +W,

Z = X + V, (3.26)

for each use of the channel (or the time index), X is the channel input, Y and Z are

channel outputs. The noise processes {W} and {V } are zero-mean i.i.d. proper com-

plex Gaussian with variances σ2
M and σ2

E , respectively. The input sequence {X} is

subject to the average power constraint

1

n

n∑
i=1

E[X2
i ] ≤ P. (3.27)

Leung and Hellman [70] proved the following theorem:

Theorem 7. The secrecy capacity of the Gaussian wiretap channel is

CS =
1

2
log

(
1 +

P

σ2
M

)
− 1

2
log

(
1 +

P

σ2
E

)
. (3.28)

This result applies whetherW and V are correlated or not. The achievability proof

uses Corollary 1, applying the condition that the channel from X to Z is a degraded

version of the channel from X to Y to obtain

CS = max
X→(Y,Z)

I(X;Y )− I(X;Z).

Then set X ∼ N (0, P ) to obtain (3.28). Thus to achieve the secrecy capacity, we

require the input to be X ∼ N (0, P ).

Multiple-Input Multiple-Output Wiretap Channels

The MIMO wiretap channel model introduced here has the transmitter, legitimate re-

ceiver and eavesdropper all equipped with multiple antennas. This model then sub-

sumes the cases where any of the transmitter, legitimate receiver and eavesdropper are

equipped with only a single antenna. The MIMO wiretap channel is not a degraded or

ordered channel.

For a multiple antenna wiretap non-fading channel with NT transmit antennas

and NM and NE receive antennas at the legitimate recipient and the eavesdropper, the
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channel input and output for one channel use is

Y = HMX + W,

Z = HEX + V, (3.29)

where X is theNT×1 transmitted signal vector, Y is theNM×1 received signal vector

at the legitimate receiver, Z is the NE × 1 received signal vector at the eavesdropper.

The channel matrices HM and HE are fixed NM ×NT and NE ×NT matrices, the ad-

ditive noise vectors W, V are Gaussian vectors with zero mean and identity covariance

matrices and are independent from one channel use to another. The channel input may

be subject to the average power constraint

1

n

n∑
i=1

E[XT
i Xi] ≤ P, (3.30)

or a matrix constraint
1

n

n∑
i=1

E[XT
i Xi] � P. (3.31)

Under the average power constraint on the input, in Shafiee et al [105] the special

case where the transmitter and the legitimate receiver have 2 antennas and the eaves-

dropper has one antenna was studied and the secrecy capacity derived. Also under the

average power constraint, in Khisti and Wornell [62] and Oggier and Hassibi [96], the

secrecy capacity is derived for the general case. The secrecy capacity is stated below.

Theorem 8. The secrecy capacity of the MIMO wiretap channel under the average

input power constraint (3.30) is

CS = max
KX�0,Tr(KX)≤P

1

2
log

∣∣∣HMKXHT
M + INM

∣∣∣− 1

2
log

∣∣∣HEKXHT
E + INE

∣∣∣ , (3.32)

where KX � 0 denotes that the input covariance matrix is positive semi-definite, Tr(.)

is the trace operator, In is the identity matrix of size n × n, (.)T denotes the matrix

transpose, and |.| denotes the matrix determinant.

In Khisti and Wornell [62] and Oggier and Hassibi [96], it was shown that by using

Theorem 1, setting (with some abuse of notation) U = X to be Gaussian with mean

zero and covariance matrix KX � 0, we have the achievable secrecy capacity as in

Theorem 8.
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The secrecy capacity with input matrix power constraint was evaluated by Bustin

et al [15], Liu and Shamai [81], and Liu et al [77]. It turns out to be the same as stated in

Theorem 8, except that Tr(KX) ≤ P should be replaced by Tr(KX) � P. In [15, 81],

it was shown that using U = X Gaussian and with covariance matrix satisfying KX �

0 and Tr(KX) � P, the secrecy capacity as in Theorem 8 is achievable. Finally Liu

et al [77] showed that we could also set X = U + V , where U and V are independent

Gaussian vectors with mean zero and covariance matrices KX−B and B respectively.

Thus p(X|U) is a prefix channel similar to the discussion in the wiretap channel model

of Csiszár and Körner [29, Problem 3.4.33]; the choice of U = X as previously is thus

not a unique one. We can also view V as artificial noise injected to help the legitimate

receiver.

3.2.2 Compound Wiretap Channels

In this section we briefly describe the compound wiretap channel which can model mul-

tiple eavesdroppers. In the compound wiretap channel, the transmitter sends message

W to J legitimate receivers to be kept secret from K eavesdroppers, as depicted in Fig-

ure 3.5. This channel can model the case of multiple non-collaborating eavesdroppers,

and the general case is studied by Liang et al in [72].
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Figure 3.5: The compound wiretap channel.

The probability distribution for n uses of the channel is

p(yj, zk|x) =
n∏
i=1

p(yj,i, zk,i|xi), j = 1, ..., J, k = 1, ..., K.
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This may be re-written as

p(yj, zk|x) = p(yj|x)p(zk|x) =
n∏
i=1

p(yj,i|xi)p(zk,i|xi), j = 1, ..., J, k = 1, ..., K,

(3.33)

since correlation between Yj and Zk does not change the secrecy capacity. Then a

(2nR, n)-code for the compound DM wiretap channel consists of:

• The message set {1, ..., 2nR}, uniformly and randomly distributed.

• A (stochastic) encoder f : W → X n which maps message w ∈ {1, ..., 2nR} to

codeword x ∈ X n.

• Decoders at the legitimate receiver gj : Ynj → {1, ..., 2nR} map the received

sequence yj ∈ Ynj to the estimate of the message ŵ(j) ∈ {1, ..., 2nR}, for j =

1, ..., J .

The reliability is measured by the average error probability, for j = 1, ..., J

P (n)
e = Pr

[
Ŵ (j) 6= W

]
=

1

2nR

2nR∑
w=1

Pr
[
ŵ(j) 6= w

]
, (3.34)

while the secrecy level of the confidential message W at the kth eavesdropper, k =

1, ..., K, is measured by the equivocation rate

R(n)
e =

1

n
H(W |Zk). (3.35)

Then rate-equivocation pair (R,Re) is achievable if there exists a sequence of (2nR, n)-

codes such that P (n)
e,j ≤ η, j = 1, ..., J and we have

1

n
H(W |Zk) ≥ Re − ε1,k, k = 1, ..., K, (3.36)

for any η, ε1,k > 0 and small for n sufficiently large. From Liang et al [72], we have

the following:

Theorem 9. The secrecy capacity of the compound wiretap channel is

R = max min
j,k

I(U ;Yj)− I(U ;Zk) (3.37)

where U is an auxiliary random variable and the maximum is taken over distributions

p(u)p(x|u) that satisfy U → X → (Yj, Zk), j = 1, ..., J , k = 1, ..., K.
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We note that the secure coding scheme essentially follows the one in the normal

wiretap channel. It is also quite easy to see that this channel can encompass special

cases where there are specific conditions on the eavesdroppers’ channels, or some sub-

set of the legitimate receivers’ channel. Also, note that the legitimate receivers should

enjoy an advantage over the eavesdroppers.

3.3 Broadcast Channels
A general 2-receiver broadcast channel (BC) is shown in Figure 3.6. There are two

decoders, one for each receiver; messages W0,W1,W2 are statistically independent.

The message W0 is meant for both decoders and is called the common or public mes-

sage. The messages W1,W2 are called private messages. In some of the literature, the

common message is omitted.

encoder

decoder

decoder

p(y1,y2|x)

(W0,W1,W2)
X

Y1

Y2

W0,   W1
^ ^

W0,   W2
^ ^(2)

(1)

Figure 3.6: General 2-receiver discrete memoryless broadcast channel.

There are two main coding schemes for broadcast channels (BCs) without se-

crecy: superposition coding (see Bergmans [11], Gallager [50]) and binning, which

is also known as Marton’s achievability scheme (see Marton [84], El Gamal and van

der Meulen [36]; for a discussion see Cover [28]). While it is of much interest to find

the capacity region for general BCs with more than 2 receivers, this has been a long

standing open problem, despite decades of intense research.

For BCs with security constraints, there are the following main classes:

1. The BC with one confidential message and one common message of Csiszár and

Körner [30], a BC with X → (Y, Z) with Z the eavesdropper. The underlying
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coding scheme is superposition coding and the secure scheme is code partition-

ing. Wyner’s wiretap channel is a special case of this.

2. The BC with 2 confidential messages of Liu et al [78], with the BCX → (Y1, Y2)

and Y1 and Y2 are mutual eavesdroppers. The underlying coding scheme is bin-

ning, and the secure scheme is double-binning as proposed in Liu et al [78].

3. The degraded BC with confidential messages and external eavesdropper stud-

ied in the work of Bagherikaram et al [6] (2 confidential messages, 2-receiver

BC), our research [20] (K confidential messages, K-receiver BC), and Ekrem

and Ulukus [33] (K confidential messages, K-receiver BC). The degradation is

such that X → Y1 → Y2 → ... → YK → Z forms a Markov chain. The un-

derlying coding scheme is superposition coding and the secure scheme is code

partitioning.

4. The general BC with confidential messages and an external eavesdropper as stud-

ied in the work of Bagherikaram et al [6] (2 confidential messages, 2-receiver

BC) and Kobayashi et al [65] (K confidential messages, K-receiver BC). The

underlying scheme is binning and secure scheme uses double-binning, in the lat-

ter case extending Marton’s scheme to an achievability scheme for K receivers.

5. The 3-receiver BC with degraded message sets (DMS) with one of the receivers

an eavesdropper, studied in our research [22] and by Chia and El Gamal [17, 18].

The 3-receiver BC with DMS can be viewed as a major step towards obtaining the

capacity region of the general K-receiver BC, and uses a combination of super-

position coding and binning. Thus we have proposed a secure scheme that uses

code partitioning and double-binning; we note that in [17, 18] code partitioning

only is used for security.

In the next two sections, we will discuss the coding schemes of the first two classes

of BCs with confidential messages as the coding schemes provide the basic coding

schemes for the other three classes. For the degraded BC and the 3-receiver BC with

DMS, we will defer discussion till we present our research in Chapter 4.
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3.3.1 The BC with One Confidential Message and One Common

Message

This general DM BC6 with security constraints is shown in Figure 3.7. It is a gener-

alization of the wiretap channel. We assume that the channel from X to Y enjoys an

advantage over the channel from X to Z. In particular if the channel X to Z is less

noisy than the channel X to Y then the equivocation rate Re = 0. The transmitter

sends common message W0 which is received by both the legitimate receiver Y and

the eavesdropper Z, and confidential message W1 to the legitimate receiver be kept

secret from the eavesdropper. A (2nR0 , 2nR1 , n)-code for the BC with one confidential

message and one common message, consists of the parameters:

W0 =
{

1, . . . , 2nR0

}
, (common message set)

W1 =
{

1, . . . , 2nR1

}
, (private message set),

f :W0 ×W1 7→ X n, ((stochastic) encoding function),

g1 : Yn 7→ W0 ×W1, (legitimate user’s decoding function),

g2 : Zn 7→ W0 (eavesdropper’s decoding function).

We have g1(Y1) = (Ŵ
(1)
0 , Ŵ

(1)
1 ), g2(Z) = (Ŵ

(2)
0 ), and error probability

P (n)
e = Pr

[
(Ŵ

(1)
0 , Ŵ

(2)
0 , Ŵ

(1)
1 ) 6= (W0,W0,W1)

]
. (3.38)

The decoders are set up to decode combinations of the messages; in the coding scheme

this means that the decoders will decode specific parts of the superposed transmitted

codeword. The secrecy level of the messageW1 sent to the legitimate user is defined by

the equivocation rate 1
n
H(W1|Y). The rate tuple (R0, R1, R1e) is said to be achievable

if for any η, ε1 > 0, there exists a sequence of (2nR0 , 2nR1 , n)-codes for which P (n)
e ≤ η

and the equivocation rates R1e satisfies

1

n
H(W1|Z) ≥ R1e − ε1. (3.39)

The rate-equivocation regionR is the closure of the set of all achievable (R0, R1, R1e).

The secrecy capacity region CS is the closure of all achievable pairs (R0, R1) so that

perfect secrecy is achieved (R1e = R1).

6A BC is called general if the channel conditions on its receivers are general.
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Figure 3.7: Broadcast channel with one confidential and one common message.

Theorem 10. The rate equivocation regionR for the DM BC with one confidential and

one common message is the closure of all rate-tuples (R0, R1, R1e) satisfying

Re ≤R1, (3.40)

0 ≤R0 ≤ min{I(U ;Y ), I(U ;Z)} (3.41)

0 ≤R0 +R1 ≤ I(V ;Y |U) + min{I(U ;Y ), I(U ;Z)} (3.42)

Re ≤I(V ;Y |U)− I(V ;Z|U), (3.43)

where the auxiliary random variables U , V satisfy the Markov chain condition U →

V → X → (Y, Z) and with ranges |U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

Proof. (Outline) We know that the DM wiretap channel is a special case of the BC with

one confidential and one common message; specifically, the DM wiretap channel does

not have the common message. Thus the coding scheme in the achievability for the

BC with one confidential and one common message follows the scheme in Theorem 6.

Rate splitting is used on the common message to move some of the rate (denoted as ∆)

from R0 to R1. We then have the new rates

R′0 = R0 −∆, R′1 = R1 + ∆, 0 ≤ ∆ ≤ R0. (3.44)

Now from the coding scheme in Theorem 6, we have (3.24). Substituting the new R′0

and R′1 into (3.24) and using Fourier-Motzkin elimination to eliminate R′0, R′1 and ∆,

we can obtain the region in Theorem 10. The equivocation and converse proof and the

proof of the ranges of U, V may be found in [30].
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The following secrecy capacity region was also shown to be achievable in Csiszár

and Körner [30].

Corollary 2. The secrecy capacity region CS for the DM BC with one confidential and

one common message is the closure of all (R0, R1) satisfying

0 ≤R0 ≤ min{I(U ;Y ), I(U ;Z)} (3.45)

0 ≤R1 ≤ I(V ;Y |U)− I(V ;Z|U), (3.46)

where the auxiliary random variables U , V satisfy the Markov chain condition U →

V → X → (Y, Z) and with ranges |U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

3.3.2 BCs with 2 Confidential Messages

This model is studied in Liu et al [78] and is shown in Figure 3.8. It is a generalization

of the 2-receiver BC withW1 sent to receiver 1 andW2 to receiver 2, to the wiretapping

case. The transmitter sends no common message W0, but W1 is to be kept secret from

the receiver 2 and W2 is to be kept secret from the receiver 1. A (2nR1 , 2nR2 , n)-code

for the BC with 2 confidential messages, consists of the parameters:

W1 =
{

1, . . . , 2nR1

}
, (private message set 1),

W2 =
{

1, . . . , 2nR2

}
, (private message set 2),

f :W1 ×W2 7→ X n, ((stochastic) encoding function),

g1 : Yn1 7→ W1, (receiver 1 decoding function),

g2 : Yn2 7→ W2 (receiver 2 decoding function).

We have g1(Y1) = (Ŵ1), g2(Y2) = (Ŵ2), and error probability

P (n)
e = Pr

[
(Ŵ1, Ŵ2) 6= (W1,W2)

]
. (3.47)

The secrecy level of the message W1 sent to user 1 is defined by the equivocation

rate 1
n
H(W1|Y2), and that of W2 sent to user 2 is defined by the equivocation rate

1
n
H(W2|Y1). The rate tuple (R1, R2, R1e, R2e) is said to be achievable if for any η, ε1 >

0, ε2 > 0, there exists a sequence of (2nR1 , 2nR2 , n)-codes for which P (n)
e ≤ η and the

equivocation rates satisfy

1

n
H(W1|Y2) ≥ R1e − ε1,

1

n
H(W2|Y1) ≥ R2e − ε2. (3.48)
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Figure 3.8: Broadcast channel with two confidential messages.

Inner and outer bounds to the secrecy capacity region are derived in [78] and stated

below.

Theorem 11. An inner bound to the secrecy capacity region CIS for the DM BC with

two confidential messages is the closure of all rate pairs (R1, R2) satisfying

0 ≤R1 ≤ I(V1;Y1|U)− I(V1;Y2|U, V2)− I(V1;V2|U), (3.49)

0 ≤R2 ≤ I(V2;Y2|U)− I(V2;Y1|U, V1)− I(V1;V2|U), (3.50)

where the auxiliary random variables V1, V2, U satisfy the Markov chain conditions

U → V1 → X → (Y, Z), U → V2 → X → (Y, Z) and (U, V1, V2)→ X → (Y, Z).

An outer bound COS is the closure of all rate pairs (R1, R2) satisfying

0 ≤ R1 ≤ min{I(V1;Y1|U)− I(V1;Y2|U), I(V1;Y1|V2;U)− I(V1;Y2|V2, U)},

(3.51)

0 ≤ R2 ≤ min{I(V2;Y2|U)− I(V2;Y1|U), I(V2;Y2|V1;U)− I(V2;Y1|V1, U)},

(3.52)

where the auxiliary random variables V1, V2, U satisfy the same conditions as in the

inner bound.

If there exists a distribution that factors as p(u)p(v1, v2|u)p(x|v1, v2)p(y1, y2|x) for

which

I(V1;Y1|U) > I(V1;Y2, V2|U), I(V2;Y2|U) > I(V2;Y1, V1|U), (3.53)
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then both receivers can achieve strictly positive rates while secrecy constraints are sat-

isfied. These conditions can be derived from the inner bound in Theorem 11 by setting

R1, R2 > 0. Also, if one receiver is less noisy than the other, say, X to Y1 is less noisy

than X to Y2, so that I(V ;Y1) ≥ I(V ;Y2) for every V → X → (Y1, Y2), we have the

following secrecy capacity region:

R1 ≤ max
p(x)

[I(X;Y1)− I(X;Y2)]

R2 = 0. (3.54)

The means that only the user with the better channel can enjoy a non-zero secrecy rate

in the less noisy BC with two confidential messages. However, the MIMO Gaussian

version of this BC with two confidential messages can have strictly positive rates at

both receivers.

Proof. We will outline the coding scheme in the achievability proof, which combines

Marton’s achievability scheme [84],[36] (which uses Gel’fand Pinsker binning [51])

and random binning to obtain the double binning method. For the proof for the outer

bound, which we note does not match the inner bound in general, we refer to Liu et al

[78].

1 ...

2nRk'

1 ............. 2nRk

2nR

v
k
(wk,wk',wk )

k = 1, 2

Figure 3.9: Double binning.

The double binning is applied to vk, k = 1, 2 sequences and is shown in Figure

3.9. To begin, fix the distributions p(u), p(v1|u), p(v2|u), p(x|v1, v2). Let

R′1 , I(V1;Y2|V2, U)− ε′1, R′2 , I(V2;Y1|V1, U)− ε′1, R† , I(V1;V2|U) + ε′1,

(3.55)

where ε′1 > 0 and is small as n→∞.

1. Codebook generation: Randomly generate u typical sequences known to the

transmitter and both receivers with probability p(u) =
∏n
i=1 p(ui). For k = 1, 2,
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then generate 2Rk+R′k+R† vk sequences using p(vk|u) =
∏n
i=1 p(vk,i|ui) and

label them as vk(wk, w
′
k, w

†
k), where wk ∈ {1, ..., 2nRk}, w′k ∈ {1, ..., 2nR

′
k},

w†k ∈ {1, ..., 2nR
†}. Thus the code for the kth channel Ck = vk(wk, w

′
k, w

†
k) is

partitioned into 2nRk bins, each of size 2nR
′
k , with each bin further divided into

bins of size 2nR
† .

2. Encoding: To send message pair (w1, w2), the (stochastic) encoder randomly

chooses a sub-bin from within the 2nRk bins. Then select the unique pair w†1, w
†
2

so that v1(w1, w
′
1, w

†
1) and v2(w2, w

′
2, w

†
2) are jointly typical. By the mutual cov-

ering lemma [36], this step succeeds with low error probability provided that

R† ≥ I(V1;V2|U). (3.56)

Then generate x using p(x|v1,v2).

3. Decoding: The decoders choose the unique wk so that (vk(wk, w
′
k, w

†
k),yk) are

jointly typical with respect to the distribution p(vk, vk|u). The decoding succeeds

with low error probability provided that

R1 +R′1 +R† ≤ I(V1;Y1|U), R2 +R′2 +R† ≤ I(V2;Y2|U). (3.57)

Combining the code generation (3.56) and decoding (3.57) conditions with the condi-

tions (3.55), we can get the inner bound in the theorem.

We note that Xu et al in [116] generalized the BC with 2 confidential messages

by the addition of the transmitter sending a common message to both receivers. At the

same time, the perfect secrecy condition (required for obtaining secrecy capacity) was

removed. The common message has no security constraints. The achievable coding

scheme used rate-splitting (for the common message) and double binning. An inner

bound to the rate equivocation region was derived, which was shown to reduce to the

secrecy capacity inner bound CIS for perfect secrecy and no common message. An outer

bound to the rate equivocation region was also derived in [116].

3.4 Relay Channels
The relay channel (RC) is a multiterminal problem where a source node communicates

with one or more destination nodes via one or more relays. Coding schemes for the
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RC have been well studied by Cover and El Gamal in [27]. For the problem of the RC

with secrecy constraints, the coding scheme for achievability is to use the schemes for

relaying in [27] together with either code partitioning or double binning for secrecy.

For RCs with secrecy constraints, we have four main classes, shown in Figure 3.10.

Transmitter

Receiver 2: Relay/ Eavesdropper

Receiver 1

Transmitter

Receiver 2: Relay/ Eavesdropper

Receiver 1: Relay/ Eavesdropper

(a) (b)

Transmitter

Receiver 2: Relay

Receiver 1

(c)

Eavesdropper

Transmitter

(d)

Relay/ Eavesdropper

Receiver

Figure 3.10: Classes of relay channels with confidential messages.

From Figure 3.10, we have the following:

• Class A: shown in Figure 3.10(a), this class has a transmitter sending its message

to the receiver while it is helped by a relay that may be an eavesdropper. We

can also view this as a BC, specifically a wiretap channel with the transmitter

to receiver channel the legitimate channel and transmitter to relay channel the

eavesdropper’s channel. This is also known as a BC with one-sided cooperation.

This model has been studied by Oohama [98]. Then the coding scheme for se-

curity will be code partitioning scheme for the wiretap channel and the BC with

one confidential message, combined with Cover and El Gamal’s schemes for the

relaying.
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• Class B: shown in Figure 3.10(b), this class has the transmitter sending two mes-

sages to the receivers while it is helped by relays at the receivers that may be

eavesdroppers. We can also view this as a BC, specifically a 2-user BC with

confidential messages with cooperation. This is also known as a BC with 2-sided

cooperation. This model has been studied by [34], where the coding scheme for

security will be the double binning scheme combined with Cover and El Gamal’s

schemes for the relaying.

• Class C: shown in Figure 3.10(c), this class has the transmitter sending a message

to the receiver while it is helped by a relay and there is an external eavesdropper.

This model was studied by Lai and El Gamal [69], and the coding scheme for

security is code partitioning combined with relaying schemes. Two other variants

of this scheme were studied. In the first variant, Aggarwal et al [2] considered

splitting the message at the transmitter into two orthogonal components W11 and

W10 and using two orthogonal channels to send W11 to the receiver and W10

to the relay. The eavesdropper can tap signals on either one or both of the two

orthogonal channels. By virtue of the transmitter sending only part of its message

to the relay, there is less information for the eavesdropper-relay channel and so

the secure region is enhanced. In the second variant in Goel and Negi [52], a

bank of relays is used in a MIMO Gaussian channel. The bank of relays act as if

they are a combined MIMO relay. A two stage transmission scheme is proposed.

In the first stage, the transmitter and receiver both transmit independent artificial

noise to the bank of relays. In the second stage the relays send a weighted version

of the received signal, while the transmitter transmits the secret message together

with a weighted version of its artificial noise, which is to cancel the transmitter

artificial noise component at the receiver. At the receiver 1, the known receiver

and transmitter artificial noise are both removed. The eavesdropper’s channel is

then degraded by the artificial noise.

• Class D: shown in Figure 3.10(d), this class has the transmitter sending a message

to the receiver which must pass through a relay which is an eavesdropper. This

model can include a one-way or two-way operation. In the one-way operation,

the transmitter sends the message to the receiver only. In the two way operation,
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the transmitter and receiver exchange messages via the relay, using either a half

duplex mode or full duplex mode. The two way operation includes the Two-

way RC (TWRC) of He and Yener [56], where there are multiple relays through

which the transmitter and receiver can communicate. In [56] nested lattice coding

is proposed for the secure scheme7.

Other TWRCs without secrecy can be found in the literature, which include the

two-phase channel of Oechtering et al [95], which has a multiple access channel

(MAC) connected with a BC by a relay; the TWRC of Gunduz et al [54]; and the

TWRCs of Wilson et al [114] and Zhang et al [125], where an analogue network

coding is used for Gaussian MIMO channels. It is of course of great interest

to find out new secure schemes for these TWRCs as these models describe the

critical part of a network where one cell (or base station) is connected to the other.

In decentralized networks, the connections may have minimal hardware, so it is

also important to see how security constraints affect these relays.

We will focus on Class C, that is the RC with external eavesdropper. We see that

this configuration is simply a wiretap channel with an extra relay node. Recalling that

the secrecy capacity is given by

CS = max
T→X→(Y,Z)

[I(T ;Y )− I(T ;Z)],

we see that when the legitimate channel is less noisy than the eavesdropper’s channel,

I(T ;Y ) ≤ I(T ;Z) and secrecy capacity goes to zero. By introducing the relay node to

help the transmitter, Lai and El Gamal [69] showed that we can achieve positive secrecy

capacity even in some scenarios where positive secrecy capacity is not possible without

the relay node. So this RC configuration gives us an additional node with which we can

enhance the secrecy capacity.

For a more practical implementation, we can use signal processing methods to

enhance the secrecy capacity. We will propose such methods in Chapter 5, and we will

defer further discussion of the RC with an external eavesdropper till then.

7We should remark that the nested lattice coding in [56] is used in conjunction with a jamming signal

that turns the wiretap channel into an interference channel with secrecy constraints. However, the secure

code was a random code superposed on points from a nested lattice code; the construction is not an

explicitly all-lattice wiretap code. So we cannot really view the code in [56] as a ‘pure’ wiretap code.
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3.5 Coding for Wiretap Channels
In this section we look at some practical coding methods to achieve secrecy for the

wiretap channel. It should be noted that there are still many open areas for research in

practical coding methods for the wiretap channel. Important studies for coding for the

wiretap channel are the ones by Ozarow and Wyner [99] and Thangaraj et al [110].

The coding strategy by Wyner for the wiretap code is in general a nested code.

The nested code structure of Wyner is similar to the well known nested codes of Zamir

et al [120]. The coding scheme for the wiretap channel uses coset coding (or nested

coset coding). The transmitter sends one of M equally likely messages from the secure

codebook C which consists of subcodes {C1, . . . , CM}, while the legitimate receiver can

decode the codebook C, but the eavesdropper can decode only within each subcode.

The codebook C is the fine code and the ensemble of subcodes {C1, . . . , CM} is the

coarse code, each of which is a coset of C. To send message m ∈ {1, . . . ,M}, the

transmitted word is chosen uniformly at random from the subcode Cm; this stochastic

encoding is the main source of uncertainty for the wiretapper.

In Thangaraj et al [110], the following theorem was shown.

Theorem 12. If each subcode Cnm is from a sequence of codes that achieve capacity

over the eavesdropper’s channel, then perfect secrecy can be achieved.

This theorem forms a key criterion for the design of wiretap codes.

3.5.1 Wiretap Channel Type II

In Ozarow and Wyner [99], the wiretap channel type II was introduced and studied.

Here the source input alphabet is {0, 1}, the legitimate receiver’s channel is noiseless

and the eavesdropper can choose to see nw of n symbols of the input sequences. The

rate-equivocation region is the set of (R,Re) so that

0 ≤ R ≤ 1, 0 ≤ Re ≤ min(R, ε), (3.58)

where ε = 1 − nw/n is the fraction of bits that are not observed by the eavesdropper.

An achievable scheme for this uses the nested code structure. In a variant of this model

in [110] where the eavesdropper can observe approximately nw of n symbols of the

input sequences chosen by the legitimate user, the legitimate user’s channel is noiseless

and the eavesdropper’s channel is a binary erasure channel with erasure probability
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ε = 1 − nw/n; this is called the type II binary erasure wiretap channel. A coding

scheme also using the nested code structure is given in [110] for this channel, with

specific realizations using low-density-parity-check (LDPC) codes. The criterion for

the subcode to be capacity achieving on the eavesdropper’s channel is for it to contain

at least one codeword that matches received sequence z in the unerased positions, so

that the eavesdropper decodes each corresponding message with equal probability with

H(W |Z = z) = nR. Then perfect secrecy is achieved.

In the binary symmetric wiretap channel type II, studied in [110], the legiti-

mate user’s channel is noiseless and the eavesdropper’s channel is a binary symmetric

channel with crossover probability p. A nested code was again proposed, with sub-

codes using error-detecting codes (for example, Hamming codes and Bose-Chaudhuri-

Hocquenghem codes). However, it was noted in [110] that by using error-detecting

codes as the subcodes it is difficult to achieve non-zero secrecy capacity.

3.5.2 Non-type-II Wiretap Channels

We look at the more realistic case for channel coding where the legitimate user’s chan-

nel and the eavesdropper’s channel are of the same type. For example, if the legitimate

user’s channel is BEC, then the eavesdropper’s channel is also BEC. For short we will

call it the BEC wiretap channel. Now, a final, but important point is that the authors

in [110] found that despite using LDPC codes in the coset coding for the BEC wiretap

channel, the conditions of Theorem 12 are not met. Thus, unfortunately, the code was

not information theoretically secure. This naturally motivates more research into the

coding issue.

We will defer further discussion on coding for the wiretap channel until Chapter 6

when we discuss lattice coding for the Gaussian wiretap channel.
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Chapter 4

Broadcast Channels with Confidential

Messages

In this chapter we present our research on the multiple receiver BC with confidential

messages. The work is motivated by the fact that the general multiple receiver BC

region is still unknown, and it would be of great interest to be able to derive coding

schemes to achieve secrecy rates for the general BC. Our work consists of two parts.

The first is on the degraded K-receiver BC with K confidential messages and an ex-

ternal eavesdropper. The second is on the 3-receiver BC with degraded message sets

(DMS) and confidential messages, where one of the receivers is an eavesdropper. As

noted earlier, the 3-receiver BC with DMS and its achievability scheme represents a

major step towards the characterization of the capacity region for the general multiple

receiver BC. Thus we choose to study it under secrecy constraints as this will give us

insights toward the general problem.

4.1 Introduction
In this section we introduce the various models of the multiple receiver BC with confi-

dential messages. In the most general form, the transmitter sends confidential messages

W1, ...,WK to receivers Y1, ..., YK respectively, while we want to keep the messages se-

cret from an external eavesdropper. So the model here is a K + 1 receiver BC. This

is depicted in Figure 4.1. The transmitter may send the common message to all of

the receivers, which may include the eavesdropper. This class of BC with confidential

messages has two types: depending on whether the receivers have general conditions,

or the receivers are degraded, with degradation X → Y1 → ...→ YK .
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Figure 4.1: General BC with K receivers and confidential messages.

For the degraded BC, we note that the multiple versions of the messages received

at say, receiver 1 is due to the degraded nature of the channel. That is, receiver 1 is

the strongest receiver and can decode anything the others can decode. This channel

has been studied independently in our research [20, 21] (K confidential messages, K-

receiver BC), Bagherikaram et al [6] (2 confidential messages, 2-receiver BC), and

Ekrem and Ulukus [33] (K confidential messages, K-receiver BC, common message

to all receivers but not the eavesdropper).

The general 2-receiver BC with confidential messages and external eavesdropper

was studied by Bagherikaram et al [6] (2 confidential messages, with the common mes-

sage). A special case of the general K-receiver BC, where each receiver only receives

its own message and the common message, was studied by Kobayashi et al [65] (K

confidential messages, K-receiver BC, common message to all receivers including the

eavesdropper). Both [6] and [65] used double binning to prove only inner bounds to

the secrecy capacity region. Kobayashi et al [65] also extend Marton’s scheme to K re-

ceivers (but with the limitation that each receiver only receives its own message and the

common message). The work in Bagherikaram et al [6] is limited to Marton’s scheme

for 2 receivers, the existing state of the art.

A subclass of the general K-receiver BC is the 3-receiver BC with degraded mes-

sage sets (DMS). In its general form, a common message W0 is sent to all three re-

ceivers, private message W1 is sent to receivers 1 and 2, and private message W2 is sent

to receiver 1 only. We can see quite easily then that this is a subclass of the general
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K-receiver BC in Figure 4.1. This 3-receiver BC model (and some of its subclasses)

was recently introduced in Nair and El Gamal [90, 91]. Our objective is to study this

model of the 3-receiver BC with DMS of [90, 91] with secrecy constraints. We note

that the insights which this model of the 3-receiver BC with degraded message sets

might bring are due to it being a more general model than the 2- or 3-receiver degraded

BC with secrecy constraints. We will be able to gain some insights on a secure coding

scheme for general conditions on more than two receivers.

In particular, we characterize the transmission rates for the 3-receiver BCs with

DMS from the model mentioned above where receiver 3 is an eavesdropper, and W1 is

sent to receiver 1. We call this model the 3-receiver BC with 2 DMS. We shall see that

our 3-receiver BC with 2 DMS with secrecy constraints is an extension to 3 receivers of

the BC with one confidential message and one common message of Csiszár and Körner

[30], and a generalization of the 3-receiver degraded BC with secrecy constraints by

virtue of the general conditions on the channels. We also note that Chia and El Gamal

in [17, 18] have also studied the 3-receiver BC with 2 DMS with receiver 3 being

an eavesdropper, but with W1 sent to receivers 1 and 2, and using a different coding

scheme1.

Lastly we mention that Chia and El Gamal in [17, 18] also studied a 3-receiver

BC with a certain degradedness order called the multilevel BC for receivers 2 and 3

being eavesdroppers. Recently this was generalized to a 3-receiver BC with receiver

1 less noisy than receiver 2, which is also less noisy than receiver 3, with receivers 2

and 3 being eavesdroppers by Salehkalaibar and Aref [104]. In both these works, the

conditions on the channels were less general than the 3-receiver BC with DMS.

4.2 The K-receiver Degraded BC with Confidential

Messages
In this section, we investigate the degraded K-receiver BC with confidential messages

sent to each receiver in the presence of an eavesdropper, from which the messages are

kept secret. We use the perfect secrecy criteria.

Our results are a generalization of our work for the 3-receiver BC in [21] and

1We shall discuss the differences in the coding schemes in Section 4.3.2.
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earlier results for 2-receiver BCs in [6]. It is noted that results similar to ours have

been established independently in [33], where Ekrem and Ulukus [33] examined the

K-receiver degraded BC and one eavesdropper with confidential messages as well as

a common message sent to the receivers. However, there are some appreciable differ-

ences between our approach and that in [33]. In particular, equivocation calculation and

proof of the converse in [33] are accomplished from the perspective of the channel sum

rate. In contrast, we provide the error probability analysis and the equivocation calcu-

lation with respect to the kth receiver’s achievable rate. In our proof of the converse,

which we have shown for the kth receiver, we note that our choice of auxiliary random

variables is different from that of [6] and [33]. Due to the presence of the wiretapper,

it is also different from the choice in Borade et al. [13] where the capacity region for

the degraded K-receiver BC using superposition coding without confidential messages

is studied.

4.2.1 Channel Model

The degraded K-receiver BC with an external eavesdropper is depicted in Figure 4.2.

We note that we do not have the common message. The receivers are degraded in that

Y1 → Y2 → ...→ YK → Z forms a Markov chain.

Encoder Channel

p(y1,...,yK,z|x)X

Y1

Y2

Z

f

g1

g2

Eavesdropper

, ..... , W1
^

(1)

WK
^

(1)

W1

WK

.
.
.
.
.
.
.

YK
gK

.
.
.
.
.
.
.

.
.
.
.
.
.
.

, ..... , W2
^

(2)

WK
^

(2)

WK
^

(1)

Figure 4.2: Degraded BC with K receivers and confidential messages.

This model consists of a finite input alphabet X and finite output alphabets

Y1, . . . ,YK ,Z and has conditional distribution p(y1, . . . , yK , z|x). Thus the discrete

memoryless BC with K receivers and an eavesdropper has an input random sequence

X, K output random sequences, Y1, . . . ,YK , at the intended receivers, and an output
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random sequence at the eavesdropper Z. Likewise, we have y1 ∈ Yn1 , . . . , yK ∈ YnK
and z ∈ Zn. The conditional distribution for n uses of the channel is

p(y1, . . . ,yK , z|x) =
n∏
i=1

p(y1i, . . . , yKi, zi|xi). (4.1)

The transmitter has to send independent messages (W1, . . . ,WK) to the receivers

in perfect secrecy. This is done using a (2nR1 , . . . , 2nRK , n)-code for the BC, which

consists of the stochastic encoder

f :
{

1, . . . , 2nR1

}
×
{

1, . . . , 2nR2

}
× · · · ×

{
1, . . . , 2nRK

}
7→ X n, (4.2)

and the decoders

gk : Ynk 7→
{

1, . . . , 2nRk
}
, for k = 1, 2, . . . , K. (4.3)

The probability of error is defined as the probability that the decoded messages are not

equal to the transmitted messages, i.e.,

P (n)
e , Pr

[
K⋃
k=1

{gk(Yk) 6= Wk}
]
. (4.4)

The information rate for the kth receiver isRk = 1
n
H(Wk). DefineK ⊆ {1, ..., K}

and W (K) , {Wk : k ∈ K}. We now define the following equivocation rates for the

K-receiver degraded BC:
1

n
H(Wk|Z), for k = 1, . . . , K,

1

n
H(W (K)|Z) for all K ⊆ {1, ..., K}.

(4.5)

For perfect secrecy, we need
1

n
H(Wk|Z) ≥ Rk − η, for k = 1, . . . , K,

1

n
H(W (K)|Z) ≥

∑
k∈K

Rk − η′ for k ∈ K,
(4.6)

for arbitrary η, η′ > 0.

4.2.2 The Secrecy Capacity Region

The secret rate tuple (R1, R2, . . . , RK) is achievable if, for any arbitrarily small ε′ > 0,

εk > 0, k = 1, . . . , K, and K ⊆ {1, · · · , K}, there exist (2nR1 , . . . , 2nRK , n)-codes for

which P (n)
e ≤ ε′ and

Re(k) ≥ Rk − εk, for k = 1, . . . , K,∑
k∈K

Re(k) ≥
∑
k∈K

Rk −
∑
k∈K

εk, for k ∈ K.
(4.7)
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The above equation (4.7) gives the security conditions for the K-receiver BC with an

eavesdropper under perfect secrecy requirements in (4.6). We then have the following

secrecy capacity region:

Theorem 13. The secrecy capacity region for the K-receiver degraded BC with an

external eavesdropper is the closure of all rate tuples (R1, . . . , RK) satisfying

R1 ≤ I(X;Y1|U2)− I(X;Z|U2),

Rk ≤ I(Uk;Yk|Uk+1)− I(Uk;Z|Uk+1), for k = 2, . . . , K − 1, (4.8)

RK ≤ I(UK ;YK)− I(UK ;Z),

over all probability distributions of the form p(uK)p(uK−1|uK) · · · p(u2|u3)p(x|u2), so

that the auxiliary r.v.s {Uk}Kk=2 satisfy the Markov chain condition UK → UK−1 →

· · · → U2 → X .

