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Abstract

The mechanisms that control the segregation of cells in the developing embryo are
essential for normal development. Eph receptors and ephrins are responsible for
cell segregation and the maintenance of sharp boundaries between regions of cells,
such as those in the adult intestine or the compartments of the developing
vertebrate hindbrain. The mechanisms through which they achieve this are not

well understood.

One widely discussed theory, based on the differential adhesion hypothesis, is that
Eph receptors and ephrins influence the relative adhesion between cells in
adjacent compartments. The other is that active migratory or repulsive

mechanisms are responsible for segregation.

Using in vitro assays that were established as part of this project, [ have shown that
N-cadherin is required for EphB2-ephrinB1 mediated cell sorting, consistent with
an important role of cell-cell adhesion in this process. p120 and p0071, which are
downstream targets of signalling through EphB2 and have established roles in
regulating cadherin stability, are also required for cell segregation by EphB2 and

ephrinB1.

However, comparison with the segregation of cells expressing different cadherins
suggests that differential adhesion is not the main mechanism driving sorting
downstream of Eph-ephrins. Instead, [ propose that repulsion is the main
mechanism driving segregation mediated by EphB2 and ephrinB1 and that N-
cadherin is required for general adhesion between all cells, which stabilises the

formation of EphB2 cell clusters.

Cell behaviour analyses indicate that N-cadherin is not required for the repulsion
response of EphB2 cells after interactions with ephrinB1 cells, although it does
play a contact-dependent role in cell migration. However, there is a cadherin-
independent role of p120 in repulsion downstream of Eph-ephrins, which could

contribute to cell sorting.

These results support a model where Eph-ephrin mediated repulsion acts in

combination with a basal level of cell-cell adhesion to drive cell segregation.
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1. Introduction

A major aim of developmental biology is to understand how cells within an embryo
cooperate to form the patterned set of tissues that make up an animal. A
developing embryo undergoes extensive cell proliferation and re-arrangement, yet
cells are able maintain their correct positions relative to one another. As an
embryo grows, it becomes subdivided into regions which will later develop into
specific tissue types. From an early stage, it is important that the cells in adjacent
regions remain distinct from one another in order for tissues to develop in the
correct pattern later on. Understanding how different groups of cells are able to
maintain their positional identities, despite constant pressure from cell division

and motility, is therefore crucial to our understanding of development.

Compartments and boundaries

What are developmental compartments?

Within a developing tissue, newborn cells are often confined to a particular region
and do not mix with cells of the adjacent region. Such groups of cells, called
compartments are lineage-restricted, since cells from the same parent will always
stay in the same compartment (Dahmann & Basler, 1999). The boundaries that
these lineage-restricted cells cannot cross are not always identifiable based on
morphology. However, they can be visualised by clonal analysis or by looking at
the expression of selector genes, which mark the fate of the cells in the
compartment in which they are expressed. For example, one of the first
compartments discovered, the posterior compartment of the Drosophila wing
imaginal disc, is marked by the expression of engrailed (Figure 1.1; Morata &
Lawrence, 1975). In this case, engrailed activity is also crucial for the maintenance
of a sharp boundary between the anterior and posterior compartments of the wing
disc. In vertebrates, segments of the developing hindbrain are compartments
which can be distinguished by differential expression of hox genes (Pasini &

Wilkinson, 2002).
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Figure 1.1: Cell segregation and boundary sharpening

(A) Cell sorting is the separation of two initially intermingled populations of cells.
Separation can be by sorting of one population to the middle, surrounded by the
other, or side-by-side segregation. (B) There are many examples of sharp
boundaries in development across which cells do not migrate, the most commonly
studied of which are shown here. Anterior-posterior (AP) boundaries of gene
expression between parasegments (a) of the Drosophila embryo precede the
formation of morphological segments in the adult fly (d). Similarly, the AP and
dorso-ventral (DV) boundaries in the wing imaginal discs generate a plan of cell
identities which pattern the adult wing. (e-g) Sharp boundaries maintain the
segments of the embryonic vertebrate brain, which underlie the patterning of the
adult brain. ctx, cortex; st, striatum; vt, ventral thalamus; zli, zona limitans
intrathalamica; dt, dorsal thalamus; Mid, midbrain; r1-6, rhombomeres 1-6.
Boundaries in the somites also establish a pattern that is maintained in the adult
spinal column (h,i). The boundary between each somite, between the caudal
(posterior) domain of one somite and the rostral (anterior) domain of the next is

marked C/R (Dahmann et al,, 2011).
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Figure 1.1

14



Why are compartments important?

The establishment of compartments is important for two reasons. Firstly, to make
a functional tissue, cells need to be grouped together and unable to mix with the
surrounding tissue cell types. Secondly, cells at compartment boundaries often
take on a new identity and become organisers, regions that produce signals to
pattern the surrounding cells. For example, antero-posterior boundary cells in the
Drosophila wing imaginal disc secrete the morphogen DPP, which forms a gradient
across the disc to induce different cell types in a concentration dependent manner
(Dahmann et al.,, 2011). The restriction of an embryo into compartments helps to

establish a blueprint for development.

The vertebrate hindbrain

The hindbrain is made of compartments

One well-studied example of compartments in vertebrates is found in the
developing neuroepithelium. The vertebrate hindbrain is made up of a series of
metameric compartments called rhombomeres. Lineage tracing studies in chick,
carried out by injecting intracellular dye to mark clones of cells, demonstrated that
labelled cells were able to mix freely with other cells in the same rhombomere, but
were restricted from entering adjacent rhombomeres (Fraser et al., 1990). The
compartmentalisation of the hindbrain later gives rise to a segmented pattern of

neuronal development.

Each rhombomere has some similarity with the next, but also has an individual
identity, based on the expression of specific genes and the types of neuron which
derive from each segment. For instance, every rhombomere will give rise to a set of
eight types of projection interneuron (Clarke & Lumsden, 1993). There is also a
two-segment repeat pattern of branchio-motor neurons, which arise only from
even-numbered rhombomeres (Lumsden & Keynes, 1989). Rhombomeres also
have some individual identity. For example, in chick, rhombomere 4 gives rise to a
group of migrating neurons which go on to innervate hair cells of the inner ear
(Simon & Lumsden, 1993). The specification of the different rhombomeres is

required to generate neurons in the right pattern later in development.
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The compartments in the hindbrain appear morphologically as “bumps” in the
neural tube, which correspond with the boundaries of expression of several genes
including the hox genes. For example, hoxb?2 is expressed in rhombomeres 3-8 (r3-
8) and has a sharp boundary between r2 and r3 (Pasini & Wilkinson, 2002).
Similarly, the transcription factor krox-20 is expressed in r3 and r5 and is
important in establishing their genetic identity (Schneider-Maunoury et al., 1993).
These boundaries are initially fuzzy and sharpen quickly, as can be seen by the
expression pattern of krox-20 by whole-mount in situ hybridisation (Cooke et al,
2005; Irving et al., 1996). Subsequent segmental expression of Eph receptors and
ephrins is important in maintaining the boundaries between compartments
(discussed in more detail later). Disruption of this early segmentation pattern
disturbs the pattern of neuronal projections from the hindbrain. This illustrates
the importance of compartment maintenance for tissue patterning (Cooke et al,,

2005; Moens et al,, 1996).

Introduction to cell sorting and tissue segregation

The mechanisms which underlie the segregation of distinct cell populations have
long been studied. Key to our understanding of the segregation between tissues
are classic experiments such as those by Townes & Holtfreter. These researchers
observed that when embryos were dissociated into single cells and mixed together,
these intermingled cells were capable of “sorting-out” into their original tissue
types (Moscona & Moscona, 1952; Townes, 1955; Trinkaus & Groves, 1955).
Following these experiments came over 60 years of investigation into the
mechanisms cells employ to recognise one another as “like” or “unlike”, to

segregate from one another and to maintain this segregation over time.

[t is important to note here the distinction between cell sorting and the
maintenance of sharp interfaces between regions of cells in vivo. Cell sorting is the
process by which random mixtures of cells segregate from one another. In vivo,
cells are already largely segregated and there is sharpening and maintenance of
this segregation at boundaries. It is considered that the principles which govern
cell sorting also underlie the local segregation and maintenance of sharp

boundaries. However, there may be mechanisms contributing to cell sorting that
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are not applicable to boundary sharpening in vivo. Equally, there may be additional

mechanisms involved in boundary maintenance which would not explain sorting.

Three main principles have been proposed to explain cell sorting or the restriction
of intermingling between cells. Differential adhesion between groups of cells can
drive them to sort in vitro (Duguay et al, 2003; Foty & Steinberg, 2005; Steinberg,
1970) and is capable of maintaining segregation in vivo, for example in
compartments of the developing mouse brain (Inoue et al., 2001). Repulsion
between cells of adjacent compartments is also thought to be capable of
maintaining segregation and driving cell sorting in vitro (Abercrombie, 1962;
Pasquale, 2005; Poliakov et al, 2008). A further mechanism involves tension in cell
sorting (Krieg et al, 2008; Schotz et al., 2008) and in the restriction of cell
intermingling, for example in the form of myosin cables which become physical
barriers between tissue compartments (Harris, 1976; Landsberg et al., 2009; Major
& Irvine, 2005; Monier et al.,, 2010). In addition, Eph receptors and ephrins are
known to be important in segregation at boundaries, although the cellular
mechanisms they employ to achieve this are still debated (Cooke et al., 2005;
Mellitzer et al, 1999; Xu et al, 1999). The ideas which seeded these hypotheses
and experimental evidence that supports them are discussed in the following

sections.

History of cell sorting

Early experiments showed that dispersed cells of an embryo could re-aggregate
and sort into their original tissue types, (Moscona & Moscona, 1952; Townes,
1955; Trinkaus & Groves, 1955). Several concepts about cell behaviour in
embryonic development emerged from experiments such as these. For example,
Moscona and Moscona described the two main processes that occur in dissociation
and sorting experiments: firstly the cells re-aggregate, suggesting that cohesion
between the cells must occur; and secondly they reorganise, indicating that there
is cell movement (Moscona & Moscona, 1952). How such processes are

coordinated to cause cells to segregate has been the subject of much debate.

Moscona & Moscona suggested that “active amoeboid movement was mostly

responsible for the movement of the cells” and proposed that either selective
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differences in adhesiveness or chemotactic migration were responsible for sorting

(Moscona & Moscona, 1952).

The most widely accepted explanation for cell sorting has been the “differential
adhesion hypothesis” (Steinberg, 1963; Steinberg, 1970). This theory suggests that
different populations of cells, which have intrinsic, non-directional motility, will
sort out from one another due to differences in the attractive forces between them.
[t derives from the observation that the sorting of cells is similar to sorting of
immiscible liquids. Steinberg suggested that the thermodynamic principles
explaining the segregation of liquids, which are well understood, also apply to
cells. In this theory, attraction between like-cells tends to minimise their surface
area in contact with cells of different adhesive strength. The differential adhesion
hypothesis was supported by experiments demonstrating a hierarchy of cell
sorting, whereby six embryonic cell types would either sort to the centre of a
cluster or the outside depending on their relative position in the hierarchy
(Steinberg, 1970). This position also corresponded to the extent of deformation of
a cluster of cells subjected to centrifugal force, suggesting that an increase in the
relative strength of interactions between cells could predict their pattern of sorting
(Steinberg, 1970). More recent evidence (discussed later) confirms the predictions
made by the differential adhesion hypothesis, demonstrating that cells can sort

based on differences in adhesion (Duguay et al.; Foty & Steinberg, 2005).

Whilst the differential adhesion hypothesis was prevalent in the field, alternative
theories were also proposed. Harris argued that cells have various properties
which are not exhibited by molecules and which might undermine the assumption
that they behave according to normal thermodynamic principles (Harris, 1976).
For example, the differential adhesion hypothesis does not take into account the
ability of cells to introduce new energy into the system, which they do in the form
of intrinsic motility. It also assumes that cells are equally adhesive across their
surface, whereas it was known that there were adhesive puncta that are more
adhesive than other regions of the membranes between apposing cells (Harris,
1976). Instead, Harris favoured a model of differential contractility, where cells on
the outside of an aggregate would contract, generating a force which could explain

the tendency for aggregates to minimise their surface area.
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Abercrombie advocated the idea of migratory differences between cell types.
Analysis of cells in culture led to the observation of contact inhibition of
locomotion, where collisions between cells restricts their migration such that they
are prevented from overlapping one-another (Abercrombie & Heaysman, 1954).
By extension of this idea, differences in cells’ abilities to restrict the migration of
different cell types could result in cell segregation or the prevention of cell mixing

(Abercrombie, 1962; Weston & Abercrombie, 1967).

In 1978, Curtis advocated the idea of a “morphogen or interaction modulation
factor theory”, whereby a diffusible factor from one cell type is capable of
“diminishing the adhesion of some unlike cell types so that they tend to allow
unlike cell types to escape from their own environment” (Curtis, 1978). He
proposed that the gradient of diffusible signal would be able to contribute to the

relative positioning of cells.

Recently, much work has emerged in which specific molecular mechanisms have
been identified that contribute to cell segregation. Modern views of how these
mechanisms could fit with the hypotheses outlined above to underlie sorting and

the restriction of intermingling between groups of cells are discussed below.

Molecular mechanisms of cell sorting and boundary maintenance

The Differential Adhesion Hypothesis

Until recently, the differential adhesion hypothesis was the most prevalent theory
to explain cell segregation. The theory says that a population of cells with similar
affinities for one another will sort from cells with different affinities, in a process

similar to the segregation of oil and water molecules.

Steinberg first proposed his hypothesis of differential adhesion based on the
observation that mixtures of cells share three key characteristics with mixtures of
immiscible liquids: they are composed of discrete units of two major types; these
units are motile; and the units appear to adhere and cohere with different
strengths (Steinberg, 1962). Following this logic, cells are modelled as balls with
certain adhesiveness, which sort based on thermodynamic principles into two

phases with high interfacial surface tension between them.
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Figure 1.2: The differential adhesion hypothesis

(A) Surface tension in a fluid. Molecules experience adhesive forces from other
molecules surrounding them. Within the bulk of the liquid, these forces are
distributed evenly on all sides of the molecule. At the surface, however, molecules
experience more attraction towards the bulk of the liquid, resulting in contraction
of the surface of the liquid. The energy (6E) required to change the liquid’s surface
area (8S) is directly proportional to the surface tension (c). (B) Parallels can be
drawn between this molecular model of surface tension and cell sorting. Red cells
express higher levels of cadherins, so are more adhesive than the grey cells. At the
interface between these two populations, the group of red cells minimises its
surface area by adopting a spherical shape and forming a sharp interface with the
grey cells. Grey cells will also tend to minimise their surface area in contact with
the media because it is energetically favourable. (C) This behaviour of cells results
in them sorting out from one another when they are intermingled, with all cells
forming a ball and the red, more adhesive cells, sorting to the interior (Lecuit &

Lenne, 2007).
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Figure 1.2
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Interfacial tension occurs between two immiscible liquids, much like the surface
tension at the interface between liquid and air. Within a liquid, all molecules are
experiencing similar attractive forces from all sides (Figure 1.2). However, near the
edge there is an imbalance, since molecules are only experiencing attractive forces
from molecules in the bulk of the liquid. This results in a net attraction of the
molecule towards the liquid, increasing surface tension and minimising surface

area.

When it was first proposed, the differential adhesion hypothesis relied on the
prediction that there would be some factor on the surface of cells which could
confer them with adhesive properties (Moscona & Moscona, 1952; Steinberg,
1970). This proved to be true with the discovery of the cadherin cell-cell adhesion
molecules (Yoshida & Takeichi, 1982). Members of this large family of trans-
membrane proteins are able to interact with one-another homophilically between
cells in a calcium-dependent manner (Hatta & Takeichi, 1986). In addition, some
members of the cadherin family are able to interact with one another
heterophilically to different extents. For example, cells expressing E-cadherin will
mix with cells expressing P-cadherin (Duguay et al., 2003) but will segregate from

those expressing N-cadherin (Niessen & Gumbiner, 2002; Shan et al., 2000).

Subsequent experiments exploiting these properties of cadherins allowed the
various predictions of the differential adhesion hypothesis to be tested. It has been
shown that the size of re-aggregates of cells correlates with their aggregate surface
tension, which in turn correlates with the number of cadherins expressed on the
cell surface (Foty & Steinberg, 2005). This supports the prediction from the
differential adhesion hypothesis that differences in affinity alone could specify
differences in tissue surface tension. Another verification of the hypothesis was
that more adhesive cells sort to the centre of an aggregate and less adhesive cells
to the outside. This was demonstrated by mixing cells which express different
levels (either 1x or 2.5x) of N-cadherin. The cells expressing more N-cadherin
sorted to the centre of the aggregates (Figure 1.3 A). In this configuration, cells
maximise their adhesive bonds and minimise the energy in the system. These data
demonstrate that differences in levels or types of cadherin expression, and

therefore differences in tissue tension, can drive cell sorting, consistent with the
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Figure 1.3: Segregation models

(A) Cell sorting through differential adhesion. L cells transfected with 1x N-
cadherin (red) sort from L cells transfected with 2.5x N-cadherin (green), with the
more adhesive, green, cells sorting to the middle of the cluster (Foty & Steinberg,
2005). (B) Cell segregation by Eph-ephrins. Zebrafish embryos were labelled with
rhodamine dextran or fluorescin dextran and injected with EphB2, ephrinB2 or a
truncated EphB2 incapable of signalling. Animal caps were dissected from these
embryos and differently labelled caps were juxtaposed. Cells expressing ephrinB2
(green) form a sharp boundary with cells expressing EphB2 (red), but not from
cells expressing a truncated, signalling incompetent EphB2 (AEphB2) (Mellitzer et
al, 1999). (C) Eph-ephrins are important for the segregation of adjacent hindbrain
rhombomeres in vivo. Morpholinos (MO) to EphA4, ephrinB2 or both disrupt the
sharp boundaries created between rhombomeres 2-5 (r3, r5, marked by in situ

hybridisation for krox-20) in the zebrafish hindbrain (Cooke et al.,, 2005).
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differential adhesion hypothesis. The next question is whether this is relevant to

cell segregation in vivo.

In vivo - differential adhesion in boundary sharpening

Since its conception, differential adhesion has been thought to help maintain
segregation at boundaries. There is good evidence for this. Firstly, the boundaries
of expression of different types of cadherin often coincide with morphological
boundaries early in development (Redies & Takeichi, 1996). In Drosophila
development and in the vertebrate brain, differential cadherin expression has been
shown to correlate with a functional role. DE-cadherin in the Drosophila oocyte is
required for its correct positioning in the ovary (Godt & Tepass, 1998; Gonzalez-
Reyes & St Johnston, 1998). Its expression is required in the oocyte itself and in the
surrounding posterior follicle cells in order to position the oocyte at the posterior

of the ovary.

In chick brain development, R-cadherin and cadherin-6 are expressed in the future
cerebral cortex and the lateral ganglionic eminence respectively, with their
expression marking the lineage restriction between the compartments.
Overexpression of R-cadherin in the LGE resulted in sorting to the cortex and the
opposite is true for cadherin-6, suggesting that they are required to maintain a

clear boundary between these two regions (Inoue et al.,, 2001).

Expression of different cadherins is also observed between different pools of
motor neurons in the developing chick spinal cord. In this case, mis-expression of
MN-cadherin was found to disrupt the segregation of two motor pools which are
normally distinguished by expression of this protein (Price et al.). The above
results demonstrate that differential cadherin expression is found between
adjacent regions of a developing embryo and in some cases is involved in their

segregation.

The differential adhesion hypothesis is not the only mechanism responsible for
sorting and boundary maintenance.

There are still several observations, however, which do not fit with the differential
adhesion hypothesis being the only mechanism driving sorting. Two of the best-

studied boundaries in development are the dorso-ventral and the anterior-
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posterior boundaries in the fly wing imaginal disc. Much progress has been made
in understanding that the maintenance of the AP boundary requires engrailed
expression in posterior cells which activates hedgehog signalling, to which
anterior cells adjacent to the boundary can respond. At the DV boundary, local
Notch signalling is important in preventing cell mixing (Tepass et al., 2002).
However, the mechanistic link between these signalling pathways and boundary
maintenance remains unknown. Interestingly, forced overexpression of DE-
cadherin in the wing disc leads to these cells sorting from the endogenous tissue
(Dahmann & Basler, 2000). However, there has been little progress in identifying
cell adhesion molecules which are differentially expressed between the

compartments.

It has been suggested that the transmembrane proteins Capricious and Tartan
confer differences in affinity to cells in the dorsal compartment of the Drosophila
wing disc (Blair, 2001; Milan et al, 2001). Their expression is able to rescue
boundary formation in discs with reduced apterous expression, a selector gene for
dorsal compartment identity. Similarly, Lrrm1, a vertebrate orthologue of Cap/Tar
is required for the formation of the midbrain/hindbrain boundary in chick (Tossell
etal, 2011). However, the intracellular domains of these proteins are required for
their function in segregation and it has been shown that their expression in cells
does not induce aggregation, indicating that they may function more by
intracellular signalling than cell-cell adhesion (Milan et al., 2005; Tossell et al.,
2011). Such evidence suggests that there are other mechanisms which are

important in the maintenance of this boundary.

In addition, there is little loss of function data to support a requirement for
differential adhesion in the maintenance of boundaries in vivo (Batlle & Wilkinson,
2012). For example, the protocadherin, PAPC, is required for the separation of
mesoderm and ectoderm in Xenopus gastrulation (Winklbauer, 2009). PAPC is also
capable of reducing the strength of C-cadherin mediated adhesion. However,
expression of a truncated version of PAPC, which cannot interact with C-cadherin,
does not affect segregation behaviour (Winklbauer, 2009). This result is consistent

with the idea that differential adhesion does not drive separation of these tissues.
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Also mechanistically, the differential adhesion hypothesis does not always hold
true. The proposition is that different cadherin subtypes sort from one another due
to differences in relative affinities. However, Niessen and Gumbiner show that the
relative adhesion strength, based on adhesion flow assays, of C, E and N-cadherins
does not predict the pattern in which they sort (Niessen & Gumbiner, 2002). A
similar observation was made in studying the sorting of embryonic zebrafish cells
into the three germ layers, where the expression of adhesion molecules and
relative adhesive strengths of the three cell types does not predict the order in
which they sort (Krieg et al., 2008; Schotz et al., 2008). These data suggest that
there are other cell properties than adhesiveness which can influence the order of

cell sorting.