Proof. The code construction and error analysis is in Section 4.2.3 and equivocation

calculation is in Section 4.2.4. We note first that, for the codewords sent to each re-

ceiver, code partitioning will give rise, firstly, to an overall rate which includes all the

subcodes; and secondly, a rate within each subcode. The conditions on the overall rates

for successful decoding at the receivers and the conditions on the rates of the codewords

within each subcode satisfying perfect secrecy in the equivocation calculation are then

combined to show achievability of Theorem 13. Finally the proof of the converse is

found in Section 4.2.5.

If we use superposition coding with code partitioning to achieve the rates in The-

orem 13, then the secrecy capacity region may be interpreted as the capacity region for

the K-receiver BC using superposition coding without the eavesdropper, with the rates

at each receiver each reduced due to the presence of the eavesdropper. However, we

shall see that the choice of auxiliary r.v.s in our proof of converse for the K-receiver

BC will be different from that of [13], which is without the secrecy conditions. This

is also in contrast to the 2-receiver BC with an eavesdropper in [6], where the same

definition for the auxiliary random variables in the converse proof can be used for the

scenarios with and without the secrecy conditions.
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4.2.3 Code Construction and Error Analysis

Here we employ superposition coding and Wyner’s random code partitioning to show

the achievable rate tuples (R1, . . . , RK). For brevity, we use pY1|X to denote the chan-

nel from X to Y1, similarly for the channels from X to outputs Y2, . . . ,YK and Z, by

pY2|X, . . . , pYK |X and pZ|X, respectively.

The coding strategy is depicted in Fig. 4.3. The message Wk ∈ {1, . . . , Lk} with

Lk , 2nRk for k = 1, . . . , K, is sent by a code of length Nk = LkL
′
k. This code is

partitioned into Lk subcodes each of size L′k, with L′k , 2nR
′
k for some R′k. The R′k is

referred to as ‘confusion’ rate. Each of the Lk subcodes is a code for the channel pZ|X,

while each of the entire codes of size Nk is a code simultaneously for both the channels

pYk|X and pZ|X. The codes for simultaneous use for pYk|X and pZ|X have to satisfy the

transmission requirements for the BC [11], so that

1

n
logN1 ≤ I(X;Y1|U2),

1

n
logNk ≤ I(Uk;Yk|Uk+1), for k = 2, . . . , K − 1, (4.9)

1

n
logNK ≤ I(UK ;YK).

Random codebook generation: Suppose that we have the p.d.f.s

p(uK),

p(uk|uk+1), for k = 2, . . . , K − 1,

p(x|u2).

(4.10)

For a given rate tuple (R1, . . . , RK , R
′
1, . . . , R

′
K), in order to send message WK , gen-

erate 2n(RK+R′K) independent codewords uK(w′′K), for w′′K ∈ {1, . . . , 2n(RK+R′K)} ac-

cording to the p.d.f. p(uK) =
∏n
i=1 p(uKi). Then, partition uK(w′′K) into LK = 2nRK

subcodes, {C(K)
i }

LK
i=1 with |C(K)

i | = L′K = 2nR
′
K ∀i.

The message for the kth receiver, for k = 2, 3, . . . , K − 1, is sent by generat-

ing 2n(Rk+R′k) independent codewords uk(w
′′
k , . . . , w

′′
K), for w′′k ∈ {1, . . . , 2n(Rk+R′k)}

according to the conditional p.d.f.

p(uk|uk+1) =
n∏
i=1

p(uki|u(k+1)i). (4.11)

Then, partition uk(w
′′
k , . . . , w

′′
K) into Lk = 2nRk subcodes, {C(k)

i }
Lk
i=1, with |C(k)

i | =

L′k = 2nR
′
k ∀i. Finally, to send the message intended for the first receiver, generate
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LK
'=2nRK'

1 ............. LK=2nRK

u
K
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Figure 4.3: Coding for K receiver BC with an eavesdropper.

2n(R1+R′1) independent codewords x(w′′1 , . . . , w
′′
K), for w′′1 ∈ {1, . . . , 2n(R1+R′1)} ac-

cording to the p.d.f. p(x|u2) =
∏n
i=1 p(xi|u2i). Then, partition x(w′′1 , . . . , w

′′
K) into

L1 = 2nR1 subcodes, {C(1)
i }L1

i=1, with |C(1)
i | = L′1 = 2nR

′
1 ∀i.

Following this code structure, the codeword indices w′′k may be expressed as w′′k =

(wk, w
′
k), where wk ∈ {1, . . . , 2nRk} is the index of the message transmitted to the

kth receiver, and w′k ∈ {1, . . . , 2nR
′
k} denotes the index of the codeword within the

subcodes C(k)
i , selected for transmission along with wk to ensure secrecy.

Encoding: The encoding is by superposition coding. To send the message wK = iK ,

for 1 ≤ iK ≤ LK , the transmitter chooses one of the uK(w′′K) codewords uniformly and

randomly from {C(K)
iK
}LKiK=1. Then, to send the message wK−1 = iK−1, for 1 ≤ iK−1 ≤

LK−1, the transmitter selects one of the uK−1(w′′K−1, w
′′
K) uniformly randomly from

{C(K−1)
iK−1

}LK−1

iK−1=1, given uK(w′′K). Sequentially, the transmitter sends the message wk =
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ik, for 1 ≤ ik ≤ Lk and k = 2, . . . , K − 2, to the kth receiver by choosing one of the

uk(w
′′
k , . . . , w

′′
K) uniformly and randomly from {C(k)

ik
}Lkik=1, given uk+1(w′′k+1, . . . , w

′′
K).

Lastly, to sendw1 = i1 for 1 ≤ i1 ≤ L1, given u2(w′′2 , . . . , w
′′
K), the transmitter chooses

one of the x(w′′1 , . . . , w
′′
K) uniformly randomly from {C(1)

i1 }
L1
i1=1.

Decoding: For convenience, let X = U1. Then, we have:

1. At receiverK, given that yK is received, find a ŵK , such that (uK(ŵK , w
′
K),yK) ∈

T nε (PUKYK ).

2. At the kth receiver, for k = 1, . . . , K − 1, given that yk is received, find a

(ŵk, . . . , ŵK) such that

(uK(ŵK , w
′
K), . . . ,uk(ŵk, w

′
k, . . . , ŵK , w

′
K),yk) ∈ T nε (PUKUK−1···UkYk).

(4.12)

For each of the above cases, if there is none or more than one possible decoded

message, then an error will be declared. Note that w′k is unimportant for the decoding

of wk at the kth receiver.

Probability of error analysis: Assume without loss of generality that (w1, . . . , wk) =

(1, . . . , 1) is sent and an arbitrary w′k is sent for the subcodes C(k)
ik
∀k. Let ε′ > 0 be a

small positive value that goes to zero for n sufficiently large.

For Receiver K, the error events are:

(a) E
(K)
1 : (wK , w

′
K) = (1, 1) but uK is not jointly typical with yK . By the properties

of typical sequences, Pr
[
E

(K)
1

]
≤ ε′.

(b) E
(K)
2 : wK 6= 1, w′K is arbitrary and uK is jointly typical with yK .

The probability of the event E(K)
2 is

Pr
[
E

(K)
2

]
= Pr

 ⋃
wK 6=1

{(UK(wK , w
′
K),yK) ∈ T nε (PUKYK )}


≤ 2n(RK+R′K−I(UK ;YK)−δ(ε)), (4.13)

where δ(ε)→ 0 for n sufficiently large. Thus Pe,K ≤ 2ε′ by the union bound if

RK +R′K < I(UK ;YK). (4.14)
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The kth receiver, k = 1, ..., K − 1, should decode wk, ..., wK . It does so by

decoding uK ,uK−1, ...,uk, which it can, due to the degraded nature of the channel.

That is, the kth receiver can decode anything that the (k+1)th up to the Kth receiver

can. Let us denote the events

Dk : (uk,uk+1, · · · ,uK ,yk) ∈ T nε (PUkUk+1···UKYk)

Dk
c : (uk,uk+1, · · · ,uK ,yk) /∈ T nε (PUkUk+1···UKYk).

We have the K − k + 2 events for the kth receiver:

E
(k)
1 : (wk, w

′
k, ..., wK , w

′
K) = (1, 1, ..., 1, 1), Dk

c occurred,

E
(k)
2 : wk 6= 1, w′k arbitrary, (wk+1, w

′
k+1, ..., wK , w

′
K) = (1, 1, ..., 1, 1), Dk occurred,

E
(k)
3 : wk 6= 1, wk+1 6= 1, w′k, w

′
k+1 arbitrary,

(wk+2, w
′
k+2, ..., wK , w

′
K) = (1, 1, ..., 1, 1), Dk occurred

...

E
(k)
K−k+2 : wk 6= 1, wk+1 6= 1, · · · , wK 6= 1, w′k, w

′
k+1, · · · , w′K arbitrary, Dk occurred.

This leads to the following probabilities on the error events for the kth receiver:

Pr
[
E

(k)
1

]
≤ ε′,

Pr
[
E

(k)
2

]
= Pr

 ⋃
wk 6=1

{
(Uk,uk+1, · · · ,uK ,yk) ∈ T nε (PUkUk+1···UK )

}
(a)

≤ 2n(Rk+R′k−I(Uk;Yk|Uk+1,··· ,UK)−δ(ε)) (b)
= 2n(Rk+R′k−I(Uk;Yk|Uk+1)−δ(ε)),

Pr
[
E

(k)
3

]
= Pr

 ⋃
wk 6=1

⋃
wk+1 6=1

{
(Uk,Uk+1,uk+2, · · · ,uK ,yk) ∈ T nε (PUkUk+1···UK )

}
≤ 2n(Rk+Rk+1+R′k+R′k+1−I(Uk,Uk+1;Yk|Uk+2,··· ,UK)−δ(ε))

(c)
= 2n(Rk+Rk+1+R′k+R′k+1−I(Uk;Yk|Uk+1)−I(Uk+1;Yk|Uk+2)−δ(ε)),

...

...

Pr
[
E

(k)
K−k+2

]
= Pr

 ⋃
wk 6=1

· · ·
⋃

wK 6=1

{
(Uk,Uk+1, · · · ,UK ,yk) ∈ T nε (PUkUk+1···UK )

}
≤ 2n(

∑K

i=k
(Ri+R

′
i)−I(Uk,··· ,UK ;Yk)−δ(ε))

(d)
= 2n(

∑K

i=k
(Ri+R

′
i)−I(Uk;Yk|Uk+1)−I(Uk+1;Yk|Uk+2)− ··· −I(UK ;Yk)−δ(ε)),
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where (a) uses Theorem 5 and (b),(c) and (d) are by UK → UK−1 → · · · → U1 → Yk.

Then the kth receiver has error probability Pe,k ≤ (K − k + 2)ε′ if

Rk +R′k < I(Uk;Yk|Uk+1)

Rk +Rk+1 +R′k +R′k+1 < I(Uk;Yk|Uk+1)− I(Uk+1;Yk|Uk+2)

...
K∑
i=k

(Ri +R′i) < I(Uk;Yk|Uk+1)− I(Uk+1;Yk|Uk+2)− · · · − I(UK ;Yk). (4.15)

Now combining the conditions for low error probability for n sufficiently large for allK

receivers and removing the redundant inequalities, we have, for small error probability

at all the receivers,

RK +R′K ≤ I(UK ;YK), (4.16)

RK−1 +R′K−1 ≤ I(UK−1;YK−1|UK), (4.17)
...

Rk +R′k ≤ I(Uk;Yk|Uk+1), (4.18)
...

R1 +R′1 ≤ I(U1;Y1|U2) = I(X;Y1|U2). (4.19)

We have shown the rate conditions for successful decoding at the receivers. We

will now show the equivocation calculation.

4.2.4 Equivocation Calculation

Here we show the equivocation calculation. We first note that there is an alternative

method to obtaining the equivocation and the sizes of the code partitions, which was

presented in our earlier work [20, 21], and is outlined in Appendix B.3. However, the

method presented in this section has the advantage of showing how to obtain the code

partition size from first principles.

We now show the calculation for the kth receiver, then for the all the receivers

k = 1, · · · , K. We still let X = U1 and UK+1 = ∅ for convenience. We shall make use

of the relation

H(U, V ) = H(U) +H(V |U). (4.20)
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Let Jk ∈ {1, · · · , L′k}, L′k = 2nR
′
k for all k = 1, . . . , K. For the kth receiver,

k = 1, . . . , K, we have

H(Wk|Z) ≥ H(Wk|Z,Uk+1)

= H(Wk, Jk|Z,Uk+1)−H(Jk|Z,Uk+1,Wk)

(a)

≥ H(Uk|Z,Uk+1)−H(Jk|Z,Uk+1,Wk)

= H(Uk,Z|Uk+1)−H(Z|Uk+1)−H(Jk|Z,Uk+1,Wk)

= H(Uk|Uk+1) +H(Z|Uk,Uk+1)−H(Z|Uk+1)−H(Jk|Z,Uk+1,Wk)

= H(Uk|Uk+1)− I(Uk; Z|Uk+1)−H(Jk|Z,Uk+1,Wk), (4.21)

where (a) is due to Uk being a function of (Wk, Jk). We now bound each of the terms

in the last line of (4.21). For the first term, given that Uk+1 = uk+1, Uk has 2n(Rk+R′k)

possible values with equal probability. As a consequence, we have

H(Uk|Uk+1) = n(Rk +R′k). (4.22)

For the second term, it can be shown, following the method used in Liu et al [78], that

I(Uk; Z|Uk+1) ≤ nI(Uk;Z|Uk+1) + nδ, (4.23)

where δ > 0 and is small for n sufficiently large. To evaluate the last term in the last

line of (4.21), we introduce the following lemma, which is proved in Appendix B.1.

Lemma 4. We have

H(Jk|Z,Uk+1,Wk) ≤ n(R′k − I(Uk;Z|Uk+1) + δ(ε)) + 2, (4.24)

where δ(ε)→ 0 for ε→ 0 and n sufficiently large, under the condition that

R′k ≥ I(Uk;Z|Uk+1). (4.25)

Substituting (4.22), (4.23) and (4.24) into the last line of (4.21), we have

1

n
H(Wk|Z) ≥ Rk −

(
δ + δ(ε) +

2

n

)
= Rk − η, (4.26)

where η , δ+δ(ε)+ 2
n

, which is> 0 and is small as n is large. We have now shown that

the equivocation rate of the kth receiver meets the perfect secrecy requirement (4.6).
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We now proceed to show that the sum equivocation rate of the K receivers meets

the perfect secrecy requirement (4.6). We have

H(W1, · · · ,WK |Z)

= H(W1, · · · ,WK , J1, · · · , JK |Z)−H(J1, · · · , JK |Z,W1, · · · ,WK)

= H(W1, · · · ,WK , J1, · · · , JK)− I(W1, · · · ,WK , J1, · · · , JK ; Z)

−H(J1, · · · , JK |Z,W1, · · · ,WK)

≥ H(W1, · · · ,WK , J1, · · · , JK)− I(W1, · · · ,WK , J1, · · · , JK ,U1, · · · ,UK ; Z)

−H(J1, · · · , JK |Z,W1, · · · ,WK)

= n(R1 + · · ·+RK +R′1 + · · ·+R′K)− I(U1, · · · ,UK ; Z)

−H(J1, · · · , JK |Z,W1, · · · ,WK), (4.27)

where the last line above is due to firstly, to all of the W1, · · · ,WK , J1, · · · , JK being

independent of each other; and secondly, (W1, · · · ,WK , J1, · · · , JK) is independent of

Z, given U1, · · · ,UK . The second term in the last line of (4.27) can be expressed as

I(U1, · · · ,UK ; Z) = I(U1; Z|U2) +
K−1∑
k=2

I(Uk; Z|Uk+1) + I(UK ; Z), (4.28)

by using the Markov chain condition UK → UK−1 → · · · → U1 → Z. Again, using

the the method of [78], we have that

I(U1, · · · ,UK ; Z) ≤ nI(U1;Z|U2) +
K−1∑
k=2

nI(Uk;Z|Uk+1) + nI(UK ;Z) + nKδ.

(4.29)

To evaluate the last term in the last line of (4.27), we need Lemma 5, the K-receiver

counterpart of Lemma 4, which is proved in Appendix B.2.

Lemma 5. We have

H(J1, · · · , JK |Z,W1, · · · ,WK) ≤ n

(
K∑
k=1

[R′k − I(Uk;Z|Uk+1)] + δ(ε)

)
+ 2, (4.30)

where δ(ε)→ 0 for ε→ 0 and n sufficiently large, under the conditions

R′K ≥ I(UK ;Z)

R′K−1 ≥ I(UK−1;Z|UK)

...

R′1 ≥ I(U1;Z|U2) = I(X;Z|U2). (4.31)
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Substituting (4.29) and (4.30) into the last line of (4.27), we have

1

n
H(W1, · · · ,WK |Z) ≥

K∑
k=1

Rk −
(
Kδ + δ(ε) +

2

n

)
=

K∑
k=1

Rk − η′, (4.32)

where η′ , Kδ+δ(ε)+ 2
n

, which is > 0 and is small as n is large. We have now shown

that the equivocation sum rate of the K receivers meets the perfect secrecy requirement

(4.6). Lastly, we note that since the Wk, k ∈ K are independent of each other, we

have the relation that H(W (K)|Z) =
∑
k∈KH(Wk|Z). Then we can repeat the proof

of (4.21) for each of H(Wk|Z), and by taking the sum, we can see that the sum rate of

any subset of the receivers meets the perfect secrecy requirement (4.6)2.

Thus, the direct part of Theorem 13 is proved.

4.2.5 Proof of Converse

Here, we show the converse proof to Theorem 13. Consider a (2nR1 , . . . , 2nRK , n) code

with error probability P (n)
e with the code construction so that we have the condition

(W1 · · · WK) → X → Y1 · · · YKZ. Then, the probability distribution on W1 ×

· · · ×WK ×X n × Yn1 × · · · × YnK ×Zn is given by

p(w1) · · · p(wK)p(x|w1, . . . , wK)
n∏
i=1

p(y1i, . . . , yKi, zi|xi). (4.33)

A state dependency graph for the K-receiver degraded BC and confidential messages

is shown in Figure 4.4. The variables Y1,i, Y2,i, · · · , YK,i, Zi follow the degradedness

condition Y1,i → Y2,i → · · · → YK,i → Zi for i = 1, · · · , n.

In the following, we give the proof for the rate at the kth receiver, while the proof

for the Receiver 1 requires a few additional steps. The proof for Receiver K will be

shown later.

2This observation has also been made in Ekrem and Ulukus [33, Lemma 11, Appendix A], where it is

shown that if the sum rate secrecy constraint is satisfied, then the secrecy constraint for any subset of the

sum rate is also satisfied. We also note that the proof in [33] is somewhat different from ours, in that we

can actually prove that the secrecy constraint for any subset of receivers is satisfied, without assuming

that the sum secrecy rate is satisfied.
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Figure 4.4: State dependency graph for the K-receiver degraded BC and confidential

messages.

For k = 2, . . . , K − 1, the rate Rk satisfies

nRk = H(Wk) ≤ H(Wk|Z) + nεk by secrecy condition

≤ H(Wk,Wk+1, . . . ,WK |Z) + nεk

= H(Wk|Wk+1, . . . ,WK ,Z) +H(Wk+1, . . . ,WK |Z) + nεk

= H(Wk|Wk+1, . . . ,WK ,Z)−H(Wk|Wk+1, . . . ,WK ,Yk)

+H(Wk|Wk+1, . . . ,WK ,Yk) +H(Wk+1, . . . ,WK |Z) + nεk

(a)

≤ I(Wk; Yk|Wk+1, . . . ,WK)− I(Wk; Z|Wk+1, . . . ,WK)

+ n(δ′′k + δ′k+1 + · · ·+ δ′K + εk), (4.34)

where (a) is by H(Wk+1, . . . ,WK |Z) ≤ H(Wk+1|Z) + · · ·+H(WK |Z), and by Fano’s
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inequality which gives



H(Wk|Yk,Wk+1, . . . ,WK) ≤ nRkP
(n)
e + 1 , nδ′′k ,

H(Wk+1|Z) ≤ nRk+1P
(n)
e + 1 , nδ′k+1,

...

H(WK |Z) ≤ nRKP
(n)
e + 1 , nδ′K ,

(4.35)

where δ′′k , δ
′
k+1, . . . , δ

′
K → 0 if P (n)

e → 0.

Expanding the first two terms of the last line of (4.34) by the chain rule gives

I(Wk; Yk|Wk+1, . . . ,WK) =
n∑
i=1

I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k ), (4.36)

I(Wk; Z|Wk+1, . . . ,WK) =
n∑
i=1

I(Wk;Zi|Wk+1, . . . ,WK , Z̃
i+1). (4.37)

From (4.36), by using the identity I(S1S2;T |V ) = I(S1;T |V ) + I(S2;T |S1V ), we get

I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k )

= I(Wk, Z̃
i+1;Yk,i|Wk+1, . . . ,WK ,Y

i−1
k )− I(Z̃i+1;Yk,i|Wk,Wk+1, . . . ,WK ,Y

i−1
1 )

= I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k , Z̃i+1) + I(Z̃i+1;Yk,i|Wk+1, . . . ,WK ,Y

i−1
k )

− I(Z̃i+1;Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k ).

(4.38)

Substituting this into (4.36) we have,



I(Wk; Yk|Wk+1, . . . ,WK) =
n∑
i=1

I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k , Z̃i+1)

+ Σk,1 − Σk,2

Σk,1 =
n∑
i=1

I(Z̃i+1;Yk,i|Wk+1, . . . ,WK ,Y
i−1
1 ),

Σk,2 =
n∑
i=1

I(Z̃i+1;Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k ).

(4.39)

From (4.37), again by using I(S1S2;T |V ) = I(S1;T |V ) + I(S2;T |S1V ), and substi-
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tuting into (4.36), we get



I(Wk; Z|Wk+1, . . . ,WK) =
n∑
i=1

I(Wk;Zi|Wk+1, . . . ,WK ,Y
i−1
k , Z̃i+1)

+ Σ∗k,1 − Σ∗k,2

Σ∗k,1 =
n∑
i=1

I(Yi−1
k ;Zi|Wk+1, . . . ,WK , Z̃

i+1),

Σ∗k,2 =
n∑
i=1

I(Yi−1
k ;Zi|Wk,Wk+1, . . . ,WK , Z̃

i+1).

(4.40)

It is known by [30, Lemma 7] that Σk,1 = Σ∗k,1 and Σk,2 = Σ∗k,2. Therefore,

nRk ≤
n∑
i=1

[
I(Wk;Yk,i|Wk+1, . . . ,WK ,Y

i−1
k , Z̃i+1)

−I(Wk;Zi|Wk+1, . . . ,WK ,Y
i−1
k , Z̃i+1)

]
+ n(δ′′k + δ′k+1 + · · ·+ δ′K + εk).

(4.41)

The terms under the summation are

I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k , Z̃i+1)− I(Wk;Zi|Wk+1, . . . ,WK ,Y

i−1
k , Z̃i+1)

= H(Wk|Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)−H(Wk|Wk+1, . . . ,WK ,Y
i−1
k , Yk,i, Z̃

i+1)

(a)

≤ H(Wk|Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)−H(Wk|Wk+1, . . . ,WK ,Y
i−1
k , Yk,i, Zi, Z̃

i+1)

= I(Wk;Yk,i|Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)

= H(Yk,i|Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)−H(Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)

= H(Yk,i|Wk+1, . . . ,WK ,Y
i−1
k ,Yi−1

k+1, Zi, Z̃
i+1)

+ I(Yk,i; Y
i−1
k+1|Wk+1, . . . ,WK ,Y

i−1
k , Zi, Z̃

i+1)

−H(Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)

(b)
= H(Yk,i|Wk+1, . . . ,WK ,Y

i−1
k ,Yi−1

k+1, Zi, Z̃
i+1)

−H(Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1)

(c)

≤ H(Yk,i|Wk+1, . . . ,WK ,Y
i−1
k+1, Zi, Z̃

i+1)

−H(Yk,i|Wk,Wk+1, . . . ,WK ,Y
i−1
k ,Yi−1

k+1, Zi, Z̃
i+1)

= I(Wk,Y
i−1
k ;Yk,i|Wk+1, . . . ,WK ,Y

i−1
k+1, Zi, Z̃

i+1), (4.42)

where (a) and (c) are due to conditioning reducing entropy, and (b) is due to the fact

that, given (Wk+1, . . . ,WK ,Y
i−1
k , Zi, Z̃

i+1), Yk,i is independent of Yi−1
k+1, which can be
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checked by referring to the state dependency graph Figure 4.4, from which we can see

that Y1,i only depends on Xi, Y2,i only depends on Y1,i, and so on, hence the assertion.

Now, define the random variables


UK,i , WKYi−1

K Z̃i+1,

Uk,i , Wk · · ·WKYi−1
k Z̃i+1 for k = 2, . . . , K − 1,

(4.43)

satisfying the Markov chain

UK,i → · · · → U2,i → Xi → Yk,i · · · YK,i → Zi. (4.44)

We note that our choice of auxiliary random variables is different from Bagherikaram

et al., which deals with the 2-receiver degraded BC with an external eavesdropper [6],

and from [33], which studies theK-receiver degraded BC with a common message and

an external eavesdropper. The choice is also different, due to the presence of the eaves-

dropper, from that of Borade et al. in [13] which deals with the K-receiver degraded

BC without secrecy conditions. Continuing from (4.42), we have

I(Wk,Y
i−1
k ;Yk,i|Wk+1, . . . ,WK ,Y

i−1
k+1, Zi, Z̃

i+1)

= I(Uk,i;Yk,i|U(k+1),i, Zi)

= I(Uk,i;Yk,i, Zi|U(k+1),i)− I(Uk,i;Zi|U(k+1),i)

= I(Uk,i;Yk,i|U(k+1),i) + I(Uk,i;Zi|U(k+1),i, Yk,i)− I(Uk,i;Zi|U(k+1),i)

(a)
= I(Uk,i;Yk,i|U(k+1),i)− I(Uk,i;Zi|U(k+1),i),

(4.45)

where (a) is due to I(Uk,i;Zi|U(k+1),i, Yk,i) = I(Uk,i;Zi|Yk,i) = 0 since we have

U(k+1),i → Uk,i → Yk,i → Zi, for k = 2, · · · , K − 1. As a result, we have

nRk ≤
n∑
i=1

[
I(Uk,i;Yk,i|U(k+1),i)− I(Uk,i;Zi|U(k+1),i)

]
+n(δ′′k + δ′k+1 + · · ·+ δ′K + εk),

(4.46)

for k = 2, · · · , K − 1.

To show the converse for R1, we follow the same steps as above, but additionally

we use (4.42) with k = 1 to arrive at the equivalent chain of equalities (4.45) above for
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k = 1. This results in

I(W1,Y
i−1
1 ;Y1,i|W2, . . . ,WK ,Y

i−1
2 , Zi, Z̃

i+1)

= I(W1;Y1,i|W2, . . . ,WK ,Y
i−1
2 , Zi, Z̃

i+1)

+ I(Yi−1
1 ;Y1,i|W1,W2, . . . ,WK ,Y

i−1
2 , Zi, Z̃

i+1)

(a)
= I(W1;Y1,i|W2, . . . ,WK ,Y

i−1
2 , Zi, Z̃

i+1) = I(W1;Y1,i|U2,i, Zi)

(b)

≤ I(Xi;Y1,i|U2,i, Zi)

= I(Xi;Y1,i, Zi|U2,i)− I(Xi;Zi|U2,i)

= I(Xi;Y1,i|U2,i) + I(Xi;Zi|U2,i, Y1,i)− I(Xi;Zi|U2,i)

(c)
= I(Xi;Y1,i|U2,i)− I(Xi;Zi|U2,i)

(4.47)

where (a) is by I(Yi−1
1 ;Y1,i|W1,W2, . . . ,WK ,Y

i−1
2 , Zi, Z̃

i+1) = 0 since Yi−1
1 is in-

dependent of Y1,i, given (W1,W2, . . . ,WK ,Y
i−1
2 , Zi, Z̃

i+1), which is checked using

Figure 4.4, from which we see that Y1,i depends only on Xi; (b) is by the Markov chain

Y1,i → Xi → W1; and (c) is by the second term I(Xi;Zi|U2,i, Y1,i) = I(Xi;Zi|Y1,i) =

0 since U2,i → Xi → Y1,i → Zi. Thus, we have

nR1 ≤
n∑
i=1

[I(Xi;Y1,i|U2,i)− I(Xi;Zi|U2,i)] + n(δ′′1 + δ′2 + · · ·+ δ′K + ε1). (4.48)

We now obtain the bound for Receiver K:

nRK = H(WK) ≤ H(WK |Z) + nεK

= H(WK |Z)−H(WK |YK) +H(WK |YK) + nεK

≤ I(WK ; YK)− I(WK ; Z) + n(δ′K + εK)

=
n∑
i=1

[
I(WK ;YK,i|Yi−1

K )− I(WK ;Zi|Z̃i+1)
]

+ n(δ′K + εK)

=
n∑
i=1

[
I(WK , Z̃

i+1;YK,i|Yi−1
K )− I(Z̃i+1;YK,i|WK ,Y

i−1
K )− I(WK ,Y

i−1
K ;Zi|Z̃i+1)

+I(Yi−1
K ;Zi|WK , Z̃

i+1)
]

+ n(δ′K + εK)

(a)
=

n∑
i=1

[
I(WK , Z̃

i+1;YK,i|Yi−1
K )− I(WK ,Y

i−1
K ;Zi|Z̃i+1)

]
+ n(δ′K + εK)

=
n∑
i=1

[
I(WK ;YK,i|Yi−1

K , Z̃i+1) + I(Z̃i+1;YK,i|Yi−1
K )− I(WK ;Zi|Yi−1

K , Z̃i+1)

−I(Yi−1
K ;Zi|Z̃i+1)

]
+ n(δ′K + εK)

(b)
=

n∑
i=1

[
I(WK ;YK,i|Yi−1

K , Z̃i+1)− I(WK ;Zi|Yi−1
K , Z̃i+1)

]
+ n(δ′K + εK)
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=
n∑
i=1

[
I(WK ,Y

i−1
K , Z̃i+1;YK,i)− I(Yi−1

K , Z̃i+1;YK,i)− I(WK ,Y
i−1
K , Z̃i+1;Zi)

+I(Yi−1
K , Z̃i+1;Zi)

]
+ n(δ′K + εK)

(c)

≤
n∑
i=1

[
I(WK ,Y

i−1
K , Z̃i+1;YK,i)− I(WK ,Y

i−1
K , Z̃i+1;Zi)

]
+ n(δ′K + εK)

=
n∑
i=1

[I(UK,i;YK,i)− I(UK,i;Zi)] + n(δ′K + εK), (4.49)

where (a) and (b) are both due to [30, Lemma 7]; (c) is by the fact that since Z is a

degraded version of YK , this implies that3 YK is less noisy than Z, which in turn means

that I(Yi−1
K , Z̃i+1;YK,i) ≥ I(Yi−1

K , Z̃i+1;Zi), thus giving the desired inequality.

Now, we introduce the random variable G, which is uniformly distributed among

the integers {1, 2, . . . , n} and is independent of all other random variables. Define the

following auxiliary random variables

Uk = (G,Uk,G), k = 2, · · · , K, (4.50)

X = XG, (4.51)

Yk = Yk,G, k = 1, · · · , K, (4.52)

Z = ZG. (4.53)

Then (4.46), (4.48), and the last line of (4.49) become

RK ≤ I(UK ;YK)− I(UK ;Z), (4.54)

Rk ≤ I(Uk;Yk|Uk+1)− I(Uk;Z|Uk+1), for k = 2, . . . , K − 1, (4.55)

R1 ≤ I(X;Y1|U2)− I(X;Z|U2), (4.56)

and the converse to Theorem 13 is proved.

4.2.6 Conclusion

We have presented the derivation for the secrecy capacity region for the degraded K-

receiver BC with private messages in the presence of an eavesdropper which general-

izes previous work [6] which dealt with 2-receiver BCs. In the direct proof we have

used superposition coding and code partitioning to show the achievable rate tuples. We

have provided error probability analysis and equivocation calculation for the general

kth receiver, and for all receivers, from which we can also deduce the result for any
3See Appendix A on the ordering of channels.
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subset of the receivers. In the converse proof we have used a new definition for the

auxiliary random variables which is different from the following cases: the 2-receiver

degraded BC with an eavesdropper [6]; the K-receiver degraded BC with common

message and an eavesdropper [33]; and the K-receiver BC without security constraints

[13].

The results imply a multilevel code construction. Each level will be used to send

a message to each of the the respective K receivers. Each level will also be split into

2 sub-levels, where the first sub-level is required for reliability, while the second sub-

level is required to generate randomness to confuse the eavesdropper. The multilevel

code will have 2K levels overall.

4.3 The 3-Receiver Broadcast Channel with DMS and

Confidential Messages
In this section, we investigate the 3-receiver BC with 2 DMS with a confidential mes-

sage sent to one of the receivers in the presence of an eavesdropper, from which the

message is to be kept secret. Instead of the perfect secrecy criteria, we derive an achiev-

able equivocation rate, so that the equivocation rate Re ≤ R, the transmission rate, for

a given message W .

For the 3-receiver BC with DMS without secrecy constraints, the inner capac-

ity bound in [90, 91] is achievable by superposition coding, Marton’s achievability

technique [84] and indirect decoding, where the receivers decoding the common mes-

sage only do so via satellite codewords instead of cloud centers4. In our secure cod-

4The mechanics of indirect decoding is as follows [91]. Suppose that we have 2nR0 i.i.d. sequences

(cloud centers) u(w0), w0 ∈ {1, · · · , 2nR0}. For each u(w0), generate 2nS1 sequences (satellite code-

words) v(w0, s1), s1 ∈ {1, · · · , 2nS1} in an i.i.d. manner according to
∏n

i=1 p(vi|ui) (superposition

coding). Suppose we want to decode which w0 was sent. Then if receiver Y carries out indirect coding,

w0 is declared to be the unique index such that v(w0, s1) and y are joint typical for some s1. Receiver Y

does so with small error probability provided that R0 +S1 ≤ I(V ;Y ). On the other hand, ordinary joint

typical decoding requires that v is decoded first, then u; that is, we obtain s1 first, then w0. Ordinary

joint decoding requires

R0 + S1 ≤ I(V ;Y ), S1 ≤ I(V ;Y |U)

for small error probability. This indirect decoding is useful in extending coding schemes for the general

2-receiver BCs to 3-receiver BCs.
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ing scheme, we shall use a combination of the code partitioning of Wyner [115] and

double-binning of Liu et al. [78] to show the achievability of an inner bound to the

rate-equivocation region for the 3-receiver BC with 2 DMS. Error probability analysis

and equivocation calculation for the private messages are provided. Outer bounds to

the rate equivocation regions are derived for the following two cases:

1. Receiver 1 is less noisy than receiver 2 and less noisy than the eavesdropper

receiver 3;

2. Receivers 1 and 2 are less noisy than the eavesdropper receiver 3.

We see that these conditions are more general than degradedness considered in the

previous Section 4.2 [66].

This section is organized as follows. In Section 4.3.1, we describe the model for

the 3-receiver BC with DMS. In Section 4.3.2, we establish an achievable inner bound

to the rate-equivocation region using our secure coding scheme for the 3-receiver BC

with 2 DMS and show error probability analysis and equivocation calculation for the

private message. In Section 4.3.3, we derive an outer bound for a subclass of the 3-

receiver BC with 2 DMS. Lastly, we give conclusions in Section 4.3.4.

4.3.1 The 3-Receiver BC with DMS

The discrete memoryless BC with 3 receivers has an input random sequence, X, and

3 output random sequences at the receivers, denoted respectively by Y1,Y2 and Y3,

all of length n, with x ∈ X n, y1 ∈ Yn1 , y2 ∈ Yn2 , and y3 ∈ Yn3 . The conditional

distribution for n uses of the channel is given by

p(y1,y2,y3|x) =
n∏
i=1

p(y1i, y2i, y3i|xi). (4.57)

The 3-receiver BC with 2 DMS, is shown in Figure 4.5.

A (2nR0 , 2nR1 , n)-code for the 3-receiver BC with 2 DMS consists of the following

parameters:

W0 =
{

1, . . . , 2nR0

}
, (common message set)

W1 =
{

1, . . . , 2nR1

}
, (private message set),

f :W0 ×W1 7→ X n, ((stochastic) encoding function),
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Figure 4.5: The 3-receiver BC with 2 DMS and confidential message.

g1 : Yn1 7→ W0 ×W1, (decoding function 1),

g2 : Yn2 7→ W0, (decoding function 2),

g3 : Yn3 7→ W0, (decoding function 3).

We have g1(Y1) = (Ŵ
(1)
0 , Ŵ

(1)
1 ), g2(Y2) = Ŵ

(2)
0 , and g3(Y3) = Ŵ

(3)
0 , with the error

probability

P (n)
e = Pr

[
(Ŵ

(1)
0 , Ŵ

(2)
0 , Ŵ

(3)
0 , Ŵ

(1)
1 ) 6= (W0,W0,W0,W1, )

]
. (4.58)

The decoders are set up to decode combinations of the messages; in the coding scheme

this means that the decoders will decode specific parts of the transmitted codeword.

The private message W1 is sent to Y1, with Y3 the eavesdropper, and the secrecy level

of the message sent is 1
n
H(W1|Y3).

For the 3-receiver BC with 2 DMS, the rate tuple (R0, R1, R1e) is said to be achiev-

able if for any η, ε1 > 0, there exists a sequence of (2nR0 , 2nR1 , n)-codes for which

P (n)
e ≤ η and the equivocation rate R1e satisfies

1

n
H(W1|Y3) ≥ R1e − ε1. (4.59)

Our analysis does not include the case of perfect secrecy (that is 1
n
H(W1|Y3) ≥ R1−ε1,

the rate region with R1e = R1).

Finally, we remark that the model studied by Chia and El Gamal [17, 18] adds

another Ŵ (2)
1 to the output at Y2, with the appropriate changes in the error probability

and decoding function.
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4.3.2 Inner Bound to the Rate-equivocation Region for the 3-

receiver BC with 2 DMS

In this section we establish an achievable inner bound to the rate-equivocation region

for the 3-receiver BC with 2 DMS and a confidential message sent to Y1.

Theorem 14. An inner bound to the rate-equivocation region for the 3-receiver BC

with 2 DMS and one confidential message is the closure of all rate-tuples (R0, R1, R1e)

satisfying

R0 ≤ min{I(U2;Y2)− I(U2;Y3|U1), I(U3;Y3)− I(U3;Y3|U1)}

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

R0 +R1 ≤ min {I(X;Y1), I(U2;Y2) + I(X;Y1|U2), I(U3;Y3) + I(X;Y1|U3),

I(U2;Y2) + I(X;Y1|U1)− I(U2;Y3|U1),

I(U3;Y3) + I(X;Y1|U1)− I(U3;Y3|U1)}

R1e ≤ min {R1, I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1),

I(X;Y1|U2) + I(X;Y1|U3)− 2I(X;Y3|U2, U3)− I(U2;Y3|U1)− I(U3;Y3|U1)}

R0 +R1e ≤ min {I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1),

I(U2;Y2) + I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U2;Y3|U1)− I(U3;Y3|U1),

I(U3;Y3) + I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)− I(U3;Y3|U1)}

2R0 +R1e ≤ I(U2;Y2) + I(U3;Y3) + I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)

R0 +R1 +R1e ≤ min {I(X;Y1|U2)− I(U2;U3|U1) + I(X;Y1|U3) + I(X;Y1)

− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1),

I(U2;Y2) + I(X;Y1|U1) + I(X;Y1|U2)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1),

I(U2;Y2) + 2I(X;Y1|U2) + I(X;Y1|U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1),

I(U3;Y3) + I(X;Y1|U1) + I(X;Y1|U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1),

I(U3;Y3) + I(X;Y1|U2) + 2I(X;Y1|U3)− I(X;Y3|U2, U3)
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−I(U2;Y3|U1)− I(U3;Y3|U1)}

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

2R0 + 2R1 ≤ min {I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2) + I(X;Y1|U3),

I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U1) + I(X;Y1|U2, U3)}

2R0 + 2R1 +R1e ≤ I(U2;Y2) + I(U3;Y3) + 2I(X;Y1|U2) + 2I(X;Y1|U3)

+ I(X;Y1|U2, U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)− I(U3;Y3|U1),

2R0 + 2R1 +R1e ≤ I(U2;Y2) + I(U3;Y3) + 2I(X;Y1|U1) + I(X;Y1|U2, U3)

− I(X;Y3|U2, U3)− I(U2;Y3|U1)− I(U3;Y3|U1), (4.60)

defined over the p.d.f.

p(u1, u2, u3, x) = p(u1)p(u2, u3|u1)p(x|u2, u3), (4.61)

which is induced by the coding scheme. From the p.d.f. (4.61), the auxiliary random

variables U1, U2 and U3 satisfy the Markov chain condition

U1 → (U2, U3)→ X → (Y1, Y2, Y3). (4.62)

We now state sufficient conditions for the equivocation rate R1e to be positive: if

there exists a distribution ∈ p(u1)p(u2, u3|u1)p(x|u2, u3) for which

I(U2;Y1|U1) > I(U2;Y3|U1),

I(U2;Y1|U1) > I(U3;Y3|U1),

I(X;Y1|U2, U3, U1) > I(X;Y3|U2, U3, U1),

I(X;Y1|U3) > I(X;Y3|U2, U3, U1) + I(U2;Y3|U1),

I(X;Y1|U2) > I(X;Y3|U2, U3, U1) + I(U3;Y3|U1),

I(X;Y1|U1) > I(U2;U3|U1) + I(X;Y3|U2, U3, U1) + I(U2, U3;Y3|U1), (4.63)

then R1e is positive. (These conditions can be easily derived from the equivocation

conditions (4.109) given later.)

From the region specified in Theorem 14, we can make some observations. If we

discard the equivocation constraints in the region of Theorem 14, we can obtain the rate
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region for the 3 receiver BC with 2 DMS [91, Proposition 5]:

R0 ≤ min {I(U2;Y2), I(U3;Y3)}

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

R0 +R1 ≤ min {I(X;Y1), I(U2;Y2) + I(X;Y1|U2),

I(U3;Y3) + I(X;Y1|U3)}

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

2R0 + 2R1 ≤ min {I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2)+

+ I(X;Y1|U3), I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U1)

+I(X;Y1|U2, U3)} (4.64)

over the p.d.f. p(u1, u2, u3, x) = p(u1)p(u2, u3|u1)p(x|u2, u3). This requires some

manipulation and is shown in Appendix C.1.

If we discard the equivocation constraints and impose the condition that Y1 is less

noisy than Y2 in the region of Theorem 14, we can obtain the rate region for the 3

receiver, 2 DMS for Y1 less noisy than Y3 in [91, Proposition 7]:

R0 ≤ min {I(U ;Y2), I(V ;Y3)}

R1 ≤ I(X;Y1|U)

R0 +R1 ≤ I(V ;Y3) + I(X;Y1|V ), (4.65)

over the p.d.f. p(u, v, x) = p(u)p(v|u)p(x|v). This can be shown in Appendix C.2 by

setting U2 = U1 = U and U3 = V in Theorem 14.

If we now specialize Theorem 14 to two receivers while keeping the equivocation

constraints, by setting Y1 = Y2 = Y , Y3 = Z, U2 = U1 = U and U3 = X in Theorem

14 and prefixing a DMC with transition probability5 p(x|v) to the channels p(y|x) and

p(z|x) (prefix V to X → (Y, Z)), we can obtain the following rate region

R0 ≤ min {I(U ;Y ), I(U ;Z)}

R0 +R1 ≤ I(U ;Y ) + I(V ;Y |U)

R0 +R1 ≤ I(U ;Z) + I(V ;Y |U)

Re ≤ I(V ;Y |U)− I(V ;Z|U) (4.66)

5Mentioned earlier in the proof for the DM wiretap channel in Theorem 6.
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for the p.d.f. p(u, v, x) = p(u)p(v|u)p(x|v)p(y, z|x), provided that I(V ;Z|U) ≤

I(V ;Y |U). So, the region obtained is the same as the Csiszár and Körner rate-

equivocation region for the 2-receiver BC with one common and one confidential mes-

sage, given previously in Theorem 10. We remark that the re-assignment of r.v.s and

the reduction, including channel prefixing, is in several steps, and is given in Appendix

C.3.

We now present the proof for Theorem 14.

Proof. (Theorem 14): We use rate splitting, Wyner’s code partitioning [115] with

the double-binning scheme of [78, 116] to provide secrecy, together with the coding

scheme for the 3-receiver BC with DMS in [91].

The scheme of [91] represents W0 by U1, then breaks W1 into 3 parts. The first

part of W1 is combined with U1 by superposition coding to generate U2. The second

part of W1 is combined with U1 by superposition coding to generate U3. U2 and U3 are

partitioned into bins and the product bin containing the joint typical pair (achievable

by Marton’s coding scheme) is combined with the third part of W1 by superposition

coding to obtain X .

At the receivers, Y1 decodes U1, U2, U3, and X to recover the messages W0 and

W1 , while Y2 decodes U1 indirectly using U2 to recover message W0, and Y3 decodes

U1 indirectly using U3 to recover W0. In our secure scheme, the codewords U2, U3 are

protected by double-binning and codewords X are protected from receiver Y3 by code

partitioning. This is depicted in Figure 4.6.

We will define the associated variables in Figure 4.6 when we discuss the code

generation later. Rate splitting involves splitting the rates of the message to give R1 =

R10 + R11. We first show an achievable inner bound without rate splitting at rates R1,

then perform rate splitting on the message rate to obtain the final achievable region.

Suppose that we have the p.d.f. in (4.61) which induces the Markov chain condition

U1 → (U2, U3) → X . From Marton [84], we note that this condition also implies

that U1 → U2 → X and U1 → U3 → X . The following describes the encoding and

decoding processes.

Codebook generation: Recall that we use T nε (PZ) to denote the set of jointly typical

n-sequences with respect to the p.d.f. p(z). Let R1 = L1 + L2 + L3. The part of W1
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Figure 4.6: Coding for 3-receiver BC with DMS and confidential messages.

indexed by l2 ∈ {1, ..., 2L2} is to be combined with U1 to form U2, the part indexed

by l3 ∈ {1, ..., 2L3} is to be combined with U1 to form U3, and the part indexed by

l1 ∈ {1, ..., 2L1} is to be combined with U2, U3 to form X .

First of all, generate 2nR0 sequences U1(w0), for w0 ∈ W0, randomly and uni-

formly from the set of typical U1 sequences, according to
∏n
j=1 p(u1,j). For each

U1(w0), generate 2nQ2 = 2n(L21+L′2+L†2) sequences U2(w0, q2) randomly and uniformly

from the set of conditionally typical U2 sequences, according to
∏n
j=1 p(u2,j|u1,j).

The U2 sequences are indexed as U2(l21, l
′
2, l
†
2), where l21 ∈ {1, ..., 2nL21}, l′2 ∈

{1, ..., 2nL′2} and l†2 ∈ {1, ..., 2nL
†
2}. Randomly place the U2 sequences into 2nL21 bins

indexed by l21. The sequences in each bin are placed randomly into 2nL
′
2 sub-bins

indexed by l′2. The 2nL
†
2 codewords in each sub-bin are indexed by l†2.

Similarly, for each U1(w0), generate 2nQ3 = 2n(L31+L′3+L†3) sequences U3(w0, q3)

randomly and uniformly from the set of conditionally typical U3 sequences, ac-

cording to
∏n
j=1 p(u3,j|u1,j). The U3 sequences are indexed as U3(l31, l

′
3, l
†
3), where

l31 ∈ {1, ..., 2nL31}, l′3 ∈ {1, ..., 2nL
′
3} and l†3 ∈ {1, ..., 2nL

†
3}. Randomly place the



4.3. The 3-Receiver Broadcast Channel with DMS and Confidential Messages 100

U3 sequences into 2nL31 bins indexed by l31. The sequences in each bin are placed

randomly into 2nL
′
3 sub-bins indexed by l′3. The 2nL

†
3 codewords in each sub-bin are

indexed by l†3.

We now have to map the message indices to bin indices l21 and l31. The mapping

involves mapping the 2nL2 message part to the 2nL21 bins for U2 and mapping the 2nL3

message part to the 2nL31 bins for U3. According to [116], if

L21 + L′2 < L2 ≤ L21 + L′2 + L†2,

L31 + L′3 < L3 ≤ L31 + L′3 + L†3, (4.67)

each sub-bin of U2 is mapped to at least one of l2 and each sub-bin of U3 is mapped to

at least one of l3. We will use these conditions for the subsequent coding process.

After the mapping of the message parts to the bins, the encoder then chooses the

joint typical pair (U2(l21, l
′
2, l
†
2),U3(l31, l

′
3, l
†
3)) satisfying

(
u2(l21, l

′
2, l
†
2),u3(l31, l

′
3, l
†
3),u1(w0)

)
∈ T nε (PU2U3U1). (4.68)

If there is more than one such pair, randomly choose one; if there is no such pair,

declare an error.

Given a joint typical pair (U2,U3), generate 2n(L11+L′1) sequences X randomly

and uniformly from the set of conditionally typical X sequences, according to∏n
j=1 p(xj|u2,j, u3,j). The X sequences are indexed as X(l11, l

′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3),

where l11 ∈ {1, ..., 2nL11}, l′1 ∈ {1, ..., 2nL
′
1}. Randomly place the X sequences into

2nL11 bins indexed by l11. The 2nL
′
1 codewords in each bin are indexed by l′1.

We now map the message part indices l1 to bin indices l11, by mapping the 2nL1

message part to the 2nL11 bins. Again, if

L11 < L1 ≤ L11 + L′1, (4.69)

each codeword of X is mapped to at least one of l1; this condition is used in the follow-

ing analysis.

Encoding: To send (w0, w1), express w1 by (l1, l2, l3) and send the codeword

x(l11, l
′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3).

Decoding: Without loss of generality, assume that the all-ones vector representing

(l11, l
′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3) is sent. The receivers decode as follows:
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1. Receiver 1 uses joint typical decoding of {u1,u2,u3,x,y1} to find the indices

(l11, l
′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3), from which the decoder can calculate the indices

(l2, l3, l1).

2. Receiver 2 uses indirect decoding of u2 [91] to find the index w0. Once this is

known, u1 is also found.

3. Receiver 3 uses indirect decoding of u3 to find the index w0.

Error Analysis: In the encoding process, we need to find the pair (l†2, l
†
3) such that

(4.68) is satisfied. By the mutual covering lemma [36], if

L†2 + L†3 ≥ I(U2;U3|U1) (4.70)

is satisfied with high probability, then there will be at least one pair (l†2, l
†
3) such that

(u2,u3,u1) is jointly typical. We also have L21+L′2+L†2 = Q2 and L31+L′3+L†3 = Q3

from the encoding. Combined with the conditions L2 > L21 + L′2 and L3 > L31 + L′3

from (4.67), we have

L†2 ≤ Q2 − L2, L†2 ≤ Q3 − L3. (4.71)

Combining (4.70) and (4.71) using Fourier-Motzkin elimination to eliminate L†2 and

L†3, we get

L2 + L3 ≤ Q2 +Q3 − I(U2;U3|U1). (4.72)

Also, it is easily seen that L2 ≤ Q2 and L3 ≤ Q3. Putting the last two sets of conditions

together, we obtain the following conditions for successful encoding:

L2 ≤ Q2,

L3 ≤ Q3,

L2 + L3 ≤ Q2 +Q3 − I(U2;U3|U1).

(4.73)

At receiver 1, the decoder seeks the indices (w0, w1, l21, l31, l11) so that

(
u1(w0),u2(w0, l21, l

′
2, l
†
2),u3(w0, l31, l

′
3, l
†
3),x(l11, l

′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3),y1

)
∈ T nε (PU1U2U3XY1). (4.74)

If there is none or more than one possible codeword, an error is declared. The possible

error events are as follows:
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(i) E1 : (l11, l
′
1, w0, l21, l

′
2, l
†
2, l31, l

′
3, l
†
3) is equal to the all-ones vector but u1, u2, u3, x

are not jointly typical with y1. By the properties of typical sequences, Pr[E1] ≤ ε′,

where ε′ → 0 for large n.

(ii) E2 : w0 6= 1, with u1, u2, u3, x jointly typical with y1. Then, for Pr[E2] ≤ ε′, we

require

R0 +L21 +L′2 +L†2 +L31 +L′3 +L†3 +L11 +L′1 < I(U1, U2, U3, X;Y1) = I(X;Y1)

(4.75)

since I(U1, U2, U3;Y1|X) = 0 by the Markov chain condition

U1 → (U2, U3)→ X → Y1. (4.76)

Taking the mapping of messages to indices l21, l31, l11 into account, and using the

conditions L2 ≤ L21 + L′2 + L†2, L3 ≤ L31 + L′3 + L†3 and L1 ≤ L11 + L′1, and

since R1 = L1 + L2 + L3 we can see from (4.75) that

R0 +R1 < I(X;Y1). (4.77)

(iii) E3 : w0 = 1, (l21, l
′
2, l
†
2) 6= (1, 1, 1) and arbitrary l31, l

′
3, l
†
3, l11, l

′
1, with u1, u2, u3,

x jointly typical with y1. Then, for Pr[E3] ≤ ε′, we require

L21 + L′2 + L†2 + L31 + L′3 + L†3 + L11 + L′1 < I(U2, U3, X;Y1|U1)

= I(X;Y1|U1) + I(U2, U3;Y1|X,U1) = I(X;Y1|U1), (4.78)

where the first equality is due to U1 → (U2, U3) → X → Y1. Then, using the

conditions to satisfy the mapping of messages to indices l21, l31, l11 and R1 =

L1 + L2 + L3, we have

R1 < I(X;Y1|U1). (4.79)

(iv) E4 : w0 = 1, (l21, l
′
2, l
†
2) = (1, 1, 1), (l31, l

′
3, l
†
3) 6= (1, 1, 1) and arbitrary l11, l

′
1,

with u1, u2, u3, x jointly typical with y1. For Pr[E4] ≤ ε′, we require

L11 + L′1 + L31 + L′3 + L†3 < I(U3, X;Y1|U1, U2)

= I(X;Y1|U1, U2) + I(U3;Y1|U1, U2, X)

(a)
= I(X;Y1|U2) + I(U3;Y1|U2, X)

= I(X;Y1|U2) + I(U2, U3;Y1|X)− I(U2;Y1|X)

(b)
= I(X;Y1|U2), (4.80)
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where the first term in (a) is due to U1 → U2 → X and the second term is due to

U1 → (U2, U3) → X → Y1; (b) is due to U2 → X → Y1 and (U2, U3) → X →

Y1. Using the mapping conditions, we have

L3 + L1 < I(X;Y1|U2). (4.81)

(v) E5 : w0 = 1, (l21, l
′
2, l
†
2) = (1, 1, 1), (l31, l

′
3, l
†
3) = (1, 1, 1), (l11, l

′
1) 6= (1, 1) with

u1, u2, u3, x jointly typical with y1. For Pr[E5] ≤ ε′, we require

L11 + L′1 < I(X;Y1|U1, U2, U3) = I(X;Y1|U2, U3) (4.82)

where the equality is due to U1 → (U2, U3) → X → Y1, from which we obtain,

using the mapping conditions

L1 < I(X;Y1|U2, U3). (4.83)

(vi) E6 : w0 = 1, (l21, l
′
2, l
†
2) 6= (1, 1, 1), (l31, l

′
3, l
†
3) = (1, 1, 1) and l11, l

′
1 arbitrary with

u1, u2, u3, x jointly typical with y1. Then, to have Pr[E6] ≤ ε′, we require

L21 + L′2 + L†2 + L11 + L′1 < I(U2, X;Y1|U1, U3)

= I(X;Y1|U1, U3) + I(U2;Y1|U1, U3, X)

(a)
= I(X;Y1|U3) + I(U2;Y1|U3, X)

= I(X;Y1|U3) + I(U2, U3;Y1|X)− I(U3;Y1|X)

(b)
= I(X;Y1|U3), (4.84)

where the first term of (a) is due to U1 → U3 → X and the second term of (a) and

(b) are due to (U2, U3) → X → Y1 and U3 → X → Y1, respectively. Under the

conditions for mapping indices l21, l31, l11 to messages, we then have

L2 + L1 < I(X;Y1|U3). (4.85)

Consequently, under the conditions (4.77), (4.79), (4.81), (4.83), (4.85) listed above,

the error probability at receiver 1 is less than
∑6
i=1 Pr[Ei] ≤ 6ε′.

Now, let q2 ∈ {1, . . . , 2nQ2} be the ‘super-index’ that includes (l21, l
′
2, l
†
2). In

particular, if q2 = 1, (l21, l
′
2, l
†
2) = (1, 1, 1); if q2 6= 1, (l21, l

′
2, l
†
2) 6= (1, 1, 1). Assume

that (w0, q2) = (1, 1) is sent to receiver 2. At receiver 2, the decoder finds w0 by

indirect decoding. The error events are:
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(i) a) E′1 : (w0, q2) = (1, 1) but u2 is not jointly typical with y2 (indirect decoding).

In this case, by the properties of typical sequences, we have Pr[E′1] ≤ ε′.

(ii) E′2 : w0 6= 1, q2 arbitrary and u2 is jointly typical with y2 (indirect decoding).

This is the same as receiver 2 trying to estimate w0 such that (u2(w0, q2),y2) ∈

T nε (PU2Y2) for any q2. For Pr{E′2} ≤ ε′, we need

R0 +Q2 < I(U2;Y2). (4.86)

Thus the error probability at receiver 2 is less than
∑2
i=1 Pr[E′i] ≤ 2ε′.

Now, let q3 ∈ {1, . . . , 2nQ3} be the ‘super-index’ that includes (l31, l
′
3, l
†
3). At

receiver 3, indirect decoding is used, so that the decoder estimates w0 such that

(u3(w0, q3),y3) ∈ T nε (PU3Y3) for any q3 ∈ {1, . . . , 2nQ3}. Assuming that (w0, q3) =

(1, 1) is sent, we require

R0 +Q3 < I(U3;Y3), (4.87)

for the error probability at receiver 3 to be small for n sufficiently large.

Equivocation: We now show the bound on the equivocation rate satisfies the security

conditions in (4.59), by deriving the bound for H(W1|Y3). A point to note is that,

from the coding scheme, W1 is split into independent parts L1, L2, L3. So, to see what

equivocation rates can be achieved for the message parts L2, L3 and L1, we should also

derive the bounds for H(L2|Y3), H(L3|Y3) and H(L1|Y3).

Let us denote I(L) := (L′2, L
†
2, L

′
3, L

†
3, L

′
1). For W1, we have

H(W1|Y3) ≥ H(W1|Y3,U1)

= H(W1, I(L)|Y3,U1)−H(I(L)|Y3,U1,W1)

≥ H(I(L)|Y3,U1)−H(I(L)|Y3,U1,W1)

(a)

≥ H(U2,U3,X|Y3,U1)−H(I(L)|Y3,U1,W1)

= H(U2,U3,X,Y3|U1)−H(Y3|U1)−H(I(L)|Y3,U1,W1)

= H(U2|U1) +H(U3|U2,U1) +H(X|U2,U3,U1)

+H(Y3|U2,U3,X,U1)−H(Y3|U1)−H(I(L)|Y3,U1,W1)

= H(U2|U1) +H(U3|U1) +H(X|U2,U3,U1)− I(U2; U3|U1)

− I(U2,U3,X; Y3|U1)−H(I(L)|Y3,U1,W1), (4.88)
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where (a) is because U2,U3,X is a function of I(L).

We can now bound each of the terms in (4.88). For the first three terms, by the

code generation process,

H(U2|U1) = log 2n(L21+L′2+L†2) = n(L21 + L′2 + L†2), (4.89)

H(U3|U1) = log 2n(L31+L′3+L†3) = n(L31 + L′3 + L†3), (4.90)

H(X|U2,U3,U1) = log 2n(L11+L′1) = n(L11 + L′1). (4.91)

For the fourth and fifth terms, using standard methods and following the method in

[78], we have

I(U2; U3|U1) ≤ nI(U2;U3|U1) + nδ′, (4.92)

I(U2,U3,X; Y3|,U1) ≤ nI(U2, U3, X;Y3|U1) + nδ′, (4.93)

where δ′ > 0 and is small for n sufficiently large. To evaluate the last term in (4.88),

we introduce the following lemma, which is proved in Appendix B.4.

Lemma 6. We have

H(I(L)|U1,Y3,W1) ≤ n(L′2 + L†2 + L′3 + L†3 + L′1 − I(U2;U3|U1)

− I(U2, U3;Y3|U1)− I(X;Y3|U2, U3, U1) + δ(ε)) + 2,

(4.94)

where δ(ε)→ 0 for ε→ 0 and n sufficiently large, under the conditions

L′2 + L†2 + L′3 + L†3 + L′1 ≥ I(U2;U3|U1) + I(U2, U3;Y3|U1) + I(X;Y3|U2, U3, U1),

L′3 + L†3 + L′1 ≥ I(U3;Y3|U1) + I(X;Y3|U2, U3, U1)

L′2 + L†2 + L′1 ≥ I(U2;Y3|U1) + I(X;Y3|U2, U3, U1)

L′2 + L†2 + L′3 + L†3 ≥ I(U2;U3|U1) + I(U2, U3;Y3|U1)

L′1 ≥ I(X;Y3|U2, U3, U1)

L′3 + L†3 ≥ I(U3;Y3|U1)

L′2 + L†2 ≥ I(U2;Y3|U1). (4.95)

Now, substituting (4.89) - (4.94) into the last line of (4.88), we have

H(W1|Y3) ≥ n(L21 + L31 + L11 − 2δ′ − δ(ε))− 2. (4.96)
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This means that the equivocation rate

R1e ≤ L21 + L31 + L11 (4.97)

is achievable.

To bound H(L2|Y3), we follow the steps resulting in (4.88), which gives

H(L2|Y3) ≥ H(L2|Y3,U1)

= H(L2, L
′
2, L

†
2|Y3,U1)−H(L′2, L

†
2|Y3,U1, L2)

≥ H(L′2, L
†
2|Y3,U1)−H(L′2, L

†
2|Y3,U1, L2)

≥ H(U2, |Y3,U1)−H(L′2, L
†
2|Y3,U1, L2)

= H(U2,Y3|U1)−H(Y3|U1)−H(L′2, L
†
2|Y3,U1, L2)

= H(U2|U1)− I(U2; Y3|U1)−H(L′2, L
†
2|Y3,U1, L2). (4.98)

Similarly,

H(L3|Y3) ≥ H(U3|U1)− I(U3; Y3|U1)−H(L′3, L
†
3|Y3,U1, L3), (4.99)

H(L1|Y3) ≥ H(X|U2,U3,U1)− I(X; Y3|U2,U3,U1)−H(L′1|Y3,U1, L1).

(4.100)

Since in (4.98) - (4.100) the terms involving mutual information are

I(U2; Y3|U1) ≤ nI(U2;Y3|U1) + nδ′, (4.101)

I(U3; Y3|U1) ≤ nI(U3;Y3|U1) + nδ′, (4.102)

I(X; Y3|U2,U3,U1) ≤ nI(X;Y3|U2, U3, U1) + nδ′, (4.103)

it remains to bound the last terms in (4.98) - (4.100). Following the steps similar to

obtaining Lemma 6, we can get

H(L′2, L
†
2|Y3,U1, L2) ≤ n(L′2 + L†2 − I(U2;Y3|U1) + δ(ε)) + 2, (4.104)

H(L′3, L
†
3|Y3,U1, L3) ≤ n(L′3 + L†3 − I(U3;Y3|U1) + δ(ε)) + 2, (4.105)

H(L′1|Y3,U1, L1) ≤ n(L′1 − I(X;Y3|U2, U3, U1) + δ(ε)) + 2, (4.106)

under the conditions

L′1 ≥ I(X;Y3|U2, U3, U1),

L′2 + L†2 ≥ I(U2;Y3|U1),

L′3 + L†3 ≥ I(U3;Y3|U1), (4.107)
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respectively. The proof is omitted as we can observe that the conditional entropy

bounds (4.104) - (4.106) are subsets of the conditional entropy bound in Lemma 6.

Thus the proof for the bounds (4.104) - (4.106) will be similar to the proof of Lemma

6, only less elaborate. Finally, putting the results together into (4.98) - (4.100), we see

that the following equivocation rates are achievable for the message parts:

L2e ≤ L21, L3e ≤ L31, L1e ≤ L11. (4.108)

Now we combine the rate constraints (4.75), (4.78), (4.80), (4.82), (4.84), the achiev-

able equivocation rates (4.97) and (4.108), the coding rates Q2 = L21 + L′2 + L†2,

Q3 = L31 + L′3 + L†3 and the equivocation conditions (4.95) by Fourier-Motzkin elim-

ination (eliminating L11, L21, L31) to yield the following equivocation constraints:

L2e ≤ Q2 − I(U2;Y3|U1),

L3e ≤ Q3 − I(U3;Y3|U1),

L1e ≤ I(X;Y1|U2, U3, U1)− I(X;Y3|U2, U3, U1),

L2e + L1e ≤ I(X;Y1|U3)− I(X;Y3|U2, U3, U1)− I(U2;Y3|U1),

L3e + L1e ≤ I(X;Y1|U2)− I(X;Y3|U2, U3, U1)− I(U3;Y3|U1),

L2e + L3e + L1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3, U1)

− I(U2, U3;Y3|U1),

R0 + L2e + L3e + L1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3, U1)

− I(U2, U3;Y3|U1). (4.109)

At this point we can make a simple check: by setting Y1 = Y3, we see that no secret rate

is possible for the message W1. (There is only some positive rate due to R0 in the last

line of the set of inequalities (4.109).) Now, combining (4.73), (4.77), (4.79), (4.81),

(4.83), (4.85), (4.86), (4.87) and the set (4.109) using a Fourier-Motzkin elimination

with R1 = L1 +L2 +L3 and R1e = L1e +L2e +L3e, we can obtain the inner bound to

the rate-equivocation region without rate splitting:

R0 ≤ I(U3;Y3)− I(U3;Y3|U1)

R0 ≤ I(U2;Y2)− I(U2;Y3|U1)

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)
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R1 ≤ I(X;Y1|U1)

R1 ≤ I(X;Y1|U2) + I(X;Y1|U3)

R1e ≤ R1

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)

− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U2) + I(X;Y1|U3)− 2I(X;Y3|U2, U3)− I(U2;Y3|U1)

− I(U3;Y3|U1)

R0 +R1 ≤ I(X;Y1)

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U3)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1e ≤ I(U2;Y2) + I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

− I(U3;Y3|U1)

R0 +R1e ≤ I(U3;Y3) + I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

− I(U3;Y3|U1)

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

2R0 +R1e ≤ I(U2;Y2) + I(U3;Y3) + I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2) + I(X;Y1|U3)

(4.110)

Finally, to apply the rate splitting procedure mentioned earlier, we move some of the

rate ofR1 in the set (4.110) without rate splitting toR0. SubstituteR1n = R10+R11 and

R1 = R11 and R0 = R0n − R10 into (4.110). The rates R1n and R0n are the new rates

for R1 and R0 in (4.110) achieved using rate splitting. Using 0 ≤ R10 and 0 ≤ R11, we

perform a Fourier-Motzkin elimination to remove R10 and R11 and obtain the region

in the theorem, with R1 = R1n, R0 = R0n. The details of the entire Fourier-Motzkin

elimination can be found in Appendix B.5.

We should remark that it is possible to extend our secure coding scheme to the
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3-receiver BC with 3 DMS. In the case without security [91, Sect. VB], the additional

message W2 is encoded into U2 together with part message L2, and Y2 performs joint

typical decoding on U2 instead of indirect decoding to obtain W2. All the other en-

coding and decoding functions stay the same, so that Y1 obtains W1,W2,W0 via X ,

Y2 obtains W2,W0 via U2 and Y3 obtains W0 indirectly from U3. We see that since

W2 and L2 now ‘share’ U2, we can still use our secure scheme, but we now make the

secure parts R2e and L2e share U2, instead of only L2e using U2. Indeed the equivo-

cation calculation still goes through unchanged even by adding the additional message

to the encoding of U2. Applying this idea to obtain an inner bound for the 3-receiver

BC with 3 DMS and two confidential messages is now part of our ongoing work; the

drawback of course is that the Fourier-Motzkin elimination has now increased many

times in complexity.

We have noted that Chia and El Gamal in [17, 18] also studied the 3-receiver BC

with DMS and Y3 an eavesdropper, but with W1 sent to Y1 and Y2. Hence the coding

scheme in [17, 18] is somewhat different compared to ours. In the scheme of [17, 18],

set V0 = U1, V1 = U2, V2 = U3 and introduce a time sharing r.v. U ; the r.v.s satisfy

U → V0 → (V1, V2) → X . Their inner bound was established by coding W1 into V0,

then V1 and V2 were generated using superposition coding via p(v1|v0) and p(v2|v0).

To encode V1, V2, V0 into codeword X , use Marton’s achievability scheme to find the

joint typical pair (V1, V2) and encode into X . Security is provided by code partitioning

for V1, V2, V0. This is in contrast to our scheme where we use double binning for U2, U3

and code partitioning for X . We also note that by specializing to 2 receivers, the inner

bound in [17, 18] can also reduce to the Csiszár-Körner BC with one common and one

confidential message region. However, due to the differences in the coding schemes, it

is not easy to say conclusively whether one is better than the other in the general case.

Lastly we remark that the coding scheme for the 3-receiver, 2 eavesdropper BC

models in the multilevel BC and its generalization [17, 18, 104] was superposition

coding, similar to our K-receiver degraded BC scheme in Section 4.2.
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4.3.3 Outer Bounds to the Rate-equivocation of the 3-receiver BC

with 2 DMS

In this section, we derive outer bounds to the rate-equivocation of the 3-receiver BC

with 2 DMS and one confidential message. We note that the outer bound for the general

case where the conditions on all the channels are general, is unknown6; it is known

only for the case without security [91, Proposition 6]. The main difficulty in deriving

the outer bound for the general case lies in using the Csiszár sum lemma [30, Lemma

7](like in Section 4.2.5) which is not easily generalized to three receivers. Methods to

derive the outer bounds using alternative methods may be investigated in future work;

at the moment we shall consider some subclasses of the general 3-receiver BC where

outer bounds can be derived.

We now consider subclasses of the general 3-receiver BC with 2 DMS where we

have the following conditions on the receivers:

1. Y1 is less noisy than Y2 and Y3;

2. Y1 and Y2 are less noisy than Y3.

Both these two conditions result in 3-receiver BCs which have more general conditions

than the 3-receiver degraded BC, or the 3-receiver multilevel BC [17, 18] and its gener-

alization in [104]. We also note that under these conditions, the inner and outer bounds

match. The proof for the outer bound is termed the ‘converse proof’ in this case. In

the following we will state the rate-equivocation regions for the above two types of

3-receiver BCs, outline the achievability proofs and show the converse proofs.

Y1 is Less Noisy Than Y2 and Y3

Corollary 3. The rate-equivocation region for the 3-receiver BC with 2 DMS and one

confidential message where Y1 is less noisy than Y2 and Y3 is the closure of all rate-

tuples (R0, R1, R1e) satisfying

R0 ≤ min{I(U ;Y2), I(U ;Y3)}

R1 ≤ I(X;Y1|U)

R1e ≤ I(X;Y1|U)− I(X;Y3|U), (4.111)

6In an earlier version of this work [22], we had derived a general outer bound by insertion of auxiliary

r.v.s, which is now been realized to be mistaken. This section thus serves to correct the error.
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over the p.d.f. p(u, x) = p(u)p(x|u).

Proof. We show achievability and the converse.

Achievability: The region in Corollary 3 can be obtained from the region in Theorem

14 by setting U2 = U3 = U1 = U and removing redundancies. A secure coding

scheme to achieve the rate-equivocation region needs only to use code partitioning and

superposition coding like the Csiszár-Körner scheme [30].

Converse: We now use a (2nR0 , 2nR1 , n)-code with error probability P (n)
e and code con-

struction so that we have the Markov chain condition (W0,W1)→ X→ (Y1,Y2,Y3).

Then, the probability distribution onW0 ×W1 ×X n × Yn1 × Yn2 × Yn3 is given by

p(w0)p(w1)p(x|w0, w1)
n∏
i=1

p(y1i, y2i, y3i|xi). (4.112)

We first note that from the definition of more capable and less noisy channels (see

Appendix A), when Y1 is less noisy than Y2 or Y3, then it also follows that Y1 is more

capable than Y2 or Y3.

We now also define the new auxiliary random variable Ui , (W0,Y
i−1
1 ) satisfying

the condition

Ui → Xi → (Y1,i, Y2,i, Y3,i), ∀i. (4.113)

To see that the above assertion is true, we refer to the state dependency graph for the

3-receiver BC with 2 DMS in Figure 4.7; we see that the group of states (Y1,i, Y2,i, Y3,i)

depends on (W0,Y
i−1
1 ) only through Xi, hence the Markov chain.

To begin, we have, by Fano’s inequality

H(W1|Y1) ≤ nγ1, H(W1|Y1,W0) ≤ nγ2,

H(W0|Y1) ≤ nγ3, H(W0|Y2) ≤ nγ4, H(W1|Y3) ≤ nγ5, (4.114)

where the γi → 0 as n→∞, for i = 1, · · · , 5. Next, we have the equivocation rate

nR1e

(a)

≤ H(W1|Y3) + nε1

≤ H(W0,W1|Y3) + nε1

≤ H(W1|Y3,W0) +H(W0|Y3) + nε1

= H(W1|Y3,W0) +H(W0|Y3)−H(W1|Y1,W0) +H(W1|Y1,W0) + nε1

= I(W1; Y1|W0)− I(W1; Y3|W0) +H(W1|Y3,W0) +H(W0|Y3) + nε1

(b)

≤ I(W1; Y1|W0)− I(W1; Y3|W0) + n(ε1 + γ2 + γ5), (4.115)
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Figure 4.7: State dependency graph for 3-receiver BC with 2 DMS.

where (a) is by the secrecy condition, and (b) is by Fano’s inequality. Continuing the

chain of inequalities by expanding the mutual informations in (4.115) using the chain

rule, we have, defining δ′ = ε1 + γ2 + γ5

nR1e ≤
n∑
i=1

[
I(W1;Y1,i|W0,Y

i−1
1 )− I(W1;Y3,i|W0, Ỹ

i+1
3 )

]
+ nδ′

=
n∑
i=1

[
I(W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(Ỹi+1

3 ;Y1,i|W0,W1,Y
i−1
1 )

− I(W1,Y
i−1
1 ;Y3,i|W0, Ỹ

i+1
3 ) + I(Yi−1

1 ;Y3,i|W0,W1, Ỹ
i+1
3 )

]
+ nδ′

(a)
=

n∑
i=1

[
I(W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(W1,Y

i−1
1 ;Y3,i|W0, Ỹ

i+1
3 )

]
+ nδ′

=
n∑
i=1

[
I(W1;Y1,i|W0, Ỹ

i+1
3 ,Yi−1

1 ) + I(Ỹi+1
3 ;Y1,i|W0,Y

i−1
1 )

−I(W1;Y3,i|W0, Ỹ
i+1
3 ,Yi−1

1 )− I(Yi−1
1 ;Y3,i|W0, Ỹ

i+1
3 )

]
+ nδ′

(b)
=

n∑
i=1

[
I(W1;Y1,i|W0, Ỹ

i+1
3 ,Yi−1

1 )− I(W1;Y3,i|W0, Ỹ
i+1
3 ,Yi−1

1 )
]

+ nδ′

=
n∑
i=1

[
I(W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(Ỹi+1

3 ;Y1,i|W0,Y
i−1
1 )
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−I(W1, Ỹ
i+1
3 ;Y3,i|W0,Y

i−1
1 ) + I(Ỹi+1

3 ;Y3,i|W0,Y
i−1
1 )

]
+ nδ′

(c)

≤
n∑
i=1

[
I(W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(W1, Ỹ

i+1
3 ;Y3,i|W0,Y

i−1
1 )

]
+ nδ′

=
n∑
i=1

[
I(Xi,W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(Xi;Y1,i|W0,W1, Ỹ

i+1
3 Yi−1

1 )

−I(Xi,W1, Ỹ
i+1
3 ;Y3,i|W0,Y

i−1
1 ) + I(Xi;Y1,i|W0,W1, Ỹ

i+1
3 Yi−1

1 )
]

+ nδ′

(d)

≤
n∑
i=1

[
I(Xi,W1, Ỹ

i+1
3 ;Y1,i|W0,Y

i−1
1 )− I(Xi,W1, Ỹ

i+1
3 ;Y3,i|W0,Y

i−1
1 )

]
+ nδ′

(e)
=

n∑
i=1

[
I(Xi;Y1,i|W0,Y

i−1
1 )− I(Xi;Y3,i|W0,Y

i−1
1 )

]
+ nδ′ (4.116)

where (a) and (b) are by the Csiszár sum identity [30, Lemma 7], (c) is because

I(Ỹi+1
3 ;Y1,i|W0,Y

i−1
1 ) − I(Ỹi+1

3 ;Y3,i|W0,Y
i−1
1 ) ≥ 0 since Y1 is less noisy than Y3,

(d) is because I(Xi;Y1,i|W0,W1, Ỹ
i+1
3 ,Yi−1

1 ) − I(Xi;Y3,i|W0,W1, Ỹ
i+1
3 ,Yi−1

1 ) ≥ 0

since Y1 is more capable than Y3, and (e) is because, given (W0,Y
i−1
1 ), (W1, Ỹ

i+1
3 )→

Xi → (Y1,i, Y3,i) forms a Markov chain. The last assertion may be checked using the

state dependency graph in Figure 4.7, where we see that the group (Y1,i, Y3,i) depends

on (W1, Ỹ
i+1
3 ) only through Xi, hence the Markov chain.