Taken together, this indicates that differential adhesion is able to drive cell sorting.
However, there are circumstances where it is insufficient to do so, in certain in

vitro cell lines and at some developmental boundaries in vivo.

Tension: Cortical tension and acto-myosin fences

Another mechanism which appears to be important in sorting and the
maintenance of some boundaries is cortical acto-myosin tension (Landsberg et al.,
2009; Major & Irvine, 2005; Major & Irvine, 2006; Monier et al., 2010). Evidence
for the importance of cortical tension comes from studies in fly epithelia and

zebrafish germ layers.

One place where tension is involved in boundary maintenance is in the Drosophila
wing imaginal disc. Notch signalling is responsible for the maintenance of the
dorsal-ventral (DV) boundary in the Drosophila wing disc, and it has been
suggested that Notch activity creates a “fence” between dorsal and ventral cells
(Major & Irvine, 2005). In support of this “fence model”, F-actin and myosin Il are
enriched at this boundary and their activity is required for boundary maintenance

downstream of Notch (Major & Irvine, 2005; Major & Irvine, 2006).

A similar enrichment of actin and myosin Il is seen at the anterior-posterior (AP)
compartment boundary of the Drosophila wing disc. There is an alignment of cell
bonds, and an enrichment of F-actin and myosin Il occurs at the level of adherens

junctions, without any increase in cadherin accumulation (Landsberg et al., 2009).
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The cell bonds aligned at the boundary were revealed, by specific laser ablation of
individual cell bonds, to be under 2.5-fold more tension than surrounding cell
bonds. Computer modelling demonstrated that an increase in tension is able to
maintain a straight boundary, although a 2.5-fold difference between boundary

and non-boundary bonds was not sufficient to form a completely sharp boundary.

There is also an enrichment of actin and myosin at the AP parasegment boundaries
(Monier et al, 2010). These “myosin cables” were shown to maintain the
straightness of the boundary after it was challenged by cell division. Local
chromophore-assisted light inactivation (CALI) of myosin II disrupted the straight
compartment boundaries indicating the importance of myosin cables in boundary

maintenance.

Actin accumulation is also seen at the edges of DE-cadherin and Echinoid (Ed)
mutant clones in fly epithelia (Chang et al., 2011). Ed is the Drosophila homologue
of nectin, a transmembrane protein which mediates cell-cell adhesion primarily at
adherens junctions. Chang et al. propose that proper sorting of these clones
consists of two steps: sorting is controlled by differential Ed expression; but
maintenance of a smooth boundary requires the production of an actin cable. The
development of this cable appears to require the intracellular domain of Ed and is
only required in the Ed positive cells, in contrast to the situation at the
parasegment boundaries where acto-myosin accumulation is seen on both sides of

the boundary (Chang et al., 2011; Monier et al., 2010).

Cortical tension generated by actin and myosin is also important for cell sorting in
zebrafish. Atomic force microscopy was used to measure the relative cell-cortex
tensions and the adhesive strength between cells from the three germ layers
(Krieg et al., 2008; Manning et al.,, 2010; Schotz et al., 2008). When the different
combinations of cells were mixed, their pattern of sorting correlated with
increased cortical tension as opposed to adhesive strength. Disruption of the
cortex using the myosin Il inhibitor blebbistatin was able to reduce sorting, and
differential expression of a dominant-negative Rho kinase was sufficient to induce
sorting. Combined with computer modelling, these data suggest that differential
acto-myosin-mediated cortical tension is required to explain cell sorting of the

zebrafish germ layers (Krieg et al.,, 2008). Further in vivo and computational work
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has demonstrated that this is because cortical tension is a key component in
generating tissue surface tension in embryos. The authors conclude that,
consistent with the differential adhesion hypothesis, differential surface tension
between the germ layers specifies their positioning. However, they argue that
surface tension consists of a combination of the cortical tension of a cell as well as

its adhesive properties (Manning et al., 2010; Schotz et al., 2008).

In summary, acto-myosin tension is important for boundary sharpening and
maintenance in two respects. In one case, it is required to generate differences in
cortical tension between the different cell populations, which contributes to
differences in their overall tissue tension, which underlies cell sorting. In the other,
a local alignment of acto-myosin-rich cell bonds contributes to the sharpening and

maintenance of epithelial cell compartments.

Repulsion

It has been suggested that one mechanism of driving cell sorting might be
repulsion between cells of different types (Mellitzer et al., 1999; Xu et al., 1999).
Abercrombie advocated the idea of contact inhibition of migration, the process by
which a cell ceases to migrate on contact with another cell (Abercrombie &
Heaysman, 1954). Collision with a different cell type would prevent the forward
migration of a cell and thus prevent its invasion into the adjacent territory (Astin
et al, 2010). In this context, repulsion is an active response of the cell after contact
with another cell, involving cytoskeletal collapse and migration away from the
point of contact. In contrast, the term repulsion is sometimes used to refer to de-
adhesion between cells, which could fit with Steinberg’s hypothesis where local

adhesion differences could result in sorting (Cooke et al., 2005; Steinberg, 2007).

Contact inhibition can be seen between both like and unlike cells in culture by a
collapse of cell protrusions after contact and subsequent migration away from the
point of contact (Abercrombie, 1962; Theveneau et al,, 2010). A similar effect is
seen in culture between cells expressing Eph receptors, a family of receptor
tyrosine kinases, and cells expressing their ligands, ephrins (Astin et al,, 2010;

Monschau et al., 1997; Poliakov et al., 2008).
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Eph receptors and ephrins are expressed in apposed regions of cells throughout
developing vertebrate embryos. For example, they are expressed in a largely
alternating pattern in the rhombomeres of the hindbrain (Gale et al., 1996; Pasini
& Wilkinson, 2002). They are vital for the maintenance of sharp boundaries
between these compartments (Mellitzer et al., 1999; Xu et al., 1999). By analogy
with their known roles in growth cone guidance, it has been suggested that
signalling through Eph receptors and ephrins could mediate repulsion between
compartments and that this could maintain the boundaries between the

compartments (Mellitzer et al., 1999; Xu et al., 1999).

Eph receptors and ephrins

Eph receptors are receptor tyrosine kinases which mediate signalling upon
binding to membrane-bound ephrins on an adjacent cell (Poliakov et al., 2004).
Eph-ephrin signalling can affect a range of cell processes including repulsion and
adhesion, proliferation and survival. [t has been implicated in a variety of diseases
and physiological processes including development and regeneration of the
nervous system, oncogenic transformation, stem cell maintenance and immune
function (Pasquale, 2008; Pasquale, 2010; Poliakov et al., 2004). In addition, Eph
receptors and ephrins are expressed throughout developing and adult tissues and
their mis-regulation often correlates with poor prognosis in cancer patients. There
is thus increasing interest in understanding the activity of these molecules and

their therapeutic potential (Pasquale, 2008).

Eph receptors and ephrins are also unusual as signalling molecules in that signal
transduction has been shown to occur in both the Eph-expressing cell (forward
signalling) and the ephrin-expressing cell (reverse signalling). They are split into
two classes, with the EphB receptors mostly binding transmembrane ephrinBs,
and the EphA receptors binding glycosyl phosphatidyl inositol (GPI) linked
ephrinAs. In general, binding is promiscuous within groups such that EphAs
interact with all ephrin-As and all EphBs with ephrinBs. The exceptions to this rule
are EphA4, which can interact with ephrinB2 and ephrinB3 as well as ephrinAs
(Gale et al., 1996), and EphB2, which interacts not only with ephrinBs but also
ephrinAS5 (Himanen et al., 2004).
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Since both Eph receptors and ephrins are membrane-tethered, their activation
requires direct contact between cells, a characteristic not exhibited by other
receptor tyrosine kinases. In common with other receptor tyrosine kinases,
clustering of the receptor is necessary for downstream signalling. Eph receptors
cannot be stimulated by soluble monomeric ligands (Davis et al,, 1994), but only by
ephrins that are membrane-tethered or artificially clustered. Experiments using
ephrinA5-coated beads demonstrate that the actively phosphorylated area covered
by EphA3 clusters exceeds that in contact with the bead (Wimmer-Kleikamp et al,,
2004), suggesting a non-linear correlation between ephrin contact and Eph

activation.

Roles of Eph receptors and ephrins

Collectively, Eph receptors and ephrins are expressed in every tissue in the
developing vertebrate embryo (Gale et al.,, 1996; Murai & Pasquale, 2003; Poliakov
et al, 2004). They have been implicated in a variety of cellular processes, including
proliferation, survival, adhesion and repulsion and are important for embryonic
patterning as well as tissue maintenance in adult life (Pasquale, 2005; Poliakov et
al, 2004; Solanas et al., 2011). Their role is well characterised in angiogenesis
where they are important for the guidance and development of new blood vessels,
with Eph receptors and ephrins expressed in veins and arteries respectively
(Gerety et al., 1999). Of clinical relevance, Eph-ephrins are frequently found to be
mis-regulated in tumours (Pasquale, 2010). Their roles are perhaps best

understood in the development of the nervous system.

Eph receptors and ephrins have a particularly well-studied role in the guidance
and patterning of neurons. For example, EphB2 is involved in the guidance of
commissural axons across the midbrain (Henkemeyer et al.,, 1996) and gradients of
expression of ephrinA2 and ephrinA5 direct motor axons expressing different

levels of EphA4 to the correct position in the limb (Helmbacher et al.,, 2000).

One established role of Eph receptors and ephrins in neuronal guidance is the
topographic mapping of retinal neurons to the optic tectum (Suetterlin et al., 2011;
Triplett & Feldheim, 2011). Neurons positioned at the nasal side of the retina

project axons to more anterior positions within the optic tectum and increasingly
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temporal neurons project axons more posteriorly within the tectum. It was
postulated that graded molecular cues within the retina and tectum could guide
each retinal axon to a unique tectal position (Sperry, 1963). EphA3 and EphA4
receptors and ephrinA2 were later found to be expressed in opposing gradients in
these regions, consistent with the idea that they could be the molecular cues
(Cheng et al., 1995). Drescher et al. provided the first functional evidence of this
using an in vitro stripe assay to demonstrate that ephrinA2 (RAGS) was capable of
repelling retinal axons (Drescher et al., 1995). Thus, the graded expression of

EphAs and ephrinAs underlies neuronal positioning.

The situation has become more complicated since the discovery of opposing
gradients of ephrinAs and EphAs within the retina and the tectum, suggesting that
interactions between ephrinAs and EphAs in cis may have modulatory effects on
the repulsive behaviour of these axons (Hornberger et al., 1999; Suetterlin et al.,
2011). Co-expression of different Eph receptors and ephrins in the same cell has
been shown to alter their behaviour in other contexts as well. For example, EphB2-
ephrinB2 interactions usually result in cell repulsion, but when both are expressed
together in cells in the urethra, they can promote adhesion. These different
responses can be attributed either to interactions in cis between the Eph and
ephrin, or to the combined effect of signalling responses through both the receptor

and ligand in the same cell.

Binding, activation and disengagement

Eph receptors and ephrins bind one-another with high affinity and yet one of the
major cell responses they induce is disengagement and subsequent retraction of
cell membranes. Two mechanisms have been described which explain the

disengagement of the proteins: proteolytic cleavage and endocytosis.

Proteolytic cleavage of ephrin by the Adam10 metalloproteinase has been
demonstrated to be important for the disengagement of EphA3 and ephrinA2
(Hattori et al,, 2000) or ephrinA5 (Janes et al., 2005). A similar mechanism also
exists for EphB-ephrinB detachment, but through secreted metalloproteinases

rather than Adam10 (Lin et al, 2008; Litterst et al., 2007).
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The second mechanism for disengagement involves endocytosis of the Eph-ephrin
signalling complex (Marston et al.,, 2003; Zimmer et al., 2003). The complex can be
endocytosed into either the Eph receptor or the ephrin-expressing cell. For
example, EphB4 activation by ephrinB2 was found to cause actin assembly and
endocytosis, both of which are Rac-dependent (Marston et al., 2003). This
endocytosis could directly cause cell disengagement by physically severing the
membranes of apposing cells. Since the complex remains intact after endocytosis,
there is the possibility that it can continue to signal once it has been internalised

(Marston et al., 2003).

This evidence suggests that either proteolytic cleavage or endocytosis mechanisms
or both could function to break contacts between Eph receptors and ephrins. This
is important for terminating signalling and could also underlie the repulsive or de-

adhesive responses of cells to Eph-ephrin signalling discussed below.

Eph-ephrins in boundary maintenance and cell sorting

Eph receptors and ephrins are expressed from early in development and are
commonly, but not always, found in a complementary pattern between different
regions of an embryo (Gale et al., 1996; Wilkinson, 2001). Segregation by Eph
receptors and ephrins is also found to be important in adult life; for example
EphBs and ephrinBs are important in compartmentalising cells in the adult

intestine (Batlle et al.,, 2002; Solanas et al., 2011).

In the vertebrate hindbrain, Eph receptor expression largely alternates with that of
ephrins (Pasini & Wilkinson, 2002). For example, EphA4 is expressed in r3 and r5,
whereas its ephrinB ligands are highly expressed in r2, r4 and r6 (Figure 1.4). The
boundaries between these rhombomeres in wild type embryos are sharp and
straight. However, when EphA4 or ephrinB2 are knocked down using anti-sense
morpholino oligonucleotides (MOs), these boundaries become fuzzy, and the effect
is exaggerated when both MOs are used in combination (Figure 1.3 C; Cooke et al,
2005), indicating the importance of Eph-ephrin signalling in the sharpening of
these boundaries. Studies with juxtaposed animal caps demonstrate that
overexpression of EphA4 or EphB2 receptor in one cap and ephrinB2 in another

can restrict intermingling between the two populations (Mellitzer et al., 1999).
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Figure 1.4: Eph receptors and ephrins

(A) Eph receptors are divided into two families, EphAs and EphBs, which generally
interact with GPI-linked ephrinAs or transmembrane ephrinBs respectively.
Binding is quite promiscuous within the groups with most EphAs binding most
ephrinAs and most EphBs binding most ephrinBs. The main exception is EphA4,
which can also interact with specific ephrinBs (Wilkinson, 2001). (B) Eph-ephrins
are bi-directional signalling molecules. Both receptor and ligand are membrane-
bound and both can transduce signals. A response in the Eph-expressing cell is
referred to as forward signalling, whereas a response in the ephrin-expressing cell
is called reverse signalling (Klein, 2009). (C) Alternating expression in the
hindbrain. Several Eph receptors and ephrins are expressed in the developing
vertebrate neuroepithelium. The transcription factor Krox20 governs the
expression of certain Eph receptors and ephrins in r3 and r5, such that EphA4
expression for example, is enriched in these rhombomeres. The expression of Eph
and ephrins is largely complementary between rhombomeres such that, for
example EphA4 is expressed in r3 and r5 whilst ephrins B2 and B3 are expressed
in adjacent rhombomeres. Blue bars indicate expression. Dark blue indicates

higher levels of expression than light blue (Pasini & Wilkinson, 2002).
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Figure 1.4
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Furthermore, they show that bi-directional Eph-ephrin signalling is necessary for
this process, as overexpression of a truncated form of either the Eph-receptor or
the ephrin disrupts this effect so that a sharp boundary is not maintained. This role
of Eph receptors and ephrins in segregating cells has been confirmed by an in vitro
assay recently developed in our lab in which EphB2-expressing HEK293 cells sort
out from ephrinB1-expressing cells into clearly defined clusters (Jorgensen et al.,

2009; Poliakov et al.,, 2008).

Overlapping expression of Eph receptors and ephrins also frequently occurs in
vivo, with several Eph receptors or ephrins expressed within any given region of
the embryo (Sobieszczuk & Wilkinson, 1999). Their combinatorial function can be
important for their role in segregation. For example, both ephrinBs and EphB
receptors are important in the adjacent ectoderm and mesoderm for boundary

maintenance between these tissues in Xenopus embryos (Rohani et al, 2011).

Whilst it is well established that Eph receptors and ephrins are involved in the
maintenance of specific developmental boundaries, the mechanisms through
which they achieve this are not well understood. One school of thought is that they
segregate cells by contact-dependent repulsion. The other suggests that they could

be responsible for regulating adhesion.

Eph receptors, ephrins and repulsion

One possible mechanism through which Eph-ephrins could mediate cell sorting is
by generating repulsion between adjacent groups of cells. Eph-ephrins are known
to bring about a repulsive response in many contexts in development and this has

been particularly well studied in the nervous system.

One example is in the guidance of axonal growth cones. EphBs are required to
guide commissural axons down the ventral midline of the mouse spinal cord. In
mice lacking ephrinB3 or EphBs, these axons migrate either side of the midline,
suggesting that EphB forward signalling is restricting the migration of these axons
on interaction with an ephrinB3 barrier at the midline (Kadison et al., 2006).
ephrinB3 has also been shown to mediate midline repulsion of EphA4-expressing

neurons in postnatal mice (Yokoyama et al., 2001). In addition, ephrinB2 has been
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demonstrated to act as a repellent in the projection of neurons across the optic

chiasm in both Xenopus and mouse (Nakagawa et al., 2000; Williams et al., 2003).

Repulsion mediated by Eph-ephrin signalling can be seen directly in vitro,
characterised by a collapse response of axonal growth cones (Jurney et al., 2002;
Monschau et al., 1997) and also of EphB2-expressing HEK293 cells after contact
with ephrinB1-expressing cells (Poliakov et al., 2008). EphA receptors have been
shown to be vital for the contact inhibition response between prostate cancer cells
and are antagonised by EphB over-expression in these cells, which has been
implicated in the malignancy of prostate cancer (Astin et al, 2010). Thus, Eph
receptors and ephrins can generate repulsion by initiating a local collapse of cell

protrusions.

Eph-ephrin regulation of repulsion

One of the main mechanisms through which Eph receptors and ephrins can
mediate repulsion is by regulation of the Rho family of GTPases (Poliakov et al,,
2004). Rho GTPases play an important role in the regulation of the actin
cytoskeleton and in the control of cell migration. They are modulated by cycling
from a GDP-bound to an active GTP-bound form via the activity of guanine-
nucleotide exchange factors (GEFs) and the intrinsic GTPase activities of the Rho

proteins.

Eph-ephrin regulation of Rho-GEFs is the main mechanism through which they can
modulate cell migration and repulsion (Noren & Pasquale, 2004; Poliakov et al.,
2004). GEFs have been found which bind with Eph receptors and can interact with
different RhoGTPases including Rac1, RhoA and Cdc42. These RhoGTPases
regulate the dynamics of the cytoskeleton. In general, Rac1 is considered to be
involved in actin polymerisation and promoting lamellipodial protrusions, RhoA
with actin dynamics, stress fibre formation and cell contractility and Cdc42 in the
formation of filopodia, although there is some overlap in their function (Hall &
Nobes, 2000; Spiering & Hodgson, 2011). In addition, Eph receptor binding to
adaptor proteins Dishevelled (Tanaka et al., 2003), Crk (Lawrenson et al., 2002)
and Ras-GAP (Holland et al, 1997) leads to activation of RhoGTPases.
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Altering the balance of activity of the different RhoGTPases Rac, Rho and Cdc42
can be responsible for a change in cell behaviour. Eph-ephrin signalling often acts
to shift this balance. For example, in neuronal cells, a shift towards RhoA results in
growth cone retraction (Shamah et al., 2001; Wahl et al, 2000). The GEF ephexin is
important in this process. Binding of ephexin to Eph activates RhoA and inhibits
Cdc42 and Rac1 in the growth cone, promoting outgrowth (Shamah et al,, 2001).
Stimulation by ephrin results in tyrosine phosphorylation of ephexin which shifts

the RhoGTPase balance to a repulsive response (Knoll & Drescher, 2004).

It has recently been proposed that the repulsion exhibited by Eph-ephrin
signalling is analogous to the process of contact inhibition of locomotion (CIL)
(Astin et al.,, 2010; Mayor & Carmona-Fontaine, 2010). This process was defined by
Abercrombie as “the stopping of the continued locomotion of a cell in the direction
which has produced a collision with another cell” (Abercrombie, 1970). In the case
of prostate cancer cells, activation of Cdc42 by EphB-ephrinB signalling results in
cell migration and metastatic invasion of fibroblasts (Astin et al., 2010).
Conversely, contact inhibition between cancer cells is facilitated by EphA-induced
ROCK signalling (Astin et al., 2010). These data reinforce the idea that Eph-ephrin
signalling regulates the balance between different RhoGTPases, which can control

cell repulsion and invasion.

Eph receptors, ephrins and adhesion

It has been suggested that Eph-receptors and ephrins could mediate cell sorting by
effecting differential adhesion (Cooke et al., 2005; Steinberg, 2007). Steinberg
suggested that repulsion between Eph and ephrin expressing cells could result in
de-adhesion, which would lead to an effective difference in adhesiveness between
the two populations (Steinberg, 2007). Other studies suggest mechanistic links

between Eph-ephrins and the adhesive machinery (Cortina et al.,, 2007).

In zebrafish transplantation experiments, cells in which EphA4 has been knocked
down by morpholino sort to the boundaries of rhombomeres which express
EphA4. Meanwhile, wild-type cells sort into discrete clumps within the EphA4

morphant rhombomeres, rather than to the boundaries. This result suggests that
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Eph receptors must be active within the segments and is consistent with an

adhesive function of Eph signalling (Cooke et al, 2005; Kemp et al., 2009)

In some contexts, Eph-ephrin signalling seems to promote attraction. Activation of
EphB1 by ephrinB1 is capable of upregulating adhesion to the ECM via ay 3 and
asf1 Integrins (Huynh-Do et al.,, 1999). In contrast to its role in repulsive guidance
of growth cones to the limbs, EphA4 attractively guides motor axons to the axial
muscles via interaction with ephrinAS5 in the rostral sclerotome (Eberhart et al,
2002). An attractive role is also seen in topographic mapping of vomeronasal
neurons to the accessory olfactory bulb (Knoll & Drescher, 2002). Here,
vomeronasal axons expressing high levels of ephrinA5 project to regions of the
accessory olfactory bulb that express high concentrations of EphA6, and this
pattern is disrupted in the ephrinA5 mutant. Interestingly, in vitro, these axons
grow preferentially on substrates containing EphAs, suggesting an adhesive or
attractive guidance mechanism. This modulation of EphA and ephrinA activity by
different levels of co-expression has also been seen in the topographic mapping of
retinotectal neurons. In this case, however, it has been suggested that this activity
could also be explained by a cis-inhibition of repulsion (Hornberger et al., 1999;
Suetterlin et al,, 2011). Attraction between Eph receptors and ephrins is context
dependent and the difference between an attractive and repulsive response often

depends on the co-expression of other Eph receptor or ephrin molecules.

In urethra development, EphB2 and ephrinB2 expression is required for epithelial
fusion, which separates the urethra endoderm from the urinary and alimentary
tracts (Dravis et al., 2004). At the fusion site, both EphB2 and ephrinB2 are co-
expressed, and signalling through both molecules is required for efficient fusion.
This could indicate that combinatorial forward and reverse signalling within the
same cells could impact on the cell response. Another possibility is that cis-
inhibition of the Eph receptor by interaction with ephrin could cause a low level of

signal activity.

Although the examples above demonstrate that Eph-ephrin signalling can switch
between repulsive and adhesive roles in development, little is known about the

regulation of cell-cell adhesion molecules through Eph-ephrins. Recent work has
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suggested that Eph-ephrin signalling may directly affect the cadherin-mediated

adhesion between cells.

Eph-ephrin regulation of cell-cell adhesion

Cell-cell adhesion is mediated by a variety of membrane-bound proteins. The first
discovered and most prevalent of these are the cadherins, which mediate adhesion

by binding to cadherins of the same type on adjacent cells.

Consistent with the idea that Eph receptors and ephrins could function by
influencing cell-cell adhesion are in vitro experiments demonstrating that EphB-
ephrinB-mediated cell sorting is disrupted when E-cadherin is knocked down
(Cortina et al,, 2007). Colorectal cancer cell lines expressing EphB3 or EphB2
sorted into clusters when mixed with similar lines expressing ephrinB1-RFP.
However, the expression of E-cadherin shRNA in either or both cell lines led to a
reduction in sorting, measured by a reduction in the size of EphB clusters. The
authors also report a translocation of E-cadherin to the membranes of EphB2-
expressing cells stimulated with a soluble ephrinB1-Fc chimera (Cortina et al,
2007). The authors proposed that E-cadherin regulation by EphB-ephrinB
signalling could be driving sorting by establishing differential adhesion between

cells.

It has been described that, in Schwann cells, EphB2 activation can lead to
upregulation of N-cadherin (Parrinello et al., 2010). This correlates with increased
clustering of EphB-expressing Schwann cells and sorting from ephrinB-expressing
fibroblasts. This upregulation of N-cadherin appears to be a long-term mechanism
mediated by Sox2 expression downstream of EphB-ephrinB signalling. It has been
suggested that this pathway could help to maintain migrating Schwann cells in

groups, facilitating axonal outgrowth in the wound healing process.

More recently, a mechanism has been described in which EphB-ephrinB signalling
could induce differential adhesion at the post-transcriptional level (Solanas et al,,
2011). Solanas et al. propose a model in which the metalloproteinase Adam10
binds EphBs, and signalling through the EphB receptor activates Adam10 to cleave
the extracellular domain of E-cadherin. As adhesion remains normal between the

other sides of the cell, which are in contact with other EphB cells, this localised
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cleavage results in an effective differential adhesion between EphB and ephrinB
cells. Treatment of EphB and ephrinB expressing cells with a metalloproteinase
inhibitor, or the expression of a dominant negative version of Adam10 result in a
disruption to sorting in colorectal cancer cells. There is a decrease in the co-
localisation of E-cadherin between EphB and ephrinB cells which have interacted.
In HEK293 cells over-expressing EphB2, there is an apparent increase in the level
of cleaved extracellular E-cadherin after treatment with ephrinB1-Fc chimera. The
authors also demonstrate that expression of a dominant-negative Adam10 in
mouse phenocopies the disruption of intestinal crypt cell sorting seen in the EphB2
mutant mouse, suggesting that this cadherin cleavage mechanism is also relevant

in vivo.

Further evidence for a link between Eph-ephrin signalling and the regulation of
adhesion comes from two screens for phosphorylation targets of EphB2-ephrinB1
signalling, which identified a number of proteins involved in the regulation of cell-
cell adhesion. These include p120 and the related protein p0071, and plakophilins,
as well as various other molecules involved in the assembly of adherens junctions
and polarity (Jorgensen et al., 2009; Zhang et al.,, 2008). The modulation of these
proteins by Eph-ephrin signalling provides the potential for a direct mechanistic

link between Eph receptors and ephrins and the regulation of cell-cell adhesion.

A requirement for adhesion for Eph-ephrin signalling?

Some reports suggest that cadherin-mediated adhesion is required upstream of
Eph-ephrin signalling. Mouse ES cells lacking E-cadherin express decreased levels
of EphB3 and EphB4 as well as ephrinB1 and ephrinB2, suggesting that E-cadherin
is required for their correct expression (Orsulic & Kemler, 2000). In addition, cell
lines in which E-cadherin was not present showed a decrease in the membrane
localisation of EphAZ2. Low levels of phosphorylated EphA2 were found in a breast
cancer cell line with low E-cadherin, and this could be rescued by increased E-
cadherin expression (Zantek et al, 1999). Together, these results suggest that E-
cadherin may be required for the normal function of EphA2. No such relationship

has yet been reported for other members of the cadherin or Eph receptor families.
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Regulation of cell-cell adhesion

In vertebrates, cells stick to one another mainly through three specialised
structures: tight junctions (TJs), adherens junctions (AJs) and desmosomes (Figure
1.6 A; Hofmann et al., 2009; Takeichi, 2011). Of these, tight junctions are
important for creating the permeability barrier across epithelial sheets.
Desmosomes are also found only in a subset of cells and are thought to be
important in withstanding mechanical stress (Hatzfeld, 2007). Adherens junctions

are detected between most cells in vivo (Takeichi, 2011).

Cells adhere to one another through a variety of proteins expressed on the cell
surface. The most widely studied are the classical cadherins, which interact in
trans between cells, and are a key component of adherens junctions. They consist
of one-pass transmembrane cadherins, such as E-cadherin, N-cadherin and P-
cadherin (named after their discovery in epithelia, neuronal tissues and placenta,
respectively) (Figure 1.6; Stemmler 2008). They were discovered as calcium-
dependent adhesion molecules that are essential for tissue integrity, but have since
been implicated in a range of cell behaviours such as synapse formation and cell

motility (Takeichi, 2011).

In addition to classical cadherins, the cadherin subfamily also consists of non-
classical cadherins, including desmosomal cadherins, FAT cadherins and
protocadherins, which differ in their structure and function. Desmosomal
cadherins are similar in structure to classical cadherins although desmosomes
appear to play a different junctional role to adherens junctions. The other
members of the cadherin superfamily are seven-pass transmembrane proteins and
are not localised to specific cell-cell junctions. These include protocadherins, which
have been implicated in regulation of adhesion through classical cadherins (Chen
& Gumbiner, 2006; Meng & Takeichi, 2009), and FAT and Flamingo proteins which
are involved in setting up planar cell polarity (Meng & Takeichi, 2009; Takeichi &
Abe, 2005). Hereafter, the term cadherin refers to classical cadherins unless

otherwise specified.
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Figure 1.5: Cadherin functions: adhesion and contact inhibition

(A) The formation of cadherin adhesions in migrating cells. Cell protrusive activity,
through lamellipodia or filopodia, will create random contacts between cells.
These contacts form cadherin puncta, connected to the circumferential actin cable.
Some cells form an intermediate stage called an adhesion zipper, created by
myosin tension. As the contacts expand and mature, more cadherins build up and
actin begins to accumulate at the adhesion belt, strengthening the adhesion
between cells (Cavey & Lecuit, 2009). (B) Cadherins are also important for contact
inhibition between migrating cells. After contact, if the cells do not form strong
adhesions, they migrate away from one another and this directionality is
dependent on the activity of cadherins at the point of contact (a). In a group of
migrating cells, constant cadherin-dependent contact inhibition causes random
orientation of cells within the group, but allows cells at the free edge to migrate
directionally away from the group (b). Subsequently, cells which were previously
part of the group are exposed to the free edge and they then move forward. This
process can drive the collective migration of a whole group of cells (Mayor &

Carmona-Fontaine, 2010).
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Figure 1.5
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Cadherin-mediated adhesion

Classical cadherins are transmembrane proteins consisting of tandemly repeated
extracellular cadherin (EC) domains and a highly conserved intracellular domain
containing the juxtamembrane and the catenin-binding domains (Figure 1.6;
Suzuki, 2008). In vertebrates, classical cadherins have 5 EC repeats, and are
classified into two classes, type I and type I, depending on the presence or absence
of a conserved His-Ala-Vav motif in EC1 (Stemmler, 2008). Interactions between
the EC1 domain in trans between cadherins on apposing cells initiate cadherin

binding (Meng et al., 2007; Zhang et al., 2009).

The juxtamembrane domain contains a defined sequence of amino acids which is
responsible for binding the p120 family of catenins. There is still some debate
about the precise functions of these molecules (see below), but they are important
for stabilising the cadherins at the cell membrane (Chen et al., 2003; Davis et al.,
2003). The catenin-binding domain binds 3—catenin, which in turn binds a-catenin
and the resulting complex is responsible for anchoring cadherins to the actin
cytoskeleton. a-catenin can bind in vitro to cadherin and to F-actin but recent
studies have demonstrated that it cannot bind both at once, suggesting that
another protein must be required to make the link (Yamada et al.,, 2005). One
candidate is EPLIN, which can bind both a-catenin and actin, and whose activity is
required for stabilising adherens junctions, although punctate junctions do still
form in its absence (Abe & Takeichi, 2008; Suzuki & Takeichi, 2008). The linkage of
cadherins to the cytoskeleton is essential for cadherin-mediated cell-cell adhesion

(Hirano et al.,, 1992; Suzuki & Takeichi, 2008).

Cadherins bind one another in trans either homophilically (binding to an identical
protein) or they can bind heterophilically to other cadherins. For example, in vitro
co-cultures demonstrate heterophilic binding between L cells transfected with P-
cadherin and E-cadherin (Foty & Steinberg, 2005) and between N-cadherin and E-
cadherin (Niessen & Gumbiner, 2002). However, the strength of binding is
generally greater between molecules of the same type than in a heterophilic

situation (Duguay et al.,, 2003).
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Figure 1.6: Cadherin structure and function

(A) Typical junctions in an epithelial cell. Interactions with other cells occur largely
through the adherens junctions at the adhesion belt. Adhesion through classical
cadherins is concentrated here. Tight junctions, desmosomes and gap junctions
also mediate cell-cell adhesion. Cells interact with the extracellular matrix through
integrins at focal adhesions and through hemi-desmosomes
(php.med.unsw.edu.au). (B) Cadherin interactions. Classical cadherins consist of an
extracellular domain containing 5 extracellular (EC) repeat regions. EC1 interacts
with cadherin on the adjacent cell to mediate adhesion. The intracellular region
consists of the catenin-binding domain, which anchors cadherins to the actin
cytoskeleton, and a juxtamembrane domain which binds p120catenin, regulating
its expression at the membrane (Suzuki & Takeichi, 2008). (C) Different families of

cadherins, their common features and common examples (Stemmler, 2008).
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Figure 1.6
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When two cells come into contact, the EC domains of cadherins on apposing
membranes interact. More cadherins are subsequently recruited to the site of
contact and form a complex which links to the actin cytoskeleton (Ehrlich et al,,
2002; Yamada & Nelson, 2007). Cadherins can interact homotypically in cis, which
could help regulate the formation of these complexes (Stemmler, 2008). Another
model suggests that they interact in trans in a zipper-like manner to recruit more

cadherins to the site of contact (Boggon et al., 2002).

Adhesive junctions form when actin-driven cell surface projections, filopodia or
lamellipodia, make contact with the membrane of another cell (Figure 1.5; (Green
et al,, 2010). Initially, punctate adherens junctions form at this site of contact
which develop into actively expanded cell contacts. This process requires
organised control of the actin cytoskeleton including myosin II-mediated
contractility (Krendel & Bonder, 1999). This process involves precise
spatiotemporal regulation of RhoGTPases (Green et al., 2010; Watanabe et al.,
2009). In MDCKII cells, RhoA and acto-myosin contractility as well as Racl and
lamellipodia formation are localised to different regions of the membranes of
contacting cells and are required for the establishment of stable contacts (Yamada
& Nelson, 2007). The regulation of cytoskeletal activity is thus vital for the

establishment and maintenance of stable cell adhesions.

In epithelial cells, the adherens junction is present between cells near their apical
surface, characterised by the adhesion complexes and actin belt which form there.
Assembly of the adherens junction requires the activation of RhoGTPases Rac1 and
Cdc42 (Noren et al., 2000), which contribute to stabilising cadherins at the cell
surface. Actin branching via Arp2/3 is inhibited by homodimeric a-catenin,
favouring actin bundling at sites of mature cell contact (Weis & Nelson, 2006). The
requirement of catenins to form stable junctions highlights the importance of
regulation of the actin cytoskeleton in this process. The high turnover and constant
fluctuations of RhoGTPases and F-actin at the junctions contribute to their highly

dynamic state.

Cadherin-mediated cell contacts are highly dynamic and cadherin complexes are
being constantly trafficked away from cell junctions even in apparently stable

situations (Yap et al,, 2007). Thus, the control of cadherin endocytosis is a key
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mechanism for regulating cell adhesiveness. Certain signalling pathways result in
increased endocytosis. For example, VEGF stimulation of sub-confluent endothelial
cells increases VE-cadherin internalisation (Gavard & Gutkind, 2006; Yap et al,
2007). Conversely, NMDA stimulation of neurons stabilises N-cadherin at the
synapse (Tai & Truong, 2007; Yap et al., 2007). One known regulator of cadherin
endocytosis is p120, discussed below, which inhibits VE-cadherin endocytosis to

stabilise the cadherin at the cell surface (Xiao et al,, 2005; Yap et al.,, 2007).

In summary, cadherins mediate adhesion, but they function in consort with a range
of other proteins, which regulate their stability and their linkage to the actin
cytoskeleton. In addition, the actin cytoskeleton is tightly regulated to facilitate
initial contacts, by the extension of cell protrusions, but also to maintain the
structural integrity of the junctions. The tight coordination between these

processes is crucial for the regulation of cell-cell adhesion.

p120 catenin in the regulation of adhesion

p120 was originally identified as a substrate of Src (Reynolds et al., 1989). Its
homology with (3-catenin led to the idea that it could be involved with cadherins,
and it was subsequently found to co-localise with (Reynolds et al.,, 1992) and bind
to E-cadherin (Ishiyama et al., 2010). Further investigation has demonstrated that
it binds to a specific motif in the juxtamembrane cytoplasmic domain of classical
cadherins (Yap et al, 1998) and that interaction with cadherins is necessary and
sufficient for its recruitment to the cell membrane (Figure 1.7; Thoreson et al,,

2000).

The interaction of p120 with cadherin is also required to form stable cell-cell
adhesions. p120 deficiency is embryonic lethal in mice but a conditional knockout
of the gene in the mouse salivary gland shows decreased levels of E-cadherin by
antibody staining (Davis & Reynolds, 2006). p120 knockouts in Drosophila and C.
elegans are viable, likely through redundancy with the other close family members,
p0071, ARVCF and 6-catenin (Davis & Reynolds, 2006). Decreased levels of p120
also cause rapid degradation of cadherins on delivery to the cell surface (Davis et
al, 2003; Xiao et al., 2003). In mammalian cell lines, a p120-uncoupled form of E-

cadherin has been shown to be incapable of promoting cell compaction, suggesting
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Figure 1.7: The p120ctn family

(A) Comparison of structures and binding partners of members of the p120-family
proteins and their relatives. All of the proteins contain an armadillo repeat domain,
similar to the armadillo/ 3-catenin. p120, ARVCF, §-catenin and p0071 are p120-
like proteins which bind type I and II cadherins and are localised to adherens
junctions. PKP1, 2 and 3 are plakophilins which bind cadherins localised at
desmosomes. p0071 has also been found localised at desmosomes. DP,
desmoplakin; pg, plakoglobin; dsg, desmoglein; dsc, desmocolin; PKP, plakophilin
(Hatzfeld, 2005). (B) More detailed structure of p120 showing: a central armadillo
repeat domain which is important for cadherin binding; a regulatory domain
consisting of tyrosine (red dots) and serine/threonine (white dots)
phosphorylation sites which vary with the dynamic regulation of p120 function.
Alternative splicing in this region gives rise to 4 different isoforms; exons A, B and
C are also alternatively spliced. NLS, nuclear localisation signal; NES, nuclear

export signal (Reynolds et al., 2004).
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Figure 1.7
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an impact on the ability of E-cadherin to form stable adhesions (Thoreson et al.,
2000). p120 overexpression leads to increased aggregation of cells (Aono et al,
1999). Where E-cadherin is overexpressed in cell lines it can compensate for the
effect of p120 knockdown, suggesting that p120 may not be absolutely required
for junction formation (Ireton et al.,, 2002). Nevertheless, p120 is an important

component of adherens junctions and a key player in cadherin-mediated adhesion.

Whilst it is clear that there is a requirement for p120 in stabilising cadherins at the
cell surface, there is some debate as to how it achieves this. Binding of p120 to
cadherin could stabilise it at the membrane by protecting it from degradation or by
decreasing the rate of turnover by endocytosis (Reynolds, 2007; Yap et al., 2007).
Another possibility stems from the fact that p120 has some RhoGTPase activity.
The binding of p120 to cadherin localises this activity to the point of cell contact
which could be important for cytoskeletal re-modelling at the junctions

(Wildenberg et al., 2006).

The phosphorylation state of p120 appears to be important, perhaps in modifying
its ability to bind cadherins. There is a transient increase of tyrosine-
phosphorylated p120 at nascent adhesive contacts (Calautti et al., 1998; Calautti et
al.), suggesting that phosphorylation is important at the establishment of contacts,
but that phospho-p120 is not required to maintain cadherins in stable contacts. In
support of the idea that phospho-p120 is required in stabilising E-cadherin, it has
been demonstrated that tyrosine-phosphorylated p120 binds cadherin
preferentially to the unphosphorylated version (Reynolds, 2007). However, it has
also been shown that phospho-tyrosine defective mutants are also able to
effectively bind and stabilise E-cadherin at the cell surface (Mariner et al., 2004;
Xiao et al., 2003). p120 lacking the N-terminal domain (which contains regulatory
phosphorylation sites) is capable of restoring E-cadherin stability more efficiently
than full length p120 in Colo205 cells which normally grow dispersed (Aono et al,
1999). The discrepancy between these results could be due to different roles of
p120 in the different models discussed. It could also be the case that small
variations in the levels of expression of the different p120 constructs could have

significant effects on the phenotypes of the cells in which they are expressed.
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p120 catenin regulation of cell motility and migration

Cell motility and migration are controlled by complex interactions with the ECM
and surrounding cells as well as by regulation of the cytoskeleton within cells.
Small GTPases including RhoGTPases are key players underlying these dynamic

processes.

When not bound to cadherins, p120 family members can regulate RhoGTPases via
GEFs or GAPs (McCrea & Gu, 2010). For example, p0071 is involved in the
regulation of Rho necessary for cytokinesis (Wolf et al., 2006). The p120 family
generally activates Rac and inhibits Rho (Anastasiadis, 2007; Hatzfeld, 2007).
Reduction of p120 levels leads to an increase in activated Rho in many cell lines
(Reynolds, 2007). Forced expression of p120 in fibroblasts results in an abnormal
branching morphology, consistent with altered cytoskeletal regulation by
RhoGTPases in these cells (Reynolds et al., 1996). It has been shown that in SV80,
NH3T3 and CHO cells, expression of a full-length p120 induces protrusive activity.
This correlates with an increase in migration of these cells and occurs via
activation of Rac and Cdc42 without inhibiting Rho activity (Grosheva et al., 2001).
Therefore p120 can act through RhoGTPases to regulate cell morphology and

motility.

The RhoGTPase regulating activity of p120 family members may be, in part,
dependent on their association with cadherins. For example, it has been suggested
that cadherin binding to p120 may facilitate the activation of Rac by cadherins
(Goodwin et al., 2003). Similarly, p120 has been shown to recruit p190RhoGAP to
repress Rho near cadherins (Wildenberg et al.,, 2006). Conversely, p0071 interacts
directly with the RhoGEF, Ect2, to activate Rho (Wolf et al, 2006). p120 is also able
to interact with Rho and keep it in the GDP-bound/inactive form (Yanagisawa et
al., 2008). The fibroblast branching phenotype caused by overexpression of full-
length p120 can be rescued by co-expression of the cadherin cytoplasmic domain.
This suggests that Rho and cadherin bind to the same site on p120, precluding a
cooperative role for p120 in recruiting Rho-inhibition from the site of cell contact
(Reynolds, 2007). The differences in the regulatory activity of p120 family

molecules may reflect a difference between the cell lines used in terms of: their
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ability to activate Rac/Rho; expression of different cadherins; and interaction with

different receptor tyrosine kinases.

Alternatively, it has been postulated that p120 family members act as a rheostat of
adhesion and motility and that the release of p120 from cadherins could underlie
EMT in some contexts (Grosheva et al., 2001; McCrea & Gu, 2010). Therefore,
variations in the levels of p120, or relative levels of phosphorylated p120, could

underlie significant changes in cell responses.

Signalling and non-adhesive roles of cadherins

Aside from their role in mediating cell adhesion, cadherins also have a signalling
role and have been implicated in the control of morphology, motility and
migration. One widely found example is that of cadherin switching, a change in the
expression of one cadherin for another. In development, a cadherin switch occurs
during neurulation where E-cadherin expressing cells switch to N-cadherin
expression as they invaginate to form the neural tube (Halbleib & Nelson, 2006;

Hatta & Takeichi, 1986).