For rates R0, we first have the rate for W0 sent to Y2:

nR0 = H(W0) = I(W0; Y2) +H(W0|Y2)

(a)

≤ I(W0; Y2) + nγ4

=
n∑
i=1

I(W0;Y2,i|Ỹi+1
2 ) + nγ4

=
n∑
i=1

[
I(W0,Y

i−1
1 ;Y2,i|Ỹi+1

2 )− I(Yi−1
1 ;Y2,i|W0Ỹ

i+1
2 )

]
+ nγ4

≤
n∑
i=1

[
I(W0, Ỹ

i+1
2 ,Yi−1

1 ;Y2,i)− I(Yi−1
1 ;Y2,i|W0Ỹ

i+1
2 )

]
+ nγ4

(b)
=

n∑
i=1

[
I(W0,Y

i−1
1 ;Y2,i) + I(Ỹi+1

2 ;Y2,i|W0,Y
i−1
1 )

−I(Ỹi+1
2 ;Y1,i|W0,Y

i−1
1 )

]
+ nγ4

(c)

≤
n∑
i=1

I(W0,Y
i−1
1 ;Y2,i) + nγ4, (4.117)

where (a) is by Fano’s inequality, (b) is by applying the Csiszár sum identity [30,

Lemma 7] on the last term in the brackets, and (c) is because I(Ỹi+1
2 ;Y1,i|W0,Y

i−1
1 )−

I(Ỹi+1
2 ;Y2,i|W0,Y

i−1
1 ) ≥ 0 as Y1 is less noisy than Y2. Similarly, we can get for W0
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sent to Y3,

nR0 ≤
n∑
i=1

I(W0,Y
i−1
1 ;Y3,i) + nγ5. (4.118)

For rate R1, we have

nR1 = H(W1) = I(W1; Y1) +H(W1|Y1)

(a)

≤ I(W1;W0,Y1) + nγ1

(b)
= I(W1; Y1|W0) + nγ1

=
n∑
i=1

I(W1;Y1,i|W0,Y
i−1
1 ) + nγ1

(c)
=

n∑
i=1

[
H(Y1,i|W0,Y

i−1
1 )−H(Y1,i|W0,W1,Y

i−1
1 , Xi)

]
+ nγ1

=
n∑
i=1

I(W1, Xi;Y1,i|W0,Y
i−1
1 ) + nγ1

(d)
=

n∑
i=1

I(Xi;Y1,i|W0,Y
i−1
1 ) + nγ1, (4.119)

where (a) is by Fano’s inequality, (b) is by independence of W0 and W1, (c) is because

we have included Xi in the conditioning of the second term in the brackets as Xi is

a function of W1, and (d) is by W1 → Xi → Y1,i forming a Markov chain, given

(W0,Y
i−1
1 ).

To finish off the converse proof, introduce r.v. J , independent of W0,W1, X, Y1,

Y2, Y3, and uniformly distributed over {1, · · · , n}. SettingU , W0, Y
J−1

1 J ,X , XJ ,

Y1 , Y1,J , Y2 , Y2,J and Y3 , Y3,J and substituting into (4.116), (4.117), (4.118),

(4.119), we can obtain the bounds in Corollary 3. Lastly, the memoryless character of

the channel means that the condition U → X → (Y1, Y2, Y3) is met.

Y1 and Y2 are Less Noisy Than Y3

Corollary 4. The rate-equivocation region for the 3-receiver BC with 2 DMS and one

confidential message where Y1 and Y2 are less noisy than Y3 is the closure of all rate-

tuples (R0, R1, R1e) satisfying

R0 ≤ min{I(U ;Y3)}

R1 ≤ I(X;Y1|U)

R1e ≤ I(X;Y1|U)− I(X;Y3|U), (4.120)
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over the p.d.f. p(u, x) = p(u)p(x|u).

We can see that this region is a subset of the region in Corollary 3. The region

in Corollary 4 is also a subset of the region in [18, Proposition 2] under the same

conditions; the difference is that the region in Corollary 4 is a result of only one message

to send to Y1, while the region in [18, Proposition 2] is a result of sending one message

each to Y1 and Y2, resulting in one additional bound each for R1 and R1e.

Proof. Achievability: The region in Corollary 4 can be obtained from the region in

Theorem 14 by setting U2 = U3 = U1 = U , removing redundancies, and imposing

the condition I(U ;Y2) ≥ I(U ;Y3). In fact, the region in Corollary 4 can be obtained

from the region in Corollary 3 by using I(U ;Y2) ≥ I(U ;Y3). Again, the secure coding

scheme to achieve the rate-equivocation region needs only to use code partitioning and

superposition coding like the Csiszár-Körner scheme [30].

Converse: The converse proof follows exactly from the proof in Corollary 3.

4.3.4 Conclusions

Bounds to the rate-equivocation region for the general 3-receiver BC with DMS, in

which receiver 3 is an eavesdropper receiving the common message, are presented. This

model is a more general model than the 2-receiver BCs with confidential messages with

an external eavesdropper, and 3-receiver degraded BCs with confidential messages. We

obtain, with secrecy constraints, a new inner bound to the rate-equivocation region for

the 3-receiver BC with 2 DMS. This inner bound region reduces to known bounds for

the 3-receiver BC with 2 DMS and no security, the 3-receiver BC with 2 DMS with no

security where Y1 is less noisy than Y2, and the 2-receiver BC with one common and

one confidential message. Outer bounds for special cases of the 3-receiver BC with 2

DMS have been derived, where Y1 is less noisy than Y2 and Y3, and where Y1 and Y2

are less noisy than Y3. These outer bounds are shown to match the inner bounds for the

special cases.

We can also see that our secure scheme can be straightforwardly used to provide

security for the even more general 3-receiver BC with 3 DMS, which is our ongoing

work. Lastly, we mention that deriving the outer bound for the general case was not

possible as the conventional method relies on the Csiszár sum lemma which is not
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easily generalized to three receivers. Furthermore, our secure scheme suggests that, to

design a practical code, we should use multilevel coding in conjunction with a dirty

paper coding scheme such as in [40].
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Chapter 5

Signal Processing for Enhancing

Message Secrecy in Relay Channels

In this chapter we will focus on more practical methods to enhance the secrecy rate,

especially when the eavesdropper has more favorable conditions compared to the legit-

imate receiver. We do this by introducing a relay node into the wiretap channel model.

This will then help us to find a distributed signal processing method that can enhance

the secrecy rate.

5.1 Introduction

5.1.1 Artificial Noise via Beamforming to Enhance Secrecy

We firstly note that there is an alternative method to enhance the secrecy rate, which

is to use multiple antennas at the transmitter and legitimate receiver and combine this

with beamforming methods to send useful signal to the legitimate receiver and noise

to the eavesdropper, as proposed in Goel and Negi [52]. Specifically, the transmitter

sends the message in the direction corresponding to the legitimate receiver’s channel,

and sends white noise (called artificial noise) in all other directions, disregarding any

knowledge of the channel state information (CSI) of the eavesdropper’s channel. This

masked beamforming approach is in the framework of the wiretap channel.

The artificial noise approach of [52] was also investigated for more elaborate mod-

els of the CSI knowledge. In Khisti and Wornell [63] fast Rayleigh channels were

considered, where the message is transmitted over a block that is long compared to the

coherence time of the channel, while in Mukherjee and Swindlehurst [88], the impact of
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imperfections in the CSI of the legitimate and eavesdropper channels are investigated.

Another way to improve the secrecy rate was to jointly optimize the beamforming vec-

tor and the artificial noise covariance matrix, as in the work of Qin et al [102] and Liao

et al [74], where CSI of the receiver’s and eavesdropper’s channel was assumed. Lastly,

Liu et al [75] studied the effects of CSI imperfections on the receiver’s channel when

using quantized channel feedback and the artificial noise approach of [52].

5.1.2 Cooperative Relaying to Enhance Secrecy

However, an arguably more flexible method is to introduce an additional relay or help-

ing node into the wiretap channel. An advantage of studying such a model compared

to the beamforming approach is that cooperative networks can be modeled, where the

additional flexibility comes from more options in relaying or jamming methods to en-

hance the rate at the legitimate receiver. We recall that the wiretap channel is a three-

node channel, with a transmitter (source S), legitimate receiver (destination D) and an

eavesdropper E1. To enhance the secrecy rate then, we introduce an additional node into

the wiretap channel to turn the wiretap channel into a relay channel with an external

eavesdropper, which is depicted in Figure 5.1. The additional node is, of course, the re-

lay node, which in our work represents a bank of relays R1, · · · RM . We shall see that we

can formulate the secrecy rate in the RC with external eavesdropper as an optimization

problem, and then propose a distributed signal processing solution to the optimization

problem.

There are three common cooperative strategies that could be used to enhance se-

crecy. They are Decode and Forward (DF) relaying, Amplify and Forward (AF) relay-

ing, and cooperative jamming (CJ).

DF: In DF, there are two stages in the transmission protocol. In the first stage, the

source broadcasts its symbols to the M trusted relays. In the second stage, the source

is silent and the M relays decode and re-encode the message and each relay then sends

a weighted version of the re-encoded symbol to the destination. The eavesdropper taps

the signals in both stages. The destination combines the received signals in both stages

by maximum ratio combining (MRC).

1In line with standard cooperative communication terminology, we call the transmitter the source and

the legitimate receiver the destination.
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Figure 5.1: System node level model for relay channel with external eavesdropper.

AF: The AF protocol is also a two-stage protocol. In the first stage, the source again

broadcasts its symbols to the M trusted relays. In the second stage, each relay sends

a weighted version of the noisy signal that it had received from the source in the first

stage, to the destination. The eavesdropper taps the signals in both stages, while the

destination combines the received signals in both stages by MRC.

CJ: In CJ, there is only one stage. While the source transmits, the relays send a

weighted jamming signal which is independent of the source message. We should

note that the jamming signal will interfere with the reception of the wanted signal at

the destination, while at the same time degrading the eavesdropper’s received signal.

Thus a careful design of the relaying weights is important.

In the case where there is a direct path between the source and the destination,

Dong et al [31] and Li et al [71] studied the AF and DF variants. Dong et al [31] also

studied the CJ method. All these studies assumed global CSI (that is the CSI of all

the links are known at the source), and solutions found under a total power constraint

for the relays. When there is no direct path between the source and the destination,

Zhang and Gursoy [123] investigated the AF and DF variants with the eavesdropper’s

CSI imperfection modeled as the channel realization minus an estimation error.

Of the three cooperative methods, CJ has the potential to be the most cost effective

solution. It can also be used in conjunction with either AF or DF. Although CJ was stud-

ied in [31] and [71], a limitation of these studies was that a total relay power constraint

was imposed and the optimal CJ solution was not known. This motivated our work
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which addresses the optimization of collaborative relay weights for CJ in maximizing

the secrecy rate with individual relay power constraints. In the following sections, we

first give conditions under which positive secrecy rate is possible. Given these condi-

tions, we propose an algorithm to obtain the optimal CJ relay beamforming solution

using a combination of convex optimization and a one-dimensional search. The pro-

posed algorithm is also extended to cope with the grouped relays’ power constraints.

We further develop a distributed implementation which permits each individual relay to

derive its own weight based on its local CSI for achieving a near-optimal secrecy rate.

5.1.3 Other Related Work

We note that after the publication of our work [126], some interesting extensions to the

CJ scenario have appeared. The work of Fakoorian and Swindlehurst[41] is a general-

ization of the present CJ scenario to the case of MIMO channels for all of S, D and E in

Figure 5.1, with global CSI at S and a total power constraint on the relay; lower bounds

to the secrecy rate improvement due to CJ are derived. In another direction, Huang and

Swindlehurst [61] and Dong et al [32] used a two-stage protocol where there is no di-

rect path in Figure 5.1, but S and even D send jamming signals when they are normally

inactive. Unknown CSI for E was considered in [61], while global CSI was assumed in

[32].

Evidently the CSI issue is an important one, as the knowledge of CSI at S will

help it to design CJ schemes. A way to handle unknown eavesdropper CSI is to use the

idea of secrecy outage. That is, we design the system for a certain secrecy rate, say Cs.

Then when the actual secrecy rate drops below Cs due to the channel imperfections,

then the system is in outage. The probability that this happens is the secrecy outage.

The work of Gabry et al [48] obtains the secrecy outage probabilities for the DF, AF

and CJ protocols in the scenario of Figure 5.1. A two-dimensional model using CJ,

where perhaps multiple relays are allowed to shift their position in the plane of S, D and

E, is used to obtain regions where the system is in secrecy outage in Vilela et al [111].

Another more recent work by Vilela et al [112] used CJ, a two-dimensional model

and the concept of secure throughput (the probability that a message is successfully

received by D, but not by E) to model medium access control layer behaviour with CJ.

The channels were either completely known or known statistically. In the latter case,
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this just meant that the throughput was reduced.

5.2 System Model And Problem Formulation
Here we give a more detailed description of our RC with external eavesdropper system

with CJ. The detailed system model is given in Figure 5.2 below.

S

R
1

R
M

.

.

.

D

E

w1

wM

hD

hE

gM
(E)

g1
(E)

nE

nD

g1
(D) gM

(D)

w1

wM

Figure 5.2: System model for relay channel with external eavesdropper and cooperative

jamming.

For our system under consideration, we have one source, S, one destination, D, M

trusted relays, labeled as {R1, . . . , RM} and one eavesdropper, E. All nodes are assumed

to have a single antenna. There is a direct link between S and D, and all relays work

synchronously in half-duplex mode. The message from S is uniformly distributed over

W = {1, . . . , 2nR0}, for n channel uses and the message rate R0. The message is

mapped to the length-n source codewords xns , and the codewords are transmitted using

n time units in a single transmission slot in a time division system.

The source codewords are assumed to be independent zero-mean Gaussian to en-

able evaluation of the achievable secrecy rate. The reason behind our choice of source

codewords is as follows. Our CJ scheme can be viewed alternatively as a multiple-

input single-output (MISO) wiretap channel, where the channel from S and relays to D

is the MISO main channel, and the channel from S and relays to E is the eavesdropper’s

MISO channel. Since this MISO wiretap channel is a special case of the MIMO wire-

tap channel reviewed in Section 3.2.1, the result in Theorem 8 will apply. In particular,
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in [62, 96], it was shown that the optimization problem to evaluating the secrecy ca-

pacity in Theorem 8 is solved optimally using using an input ∼ N (0,K), where K is

a covariance matrix that satisfies the power constraint for the input. Thus the secrecy

capacity of the MIMO wiretap channel (and by extension our MISO wiretap channel)

is achieved by the optimal zero mean vector Gaussian input. Thus we assume that our

source codewords are zero mean Gaussian.

The channels are assumed to undergo flat fading with CSI perfectly known at S, D

and also E. Our assumption of CSI known at E (from the perspective of S) is realistic

when the eavesdropper is considered part of the network and its transmissions can be

monitored. The assumption is less practical when the eavesdropper is considered as

passive, with no information about its CSI. However, we now list some scenarios where

our assumption is reasonable. Let the secrecy capacity with S having perfect knowledge

of the CSI at E be Cs(CSI). It has been shown for the single antenna fading wiretap

channel [12] that the probability that the secrecy rate falls below Cs(CSI), decreases

as the SNR increases, if the transmission scheme is designed for perfect knowledge

of the CSI at E, while in reality there is imperfect knowledge. Also, a transmission

scheme has been proposed in [53] for the single antenna fading wiretap channel with

unknown CSI at E. This transmission scheme gives a secrecy rate near to Cs(CSI), if

the SNR is large. Our assumption, then, is reasonable for the high SNR case when the

eavesdropper is passive and when the eavesdropper can be monitored.

Let hD denote the channel between S and D, and hE denote the channel between

S and E. In addition, the channel between Rm and D and that between Rm and E are

denoted, respectively, by g(D)
m and g(E)

m . This is depicted in Figure 5.2. For ease of

exposition, we define the channel vectors

gD , [g
(D)
1 , g

(D)
2 , . . . , g

(D)
M ]T , (5.1)

gE , [g
(E)
1 , g

(E)
2 , . . . , g

(E)
M ]T , (5.2)

where the superscript (·)T denotes the transpose operation.

Both S and {Rm} transmit simultaneously to both D and E, while the relays send

jamming signals to interfere with E. To be specific, let us focus on a source symbol

xs (with E[|xs|2] = PS) which appears within one time unit of the transmission slot

of n time units. In the same time unit, the relays transmit the CJ codewords {x(m)
c }
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that are assumed to be independent zero-mean Gaussian signals, with E[|x(m)
c |2] = 1.

The CJ codeword at Rm is weighted by wm, before sending at the same time unit as

S transmitting to D via the direct link. We shall define w , [w1, . . . , wM ]T as the CJ

beamforming vector. Thus, only a 1-stage transmission protocol is considered here as

opposed to the conventional AF and DF relay protocols. The received signals at D and

E can be, respectively, written as

yD = hDxs +
M∑
m=1

g(D)
m wmx

(m)
c + nD, (5.3)

yE = hExs +
M∑
m=1

g(E)
m wmx

(m)
c + nE, (5.4)

where nD and nE are the zero-mean Gaussian noises at D and E, respectively, with

E[|nD|2] = σ2
D and E[|nE|2] = σ2

E . The jamming signal introduces interference at both

D and E, and it has recently been known that the achievable secrecy rate for this channel

can be expressed as

Rs = log2(1 + ΓD)− log2(1 + ΓE), (5.5)

where ΓD and ΓE are the signal-to-noise ratios (SNRs) at D and E, respectively, and are

given by

ΓD =
PS|hD|2

|w†gD|2 + σ2
D

, (5.6)

ΓE =
PS|hE|2

|w†gE|2 + σ2
E

, (5.7)

where (·)† denotes the conjugate transposition. The secrecy rate expression in (5.5) is

recognized as the difference of the capacity at D and the capacity at E. This simple form

is obtained under the following assumptions [71]: First, the received signals at D and E

at time i only depend on the transmitted codewords at the relays at time i (referred to as

the memoryless relay channel assumption); secondly, the relays use independent, zero-

mean Gaussian codewords, similar to the source, to send the jamming signal. Existing

results for the MIMO wiretap channel can be applied to (5.5) under the first assumption.

Our aim is to maximize the secrecy rate via the design of the beamforming vector

w. That is,

max
w

R s.t. |wm|2 ≤ pm ∀m, (5.8)
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where pm is the transmit power constraint of Rm and R is defined as

R ,
1 + Ps|hD|2

|w†gD|2+σ2
D

1 + Ps|hE |2
|w†gE |2+σ2

E

. (5.9)

5.3 Conditions for Positive Secrecy Rate
The optimization problem given in (5.8) is meaningful only under the conditions that

give a positive secrecy rate. Thus we will need to derive these conditions. Given that

there exists a w, to obtain a positive secrecy rate we need, from (5.9),

Ps|hD|2

|w†gD|2 + σ2
D

>
Ps|hE|2

|w†gE|2 + σ2
E

. (5.10)

The equation above can also be expressed as

|w†gE|2 + σ2
E

|w†gD|2 + σ2
D

>
|hE|2

|hD|2
. (5.11)

The feasibility of (5.11) and thus whether or not positive secrecy rate is possible, can

be checked by solving

max
{|wm|2≤pm∀m}

|w†gE|2 + σ2
E

|w†gD|2 + σ2
D

>
|hE|2

|hD|2
. (5.12)

The optimization problem (5.12) can be re-written as

max
{|wm|2≤pm∀m}

t

s.t. |w†gE|2 + σ2
E ≥ t(|w†gD|2 + σ2

D), (5.13)

where t = maxw
|w†gE |2+σ2

E

|w†gD|2+σ2
D

. The problem (5.13) can in turn be re-written as

max
{|wm|2≤pm∀m}

t

s.t.
√
t|w†gD|2 + (tσ2

D − σ2
E) ≤ w†gE. (5.14)

Now, since w � 0, t is lower bounded by σ2
E

σ2
D

since when w = 0, t =
σ2
E

σ2
D

. This

implies that tσ2
D − σ2

E > 0, and that all terms within the square root in the constraint

of (5.14) are > 0. Given this fact, we can recognize that the optimization problem

(5.14) is a second order cone program (SOCP), which can be solved using bisection
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search.2 We remark that a similar technique was used in Zhang and Gursoy [123] for

AF relay beamforming but [123] did not show that all terms within the square root are

nonnegative to enable the formulation (5.14).

After having now derived the conditions for positive secrecy rate, in the subsequent

sections as we describe our method to solve (5.8), we will assume that a positive secrecy

rate is achieved.

5.4 Methodology: Fixed w†gD and One-dimensional

Search
The optimization problem (5.8) is challenging because it is non-convex andR is a com-

plicated function of w. Our approach is to first study a sub-problem with |w†gD|2 fixed

and then use a one dimension search to find the solution to (5.8) which is guaranteed to

be optimal by its analytical properties. We note that this method is similar in spirit to

that in [113], which solves an entirely different problem with a different technique.

5.4.1 Sub-problem with Fixed |w†gD|

We consider the the sub-problem where we fix |w†gD|, which is the interference at D,

to a fixed scalar t ≥ 0. The optimization problem (5.8) is then reduced to

max
w
|w†gE|2

s.t. |w†gD|2 = t,

|wm|2 ≤ pm ∀m. (5.15)

2An SOCP has the standard form [14, Sect. 4.4.2]

min
x

fT x

s.t. ‖Aix + bi‖ ≤ cT
i x + di, i = 1, · · · , N,

where x ∈ Rn, f ∈ Rn, Ai ∈ R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn, di ∈ R. The norm in the constraints is

the Euclidean norm.

A bisection search for the maximum tmax for a given optimization problem is as follows. We start

with an interval [lb, ub] that is known to contain tmax. We then solve the optimization problem at the

midpoint t = (lb + ub)/2 to see whether the optimal value is smaller or larger than t. If the optimal

solution is between lb and the midpoint (lb + ub)/2, then set t = lb, otherwise, set t = ub. We then

repeat this procedure until the width of the interval is smaller than a determined threshold.
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That is, we now maximize the interference to the eavesdropper. Let the optimal solution

to the problem (5.15) be w0(t) and the corresponding optimal objective value be f0(t),

and let us define R(t), as the original objective (5.9) evaluated at these values:

R(t) ,
1 + Ps|hD|2

|w0(t)†gD|2+σ2
D

1 + Ps|hE |2
f0(t)+σ2

E

=
1 + Ps|hD|2

t+σ2
D

1 + Ps|hE |2
f0(t)+σ2

E

. (5.16)

We can now focus on finding the maximum of R(t) over t ≥ 0.

However, R(t) is still difficult to evaluate due to the equality constraint in (5.15).

To overcome this difficulty, we consider the modified problem, where we replace the

equality constraint in (5.15) with an inequality constraint:

max
w
|w†gE|2

s.t.


|w†gD|2 ≤ t,

|wm|2 ≤ pm ∀m.
(5.17)

Now, let the optimal solution to the problem (5.17) be w(t) and the corresponding

optimal objective value be f(t), and let us define R1(t), as the original objective (5.9)

evaluated at these values:

R1(t) ,
1 + Ps|hD|2

t+σ2
D

1 + Ps|hE |2
f(t)+σ2

E

. (5.18)

We have the following useful result regarding R(t) and R1(t).

Theorem 15. R1(t) and R(t) have the same maximizer and the same maximum func-

tion value.

Proof. Let the maximizer ofR(t) be t∗ and the associated beamforming vector solution

to (5.15) is w0(t∗). Now w0(t∗) is also a feasible solution to (5.17), meaning that

f(t∗) ≥ f0(t∗) and thus we have,

max
t
R1(t) ≥ R1(t∗) =

1 + Ps|hD|2
t∗+σ2

D

1 + Ps|hE |2
f(t∗)+σ2

E

≥
1 + Ps|hD|2

t∗+σ2
D

1 + Ps|hE |2
f0(t∗)+σ2

E

= max
t
R(t). (5.19)

On the other hand, suppose that the maximizer of R(t) is t1 with the corresponding

solution to (5.17) as w(t1), then we must have |w(t1)†gD|2 = t1.

This can be seen by contradiction as follows. First, let us define |w(t1)†gD|2 , t2.

Now we assume that t2 < t1, from which we have f(t1) = f(t2). But from the
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definition of R1 in (5.18), we have R1(t1) < R1(t2), which contradicts the assumption

that t1 is the maximizer. Thus, when the maximizer of R1(t) is t1, |w(t1)†gD|2 = t1.

The above observation means that, at the optimal value ofR1(t), the first inequality

in (5.17) becomes an equality, and this optimal value can also be attained by R(t).

Combining this fact and (5.19) completes the proof.

We can now make use of Theorem 15 to solve the optimization problem (5.17)

instead of (5.15), since the solution to (5.17) will be the same as the solution to (5.15).

We do this to circumvent the difficulty in solving the optimization problem (5.15),

which is due to the equality constraint in (5.15).

To solve the optimization problem (5.17), we need to maximize R1(t). We first

note that in (5.17), w†gE can be made positive (see [9] for a similar example) without

loss of optimality. This step converts (5.17) into the convex optimization problem

max
w

w†gE

s.t.


|w†gD|2 ≤ t,

|wm|2 ≤ pm ∀m,
(5.20)

Then (5.20) can be solved optimally, with optimal solution w∗(t) for a given t and

f(t) , |w∗(t)†gE|2. That is, f(t) is the optimal value of R1(t). We now prove a

property of f(t) in the following theorem.

Theorem 16. f(t) is a concave function of t.

Proof. The Lagrangian of (5.20) is given by

L(w,λ, µ) = −w†gE + µ(|w†gD|2 − t) +
M∑
m=1

λm(|wm|2 − pm)

= −w†gE + w†
[
µgDg†D + Diag(λ)

]
w −

(
µt+

M∑
m=1

λmpm

)

= w†
(
µgDg†D + Diag(λ)− gEg†E

w†gE

)
w −

(
µt+

M∑
m=1

λmpm

)
, (5.21)

where µ and λ ≥ 0 are Lagrange multipliers, and Diag(λ) is a square matrix with the

diagonal elements being λi, i = 1, · · · ,M . The Lagrange dual objective is

G(λ, µ) = min
w

L(w,λ, µ). (5.22)
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At the optimal value of the primal variables w∗(t), the Lagrange dual objective takes

on the value

G(λ, µ) = w∗(t)†
[
µgDg†D + Diag(λ)− gEg†E

w∗(t)†gE

]
w∗(t)−

(
µt+

M∑
m=1

λmpm

)
.

(5.23)

To ensure thatG(λ, µ) is lower bounded, we must have the terms in the square brackets

µgDg†D + Diag(λ)− gEg†E
w∗(t)†gE

� 0. That is, positive semidefinite. Then, the Lagrange

dual problem can be expressed as

min
λ≥0,µ>0

µt+
M∑
m=1

λmpm

s.t. µgDg†D + Diag(λ)− gEg†E
w∗(t)†gE

� 0. (5.24)

This form of the dual problem is not the usual formulation, but it is useful in deriving

the property of f(t). Now the optimization problem (5.24) contains the unknown w∗(t)

in the constraint, which makes (5.24) not solvable. But the solution to problem (5.24),

if it exists, gives us the same objective value of the original dual problem (5.22) and

thus of the primal problem as well. Thus we proceed to modify (5.24) so that it leads

to a solution. We now have, modifying (5.24),

min
λ≥0,µ>0

µt+
M∑
m=1

λmpm

s.t. µgDg†D + Diag(λ)− gEg†E � 0. (5.25)

We can easily see that the optimal solution pair (λ, µ) to (5.25) is a scaled version (by

a factor of w∗(t)†gE) of the optimal solution pair to (5.24). By the convexity of (5.20),

strong duality holds and the optimal objective value of (5.24) is w∗(t)†gE , which is the

same as (5.20). Multiplied by another w∗(t)†gE , the optimal objective value of (5.25)

becomes |w∗(t)†gE|2 which is exactly f(t) as defined before. It is easily checked that

f(t) is a point-wise minimum of a family of affine functions and as a result concave for

t ≥ 0. This completes the proof.

We have seen that R1(t) and R(t) have the same maximizer and the same maxi-

mum value, and that f(t), which is the optimal value of the optimization problem (5.17)

and hence R1(t), is concave in t. We next examine the analytical properties of R1(t) to

help us design a search method for the optimal solution.
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5.4.2 Search for the Optimal Solution

In this section, we study the analytical properties of R1(t) which will permit us to

design an efficient algorithm to find the optimal solution. Our result is summarized in

the following theorem.

Theorem 17. R1(t) is quasi-concave in t and its maximum can be found via a one-

dimensional search.

Proof. The proof follows from the result in [14] that if R′1(t) = 0 implies that R′′1(t) <

0 for any t ≥ 0, then R1(t) is quasi-concave in t ≥ 0. This follows from the properties

of quasi-convex functions given in Section 2.2.1. This result was also used in [113].

For convenience, we define a , Ps|hD|2, b , Ps|hE|2, c , σ2
D, d , σ2

E . Then, we

have

R1(t) =
1 + a

t+c

1 + b
f(t)+d

. (5.26)

The first-order derivative of R1(t) is

R′1(t) = −a (t+ c)−2

(
1 +

b

f(t) + d

)−1

+
(

1 +
a

t+ c

)
bf ′(t)

(
1 +

b

f(t) + d

)−2

(f(t) + d)−2 . (5.27)

Setting it R′1(t) = 0, we have

a (t+ c)−2

(
1 +

b

f(t) + d

)
(f(t) + d)2 = b

(
1 +

a

t+ c

)
f ′(t). (5.28)

Now, the second-order derivative ofR1(t) multiplied by
(
1 + b

f(t)+d

)3
(f(t)+d)4 gives

R′′1(t)

(
1 +

b

f(t) + d

)3

(f(t) + d)4

= 2a (t+ c)−3

(
1 +

b

f(t) + d

)2

(f(t) + d)4

− 2abf ′(t) (t+ c)−2

(
1 +

b

f(t) + d

)
(f(t) + d)2

+ 2b2
(

1 +
a

t+ c

)
(f ′(t))2 − 2b

(
1 +

a

t+ c

)(
1 +

b

f(t) + d

)
(f(t) + d)(f ′(t))2

+
(

1 +
a

t+ c

)
b

(
1 +

b

f(t) + d

)
(f(t) + d)2 f ′′(t). (5.29)
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Combining the third and fourth terms on the RHS of (5.29), we have

R′′1(t)

(
1 +

b

f(t) + d

)3

(f(t) + d)4

= 2a (t+ c)−3

(
1 +

b

f(t) + d

)2

(f(t) + d)4

− 2abf ′(t) (t+ c)−2

(
1 +

b

f(t) + d

)
(f(t) + d)2

− 2b(f ′(t))2
(

1 +
a

t+ c

)
(f(t) + d)

+
(

1 +
a

t+ c

)
b

(
1 +

b

f(t) + d

)
(f(t) + d)2 f ′′(t). (5.30)

Substituting (5.28) into the second term on the RHS of (5.30) and combining with the

third term on the RHS of (5.30), we have

R′′1(t)

(
1 +

b

f(t) + d

)3

(f(t) + d)4

= 2a (t+ c)−3

(
1 +

b

f(t) + d

)2

(f(t) + d)4 − 2b(f ′(t))2
(

1 +
a

t+ c

)
(f(t) + d+ b)

+
(

1 +
a

t+ c

)
b

(
1 +

b

f(t) + d

)
(f(t) + d)2 f ′′(t). (5.31)

Since f(t) is concave, the last term on the RHS of (5.31) is < 0, so that we have

R′′1(t)

(
1 +

b

f(t) + d

)3

(f(t) + d)4

< 2a (t+ c)−3

(
1 +

b

f(t) + d

)2

(f(t) + d)4 − 2b(f ′(t))2
(

1 +
a

t+ c

)
(f(t) + d+ b).

(5.32)

Using the square of (5.28) in the first term of the RHS of (5.32), the first term on the

RHS of (5.32) becomes

2
b2

a
(t+ c)

(
1 +

a

t+ c

)2

(f ′(t))2. (5.33)

Substituting back into (5.32), we have

R′′1(t)

(
1 +

b

f(t) + d

)3

(f(t) + d)4

< 2
b2

a
(t+ c)

(
1 +

a

t+ c

)2

(f ′(t))2

1−
2b(f ′(t))2

(
1 + a

t+c

)
(f(t) + d+ b)

2 b
2

a
(t+ c)

(
1 + a

t+c

)2
(f ′(t))2

 .
(5.34)
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The ratio in (5.34) may be expressed as

a(f(t) + d+ b)

b(t+ c)
(
1 + a

t+c

) =
a(f(t) + d+ b)

b(a+ t+ c)
=
a(1 + f(t)+d

b
)

(a+ t+ c)
>
a(1 + t+c

a
)

(a+ t+ c)
= 1, (5.35)

where we have used the assumption that the secrecy rate is positive, that is, t+c
a

<

f(t)+d
b

. By substituting (5.35) back into (5.34), we can see that R′′1(t) < 0. Thus

R1(t) is a quasi-concave function and its maximum can be efficiently found by a one-

dimensional search [14, p101].

We can now give the complete algorithm, summarized in Algorithm 1.

5.5 Generalizations of the Method
In this section we shall discuss some possible extensions of our method, to more gen-

eralized CJ models.

5.5.1 Generalization to Grouped Relays’ Power Constraints

Suppose there are L groups of relays {N1, . . . ,Nl, . . . ,NL}, which form a partition of

{1, 2, . . . ,M}. It is natural to consider grouped relays power constraints, which can be

viewed as a generalization of individual relay power constraints, and can also reflect

the scenario where each group represents a relay with multiple antennas. In this case,

the optimization problem is given by

max
w

w†gE

s.t.


|w†gD|2 ≤ t,∑

m∈Nl
|wm|2 ≤ pl ∀l.

(5.36)

The only difference to our analysis is that (5.25) becomes

min
λ≥0,µ>0

µt+
L∑
l=1

λlpl

s.t. µgDg†D + Diag(λ)− gEg†E � 0, (5.37)

where λ , Diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λL, . . . , λL). It can be seen that all anal-

ysis is still valid, so the proposed algorithm can be easily generalized to handle the

grouped relays constraints.
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Algorithm 1 Proposed Algorithm

1: Input: Ps, hD, hE , gD, gE , σ2
D and σ2

E .

2: begin

3: Use the conditions in Section 5.3 to check whether a positive secrecy rate is

possible.

4: if a positive secrecy rate is not possible, then

5: secrecy rate is zero, exit.

6: end

7: Initialize tmin and tmax.

8: While tmax − tmin ≥ ε where ε is a preset threshold,

9: t = tmin+tmax

2
.

10: Solve problem (5.17) with the above t and get solution w.

11: Solve problem (5.17) with t+ ∆t for very small ∆t > 0.

12: Evaluate R′1(t) using the above two solutions and (5.18).

13: if R′1(t) > 0,

14: tmin = t.

15: else

16: tmax = t.

17: end

18: end

19: end

20: Output: w.

5.5.2 Distributed Implementation

The overall optimization can be performed at either the source S or the destination

D, which needs all the necessary system parameters. In practice, S or D may learn

gE, σ
2
E and gD, σ

2
D from the relays {Rm}. After the optimal relay weights wopt are

obtained, S or D informs each individual relay about its own amplification coefficient,

wm. However, it will require some bandwidth to perform this task. Thus, it would be

beneficial if each individual relay can derive its own beamforming weight based on its

local CSI. Here, we shall discuss such a distributed implementation algorithm, with the

assumption that Rm knows its local CSI g(E)
m and g(D)

m perfectly.
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To facilitate the design, we recall that the dual problem is

min
λ≥0,µ>0

µt+
M∑
m=1

λmpm

s.t. µgDg†D + Diag(λ)− gEg†E � 0. (5.38)

Using one of the conditions for obtaining the optimal value in (5.38), we have

(
µgDg†D + Diag(λ)− gEg†E

)
w = 0, (5.39)

from which we have

Diag(λ)w = (g†Ew)gE − µ(g†Dw)gD. (5.40)

Since g†Ew > 0, we now have

Diag(λ)

(g†Ew)
w = gE −

µ(g†Dw)

(g†Ew)
gD. (5.41)

Therefore, if the coefficient λm > 0, we have

wm =
√
pm

g(E)
m −

µ(g†Dw)

(g†Ew)
g(D)
m∣∣∣∣g(E)

m − µ(g†Dw)

(g†Ew)
g

(D)
m

∣∣∣∣ . (5.42)

From the complementary slackness conditions of (5.20), we see that λm(|wm|2−pm) =

0 and λm > 0 implies that |wm|2 = pm. So Rm should use its full transmit power pm.

From (5.42), we see that for λm > 0, each relay Rm can learn its own weight

based on local CSI g(E)
m and g(D)

m while S or D broadcasts the common scalar µg†Dw

g†Ew
to

all relays. In the ideal case where λm > 0 for m = 1, · · · ,M , only one positive

scalar µg†Dw

g†Ew
needs to be broadcast, while the relays can find their own optimal weights.

However, when λm = 0, the individual relays get no information about their own

beamforming weight from the common information, and in this case, (5.42) may not

be the optimal solution. However, our simulation results in Section 5.6 actually show

that the distributed algorithm can achieve a secrecy rate very close to the optimal one.

5.6 Simulation Results
Computer simulations are performed to evaluate the achievable secrecy rate of the pro-

posed algorithm. For the simulations, we assumed a one-dimensional system model,

and place the source, relays, destination and eavesdropper along a line. Furthermore,
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the distance between relays is assumed to be short compared to the source-relay, relay-

destination, relay-eavesdropper distances. Channels are modeled by a line-of-sight

channel model including the path loss, to take into account the effects of distances.

Therefore, the channels can be expressed in general as h = d−
c
2 ejθ, where d is the

distance, and c is the path loss exponent chosen as 3.5, and the random phase θ is uni-

formly distributed over [0, 2π). Also, the path loss for nodes to and from the relays

can be assumed to be the same since the distance between relays is small. The source-

eavesdropper distance is fixed at 50 m. The noise power is 100 dBm while the source

power and individual relay power constraints are chosen to be 40 dBm.
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Figure 5.3: Secrecy rate versus source-destination distance.

We first let the source-relays distance be fixed at 25 m. We change the position

of the destination so that the source-destination distance varies from 10 m to 100 m.

Figure 5.3 shows the secrecy rate comparison between the proposed algorithms and the

direct transmission (without the aid of relays). We use 10 relays in the simulations,
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Figure 5.4: a) Secrecy rate versus source-relay distance.

i.e., M = 10. The zero-forcing (ZF) solution (labeled as ZF-CJ in the figure) corre-

sponds to forcing the jamming signal at the destination to zero (i.e., t = 0 in (5.15)).

Note that it is different from that in [31] where only total power constraint was con-

sidered. We can see that the secrecy rate is significantly increased using our optimal

CJ solution, as compared to the secrecy rate using only direct transmission. We also

observe that by using CJ, there is a positive secrecy rate even when the channel for the

direct transmission from source to destination is not favorable, when compared to the

source to eavesdropper channel. This happens when the source-destination distance

is 50 m onwards, corresponding to the eavesdropper masking the direct transmission.

The results also illustrate that ZF-CJ can achieve nearly optimal performance in most

cases, but when the eavesdropper is close to the destination (for example, when the

source-destination distance is around 50 m), a significant gap is observed. This can be

explained by the fact that the ZF-CJ solution fails to manage the interference properly

at the destination while the optimal solution is able to use a more intelligent strategy
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Figure 5.4: b) Secrecy rate versus source-relay distance.

to balance the interference to the eavesdropper and the destination. It can also be seen

that the secrecy rate achieved by the distributed algorithm is very close to the optimal

rate and this justifies the proposed distributed implementation.

We then fix the source-destination distance at 60 m. The position of the relays is

changed so that the source-relays distance varies from 5 m to 45 m. Figures 5.4a and

5.4b show a similar secrecy rate comparison as has already been observed in Figure

5.3 with regard to the source-relays distance. In Figure 5.4a, we see that the optimal

solution has the best performance, while the distributed solution is close to optimal,

and the ZF-CJ solution is slightly worse than the above two. All the solutions are

fairly close to each other. It is observed that the secrecy rate increases as the relays

are closer to the eavesdropper. However, the performance gain is not significant, which

can be explained by the fact that as the relays are closer to the eavesdropper, they also

generate more interference to the destination.
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5.7 Conclusions and Discussion
We have studied the CJ protocol via distributed relays to increase the physical layer

security. The conditions for positive secrecy rate have been derived and we have shown

that the optimal CJ solution can be obtained by a combination of convex optimization

and a one-dimensional search. Extension to grouped relays power constraints and a

distributed implementation have also been considered. Simulation results have demon-

strated the fundamental result that we can enhance security over direct transmission,

when channel conditions are favorable to the eavesdropper.

There are two interesting open problems. Suppose there are N eavesdroppers,

then the secrecy rate maximization problem becomes

max
w

min
n

{
log

(
1 +

PS|hD|2

|w†gD|2 + σ2
D

)
− log

(
1 +

PS|hE,n|2

|w†gE,n|2 + σ2
E

)}
,

s.t.|wm|2 ≤ pm, ∀m, (5.43)

which reminds us of the compound wiretap channel earlier in Section 3.2.2. Hence we

may be able to decompose this into N subproblems

max
w

{
log

(
1 +

PS|hD|2

|w†gD|2 + σ2
D

)
− log

(
1 +

PS|hE,n|2

|w†gE,n|2 + σ2
E

)}
,

s.t.|wm|2 ≤ pm, ∀m, (5.44)

for which we can attempt to find the optimal solution; an issue to address would be

how to handle the correlations between relays, as the relays will be performing CJ over

several eavesdroppers’ channels.

We can also consider the relay assignment problem. To illustrate, consider initially

a fixed relay assignment and a 2-stage DF protocol withM relays as follows: in stage 1,

the source transmits on the direct link to D while M1 relays send a cooperative jamming

signal and M − M1 relays receive the source signal; in stage 2, the source does not

transmit while the M −M1 relays transmit to D and the M1 relays send a cooperative

jamming signal. The received signals at D and E are

Stage1 : yD,1 = hDxs +
M1∑
m=1

gD,mwmxc + nD, yE,1 = hExs +
M1∑
m=1

gE,mwmxc + nE,

Stage2 : yD,2 =
M−M1∑
m=M1+1

gD,mwm
xs
PS

+
M1∑
m=1

gD,mwmxc + nD,
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yE,2 =
M−M1∑
m=M1+1

gE,mwm
xs
PS

+
M1∑
m=1

gE,mwmxc + nE. (5.45)

Then the SNR’s at D and E are

ΓD =
PS|hD|2∑M1

m=1 |gD,mwm|2 + σ2
D

+

∑M−M1
m=M1+1 |gD,mwm|2∑M1
m=1 |gD,mwm|2 + σ2

D

,

ΓE =
PS|hE|2∑M1

m=1 |gE,mwm|2 + σ2
E

+

∑M−M1
m=M1+1 |gE,mwm|2∑M1
m=1 |gE,mwm|2 + σ2

E

. (5.46)

Define gD,c = [gD,1, · · · , gD,M1 ], gE,c = [gE,1, · · · , gE,M1 ], gD,r = [gD,M1+1, · · · , gD,M ]

and gE,r = [gE,M1+1, · · · , gE,M ]. Then the optimization problem may be written as

max
w

1

2
log

(
1 +

PS|hD|2

|w†gD,c|2 + σ2
D

+
|w†gD,r|2

|w†gD,c|2 + σ2
D

)

− 1

2
log

(
1 +

PS|hE|2

|w†gE,c|2 + σ2
E

+
|w†gE,r|2

|w†gE,c|2 + σ2
E

)
. (5.47)

We can see that this model will allow us to consider dynamic relay assignments. Note

that if we consider no CJ and M −M1 relays performing DF, we can easily obtain the

optimization problem for DF with gD,r,gE,r. It is interesting to find the solution to this

problem. We could also consider variants where AF is used instead of DF, and various

combinations of jamming and relaying for S, D and the relays.
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Chapter 6

Lattice Coding for the Gaussian

Wiretap Channel

In this chapter, we study structured codes and their construction for the physical layer

security problem, focusing on the wiretap channel as it is fundamental and the basic

building block in physical layer security. We recall that the coding scheme for the wire-

tap channel uses coset coding. Here our work, reported in [23], adopts an information-

theoretic approach to the lattice-based coset coding problem for the Gaussian wiretap

channel.

We begin with some needed lattice definitions, then introduce some useful con-

cepts concerning lattice coding for the Gaussian channel, before presenting our re-

search, where we derive achievable channel rates, equivocation rate, and error prob-

abilities for a nested lattice code. We conclude with a discussion on possible open

problems for future research. Lastly, all logarithms in this chapter are to base e (nat-

ural logarithms), and we will follow the convention of naming the channel from the

transmitter to the legitimate receiver as the main channel, and the channel from the

transmitter to eavesdropper as the eavesdropper’s channel.

6.1 Introduction

6.1.1 Channel Model

The Gaussian wiretap channel, studied in [70], has the following input-output relation-

ship for n channel uses:

Y = X + N and Z = X + Nz, (6.1)
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where X denotes the channel input, Y denotes the legitimate receiver’s received sig-

nal and Z denotes the eavesdropper’s received signal, N ∼ N (0, PNIn), Nz ∼

N (0, PNzIn), with PN < PNz , the noise is independent over the channel uses, and

the channel input is subject to the power constraint 1
n

∑n
i=1 Xi ≤ PX . The secrecy rate

for this channel is

Re = 1
2

log(1 + SNR)− 1
2

log(1 + SNRz) , C − Cz, (6.2)

where SNR = PX/PN , SNRz = PX/PNz , C and Cz are the capacities of the main and

eavesdropper’s channels, respectively.

The coding scheme to achieve the above secrecy rate is coset coding. We review

some related work on the wiretap channel using coset coding and lattice coding in the

wiretap scenario in the next section below.

6.1.2 Related Work

We make the distinction that practical codes offer explicit constructions, while struc-

tured codes are constructions using a information theoretic point of view, with good

properties usually as code dimensions are large. We also note that the wiretap channel

type II with BEC or BSC eavesdropper’s channel will be called type II-BEC or type

II-BSC; if both channels are of the same type, for example BEC or Gaussian, we will

call it the BEC or Gaussian wiretap channel.

Coset coding is a form of binning, and we know from Zamir et al [120] that nested

lattice codes can be used to implement binning.

Practical codes for the wiretap channel with coset encoding have been proposed

using LDPC codes by Thangaraj et al [110] for the type II-BEC, type II-BSC and

combinations of BEC and BSC main and eavesdropper’s channels. The more difficult

case is the one where the main and eavesdropper’s channels are BECs; subsequent work

by Rathi et al [103], Subramaniam et al [107] and Suresh et al [108] all further study

the BEC wiretap channel, using variations on LDPC codes.

Explicit polar codes were proposed and constructed by Hof and Shamai [60] and

Mahdavifar and Vardy [83] for the binary input symmetric channel (BSC wiretap chan-

nel).

For the Gaussian wiretap channel, Liu et al [76, 80] initially proposed using LDPC

codes for the type II Gaussian wiretap channel (noiseless main channel and Gaussian
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eavesdropper’s channel). Subsequently Klinc et al [64] used punctured LDPC codes

for the Gaussian wiretap channel, transmitting the message bits over the punctured

positions, so forcing the eavesdropper to operate at a bit error rate of > 0.49 and ob-

taining no information about the message. Then, explicit lattice code constructions

were proposed in the work of Oggier, Belfiore and Solé [7, 8, 97] for the Gaussian

wiretap channel; here lattice constructions with appropriate parameters where derived

for driving the error probability at the eavesdropper to 1.

Lattice codes have been proposed using an information theoretic (non-explicit)

point of view in providing security for the Gaussian interference channels in the work

of He and Yener [56, 57, 58, 59], and Agrawal and Vishwanath [3].

In this work, we take an information theoretic approach to the lattice-based coset

coding problem for the Gaussian wiretap channel. We derive achievable channel rates,

equivocation rate, and error probabilities for a nested lattice code. We note that our

work is very similar in principle to [7, 8, 97]; however these works used decoding bit

error probability as their criteria for secrecy and derived conditions for lattices to meet

it, while our focus is on the equivocation rate and capacities. We also note that our work

is different from [56, 57, 58, 59] and [3], as these papers consider a jamming signal at

the eavesdropper, but the jamming causes no interference at the legitimate receiver. The

authors of [3, 58, 56, 57, 59] also did not explicitly construct coarse and fine codes like

all the other work using LDPC, polar or lattice codes, including our own.

We also mention that there has also been some work done on concatenating an

error correcting code with a wiretap code, for binary channels, which has been reported

in Cassuto and Bandic [16].

Finally, we should note that nested lattice constructions were used to provide

watermarking security (see [100, 118] and the references within). Also, nested lat-

tice constructions have been used to show achievable rates in Gaussian relay networks

[93, 94, 114].

6.2 Lattice Preliminaries
In this section, we introduce notation and definitions for lattices. An extensive treat-

ment for lattices can be found in Zamir [121] and the reference by Conway and Sloane

[24].
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6.2.1 Lattice Definitions

Figure 6.1: Section of a lattice in R2 with hexagonal Voronoi region.

A lattice Λ is a discrete subgroup of the Euclidean space Rn with ordinary vector

addition. The lattice Λ can be specified in terms of a n×n real-valued generator matrix

G = [g1|g2| · · · |gn], for g1,g2, · · · ,gn ∈ Rn by

Λ = {λ = Gx : x ∈ Zn}. (6.3)

Alternatively a lattice is generated by taking all integer linear combinations of the basis

vectors.

Since a lattice is a subgroup of Rn under vector addition, we have some useful

group properties. A coset of Λ is a translated version of itself. Thus the set x + Λ is a

coset of Λ for any x ∈ Rn. Let Ω be any fundamental region of Λ. Every x ∈ Rn can

be uniquely written as

x = λ + e, λ ∈ Λ, e ∈ Ω, Rn = Λ + Ω. (6.4)

The fundamental region is a building block which is repeated many times to fill the

whole lattice space with one lattice point in each block. The fundamental Voronoi

region V , with volume V , is the set of minimum Euclidean norm coset representatives

of Λ. That is, V is the set of points in Rn closest to the zero vector. The volume is

defined as the inverse density of the lattice points in space. Then every x ∈ Rn can be

uniquely written as

x = λ + r, λ ∈ Λ, r ∈ V , Rn = Λ + V =
⋃
x∈V

(Λ + x). (6.5)
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A section of a lattice ∈ R2 is shown in Figure 6.1. The fundamental region of this lat-

tice, each containing a lattice point depicted as a black dot, is marked out as hexagons.

We see that the hexagons tile R2. For an extensive treatment on the group properties of

a lattice and coset codes in general, we can refer to the papers by Forney [42],[43], and

Forney and Wei [44], [45].

From this point on, we will focus our attention on the fundamental region V instead

of the more general Ω. The quantizer associated with V is a map that sends a point x to

the nearest lattice point

QV(x) = λ, if x ∈ λ + V . (6.6)

The nearest neighbour quantizer is also stated as the map that sends x to the nearest

lattice point in Euclidean distance

QV(x) = arg min
λ∈Λ
‖x− λ‖ , (6.7)

where ‖.‖ denotes the Euclidean norm. The modulo-Λ operation associated with V is

x modVΛ , x modΛ = x−QV(x) ∈ V , ∀x ∈ Rn. (6.8)

The modulo-Λ operation satisfies

[x + y] mod Λ = [[x] mod Λ + y ]mod Λ (6.9)

QV(x)modΛ = [QV(xmodΛ)] mod Λ. (6.10)

Let Ball(r) denote an n-dimensional ball with radius r, with volume Vol(Ball(r)):

Ball(r) , {x : ‖x‖ ≤ r, x ∈ Rn}. (6.11)

The covering radius Ru of a lattice is the smallest real number so that Rn ⊆

Λ + Ball (Ru). The effective radius Rl of a lattice is the real number that satisfies

Vol(Ball(r)) = V , where V is the fundamental volume of the lattice.

The second moment per dimension of Λ associated with V is the second moment

per dimension of a random vector U that is uniformly distributed over V

σ2(V) =
1

n
E ‖U‖2 =

1

n

∫
V ‖x‖

2 dx

V
. (6.12)

The normalized second moment of Λ with minimized second moment σ2(V) is given

by

G(Λ) ,
σ2(V)

V 2/n
=

1

n

∫
V ‖x‖

2 dx

V 1+2/n
. (6.13)
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Figure 6.2: Nested lattice chain Λ3 ⊆ Λ2 ⊆ Λ1 in R2, with hexagonal Voronoi region.

Nested lattices: A lattice Λ2 is nested in another lattice Λ1 if Λ2 ⊆ Λ1. Λ1 is referred

to as the fine lattice and Λ2 as the coarse lattice. In general, we have a nested lattice

chain ΛL ⊆ ΛL−1 ⊆ · · · ⊆ Λ1. A section of the nested lattice chain Λ3 ⊆ Λ2 ⊆ Λ1

is shown in Figure 6.2. The solid black dots are the elements of Λ1, black circles are

elements of Λ2, and grey circles are elements of Λ3. For the central point, the Voronoi

regions of the lattices are shown. The region V1 is in white, V2 is shaded in light grey

and includes V1, and V3 is in dark grey and includes both V2 and V1.

6.2.2 Goodness of Lattices

We use the following definitions of asymptotic goodness of lattices [121]. The ex-

istence of a lattice with simultaneous goodness in all the aspects defined below was

shown in Erez et al [39].
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Good for quantization : A sequence of lattices Λ(n) ⊂ Rn is said to be good for

mean-square-error (MSE) quantization if G(Λ(n))→ 1
2πe

as n→∞.

Rogers-good : Let Ru and Rl be the covering and effective radii of Λ. Then, 1 ≤(
Ru
Rl

)n
< cn(log n)a for constants c, a, which implies that 1

n
log(Ru/Rl)

n → 0 as

n→∞.

Poltyrev-good : For the Gaussian channel Y = X + Nw, for any σ2 < σ2(V), with

Nw a Gaussian vector with components i.i.d. ∼ N (0, σ2), a sequence of lattices Λ(n)

is Poltyrev-good, if

Pe = Pr{Nw /∈ V} < e−n[EP (µ)−on(1)], (6.14)

where on(1) → 0 as n → ∞, µ = V 2/n/(2πeσ2) is the normalised volume to noise

ratio (VNR), and EP (µ) is the Poltyrev exponent [38]

EP (µ) =


Er
P (µ) = 1

2
[(µ− 1)− log µ] 1 < µ ≤ 2,

Er
P (µ) = 1

2
log eµ

4
2 ≤ µ ≤ 4,

Ex
P (µ) = µ

8
µ ≥ 4,

(6.15)

assuming ML decoding and an unconstrained AWGN channel, that is, no power con-

straint on the channel input, which is any point of the lattice Λ. Er
P (µ) and Ex

P (µ) are

the random coding and expurgated Poltyrev exponents, respectively. They correspond

to Gallager’s random coding and expurgated error exponents for the DMC reviewed in

Section 3.1.2. We shall be interested in the random coding Poltyrev exponent Er
P (µ) in

particular.

For the power constrained Gaussian channel, the random coding error exponent

Er
c (µ, SNR) (for Gaussian inputs) is given in [49, Sect. 7.4]. If we compare Er

P (µ)

with Er
c (µ, SNR) (refer to [38], for example), we see that Er

P (µ) is a lower bound for

Er
c (µ, SNR). As the SNR increases, Er

c (µ, SNR)→ Er
P (µ). We note that Er

P (µ) does

not depend on SNR.

For µ > 1, the error probability goes to 0 exponentially in n. Thus µ = 1 has the

same significance as ‘capacity’. We shall see later in the discussion of lattice coding

for Gaussian channels in Section 6.3.1 how µ is related to the channel capacity and

transmission rate. If the sequence is simultaneously quantization good as well, µ =

σ2(V)/σ2.
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AWGN-good : For the same Gaussian channel and ML decoding above, the unnor-

malized VNR of a sequence of lattices Λ(n) is µ∗(Λ(n)) = V 2/n/σ2. The sequence is

AWGN-good if limn→∞ µ
∗(Λ(n)) = 2πe, 0 < Pe < 1.

6.3 Lattice Coding for Gaussian Channels
We review concepts in lattice coding for Gaussian channels from Erez and Zamir [38]

which will be useful for formulating and analyzing our coding scheme for the Gaussian

wiretap channel.

6.3.1 Modulo Lattice Additive Noise Channel

To achieve the channel capacity using lattice codes, the additive white Gaussian noise

(AWGN) channel is transformed into the modulo lattice additive noise (MLAN) chan-

nel. Further useful information on the MLAN channel can be found in Forney et al [46].

The following lemma, called the crypto lemma, is useful in the channel transformation

and subsequent analysis.

Lemma 7. “Crypto lemma” (Forney [47], Zamir and Feder [119]): For a fundamental

region Ω and any random variable (r.v.) X ∈ Ω, which is statistically independent of

r.v. U uniformly distributed over Ω, the sum Y = (X + U)modΩ Λ is uniformly

distributed over Ω and statistically independent of X.

Lattice points transmitted over the AWGN channel should be bounded; the bound-

ing region is known as the shaping region. According to Erez and Zamir [38], for the

power constrained channel such as the AWGN channel, the best choice for the shaping

region is the Voronoi region V . After performing the MLAN channel transformation

sketched out below, we can obtain the normal AWGN channel capacity by using an

input c that is uniformly distributed over V and constrained to be within V . The MLAN

channel transformation is carried out with the aid of a “dither” r.v. U that is also uni-

formly distributed over the Voronoi region V . The next step in lattice coding is to nest

Λ in Λ1, so that Λ ⊆ Λ1. Then, we replace c, the input that is uniformly distributed over

V , by an element of the fine lattice Λ1 falling in V , that is the fine lattice with respect to

the coarse lattice Λ. It is shown by Erez and Zamir [38] that when we now use points

from the fine lattice as codewords, the normal AWGN channel capacity is achieved, in

the sense that the error exponent in the probability of error is lower bounded by the
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Poltyrev exponent (6.15). In other words, for rates below and approaching the nor-

mal AWGN capacity, the error probability goes exponentially to zero with the error

exponent lower bounded by the Poltyrev exponent.

We now show the transformation into the MLAN channel. To begin, let us recall

that the block of n channel uses for the AWGN channel is Y = X + N. The input

alphabet is a fundamental region Ω of Λ. Ω is called the shaping region and Λ is called

the shaping lattice. Given c,U ∈ Ω, the transmitter output is

X = [c−U]modΩΛ. (6.16)

At the receiver, the received signal Y = X + N is multiplied by 0 ≤ α ≤ 1 and dither

U is added. We have

Y′ = [α(X + N) + U]modΩΛ. (6.17)

Then we have the following lemma:

Lemma 8. “Inflated lattice lemma” (Erez, Shamai, Zamir [39]): The channel from c

to Y is equivalent in distribution to

Y′ = [c + N′]modΩΛ, (6.18)

where N′ has distribution

N′ = [αN− (1− α)U]modΩΛ, (6.19)

with r.v. U ∼ Unif(Ω) and statistically independent of N, and the term −(1− α)U is

called the self-noise.

Voronoi shaping region for AWGN channel: According to Erez and Zamir [38], for

the power constrained channel such as the AWGN channel, the best choice for shaping

region Ω is the Voronoi region V , in which case we now have

N′ = [(1− α)U + αN] mod Λ, (6.20)

since V = −V and we use mod Λ to denote modVΛ. To satisfy the power constraint,

scale the lattice so that the second moment per dimension is, from (6.12),

σ2(V) =
1

n
E ‖U‖2 =

1

n

∫
V ‖x‖

2 dx

V
= PX , (6.21)

from which, by the crypto lemma, we have the average transmitted power for any c is

1

n
E ‖X‖2 =

1

n
E ‖U‖2 = PX . (6.22)
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Capacity of the MLAN channel using uniform random code over V: If we choose

C ∼ Unif(V), α = PX
PX+PN

= SNR
1+SNR

and a sequence of lattices Λ(n) that are “good

for quantization” in the sense that limn→∞G(Λ(n)) → 1
2πe

, the capacity of the MLAN

channel approaches the capacity of the original AWGN channel C for n sufficiently

large, and is given by [38, Thm. 1],

lim
n→∞

1

n
I(C; Y′) =

1

2
log(1 + SNR). (6.23)

When we use the specified α above, the channel has noise variance given by αPN and

now the normalised VNR, which is the argument of the Poltyrev exponent in (6.15)

is given by µ = e2(C−R). When µ = 1, we have R = C = 1
2

log(1 + SNR); so µ

approaches 1 from above, while R→ C.

6.3.2 Nested Lattice Coding for the MLAN Channel

Here we describe the nested lattice coding that can achieve capacity for the MLAN

channel, following Erez and Zamir [38]; consequently we conclude that we can achieve

the normal AWGN channel capacity using nested lattice codes. The nested lattice struc-

ture is as follows. The coarse lattice Λ2 is nested in the fine lattice Λ1 if Λ2 ⊆ Λ1. To

achieve capacity for the MLAN channel, we require that the coarse lattice Λ2 is cho-

sen so that the average power per dimension is PX and its normalized second moment

approaches that of a sphere, that is, the the coarse lattice Λ2 satisfies the conditions for

lattice Λ in [38, Thm. 1]. The fine lattice Λ1 is chosen so that it is good for channel

coding in the sense that codewords from Λ1 are uniform over V2, so that the optimum

random coding error exponent for the MLAN channel (Poltyrev exponent) is achieved

[38, Sect.s VI-VIII].

The set

C = {Λ1mod Λ2} , {Λ1 ∩ V2} (6.24)

contains the coset leaders of Λ2 relative to Λ1. Each coset of Λ2 relative to Λ1 is given

by

Λcm = cm + Λ2, for each cm ∈ C, m ∈ {1, · · · , |C|}. (6.25)

The set of all cosets is denoted by Λ1/Λ2, and we also have⋃
cm∈C

Λcm = Λ1. (6.26)
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The coding rate of the nested lattice code is

R =
1

n
log |C| = 1

n
log |Λ1/Λ2| =

1

n
log

V2

V1

. (6.27)

Lastly, nested lattice coding can achieve the normal AWGN channel capacity if we

use Euclidean lattice decoding with Euclidean quantization cell V1, or QV1(.) as the

decoder [38, Thm. 3]. In that case the decoding error probability Pe → 0 as n→∞.

Thus we may write the encoding and decoding process as follows:

1. Message selection: Assign a message cm to each member of the set of coset

leaders C = {Λ1modΛ2}.

2. Encoding: Let dither U ∼ Unif(V2). The encoder sends

X = [cm −U] mod Λ2. (6.28)

By the crypto lemma, X is independent of cm and the average transmitted power

is PX .

3. Decoding: By the inflated lattice lemma (Lemma 8), the channel from the trans-

mitted codeword cm to just before the decoder is Y′ = [cm + N′]modΛ2, where

N′ = [(1 − α)U + αN]modΛ2. The decoder is the minimum distance decoder

which has decoding metric for each codeword cm over its coset cm + Λ2 as

min
λ2∈Λ2

||y′ − cm − λ2||2. (6.29)

According to [38], this is equivalent to

ĉm = QV1(αY + U)mod Λ2 = QV1([cm + N′]mod Λ2)mod Λ2. (6.30)

The decoding error probability for any codeword cm is then

Pe = Pr{N′ /∈ V1}, (6.31)

by the fact that Λ2 is nested in Λ1 and the channel is modulo additive [38].

To facilitate a better understanding of the subsequent code construction and analy-

sis for the wiretap channel, we present some more details regarding the lattice decoder

(6.30) and Pe in (6.31) in Appendices D.1 and D.2. In particular, we can show that the
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lattice decoder, instead of taking the somewhat mysterious form (6.30) which is tied up

in quantization theory, actually takes on the much more intuitive form

ĉm = arg min
m∈{1,...,M}

(
min

λ2∈Λ2

‖y′ − (cm + λ2)‖
)
, (6.32)

which enables us to see immediately that decoding is to the coset specified by cm + Λ2.

Also, we outline essential steps in the analysis of the probability of error in Appendix

D.2 that are helpful in our later analysis.

6.4 Nested Lattice Coding for the Gaussian Wiretap

Channel
In this section we present our coding scheme for the Gaussian wiretap channel and

propose decoding methods.

6.4.1 Coding and Proposed Decoding

Consider the nested lattices Λ3 ⊂ Λ2 ⊂ Λ1. The encoding follows a 2-level nested cod-

ing scheme as follows. Firstly, associate a message m ∈ {1, ..., 2nRe} with a coset via

its coset leader. This is the first level nested lattice code to provide secrecy. Secondly,

send a random member of the coset, and constrain this random member to be the set of

coset leaders of the shaping lattice for the AWGN channel.

Let us define the following codebooks:

1. The set of coset leaders of Λ2 relative to Λ1 is

C = {Λ1mod Λ2} , {Λ1 ∩ V2}. (6.33)

2. The set of coset leaders of Λ3 relative to Λ2 is

C ′ = {Λ2mod Λ3} , {Λ2 ∩ V3}. (6.34)

Accordingly, we have:

(1) Message selection and encoding: Associate each message with a member of the

set of coset leaders C. Thus we have cm ∈ C, Λcm = cm + Λ2 is a coset relative to

Λ1 and

Λ1 =
⋃

cm∈C
Λcm =

⋃
cm∈C

cm + Λ2 =
|Λ1/Λ2|⋃
m=1

cm + Λ2. (6.35)
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The order of the partition Λ1/Λ2 is |Λ1/Λ2| = V2/V1, and so {Λ1 ∩ V2} has V2/V1

cosets. The rate of the secret message is Re = 1
n

log |Λ1/Λ2| = 1
n

log V2

V1
.

We now send a uniformly selected random member of Λcm . Effectively, we send a

uniformly selected random member of Λ2. Let this random member of of Λ2 be al.

This al plays the role of random bits or excess rate that the wiretapper is allowed

to decode at its maximum rate, so protecting the actual message carried in the cm.

Then we can write the transmitted point at this stage

bm,l = cm + al, bm,l ∈ Λ1, al ∈ Λ2, cm ∈ [Λ1/Λ2] , (6.36)

where al is a uniformly random member of Λ2. That is, for each cm, translate it by

al ∈ Λ2. Now at this stage, the al and thus the transmitted point is an unbounded

member of Λ2. This is the same as the work of Belfiore and Oggier [7].

To achieve capacity over the AWGN channel, the bm,l have to be sent using nested

lattice coding. Now as we take the cm to be an ‘indexing’ to the particular coset

cm + Λ2, the actual term in bm,l to ‘undergo’ nested lattice coding is the al. Thus

we associate each al with a member of the set of coset leaders C ′, from which we

have am ∈ C ′, Λal = al + Λ3 is a coset relative to Λ2 and the al are mapped to the

|Λ2/Λ3| = V3/V2 cosets. We have

Λ2 =
⋃

al∈C′
Λal =

⋃
al∈C′

al + Λ3 =
|Λ2/Λ3|⋃
l=1

al + Λ3, (6.37)

Λ1 =
|Λ1/Λ2|⋃
m=1

|Λ2/Λ3|⋃
l=1

cm + al + Λ3. (6.38)

The excess rate, or the rate over the eavesdropper’s channel is R′ =

1
n

log |Λ2/Λ3| = 1
n

log V3

V2
. The overall rate, over the main channel, is then

Re +R′ = 1
n

log V3

V1
. A point in Λ1 may now be written as

λ1 = cm + al + λ3, λ1 ∈ Λ1, cm ∈ [Λ1/Λ2] , al ∈ [Λ2/Λ3] , λ3 ∈ Λ3.

(6.39)

We can also write

λ1 = cm + al + λ3, λ1 ∈ Λ1, cm + al ∈ [Λ1/Λ3] . (6.40)

The partitioning of Λ1 of may be written as

Λ1 = [Λ1/Λ2] + [Λ2/Λ3] + Λ3 = [Λ1/Λ3] + Λ3. (6.41)
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(2) Transmission: For transmission, we add dither, defined as U ∼ Unif(V3), and

apply the mod-Λ3 map. We note the dither is known to all parties. Then the encoder

sends

X = [λ1 −U]mod Λ3 = [cm + al −U]mod Λ3. (6.42)

The lattice is scaled so that the second moment of V3 is σ2(V3) = PX so that by

the crypto lemma 1
n
E||X||2 = PX .

(3) Decoding: By the inflated lattice lemma and modulo-lattice channel transformation

of Erez and Zamir [38], the channel from the transmitted codeword bm to just

before the decoder for the legitimate receiver is

Y′ = [cm + al + N′]modΛ3, (6.43)

where N′ = [(1−α)U+αN]modΛ3. For the eavesdropper, it is, correspondingly,

Y′z = [cm + al + N′z]modΛ3, (6.44)

where N′z = [(1−αz)U+αzNz]modΛ3, N ∼ N (0, PN .In), Nz ∼ N (0, PNz .In),

and PN < PNz .

In the error probability analysis we will distinguish between the error probability

at the legitimate receiver, which has to decode the pair (cm, al), and the error prob-

ability at the eavesdropper, which has to decode al given cm. This is the usual way

to show achievability of the code rates, see Thangaraj et al [110] or Liang et al [73].

However, we note that we can also consider the eavesdropper decoding of (cm, al),

and we will have to show that, for an error probability lower bound, Pe → 1.

(a) Legitimate receiver

At the legitimate receiver, there are two possible modes of decoding and de-

termining the decoding error probability. In the first mode, we assume that

the receiver decodes cm, then al, given cm, and so we determine the error

probability in decoding cm, then the error probability in decoding al, given

cm. We will denote the first mode the staged decoding mode. In the second

mode, we assume that the decoder jointly decodes (cm, al) together. Here we

determine the error probability in jointly decoding (cm, al). We denote the

second mode the joint decoding mode.
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i. Staged decoding mode

We first look at the first mode and note that V1 ⊂ V2 ⊂ V3. All messages

are associated with coset leaders which are contained in V2, translated by

an element of V3, while each message is contained in V1. Overall, each

message is contained in V3. Thus the decoding metric at the legitimate

receiver is

µ(y) = min
λ3∈Λ3

||y − λ3||2, (6.45)

giving the decoding operation as

ĉm = QV1(Y′) mod Λ3, (6.46)

and the decoding error probability for any codeword cm is the probability

of error over the coset Λ2 + cm,

Pe,m = Pr

N′ /∈ V3/V2⋃
l=1

V1 + al

 . (6.47)

Alternatively, noting that al ∈ Λ3 ⊂ Λ2, we can also use the decoding

metric

µ′(y) = min
λ2∈Λ2

||y − λ2||2, (6.48)

which gives the decoding operation as

ĉm = QV1(Y′) mod Λ2

(a)
= QV1(Y′mod Λ2) mod Λ2

= QV1(([cm + al + N′]modΛ3) mod Λ2) mod Λ2

(b)
= QV1([cm + al + N′]mod Λ2) mod Λ2

(c)
= QV1([cm + N′]mod Λ2) mod Λ2

= QV1(cm + N′mod Λ2) mod Λ2

= QV1(cm + N†) mod Λ2 (6.49)

where N† = N′modΛ2 = [(1 − α)U′ + αN]modΛ2, where U′ ∼

Unif(V2), and (a) follows from the property of the mod-Λ2 operation,
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(b) is due to Λ3 ⊂ Λ2, and (c) is because al ∈ Λ3. The noise is evaluated

as

N† = N′modΛ2 = ([(1− α)U + αN]modΛ3) modΛ2

= [(1− α)UmodΛ2 + αN]modΛ2

= [(1− α)U′ + αN]modΛ2. (6.50)

We need the distribution of U′ = UmodΛ2, where U ∼ Unif(V3). From

the Corollary to Lemma 2 in a recent paper by Zamir [122] we have that

U′ ∼ Unif(V2), given that U ∼ Unif(V3) and Λ3 ⊂ Λ2.

Then the decoding error probability for any codeword cm is now

Pe,m = Pr
[
N† /∈ V1

]
. (6.51)

A question to answer is whether the two decoding methods using the

metrics (6.45) and (6.48) above obtain the same cm. We see that in (6.45),

since we have the chain Λ3 ⊂ Λ2 ⊂ Λ1, all of λ3 ∈ Λ3 are also ∈ Λ2.

Thus it appears that the two decoders using the metrics (6.45) and (6.48)

are equivalent and will produce the same cm.

Next, to obtain âl, subtract the ĉm from Y′ and use the decoder

âl = QV2(Y′ − ĉm) mod Λ3

= QV2(al + (cm − ĉm)modΛ3 + N′) mod Λ3, (6.52)

from which the probability of decoding error is

Pe,l = Pr [((cm − ĉm)modΛ3 + N′) /∈ V2] . (6.53)

By the union bound, the overall probability of decoding error for the

staged decoder is

Pe,l,m ≤ Pe,m + Pe,l. (6.54)

If we let the estimated ĉm ∈ Λ3 and by the fact that Λ3 is centro-

symmetric, we have (cm − ĉm)modΛ3 = (cm + ĉm)modΛ3 ∈ Λ3. A

possible future work is to see what is the distribution of this term and if

it can be included into the noise term N′.
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ii. Joint decoding mode

Here, we assume that the decoder jointly decodes (cm, al) together. To

determine the decision region, we note that cm ∈ V1 is translated by

al ∈ V2. This can be seen as an arbitrary V1 being moved into the larger

region V2, giving an overall decision region V1 ∩ V2 = V1. The cm + al

is enclosed by V3. The decoder can be expressed as

(ĉm, âl) = QV1∩V2(Y′) mod Λ3, (6.55)

and the joint decoding error probability is then

Pe,l,m = Pr [N′ /∈ V1 ∩ V2] = Pr [N′ /∈ V1] . (6.56)

(b) Eavesdropper decoding

For the eavesdropper, we assume that cm is known, and its decoder then at-

tempts to decode al ∈ V2. The decoder used is

âl = QV2(Y′z) mod Λ3, (6.57)

with decoding error probability

P
(z)
e,l = Pr [N′z /∈ V2] . (6.58)

A couple of alternatives for the eavesdropper are:

i. Staged decoding, with decoders

ĉm = QV1(cm + N†z) mod Λ2, (6.59)

âl = QV2(al + (cm − ĉm)modΛ3 + N′z) mod Λ3, (6.60)

where N†z = N′zmodΛ2 = [(1 − α)U′ + αNz]modΛ2. The associated

error probabilities are

P (z)
e,m = Pr

[
N†z /∈ V1

]
, (6.61)

P
(z)
e,l = Pr [((cm − ĉm)modΛ3 + N′z) /∈ V2] , (6.62)

and we should show that P (z)
e,m → 1 and P (z)

e,l → 0 as n→∞.
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ii. Joint decoding, so that the decoder is

(ĉm, âl) = QV1∩V2(Y′z) mod Λ3, (6.63)

and the joint decoding error probability is then

P
(z)
e,l,m = Pr [N′z /∈ V1 ∩ V2] = Pr [N′z /∈ V1] . (6.64)

We should then show that P (z)
e,l,m → 1 as n→∞.

While the two alternative decoders for the eavesdropper are arguably

‘stronger’ than the first one in (6.57), we will assume the decoder in (6.57)

for our analysis; the other two decoders will be left for future work.

In the next two sections, we show our main result, which is formally stated by the

following theorem, where C and Cz denote the capacities of the main and eavesdrop-

per’s channels, respectively.

Theorem 18. For our nested lattice coding scheme described above, Pe,l,m, P
(z)
e,l → 0,

as n→∞ for rates R and R′ approaching C and Cz, while the construction achieves

C and Cz on the main and eavesdropper’s channels, respectively. The equivocation

rate limn→∞Re = 1
n
H(M |Z) = C − Cz satisfies the secrecy rate for the Gaussian

wiretap channel and the secrecy constraint limn→∞
1
n
I(M ; Z) = 0 is achieved.

In other words, we shall see that we can meet the important criteria of the code

being information theoretically secure, as in Theorem 12.

6.4.2 Rates and Equivocation

Let C,A be the r.v.’s uniformly distributed over codebooks C, C ′ by construction, of

which the realizations are cm and al, respectively. The equivalent channels are (6.43)

and (6.44) with cm and al replaced by C and A. For notational convenience, we write

[C + A] mod Λ3 as C⊕A.

Channel Rates

The main channel input C⊕A ∈ [Λ1/Λ3], and has rate

R =
1

n
log

V3

V1

=
1

2
log

V
2
n

3

2πe
− 1

2
log

V
2
n

1

2πe
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(a)
=

1

2
log

PX
2πeG(Λ3)

− 1

2
log

V
2
n

1

2πe

=
1

2
logPX −

1

2
log 2πeG(Λ3)− 1

2
log

V
2
n

1

2πe
, (6.65)

where (a) is due to the fact that G(Λ3) = σ2(V3)/V
2
n

3 and σ2(V3) = PX . Consider

the sequence of lattices Λ
(n)
3 , good for quantization so that limn→∞G(Λ

(n)
3 ) = 1

2πe
,

and the AWGN good lattices Λ
(n)
1 . As such, from Forney [47, Sect. 2.4], we have

log
V

2
n

1

2πe
→ log 1

n
E [‖N′′‖2] as n → ∞. Using the minimum MSE (MMSE) scaling

α = PX
PX+PN

, we get

1

n
E
[
‖N′′‖2

]
=

1

n
E
[
‖(1− α)U + αN‖2

]
= αPN . (6.66)

Then, from (6.65), we have

R = 1
2

log(1 + SNR) = C, (6.67)

as n → ∞. For the eavesdropper’s channel, the input cm ⊕A ∈ [Λ2/Λ3], and using a

similar calculation the rate is

R′ = 1
2

log(1 + SNRz) = Cz, (6.68)

as n → ∞. This time we use the sequence of AWGN good lattices Λ
(n)
2 , and αz =

PX
PX+PNz

. In summary, we need the sequences Λ
(n)
1 , Λ

(n)
2 to be AWGN good, and the

sequence Λ
(n)
3 good for quantization.