Cadherin switching frequently accompanies the increased motility of cells after
epithelial to mesenchymal transition (EMT). The delamination of neural crest from
the vertebrate neuroepithelium is one example of EMT. Neural crest cells (NCCs)
derive from the N-cadherin expressing neural tube. During EMT, N-cadherin
downregulation is accompanied by increased expression of cadherin-6B, followed
later by a switch to cadherin-11 when cells become more migratory (Clay &
Halloran, 2011; Nakagawa & Takeichi, 1995). Aside from the resulting change in
adhesion, downregulation of N-cadherin also has a direct signalling role. Its
regulation involves a proteolytic cleavage, resulting in release of a cytoplasmic
domain, which signals to the nucleus to stimulate expression of other EMT-
promoting genes (Clay & Halloran, 2011; Nakagawa & Takeichi, 1998; Shoval et al,,
2007). Knockdown experiments in chick indicate that cadherin-6B also has a role
in increasing migration, in part by stimulating BMP signalling (Park & Gumbiner,
2010). Furthermore, studies of Xenopus cranial neural crest demonstrate that
cadherin-11 is essential for NCC migration, and can induce filopodia and

lamellipodia formation (Kashef et al,, 2009). In these cases, the cadherin switch

54



underlies the transition of cells to a more migratory cell type and is an important

part of the developmental programme.

In other cases, cadherin switching represents a deviation of cells from their normal
identity. EMT is a common feature of cancer and cells which have undergone the
epithelial to mesenchymal switch become increasingly invasive. For example, E-
cadherin is commonly downregulated and replaced with N-cadherin, R-cadherin,
cadherin-6 or cadherin-11 (Halbleib & Nelson, 2006). N-cadherin can bind and
activate FGFR resulting in MAPK signalling and extracellular metalloproteinase
secretion, both of which stimulate increased invasiveness (Halbleib & Nelson,
2006). In vitro, N-cadherin expression in myoblasts has been shown to activate
RhoA and inhibit Rac1 and Cdc42 (Charrasse et al., 2002; Mayor & Carmona-
Fontaine, 2010). Collectively, their roles in EMT in both normal development and
in disease indicate that cadherins have a signalling function in the promotion of

cell migration as well as their role in adhesion.

Experiments carried out culturing cells on alternating stripes of collagen (ECM) or
E-cadherin-Fc demonstrate a cross-talk between E-cadherin mediated adhesion
and lamellipodia activity and directionality (Borghi et al., 2010). Adhesion of cells
to E-cadherin decreased migratory activity and influenced the direction of
migration, although the ECM was required to facilitate migration. Such a result
demonstrates that there is cross-talk between cadherin and integrin mediated

adhesion.

Collectively, these data demonstrate a variety of roles for cadherins. In addition to
their requirement in cell-cell adhesion, they also contribute to cell morphology and
migration via the activation of downstream signalling pathways, including the

regulation of RhoGTPases.

Contact Inhibition of Locomotion

Two migratory cells in a dish which come into contact will generally migrate away
from one another. This phenomenon was first recognised by Abercrombie and
Heaysman in 1953 and was called contact inhibition of locomotion (CIL)
(Abercrombie & Heaysman, 1953). It was later defined as: “the phenomenon of a

cell ceasing to continue moving in the same direction after contact with another
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cell” (Abercrombie, 1979). The behaviour consists generally of four phases: cell-
cell contact; inhibition of protrusions, such as lamellipodia and filopodia, at the
point of contact; formation of new protrusions away from the point of contact; and
migration in the direction of the new protrusions (Mayor & Carmona-Fontaine,

2010).

CIL is a general property of most cells. For example, most cells when cultured on a
dish will spread out to form a monolayer because they are prevented from
migrating on top of one-another (Abercrombie et al., 1957). However, in some
cases contact inhibition is not seen, for example in some invasive cancers where
cancer cells are freely able to ignore contact cues from the surrounding cells (Astin
etal, 2010). Neural crest cells are able to migrate through surrounding tissue as
part of their normal development but retain the ability to contact inhibit one
another’s migration (Mayor & Carmona-Fontaine, 2010). Study of this common cell
behaviour will help to increase our understanding of collective cell dynamics in

development and later life.

Whilst the concept has existed for nearly 60 years, little progress has been made in
elucidating the molecular mechanisms underlying CIL. Only very recently did
analysis of neural crest migration in Xenopus provide the first evidence that CIL
occurs in vivo (Carmona-Fontaine et al., 2008a). These cells have a clear polarity,
with a large lamellipodium at the leading edge of migration, which collapses on
contact with another cell and changes the direction of migration. FRET analysis
revealed an increase in RhoA activity at the point of contact between the cells,
which is required to maintain CIL. Planar cell polarity pathway components Dsh
and DEP are also required for this process and present one mechanism through
which cells can recognise one another (Carmona-Fontaine et al., 2008b). A more
recent paper demonstrates that N-cadherin is also required for this process, and
inhibits Rac1 activity, thus inhibiting protrusive activity at the site of cell-cell
contact (Theveneau et al., 2010). Theveneau et al. propose a model where N-
cadherin is required for two processes to allow the neural crest cells to migrate as
a coherent group. The first is to regulate adhesion between cells. The second is that

in a cell that is not completely surrounded by N-cadherin contacts, the free edge
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will be relieved from Rac1 inhibition and protrusions will form, driving directed

migration.

Cadherins have also been implicated in directing polarity in relation to cell-cell
contact in other cell types. For example, in rat astrocytes, N-cadherin is required to
control positioning of the centrosome relative to the nucleus (Dupin et al., 2009).
The position of the centrosome is generally in front of the nucleus in migrating
cells (Etienne-Manneville & Hall, 2001). In rat kidney cells (NRK-52E), E-cadherin
was found to be required for the establishment of cell polarity, organising
organelles towards the leading edge of the cell (Desai et al., 2009). This cadherin-
dependent polarisation of the cells was found to require the actin cytoskeleton and
the activity of Cdc42. As with other cell processes involving cadherins, the function
of cadherins in re-polarisation during CIL is dependent on small GTPases RhoA,
Racl and Cdc42, whose polarised activity within the cell is required to direct

migration away from the point of cell-cell contact.

[t is notable that CIL displays many of the characteristics associated with repulsion
mediated by Eph-ephrin signalling. Cell surface contact between Eph receptor and
ephrin expressing cells results in the retraction of cell processes and repulsion, for
example in axon retraction (Jurney et al, 2002; Poliakov et al.,, 2008). Eph-ephrins
also regulate the activities of RhoA, Racl or Cdc42 after cell contact (Noren &
Pasquale, 2004). Furthermore, EphB-ephrinBs have been shown to activate RhoA
via Dsh/PCP signalling (Tanaka et al., 2003). One intriguing possibility is that Eph-
ephrins are heterotypic mediators of CIL, allowing recognition and repulsion
between unlike populations of cells, which could facilitate their correct positioning

in the embryo.

Aims of this study

My aim was to analyse whether cell-cell adhesion is involved in cell sorting
mediated by EphB2-ephrinB1 signalling. Differential adhesion is a prominent
theory in the field to explain cell sorting in development and disease. Little
evidence existed for a role of differential adhesion downstream of Eph-ephrin
signalling, but a recent paper suggested that EphB-ephrinB signalling required E-

cadherin to mediate cell sorting (Cortina et al., 2007). Previous work from the
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Wilkinson lab had suggested that directional migration plays a role in the
segregation of EphB2 and ephrinB1 expressing cells (Alexei Poliakov,
unpublished) but a role of cell-cell adhesion in this process had not been
addressed. I was interested to further investigate the idea that Eph-ephrins could
drive cell sorting by implementing differential adhesion. I also wanted to
investigate the role that repulsion downstream of Eph receptors could play in this

model.

[ used cell segregation and cell migration assays developed in the Wilkinson lab to
investigate the role of cadherin-mediated adhesion in cell segregation between
EphB2 and ephrinB1 expressing cells, with a particular focus on the potential for
Eph-ephrin signalling to set up differential adhesion. The roles of p120 family
catenins, p120 and p0071, were then analysed for their potential role downstream
of Eph-ephrin signalling in the regulation of cell sorting. The effect of these
molecules on migration downstream of Eph activation was also assessed, to
investigate the relationship between cell-cell adhesion and migration in cell

segregation.
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2. Materials and Methods

Reagents

Antibodies

For Western blot analysis, primary antibodies were used at the indicated dilutions
against: T-cadherin 1:1000 (3583, rabbit, ProSci); Cleaved-caspase 3, 1:1000
(9661, rabbit, Cell Signalling Technology); E-cadherin, 1:1000 (610181, mouse,
BD); N-cadherin (C-ter) 1:1000 (610920, mouse, BD); N-cadherin (N-ter) 1:1000
(clone GC-4, C3865, SIGMA);Pan-cadherin, 1:500 (C1821, mouse SIGMA); p120
catenin, 1:1000 (610133, BD); p0071, 1:10 (651166, Progen); y-tubulin, 1:1000
(T3559, rabbit, SIGMA); EphB2, 1:1000 (A467 , R&D Systems); ephrinB1, 1:1000
(AF473, R&D systems); a-Tubulin, 1:5000 (T9026, Sigma); -tubulin, 1:1000
(T8328, mouse, SIGMA); phospho-Eph receptor antiserum, 1:500 (from C. Nobes,
University of Bristol, England, UK); Adam10, 1:1000 (AB19026, Millipore);
phosphotyrosine, clone 4G10, 1:1000 (05-321, Millipore); FLAG clone M2, 1:1000
(F3165, SIGMA);. Secondary antibodies used were compatible with the Odyssey
scanner system: [IRDye800CW, IRDye700DX, 1:5000 (raised in donkey against

rabbit, mouse or goat, Rockland/Tebu-bio).

For immunocytochemistry, the same primary antibodies were used that are listed
above, at the following dilutions: N-cadherin, 1:250; pan-cadherin, 1:500; EphB2,
1:100; ephrinB1, 1:100; y-tubulin, 1:1000.

Recombinant ephrinB1-Fc chimera (473-EB-200, R&D Systems, 200ug/ml stock)
was used at a final concentration of 5 ug/ml to stimulate EphB2 activation.
Plasmids

N-cadherin-eGFP (mouse, Addgene ,plasmid 18870); mAdam10 deltaMP in pQCXIP
cFLAG (mouse, Addgene, plasmid 19138); E-cadherin (Alexei Poliakov);
pCDNA3.1; pCS2+.
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SiRNA

Silencer select pre-designed siRNAs were purchased from Applied Biosystems,
Ambion: Negative Control #1 siRNA: 4390844; N-cadherin (Cdh2): s2771, s2772,
s2773; Adam10: s1004, s1005, s1006; p120 (Ctnnd1): s3725, s3726, 3727

p0071 (Pkp4): 16148, s16149, s16150.

Cell lines

HEK293 cells stably transfected with EphB2, EphB2 and a myristylated-GFP
(EphB2 cells) or ephrinB1 (ephrinB1 cells) were generated using G418 and/or
hygromycin (Poliakov et al., 2008). HEK293 and melanoma lines stably expressing
E-cadherin, T-cadherin or a control pCDNA3.1 plasmid were obtained from K.
Rubina. Untransfected L-cells and an L-cell line expressing N-cadherin were
generously donated by N. Itasaki (MRC National Institute for Medical Research,
London, UK) and an L-cell line expressing E-cadherin from Y. Fujita (MRC
Laboratory for Molecular Cell Biology, London, UK). HEK293 cell lines stably
transfected with E-cadherin-GFP, Adam10AMP-FLAG and EphB2 or E-cadherin-
mCherry and ephrinB1 were generously provided by Guiomar Solanas (Institut de

Recerca en Biomedicina, Barcelona, Spain).

Cell maintenance

Cells were cultured at 37°C with 5% COz in DMEM (high glucose media 4.5g/1
without glutamine) supplemented with 1% L-Glutamine (200mM), 1% Sodium
Pyruvate (100mM) and 10% Fetal Bovine Serum Mycoplex (all PAA). Where the
number of cells plated was important, they were counted using a Cellometer T4

Cell Counter (Nexcelom Bioscience).

Microscopy

For the majority of images, fixed and live, including the cell segregation assay,
boundary assay, and hanging drop assay, the RT live-imaging workstation
(Deltavision; Applied Precision, LLC) on a microscope (IX-70; Olympus) was used
with a charge-coupled device camera (MicroMax 1300 YHS; Roper Scientific) and a
heated environmental chamber (37°C; 5% CO3). Images were acquired using

SOFTWORX acquisition software (Applied Precision, LLC).
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Confocal images were captured using a Leica TCS SP2 laser scanning confocal
microscope. Images were processed with Fiji, Image ], Photoshop, GMimPro
(Mashanov & Molloy, 2007) or LabView (National Instruments) as discussed in the

relevant sections.

siRNA knockdown

Knockdown of human genes in HEK293 cells and stable lines was achieved using
pre-designed Silencer Select siRNAs (Applied Biosystems, Ambion). GFP-EphB2,
ephrinB1, E-cadherin or control HEK293 stable cell lines were seeded 24 h before
siRNA transfection at 400,000 cells/ml, 1 ml per well of a 6-well dish. 60 pmol/ml
total siRNA and 5 ul Lipofectamine RNAIMAX (Invitrogen) transfection reagent
were used in a total of 500 ul Opti-MEM I Reduced Serum Medium-with GlutaMAX
(Invitrogen) according to manufacturer’s instructions. In most cases, 3 siRNAs to
the same gene were pooled to minimise off-target effects. For N-cadherin, siRNAs
were tested individually and s2772 was found to be toxic to the cells. s2771 and
s2773 were therefore pooled, which gave a similar phenotype and level of
knockdown as when each was used alone. Where 2 genes were knocked down in
combination, the total concentration of siRNA was kept the same (60pmol/ml).
Cells were incubated in siRNA for 6h then 1.5ml pre-warmed medium was added
to each well. They were incubated for 48 h before re-plating for sorting, boundary
or hanging drop assays. For Western blot analysis, they were incubated for 24 h,
48 h or 72 h. Other transfection reagents, XtremeGene (Roche) and Lipofectamine
2000 (Invitrogen), were used initially in experiments comparing transfection
efficiency and non-specific effects of these reagents compared with Lipofectamine

RNAIMAX.

Cell labelling

Cells were fluorescently labelled 48h after siRNA transfection by addition of 2ml of
5mM Cell Tracker CMRA or CMFDA (Molecular Probes, Invitrogen) in pre-warmed
DPBS containing 1000mg/1 D-glucose and 36mg/1 sodium pyruvate, calcium and

magnesium (GIBCO, Invitrogen). They were incubated at 37°C for 30 min
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according to manufacturer’s instructions. After 30 min, labelling solution was

replaced with 2ml pre-warmed medium for at least 1 h.

Cell sorting assay

Protocol

Glass slides (2 well chambered slide system (1.0 borosilicate; Lab-Tek II, Nunc))
were coated with fibronectin. 700ul 50pg/ml fibronectin (from bovine plasma;
Sigma) was incubated in each well for 30 min at room temperature. Slides were

then washed 3 times in PBS and left in PBS.

Cells were plated for the segregation assay 48 h after siRNA transfection. They
were labelled as described above, or used without labelling. They were dissociated
in Accutase (PAA laboratories), pelleted, resuspended in fresh medium and filtered
through 0.45 um filters to create a single cell suspension. They were counted using
an automatic cell counter. Two cell lines were mixed in equal proportion and
plated into each well of the chamber slide at a concentration of 200,000 total
cells/cm? (2ml/well). Where chemical inhibitors were used (i.e. TAPI-1, 20uM),
they were added at the same time as cells were plated. This culture was then

incubated for 48 h, until confluent, before fixation.

Analysis

Cells were visualised using a Deltavision microscope and images of segregated
cells were acquired with a 4x /0.13 NA objective (Olympus). These were subjected

to the following analyses:

Nearest Neighbour analysis

To quantify the pattern of cell sorting seen in this assay, I initially carried out
Nearest Neighbour analysis (Mochizuki et al., 1998). Grayscale images of one cell
population (usually GFP-Eph cells) were binarised and resized so that each pixel
represented roughly the area of one cell and the clusters appeared black. These
images were then analysed using custom-written software which assessed the
proportion of cells surrounded by like cells. The result of this analysis is

represented as a single number - the Nearest Neighbour value - for each image. A
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value of 0.5 would represent a totally random pattern, where a cell is surrounded
by 2 black and 2 white cells, whereas values approaching 1 represent increasingly
segregated populations. 3 or more images were analysed per condition and

experiments were repeated at least once.

Perimeter Regularity Index

Another method of quantifying cell segregation is calculating the perimeter
regularity index (PRI) (Hueck et al, 2000) of clusters. Grayscale images of one cell
population (usually GFP-Eph cells) were inputted (three per condition) into an
custom-designed Labview program (Chen Qian, Confocal Imaging and Analysis
Laboratory, NIMR). This identifies cell clusters based on a threshold pixel intensity,
and calculates the mean PRI value across all clusters within each image. This
programme was also used to calculate the mean area and Heywood Circularity
Index of clusters. Statistical significance between a control and experimental
condition was calculated using the Student’s T-Test (p<0.05) within each
experiment. Experiments where the PRI value for the control siRNA condition with
Eph-ephrin signalling was not significantly different to the control siRNA condition
without Eph-ephrin signalling were discarded from further analysis. The mean PRI
value for each condition was calculated from the PRI values of the condition for
each experiment (minimum of three repeats). The significance of the mean PRI
value for each condition compared to the control condition was calculated using

the Student’s T-Test (p<0.001).

Boundary assay

Protocol

For the boundary assay, siRNA-transfected cells were fluorescently labelled 48 h
after transfection as described above. A 4 well chambered slide system (1.0
borosilicate; Lab-Tek II, Nunc) was pre-coated with fibronectin, and a silicone
barrier (Culture insert, Ibidi) was placed in each culture slide well using sterilised
forceps after PBS was removed but before the fibronectin dried out. Each of two
cell lines was plated in equal proportion into either side of the silicone barrier, at a

concentration of 1.26 million total cells/ml (70ul each side of the barrier). Cells
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were incubated at 37°C for 6 h before the barrier was removed (with sterile
forceps) and 1ml fresh medium was added to each well. Cells were incubated at

370C for 48 h before being fixed and mounted in ProLong Gold.

Analysis

Boundary sharpness was quantified by measuring the length of the boundary.
Grayscale images of one cell population (usually GFP-Eph cells) were inputted
(three per condition) into an custom-designed program (Chen Qian, Confocal
Imaging and Analysis Laboratory, NIMR) which outlined and calculated the
boundary length for each image based on a pixel intensity threshold. Experiments
were excluded from further analysis according to the same criteria described for
the perimeter regularity index calculations. The boundary length shown
represents the mean of the boundary length of the condition calculated from at
least 3 experiments. The significance of the overall boundary length value for each
condition compared a control condition was calculated using the Student’s T-Test

(p<0.01) on the average values for each experiment.

All error bars on all bar charts represent standard error of the mean (SEM).

Hanging drop assay

Cells were dissociated and filtered as for the sorting assay. Two cell lines were
mixed in equal proportions at a final concentration of 100,000 cells/ml and plated
in 10 ul drops (1000 cells/drop) onto a clean coverslip. The inverted drops were
then grown at 37°C for 48 h suspended across a well of a 6 well plate containing 1
ml medium to prevent them from drying out. For imaging, the coverslips were
turned over, so the drops were no longer hanging, and imaged immediately on a
Deltavision microscope. For confocal analysis, the drops were fixed by flooding the
drop with 4% formaldehyde (4% Formaldehyde Ultrapure (Thermo Scientific),
MEM (GIBCO), sterile water and sodium hydroxide to pH 7.5 (filtered and pre-
warmed at 37°C)) for 15 min. The fixative was removed and replaced with PBS or
70% glycerol, and the coverslip was placed on a glass slide, slightly raised using

silicone gel.
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Immunocytochemistry

Cells were fixed for immunocytochemistry at 37°C in 4% formaldehyde (4%
Formaldehyde Ultrapure (Thermo Scientific), MEM (GIBCO), sterile water and
sodium hydroxide to pH 7.5 (filtered and pre-warmed at 37°C)). They were rinsed
3 times in PBS, once for 5 min in PBS/0.1% Triton to permeablise the cell
membranes, rinsed in PBS/0.1% Triton, and rinsed in PBS. They were then shaken
for 1 h in blocking buffer (4% donkey serum (Jackson Immuno Research), 2%BSA
(Jackson Immuno Research), PBS). This was replaced with blocking buffer
containing primary antibody, and shaken for 1h. The following primary antibodies
were used against: EphB2, 1:100 (A467, goat, R&D Systems); ephrinB1, 1:100
(AF473, goat, R&D Systems); N-cadherin 1:1000 (610920, mouse, BD); Pan-
cadherin 1:500 (C1821, mouse SIGMA); T-cadherin (3583, rabbit, ProSci); Cleaved-
caspase 3 (9661, Cell Signalling Technology).

Cells were washed 3 times for 5 min in PBS, before incubation in blocking buffer
containing 1:250 secondary antibody. Secondary antibodies were used from
Jackson Immunoresearch: Cy3 or Cy5 conjugated, raised in donkey. Cells were
rinsed three times in PBS, before removal of chambers from the slide and rinsing
in dH20. Slides were mounted in Prolong Gold or Prolong Gold with DAPI
(Molecular Probes, Invitrogen). Images were taken on a Deltavision microscope
using a 4x objective. Higher magnification confocal images were taken on a Leica

SP2 confocal microscope using a 63x oil objective.

Western blot analysis

The extent of siRNA knockdown was analysed by Western blot 72 h post-
transfection. For other conditions, cells were grown for at least 24 h before
harvesting for Western blot. Western blots were carried out according to a
previously published protocol (Poliakov et al., 2008). Cells were chilled on ice for
10 min, collected in ice-cold PBS and pelleted by centrifugation. They were lysed in
30ul cell lysis buffer (1% NP-40, 20mM Hepes, pH7.4, 100mM NaCl, 10mM
NasP207, 1mM CaClz , 1mM MgCl;, Halt protease inhibitor cocktail (Thermo Fisher
Scientific, 1:100) for 10 min at 4°C. Cell lysate was obtained by centrifugation at

13,000rpm for 10 min at 4°C, and the supernatant collected. Protein concentration
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in cell lysates was measured using the Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific), according to the manufacturer’s instructions. NuPAGE LDS
sample buffer (4x) and Reducing Agent (10x) (both Invitrogen), were mixed 2.5: 1
respectively and added to each lysate condition in a ratio 3.5:6.5 respectively,
before denaturing for 10 min at 65°C. Samples were loaded (>30ug protein per
well) on NuPAGE 10% Bis-Tris Gels (Invitrogen) with 5pl Novex Sharp Pre-stained
protein standard, and run in Novex Mini-Cell tanks (Invitrogen) in NuPAGE MOPS
SDS Running Buffer (Invitrogen) for 45 min at 200V. Transfer of proteins from gels
to rehydrated Immobilon-FL membranes (Millipore) was performed using XCell I
Blot modules (Invitrogen) in NuPAGE Transfer Buffer (Invitrogen; containing 10%

methanol, 0.1% NuPAGE Antioxidant (Invitrogen)) for >1 h at 30V.

Membranes were blocked in blocking solution (50% Odyssey Blocking Buffer (LI-
COR Biosciences), 50% PBS) for 1 h at room temperature or 4°C overnight.
Blocking solution was replaced with primary antibodies in blocking solution/0.1%
Tween for 1 h at room temperature or overnight at 4°C, and washed 4x 5 min in
PBS/0.1% Tween. Membranes were then incubated with secondary antibodies in
blocking solution/0.1% Tween/0.01% SDS (Bio-Rad laboratories) for 1 h at room
temperature or overnight at 4°C. After staining, the membranes were washed 3x 5
min in PBS/0.1% Tween, rinsed in PBS and scanned using 700- and 800-nm
channels on an imager (Odyssey; Li-cor Biosciences). The intensity of staining was
determined using the median background method in the Li-cor software. At least 3
blots were run for each condition, but in some cases only two were quantified due

to noisy staining on the membrane.

EphrinB1-Fc stimulation

For analysis of cadherin expression after Eph activation, cells were plated on
fibronectin-coated chamber slides and grown for 24 h before stimulation with 5
ug/ml ephrinB1-Fc chimera (R&D Systems) for 0, 5, 15 or 30 min before fixing and

staining as described elsewhere.

To assess the extent of Eph activation after knockdown of siRNA, cells were
stimulated with 1ug/ml ephrinB1-Fc chimera for 30min at 37°C, 72 h after siRNA

transfection. They were then harvested and cell lysate prepared in lysis buffer
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containing 1:100 phosphatase inhibitor cocktail set [I (EMD) before Western blot

as described above using anti-phospho-Eph and anti-EphB2 antibodies.

Immuno-precipitation

Cells were plated at 200,000 cells/cm? in 6 well plates (2ml/well) with or without
20uM TAPI-1, and incubated at 37°C for 48 h. They were harvested by incubation
on ice for 10 min then collection in ice cold PBS, before being lysed in 500pl lysis
buffer. 1-2mg antibody per reaction were incubated with Protein G (GE
Healthcare) for 1h in lysis buffer on a rotor. Cell lysate was incubated with pre-
bound antibodies for at least 1 h at 4°C on a rotor, before several washes in lysis
buffer, lysis buffer with 1M NacCl, and lysis buffer containing 10mM HEPES. The
beads were then boiled at 65°C for 10 mins in 2x sample buffer. All the supernatant
was loaded on a 10% Bis-Tris SDS-Page gel in MOPS buffer as described for

Western blotting.

Quantitative Real Time PCR

RNA extraction

RNA was extracted from approximately 200,000 cells using a PicoPure RNA Isolation kit

(MDS Analytical Technologies), according to the manufacturer’s instructions.

cDNA preparation

Approximately 1ug RNA was used for cDNA preparation using a Superscript kit

(Superscipt™ First Strand, Invitrogen), according to the manufacturer’s instructions.

Quantitative Real Time PCR (RT-PCR)

RT-PCR was performed with an ABI 7500 Real-Time PCR System (Applied
Biosystems) using SYBR Green (Platinum SYBR Green qPCR Supermix-UDG,
Invitrogen) in a 20pl reaction volume, according to the manufacturer’s instructions
(based on (Lekanne Deprez et al., 2002)). Relative levels of gene expression were
calculated compared to 3-actin controls. Complementary DNA PCR primers were

designed using Primer Express software (version 2.0, Applied Biosystems).
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Live Imaging

High density sorting

Cells were fluorescently labelled and plated for the segregation assay as described
above but at a concentration of 400,000 total cells/ cm? in a 2 well chambered
coverglass (chambered 1.0 borosilicate; Lab-Tek, Nunc). Cells were set up in a
heated environmental chamber (37°C; 5% CO;) and images taken with a 10x /0.4 NA

objective (Olympus) on a Deltavision microscope every two minutes for 24-48 h.

Boundary assay

For time-lapse imaging of boundary cell behaviour, a 2 well chambered coverglass
(1.0 borosilicate; Lab-Tek, Nunc) was used and cells were visualised using a
Deltavision microscope, in a heated environmental chamber (37°C; 5% COz),and
images were acquired with a 10x /0.4 NA objective (Olympus) every 2-5 min for
48 h. Videos of cell behaviour were created using Image] software (National

Institute of Health).

Motility analysis

For cell motility analyses, cells were fluorescently labelled 48 h after siRNA
transfection as described above, re-suspended in medium containing 2% HEPES
(PAA), and then filtered through 40um filters to obtain a single cell suspension
before counting. For whole population analysis, two populations of cells were
plated in equal proportions at a total concentration of 30,000 cells/cm?
(200ul/well) into an 8 well chambered coverglass (1.0 borosilicate; Lab-Tek,
Nunc) which had been coated with fibronectin. They were incubated for 1 h at
370C to settle before time-lapse imaging was set up. Images were acquired every
minute for 2 h using SOFTWORX acquisition software (Applied Precision, LLC).
For analysis of cells in the absence of interactions, cells were plated at 5,000
cells/cm? and images were recorded every minute for 2 hours. For analysis of
individual cell interactions, cells were plated at 20,000 cells/cm? and tracked for 8

h (these movies were taken by Alexei Poliakov).
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Mean Squared Displacement analysis

Whole population analysis was carried out on the EphB2 cell movies. Movies were
tracked using a single particle tracking algorithm in GMimPro software (Mashanov
& Molloy, 2007), which tracks the XY coordinates of cell centroids based on their
pixel intensity. This data is then used to calculate the mean squared displacement
(MSD, um?) using overlapping time intervals (DiMilla et al., 1993; Martens et al.,
2006) which is plotted over a change in time (AT) up to 57min (half the total time
for which the cells were tracked). In each experiment, 4 different cell combinations
were filmed in parallel, and two different fields of view were combined for each

condition. The results shown are an example of one such experiment.

The ratio of MSD endpoints between EphB2 cells mixed with EphB2 cells and
EphB2 mixed with ephrinB1 cells was calculated using the MSD of each track at
57min intervals. The data presented shows the mean of three experimental
repeats. Statistical differences in the average MSD between conditions in an
experiment were calculated using the Student’s T-Test (p<0.05) for all 57 min
intervals of tracks of each condition compared to another. The significance of the
overall MSD ratio increase with Eph-ephrin signalling between control and siRNA
conditions was calculated by combining the p-values calculated for each individual

experiment using Fisher’s method (P<0.005).

Directionality analysis

Turning angles of the tracks were calculated and endpoints and tracks plotted
using a custom-written Python script (TrackParser, Robert Gilchrist). This
programme used the XY coordinates of tracks extracted from GMimPro and
analysed only full-length (2 h) tracks. The turning angle is the angle between 2
consecutive 5 min intervals relative to movement in a straight line. These were
calculated for overlapping intervals and are plotted as a probability distribution
function histogram. TrackParser was also used to plot a random selection of tracks
on a common origin. 50 full-length tracks were picked at random and their XY
coordinates were plotted. For endpoint analysis, the endpoint positions of all full-
length tracks for a condition are plotted as individual points around a central
origin and the root mean square (RMS) displacement of these is shown as a solid

line around the origin.
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3. Are the sorting activities of Eph-ephrin sighalling and differential

adhesion similar?

Cell segregation mechanisms are frequently investigated using assays in which two
populations of cells are randomly mixed together then allowed to sort out from
one another (Moscona & Moscona, 1952; Townes, 1955; Trinkaus & Groves, 1955).
The use of such assays led to several theories of cell sorting. The differential
adhesion hypothesis has been the most widely accepted of these (Steinberg, 2007).
This suggests that cells sort if there is a difference in cohesion between two
populations of cells which move randomly. It has been demonstrated to work in
vitro (Duguay et al., 2003; Foty & Steinberg, 2005) and to play a role in certain in
vivo systems, including the separation between the cerebral cortex and the lateral

ganglionic eminence in the chick brain (Inoue et al.,, 2001).

When Eph receptor or ephrin expressing cells are mixed in vitro, they sort from
one another (Cortina et al, 2007; Jorgensen et al., 2009; Poliakov et al.,, 2008). Eph
receptors and ephrins are also important in the segregation of adjacent regions of
cells in vivo, for example rhombomeres of the vertebrate hindbrain, and are
involved in the formation of sharp boundaries between these regions (Cooke et al,,

2005; Mellitzer et al., 1999; Poliakov et al; Xu et al., 1999).

Signalling between Eph receptor and ephrin expressing cells often results in cell
repulsion. For example, in stripe assays, cultured neurons expressing EphAs are
excluded from stripes of ephrinA2 (Drescher et al.,, 1995). EphBs and ephrinBs are
important in the repulsive guidance of commissural axons cells along the midline
(Kadison et al,, 2006; Yokoyama et al., 2001). In addition, ephrin stimulation
results in cytoskeletal collapse and growth-cone or lamellipodial retraction of Eph-
expressing cells in vitro (Groeger & Nobes, 2007; Jurney et al., 2002; Poliakov et al,,
2008). Repulsion between Eph and ephrin expressing cells could result in
decreased adhesion between them. This would create differential adhesion
between the two cell populations, since like cells would still stick to one another. It
has been proposed that this difference in adhesion could also sharpen boundaries,

consistent with the differential adhesion hypothesis (Steinberg, 2007).
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There is also some evidence to suggest that Eph-ephrin signalling could be linked
to processes directly affecting cell-cell adhesion. Cortina et al. showed that siRNA
knockdown of E-cadherin in colorectal cancer cell lines disrupted sorting between
EphB and ephrinB expressing cells (Cortina et al., 2007). They also demonstrated
that there is a redistribution of E-cadherin from the cytoplasm to the membrane in
EphB cells stimulated with ephrinB1, suggesting that E-cadherin distribution is
correlated with EphB-ephrinB signalling. More direct evidence for the involvement
of Eph-ephrins in regulating cell adhesion comes from recent screens which have
identified several proteins involved in cell-cell adhesion as phosphorylation
targets of EphB2-ephrinB1 signalling (Jorgensen et al., 2009; Zhang et al., 2008).
These include members of the p120 and plakophilin families as well as several

proteins involved in the regulation of adherens junctions and polarity.

These results suggest that EphB-ephrinB signalling can affect cell-cell adhesion.
However, it is still not clear whether differential adhesion is sufficient to explain
sorting through Eph-ephrins or whether the generation of differential adhesion is
the only role cell-cell adhesion molecules play in this system. I thus set out to

investigate the role of cell-cell adhesion in Eph-ephrin mediated cell sorting.

The process of cell segregation mediated by Eph receptors and ephrins is
challenging to study in vivo for two reasons. Firstly, because cells generally express
more than one Eph receptor or ephrin, and cis-interactions between them can
affect their response to external signals (Astin et al,, 2010; Hornberger et al.,
1999). Secondly, because cells in vivo are generally in contact with several cells at
once, which makes it difficult to interpret how they are responding to each

individual cell or interaction.

To better understand the response of individual cells to Eph-ephrin signalling, one
can take advantage of in vitro systems where cells can be plated in the absence of
confounding factors (Astin et al, 2010; Drescher et al., 1995; Marston et al., 2003;
Poliakov et al., 2008). In addition to this, in this study [ used HEK293 cell lines
which express naturally very low levels of EphB receptor and ephrinBs and over-
express only EphB2 or ephrinB1, to ensure that the responses are due to Eph-

ephrin signalling.
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In this chapter, [ will describe three assays that were used to investigate the
segregation of EphB2 receptor and ephrinB1 expressing cells. I then present a
side-by-side comparison of cell segregation driven by EphB2 and ephrinB1 and cell
sorting driven by differential adhesion. This comparison suggests that differential
adhesion is unlikely to be the main mechanism through which EphB2-ephrinB1

interactions are driving cell segregation.

EphB2 receptors and ephrinB1 mediate cell segregation and boundary

sharpening

EphB2 receptor and ephrinB1 mediated cell segregation

An in vitro cell sorting assay has been developed in the Wilkinson lab to assess the
role of Eph-ephrin signalling in cell segregation (Jorgensen et al, 2009; Poliakov et
al, 2008). HEK293 cells, which express relatively low levels of EphB receptors and
ephrinBs, have been stably transfected with either EphB2 or ephrinB1. Cells stably
expressing EphB2 alone or co-expressing EphB2 and GFP (EphB2 cells) are mixed
with cells stably expressing ephrinB1 (ephrinB1 cells) and grown in a monolayer.
The EphB2 cells are observed to sort into clusters surrounded by ephrinB1 cells.
This sorting phenotype is disrupted when specific targets of EphB2-ephrinB1
signalling are knocked down by siRNA (Jorgensen et al., 2009) or on ectopic
activation of FGFR in EphB2 cells (Poliakov et al,, 2008). I used three variants of

this assay to assess segregation in different contexts.

Segregation assay

The cell segregation assay has been previously published by the Wilkinson lab
(Jorgensen et al., 2009; Poliakov et al., 2008). In this assay, EphB2 cells and
ephrinB1 cells are mixed in equal proportions in a single cell suspension and are
plated onto fibronectin-coated dishes. EphB2 cells sort out over time to form
clusters surrounded by ephrinB1 cells. Figure 3.1 shows a 10 h time course of this
process. At this relatively high cell density, the cells have begun to sort at the first
time point, 1 h after the cells are mixed (Figure 3.1, 1 h). With time, the clusters

increase in size and their edges become increasingly smooth. At the end of the
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Figure 3.1: Time-lapse movie of EphB2-ephrinB1 cell sorting

(A) EphB2 cells (green) sort from ephrinB1 cells (red). Images represent 2 h
intervals of a time-lapse movie showing sorting over the course of 10 h. The movie
was started 1 h after the cells were plated to allow them to settle on the dish (1 h).

Even at this point, cells are beginning to sort. Clusters refine over time.
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Figure 3.1
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time-course, large clusters of EphB2 cells have formed, which maintain relatively

sharp borders with the ephrinB1 cells.

The segregation assay shows that EphB2 cells sort from ephrinB1 cells. It is a good
broad readout for sorting and is quick to quantify crudely (discussed in more
detail below). However, the EphB2 cell clusters are irregular in shape and it is
often difficult to distinguish two closely associated clusters, making them difficult

to quantify using conventional algorithms.

In light of this, Lauren Gregory in the Wilkinson lab devised the boundary assay.

Boundary assay

In the boundary assay, cells are plated either side of a removable silicone barrier
(Ibidi). After allowing the cells to settle on the dish, the barrier is removed and the
two populations of cells migrate towards one another. Figure 3.2 shows a time
course of this process. It takes approximately 6 hours for the two populations of
cells to come into contact. EphB2 cells immediately begin to form a smooth
boundary with ephrinB1 cells, which sharpens over time. The boundary also shifts
to the left over the course of the movie (discussed in Chapter 4). In contrast, when
EphB2 cells meet other EphB2 cells, the boundary does not sharpen and clear
intermingling between the two cell populations remains after 18h. The sharpness
of the boundary is easily quantified using an automated programme to measure
the length of the boundary between EphB2 and ephrinB1 cells. Variation in the size
and shape of the EphB2 cell territory is no longer a problem, since the EphB2 and
ephrinB1 cells are segregated into two regions from the start. This also makes ita
better model than the segregation assay for boundary sharpening in vivo since this
most frequently occurs between regions of cells which are already largely

segregated.

Hanging drop assay

Both the segregation and boundary assays are 2-dimensional, whereas cell
segregation in vivo is usually occurring in a 3-dimensional environment. In
addition, the majority of previous studies into cell sorting have been carried out in
a 3D assays. In order to check that the main experimental observations in 2D and

3D systems are similar, I established a 3D assay, where there are a high number of
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Figure 3.2: Time-lapse movie of EphB2-ephrinB1 boundary sharpening

Cells were plated either side of a barrier, which is removed at 0 h, and time-lapse
images taken. Frames shown are at 2 h intervals over a total of 18 h. EphB2 cells
(green) form a sharp boundary with red ephrinB1 cells (A) but not with EphB2
cells (B). In addition, the EphB2-ephrinB1 boundary shifts to the left over the

course of the movie.
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Figure 3.2
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Figure 3.3: A time course of EphB2-ephrinB1 sorting in hanging drops

EphB2 cells (green) sort from ephrinB1 cells (red) when cultured in hanging
drops. 2 images are shown of representative cell aggregates at the time points
indicated: 4, 19, 27, 42 and 50 h after plating. Cells begin to appear sorted at 19 h

but have segregated more completely by 50 h.
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Figure 3.3
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interactions between cells. This assay is based on previous studies of cell sorting,
most of which use cell aggregates in suspension, either on shaking platforms or in

hanging drops (Duguay et al., 2003; Foty & Steinberg, 2005; Shi et al., 2008).

Two differently labelled cell populations were mixed in a single cell suspension as
in the segregation assay. 10ul drops containing 1000 cells were then placed on
coverslips and suspended in humid conditions. Figure 3.3 shows a time course of
the hanging drop assay. Unlike the segregation and boundary assays, hanging
drops were a more challenging subject for live time-lapse microscopy, so the
images show a time-course of still images of different aggregates. Interestingly,
segregation of EphB2 cells from ephrinB1 cells was much slower in hanging drops.
No segregation is seen at 4 hours, and a high level of segregation is not seen until

42 hours after plating.

The hanging drop assay is a good system for studying cell sorting driven by cell-
cell interactions. EphB2 cells and ephrinB1 cells segregate well in this assay,
indicating that cell-cell contact mechanisms are capable of driving sorting
downstream of EphB2-ephrinB1 signalling, although this process is slower than

sorting in the 2-dimensional assays.

Effects of cell numbers on the degree of sorting

Initially, | wanted to better characterise the pattern of cell sorting in the
segregation assay, where the size and shape of cell clusters is variable. One
possible cause of this variability is the initial density of cells when they were
plated. Cells plated at lower densities would have more opportunity to migrate so

may be able to sort more completely than cells which are crowded to begin with.

To assess the contribution of cell numbers on the size and distribution of EphB2
cell clusters, I varied both the total number of cells plated and the relative ratios of
EphB2 to ephrinB1 cells (Figure 3.4). Increasing the total cell number does not
dramatically affect the sizes of EphB2 cell clusters. At very high cell densities
(400,000 cells/cm?) clusters are more frequent than at lower cell densities. There
are fewer, more spaced out, clusters at 50,000 cells/cm? yet the surrounding
ephrinB1 cells appear still to cover the dish. This effect is likely due to the

compaction of EphB2 cells when they cluster. EphB2 cells in clusters appear less
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Figure 3.4: Varying total cell number and ratio of different cell

populations affects the EphB2-ephrinB1 sorting pattern

Analysis of the effect that changing the total cell number or the relative cell
numbers has on the cell sorting pattern of EphB2 and ephrinB1 cells. (A)
Increasing the total number of cells has little affect on cluster size although there is
an increase in the frequency of clusters between 50,000 cells/cm? and 400,000
cells/cm?. (B) Increasing the ratio of EphB2 to ephrinB1 cells does increase cluster
size. EphB2 cells always form clusters surrounded by ephrinB1 cells regardless of

the total cell density or relative numbers.
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spread than ephrinB1 cells, so at low densities the ephrinB1 cells are able to
spread out and fill the available space (Figure 4.2). When plated at higher
densities, there are more Eph clusters, so ephrinB1 cells do not have room to
spread out. Intermediate changes in cell density, between 150,000 and 200,000
cells/cm?, a 33% increase in cell number, have very little effect on the sorting

phenotype.

A change in the relative ratios of the different cell types has a more profound effect
on cluster size and distribution. Increasing the proportion of EphB2 cells to
ephrinB1 cells increases cluster size. However, the order of sorting remains the
same, with EphB2 cells always forming clusters surrounded by ephrinB1 cells. As
described above, the compaction of cells within the EphB2 clusters leads to them

covering less surface area than the surrounding ephrinB1 cells (Figure 3.4).

These results demonstrate that a change in the overall density of cells has little
effect on the sorting phenotype. However, a change in the ratio of EphB2 cells to
ephrinB1 cells has a dramatic effect on the resulting size and distribution of
clusters. It was therefore important for all subsequent experiments using the
segregation assay that EphB2 and ephrinB1 cells were treated the same. This
would ensure that any changes in proliferation or growth that a manipulation
(siRNA, drug or plasmid expression) might induce, would affect all cells equally

and prevent variation in the ratio between the cell types.

Optimising an siRNA-based cell segregation assay

My initial goal was to use the cell segregation assay to screen potential targets of
Eph-ephrin signalling to look for their effect on cell segregation. I planned to use
small interfering RNAs (siRNAs) to knock down the genes of interest in EphB2 cells
and ephrinB1 cells and use the segregation assays as a read-out for their possible
role in Eph-ephrin mediated segregation. The optimisation of this assay was done

in collaboration with Lauren Gregory.

[ performed preliminary experiments to optimise the conditions to achieve a
maximal level of gene knockdown as well as a good degree of sorting after siRNA
transfection. I tested 3 different lipid-based transfection reagents (XtremeGene,

Lipofectamine 2000 and Lipofectamine RNAiMax), several nonsense (siCtrl)
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siRNAs and a range of different concentrations of siRNA. To begin with, [ used
siRNAs to Racl, a well-characterised target of Eph signalling that is vital for cell
motility, which should act as a positive control. I also used siRNAs to GFP, whose
knockdown is easy to assess in GFP-positive cells, and one to N-cadherin. Initially, I

used two different siRNAs to each gene to control for non-specific effects.