Calculation of the Equivocation Rate

The equivocation rate satisfies limn→∞Re = 1
n
H(M |Z). The perfect secrecy con-

straint is given by limn→∞
1
n
I(M ; Z) → 0, under which the eavesdropper gets no in-

formation about the message.

For the equivocation of the message M ,

H(M |Z) = H(M)− I(M ; Z). (6.69)

We now use the expansions

I(M,X; Z) = I(M ; Z) + I(X; Z|M) (6.70)

= I(X; Z) + I(M ; Z|X), (6.71)
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to give I(M ; Z) = I(X; Z) − I(X; Z|M) since I(M ; Z|X) = 0 as M → X → Z

forms a Markov chain. Substituting this into (6.69), we obtain

H(M |Z) = H(M)− I(X; Z) + I(X; Z|M)

(a)

≥ H(M)− Cz + I(C,A; Z|M)

= H(M)− Cz +H(C,A|M)−H(C,A|Z,M)

(b)
= log V2

V1
− Cz + log V3

V2
−H(C,A|Z,M), (6.72)

where (a) is by I(X; Z) ≤ Cz, since Cz is the maximum possible rate of the wiretap-

per’s channel, and because there is a one-to-one correspondence between (C,A) and

X so that I(X; Z|M) = I(C,A; Z|M), and (b) is due to H(M) = log(V2/V1) and

H(C,A|M) = log(V3/V2).

For the last term in (6.72), we now carry out an argument using one similar to

Fano’s inequality for the pair (C,A) and Z. The last term in (6.72) is the entropy

of the codeword conditioned on the coset C + Λ2 and the eavesdropper’s observation.

This is related to the eavesdropper’s decoding error probability P (z)
e,l . Define the random

variable χ as

χ =

 1 if ψ(Z) 6= (C,A),

0 if ψ(Z) = (C,A),
(6.73)

where ψ denotes the eavesdropper’s decoding process. We note that we can use Z

instead of Y′z in the definition of the decoding process above because the decoding

process includes the MLAN transformation. Then we have

H(C,A|M,Z)

= H(χ,C,A|M,Z)−H(χ|C,A,M,Z)

(a)
= H(χ|M,Z) +H(C,A|χ,M,Z)

(b)

≤ H(χ|M) +H(C,A|χ,M,Z)

=
V2/V1∑
m=1

Pr[M = m] [H(χ|M = m) + Pr[χ = 0|M = m]H(C,A|χ = 0,M = m,Z)

+ Pr[χ = 1|M = m]H(C,A|χ = 1,M = m,Z)]

(c)

≤
V2/V1∑
m=1

Pr[M = m]
[
H2(P

(z)
e,l ) + (1− P (z)

e,l )H(C,A|χ = 0,M = m,Z)

+P
(z)
e,l H(C,A|χ = 1,M = m,Z)

]
(6.74)
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where (a) is because χ is determined by C,A,M,Z; (b) is because conditioning re-

duces entropy; (c) is by letting P (z)
e,l = Pr[χ = 1|M = m] and since H(χ|M = m) ≤

H(χ) ≤ H2(P
(z)
e,l ). Now we have

H(C,A|χ = 0,M = m,Z) = 0 (6.75)

as χ = 0 means that the wiretapper is able to decode the pair (C,A) with M = m

known with probability = 1, thus there is no more uncertainty. Also we have

H(C,A|χ = 1,M = m,Z) ≤ log(V3/V2). (6.76)

Substituting into (6.74) above, and using the facts that P (z)
e,l is independent of the

message and that Pr[M = m] = V1

V2
(since M is uniformly distributed) we have,

H(C,A|M,Z) ≤ H2(P
(z)
e,l ) + P

(z)
e,l log(V3/V2) ≤ nε, (6.77)

where ε→ 0 as n→∞ as long as P (z)
e,l → 0 as n→∞.

Substituting this into (6.72) and dividing by n, we get the equivocation rate

Re = lim
n→∞

1
n
H(M |Z) = 1

n
log(V2/V1) = C − Cz, (6.78)

which is the equivocation rate of the Gaussian wiretap channel in [70]. In fact this is

the secrecy capacity of the Gaussian wiretap channel. Finally, it is easy to see that

limn→∞
1
n
I(M ; Z) = lim

n→∞

[
H(M)− 1

n
H(M |Z)

]
(6.79)

= limn→∞
1
n

log(V2/V1)− (C − Cz) = 0, (6.80)

and the secrecy constraint can be achieved.

Calculations in this section have used codewords from codebooks C and C ′. Later

we see a nested lattice construction exists with small decoding error probabilities as

n → ∞ for the main and eavesdropper’s channels at rates R → C and R′ → Cz. We

then conclude that, using our coding scheme, we can achieve the capacities for the main

and eavesdropper’s channel, the secrecy rate of the Gaussian wiretap channel (6.2), and

satisfy the security constraint.

6.4.3 Code Construction

The construction follows the method in Nazer and Gastpar [94]. The method uses a

coarse lattice and then forms successively fine lattices, taking into account the nesting

required.1.
1Here, the coarse lattice to start off the construction is still undetermined explicitly.
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We begin with a coarse lattice Λ3 that is simultaneously covering, quantization,

Rogers and Poltyrev good. The existence of such a lattice is shown in [39]. Let Λ3

have the generator matrix G′, so that Λ3 = G′Zn. The fine lattices are constructed in

the order of Λ1 first, then Λ2.

Let k1, k2, n, p be integers such that k2 < k1 ≤ n, and p is a prime. To construct

Λ1, we perform the following:

1. Let G1 be a k1 × n generator matrix with elements ∼ Unif(0, 1, . . . , p− 1), that

is, uniform over Zp.

2. Define discrete codebook C1 = {x = yG1 : y ∈ Zk1
p }.

3. Lift C1 to Rn to form the lattice Λ′1 = p−1C1 + Zn.

4. The fine lattice is given by Λ1 = G′Λ′1.

To construct Λ2, we do the following:

1. Let G2 be the k2 × n generator matrix which is the first k2 rows of G1.

2. Define discrete codebook C2 = {x = yG2 : y ∈ Zk2
p }.

3. Lift C2 to Rn to form the lattice Λ′2 = p−1C2 + Zn.

4. The fine lattice is given by Λ2 = G′Λ′2.

In C1, C2, x ∈ Zn
p . By construction, Zn ⊂ Λ′1 and Zn ⊂ Λ′2. We have C2 ⊂ C1

since all elements of C2 can be found in C1 as G2 ⊂ G1. This means that we have

Λ3 ⊂ Λ2 ⊂ Λ1. If G1,G2 are of full rank, then the number of fine lattice points in the

Voronoi region of the coarse lattice is |Λi ∩ V3| = pki , i = 1, 2. The probability that

G1,G2 are not of full rank is given by the union bound

Pr

[
2⋃
i=1

{rank(Gi) < ki}
]
≤

2∑
i=1

∑
y 6=0,y∈Zkip

Pr [yGi = 0]

≤ p−n(pk1 + pk2 − 2), (6.81)

which→ 0 as n − k1 and n− k2 → ∞. The use of the restriction on n and p, n
p
→ 0,

is seen later in the error probability analysis.
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The construction described above gives nested lattices Λ3 ⊂ Λ2 ⊂ Λ1 all Rogers

and Poltyrev good [68]. Furthermore, from Krithivasan and Pradhan [68], the points of

the lattices Λ1,Λ2 contained in V3, denoted Λi(j), j = 0, 1, . . . , pki − 1, i = 1, 2 satisfy

the following properties:

1. Λi(j) is equally likely to be any of the points in {p−1Λ3 ∩ V3}.

2. For any j 6= k, [Λi(j)−Λi(k)] mod Λ3 is uniformly distributed over {p−1Λ3∩V3}.

6.4.4 Error Analysis

We analyze the error probability and show that the probabilities of error are small for the

main and eavesdropper’s channels for rates R → C and R′ → Cz, respectively, using

Euclidean lattice decoding. The legitimate receiver performs joint decoding of (cm, al),

while the eavesdropper decodes al, given cm. The lattice Λ3 is Rogers, Poltyrev, quan-

tization good. Recall that α = PX
PX+PN

and αz = PX
PX+PNz

. Following [38], we make

some necessary definitions.

• Let σ2 be the second moment of a ball containing V3, so that σ2 > PX .

• Let Z1 ∼ N (0, σ2In) and Z ∼ N (0, αPN .In); for the main channel Zm =

N (0, αPN .In), Z∗m = (1 − α)Z1 + αN; for the eavesdropper’s channel, Zz =

N (0, αzPNz .In), Z∗z = (1− αz)Z1 + αzNz.

• G∗n denotes the normalized second moment of an n-dimensional sphere, G∗n →
1

2πe
as n→∞.

• Define

ε1(Λ3) , log
(
Ru

Rl

)
+

1

2
log 2πeG∗n +

1

n
, (6.82)

ε2(Λ3) , log
(
Ru

Rl

)
+

1

2
log 2πeG(Λ3). (6.83)

For Λ3 both Rogers good and quantization good, ε1(Λ3), ε2(Λ3)→ 0 as n→∞.

For the main channel, the random coding Poltyrev exponent may be expressed in terms

of the channel capacity and transmission rate as

Er
P (µ) = max

0<ρ≤1
ρ
[
1

2
log 2πePX − hρ̄(Zm)−R

]
, (6.84)
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where µ = e2(C−R), Zm ∼ N (0, αPN), ρ̄ = 1/(1+ρ) and hρ̄(Zm) is the Rényi entropy

of order ρ̄, defined as

hρ̄(Zm) ,
ρ̄

1− ρ̄
log

(∫
z
fZm(z)ρ̄dz

)(1/ρ̄)

. (6.85)

A similar statement can be made for the random coding error exponent on the eaves-

dropper’s channel, with appropriate changes.

Decoding Error Probability for the Main Channel

We first need to bound the p.d.f. of the unaliased noise N′′ by the p.d.f. of the Gaussian

Z∗m. From [38, Lemmas 6 & 11], it is shown that2

fN′′(x) ≤ eε1(Λ3)nfZ∗m(x), x ∈ V3 (6.86)

and Z∗m is distributed as N (0, PZ∗mIn), with

n

n+ 2
αPN ≤ PZ∗m <

(
Ru

Rl

)n
αPN . (6.87)

The error probability for the pair (m, l) can be bounded as

Pe,l,m = Pr [N′ /∈ V1] ≤ Pr [N′′ /∈ V1] ≤ eε1(Λ3)n Pr [Z∗m /∈ V1] . (6.88)

Now, we bound the probability Pr [Z∗m /∈ V1] by truncating Z∗m to V3 to give Zm
V3

. The

truncated version is Zm
V3

has the distribution

fZmV3
(x) =


1

1−Pr[Z∗m /∈V3]
fZ∗m(x) x ∈ V3

0 otherwise
(6.89)

Since V1 ⊂ V3, we can follow the argument in [38, Eqns. (84)–(88)], to have

Pr [Z∗m /∈ V1] ≤ Pr
[
Zm
V3
/∈ V1

]
+ Pr [Z∗m /∈ V3] . (6.90)

Next, consider the second term on the RHS of (6.90). If we view Λ3 as a channel code

with respect to the Gaussian Z∗m, Euclidean decoding is ML for such a channel. So we

use (6.14) to bound Pr [Z∗m /∈ V3] with the equivalent VNR of Λ3 viewed as a channel

code with respect to Z∗m given by

µ =
PX
PZ∗m

≥ 1 +
PX
PN
− on(1) = e2C − on(1), (6.91)

2The proofs for [38, Lemmas 6 & 11] go through unchanged because they are derived based on the

coarse lattice Λ3 only.
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thus giving

Pr [Z∗m /∈ V3] ≤ e−n[EP (e2C)−on(1)]. (6.92)

To bound the first term in (6.90), consider the (Λ3,Z
m
V3

) channel (with generic

output Y)

Y = [X + Zm
V3

] mod Λ3, (6.93)

the modulo additive channel with Z∗m restricted to V3, for which Euclidean decoding is

ML with Zm
V3

Gaussian in V3. Then this channel has error probability determined by

its error exponent. A random coding error exponent is derived for this channel in [37],

given by

EΛ3(R; Zm
V3

) = max
0≤ρ≤1

ρ
[

1

n
log V3 −

1

n
hρ̄(Z

m
V3

)−R
]
, (6.94)

where R = Re +R′, ρ̄ , 1/(1 + ρ), and the Rényi entropy of order ρ̄ is

hρ̄(Z
m
V3

) ,
ρ̄

1− ρ̄
log

(∫
x
fZmV3

(x)ρ̄dx
) 1
ρ̄

. (6.95)

By [38, Eqn. (208)], we have

ρhρ̄(Z
m
V3

) ≤ ρhρ̄(Z
∗
m) (6.96)

and therefore

EΛ3(R; Zm
V3

) ≥ max
0≤ρ≤1

ρ
[

1

n
log V3 −

1

n
hρ̄(Z

∗
m)−R

]
− ε1(Λ3)

= max
0≤ρ≤1

ρ
[
1

2
log 2πePX − hρ̄(Z∗m)−R− 1

2
log 2πeG(Λ3)

]
− ε1(Λ3)

(a)

≥ max
0≤ρ≤1

ρ
[
1

2
log 2πePX − hρ̄(Zm)−R− log

(
Ru

Rl

)
− 1

2
log 2πeG(Λ3)

]
− ε1(Λ3)

= Er
P

(
e2[C−R−ε2(Λ3)]

)
− ε1(Λ3), (6.97)

by following the steps in [38, Eqns. (126)–(131)], where (a) makes use of (6.87) and

the fact that for the Rényi entropy, hβ(aX) = hβ(X) + log a, and ε1(Λ3), ε2(Λ3) are

small as n is large.

This shows that the (Λ3,Z
m
V3

) channel’s random coding exponent is asymptotically

close to the random coding Poltyrev exponent at Er
P (e2(C−R)) as n is large, assuming

the input cm ⊕ al is randomly uniform over V3. Next consider the input taken from the

random code ensemble taken from a uniform distribution over {p−1Λ3∩V3}. Then, the
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random coding error exponent for this code ensemble over the (Λ3,Z
m
V3

) channel is, as

proved in [38, Appx. C],

EΛ3(R; Zm
V3
, p) > EΛ3(R; Zm

V3
)− on(1). (6.98)

The proof for [38, Appx. C] is unchanged as it is performed only for {p−1Λ3∩V3}, and

not our nested lattices. However, we modify it slightly, noticing that [38, Eqn. (224) in

Appx. C] is also obtained using our construction with n
p
→ 0 as n grows. Using this

condition, our nested lattices can have pki , i = 1, 2 points intersecting with V3.

Now, referring back to the construction, the jointly decoded codeword cm ⊕ al

can be treated as a combined codeword from {Λ1 ∩ V3}. From the properties of the

construction, codewords from {Λ1 ∩ V3} are uniformly distributed over {p−1Λ3 ∩ V3},

and the difference between two codewords mod Λ3 from {Λ1 ∩ V3} is also uniformly

distributed over {p−1Λ3 ∩ V3}. Applying the union bound, we have that codewords

from {Λ1 ∩ V3} have the same performance as random codewords drawn uniformly

from {p−1Λ3 ∩ V3} in terms of error exponent [94]. Thus, codewords from {Λ1 ∩ V3}

over the (Λ3,Z
m
V3

) channel have error probability

Pr
[
Zm
V3
/∈ V1

]
≤ e−nEΛ3

(R;ZmV3
,p) ≤ e−n(EΛ3

(R;ZmV3
)−on(1)). (6.99)

Combining the results in (6.88)–(6.92), (6.97), (6.99) and following [38, Eqns. (95)–

(96)], we obtain

Pe,l,m = Pr [N′ /∈ V1] ≤ eε1(Λ3).n
[
Pr
[
Zm
V3
/∈ V1

]
+ Pr [Z∗m /∈ V3]

]
≤ eε1(Λ3).n

[
e−n(ErP (e2(C−R))−on(1)) + e−n(ErP (e2C)−on(1))

]
≤ e−n(ErP (e2(C−R))−on(1)), (6.100)

since as n → ∞, the second term in the second line above is small. At rates R ap-

proaching C, the argument in Er
P (.) approaches 1 from above, so Er

P is small but as n

gets large, Pe,l,m → 0.

Decoding Error Probability for the Eavesdropper’s Channel

For the eavesdropper’s channel, the proof is similar. We provide it here for complete-

ness.

From [38, Lemmas 6, 11],

fN′′z (x) ≤ eε1(Λ3).nfZ∗z(x), x ∈ V3 (6.101)
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and Z∗z is distributed as N (0, PZ∗z .I
n), with

n

n+ 2
.αzPNz ≤ PZ∗z <

(
Ru

Rl

)n
.αzPNz . (6.102)

The error probability for l with m given can be bounded as

P
(z)
e,l = Pr [N′z /∈ V2] ≤ eε1(Λ3).n Pr [Z∗z /∈ V2] . (6.103)

Truncating Z∗z to the Voronoi region V3, we obtain the distribution

fZzV3
(x) =


1

1−Pr{Z∗z /∈V3}fZ∗z(x) x ∈ V3

0 otherwise
(6.104)

Since V2 ⊂ V3, we can follow the argument in [38, eqn. (84)-(88)] to have

Pr [Z∗z /∈ V2] ≤ Pr
[
Zz
V3
/∈ V2

]
+ Pr [Z∗z /∈ V3] . (6.105)

The second term in (6.105) can be bound using (6.14) with the equivalent volume to

noise ratio of Λ3 viewed as a channel code with respect to Z∗z given by µ = PX
PZ∗z
≥

1 + PX
PNz
− on(1) = e2Cz − on(1), so that

Pr [Z∗z /∈ V3] ≤ e−n[EP (e2Cz )−on(1)]. (6.106)

For the first term in (6.105), we consider the (Λ3,Z
z
V3

) channel (with generic output Y)

Y = [X + Zz
V3

] mod Λ3. (6.107)

which has random coding error exponent

EΛ3(R′; Zz
V3

) = max
0≤ρ≤1

ρ
[

1

n
log V3 −

1

n
hρ̄(Z

z
V3

)−R′
]
, (6.108)

assuming the input al is randomly uniform over V3. Using ρhρ̄(Zz
V3

) ≤ ρhρ̄(Z
∗
z), we

get

EΛ3(R′; Zz
V3

) ≥ max
0≤ρ≤1

ρ
[

1

n
log V3 −

1

n
hρ̄(Z

∗
z)−R′

]
− ε1(Λ3)

(a)

≥ Er
P

(
e2[Cz−R′−ε2(Λ3)]

)
− ε1(Λ3), (6.109)

where (a) is by following the steps in [38, eqn.s (126)-(131)], and ε1(Λ3), ε2(Λ3) → 0

as n → ∞ for Λ3 Rogers good. This shows that the (Λ3,Z
z
V3

) channel has random
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coding error exponent asymptotically close to the random coding Poltyrev exponent as

n is large.

The random coding error exponent for the input taken from the random code en-

semble taken from a uniform distribution over {p−1Λ3∩V3} over the (Λ3,Z
z
V3

) channel

is,

EΛ3(R′; Zz
V3
, p) > EΛ3(R′; Zz

V3
)− on(1), (6.110)

under the condition that n
p
→ 0 as n grows.

Next, the codeword al mod Λ3 ∈ {Λ2 ∩ V3} is uniformly distributed over {Λ2 ∩

V3}. From the properties of the construction, we know that codewords from {Λ2 ∩V3}

are uniformly distributed over {p−1Λ3∩V3}, and the difference between two codewords

mod Λ3 from {Λ2 ∩ V3} is also uniformly distributed over {p−1Λ3 ∩ V3}. By the

union bound, we have that codewords from {Λ2 ∩ V3} have the same performance as

codewords from {p−1Λ3 ∩ V3} [94]. Thus, we have, following the steps in [38, eqn.s

(95)-(96)],

P
(z)
e,l = Pr{N′z /∈ V2} ≤ e−n(EP (e2(Cz−R′))−on(1)), (6.111)

which is small for R′ approaching Cz and n large.

Now (6.100), (6.111) show that the decoding error probability at the main and

eavesdropper’s channels are small for n large and the error exponents achieve the ran-

dom coding Poltyrev exponent at Er
P (e2(C−R)) and Er

P (e2(Cz−R′)), with coding rates

R and R′ that approach C and Cz, respectively. The constructed nested lattices that

achieve the above, Λ3 ⊂ Λ2 ⊂ Λ1, are all Rogers and Poltyrev good; Λ3 is also quanti-

zation good.

6.5 Conclusion
We showed that using a chain of nested lattices Λ3 ⊂ Λ2 ⊂ Λ1, lattice coding and

decoding can achieve the secrecy rate of the Gaussian wiretap channel; we need the

sequence of lattices Λ
(n)
1 and Λ

(n)
2 to be AWGN good, and the sequence Λ

(n)
3 to be good

for quantization. We considered a decoder at the legitimate receiver which jointly de-

coded the transmitted codeword made up of the message bits and random bits, and a

lattice construction Λ3 ⊂ Λ2 ⊂ Λ1 with all lattices Rogers good and Poltyrev good, Λ3
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is also quantization good, and k1, k2, p growing appropriately with n. We could then

show the achievability of probability of decoding error going to zero at rates approach-

ing the capacities of the main and eavesdropper’s channels.

There are some open problems that may be explored in the future. We first notice

that in the construction, the coarse lattice to start off the construction Λ3 was not de-

termined explicitly. It may be interesting to specify Λ3 explicitly instead of using an

existence proof.

At the legitimate receiver, decoding message and random bits separately with a

staged decoder, may be considered. This may give us more insight on the requirements

of Λ1 and Λ2. The difficulty with the staged decoder is that we need to determine the

noise distribution of the second stage, given that the first stage occurs some small error.

At the eavesdropper, using a joint decoder for (cm, al) may strengthen our argu-

ment; while using a staged decoder will perhaps give more insight on the requirements

of Λ1 and Λ2. Both problems require us to show that the error probability goes to 1

for n large, which requires a lower bound to the error probability. Deriving the lower

bound is quite difficult, however. We illustrate the problem encountered by discussing

the joint decoder at the eavesdropper below.

We know that fN′′z (x) ≤ en.ε(Λ3)fZ∗z(x), for x ∈ V3. We can deduce the p.d.f. of

N′z from the arguments given in Forney et al [46]. Firstly, the Λ3-aliased r.v. N′z ∈ V3.

Secondly, x′ ∈ Rn maps to x ∈ V3 if and only if x′ ∈ Λ3 + x. So, the p.d.f. of N′z is

fN′z(x) =
∑

b∈Λ3

fN′′z (x + b) ≤ en.ε(Λ3)
∑

b∈Λ3

fZ∗z(x + b), x ∈ V3, (6.112)

where the last inequality follows from the bound on the p.d.f. fN′′z (x) above. The error

probability for the eavesdropper for a given pair cm + al is

P
(z)
e,l,m = Pr[N′z /∈ V1(cm + al)] = Pr[N′z /∈ V1], (6.113)

where we write the second equality due to the congruency of the Voronoi regions for

the lattice. We then have

P
(z)
e,l,m = 1−

∫
V1

fN′z(x)dx

≥ 1− en.ε(Λ3)
∑

b∈Λ3

∫
V1

fZ∗z(x + b)dx

(a)
= 1− en.ε(Λ3)

∑
b∈Λ3

∫
V1+b

fZ∗z(u)du
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(b)
= 1− en.ε(Λ3)

∫
V1

fZ∗z(u)du +
∑

b∈Λ3/{0}

∫
V1+b

fZ∗z(u)du

 (6.114)

where (a) is due to changing the variable of integration to u = x + b, and (b) is by

writing the sum over Λ3 as the origin plus the sum over Λ3 less the origin.

The first integral in (6.114) can be bound using the equivalent sphere argument, as

found in Tarokh et al [109]. Let Ball(r) denote a hypersphere in Rn, with radius r > 0

and the same volume as V1, centered at the origin, so that Ball(r) , {x ∈ Rn, ‖x‖ <

r}. Denote the equivalent sphere of V1 as SV1 . Then, using the arguments in Tarokh et

al [109], we have the following:

∫
V1

fZ∗z(u)du ≤
∫
SV1

fZ∗z(u)du , Pr [Z∗z ∈ Ball(r)] = Pr [‖Z∗z‖ ≤ r] . (6.115)

The error probability can now be written as

P
(z)
e,l,m ≥ 1− en.ε(Λ3)

Pr [‖Z∗z‖ ≤ r] +
∑

b∈Λ3/{0}

∫
V1+b

fZ∗z(u)du

 . (6.116)

Unfortunately, the term with the sum cannot be readily evaluated, whether by using

an equivalent sphere argument, or otherwise. Another very useful direction for future

work will be to see how the error probability at the eavesdropper can be evaluated using

this type of argument.
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Chapter 7

Conclusions and Future Work

Wireless communications channels today are vulnerable to eavesdropping due to the

open nature of the channel, making the characterization of transmission rates for secure

and reliable communication for the physical layer an important issue. We use the in-

formation theoretic approach to gain fundamental insight into the secure (confidential)

codes that give rise to limits on the reliable and secure communication rates between

nodes in a network. The challenge is to find coding schemes that have provable security

and reliability.

7.1 Summary of Contributions and Insights
In Chapter 4, we have investigated secure coding schemes for the BC, which is an

important building block of a network.

• We have characterized the secure and reliable transmission rates for the class

of the K-receiver BC with an external eavesdropper, where the receivers and

eavesdropper are degraded in the order X → Y1 → ..→ YK → Z. In our coding

scheme, we use superposition coding and code partitioning and we have found

the secrecy capacity, which is the maximum secure rate achievable.

• For another more general class of BC, which is the 3-receiver BC with DMS,

we have found the rate equivocation region with one of the receivers being an

eavesdropper. The 3-receiver BC with DMS is an important channel model which

gives insights to coding for the general K-receiver BC, whose capacity region is

still unknown, even for the case of no security. The 3-receiver BC with DMS

and an eavesdropper also generalizes some 2- and 3-receiver BC models with
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an eavesdropper. Our secure scheme uses code partitioning and double binning

and we have shown that the scheme is secure for the 3-receiver BC with 2 DMS.

We can also see that our secure scheme can be straightforwardly used to provide

security for the even more general 3-receiver BC with 3 DMS. The BC coding

schemes suggest a multilevel code for the K-receiver BC and a multilevel dirty

paper code for the 3-receiver BC with DMS.

In Chapter 5, we considered the scenario where the eavesdropper had more favor-

able channel conditions compared to the legitimate receiver, where it may be possible

that the secrecy rate goes to zero. We used a CJ method using a bank of relays, in

conjunction with a distributed signal processing method to enhance the secrecy rate,

thus proving the fundamental result that we can improve the secrecy rate even if the

eavesdropper has a better channel than the legitimate receiver. In addition,

• We derived the conditions for positive secrecy rate and obtained the optimal CJ

solution by a combination of convex optimization and a one-dimensional search.

• We also proposed extensions to power constraints for grouped relays and a dis-

tributed implementation for the relay power assignment.

In Chapter 6, we considered lattice codes which impose more structure than the

random codes, to implement the coset coding for the Gaussian wiretap channel, and

adopted an information-theoretic approach to the lattice-based coset coding problem.

• We used a nested lattice chain to perform lattice coding and proposed lattice

decoders for the Gaussian wiretap channel; in the thesis we considered a decoder

at the legitimate receiver which jointly decoded the transmitted codeword made

up of the message bits and random bits and derived the achievable rates and the

equivocation rate. We also showed that it is possible to achieve the equivocation

rate of the classical Gaussian wiretap channel (the secrecy capacity).

• A construction for the nested lattice chain was proposed and analyzed; a coset

code based on this chain was shown to be able to meet the reliability and se-

curity criteria. We were able to state the coding requirements on the nested

lattices, which is an important step forward in the information-theoretic lattice-

based coset coding problem.
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7.2 Future Work
We can identify the following directions for future work:

1. We have already seen that the 3-receiver with 3 DMS coding scheme without

security essentially ‘rides’ on the 3-receiver with 2 DMS coding scheme. Thus

our secure coding scheme should be able to provide security for the 3-receiver

with 3 DMS as well; this is our current work.

2. For the general 3-receiver BC with DMS, no outer bound exists; the challenge

is to derive an outer bound by circumventing the use of the Csiszár sum lemma,

or to derive an alternative to it. Some progress on this has been made by Nair

and Wang [92], but only for the less noisy channel condition. An alternative to

the Csiszár sum lemma, or an alternative method to derive the outer bound, for

general conditions on 3 receivers, would be a most welcome contribution, as this

would open many possibilities for multi-user outer bound derivations. It would

also help us to finally be able to quantify the outer bound on the rate-equivocation

region for the general 3-receiver BC with DMS.

3. We would like to find secure coding schemes for the two-way relay channel,

which models an important part of a network, where the base station has to han-

dle messages from two different cells in a cellular network, for example. This be-

comes more important as decentralized networks are deployed, as decentralized

base ‘stations’ may be just relays with minimal hardware. A key area where the

present work such as in Mukherjee and Swindlehurst [89] concerning an external

eavesdropper to a two-way relay network did not address was a information theo-

retically provable secure coding scheme for both phases of the transmission, that

is both MAC (uplink) and BC (downlink) phases. For a parallel problem without

security, see Zhang and Gursoy [124]. Thus filling this gap is a very interesting

problem by itself. This may involve putting together secure coding schemes for

the MAC, BC and relay channels.

4. In the wiretap channel with a bank of relays performing CJ, an open problem is

the case for multiple eavesdroppers. A way forward may be treat the channel as

a compound wiretap channel [72]. Another line of work may be to split the re-
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lays to perform message forwarding and jamming, and find the optimal, dynamic

relay assignment. As the CSI issue is an important one, such future work should

include unknown CSI models at the eavesdropper.

5. For our lattice coding in the Gaussian wiretap channel, future work will include

strengthening the proof for the eavesdropper, such as assuming it performs joint

decoding of the message and random bits, and showing that the error probability

goes to one. Another possibility would be to use staged decoders for both the

legitimate receiver and eavesdropper, where the message and random bits are

decoded separately.

6. We know from the coset coding framework of Forney [42, 43] that it is possible

to construct the lattice chain ΛL ⊆ ΛL−1 ⊆ · · · ⊆ Λ2 ⊆ Λ1, so that a multilevel

coset code results. Each level or partition can be viewed as a code for a user,

and coding and decoding can be carried out independently of other levels [46].

This way of viewing multilevel coding can make it possible to design codes for

multiple eavesdroppers, or the compound wiretap channel, by assigning level 1

to the main channel, level 2 to eavesdropper’s channel 1, etc. The true advantage

in using multilevel coset coding may lie in the extra degree of freedom that it

gives to the code designer, so that there is freedom to assign functions other than

channel coding to some levels.

7. We know from the random coding results that security is provided for any coding

scheme based on binning by using double binning. This was seen in the work on

the general BC with DMS, or the BC with 2 receivers and messages to be kept

secret from either receiver [78, 116]. Thus multilevel coset coding will be able

to provide security using double binning; we need to use, for example, the lattice

chain Λ4 ⊆ Λ3 ⊆ Λ2 ⊆ Λ1. The partition Λ4/Λ3 performs the additional binning.

Then, the possible directions would be to provide security for the lattice-based

dirty paper coding scheme of Erez and ten Brink [40] and ultimately to form a

lattice-based secure coding scheme for either the 2-receiver BC with confidential

messages of [78, 116] or the 3-receiver BC with confidential messages and DMS.

8. Lastly, it is also very interesting to consider active eavesdroppers who jam the
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network. While some work has been done by Amariucai and Wei[5], designing

more practical or structured coding schemes are open problems; a multilevel

coding scheme appears to be useful in this possible future work.

To sum up, the information theoretic approach that we have studied in this thesis

enables us to provide provable security in network communication scenarios without

keys, which is highly beneficial to wireless network design. Coding schemes designed

using the information theoretic approach can be further combined with cryptographic

schemes to provide robust cross layer security for wireless networks.
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Appendix A

On the Ordering of Channels

The definitions given here are from Körner and Marton [66]. Let P1 and P2 denote

discrete memoryless channels with probability transition matrices p1(y|x) and p2(y|x)

and the variables x ∈ X , y ∈ Y , and z ∈ Z .

Definition 1 A channel P2 is the degraded form of P1 if there exists a probability tran-

sition matrix p3(z|y) such that

p2(z|x) =
∑
y∈Y

p1(y|x)p3(z|y). (A.1)

Definition 2 Channel P1 is said to be less noisy than P2 if

I(U ;Z) ≤ I(U ;Y ) (A.2)

for every probability mass function of the form p(u, x, y, z) = p(u)p(x|u)p(y, z|x).

Definition 3 Channel P1 is said to be more capable than P2 if

I(X;Z) ≤ I(X;Y ) (A.3)

for all probability distributions on X . Körner and Marton [66] also showed that the

more capable condition also implies that

I(X;Z|U) ≤ I(X;Y |U) (A.4)

for every probability mass function of the form p(u, x, y, z) = p(u)p(x|u)p(y, z|x).

Lastly, we note that the degraded condition is the strongest, followed by the less

noisy condition, followed by the more capable. So if a channel is degraded, for exam-

ple, it is true that it is also less noisy, but it is not always true the other way around.
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Appendix B

Proofs for Chapter 4

B.1 Proof for Lemma 4
We now bound the entropy H(Jk|Z,Uk+1, wk) for every wk, following a method in

[35]. To begin, we label the Lk = 2nRk bins from Uk indexed by wk correspond-

ing to the message wk as Bk(wk). We then fix Jk = jk and sequences (uk+1, z) ∈

T nε (PUk+1Z). Let the eavesdropper’s estimate of the index jk be ĵk, and let us define

the set A(ĵk, jk) as the set of the eavesdropper’s estimate ĵk of the index jk that is not

equal to the actual transmitted index jk:

A(ĵk, jk) ,
{
ĵk ∈ Bk(wk) :

(
Uk(ĵk),uk+1, z

)
∈ T nε (PUkUk+1Z), ĵk 6= jk

}
. (B.1)

Let us define the random event

E(ĵk, jk) ,
{∣∣∣A(ĵk, jk)

∣∣∣ ≥ 2E
[∣∣∣A(ĵk, jk)

∣∣∣]} , (B.2)

where E[.] denotes the mean. We will now proceed to show that Pr
[
E(ĵk, jk)

]
→ 0

for n sufficiently large under the appropriate conditions. To do this, we use the version

of Chebyshev’s inequality stated in Lemma 2. Specifically, we use the second of the

inequalities in (2.40) and set ν = 1. That is, if X is a generic r.v. with mean E(X) and

variance Var(X), then

Pr{X ≥ 2E(X)} ≤ Var(X)

(E(X))2
.

So to find the probability of the random event E(ĵk, jk), we let the generic r.v. in the

equation above be
∣∣∣A(ĵk, jk)

∣∣∣. We now require the mean and variance of
∣∣∣A(ĵk, jk)

∣∣∣.
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For the mean, we have

E
[∣∣∣A(ĵk, jk)

∣∣∣] =
∑

ĵk,ĵk 6=jk

Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]

=
(
2nR

′
k − 1

)
Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]
. (B.3)

We have, for ε→ 0 for n sufficiently large

Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]
(a)
=

∑
uk∈T nε (PUkUk+1Z

|uk+1,z)

p(uk|uk+1)

(b)

≤
∣∣∣T nε (PUkUk+1Z |uk+1, z)

∣∣∣ .2−nH(Uk|Uk+1)(1−ε)

(c)

≤ 2nH(Uk|Z,Uk+1)(1+ε).2−nH(Uk|Uk+1)(1−ε)

= 2−n(I(Uk;Z|Uk+1)−ε[H(Uk|Uk+1)+H(Uk|Z,Uk+1)])

= 2−n(I(Uk;Z|Uk+1)−δ(ε)) (B.4)

where (a) arises from the code generation process; (b) and (c) are from the properties

of typical sequences and the size of the typical set, respectively from (2.22) and (2.23)

from Theorem 1; and δ(ε) → 0 as ε → 0 for n sufficiently large. Similarly using

Theorem 1, we have

Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]
≥
∣∣∣T nε (PUkUk+1Z |uk+1, z)

∣∣∣ .2−nH(Uk|Uk+1)(1+ε)

≥ (1− ε).2nH(Uk|Z,Uk+1)(1−ε).2−nH(Uk|Uk+1)(1+ε)

= (1− ε).2−n(I(Uk;Z|Uk+1)+δ(ε)), (B.5)

where, as before, δ(ε)→ 0 as ε→ 0 for n sufficiently large. Subsituting into (B.3), we

can see that, for n sufficiently large,

2n(R′k−I((Uk;Z|Uk+1)−δ(ε)) ≤ E
[∣∣∣A(ĵk, jk)

∣∣∣] ≤ 2n(R′k−I((Uk;Z|Uk+1)+δ(ε)). (B.6)

Next, we have

E
[∣∣∣A(ĵk, jk)

∣∣∣2] =
∑

ĵk,ĵk 6=jk

Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]

+
∑

ĵk,ĵk 6=jk

∑
̂̂jk 6=ĵk, ̂̂jk 6=jk

Pr


(
Uk(ĵk),uk+1, z

)
∈ T nε (PUkUk+1Z),(

Uk(
̂̂
jk),uk+1, z

)
∈ T nε (PUkUk+1Z)

 . (B.7)
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Now, if we let

p1 , Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z)

]
,

p2 , Pr
[(

Uk(ĵk),uk+1, z
)
∈ T nε (PUkUk+1Z),

(
Uk(

̂̂
jk),uk+1, z

)
∈ T nε (PUkUk+1Z)

]
,

(B.8)

and noting that p2 = p2
1, we now have

E
[∣∣∣A(ĵk, jk)

∣∣∣2] ≤ 2nR
′
kp1 + 22nR′kp2

1.

Thus we have

Var
[∣∣∣A(ĵk, jk)

∣∣∣] = E
[∣∣∣A(ĵk, jk)

∣∣∣2]− E
[∣∣∣A(ĵk, jk)

∣∣∣]2 ≤ 2nR
′
kp1 (B.9)

since E
[∣∣∣A(ĵk, jk)

∣∣∣]2 = 22nR′kp2
1. Finally, as p1 is already upper bounded in (B.4) and

E
[∣∣∣A(ĵk, jk)

∣∣∣] is lower bounded in (B.6), we have

Pr
[
E(ĵk, jk)

]
≤

Var
[∣∣∣A(ĵk, jk)

∣∣∣]
E
[∣∣∣A(ĵk, jk)

∣∣∣]2 ≤ 2−n(R′k−I(Uk;Z|Uk+1)−3δ(ε)), (B.10)

which becomes small for n sufficiently large provided that R′k ≥ I(Uk;Z|Uk+1).