Table 3.1 summarises a subset of these preliminary experiments, where |
compared the Lipofectamine transfection reagents, Lipofectamine 2000 and
Lipofectamine RNAiMax, with various amounts of siRNA and plating conditions.
From these experiments [ decided that Lipofectamine RNAiMax used to transfect
60pmoles siRNA in 1ml medium containing serum gave both good knockdown of
the genes tested and also sorting results consistent with expectations. This is in
contrast to several other conditions tested, where control siRNA treatment gave a

significantly different sorting phenotype to that seen in untransfected cells.

Once transfection conditions had been established, I began to test the efficiency of
siRNA knockdown of the genes of interest. I tested three different pre-designed
siRNAs (Applied Biosystems, Ambion), which target different regions of the N-
cadherin mRNA. Western blot analysis to assess gene knockdown was carried out
at different time points. All three siRNAs showed a high level of knockdown at 48
hours post-transfection (Figure 3.5, H). I also tested the effects of each of these
siRNAs in the cell segregation assay. All three siRNAs disrupted cell segregation in
this assay (Figure 3.5, A-G). However, N-cadherin siRNA s2772 resulted in high cell
death (cleaved-caspase-3 staining, data not shown). The other two, s2771 and
s2773, did not result in cell death and had similar phenotypes individually and in
combination. Further experiments were therefore conducted using these two
siRNAs in combination, to minimise any off-target effects. For all subsequent gene
knockdown experiments, the siRNAs were not tested individually, but 3 different

siRNAs to the same gene were pooled to minimise off-target effects.

It was also noticed that cells transfected with any of the siRNAs studied grow more
slowly, i.e. reach confluence later, than cells transfected with siCtrl. We had shown
already that total number of cells has little effect on the size of sorted clusters but
that changing the ratio between the two cell types does (see previous section).

Therefore, siRNA was always transfected to both cell populations (EphB2 and
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Table 3.1: Summary of preliminary experiments comparing siRNA

transfection conditions

Cell segregation experiments and Western blot analysis of Racl and N-cadherin
siRNA knockdown were used to determine optimum siRNA transfection
conditions. Two different transfection reagents, Lipofectamine RNAiMax and
Lipofectamine2000 (Invitrogen) were tested. Variables altered were:
concentration of siRNA (based on the range recommended on reagent protocol);
plating cells in serum-free medium (OPTIMEM) or medium containing serum
(DMEM). In all experiments, conditions were considered to be good where the
controls were consistent i.e. cells which had not been transfected, transfected with
only transfection reagent, or with a control siRNA as well as transcfection reagent
all gave the same sorting phenotype. In addition, the efficiency of protein
knockdown was assessed by Western blot of Racl and N-cadherin after siRNA
knockdown of these proteins. Cells plated in DMEM and transfected with 60pmoles
siRNA using Lipofectamine RNAIMAX gave the most consistent controls in sorting

experiments and the best knockdown as analysed by Western blot.
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Figure 3.5: Validation of N-cadherin knockdown phenotypes with
different siRNAs

Three different siRNAs were used to knock down the expression of N-cadherin.
Their effects on EphB2-ephrinB1 segregation were assessed as well as the level of
gene knockdown. siRNAs s2771 and s2773 have similar phenotypes in the
segregation assay both individually and in combination (B, D, F). However, s2772
appears to have a toxic effect on the cells. They are much more sparse than the
other conditions both when the siRNA has been used alone and in combination
with s2771 and s2773 (C, E). Quantification of EphB2 cell clusters under these
conditions shows an increase in the Perimeter Regularity Index (PRI) after
knockdown of all the siRNAs which is statistically significant (G; Student’s t-test,
n23). Each of the siRNAs causes a considerable reduction of N-cadherin protein
detected by Western blot analysis of EphB2 cell lysates, 48 h after transfection (H).

Error bars represent standard error of the mean.
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Figure 3.5
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ephrinB1 cells) so that any off-target effect due to proliferation would affect all

cells and have only a minor and predictable impact on the cell sorting phenotype.

Quantification of the assays

An important consideration in the development of these assays was to find
effective ways to quantify them. Segregation was initially quantified using the
nearest neighbour method. In this analysis, images were made binary and adjusted
such that one pixel represented the size of an average cell. The nearest neighbour
score was calculated by considering the average number of “like” pixels
surrounding each pixel. A score of 0.5 represents an even distribution of cells and
scores approaching 1 represent increasingly segregated populations. This
approach gave a significant but not very large difference between the sorted and
unsorted controls. This is likely to be largely due to the inaccuracy in thresholding

and re-sizing the images (Figure 3.6, G).

Another approach I took was to quantify the images using an automated program
to identify and quantify clusters of green (EphB2) cells (designed by Chen Qian,
Imaging lab, NIMR, in Labview). Three images per condition were entered into the
programme, which uses automated thresholding to recognise individual clusters
before calculating specific parameters: area; Heywood Circularity Index; and
perimeter regularity index (PRI). The average area of clusters was significantly
higher in EphB2/EphB2 than EphB2/ephrinB1 cell mixtures, indicating that EphB2
cells are largely connected in unsorted populations (Figure 3.6, H, F). Heywood
Circularity Index is a measure of roundness, which compares the perimeter of the
cluster to the perimeter of a circle with the same area (Christensen et al., 2010).
The closer the index is to 1, the more round a cluster is. The Heywood circularity
index is significantly higher in EphB2/EphB2 than EphB2/ephrinB1 cell mixtures

indicating that sorted clusters are more rounded (Figure 3.6, I).

Another measure of the roughness of boundaries is the perimeter regularity index
(PRI). This gives a ratio of the real length of the boundary of a cluster relative to a
smooth boundary (Hueck et al., 2000). The PRI proved to correlate well with the
observed cell sorting patterns, and was significantly lower for sorted

EphB2 /ephrinB1 cells than unsorted EphB2 /EphB2 cell mixtures (Figure 3.6, ]).
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Figure 3.6: Quantification of the segregation assay

EphB2 cell segregation from ephrinB1 cells was quantified by nearest neighbour
analysis, Perimeter Regularity Index (PRI), Heywood’s Circularity Index (HCI) and

cluster area.

Segregation was initially quantified using nearest neighbour analysis (G). Images
were made binary and adjusted such that one pixel represented the size of a cell.
The clustering of cells was calculated by considering the average number of like
pixels surrounding each pixel. A score of 0.5 represents random dispersal and

scores approaching 1 tend towards total segregation.

The images were also quantified using an automated program to identify clusters
of green (EphB2) cells by thresholding the green channel image (C,F). These

clusters were then quantified in one of three ways: Area (H); HCI (I); and PRI (]).

The nearest neighbour score, cluster area, HCI and PRI are significantly reduced
for EphB2-ephrinB1 cell mixtures compared to EphB2-EphB2 cell mixtures

(p<0.01, Student’s t-test). Error bars represent standard error of the mean.
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Since it is a measurement of the roughness of the boundary rather than comparing
it to a perfect circle, PRI was a more appropriate index for measuring the extent of
segregation in these cells than the Heywood Circularity Index. It is important to
note here, that the PRI is not a perfect solution as it will be influenced by cluster
size to some extent, but it represents the best available method for quantifying

cluster smoothness.

Differential adhesion leads to mild segregation phenotypes

It has been suggested that the segregation between Eph cells and ephrin cells could
be due to differential adhesion between the two populations (Steinberg, 2007). To
establish whether this could be true, it would be useful to have a direct comparison
of the pattern of cells after sorting mediated by differential adhesion compared to
that mediated EphB2-ephrinB1 signalling. Differential adhesion can be generated
by the expression of different levels or of different types of cadherin cell-cell
adhesion molecules (Duguay et al, 2003; Foty & Steinberg, 2005). Although many
previous studies have analysed cell sorting in hanging drops or in shaking
suspensions, [ was unable to identify studies in which cells expressing different
levels or types of cadherins were plated on a dish and allowed to sort in a 2-
dimensional assay, as in my experiments. I thus performed a direct comparison
between differential adhesion-driven and EphB2-ephrinB1 driven sorting by
mixing cells expressing different combinations of cadherins in the assays | have

previously described.

Differential adhesion in the sorting of HEK293 cells

Initially, I made use of HEK293 stable cell lines expressing E-cadherin at high
levels (from K. Rubina in Moscow) mixed with control HEK293 cells in which N-
cadherin, but not E-cadherin, is endogenously expressed. It was expected that the
difference in cadherin types as well as the altered levels of cadherins expressed
between these two cell types, would drive cell sorting, consistent with the
differential adhesion hypothesis. However, these cells do not segregate in the
sorting assay, and boundaries are not sharpened in the boundary assay, although
they do show a small degree of sorting in the hanging drop assay (Figure 3.7, B,F,]).

Since the E-cadherin expressing cells are also expressing N-cadherin, this could be
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Figure 3.7: Segregation of HEK293 cells by differential cadherin

expression

Cell sorting via differential adhesion in the 3 different assays: (A-D) segregation;
(E-H) boundary; (I-]) hanging drops. (A, E & I) Un-sorted control HEK293 cells,
which express endogenous N-cadherin. (B, F & J) E-cadherin cells, which are stably
overexpressing E-cadherin as well as endogenous N-cadherin, sort to a small
extent from control cells. (C, G &K) E-cadherin cells in which N-cadherin is
knocked down by siRNA sort from control cells which only express N-cadherin.
Boundary length is significantly decreased compared to apposed control cells (N).
(D, H & L) E-cadherin cells in which N-cadherin is knocked down by siRNA do not

sort from E-cadherin cells. Error bars represent standard error of the mean.
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Figure 3.8: Segregation of L cells by differential cadherin expression

(A) L cells, which do not express endogenous cadherins, were mixed with L cells
stably expressing E-cadherin or N-cadherin. No sorting is seen in any of the

possible combinations.
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Figure 3.8
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interfering with their ability to mediate differential adhesion. To address this, I
used siRNA to knock down N-cadherin in these cells, creating a more substantial

difference in cadherin expression between the cell populations.

First, Ecad* cells were mixed with these Ecad*/Ncad- cells. This mixture does not
segregate significantly in 2D segregation or boundary assays or in the 3D hanging
drop assay, but the aggregates are generally larger and more compact, consistent
with an increase in adhesion between all cells (Figure 3.7, D,H,L). When
Ecad*/Ncad- cells are mixed with control cells (Ncad*) in hanging drops, they
clearly sort into distinct regions of the aggregate (Figure 3.7, K). In the segregation
assay, the control cells form rough clusters, although the PRI value is not
significantly different from unsorted control cells (Figure 3.7, C,M). In the
boundary assay, there is a small but significant decrease in boundary length,
indicating that there is some sorting between these cells (Figure 3.7, G, N). Taken
together, these results show that segregation occurs between E-cadherin
expressing and N-cadherin expressing HEK293 cells in hanging drops and, to only

a small extent, in the 2D segregation and boundary assays.

Differential adhesion in the sorting of L cells

As well as testing sorting by differential adhesion in HEK293 cells, I also examined
its effect in a different cell line. L cells have been used in previous studies of
differential adhesion and are good control cells for studying cadherin-mediated
processes since they do not endogenously express cadherins. L cells expressing
either N-cadherin or E-cadherin were kindly donated by Nobue Itasaki (NIMR, UK).
It was anticipated that, since the only difference between these cell lines was the
expression of N-cadherin or E-cadherin, this difference would drive sorting, as has
been seen previously in aggregated L cells (Shan et al, 2000) as well as in Chinese
Hamster Ovary lines (Niessen & Gumbiner, 2002). When I mixed these L cells in
the segregation assay in 2D, however, I did not see any sorting between the cells

(Figure 3.8).

The presence of Eph receptor increases sorting by differential adhesion

Differential adhesion can be driven both by the expression of different types of

adhesion molecule and by different levels of the same adhesion molecule. To test
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Figure 3.9: Segregation by differential adhesion in EphB2 and control
HEK293 cells

Differential adhesion is set up using siRNA knockdown of N-cadherin in one cell
population and mixing them with cells where N-cadherin is still endogenously
expressed. In EphB2 cells, this leads to sorting of the two cell populations (B) and
the formation of a significantly shorter boundary (F) than where two EphB2 cell
populations are mixed (A, E, ]). In HEK293 cells without EphB2 expression, sorting
and boundary sharpening between cells with or without N-cadherin are less

pronounced and not significantly different to controls (C,D,G,H,1,]).
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whether different levels of N-cadherin were capable of driving HEK293 cells to
sort, siRNA was used to knock down N-cadherin in one of two mixed populations
of cells (Figure 3.9 C,D,G,H). In this case, cells expressing less N-cadherin sort

slightly from cells with more N-cadherin to form small clusters with rough edges.

To test whether the presence of EphB2 receptor in cells would affect sorting via
differential adhesion, [ used EphB2 cells in which N-cadherin has been knocked
down. These were mixed with untransfected control or EphB2 cells which express
endogenous N-cadherin. In contrast to the situation with cells which do not
express EphB2, when differential adhesion is set up between cells which do
express EphB2, segregation is increased: clusters in the segregation assay appear
larger and the boundary is significantly shortened (Figure 3.9, B, F). These results
indicate that EphB2 expression improves segregation between cells with

differential adhesion.

Discussion

Eph—ephrin signalling drives cell sorting

When EphB2 and ephrinB1 expressing cell lines are mixed together and plated on
a cell culture dish, they consistently sort from one another, with EphB2 cells
forming clusters surrounded by ephrinB1 cells, as previously reported (Jorgensen
etal, 2009; Poliakov et al, 2008). Maintenance of segregation between EphB2 and
ephrinB1 cells has also been shown to occur in 3D aggregates in suspension, using
zebrafish animal caps expressing EphB2 or EphA4 juxtaposed with animal caps
expressing ephrinB2. In these assays, the two cell types began separated, and
segregation is maintained since cells from one aggregate fail to invade the other
(Mellitzer et al., 1999; Xu et al., 1999). The current study shows that Eph-ephrin
signalling can also drive sorting from initially intermingled populations in 3D
culture. When HEK293 cell lines expressing EphB2 or ephrinB1 are mixed and
allowed to aggregate in hanging drops, they sort out. ephrinB1 cells will often sort
side-by-side with EphB2 cells but occasionally EphB2 cells sort to the outside of
the aggregate (Figure 3.3).
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In the differential adhesion hypothesis, cells which are more adhesive will sort to
the middle of an aggregate, surrounded by less adhesive cells. This minimises the
surface area between each of the three phases - more adhesive cells, less adhesive
cells and the cell culture medium - and provides the most energetically favourable
configuration. If the two cell types express cadherins which do not interact
heterophilically with one another but have similar cohesive properties, these cells
will sort side by side (Duguay et al, 2003; Foty & Steinberg, 2005; Steinberg,
2007). Comparison with the differential adhesion hypothesis would predict that
EphB2 cells are less adhesive or a similar adhesiveness to ephrinB1 cells, since
they sort side-by-side or take up external positions in the cluster. However, the
sorting pattern may reflect other mechanisms activated by Eph-ephrin signalling

such as cell repulsion.

The opposite pattern is seen in 2D cultures, however. Here, clusters of EphB2 cells
are surrounded by ephrinB1 cells. According to the differential adhesion
hypothesis, clustering would be predicted to occur between cells that are more
adhesive. This pattern has been described in the context of differential adhesion.
When chick limb bud cells and liver cells are mixed in reaggregate assays, they sort
from one another, with heart cells sorting to the inside of the cluster (Garrod &
Steinberg, 1973; Garrod & Steinberg, 1975). However, it is the limb bud cells which
form clusters when plated in 2D. The authors propose that this is because the limb
bud cells are taller, so have a greater surface area in contact with other cells,
allowing them to stick together more strongly than heart cells in a 2D situation. It
is worth noting, however, that these cell types likely differ not only in their
adhesive properties. Limb bud cells and heart cells in vivo express different Eph
receptors and ephrins too (Gale et al., 1996; Oshima et al., 2008; Wada et al,, 2003),
which may be the cause of that pattern of sorting independent of their adhesive

properties.

Differential adhesion is less powerful than EphB2-ephrinB1 at mediating sorting and

boundary sharpening

Despite the fact that differential adhesion is the most widely accepted explanation
for cell sorting, I could find no examples where it has been studied in two

dimensional cell culture assays. Since Eph receptors and ephrins can drive very
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clear cell sorting in 2D, I was interested to know how this compared to cell sorting
driven by differential adhesion alone. I found that the extent of sorting driven by

differential expression of cadherins was low (Figure 3.7).

One potential explanation for this is the choice of cadherins used in these assays. It
has been reported that E-cadherin and N-cadherin do not sort out in a shaking
suspension assay (Duguay et al., 2003), and that they have similar affinities which
might preclude them from sorting (Shi et al., 2008). However, in some
circumstances cells expressing these cadherins do sort. Indeed, in the hanging
drop assay, clear sorting can be seen between the E-cadherin and N-cadherin
expressing HEK293 cells (Figure 3.7 K). In addition, overexpression of E-cadherin
should mean that the total levels of cadherins are significantly higher in these cells

than in control HEK293 cells, which should alone cause sorting.

Segregation between E-cadherin and N-cadherin expressing cells has also been
reported in the literature. For example, Chinese Hamster Ovary cells expressing
human E-cadherin sort from human N-cadherin expressing cells (Niessen &
Gumbiner, 2002) and L cells expressing E-cadherin do not co-aggregate with L
cells expressing N-cadherin (Shan et al,, 2000) in shaking suspensions. Also, there
are frequent occasions where N-cadherin and E-cadherin expressing regions of
cells are found adjacent to one another in development. The delamination of the
neural crest from the neuroepithelium coincides with a switch from N-cadherin to
E-cadherin consistent with the cells expressing these cadherins being immiscible
with one another (Clay & Halloran, 2011; Nakagawa & Takeichi, 1995). For the
avoidance of any doubt, it will be important to repeat these experiments using
cadherins that are more unanimously considered to sort from one another in other
contexts, for example P-cadherin or R-cadherin and E-cadherin (Duguay et al.,
2003). However, the results presented here strongly indicate that differential

adhesion is not able to drive efficient cell segregation in 2D assays.

Another way of varying cell adhesion is to express different levels of a cadherin. I
hoped to achieve this by knocking down N-cadherin in one population of cells and
mixing them with cells in which N-cadherin levels had not been reduced. It has
been shown that a 2.5-fold difference in N-cadherin levels is sufficient for cells to

sort in hanging drops (Foty & Steinberg, 2005). However, despite nearly complete

102



knockdown of N-cadherin in one cell population, resulting in at least a 10-fold
difference in cadherin levels between the cells, very little sorting occurred. One
possibility is that the cells were unable to sort because the knockdown was so
efficient that the cells could not stick to one another at all, resulting in a lower rate
of sorting. Another is that the knockdown is not uniform, so cells in which N-
cadherin is knocked down only a little, could intermingle with cells expressing
normal levels of N-cadherin. However, the average knockdown efficiency across
the whole population is very high - around 98% - a figure which could not be

obtained if many knockdown cells expressed high levels of N-cadherin.

Thus, it seems that differential adhesion is not capable of driving the same degree
of sorting in a 2D assay as it can in 3D aggregates. The nature of 3D assays is such
that cells are able to form contacts with more neighbours, being surrounded on all
sides by other cells. By contrast, in 2D assays, cells are only in contact with other
cells at their sides, and interactions with the cell culture medium on one side and
the dish on the other will influence their behaviour. I suggest that the 3D assay is
more suited to detecting sorting driven by cell-cell adhesion, since the majority of
cell behaviour in this assay is governed by cell-cell interactions. On the other hand,
cells in a 2D assay are able to migrate around the culture dish, and are not confined
to cell-cell interactions, suggesting that this assay is detecting more migration-

driven mechanisms.

Unlike cells expressing different levels or types of cadherins, EphB2 cells segregate
well from ephrinB1 cells in both 2D and 3D assays. I suggest therefore, that
regulation of cell-cell adhesion is not the main mechanism through which Eph-
ephrins can mediate sorting. This argues that there must be another mechanism

through which sorting can occur.
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4. |Is N-cadherin downstream of Eph-ephrin signalling?

Is cell-cell adhesion regulated by Eph-ephrin signalling?

In the previous chapter, [ described how differential adhesion cannot fully explain
segregation driven by Eph-ephrin signalling. However, there is published evidence
that adhesion is affected by Eph activation. In colorectal cancer cells, for example,
activation of EphB2 by a soluble ephrinB1-Fc chimera causes an accumulation of
cadherins at the cell junctions (Cortina et al., 2007). Furthermore, in these same
cells, knockdown of E-cadherin results in a disruption to cell sorting mediated by
EphB3 and ephrinB1. In addition, two biochemical screens have identified several
signalling targets of Eph-ephrins which are involved in the regulation of cell-cell
adhesion (Jorgensen et al., 2009; Zhang et al., 2008). Such results indicate that
there is a link between adhesion and Eph-ephrin signalling, and [ aimed to

investigate this link further.

One possibility is that adhesion is decreased between Eph and ephrin cells and this
generates differential adhesion (Solanas et al., 2011). As discussed in the previous
chapter, this is unlikely to be the only mechanism mediating cell sorting, but it may
still be a contributing factor. A second possibility is that adhesion is required for
Eph-ephrin signalling to occur. There is evidence, for example, that E-cadherin is
required for EphA2 activity in breast cancer cell lines (Zantek et al., 1999). Thirdly,
Eph-ephrin signalling could have no impact on cell adhesion, but it could be a basal
requirement that cells to stick to one another in order to sort by other
mechanisms. A fourth scenario is that cadherins are required independently of
their role in cell adhesion, for example in contact inhibition of locomotion. How an
adhesion-independent role of cadherins could contribute to sorting through Eph-

ephrin signalling will be discussed in more detail in Chapter 5.

To address these questions, I have used the assays described in Chapter 3 to assess
segregation and boundary sharpness driven by EphB2 and ephrinB1 after

knockdown of genes involved in cell-cell adhesion.

Initially, I tested whether there is a requirement for cadherins in EphB2-ephrinB1

sorting in HEK293 cells, using siRNA to abrogate N-cadherin expression. | then
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explored possible biochemical links between Eph signalling and cadherins by
knocking down genes which were identified as targets of Eph-ephrin signalling:
p120, which plays a key role in cadherin-mediated adhesion; the related gene

p0071; and the cadherin-cleaving metalloproteinase Adam10.

N-cadherin knockdown decreases the efficiency of EphB2-ephrinB1 sorting

It has been reported that the knockdown of E-cadherin by shRNA disrupts EphB-
ephrinB mediated cell sorting in epithelial colorectal cancer cell lines (Cortina et
al, 2007). HEK293 cells predominantly express N-cadherin, rather than E-
cadherin, so I first wanted to test whether N-cadherin is similarly required for
EphB2-ephrinB1 cell sorting. I used siRNA to knock down N-cadherin in both
EphB2 and ephrinB1 cells before mixing them and plating them in equal
proportions in the segregation assay; or plating them either side of a removable
barrier in the boundary assay (Figure 4.1). Whereas EphB2-ephrinB1 mixtures
transfected with a control siRNA form large, smooth-edged clusters (Fig 4.1 B) and
sharp boundaries (Fig 4.1 E), cells in which N-cadherin has been knocked down
form smaller, rougher clusters and disordered boundaries (Fig 4.1 C,F). This is
confirmed by a significant increase in the roughness of the clusters, assessed with
the PRI, and in boundary length (Fig 4.1 G, H). Interestingly, although sorting was
disrupted in these conditions, some degree of segregation still occurred since
clusters of EphB2 cells do form. This confirms that EphB2 and ephrinB1 can drive
a degree of sorting independently of N-cadherin expression, but that N-cadherin is
required for complete segregation. Alternatively, the residual sorting could be due
to incomplete knockdown of the N-cadherin protein. The latter idea was tested by

Western blot analysis.

The efficiency of the siRNA at knocking down N-cadherin was tested by Western
blot analysis of cell lysates 72 h after transfection. This time point corresponds to
the mid-point of a segregation assay. Lysates from cells transfected with siNcad
were compared to siCtrl. Staining of the Western blot with an antibody to N-
cadherin shows a 98+1% knockdown, after normalising to a y-tubulin loading
control (Fig 4.1 I). There is a high efficiency of N-cadherin knockdown in these

cells, suggesting that the remaining sorting that is seen in these conditions is due
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Figure 4.1: N-cadherin is required for EphB2-ephrinB1 cell segregation

EphB2 cells sort out from ephrinB1 cells to form clusters with defined boundaries.
Knockdown of N-cadherin by siRNA significantly disrupts this segregation (A-C, G;
Student’s t-test, p<0.001). (D-F, H) siRNA knockdown of N-cadherin also
significantly increases the length, therefore roughness, of the boundary between
EphB2 and ephrinB1 cells in the boundary assay (Student’s T-test, p<0.01). px:
pixels. (I,]) The siRNA is effective at knocking down N-cadherin as tested by
Western blot using antibodies for N-cadherin (98 +1% knockdown) and pan-
cadherin (93+6% knockdown), compared to a nonsense siRNA. y-tubulin was used

as a loading control. Error bars represent standard error of the mean.
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to N-cadherin independent mechanisms. However, other cadherins could still be

expressed in the cells, compensating for N-cadherin loss.

The presence of other cadherins was assessed by staining equivalent Western
blots with an anti-pan-cadherin antibody, which recognises classical cadherins
including E-cadherin and N-cadherin. Staining with this antibody showed a
knockdown of 93+6% in cells treated with siNcad compared to siCtrl (Figure 4.1 J).
This suggests that there may be some other cadherins present in the N-cadherin
knockdown condition. However, since less than 10% cadherin staining remains
after siNcad treatment, N-cadherin constitutes the major cadherin expressed by
these cells. The remaining levels of total classical cadherin are very low, suggesting
that the residual sorting in the cells is likely to be through a cadherin-independent
mechanism. This is supported by studies revealing a role of cell migration in Eph-

ephrin mediated cell segregation (Chapter 5).

Nevertheless, there is a clear disruption to segregation when N-cadherin is
knocked down, indicating that N-cadherin is required for Eph-ephrin mediated
sorting in HEK293 cells. The next step was to determine how N-cadherin is
involved in dynamic responses during the sorting of these cells. One possibility is

that EphB2 activation results in the relocalisation of N-cadherin.

The localisation of cadherins is affected in the segregated EphB2 cells and after

EphB2 activation.

It has previously been shown that activation of EphB receptors leads to an
accumulation of E-cadherin at the cell membrane in colorectal cancer cells (Cortina
etal, 2007).1used immunochemistry to determine whether Eph activation also
affects the expression of N-cadherin in HEK293 cells. Initially, EphB2 cells were
stimulated with soluble ephrinB1-Fc chimera (Figure 4.2 A-D). After 30 min of
stimulation, the cells have begun to round up and retract their processes
consistent with previous observations (Poliakov et al., 2008). There is also an
increase in the intensity of pan-cadherin antibody staining at the cell surface as
predicted from the colorectal cancer cell experiments (Cortina et al., 2007).
However, the intensity of staining of EphB2 and of membrane-bound GFP (not

shown) is similarly increased between these cells. This could suggest that the
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increase in staining of membrane proteins could be a secondary effect to the

change in cell shape.

[ was interested to see if a similar effect could be seen in mixtures of EphB2 and
ephrinB1 cells in the segregation assay and the boundary assay (Figure 4.2 E-N).
There is an increase in cadherin staining within the EphB2 cell clusters. This also
co-localises with the membrane GFP expressed by these cells. The increase in
cadherin intensity is most clear between cells in the centre of the clusters. There
are several examples of EphB2 cells in contact with ephrinB1 cells, which are
indistinguishable from their neighbours in terms of cadherin staining (Figure 4.2
E-H, *). Similar to what is seen after ephrinB1-Fc stimulation, the increase in
cadherin staining appears to be concomitant with a change in cell shape. The same
is true in the boundary assay. There is no clear difference in cadherin localisation
between EphB2 cells in direct contact with ephrinB1 cells and adjacent cells which

are only in contact with other EphB2 cells.

These results show that cells within sorted EphB2 cell clusters have enriched
cadherin staining at their membranes. This could be due to an upregulation or
stabilisation of cadherins at cell membranes. However, since this increase in
cadherin staining is not detected in EphB2 cells at the edges of clusters, it is
unlikely to be a direct consequence of Eph-ephrin signalling. Alternatively, this
increased staining could be a secondary effect of the crowding and change in cell
shape that occurs after EphB2 stimulation or clustering (Ehrlich et al.,, 2002;
Yamada & Nelson, 2007). This is supported by the fact that membrane bound GFP,
whose distribution is not likely to be affected by Eph-ephrin signalling, is also

enriched between cells in clusters and colocalises with the cadherin staining.

To assess this more directly, | looked at earlier stages of EphB2-ephrinB1 sorting,
before large clusters have formed and where EphB2 cells and ephrinB1 cells have
similar shapes (Figure 4.3). After 5h, the cultures are still sparse but the EphB2
cells have clearly sorted from ephrinB1 cells. Pan-cadherin staining is enriched at
the membranes between any two cells which are juxtaposed. Cadherin staining is
enriched between cells in some large clusters where EphB2 cells are tightly

packed. However, cadherin staining is not enriched between EphB2 cells in
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Figure 4.2: Cadherin localisation in EphB2 and ephrinB1 cells

Cadherin localisation after EphB2 activation. Confocal images showing the
localisation of EphB2 (A,B) and pan-cadherin (C,D) in EphB2-cells before (A,C) and
after (B,D) stimulation with ephrinB1-Fc. (E-H) Confocal images of pan-cadherin
staining (white/red) of EphB2-ephrinB1 cell mixtures 48hrs after plating. EphB2
cells are marked by co-expression of membrane-GFP. Intersections between
EphB2 and ephrinB1 cells which show no difference in cadherin localisation
compared to surrounding cells (*) and downregulation of cadherin at the
membrane (>) are indicated as shown. (I-K) Wide-field images of pan-cadherin
staining (white) of EphB2-EphB2 (I,K) and EphB2-ephrinB1 (J,L) boundaries at the
end point of the boundary assay. There is more pan-cadherin staining in the bulk
of the EphB2 cells than ephrinB1 cells, but there is no clear difference in staining
between the two populations at the interface. Cells are more tightly packed within
the clusters, as can be seen by densely packed nuclei shown by DAPI staining

(M,N).
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Figure 4.3: Cadherin expression in EphB2-ephrinB1 sorting cells at low

density

Pan-cadherin staining of EphB2 and ephrinB1 cells 5 hours after the cells were
mixed. Increased staining (white) can be seen at the junctions between cells, and is
higher between cells within EphB2 clusters. However, in less dense regions of cells,
where sorting can still be clearly seen, clusters cannot be distinguished based on

the intensity of staining. Slides prepared by Alexei Poliakov.
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clusters which are less tightly packed. This suggests that the initial stages of

sorting are independent of cadherin enrichment between EphB2 cells.

EphB2 or ephrinB1 expression or EphB2 activation do not affect the expression of

cadherins.

One explanation for increased cadherin staining within sorted EphB2 cell clusters
could be regulation of the levels of N-cadherin, for example by an increase in
protein synthesis or degradation. To test this, I carried out Western blot analysis of
cells expressing EphB2 or ephrinB1 compared with control cells, as well as cells
after EphB2 activation by ephrinB1-Fc stimulation (Figure 4.4). The expression of
EphB2 (with or without co-expression of mGFP) or ephrinB1 alone does not affect
the level of protein detected by N-cadherin or pan-cadherin antibodies. Equally,
activation of the EphB2 receptor by stimulating the cells with a clustered, soluble
form of the ligand, ephrinB1-Fc chimera, does not affect the levels of expression
detected by these two antibodies. This indicates that there is no effect of EphB2
expression, ephrinB1 expression or EphB2 activation by ephrinB1 on the cellular
levels of N-cadherin. Therefore, if there is an enrichment of cadherin staining
between cells within EphB2 cell clusters, it must be due to a change in localisation,

rather than total cell levels, of the protein.

N-cadherin is required in both EphB2 and ephrinB1 cells for efficient sorting

When N-cadherin is knocked down in both EphB2 and ephrinB1 cells, sorting is
disrupted. One question that arises from this experiment is whether N-cadherin is
required in both EphB2 and ephrinB1 cells or predominantly in one type or the
other. Reduction of N-cadherin levels in either cell type by siRNA knockdown could
help to answer this question. This will reduce cadherin-mediated adhesion
between cells of that type (cohesion) and will also set up differential adhesion
between the EphB2 cells and ephrinB1 cells which may contribute to the sorting
phenotype (Figure 4.5 M). Experiments in the previous chapter have shown that
EphB2 cells in which N-cadherin has been knocked down do not sort out well from
control EphB2 cells (Figure 3.9). Therefore, the effect of differential adhesion in
this experiment may be negligible compared to the effect of cohesion in Eph-

ephrin mediated sorting.
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Figure 4.4: Cadherin expression levels in EphB2 and ephrinB1 cells

Western blots showing levels of cadherins detected in cell lysates of ephrinB1,
EphB2 and GFP-EphB2 cells detected using an antibody to N-cadherin (A) and pan-
cadherin (B). N-cadherin and pan-cadherin antibodies detect the same protein
levels in all the cell types studied, including GFP-EphB2 cells stimulated with
ephrinB1-Fc chimera which activates signalling through EphB2. y-tubulin is used

as a loading control.
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Figure 4.5: N-cadherin is required for basal cell-cell adhesion, to stabilise

segregation

(A-E) Segregation assay where N-cadherin has been knocked down by siRNA in
EphB2 cells (EB2), ephrinB1 cells (eB1) or both. Clusters are smaller and rounder
compared to controls when N-cadherin is knocked down in only EB2 cells, with
more isolated EB2 cells in the eB1 territory (C). When N-cadherin is knocked down
in only eB1 cells, EB2 clusters are larger and more interconnected (D). Knockdown
of N-cadherin in both cell populations gives a phenotype which appears like a
combination between these two (E). A similar pattern is seen in the boundary
assay, with knockdown of N-cadherin in only eB1 resulting in a fuzzy boundary,
knockdown in only EB2 a slightly less fuzzy boundary but with more isolated cells,
and knockdown in both an even fuzzier boundary (F-J). Images taken at 10x
magnification on a Deltavision microscope. EB2 cells detected by membrane-GFP
co-expression. Quantification based on 3 repeat experiments of the sorting (K) and
boundary assays (L) confirms these phenotypes. px: pixels. (M) Table outlining the
presence of cell cohesion, differential adhesion and other mechanisms in the
different cell combinations shown in images A-]. Error bars represent standard

error of the mean.
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When N-cadherin was reduced in the EphB2 cells alone, cells were able to sort into
rounded clusters (Figure 4.5 C,H). These varied in size, with more small clusters
than in cells treated with siCtrl. By contrast, when N-cadherin is knocked down in
ephrinB1 cells, EphB2 cells form more spread clusters with long branches

interlinking them (Figure 4.5 D, I).

In the boundary assay where N-cadherin is knocked down in EphB2 cells only,
boundary length is comparable to control EphB2-ephrinB1 cell mixtures, although
more isolated EphB2 cells can be seen in the ephrinB1 cell territory (Figure 4.5
J,L). The boundary length in co-cultures where N-cadherin has been knocked

down in ephrinB1 cells only is longer than with siCtrl-treated cells (Figure 4.5 [,L).

These results support the idea that there are different requirements for N-
cadherin in EphB2 and ephrinB1 cells. These results can be explained in terms of
cohesion between cells. When cohesion is reduced in EphB2 cells only, there is an
apparent increase in the number of smaller clusters, which would be expected if
they were unable to stick together to stabilise larger clusters. Conversely, when
cohesion is reduced in ephrinB1 cells only, they do not form a continuous sheet but

are broken up by branches of EphB2 cells.

These results support a key role for N-cadherin in mediating cohesion between
cells and stabilising clusters. Nevertheless, molecules involved in cell-cell adhesion
are regulated downstream of EphB2-ephrinB1 signalling so the regulation of
adhesion may still play a role in segregation. To investigate this further, I studied

signalling targets of EphB2 with roles in the regulation of cell-cell adhesion.

Regulatory molecules downstream of cadherin-mediated adhesion are also required

for EphB2-ephrinB1 sorting and boundary sharpening

Two screens have been published which searched for biochemical targets of
EphB2-ephrinB1 signalling. These screens identified proteins with altered tyrosine
phosphorylation states in EphB2-expressing cells after stimulation with ephrinB1-
Fc or ephrinB1-expressing cells (Jorgensen et al., 2009; Zhang et al., 2008).
Amongst the proteins identified as EphB2 targets were several involved in
mediating cell-cell adhesion. These suggest a link between Eph-ephrin signalling

and the regulation of cell-cell adhesion.
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[ shortlisted these proteins by considering their relevance to cell-cell adhesion,
based on a literature search. I was particularly interested in proteins with a key
role in cell-cell adhesion. The most interesting candidates are listed in Figure 4.6 A.
[ carried out qPCR of these genes in HEK293 cells to see which were expressed
(Figure 4.6 B). Of these, I found p120 and p0071 to be expressed at similar levels
to N-cadherin. Af-6 was not detectably expressed so was not investigated further.
Although Rab?7 is expressed at high levels and has been implicated in E-cadherin
endocytosis (Palacios et al,, 2005), it is also involved in a wide range of other
endocytic processes. On the other hand, many studies have linked p120 to the
regulation of cell adhesion and p120 activity has been shown to be regulated by
phosphorylation (Alema & Salvatore, 2007; Castano et al, 2007; Fukumoto et al,
2008). I therefore decided to focus on the role of p120 and its related family

member p0071 downstream of Eph-ephrin signalling.

siRNA knockdown of N-cadherin, p120 or p0071 does not prevent Eph activation.

Any effect that knockdown of molecules has on Eph-ephrin sorting could be due to
a specific role they play downstream of Eph-ephrin signalling. However, these
proteins could also be acting upstream of Eph-ephrins, affecting the ability of the
receptor to be phosphorylated and therefore to activate downstream pathways. To
test this possibility, I carried out Western blot analysis of EphB2 cells which had
been stimulated with ephrinB1-Fc, compared to cells which had been mock-
stimulated with PBS, after knockdown of N-cadherin, p120 and p0071. The
Western blots were then stained using an antibody against the phosphorylated
form of Eph receptor (phospho-Eph) and compared to staining for total EphB2
(Figure 4.7).

There is a low background level of phospho-Eph staining without ephrinB1-Fc
stimulation, which may be due to high levels of expression of EphB2 in these cells
leading to auto-activation of the receptor (Poliakov et al., 2004). However, there is
a substantial increase in phospho-Eph staining after stimulation with ephrinB1-Fc
in all conditions. This demonstrates that siRNA knockdown of Ncad, p120 or

p0071 has no effect on the ability of EphB2 to be phosphorylated. Interestingly,

120



Figure 4.6: Targets of ephrinB1-EphB2 signalling

Several of the proteins identified as downstream targets of ephrinB1-EphB2
signalling are involved in the regulation of cadherin-mediated adhesion. Table (A)
lists four of these that stood out as having a clear role in this process. (B) The
expression levels of these four genes as well as N-cadherin in HEK293 cells as
determined by qPCR. Results are shown relative to the expression of 3-actin (n=2).
With the exception of Af-6, they are all expressed in these cells. Error bars

represent standard error of the mean.
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Figure 4.7: Phospho-Eph staining as a readout for EphB2 activity in siRNA
knockdowns of N-cadherin, p120 and p0071

siRNA knockdown of N-cadherin, p120 and p0071 does not decrease the activity of
EphB2 receptor. Western blot analysis of EphB2 cells for a phosphorylated form of
Eph receptor, before or after stimulation with soluble ephrinB1-Fc.
Phosphorylation of Eph is not affected when N-cadherin, p120 or p0071 are
knocked down by siRNA (A), but increases relative to a control siRNA when cells
are stimulated by ephrinB1-Fc. Total EphB2 is used as a loading control.
Quantification of these Western blots (n=3) confirms this increase. Error bars

represent standard error of the mean.

123



Figure 4.7

124



there is a significant increase in the phosphorylation of EphB2 after N-cadherin
and, less consistently, p120 are knocked down. This could reflect a direct effect of
these proteins inhibiting Eph signalling. Alternatively, it could be a secondary
effect due to an increase in the surface of the cell exposed to the ligand after cell-
cell contacts are disrupted. Either way, treatment of EphB2 cells with siRNAs to N-

cadherin, p120 or p0071 does not decrease ephrinB1-EphB2 forward signalling.

p120, but not p0071, knockdown reduces levels of N-cadherin

Previous studies have shown that reduction in p120 expression results in
degradation and decreased expression of cadherins (Davis et al., 2003; Davis &
Reynolds, 2006). It was unclear whether a comparable relationship might exist for
p0071. To evaluate how N-cadherin is affected by p120 and p0071 in HEK293
cells, I carried out Western blot analysis of EphB2 cells treated with sip120,
sip0071, siNcad, and siCtrl (Figure 4.8 A). This analysis shows that cadherin levels,
detected by N-cadherin or pan-cadherin antibodies, are significantly reduced when
p120 is knocked down. In contrast, p0071 has no effect on the total cell levels of N-
cadherin. Neither siNcad nor sip0071 disrupts p120 levels in these cells. These

results support previous evidence that p120 is required for cadherin stability.

To confirm this result, I carried out immunochemistry on these cells. Under control
conditions, N-cadherin is highly enriched at the cell-cell contacts (Figure 4.8 B). As
expected, this enrichment is abolished in the presence of siNcad. sip120 treatment
results in reduction of total protein levels detected, consistent with the Western
blot analysis, and no enrichment of the remaining protein is seen at cell contacts.
sip0071 treatment does not appear to reduce N-cadherin levels, although there is a
reduction in the number of cell contacts at which N-cadherin is enriched. This
could be due to reduced stability of N-cadherin protein at contacts, without
subsequent change in protein levels. Alternatively, p0071 knockdown could
decrease the stability of contacts through another mechanism, for example by

increasing the activity of cell protrusions.

p120 and p0071 knockdown disrupt EphB2-ephrinB1 sorting

The requirements for p120 and p0071 in EphB2-ephrinB1 cell sorting were

assessed using the segregation and boundary assays.
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Firstly, I tested the efficiency of knockdown of each of these genes using a pool of 3
siRNAs targeted to different regions of the gene. Pooling siRNAs minimises off-
target effects as described in Chapter 3. Western blot analysis was carried out on
lysates of cells, which were harvested 72 h after transfection with siCtrl, sip120 or
sip0071. I tested several commercially available antibodies to the proteins of
interest before finding ones which worked. The antibodies to either p120 or p0071
detect several bands which may correspond to different isoforms of these proteins.
siRNA that targets p120 gives an average protein knockdown of 85+12% relative
to a y-tubulin control (n=2, Figure 4.9 I). sip0071 reduces protein levels by
74+12% on average (n=2; Figure 4.9 ]).

siRNA knockdown of either p120 or p0071 disrupts the pattern of cell sorting of
EphB2 and ephrinB1 cells (Figure 4.9 A-C, G). EphB2 clusters appear smaller and
less dense and the PRI is significantly increased. In the boundary assay, however,
only sip120 and not sip0071 has a significant effect on the sharpness of the
boundary (Figure 4.9 D-F, H). This points to a possible difference in the
sensitivities of the two assays to detecting sorting, where cells migrate freely at
first, versus boundary sharpness. The migration of cells in the boundary assay may
be more restricted since they are at a higher density from the moment the EphB2

and ephrinB1 cells interact.

The similarities between p120 and p0071 suggest that they may play redundant
roles in the stabilisation of cadherins at the membrane (Hatzfeld, 2005) .
Alternatively, they could act together or independently of N-cadherin, to regulate
RhoGTPase activity and cell migration. To assess whether Ncad, p120 and p0071
work together or through separate pathways, [ knocked them down in

combination (Figure 4.10).

So that the total concentration of siRNA transfected into the cells was kept the
same across all conditions, siRNAs to N-cadherin, p120 and p0071 were mixed
either with one another or with siCtrl. Since this halves the amount of siRNA to
each gene, I first checked the knockdown efficiency of p120 and N-cadherin in
these situations. p120 protein was knocked down by 78+7% (n=2) similar to

before, and N-cadherin by 76+14% (n=3), less than the 98% when it was
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Figure 4.8: Cadherin expression and localisation in cells treated with

sip120 or sip0071

Western blot analysis and immunochemistry were used to determine the levels
and localisation of N-cadherin, p120 and p0071 under conditions where each was
knocked down. (A) Western blot analysis of EphB2 cells treated with siNcad,
sip120, sip0071 or siCtrl. Cadherin protein levels, detected using an anti-N-
cadherin and a pan-cadherin antibody, are high in siCtrl and sip0071 treated cells,
but are reduced in cells treated with siNcad and sip120. p120 levels are unaffected

by either siNcad or sip0071. Anti-y-tubulin antibody was used as a loading control.