Next, for each wk, we define a random version of A(ĵk, jk) in (B.1) as

Ã(ĵk, jk) ,
{
ĵk ∈ Bk(wk) :

(
Uk(ĵk),uk+1,Z

)
∈ T nε (PUkUk+1Z), ĵk 6= Jk

}
. (B.11)

That is, the set of the eavesdropper’s estimate of the index jk that is not equal to the

random transmitted index, given random eavesdropper received signal. We also define

the event

E(wk) ,
{∣∣∣Ã(ĵk, jk)

∣∣∣ ≥ 2E
[∣∣∣Ã(ĵk, jk)

∣∣∣]} , (B.12)

and the indicator variables

I(wk) := 0 if
(
Uk(Ĵk),uk+1,Z

)
∈ T nε (PUkUk+1Z) and E(wk)

c occurs,

I(wk) := 1 if
(
Uk(Ĵk),uk+1,Z

)
/∈ T nε (PUkUk+1Z) and E(wk) occurs.
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Let us now find the probability that I(wk) = 1. We have, by the union bound,

Pr[I(wk) = 1] ≤ Pr
[(

Uk(Ĵk),uk+1,Z
)
/∈ T nε (PUkUk+1Z)

]
+ Pr[E(wk)]

≤ Pr
[(

Uk(Ĵk),uk+1,Z
)
/∈ T nε (PUkUk+1Z)

]
+

∑
z∈T nε (PZ)

p(z) Pr [E(wk)|Z = z]

+ Pr [Z /∈ T nε (PZ)]

(a)
=

∑
z∈T nε (PZ)

∑
jk

p(z)p(jk|z) Pr[E(wk)|Z = z, Jk = jk]

=
∑

z∈T nε (PZ)

∑
jk

p(z)p(jk|z) Pr[E(ĵk, jk)], (B.13)

where (a) is by the fact that Pr
[(

Uk(Ĵk),uk+1,Z
)
/∈ T nε (PUkUk+1Z)

]
→ 0 for n

sufficiently large by the properties of joint typical sequences, and this implies that

Pr [Z /∈ T nε (PZ)] also goes to 0 for n sufficiently large. Finally, since we know

that Pr[E(ĵk, jk)] → 0 for n sufficiently large if R′k ≥ I(Uk;Z|Uk+1), we have

Pr[I(wk) = 1] → 0 for n sufficiently large. To bound H(Jk|Z,Uk+1, wk), we con-

sider the expansion of H(I(wk), Jk|Z,Uk+1, wk). We have

H(I(wk), Jk|Z,Uk+1, wk) = H(Jk|Z,Uk+1, wk) +H(I(wk)|Z,Uk+1, Jk, wk)

= H(Jk|Z,Uk+1, wk), (B.14)

where the second equality is because H(I(wk)|Z,Uk+1, Jk, wk) = 0 as I(wk) is deter-

mined by Z, Jk, wk. So we now have

H(Jk|Z,Uk+1, wk) = H(I(wk), Jk|Z,Uk+1, wk)

= H(I(wk)|Z,Uk+1, wk) + Pr[I(wk) = 1]H(Jk|Z,Uk+1, wk, I(wk) = 1)

+ Pr[I(wk) = 0]H(Jk|Z,Uk+1, wk, I(wk) = 0)

(a)

≤ 1 + Pr[I(wk) = 1]H(Jk|Z,Uk+1, wk, I(wk) = 1)

+ (1− Pr[I(wk) = 1])H(Jk|Z,Uk+1, wk, I(wk) = 0)

≤ 1 + Pr[I(wk) = 1]H(Jk|Z,Uk+1, wk, I(wk) = 1)

+H(Jk|Z,Uk+1, wk, I(wk) = 0), (B.15)

where (a) is due to H(I(wk)|Z,Uk+1, wk) ≤ H(I(wk)) ≤ 1, since I(wk) is binary-

valued. In the last line of (B.15), the second term → 0 for n sufficiently large.

For the third term, we know that, given Uk+1,Z, wk and I(wk) = 0, Jk takes on
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≤ log(2E[|A(ĵk, jk)|] − 1) values. The third term of the last line of (B.15) now be-

comes

H(Jk|Z,Uk+1, wk, I(wk) = 0) ≤ log(2E[|A(ĵk, jk)|]− 1)

= log
(
2n(R′k−I(Uk;Z|Uk+1)+δ(ε))+1 − 1

)
= n(R′k − I(Uk;Z|Uk+1) + δ(ε)) + 1 + log

(
1− 2−n(R′k−I(Uk;Z|Uk+1)+δ(ε))−1

)
(a)

≤ n(R′k − I(Uk;Z|Uk+1) + δ(ε)) + 1− 2−n(R′k−I(Uk;Z|Uk+1)+δ(ε))−1, (B.16)

where (a) is due to using the relation log(x) ≤ x− 1. Then, we have, for n sufficiently

large,

H(Jk|Z,Uk+1, wk) ≤ n(R′k − I(Uk;Z|Uk+1) + δ(ε)) + 2, (B.17)

since R′k ≥ I(Uk;Z|Uk+1). The lemma is then proved by averaging over the wk.

B.2 Proof for Lemma 5
Here we obtain a bound for the entropy H(J1, · · · , JK |Z, w1, · · · , wK) for every

w1, · · · , wK , with a similar, only more elaborate, method as in the proof for Lemma

4 in the previous section.

We label theLk = 2nRk bins from Uk indexed bywk corresponding to the message

wk as Bk(wk), for k = 1, · · · , K. For k = 1, · · · , K, fix Jk = jk and a sequence z ∈

T nε (PZ). Now, define the setA(ĵ1, · · · , ĵK , j1, · · · , jK) as the set of the eavesdropper’s

estimate (ĵ1, · · · , ĵK) that is not equal to the actual transmitted indices (j1, · · · , jK):

A(ĵ1, · · · , ĵK , j1, · · · , jK) ,


ĵk ∈ Bk(wk), k = 1, · · · , K :(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ),

(ĵ1, · · · , ĵK) 6= (j1, · · · , jK)


.

(B.18)

We define the random event

E(ĵ1, · · · , ĵK , j1, · · · , jK) ,
{∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣
≥ 2E

[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)
∣∣∣]} , (B.19)

and we aim to show that Pr
[
E(ĵ1, · · · , ĵk, j1, · · · , jk)

]
→ 0 for n sufficiently

large under the appropriate conditions, using the version of Chebyshev’s inequal-

ity stated in Lemma 2, as before. We now evaluate the mean and variance of
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∣∣∣. For the mean, we have

E
[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣]
=

∑
ĵ1,··· ,ĵK ,(ĵ1,··· ,ĵK)6=j1,··· ,jK

Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]

=
K∏
k=1

(
2nR

′
k − 1

)
.Pr

[(
U1(ĵ1), · · · ,UK(ĵK), z

)
∈ T nε (PU1···UKZ)

]
. (B.20)

The probability Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]
in (B.20) can be up-

per bounded as, with ε→ 0 for n sufficiently large,

Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]
(a)
=

∑
(u1,··· ,uK)∈T nε (PU1···UKZ |z)

p(u1|u2) · · · p(uK−1|uK)p(uK)

(b)

≤ |T nε (PU1···UKZ |z)| .2−nH(U1|U2)(1−ε) · · · 2−nH(UK−1|UK)(1−ε).2−nH(UK)(1−ε)

(c)

≤ 2nH(U1,··· ,UK |Z)(1+ε).2−nH(U1|U2)(1−ε) · · · .2−nH(UK−1|UK)(1−ε).2−nH(UK)(1−ε)

(d)
= 2−n(

∑K

k=1
I(Uk;Z|Uk+1)−δ(ε)), (B.21)

where (a) arises from the code generation process; (b) and (c) are from the properties

of typical sequences and the size of the typical set, respectively from (2.22) and (2.23)

from Theorem 1; (d) is due to the Markov chain UK → · · · → U1 → Z; and δ(ε)→ 0

as ε→ 0 for n sufficiently large. Similarly, the lower bound can be found as

Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]
≥ (1− ε).2−n(

∑K

k=1
I(Uk;Z|Uk+1)+δ(ε)).

(B.22)

This gives us, for n sufficiently large,

2n(
∑K

k=1
(R′k−I(Uk;Z|Uk+1))−δ(ε)) ≤ E

[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)
∣∣∣]

≤ 2n(
∑K

k=1
(R′k−I(Uk;Z|Uk+1))+δ(ε)). (B.23)

Let us now denote the set {1, · · · , K} as K′. Let the k-subset of K′ be denoted as

Pk(K′), that is, the subset of the setK′ with exactly k elements. For example, 2-subsets

of {1, 2, 3} are {1, 2}, {1, 3} and {2, 3}. We also make the following definitions:

U(Sk) , {Ul : l ∈ Pk(K′)}, U(Sck) , {Ul : l ∈ K′/Pk(K′)},

U(Sk) , {Ul : l ∈ Pk(K′)}, u(Sck) , {Ul : l ∈ K′/Pk(K′)}.
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We also define

C (Pk(K′)) ,

∑
ĵ1,··· ,ĵK

ĵ1 6=j1,···ĵK 6=jK

∑{̂̂jk 6=ĵk,ĵk 6=jk}
k∈Pk(K′)

Pr


(
U1(ĵ1), · · · ,UK(ĵK), z

)
∈ T nε (PU1···UKZ),

(U(Sk),u(Sck), z) ∈ T nε (PU1···UKZ)

 .
(B.24)

The probability in the equation above can be written as

Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ), (U(Sk),u(Sck), z) ∈ T nε (PU1···UKZ)

]
= Pr

[(
U1(ĵ1), · · · ,UK(ĵK), z

)
∈ T nε (PU1···UKZ)

]
× Pr [(U(Sk),u(Sck), z) ∈ T nε (PU1···UKZ)]

≤ Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]
.2
−n
(∑

k∈Pk(K′) I(Uk;Z|Uk+1)−δ(ε)
)
,

(B.25)

where the last equality is by using Theorem 5 and the Markov chain UK → · · · →

U1 → Z. Then C (Pk(K′)) can be bounded as

C (Pk(K′)) ≤2
n

(∑K

k=1
Rk+

∑
k∈Pk(K′) R

′
k

)

× 2
−n
(∑K

k=1
I(Uk;Z|Uk+1)+

∑
k∈Pk(K′) I(Uk;Z|Uk+1)−2δ(ε)

)
. (B.26)

Using (B.24), we can express E
[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣2] as

E
[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣2]
=

∑
ĵ1,··· ,ĵK ,(ĵ1,··· ,ĵK) 6=j1,··· ,jK

Pr
[(

U1(ĵ1), · · · ,UK(ĵK), z
)
∈ T nε (PU1···UKZ)

]

+
∑
∀P1(K′)

C(P1(K′)) +
∑
∀P2(K′)

C(P2(K′)) + · · ·+
∑

∀PK(K′)
C(PK(K′)), (B.27)

where the sums in the second line in the equation above are taken over all 1-subsets,

2-subsets, and so on till the K-subsets. Let us know define

CE (Pk(K′)) , 2
−n
(∑

k,k/∈Pk(K′)[R
′
k−I(Uk;Z|Uk+1)]−4δ(ε)

)
. (B.28)
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Using the above, we then have

Pr
[
E(ĵ1, · · · , ĵK , j1, · · · , jK)

]
≤

Var
[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣]
E
[∣∣∣A(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣]2
≤ 2−n(

∑
k
[R′k−I(Uk;Z|Uk+1)]−3δ(ε))

+
∑
∀P1(K′)

CE(P1(K′)) +
∑
∀P2(K′)

CE(P2(K′)) + · · ·+
∑

∀PK(K′)
CE(PK(K′)).

Thus for Pr
[
E(ĵ1, · · · , ĵK , j1, · · · , jK)

]
→ 0 as n gets large, we need

R′K ≥ I(UK ;Z)

R′K−1 ≥ I(UK−1;Z|UK)

...

R′1 ≥ I(U1;Z|U2) = I(X;Z|U2), (B.29)

after removing the redundant inequalities. Next, for each (w1, · · · , wK), we define a

random version of A(ĵ1, · · · , ĵK , j1, · · · , jK) in (B.18) as

Ã(ĵ1, · · · , ĵK , j1, · · · , jK) ,


ĵk ∈ Bk(wk), k = 1, · · · , K :(

U1(ĵ1), · · · ,UK(ĵK),Z
)
∈ T nε (PU1···UKZ),

(ĵ1, · · · , ĵK) 6= (J1, · · · , JK)


.

(B.30)

We also define the event

E(w1, · · · , wK) ,
{∣∣∣Ã(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣ ≥ 2E
[∣∣∣Ã(ĵ1, · · · , ĵK , j1, · · · , jK)

∣∣∣]} ,
(B.31)

and the indicator variables

I((w1, · · · , wK) := 0 if
(
U1(ĵ1), · · · ,UK(ĵK),Z

)
∈ T nε (PU1···UKZ)

and E(w1, · · · , wK)c occurs,

I((w1, · · · , wK) := 1 if
(
U1(ĵ1), · · · ,UK(ĵK),Z

)
∈ T nε (PU1···UKZ)

and E(w1, · · · , wK) occurs.

The subsequent steps mirror the proof in the single receiver case in Appendix B.1 and

we will provide an outline only.



B.3. Alternative Proofs for K-receiver Degraded BC 183

For the probability that I((w1, · · · , wK) = 1, we have

Pr[I(w1, · · · , wK) = 1] ≤
∑

z∈T nε (PZ)

∑
j1,··· ,jK

p(z)p(j1, · · · , jK |z)×

Pr[E(w1, · · · , wK)|Z = z, J1 = j1, · · · , JK = jK ]

=
∑

z∈T nε (PZ)

∑
j1,··· ,jK

p(z)p(j1, · · · , jK |z) Pr[E(w1, · · · , wK)],

(B.32)

which is small for n sufficiently large since Pr[E(w1, · · · , wK)] → 0 for n sufficiently

large under the conditions (B.29). We then have

H(J1, · · · , JK |Z, w1, · · · , wK) ≤ 1 + Pr[I(w1, · · · , wK) = 1]×

H(J1, · · · , JK |Z, w1, · · · , wK , I(w1, · · · , wK) = 1)

+H(J1, · · · , JK |Z, w1, · · · , wK , I(w1, · · · , wK) = 0).

(B.33)

The second term on the RHS of (B.33) is small for n sufficiently large, and the third

term is bounded as

H(J1, · · · , JK |Z, w1, · · · , wK , I(w1, · · · , wK) = 0)

≤ log(2E[|A(ĵ1, · · · , ĵK , j1, · · · , jK)|]− 1)

= log
(

2n(
∑K

k=1
[R′k−I(Uk;Z|Uk+1)]+δ(ε))+1 − 1

)

≤ n

(
K∑
k=1

[R′k − I(Uk;Z|Uk+1)] + δ(ε)

)
+ 2− 2−n(

∑K

k=1
[R′k−I(Uk;Z|Uk+1)]+δ(ε))+1),

(B.34)

where the last inequality is by using log(x) ≤ x− 1. Then, for n sufficiently large,

H(J1, · · · , JK |Z, w1, · · · , wK) ≤ n

(
K∑
k=1

[R′k − I(Uk;Z|Uk+1)] + δ(ε)

)
+ 2, (B.35)

since
∑K
k=1R

′
k ≥

∑K
k=1 I(Uk;Z|Uk+1), which can be deduced from the conditions

(B.29). The lemma is then proved by averaging over the (w1, · · · , wK).

B.3 Alternative Proofs for K-receiver Degraded BC

B.3.1 Obtaining the Sizes of Subcodes

Here, we follow the approach of Wyner [115], and show how to obtain logL′k in the

encoding of Wk, for k = 2, ..., K − 1. Following the same routine, logL′1 and logL′K

can be obtained easily, and thus these calculations will be omitted.
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To start with, suppose that we have the messages, wk = ik, . . . , wK = iK . We

now define

q
(k)
ik

, Pr [Wk = ik|Wk+1 = ik+1, . . . ,WK = iK ]

= Pr
[
Wk = ik|uK(iK , i

′
K),uK−1(iK−1, i

′
K−1, iK , i

′
K), . . . ,uk(ik, i

′
k, . . . , iK , i

′
K)
]
.

(B.36)

The codeword uk(w
′′
k , . . . , w

′′
K) is a channel code for pYk|X and pZ|X simultaneously

and is comprised of Lk = 2nRk subcodes {C(k)
ik
}Lkik=1. Uk is an uniformly randomly

chosen member of {C(k)
ik
}. Therefore,

Pr
[
Uk = uk(w

′′
k , . . . , w

′′
K)|uK(iK , i

′
K), . . . ,uk+1(ik+1, i

′
k+1, . . . , iK , i

′
K)
]

=
q

(k)
ik

L′k
.

(B.37)

The codeword uk(w
′′
k , . . . , w

′′
K) is a channel code for pYk|X with prior distribution on

codewords given by (B.37). Each of C(k)
ik

is a channel code for the eavesdropper’s

channel pZ|X with L′k codewords and uniform prior distribution on the codewords. Let

λ
(k)
ik

be the error probability for C(k)
ik

with an optimal decoder, when i′k is chosen as the

index for the codeword from C(k)
ik

. Then λ̄(k) is the average error probability for C(k)
ik

with an optimal decoder, averaged over the probability that Wk = ik is sent given the

previous messages were Wk+1 = ik+1, . . .WK = iK . As a result, we have
λ

(k)
ik

= Pr
[
X 6= Z|Wk = ik,uK(iK , i

′
K), . . . ,uk+1(ik+1, i

′
k+1, . . . , iK , i

′
K)
]
,

λ̄(k) =
Lk∑
ik=1

q
(k)
ik
λ

(k)
ik
.

(B.38)

By Fano’s inequality,

H(X|Z,Wk = ik,uK(iK , i
′
K), . . . ,uk+1(ik+1, i

′
k+1, . . . , iK , i

′
K)) ≤ 1 + λ

(k)
ik

logL′k

⇒ H(Uk|Z,UK , . . . ,Uk+1,Wk = ik) ≤ 1 + λ
(k)
ik

logL′k.

(B.39)

Since |C(k)
ik
| = L′k and has probability of error λ(k)

ik
, we have

I(Uk; Z|UK , . . . ,Uk+1,Wk = ik)

= H(Uk|UK , . . . ,Uk+1,Wk = ik)−H(Uk|Z,UK , . . . ,Uk+1,Wk = ik)

= logL′k −H(Uk|Z,UK , . . . ,Uk+1,Wk = ik)

⇒ logL′k ≤ I(Uk; Z|UK , . . . ,Uk+1,Wk = ik) + 1 + λ
(k)
ik

logL′k.

(B.40)
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Averaging over ik using {q(k)
ik
} gives

logL′k ≤ I(Uk; Z|UK , . . . ,Uk+1,Wk) + 1 + λ̄(k) logL′k
(a)

≤ I(Uk; Z|UK , . . . ,Uk+1) + 1 + λ̄(k) logL′k
(b)

≤ nI(Uk;Z|UK , . . . , Uk+1) + nδ + 1 + λ̄(k) logL′k,

(c)
= nI(Uk;Z|Uk+1) + nδ + 1 + λ̄(k) logL′k,

(B.41)

where (a) is by Wk → (UK , . . . ,Uk+1) → Uk → Z, (b) results from the fact that

(following Liu et al. [78])

I(Uk; Z|UK , . . . ,Uk+1) ≤ nI(Uk;Z|UK , . . . , Uk+1) + nδ, (B.42)

with δ → 0 as n→∞ and (c) is by the Markov chain condition UK → · · · → Uk+1 →

Uk → Z for the degraded BC. Similarly, by substituting X for U1 and removing con-

ditioning from (B.36) for k = K, we have


logL1 ≤ nI(X;Z|U2) + nδ + 1 + λ̄(1) logL′1,

logLK ≤ nI(UK ;Z) + nδ + 1 + λ̄(K) logL′K .
(B.43)

Based on the above, and since R′k = 1
n

logL′k, we let



R′1 , I(X;Z|U2)− τ,

R′k , I(Uk;Z|Uk+1)− τ, for k = 2, . . . , K − 1,

R′K , I(UK ;Z)− τ,

(B.44)

where τ → 0 for sufficiently large n.

We observe that this is a somewhat weaker result than the one presented in Lemma

4. This is because for the method in this section, we can obtain upper bounds on the

rates, for example R′k ≤ I(Uk;Z|Uk+1). However the method used in the proof of

Lemma 4 will obtain lower bounds on R′k ≥ I(Uk;Z|Uk+1), a stronger result.

B.3.2 Equivocation Calculation for the kth Receiver

We only show the calculation for the kth receiver. This method can be extended,

only with more elaborate steps, to any combination of receivers which are a subset
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of {1, · · · , K}. For the kth receiver, we have

nRe(k) = H(Wk|Z)

≥ H(Wk|Z,UK , . . . ,Uk+1) since conditioning reduces entropy

= H(Wk,Z|UK , . . . ,Uk+1)−H(Z|UK , . . . ,Uk+1)

= H(Wk,Uk,Z|UK , . . . ,Uk+1)−H(Uk|Wk,Z,UK , . . . ,Uk+1)

−H(Z|UK , . . . ,Uk+1)

= H(Wk,Uk|UK , . . . ,Uk+1) +H(Z|Wk,UK , . . . ,Uk+1,Uk)

−H(Z|UK , . . . ,Uk+1)−H(Uk|Wk,Z,UK , . . . ,Uk+1)

(a)

≥ H(Uk|UK , . . . ,Uk+1) +H(Z|UK , . . . ,Uk+1,Uk)−H(Z|UK , . . . ,Uk+1)

−H(Uk|Wk,Z,UK , . . . ,Uk+1)

= H(Uk|UK , . . . ,Uk+1)− I(Uk; Z|UK , . . . ,Uk+1)

−H(Uk|Wk,Z,UK , . . . ,Uk+1), (B.45)

where (a) has the second term by the fact that Wk → (UK , . . . ,Uk+1) → Z. We

now bound each of the terms in the last line of (B.45). For the first term, given that

UK = uK , UK−1 = uK−1, . . . ,Uk+1 = uk+1, uk has 2n(Rk+R′k) possible values with

equal probability. As a consequence, we have

H(Uk|UK , . . . ,Uk+1) = n(Rk +R′k). (B.46)

For the second term, it can be shown that

I(Uk; Z|UK , . . . ,Uk+1) ≤ nI(Uk;Z|Uk+1) + nδ. (B.47)

For the last term, we have by Fano’s inequality

1

n
H(Uk|Wk,Z,UK , . . . ,Uk+1) ≤ 1

n

(
1 + λ̄(k) logL′k

)
, ε′k,n (B.48)

where ε′k,n → 0 for n sufficiently large.

To show that λ̄(k) → 0 for n sufficiently large so that (B.48) holds, we consider

decoding at the eavesdropper and focus on the codebook with rate R′k to be decoded at

the eavesdropper with error probability λ̄(k). Let Wk = ik be fixed. The eavesdropper

attempts to decode uk given wk,uK , . . . ,uk+1 by finding the estimate for w′k, ŵ′k, so
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that

(uk(wk, ŵ
′
k, wk+1, w

′
k+1, . . . , wK , w

′
K), z,uk+1, · · · ,uK) ∈ T nε (PUkZ|Uk+1...UK ).

where wk, and all wk+1, w
′
k+1, . . . , wK , w

′
K are known. If there is none or more than

one possible codeword, an error is declared. Defining the event

E
(Z)
i′
k

,
{

(uk(ik, i
′
k), z,uk+1, · · · ,uK) ∈ T nε (PUkZ|Uk+1...UK )

}
, (B.49)

and assuming without loss of generality that w′k = 1 is sent, we then have

λ̄(k) ≤ Pr
{(

E
(Z)
1

)c}
+
∑
i′
k
6=1

Pr
{(

E
(Z)
i′
k

)}
≤ ε+ 2nR

′
k2−n(I(Uk;Z|Uk+1,...,UK)−2ε), (B.50)

where ε → 0 for n sufficiently large. Since we have chosen from (B.44) that R′k =

I(Uk;Z|Uk+1) − τ which is = I(Uk;Z|Uk+1, . . . , UK) − τ by UK → · · · → Uk+1 →

Uk → Z, we have λ̄(k) ≤ 2ε, for τ > 2ε. Thus, λ̄(k) is small for n sufficiently large and

(B.48) holds.

Now substituting (B.46)–(B.48) into the last line of (B.45), we have

nRe(k) ≥ nRk + nI(Uk;Z|Uk+1)− nτ − nI(Uk;Z|Uk+1)− nδ − nε′k,n

= nRk − nεk
(B.51)

where εk = τ + δ + ε′k,n. Hence, the security condition in (4.7) is satisfied for the kth

receiver. We can see that the procedure can be repeated in a similar way to obtain the

equivocation rate of any combination of receivers. However, we again see from (B.50)

that the condition for the eavesdropper’s error probability to be small is the (weaker)

upper bound R′k ≤ I(Uk;Z|Uk+1).

B.4 Proof of Lemma 6
We bound H(I(L)|Y3,U1, w1) for every w1, following the method in [35]. To begin,

let us label the 2nL21 bins from U2 indexed by l21 corresponding to the message part L2

as B2(l2). Similarly, label the 2nL31 bins from U3 indexed by l31 corresponding to the

partial message L3 as B3(l3), and the 2L11 bins from X indexed by l11 corresponding

to the message part L1 as B1(l1). Let us fix L′2 = l′2, L†2 = l†2, L′3 = l′3, L†3 = l†3,

L′1 = l′1 and sequences (u1,y3) ∈ T nε (PU1Y3), and denote ιl = (l′2, l
†
2, l
′
3, l
†
3, l
′
1). The

typical set with respect to p(u1, u2, u3, x, y3) which denoted as T nε (PU1U2U3XY3) will be

abbreviated to T nε for the rest of this section.
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Let the eavesdropper’s estimate of the indices be l̂′2, l̂
†
2, l̂
′
3, l̂
†
3, l̂
′
1, and define the set

A
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
as

A
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
,


(l̂′2, l̂

†
2) ∈ B2(l2), (l̂′3, l̂

†
3) ∈ B3(l3), l̂′1 ∈ B1(l1) :(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,

l̂′2 6= l′2, l̂
†
2 6= l†2, l̂

′
3 6= l′3, l̂

†
3 6= l†3, l̂

′
1 6= l′1


. (B.52)

That is, the set A
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
is the set of the eavesdropper’s estimate of the

indices
(
l′2, l

†
2, l
′
3, l
†
3, l
′
1

)
that is not equal to the transmitted indices. Let us define the

random event

E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
,
{∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣ ≥ 2E

[∣∣∣∣A(l̂′2, l̂
†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl)

∣∣∣∣]} .
(B.53)

We will now show that Pr
[
E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
→ 0 as n is large under appropriate

conditions. We use the version of Chebyshev’s inequality stated in Lemma 2. We now

need the mean and variance of
∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣. For the mean, we have

E
[∣∣∣∣A(l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl)

∣∣∣∣]
=

∑
l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]

=
(

2n(L′2+L†2) − 1
)(

2n(L′3+L†3) − 1
) (

2nL
′
1 − 1

)
× Pr

[(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]
. (B.54)

We have, for ε→ 0 for n sufficiently large

Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]
(a)
=

∑
(u2,u3,x)∈T nε (PU1U2U3XY3

|u1,y3)

p(u2|u1)p(u3|u1)p(x|u1,u2,u3)

(b)

≤ |T nε (PU2U3X |u1,y3)| .2−nH(U2|U1)(1−ε).2−nH(U3|U1)(1−ε).2−nH(X|U2,U3,U1)(1−ε)

(c)

≤ 2nH(U2,U3,X|U1,Y3)(1+ε).2−nH(U2|U1)(1−ε).2−nH(U3|U1)(1−ε).2−nH(X|U2,U3,U1)(1−ε)

= 2n(H(U2|U1,Y3)+H(U3|U1,U2,Y3)+H(X|U1,U2,U3,Y3)+εH(U2,U3,X|U1,Y3))

× 2−n(H(U2|U1)+H(U3|U1)+H(X|U2,U3,U1))+nε(H(U2|U1)+H(U3|U1)+H(X|U2,U3,U1))
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= 2−n(I(U2;Y3|U1)+I(U3;U2,Y3|U1)+I(X;Y3|U2,U3,U1))

× 2nε(H(U2,U3,X|U1,Y3)+H(U2|U1)+H(U3|U1)+H(X|U2,U3,U1))

= 2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(X;Y3|U2,U3,U1)−δ(ε)) (B.55)

where (a) arises from the code generation process; (b) and (c) are from the properties

of typical sequences and the size of the typical set, respectively from (2.22) and (2.23)

from Theorem 1, respectively; and δ(ε)→ 0 as ε→ 0 for n sufficiently large. Similarly,

from the properties of joint typical sequences and the size of the joint typical set,

Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]
≥ |T nε (PU2U3X |u1,y3)| .2−nH(U2|U1)(1+ε).2−nH(U3|U1)(1+ε).2−nH(X|U2,U3,U1)(1+ε)

≥ (1− ε).2nH(U2,U3,X|U1,Y3)(1−ε).2−nH(U2|U1)(1−ε).2−nH(U3|U1)(1−ε).2−nH(X|U2,U3,U1)(1−ε)

= (1− ε).2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(X;Y3|U2,U3,U1)+δ(ε)). (B.56)

Substituting into (B.54), we can see that, for n sufficiently large,

2n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)−δ(ε))

≤ E
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣]

≤ 2n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)+δ(ε)). (B.57)

Let us now define, for ease of presentation, the following probabilities:

p0 , Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]
, (B.58)

p2 , Pr
[(

u1,U2(l̂′2, l̂
†
2),u3,x,y3

)
∈ T nε

]
, (B.59)

p3 , Pr
[(

u1,u2,U3(l̂′3, l̂
†
3),x,y3

)
∈ T nε

]
, (B.60)

p1 , Pr
[(

u1,u2,u3,X(l̂′1),y3

)
∈ T nε

]
, (B.61)

p23 , Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),x,y3

)
∈ T nε

]
(B.62)

p21 , Pr
[(

u1,U2(l̂′2, l̂
†
2),u3,X(l̂′1),y3

)
∈ T nε

]
(B.63)

p31 , Pr
[(

u1,u2,U3(l̂′3, l̂
†
3),X(l̂′1),y3

)
∈ T nε

]
. (B.64)
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We also define

P1 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,U2(l̂′2, l̂
†
2),u3,x,y3

)
∈ T nε

 ,

P2 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,u2,U3(l̂′3, l̂
†
3),x,y3

)
∈ T nε

 ,

P3 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,u2,u3,X(l̂′1),y3

)
∈ T nε

 ,

P4 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,U2(l̂′2, l̂
†
2),u3,X(l̂′1),y3

)
∈ T nε



P5 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),x,y3

)
∈ T nε



P6 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,u2,U3(l̂′3, l̂
†
3),X(l̂′1),y3

)
∈ T nε

 ,

P7 , Pr


(
u1,U2(l̂′2, l̂

†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε ,(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

 . (B.65)

Next, we have

E

[∣∣∣∣A(l̂′2, l̂
†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl)

∣∣∣∣2
]

=
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

Pr
[(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),y3

)
∈ T nε

]

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
2
,
̂̂
l
†
2
)6=(l̂′

2
,l̂
†
2
)

(
̂̂
l′2,
̂̂
l†2) 6=(l′2,l

†
2)

P1

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
3
,
̂̂
l
†
3
)6=(l̂′

3
,l̂
†
3
)

(
̂̂
l′3,
̂̂
l†3) 6=(l′3,l

†
3)

P2

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
̂̂
l′1 6=l̂

′
1,
̂̂
l′1 6=l

′
1

P3
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+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
2
,
̂̂
l
†
2
)6=(l̂′

2
,l̂
†
2
),(
̂̂
l′
3
,
̂̂
l
†
3
) 6=(l̂′

3
,l̂
†
3
)

(
̂̂
l′2,
̂̂
l†2)6=(l′2,l

†
2),(
̂̂
l′3,
̂̂
l†3)6=(l′3,l

†
3)

P5

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
2
,
̂̂
l
†
2
)6=(l̂′

2
,l̂
†
2
),
̂̂
l′
1
6=l̂′

1

(
̂̂
l′2,
̂̂
l†2)6=(l′2,l

†
2),
̂̂
l′1 6=l

′
1

P4

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
3
,
̂̂
l
†
3
)6=(l̂′

3
,l̂
†
3
),
̂̂
l′
1
6=l̂′

1

(
̂̂
l′3,
̂̂
l†3)6=(l′3,l

†
3),
̂̂
l′1 6=l

′
1

P6

+
∑

l̂′
2
,l̂
†
2
,l̂′

3
,l̂
†
3
,l̂′

1

(l̂′2,l̂
†
2)6=(l′2,l

†
2),(l̂′3,l̂

†
3)6=(l′3,l

†
3),l̂′1 6=l

′
1

∑
(
̂̂
l′
2
,
̂̂
l
†
2
)6=(l̂′

2
,l̂
†
2
),(
̂̂
l′
3
,
̂̂
l
†
3
)6=(l̂′

3
,l̂
†
3
),
̂̂
l′
1
6=l̂′

1

(
̂̂
l′2,
̂̂
l†2)6=(l′2,l

†
2),(
̂̂
l′3,
̂̂
l†3)6=(l′3,l

†
3),
̂̂
l′1 6=l

′
1

P7. (B.66)

We have that

P1 = p0p2, P2 = p0p3, P3 = p0p1, P4 = p0p21, P5 = p0p23,

P6 = p0p31, P7 = p2
0. (B.67)

We now need to bound the probabilities in (B.65). The required probability p0 in (B.58)

is already upper bounded in (B.55). In (B.59), we have

p2 ≤ 2n(H(U2|U3,U1,Y3)−H(U2|U1)+δ(ε))

= 2−n(I(U2;U3,X,Y3|U1)−δ(ε)) ≤ 2−n(I(U2;U3|U1)+I(U2;Y3|U3,U1)−δ(ε)). (B.68)

In (B.60), we similarly obtain

p3 ≤ 2−n(I(U2;U3|U1)+I(U3;Y3|U2,U1)−δ(ε)). (B.69)

In (B.61) we have

p1 ≤ 2n(H(X|U1,U2,U3,Y3)−H(X|U1,U2,U3)+δ(ε)) = 2−n(I(X;Y3|U2,U3,U1)−δ(ε)). (B.70)

In (B.62) we have

p23 ≤ 2n(H(U2,U3|U1,X,Y3)−H(U2|U1)−H(U3|U1)+δ(ε))

= 2n(H(U2,U3,X,Y3|U1)−H(X,Y3|U1)−H(U2|U1)−H(U3|U1)+δ(ε))

= 2n(H(U2|U1)+H(U3|U2,U1)+H(Y3|U2,U3,U1)+H(X|Y3,U2,U3,U1))
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× 2−n(H(Y3|U1)+H(X|Y3,U1)+H(U2|U1)+H(U3|U1)−δ(ε))

= 2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(U2,U3;X|Y3,U1)−δ(ε))

≤ 2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)−δ(ε)). (B.71)

In (B.63) we have

p21 ≤ 2n(H(U2,X|U1,U3,Y3)−H(U2|U1)−H(X|U2,U3,U1)+δ(ε))

= 2n(H(U2|U1,U3,Y3)+H(X|U1,U2,U3,Y3)−H(U2|U1)−H(X|U2,U3,U1)+δ(ε))

= 2−n(I(U2;U3|U1)+I(U2;Y3|U3,U1)+I(X;Y3|U2,U3,U1)−δ(ε)). (B.72)

In (B.64), we similarly obtain

p31 ≤ 2−n(I(U2;U3|U1)+I(U3;Y3|U2,U1)+I(X;Y3|U2,U3,U1)−δ(ε)). (B.73)

Combining (B.55), (B.66), (B.68)-(B.73), we obtain the upper bound for the variance

Var
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣], which is

Var
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣]

= E

[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣2
]
− E

[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣]2

≤ 2n(L′2+L†2+L′3+L†3+L′1).2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(X;Y3|U2,U3,U1)−δ(ε))

+ 2n(2L′2+2L†2+L′3+L†3+L′1).2−n(2I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(U2;Y3|U3,U1)+I(X;Y3|U2,U3,U1)−2δ(ε))

+ 2n(L′2+L†2+2L′3+2L†3+L′1).2−n(2I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(U3;Y3|U2,U1)+I(X;Y3|U2,U3,U1)−2δ(ε))

+ 2n(L′2+L†2+L′3+L†3+2L′1).2−n(I(U2;U3|U1)+I(U2,U3;Y3|U1)+2I(X;Y3|U2,U3,U1)−2δ(ε))

+ 2n(2L′2+2L†2+2L′3+2L†3+L′1).2−n(2I(U2;U3|U1)+2I(U2,U3;Y3|U1)+I(X;Y3|U2,U3,U1)−2δ(ε))

+ 2n(2L′2+2L†2+L′3+L†3+2L′1)

× 2−n(2I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(U2;Y3|U3,U1)+2I(X;Y3|U2,U3,U1)−2δ(ε))

+ 2n(L′2+L†2+2L′3+2L†3+2L′1)

× 2−n(2I(U2;U3|U1)+I(U2,U3;Y3|U1)+I(U3;Y3|U2,U1)+2I(X;Y3|U2,U3,U1)−2δ(ε)). (B.74)

We also know that

Pr
[
E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
≤

Var
[∣∣∣∣A(l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl)

∣∣∣∣](
E
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣])2 . (B.75)
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Combining (B.74) and the lower bound in (B.55) using (B.75), we get

Pr
[
E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
≤ 2−n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)−3δ(ε))

+ 2−n(L′3+L†3+L′1−I(U2,U3;Y3|U1)+I(U2;Y3|U3,U1)−I(X;Y3|U2,U3,U1)−4δ(ε))

+ 2−n(L′2+L†2+L′1−I(U2,U3;Y3|U1)+I(U3;Y3|U2,U1)−I(X;Y3|U2,U3,U1)−4δ(ε))

+ 2−n(L′2+L†2+L′3+L†3−I(U2;U3|U1)−I(U2,U3;Y3|U1)−4δ(ε))

+ 2−n(L′1−I(X;Y3|U2,U3,U1)−4δ(ε))

+ 2−n(L′3+L†3−I(U2,U3;Y3|U1)+I(U2;Y3|U3,U1)−4δ(ε))

+ 2−n(L′2+L†2−I(U2,U3;Y3|U1)+I(U3;Y3|U2,U1)−4δ(ε)). (B.76)

Thus Pr
[
E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
→ 0 for n sufficiently large under the following condi-

tions:

L′2 + L†2 + L′3 + L†3 + L′1 ≥ I(U2;U3|U1) + I(U2, U3;Y3|U1) + I(X;Y3|U2, U3, U1),

L′3 + L†3 + L′1 ≥ I(U2, U3;Y3|U1)− I(U2;Y3|U3, U1) + I(X;Y3|U2, U3, U1)

= I(U3;Y3|U1) + I(X;Y3|U2, U3, U1),

L′2 + L†2 + L′1 ≥ I(U2, U3;Y3|U1)− I(U3;Y3|U2, U1) + I(X;Y3|U2, U3, U1)

= I(U2;Y3|U1) + I(X;Y3|U2, U3, U1),

L′2 + L†2 + L′3 + L†3 ≥ I(U2;U3|U1) + I(U2, U3;Y3|U1),

L′1 ≥ I(X;Y3|U2, U3, U1),

L′3 + L†3 ≥ I(U2, U3;Y3|U1)− I(U2;Y3|U3, U1) = I(U3;Y3|U1),

L′2 + L†2 ≥ I(U2, U3;Y3|U1)− I(U3;Y3|U2, U1) = I(U2;Y3|U1). (B.77)

Next, for each w1, we define a random version of A
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
in (B.52) as

Ã
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)
,


(l̂′2, l̂

†
2) ∈ B2(w1, l2), (l̂′3, l̂

†
3) ∈ B3(l3), l̂′1 ∈ B1(l1) :(

u1,U2(l̂′2, l̂
†
2),U3(l̂′3, l̂

†
3),X(l̂′1),Y3

)
∈ T nε ,

l̂′2 6= L′2, l̂
†
2 6= L†2, l̂

′
3 6= L′3, l̂

†
3 6= L†3, l̂

′
1 6= L′1


.

(B.78)

That is, the set of the eavesdropper’s estimate of the indices
(
l′2, l

†
2, l
′
3, l
†
3, l
′
1

)
that is not

equal to the random transmitted indices
(
L′2, L

†
2, L

′
3, L

†
3, L

′
1

)
, given random eavesdrop-
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per received signal. We also define

E(w1) ,
{∣∣∣∣Ã(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣ ≥ 2E

[∣∣∣∣Ã((l̂′2, l̂
†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)∣∣∣∣]} , (B.79)

and the indicator variables

I(w1) := 0 if
(
u1,U2(L̂′2, L̂

†
2),U3(L̂′3, L̂

†
3),X(L̂′1),Y3

)
∈ T nε and E(w1)c occurs,

I(w1) := 1 if
(
u1,U2(L̂′2, L̂

†
2),U3(L̂′3, L̂

†
3),X(L̂′1),Y3

)
/∈ T nε and E(w1) occurs.

We now want to find the probability that I(w1) = 1. Using the union bound,

Pr [I(w1) = 1]

≤ Pr
[(

u1,U2(L̂′2, L̂
†
2),U3(L̂′3, L̂

†
3),X(L̂′1),Y3

)
/∈ T nε

]
+ Pr [E(w1)]

≤ Pr
[(

u1,U2(L̂′2, L̂
†
2),U3(L̂′3, L̂

†
3),X(L̂′1),Y3

)
/∈ T nε

]
+

∑
y3∈T nε

p(y3) Pr [E(w1)|Y3 = y3] + Pr [Y3 /∈ T nε (PY3)]

(a)
=

∑
y3∈T nε

∑
ιl

p(y3)p(ιl|y3) Pr [E(w1)|Y3 = y3, I(L) = ιl]

=
∑

y3∈T nε

∑
ιl

p(y3)p(ιl|y3) Pr
[
E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
, (B.80)

where (a) is by the fact that the first term

Pr
[(

u1,U2(L̂′2, L̂
†
2),U3(L̂′3, L̂

†
3),X(L̂′1),Y3

)
/∈ T nε

]
→ 0

for n sufficiently large by the properties of joint typical sequences, and this implies

that the third term also goes to 0 for n sufficiently large. Finally, since we know that

Pr
[
{E
(
l̂′2, l̂

†
2, l̂
′
3, l̂
†
3, l̂
′
1, ιl

)]
→ 0 for n sufficiently large under the conditions of (B.77),

we have Pr[I(w1) = 1]→ 0 for n sufficiently large.

To bound H(I(L)|U1,Y3, w1), we consider the expansion of the entropy

H(I(w1), I(L)|U1,Y3, w1). We have

H(I(w1), I(L)|U1,Y3, w1) = H(I(L)|U1,Y3, w1) +H(I(w1)|U1,Y3, I(L), w1)

= H(I(L)|U1,Y3, w1), (B.81)

where the second equality is because H(I(w1)|U1,Y3, I(L), w1) = 0 as I(w1) is de-
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termined by (Y3, I(L), w1). So we now have

H(I(L)|U1,Y3, w1) = H(I(w1), I(L)|U1,Y3, w1)

= H(I(w1)|U1,Y3, w1) + Pr [I(w1) = 1]H(I(L)|U1,Y3, w1, I(w1) = 1)

+ Pr [I(w1) = 0]H(I(L)|U1,Y3, w1, I(w1) = 0)

(a)

≤ 1 + Pr [I(w1) = 1]H(I(L)|U1,Y3, w1, I(w1) = 1)

+ (1− Pr [I(w1) = 1])H(I(L)|U1,Y3, w1, I(w1) = 0)

≤ 1 + Pr [I(w1) = 1]H(I(L)|U1,Y3, w1, I(w1) = 1)

+H(I(L)|U1,Y3, w1, I(w1) = 0), (B.82)

where (a) is due to H(I(w1)|U1,Y3, w1) ≤ H(I(w1)) ≤ 1 as I(w1) is binary-valued.

In (B.82), the second term → 0 for n sufficiently large. For the third term, we know

that, given (U1,Y3, w1) and I(w1) = 0, the number of values I(L) takes on is up-

per bounded by log
(

2E
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣]− 1

)
. The third term of (B.82) now

becomes

H(I(L)|U1,Y3, w1, I(w1) = 0) ≤ log
(

2E
[∣∣∣∣A(l̂′2, l̂†2, l̂′3, l̂†3, l̂′1, ιl)∣∣∣∣]− 1

)
= log

(
2n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)+δ(ε))+1 − 1

)
= n(L′2 + L†2 + L′3 + L†3 + L′1 − I(U2;U3|U1)

− I(U2, U3;Y3|U1)− I(X;Y3|U2, U3, U1) + δ(ε))

+ log
(

2− 2−n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)+δ(ε))
)

(a)

≤ n(L′2 + L†2 + L′3 + L†3 + L′1 − I(U2;U3|U1)

− I(U2, U3;Y3|U1)− I(X;Y3|U2, U3, U1) + δ(ε))

+ 1− 2−n(L′2+L†2+L′3+L†3+L′1−I(U2;U3|U1)−I(U2,U3;Y3|U1)−I(X;Y3|U2,U3,U1)+δ(ε)),

where (a) is due to using the relation log(x) ≤ x− 1. Then, for n sufficiently large,

H(I(L)|U1,Y3, w1) ≤ n(L′2 + L†2 + L′3 + L†3 + L′1 − I(U2;U3|U1)− I(U2, U3;Y3|U1)

− I(X;Y3|U2, U3, U1) + δ(ε)) + 2, (B.83)

since L′2 +L†2 +L′3 +L†3 +L′1 ≥ I(U2;U3|U1)+I(U2, U3;Y3|U1)+I(X;Y3|U2, U3, U1).

By averaging over w1, the lemma is proved.
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B.5 Fourier-Motzkin Elimination for Inner Bound in

Theorem 14
Our starting point is the set of inequalities, using R1 = L1 + L2 + L3 and R1e =

L1e + L2e + L3e

L2e ≤ Q2 − I(U2;Y3|U1)

L3e ≤ Q3 − I(U3;Y3|U1)

L1e ≤ I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

L2e + L1e ≤ I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

L3e + L1e ≤ I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

L2 ≤ Q2, L3 ≤ Q3

L2 + L3 ≤ Q2 +Q3 − I(U2;U3|U1)

R0 +Q2 ≤ I(U2;Y2)

R0 +Q3 ≤ I(U3;Y3)

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

L1 + L3 ≤ I(X;Y1|U2)

L1 + L2 ≤ I(X;Y1|U3)

L1 ≤ I(X;Y1|U2, U3)

0 ≤ L1, 0 ≤ L2, 0 ≤ L3

0 ≤ L1e 0 ≤ L2e 0 ≤ L3e. (B.84)

Eliminating Q2, we have

R0 + L2e ≤ I(U2;Y2)− I(U2;Y3|U1)

R0 + L2 ≤ I(U2;Y2)

R0 + L2 + L3 ≤ I(U2;Y2) +Q3 − I(U2;U3|U1)

L3e ≤ Q3 − I(U3;Y3|U1)
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L1e ≤ I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

L2e + L1e ≤ I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

L3e + L1e ≤ I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

L3 ≤ Q3

R0 +Q3 ≤ I(U3;Y3)

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

L1 + L3 ≤ I(X;Y1|U2)

L1 + L2 ≤ I(X;Y1|U3)

L1 ≤ I(X;Y1|U2, U3)

0 ≤ L1, 0 ≤ L2, 0 ≤ L3

0 ≤ L1e 0 ≤ L2e 0 ≤ L3e. (B.85)

Eliminating Q3, we have

R0 + L3e ≤ I(U3;Y3)− I(U3;Y3|U1)

R0 + L2e ≤ I(U2;Y2)− I(U2;Y3|U1)

R0 + L2 ≤ I(U2;Y2)

R0 + L3 ≤ I(U3;Y3)

2R0 + L2 + L3 ≤ I(U2;Y2) + I(U3;Y3)− I(U2;U3|U1)

L1e ≤ I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

L2e + L1e ≤ I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

L3e + L1e ≤ I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

L1 + L3 ≤ I(X;Y1|U2)
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L1 + L2 ≤ I(X;Y1|U3)

L1 ≤ I(X;Y1|U2, U3)

0 ≤ L1, 0 ≤ L2, 0 ≤ L3

0 ≤ L1e 0 ≤ L2e 0 ≤ L3e. (B.86)

Now substitute L1e = R1e−L2e−L3e and L1 = R1−L2−L3 into (B.86) and we get

R0 + L3e ≤ I(U3;Y3)− I(U3;Y3|U1)

R0 + L2e ≤ I(U2;Y2)− I(U2;Y3|U1)

R0 + L2 ≤ I(U2;Y2)

R0 + L3 ≤ I(U3;Y3)

2R0 + L2 + L3 ≤ I(U2;Y2) + I(U3;Y3)− I(U2;U3|U1)

R1e ≤ L2e + L3e + I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

R1e ≤ L3e + I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1)

R1e ≤ L2e + I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

R1 ≤ L2 + I(X;Y1|U2)

R1 ≤ L3 + I(X;Y1|U3)

R1 ≤ L2 + L3 + I(X;Y1|U2, U3)

L2 + L3 ≤ R1, 0 ≤ L2, 0 ≤ L3

L2e + L3e ≤ R1e 0 ≤ L2e 0 ≤ L3e. (B.87)

Eliminating L2 from (B.87), we obtain, after removing redundant inequalities,

0 ≤ L3

L3 + 2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2)

L3 +R0 ≤ I(U3;Y3)

L3 ≤ I(X;Y1|U2)
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R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2, U3) + L3

L3 + 2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

L3 ≤ R1

0 ≤ L2e

0 ≤ L3e

L2e +R0 ≤ I(U2;Y2)− I(U2;Y3|U1)

L3e +R0 ≤ I(U3;Y3)− I(U3;Y3|U1)

L2e + L3e ≤ R1e

R1e ≤ I(X;Y1|U2, U3) + L2e + L3e − I(X;Y3|U2, U3)

R1e ≤ I(X;Y1|U2) + L2e − I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U3) + L3e − I(X;Y3|U2, U3)− I(U2;Y3|U1)

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

R1 ≤ I(X;Y1|U3) + L3

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ R1

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

R0 ≤ I(U2;Y2) (B.88)

We now eliminate L3 from (B.88). After removing redundant inequalities, we have

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

R1e ≤ I(X;Y1|U2, U3) + L2e + L3e − I(X;Y3|U2, U3)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U2) + L2e − I(X;Y3|U2, U3)− I(U3;Y3|U1)

R1e ≤ I(X;Y1|U3) + L3e − I(X;Y3|U2, U3)− I(U2;Y3|U1)
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L2e +R0 ≤ I(U2;Y2)− I(U2;Y3|U1)

L3e +R0 ≤ I(U3;Y3)− I(U3;Y3|U1)

L2e + L3e ≤ R1e

0 ≤ L2e

0 ≤ L3e

R1e ≤ R1

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

R0 ≤ I(U2;Y2)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U3)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2) + I(X;Y1|U3)

R1 ≤ I(X;Y1|U2) + I(X;Y1|U3)

R0 ≤ I(U3;Y3)

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3). (B.89)

Eliminating L2e from the inequalities in (B.89) and removing redundancies, we have

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U3) + L3e − I(X;Y3|U2, U3)− I(U2;Y3|U1)

L3e +R0 ≤ I(U3;Y3)− I(U3;Y3|U1)

0 ≤ L3e

R1e ≤ R1

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U3)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2) + I(X;Y1|U3)

R1 ≤ I(X;Y1|U2) + I(X;Y1|U3)
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R0 ≤ I(U3;Y3)

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

R0 +R1e ≤ I(U2;Y2) + I(X;Y1|U2, U3) + L3e − I(X;Y3|U2, U3)− I(U2;Y3|U1)

R0 +R1e ≤ I(U2;Y2) + I(X;Y1|U2)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)

L3e ≤ I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1)

R0 ≤ I(U2;Y2)− I(U2;Y3|U1)

L3e ≤ R1e (B.90)

along with the condition I(X;Y1|U2, U3) − I(X;Y3|U2, U3) ≥ 0. Next, eliminat-

ing L3e from the inequalities in (B.90) and removing redundancies with the help of

I(X;Y1|U2, U3)− I(X;Y3|U2, U3) ≥ 0, we have

R0 +R1 ≤ I(X;Y1)

R1 ≤ I(X;Y1|U1)

R0 +R1e ≤ I(X;Y1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ I(X;Y1|U1)− I(U2;U3|U1)− I(X;Y3|U2, U3)− I(U2, U3;Y3|U1)

R1e ≤ R1

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U3)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2)

+ I(X;Y1|U3)

R1 ≤ I(X;Y1|U2) + I(X;Y1|U3)

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

R0 +R1e ≤ I(U2;Y2) + I(X;Y1|U2)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)

R0 ≤ I(U2;Y2)− I(U2;Y3|U1)

R0 +R1e ≤ I(U3;Y3) + I(X;Y1|U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)
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R1e ≤ I(X;Y1|U2) + I(X;Y1|U3)− 2I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1)

R0 ≤ I(U3;Y3)− I(U3;Y3|U1)

2R0 +R1e ≤ I(U2;Y2) + I(U3;Y3) + I(X;Y1|U2, U3)− I(X;Y3|U2, U3)

− I(U2;Y3|U1)− I(U3;Y3|U1). (B.91)

We also have the conditions I(X;Y1|U3) − I(X;Y3|U2, U3) − I(U2;Y3|U1) ≥ 0,

I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1) ≥ 0.

Next, to perform the rate splitting operation mentioned in the proof of Theorem

14, we make the substitutions R0 = R0n + R1n − R11, R1 = R11 into (B.91), and add

the conditions R11 ≤ R1n, 0 ≤ R11. Then, re-assign the new R0 = R0n, R1 = R1n and

eliminate R11. We end up with the set of inequalities of Theorem 14, after removing

redundancies with the help of the conditions

I(X;Y1|U3)− I(X;Y3|U2, U3)− I(U2;Y3|U1) ≥ 0,

I(X;Y1|U2)− I(X;Y3|U2, U3)− I(U3;Y3|U1) ≥ 0,

I(X;Y1|U1) ≥ I(X;Y1|U2, U3). (B.92)

The last condition can be easily seen by the fact that

I(X;Y1|U1) = I(U2, U3;Y1|U1) + I(X;Y1|U2, U3, U1)

= I(U2, U3;Y1|U1) + I(X;Y1|U2, U3), (B.93)

given the Markov chain U1 → (U2, U3)→ X → Y1.
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Appendix C

Reduction of Rate Region in Theorem

14 to Special Cases

C.1 Reduction to General 3-receiver 2 DMS Inner

Bound
From Theorem 14, removing the equivocation constraints, we have the following region

over p(u1)p(u2, u3|u1)p(x|u2, u3),

R0 ≤ min{I(U2;Y2), I(U3;Y3)}

R0 ≤ I(X;Y1)− I(U2;U3|U1) (i)

R0 ≤ I(U2;Y2) + I(X;Y1|U2) (∗)

R0 ≤ I(U3;Y3) + I(X;Y1|U3) (∗)

2R0 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3)

2R0 ≤ I(U2;Y2) + I(U3;Y3) + I(X;Y1|U2, U3) (∗)

R0 +R1 ≤ I(X;Y1)

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U2)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U3)

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U1) (∗)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U1) (∗)

R0 +R1 ≤ I(X;Y1|U2)− I(U2;U3|U1) + I(X;Y1|U3) + I(X;Y1) (ii)

R0 +R1 ≤ I(U2;Y2) + I(X;Y1|U1) + I(X;Y1|U2) (∗)
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R0 +R1 ≤ I(U2;Y2) + 2I(X;Y1|U2) + I(X;Y1|U3) (∗)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U1) + I(X;Y1|U3) (∗)

R0 +R1 ≤ I(U3;Y3) + I(X;Y1|U2) + 2I(X;Y1|U3) (∗)

2R0 +R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2, U3)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U2) + I(X;Y1|U3)

2R0 + 2R1 ≤ I(U2;Y2)− I(U2;U3|U1) + I(U3;Y3) + I(X;Y1|U1) + I(X;Y1|U2, U3)

2R0 + 2R1 ≤ I(U2;Y2) + I(U3;Y3) + 2I(X;Y1|U2)

+ 2I(X;Y1|U3) + I(X;Y1|U2, U3) (∗)

2R0 + 2R1 ≤ I(U2;Y2) + I(U3;Y3) + 2I(X;Y1|U1) + I(X;Y1|U2, U3) (∗) (C.1)

The starred inequalities are redundant, while the inequalities marked (i) and (ii) can be

shown to be redundant as follows. For the inequality marked (i), we have

R0 ≤ I(X;Y1)− I(U2;U3|U1)

(a)
= I(U1;Y1) + I(X;Y1|U1)− I(U2;U3, Y1|U1) + I(U2;Y1|U3, U1)

(b)
= I(U1;Y1) + I(X;Y1|U2) + I(U2;Y1|U1)− I(U2;Y1|U1)

− I(U2;U3|Y1, U1) + I(U2;Y1|U3, U1)

= I(U1;Y1) + I(X;Y1|U2)−H(U2|Y1, U1) +H(U2|U3, U1)

≤ I(U1;Y1) + I(X;Y1|U2)−H(U2|Y1, U1) +H(U2|U1)

= I(U1;Y1) + I(X;Y1|U2) + I(U2;Y1|U1)

(c)
= I(U1;Y1) + I(X;Y1|U1) = I(X;Y1), (C.2)

which is redundant. In the above, (a) is due to U1 → X → Y1 forming a Markov chain

so that I(X;Y1) = I(U ;Y1) + I(X;Y1|U1), (b) is due to U1 → U2 → X → Y1 so that

I(X;Y1|U1) = I(X;Y1|U2, U1) + I(U2;Y1|U1)

= I(X;Y1|U2) + I(U2;Y1|U1). (C.3)

For the inequality marked (ii), we have

R0 +R1 ≤ I(X;Y1|U2)− I(U2;U3|U1) + I(X;Y1|U3) + I(X;Y1)

(a)

≤ I(X;Y1) + I(X;Y1|U2) + I(X;Y1|U3) (C.4)
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which is redundant; for (a) we used the result of (C.2). After removing all the redundant

inequalities from (C.1), we can obtain the rate region for the 3 receiver BC with 2 DMS

[91, Proposition 5] over the p.d.f. p(u1)p(u2, u3|u1)p(x|u2, u3).

C.2 Reduction to 3-receiver 2 DMS Region with Y1 Less

Noisy Than Y2

In Theorem 14, turning off all equivocation constraints and setting U2 = U1 = U and

U3 = V , we have

R0 ≤ min{I(U ;Y2), I(V ;Y3)}

R0 +R1 ≤ I(X;Y1)

R0 +R1 ≤ I(U ;Y2) + I(X;Y1|U)

R0 +R1 ≤ I(V ;Y3) + I(X;Y1|V )

R0 ≤ I(X;Y1) (∗)

2R0 ≤ I(U ;Y2) + I(V ;Y3) + I(X;Y1|V ) (∗)

R0 +R1 ≤ I(X;Y1|U) + I(X;Y1|V ) + I(X;Y1) (∗)

R0 +R1 ≤ I(U ;Y2) + 2I(X;Y1|U) (∗)

R0 +R1 ≤ I(U ;Y2) + 2I(X;Y1|U) + I(X;Y1|V ) (∗)

R0 +R1 ≤ I(V ;Y3) + I(X;Y1|U) + I(X;Y1|V ) (∗)

R0 +R1 ≤ I(V ;Y3) + I(X;Y1|U) + 2I(X;Y1|V ) (∗)

2R0 +R1 ≤ I(U ;Y2) + I(V ;Y3) + I(X;Y1|V ) (∗)

2R0 + 2R1 ≤ I(U ;Y2) + I(V ;Y3) + I(X;Y1|U) + I(X;Y1|V ) (∗)

2R0 + 2R1 ≤ I(U ;Y2) + I(V ;Y3) + 2I(X;Y1|U) + 3I(X;Y1|V ) (∗)

2R0 + 2R1 ≤ I(U ;Y2) + I(V ;Y3) + 2I(X;Y1|U) + I(X;Y1|V ). (∗) (C.5)

The starred inequalities are redundant after applying the condition that Y1 less noisy

than Y2 so that we have I(U ;Y2) ≤ I(U ;Y1). Then we can easily see that we can

get the region of [91, Proposition 7], using I(X;Y1) = I(U ;Y1) + I(X;Y1|U), since

U → X → Y1 forms a Markov chain.
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C.3 Reduction to Region of BC with One Common and

One Confidential Message
We start off by setting Y1 = Y2 = Y , Y3 = Z, U2 = U1 = U and U3 = T in the region

of Theorem 14, to obtain the following region over the p.d.f. p(u)p(t|u)p(x|t):

R0 ≤ I(U ;Y )

R0 ≤ I(T ;Z)− I(T ;Z|U) = I(U ;Z)

2R0 ≤ I(U ;Y ) + I(T ;Z)

R0 +R1 ≤ I(X;Y )

R0 +R1 ≤ I(U ;Y ) + I(X;Y |U) = I(X;Y ) (∗)

R0 +R1 ≤ I(T ;Z) + I(X;Y |T )

R0 +R1 ≤ I(U ;Y ) + I(X;Y |U) (∗)

R0 +R1 ≤ I(T ;Z) + I(X;Y |U)− I(T ;Z|U) = I(U ;Z) + I(X;Y |U)

R1e ≤ R1

R1e ≤ I(X;Y |U)− I(X;Z|T )− I(T ;Z|U) = I(X;Y |U)− I(X;Z|U)

R1e ≤ I(X;Y |U) + I(X;Y |T )− 2I(X;Y |T )− I(T ;Z|U)

= I(X;Y |U) + I(X;Y |T )− I(X;Y |U)− I(X;Z|T )

R0 +R1e ≤ I(X;Y )− I(X;Z|T )− I(T ;Z|U)

R0 +R1e ≤ I(U ;Y ) + I(X;Y |U)− I(X;Z|T )− I(T ;Z|U)

R0 +R1e ≤ I(T ;Z) + I(X;Y |T )− I(X;Z|T )− I(T ;Z|U)

2R0 +R1e ≤ I(U ;Y ) + I(T ;Z) + I(X;Y |T )− I(X;Z|T )− I(T ;Z|U)

R0 +R1 +R1e ≤ I(X;Y |U) + I(X;Y |T ) + I(X;Y )− I(X;Y |T )− I(T ;Z|U)

R0 +R1 +R1e ≤ I(U ;Y ) + 2I(X;Y |U)− I(X;Z|T )− I(T ;Z|U)

R0 +R1 +R1e ≤ I(U ;Y ) + 2I(X;Y |U) + I(X;Y |T )− I(X;Z|T )− I(T ;Z|U)

R0 +R1 +R1e ≤ I(T ;Z) + I(X;Y |U) + I(X;Y |T )− I(X;Z|T )− I(T ;Z|U)

R0 +R1 +R1e ≤ I(T ;Z) + I(X;Y |U) + 2I(X;Y1|T )− I(X;Z|T )− I(T ;Z|U)

2R0 +R1 ≤ I(U ;Y ) + I(T ;Z) + I(X;Y |T )

2R0 + 2R1 ≤ I(U ;Y ) + I(T ;Z) + I(X;Y |U) + I(X;Y |T )

2R0 + 2R1 +R1e ≤ I(U ;Y ) + I(T ;Z) + 2I(X;Y |U) + 3I(X;Y |T )
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− I(X;Z|T )− I(T ;Z|U)

2R0 + 2R1 +R1e ≤ I(U ;Y ) + I(T ;Z) + 2I(X;Y |U) + I(X;Y |T )

− I(X;Z|T )− I(T ;Z|U) (C.6)

where we made use of the fact that, for generic r.v.s U, V and Y , we have I(V ;Y ) =

I(V ;Y |U) + I(U ;Y ) if the Markov chain U → V → Y is satisfied. The starred

inequalities are redundant. Now, for the region in (C.6), set T = X to obtain the

following region, which is over the p.d.f. p(u)p(x|u)

R0 ≤ I(U ;Y )

R0 ≤ I(U ;Z)

2R0 ≤ I(U ;Y ) + I(X;Z) (∗)

R0 +R1 ≤ I(X;Y )

R0 +R1 ≤ I(X;Z) = I(U ;Z) + I(X;Z|U)

R0 +R1 ≤ I(U ;Z) + I(X;Y |U)

R1e ≤ R1

R1e ≤ I(X;Y |U)− I(X;Z|U)

R0 +R1e ≤ I(X;Y )− I(X;Z|U) = I(U ;Y ) + I(X;Y |U)− I(X;Z|U) (∗)

R0 +R1e ≤ I(U ;Y ) + I(X;Y |U)− I(X;Z|U) (∗)

R0 +R1e ≤ I(X;Z)− I(X;Z|U) = I(U ;Z) + I(X;Z|U)− I(X;Z|U)

2R0 +R1e ≤ I(U ;Y ) + I(X;Z)− I(X;Z|U) (∗)

R0 +R1 +R1e ≤ I(X;Y |U) + I(X;Y )− I(X;Z|U) (∗)

R0 +R1 +R1e ≤ I(U ;Y ) + 2I(X;Y |U)− I(X;Z|U) (∗)

R0 +R1 +R1e ≤ I(X;Z) + I(X;Y |U)− I(X;Z|U) (∗)

R0 +R1 +R1e ≤ I(X;Z) + I(X;Y |U)− I(X;Z|U) (∗)

2R0 +R1 ≤ I(U ;Y ) + I(X;Z) (∗)

2R0 + 2R1 ≤ I(U ;Y ) + I(X;Z) + I(X;Y |U) (∗)

2R0 + 2R1 +R1e ≤ I(U ;Y ) + I(X;Z) + 2I(X;Y |U)− I(X;Z|U). (∗) (C.7)

After removing the redundant starred inequalities, we have, over the p.d.f. p(u)p(x|u),

R0 ≤ I(U ;Y )
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R0 ≤ I(U ;Z)

R0 +R1 ≤ I(X;Y ) = I(U ;Y ) + I(X;Y |U)

R0 +R1 ≤ I(U ;Z) + I(X;Z|U) ≤ I(U ;Z) + I(X;Y |U) (∗)

R0 +R1 ≤ I(U ;Z) + I(X;Y |U)

R1e ≤ R1

R1e ≤ I(X;Y |U)− I(X;Z|U)

R0 +R1e ≤ I(U ;Z) + I(X;Z|U)− I(X;Z|U)

≤ I(U ;Z) + I(X;Y |U)− I(X;Z|U) (∗). (C.8)

The starred inequalities are redundant provided that I(X;Y |U) ≥ I(X;Z|U); this

means that we can obtain the following region, over the p.d.f. p(u)p(x|u),

R0 ≤ I(U ;Y )

R0 ≤ I(U ;Z)

R0 +R1 ≤ I(U ;Y ) + I(X;Y |U)

R0 +R1 ≤ I(U ;Z) + I(X;Y |U)

R1e ≤ R1

R1e ≤ I(X;Y |U)− I(X;Z|U). (C.9)

This region is the same as the one in [30, Lemmas 2,3] for the BC with one common

and one confidential message. Now prefix a DMC with transition probability p(x|v) to

the channels p(y|x) and p(z|x) (that is, prefix V to X → (Y, Z)), as in [30, Lemma 4]

resulting in channels with transition probabilities p(x|v)p(y|x) and p(x|v)p(z|x) and

the rate-equivocation region over the p.d.f. p(u)p(v|u)p(x|v)p(y, z|x),

R0 ≤ I(U ;Y )

R0 ≤ I(U ;Z)

R0 +R1 ≤ I(U ;Y ) + I(V ;Y |U)

R0 +R1 ≤ I(U ;Z) + I(V ;Y |U)

R1e ≤ R1

R1e ≤ I(V ;Y |U)− I(V ;Z|U), (C.10)
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under the condition that I(V ;Y |U) ≥ I(V ;Z|U). The region in (C.10) is the rate-

equivocation region for the BC with one common and one confidential message of

Csiszár-Körner [30, Lemma 4] given in Theorem 10. Thus we have shown that our

inner bound in Theorem 14 can reduce to the Csiszár-Körner region for the 2-receiver

BC.
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Appendix D

Lattice Decoding for AWGN Channel

D.1 Lattice Decoder
Here, we show that the lattice decoder used by Erez and Zamir in [38] is the same as

decoding to the nearest coset cm + Λ2. The decoding operation as given in [38] is

ĉm = QV1(Y′)modΛ. (D.1)

Let us recall that the quantizer QV1(.) is given by

QV1(x) = arg min
λ1∈Λ1

‖x− λ1‖ . (D.2)

By a intuitive reasoning, the decoding operation in Erez-Zamir [38] should be decoding

to the coset specified by cm, under correct decoding. To see the form of the decoder (in

terms of the norm, like the metric) and to show decoding to the coset specified by cm

is true, we need some information from the paper by Liu et al [79].

In [79, Sect. 3,5], it is stated that the decoding operation in (D.1) is equivalent to

ĉm = arg min
m∈{1,...,M}

(
min

λ2∈Λ2

‖y′ − (cm + λ2)‖
)
, (D.3)

with the nesting and the nested code specified as in Erez and Zamir [38]. To show that

this is true, we need the following two properties of the L2 norm from [25, Chap. 3]:

• P1: ‖v −w‖ = ‖w − v‖ for all v,w in Rn.

• P2: For any v,w in Rn, then |‖v‖ − ‖w‖| ≤ ‖v −w‖.



D.2. Error Probability for the Lattice Decoder 211

Now, from (D.1) we have

ĉm = QV1(y′)modΛ2

= QV1(y′)−QV2 (QV1(y′))

= arg min
cm∈Λ1

‖y′ − cm‖ − arg min
λ2∈Λ2

∥∥∥∥arg min
cm∈Λ1

‖y′ − cm‖ − λ2

∥∥∥∥
(a)
= arg min

cm∈Λ1

‖y′ − cm‖ − arg min
λ2∈Λ2

∥∥∥∥λ2 − arg min
cm∈Λ1

‖y′ − cm‖
∥∥∥∥

(b)
= arg min

cm∈Λ1

‖y′ − cm‖ − arg min
λ2∈Λ2

‖λ2‖

= arg min
cm∈Λ1

‖y′ − cm‖ − arg min
λ2∈Λ2

‖y′ − (y′ − λ2)‖
(c)

≤ arg min
cm∈Λ1

arg min
λ2∈Λ2

‖cm − (y′ − λ2)‖ = arg min
cm∈Λ1

arg min
λ2∈Λ2

‖cm + λ2 − y′‖

= arg min
cm∈Λ1

arg min
λ2∈Λ2

‖y′ − cm − λ2‖ , (D.4)

where (a) is due to the property P1 of the L2 norm given above; (b) is due to the

following argument, similar to argument in Conway and Sloane [24, Sect. 2.1, p 41-42]:

Define d , arg mincm∈Λ1 ‖y′ − cm‖. Now d ∈ Λ1 implies that d ∈ Λ2 since Λ2 ⊂ Λ1,

giving rise to min{‖λ2 − d‖ : λ2,d ∈ Λ2,λ2 6= d} = min{‖λ2‖ : λ2 ∈ Λ2,λ2 6= 0}.

Lastly (c) is due to property P2 of the L2 norm given above. Since we only need

cm ∈ Λ1 and λ2 ∈ Λ2 that minimise the objective, the inequality above is not important

to the outcome of finding the cm and λ2, and we have

ĉm = arg min
cm∈Λ1

arg min
λ2∈Λ2

(‖y′ − cm − λ2‖) , (D.5)

from which we can obtain (D.3). Thus we can show that the Erez-Zamir lattice decoder

is the same as the one specified by the more intuitive form of (D.3).

D.2 Error Probability for the Lattice Decoder
Here we give more details on the error probability for the Erez-Zamir decoder for the

AWGN channel. To begin, we make the distinction between ML decoding and lattice

decoding. In ML decoding, we attempt to find the lattice point inside the sphere closest

to the received signal. In doing so the decision region is not the fundamental region

of the lattice and so the lattice structure and symmetry is lost. In lattice decoding, the

structure and symmetry of the underlying lattice is exploited in decoding.

In summary, the mechanics of obtaining an upper bound on Pe is as follows. The

Pe with (aliased) noise induced by the MLAN channel N′ is bounded in terms of the
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Pe with unaliased noise N′′ = [(1 − α)U + αN]. This is in turn bounded in terms

of Pe with a Gaussian noise Z∗. Then, by truncating Z∗ to Voronoi region V2 to get

ZV2 , the error probability is finally bound in terms of Pe with ZV2 . Since Euclidean

lattice decoding has the same performance as ML decoding in the Voronoi region (see

the discussion in [38, Sect. VIII]), we can use Gallager’s error exponent method (see

Sect. 3.1.2) as in Poltyrev [101] to show that Pe → 0 for rates approaching the normal

AWGN channel capacity. We note that the work of Poltyrev [101] considered a lattice

without a bounding region and ML decoding.

Now, the error probability for the Erez-Zamir lattice decoder for a given transmit-

ted cm is given by

Pe = Pr[N′ /∈ V1(cm)], (D.6)

where V1(cm) is the Voronoi region associated with cm. Now N′ = N′′modΛ2. We

want the error probability of the unaliased noise N′′. Following [46, Sect. III] and [79,

Sect. 3B], we have (by the modulo-Λ2 operation)

{N′ ∈ V1(cm)} =
⋃

λ2∈Λ2

{N′′ ∈ V1(cm + λ2)} . (D.7)

Conversely, we have

{N′ /∈ V1(cm)} =
⋃

λ2∈Λ2

{N′′ /∈ V1(cm + λ2)} . (D.8)

Therefore, the probability of error for the Erez-Zamir decoder may be expressed in

terms of the unaliased noise N′′ as

Pe = Pr

 ⋃
λ2∈Λ2

{N′′ /∈ V1(cm + λ2)}

 . (D.9)

It is then the union of events that the unaliased noise does not fall into the regions,

each defined by the Voronoi region associated with cm, translated by an element of

the coarse lattice Λ2. We see that the effect of the operation N′ = N′′modΛ2, where

Λ2 ⊂ Λ1, is to create an infinite constellation (IC) with points spaced |Λ1/Λ2| times

further apart than in Λ1, where the points cm with decision regions V1(cm) lie.

Since all Voronoi regions V1 are congruent, and the decision region now extends

to the IC with decision regions V1(cm + λ2) for all λ2 ∈ Λ2, we may find upper and

lower bounds to Pe by assuming that the cm is taken from an IC. According to Poltyrev



D.2. Error Probability for the Lattice Decoder 213

[101, Sect. IV], for a lattice (which is a linear IC), by the congruency of the Voronoi

cells of all lattice points, the conditional probability of error for a given lattice point

does not depend on the lattice point and coincides with the average probability of error

over the lattice; and the distance distribution also does not depend on the lattice point.

So, for a lattice, it is sufficient to calculate the error probability associated with V1(0).

Thus we may bound Pe for the IC “induced” by the operation N′ = N′′modΛ2 by the

error probability associated with V1(0) = V1.

D.2.1 Upper bound to Pe
The upper bound

Pe ≤ Pr [N′′ /∈ V1(cm)] = Pr [N′′ /∈ V1] . (D.10)

can be found by using the argument of Poltyrev above, or as in [79, Sect. 3B, proof

of Lemma 2]. In fact the proof of [79, Lemma 2] is valid for a probability of a union

of events and validates our assumption that the error probability should take the form

(D.9).

To use the results of Poltyrev [101] (which deals with ML decoding in AWGN), the

distribution of the noise N′′ has to be upper bounded by the distribution of a Gaussian

noise Z∗ ∼ N (0, PZ∗ .In), so that

fN′′(x) ≤ en.ε1(Λ2)fZ∗(x), x ∈ V2, (D.11)

where PZ∗ is defined in [38, Eqn. (81)], but approaches PXPN
PX+PN

as n gets large; ε1(Λ2) is

a function of parameters of the lattice Λ2 defined in [38, Eqn. (67)] and is independent

of x and is small as n gets large. The probability Pr [N′′ /∈ V1] is then upper bounded

by

Pr [N′′ /∈ V1] ≤ en.ε1(Λ2) Pr [Z∗ /∈ V1] . (D.12)

Next, following the argument in [38, Sect. VIII], the probability Pr [Z∗ /∈ V1] is

bound in terms of probabilities that allow for the use of the ML decoding, truncating

Z∗ to V2. We have

Pr [Z∗ /∈ V1] = Pr [Z∗ /∈ V2] + Pr [ZV2 /∈ V1]− Pr [Z∗ /∈ V2] .Pr [ZV2 /∈ V1]

≤ Pr [Z∗ /∈ V2] + Pr [ZV2 /∈ V1] , (D.13)
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where ZV2 is Z∗ truncated to V2, with p.d.f.

fZV2
(x) =


1

1−Pr[Z∗ /∈V2]
fZ∗(x) x ∈ V2

0 otherwise
(D.14)

In the last line of (D.13), the first term on the RHS is bound by viewing Λ2 as a channel

code with noise Z∗, so the probability can be bound using (6.14) as if the channel inputs

were points from the unconstrained lattice Λ2. To bound the second term on the RHS,

we first recognize that we can express this error probability as the error probability in

an MLAN channel (with generic output Y)

Y = [X + ZV2 ]modΛ2 (D.15)

That is, an MLAN channel with input defined on V2 and the noise truncated to V2.

The error probability of the MLAN channel (D.15) is dictated by its error exponent,

assuming a uniform input over V2. The error exponent of the MLAN channel (D.15)

can be found from Gallager’s error exponent using the steps in [37], and then related to

the lattice Λ2 using steps in [38, Appendices B,C]. Now since both terms on the RHS

of the inequality (D.13) above can be bounded, the evaluation of Pe can now proceed

as in [38, Sect. VIII].

At this point we defer further discussion of the finer details of the bounding of the

Pe until we analyze our wiretap coding scheme.
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[97] F. Oggier, P. Solé and J. C. Belfiore, ‘Lattice codes for the wiretap Gaussian

channel: construction and analysis’, submitted to IEEE Trans. Inf. Theory, March

2011. [Online] http://arxiv.org/abs/1103.4086v1

[98] Y. Oohama, ‘Relay channels with confidential messages’, submitted to IEEE

Trans. Inf. Theory, March 2007.

[99] L. Ozarow and A. Wyner, ‘Wire-tap channel II’, Bell Syst. Tech. J., vol. 63, pp.

2135-2157, Dec. 1984.
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