(B) Immunochemistry of EphB2 cells treated with siNcad, sip120, sip0071 or
siCtrl. N-cadherin is enriched at the membranes of cells in contact with one
another in siCtrl conditions. N-cadherin expression is abolished in siNcad-treated
EphB2 cells and there is greatly reduced expression in sip120-treated cells, with
no enrichment seen at cell junctions. In cells treated with sip0071, N-cadherin
levels remain high and there is some enrichment at cell-cell contacts, although this

appears reduced compared to siCtrl treated cells.
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Figure 4.9: p120 and p0071 effects on sorting and boundary sharpness

(A-C) EphB2-ephrinB1 sorting is disrupted by siRNA knockdown of p120 or
p0071. The perimeter regularity index (PRI) of these conditions is significantly
higher than when a nonsense control siRNA is used (G; Student’s t-test, p<0.001).
(D-E, H) siRNA knockdown of p120 also disrupts boundary sharpness, significantly
increasing boundary length above the control. p0071 does not have this effect and
boundaries are not significantly longer than the control. px: pixels. (I,]) Western
blot analysis showing effectiveness of siRNA knockdown of p120 (84+12%
knockdown) and p0071 (74+£12% knockdown). Knockdown is measured
compared to a control siRNA and relative to y-tubulin, which is used as a loading

control. Error bars represent standard error of the mean.
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knocked down alone. p0071 levels were not checked in these experiments due to a

lack of available antibody.

When siNcad & siCtrl or p120 & siCtrl were transfected into EphB2 and ephrinB1
cells, they disrupted sorting and boundary sharpness to similar extents (Figure
4.10 C, D, K, L). A similar phenotype is seen when siNcad & sip120 are transfected
together in the same cells (Figure 4.10 F, N, Q, R). This supports the idea that N-
cadherin and p120 are working in the same pathway to contribute to sorting

consistent with p120 being required for N-cadherin stability (see Figure 4.8).

Treating EphB2 and ephrinB1 cells with sip0071 & siCtrl has very little effect on
sorting or boundary sharpness (Figure 4.10 E, M, Q, R). This discrepancy with
previous results is probably due to a lower level of knockdown when sip0071 is
used in combination with siCtrl, since less of each siRNA is used in this situation. In
contrast to this result, transfection of sip0071 in combination with either siNcad or
sip120 greatly disrupts sorting and boundary sharpness (Figure 4.10 G, H, O-R).
This indicates that p0071 is acting in a different pathway to both p120 and N-
cadherin and that both pathways are necessary for segregation between EphB2

and ephrinB1 cells.

Adam10 is not necessary for sorting or boundary sharpening

A recent study from the Batlle lab has proposed a differential adhesion mechanism
for EphB-ephrinB sorting by the regulation of E-cadherin via Adam10 (Solanas et
al,2011). Adam10 is a trans-membrane metalloproteinase which, they
demonstrate, cleaves E-cadherin on EphB activation. They propose that this sets
up decreased adhesion at the site of EphB-ephrinB cell contact and that this
difference in adhesion can drive sorting. It was important to test whether such a

mechanism could be involved in our cell system as well.

[ attempted to abrogate the expression of Adam10 using three different
approaches. Firstly, [ used siRNAs to Adam10 to knock down its expression, and
carried out the segregation and boundary assays (Figure 4.11 A-H). Using this
approach, knockdown of Adam10 did not disrupt either sorting or boundary
sharpness. I quantified the level of knockdown of the protein by Western blot, as

described for previous siRNAs. However, the antibody detected many non-specific
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Figure 4.10: Knockdown of combinations of N-cadherin, p120 and p0071

enhance cell sorting abrogation phenotypes

EphB2-ephrinB1 segregation (EphB2 cells and brightfield; A-H, R) and boundary

(EphB2 cells; I-P, Q) assays in which N-cadherin, p120 or p0071 are knocked down
by siRNA. siRNA knockdown of N-cadherin, p120 or p0071 combined with siCtrl

disrupts cell sorting by EphB2 receptor and ephrinB1 (A-E, I-N). Combining siNcad
and sip120 does not disrupt sorting further than either of these siRNAs used alone
(F, N). p0071 knocked down with N-cadherin or with p120 increases disruption of
sorting and boundary sharpness (G,H, O, P). Error bars represent standard error of

the mean.
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Figure 4.11: Adam10 does not affect EphB2-ephrinB1 cell sorting in
HEK293 cells

(A-H) Cell segregation (green EphB2 cells and brightfield) and boundary (green
EphB2 cells) assays. Treatment of cells with Adam10 siRNA does not perturb
sorting or boundary sharpening between EphB2 and ephrinB1 cells (C,F).

(I-R) Expression of a dominant negative Adam10 (Adam10AMP) does not disrupt
signalling. Several stable cell lines were generated which expressed Adam10AMP
to similar levels. Examples where two different Adam10AMP-expressing EphB2

lines were mixed with two different ephrinB1 lines are shown (K,L,0,P).

(S) Western blot analysis showing knockdown of Adam10 by siRNA relative to a y-
tubulin loading control. The knockdown of the 85kDa band, corresponding to the

correct size of Adam10 protein is 80+27% (n=3) by mean intensity measurement.

Error bars represent standard error of the mean.
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bands, and varying levels of knockdown were measured (average knockdown
80+27%, n=3; Figure 4.11 S). Since the knockdown of Adam10 was not 100%
efficient, it was possible that any remaining protein was able to compensate for

incomplete siRNA knockdown.

Another approach was to express a dominant negative version of Adam10, which
lacks the metalloproteinase domain, rendering it catalytically inactive
(Adam10AMP; Lemieux et al., 2007). No effect could be seen on segregation or
boundary sharpening when the construct was expressed in transient transfections
(data not shown). To create a uniform population of cells expressing Adam10AMP,
[ generated stable cell lines expressing this dominant negative Adam10 and tested
several which expressed the protein to similar levels (Figure 4.11 K-P). There is
some variability in the size and shape of clusters, likely due to selection of different
levels of EphB2 or ephrinB1 in the different stable lines. However, the PRI and
boundary length are similar to those for cells which do not express the dominant
negative Adam10 protein (Figure 4.11 Q,R). The expression of dominant negative
Adam10 did not have any effect on sorting in hanging drop assays either.
Importantly, reduced sorting was not seen with any of the Adam10AMP expressing

cell lines in any of the segregation assays.

The third strategy was to use a broad-spectrum metalloproteinase inhibitor, TAPI-
1, to see if any disruption to sorting could be seen. Even when used at 20uM (twice
the concentration used by Solanas et al.), there is no disruption to segregation or

boundary sharpness (data not shown).

Since none of these methods of abrogating Adam10 function showed a significant
effect on Eph-ephrin sorting, | decided to investigate whether cadherin is cleaved
downstream of EphB2-ephrinB1 signalling. Using an antibody to the extracellular
domain of N-cadherin, I performed immuno-precipitation on the media in which
EphB2-ephrinB1 cell mixtures had been cultured. This should concentrate any
extracellular cleaved N-cadherin. When run on an SDS-PAGE gel and subjected to
Western blot analysis, no band could be detected which was different between
EphB2-EphB2 and EphB2-ephrinB1 cell mixtures (data not shown). This was
possibly due to the EC-N-cadherin band running close to the antibodies used for IP.

Another method of detecting cleaved cadherin is to look at the intracellular
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cleavage products of cadherin. When N-cadherin is cleaved extra-cellularly, it will
subsequently be cleaved intra-celluarly, separating it from the membrane and
giving rise to a 35kDa fragment. This could be detected using an anti-C-terminal N-
cadherin antibody. When treated with the Adam metalloproteinase inhibitor TAPI,
there was an increase in the intensity of this 35kDa band in EphB2 cells, suggesting
that the inhibitor is effective at preventing cadherin cleavage through Adam10.
However, this band could not be detected in EphB2-ephrinB1 cell mixtures. These
results suggest that there is no detectable increase in cadherin cleavage in

mixtures of HEK293 cells expressing EphB2 receptor or ephrinB1.

Taken together, these experiments show that Adam10 cleavage of cadherin does

not play an important role in EphB2-ephrinB1 sorting in this system.

Discussion

Cadherin mediated adhesion is required for EphB2 receptor and ephrinB1 cell sorting

and boundary sharpening

The results described in this chapter show that siRNA knockdown of N-cadherin in
EphB2 and ephrinB1 cells disrupts their normal pattern of sorting in segregation,
boundary and hanging drop assays. This indicates that cadherin mediated
adhesion is required for EphB2-ephrinB1 signalling to drive efficient cell sorting.
Moreover, known downstream targets of EphB2 include regulators of cadherin-
mediated adhesion, p120 and p0071. Despite being reported to have an important
role in assays with other cell types, Adam10 cadherin cleavage does not seem to be

necessary in this sorting system.

N-cadherin could be required in EphB2-ephrinB1 mediated cell sorting for one or
more of three reasons. Firstly, it could simply be required for cohesion between
cells, which is required to allow EphB2 and ephrinB1 cells to sort. Secondly, it
could be regulated by EphB2-ephrinB1 signalling to set up differential adhesion
between cells, which could assist in sorting. Thirdly, it could be important
upstream of EphB?2 to facilitate signalling. Each of these predicted roles is

discussed below.
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Model 1: Cadherin is required for cell-cell adhesion. Eph-ephrins drive sorting through

another mechanism.

Knockdown experiments demonstrate that cadherins are required for Eph-ephrin
driven sorting (Figure 4.1; Cortina et al, 2007). The experiments presented here
suggest that a major function of cadherins is to mediate cohesion between cells,
which re-enforces segregation, but that sorting is driven by cadherin-independent

mechanisms.

When N-cadherin is knocked down, segregation is disrupted. However, under
these conditions in the segregation assay, clusters of EphB2 cells are still formed,
indicating that sorting is taking place in the absence of N-cadherin. The reduction
of N-cadherin is more than 95% efficient so any effect of the residual protein is
likely to be negligible. A likely explanation is that another, cadherin-independent
mechanism drives segregation of cells downstream of EphB2-ephrinB1 signalling

(see Chapter 5).

Segregation and boundary assays where N-cadherin was knocked down in either
EphB2 cells or ephrinB1 cells support the idea that the cadherin is mostly required
for cohesion between cells. When N-cadherin was reduced in EphB2 cells only,
more, smaller clusters of EphB2 cells formed, consistent with a requirement for
cohesion in stabilising these clusters. Similarly, when N-cadherin was reduced in
ephrinB1 cells only, these cells were more frequently interrupted by connections
between clusters of EphB2 cells. This is consistent with a cadherin-independent
role of EphB2-ephrinB1 signalling in segregating cells, but a requirement for

cadherins in stabilising contacts between segregated cells.

The idea that the regulation of cadherins is not a principal mechanism for cell
sorting through Eph-ephrins is supported by immunochemical staining of EphB2
cells and ephrinB1 cells at early stages of segregation. After 5h in co-culture,
EphB2 cells have begun to segregate from ephrinB1 cells, yet cadherin staining is
the same between the two cell types and there is no variation in cadherin
localisation within any given cell. Cadherins may be upregulated within clusters at
a later stage of sorting, since cells in the centres of large clusters have enriched
cadherin staining. This could be a specific mechanism downstream of Eph-ephrin

signalling to aid in the maintenance of segregation. It could also be a secondary
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effect due to cluster formation. EphB2 cells in the middle of clusters appear more
densely packed together and their shapes change in accordance with that. The
increase in staining between them could be a result of this shape change. In
accordance with this, when a change in cell shape occurs after stimulation of
EphB2 cells with ephrinB1-Fc, there is an increase in cadherin staining. However,
this is accompanied by an increase in the staining of other membrane-bound

proteins such as EphB2 (Figure 4.2).

The strength of cadherin mediated adhesion increases with increased time of cell
contact (Ehrlich et al,, 2002; Yamada & Nelson, 2007), so another possibility is that
EphB2 cells which have formed clusters could have increased cadherin at their
surfaces through this mechanism. This would also account for the fact that
cadherin increases throughout the cluster even if the cluster is many cells in
diameter and the EphB2 cells in the centre are not in direct contact with ephrinB1
cells or directly responding to ephrin signalling. | therefore propose that cadherins
are upregulated between cells in EphB2 clusters, but the initial stages of EphB2-

ephrinB1 sorting are independent of any detectable cadherin re-localisation.

One way that Eph-ephrins are likely to be influencing cell sorting without
regulating cell-cell adhesion is through cell repulsion. Repulsion of Eph-expressing
cells has been shown to occur on contact with ephrin-expressing cells in cell
culture assays (Poliakov et al., 2008). Unpublished modelling data from the
Wilkinson lab has suggested that repulsion, in the form of persistent migration
after cell collisions, can drive cells to sort. Computer simulations based on
parameters taken from the HEK293 cell system (e.g. speed of cell migration, length
of time in contact with one another) demonstrate that repulsion of one cell type
from another is sufficient for sorting. Interestingly, sorting by repulsion in this
model is reliant on a baseline ability for cells to stick to one another, consistent
with a requirement for cadherin to facilitate cohesion in Eph-ephrin segregation

(see Chapter 6).

This data supports the idea that N-cadherin is required to provide basal cell-cell

cohesion, which is needed for EphB2 and ephrinB1 cells to sort.
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Model 2: Regulation of N-cadherin generates differential adhesion

A main role of cadherins in Eph-ephrin sorting may be to facilitate cohesion, which
can stabilise the sorting pattern. However, differential adhesion may still represent
an important mechanism through which Eph-ephrins mediate segregation. In
support of this, p120, which has a well-described role in regulating adhesion, and
its close family member p0071, are regulated downstream of EphB2 activation.
This suggests that p120 or p0071 could mediate mechanisms through which
adhesion is differentially regulated in EphB2 cells.

Model 2a: Regulation of N-cadherin via p120 generates differential adhesion
between EphB2 and ephrinB1 cells

Knockdown of p120 and N-cadherin together disrupts sorting to the same extent
as knockdown of each on its own, suggesting that they function in the same
pathway in EphB2 and ephrinB1 cell sorting. Furthermore, p120 expression is
required for normal protein expression of N-cadherin. Could p120 be downstream
of Eph-ephrin signalling to modulate N-cadherin expression on the cell surface,

resulting in differential adhesion?

p120 is generally considered to be required for cadherin-mediated adhesion. Its
binding to the juxtamembrane domain of E-cadherin is required and sufficient to
recruit E-cadherin to the membrane (Thoreson et al, 2000; Yap et al., 1998).
Furthermore, decreased levels of p120 result in rapid degradation of cadherins on
delivery to the cell surface (Davis et al., 2003; Xiao et al., 2003). Interestingly from
the point of view of its control by Eph receptor activation, p120 activity is
regulated by phosphorylation of serine/threonines and tyrosines in the regulatory
domain of the protein (Reynolds, 2007); Chapter 1, Figure 1.7). Tyrosine-
phosphorylated p120 binds cadherin preferentially than the unphosphorylated
version, suggesting a role in the stabilisation of E-cadherin at the cell surface
(Mariner et al., 2004). This is consistent with the observation that there is a
transient increase of tyrosine-phosphorylated p120 at nascent adhesive contacts
(Calautti et al.,, 1998; Calautti et al.). However, phosphotyrosine defective mutants
are also able to efficiently bind and stabilise E-cadherin at the cell surface (Mariner
et al., 2004; Xiao et al., 2003), which suggests that tyrosine phosphorylation is not

universally required for p120 to stabilise E-cadherin.
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The large-scale screens identifying phosphorylation targets of EphB2-ephrinB1
signalling demonstrate that Y217, Y228, Y257 and Y904 have consistently
decreased phosphorylation in EphB2 cells mixed with ephrinB1 cells but increased
phosphorylation in EphB2 cells stimulated with soluble ephrinB1-Fc (Jorgensen et
al, 2009). This difference in response to different activating ligands could be due
to differences in the level of clustering between Eph receptors when stimulated
with soluble versus membrane-bound ligands. The degree of clustering of
receptor-ligand complexes has been shown to affect the signalling response of the
Eph receptor (Huynh-Do, 1999). The response to membrane-bound ligand
represents a more physiological scenario, suggesting that p120 phosphorylation

decreases in EphB2 cells on contact with ephrinB1 cells.

Since EphB2 is a kinase, it must depend on an intermediate target to
dephosphorylate p120. Direct targets of EphB2 which would be capable of
regulating p120 phosphorylation include Shp1 (Keilhack et al., 2000) and Src
(Mariner et al, 2001; Reynolds et al., 1989). Shp1 and Src have both been shown to
directly interact with p120. Specifically, Src has been shown to phosphorylate
Y217 and Y228 of p120 (Castano et al., 2007). Shp1 and Src are therefore likely

intermediates in the regulation of p120 downstream of EphB2 activation.

Sorting is not more disrupted when siNcad and sip120 are mixed in the
segregation or boundary assays, compared to either siNcad or sip120 alone.
However, there is an additive phenotype of siNcad and sip120 in hanging drops
(Figure 4.12). This highlights the different sensitivities of the hanging drop and
sorting assays. Cell rearrangement in the hanging drop assay is dependent only on
interactions of cells with the medium or with other cells. By contrast, the
segregation and boundary assays rely on cell interactions with the cell culture dish
as well as between cells and the medium. This may render the segregation and
boundary assays more suitable to detecting changes in migration-dependent
segregation, which are not detected in the hanging drop assay, and less sensitive to

differences in adhesion between cells (see Chapter 3).

The strong phenotypes in the segregation assay of each of N-cadherin and p120
knockdown are consistent with their key roles in cell-cell adhesion. The increased

strength of phenotype when siRNAs to the two genes are combined in the hanging
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Figure 4.12: Knockdown of combinations of N-cadherin, p120 and p0071

disrupt cell sorting in hanging drops

EphB2-ephrinB1 segregation in hanging drops (green EphB2 cells and red
ephrinB1 cells) in which N-cadherin, p120 or p0071 are knocked down by siRNA.
siRNA knockdown of N-cadherin, p120 or p0071 combined with siCtrl disrupts cell
sorting by EphB2 and ephrinB1 (A-E, I-N). Combining siNcad and sip120 or p0071
in any combination of two greatly increases disruption of sorting and boundary

sharpness (F-H).
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drop assay is most easily explained by the fact that each gene is knocked down
incompletely in this experiment. When N-cadherin is knocked down incompletely,
the remaining protein could still function in combination with normal levels of
p120. If the pool of available p120 is also reduced, this could reduce the formation

of stable N-cadherin-p120 complexes.

In summary, N-cadherin and p120 act in the same pathway to regulate cell-cell
adhesion, which is required for EphB2-ephrinB1 cell sorting. p120 is regulated by
Eph receptor activation. However, it is still not clear that the requirement for N-
cadherin and p120 in segregation by Eph-ephrins is due to a general need for the
adhesive properties of these molecules or because they are regulated by Eph-

ephrin signalling.

Model 2b: Eph-ephrin signalling activates Adam10 to generate differential adhesion
between cells

Evidence for this model comes from experiments on colorectal cancer cells in
which E-cadherin is cleaved at the interface of EphB-ephrinB cells by activation of
Adam10 metalloproteinase (Cortina et al., 2007; Solanas et al., 2011). Cortina et al.
also show an increase in E-cadherin staining at the membranes of EphB2 cells after
stimulation with ephrinB1-Fc (Cortina et al., 2007), suggesting that EphB2 acts to
increase adhesion between cells (Figure 4.13). Collectively, this would set up a
difference in adhesion between EphB2 cells, which stick more strongly together,

and ephrinB1 cells, which cannot stick to EphB2 cells.

In HEK293 cells, there is also an increase in cadherin intensity at the membrane of
EphB2 cells after ephrinB1-Fc stimulation (Figure 4.2). There is also an
accumulation of cadherin at the membranes between EphB2 cells after they have
formed clusters, although not at the early stages of clustering (Figures 4.2, 4.3), as

discussed above.

Despite extensive efforts to abrogate the function of Adam10, there seems to be no
effect of this on the level of sorting of HEK293 cells by EphB2-ephrinB1 signalling.
This could be for two reasons: either the reagents are not efficiently blocking
Adam10 function; or Adam10 does not have a role in EphB2-ephrinB1 sorting in

HEK?293 cells.
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Figure 4.13: Model for differential adhesion through EphB-ephrinB
signalling

Model suggesting a mechanism through which differential adhesion is generated
by EphB-ephrinB activity in epithelial cells (Solanas et al., 2011). EphB-expressing
cells respond to ephrinB signalling by: a) activating ADAM10 at the point of
contact, which cleaves E-cadherin, decreasing adhesion; b) a relative increase in
adhesion between EphB-expressing cells, resulting in stable associations between

these cells.
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Initially, Adam10 was knocked down by siRNA. The detected level of Adam10
protein knockdown by siRNA is much less than 100%), either because the siRNA is
inefficient, or because the antibody binds non-specifically to other proteins. If
there is not complete knockdown of the protein, the remaining Adam10 could be

sufficient to carry out its normal function.

A second approach used to abrogate Adam10 function was to express high levels of
a metalloproteinase-deficient Adam10 (Adam10AMP ) which has been shown to
act as a dominant negative (Lemieux et al, 2007), but expression of this did not
disrupt sorting either. One possibility is that the construct was expressed at too
low a level, which was insufficient to completely abrogate endogenous Adam10
activity. However, Adam10AMP is strongly detected in the cells by both

immunocytochemistry and Western blotting suggesting this is not the case.

Thirdly, a more general approach was to treat the sorting cells with the Adam
inhibitor TAPI-1. This had no effect on Eph-ephrin segregation, when it was added
once at the beginning of the experiment, from the point the cells are mixed.
However, TAPI-1 can lose activity after 12h (Guiomar Solanas, personal
communication). To address this, [ added TAPI-1 to the segregating cells every 12h
throughout their incubation. This still had no effect on cell segregation (data not

shown).

These three different methods were used to abrogate Adam10 function, and still
segregation of EphB2 and ephrinB1 cells was not disrupted. Therefore, it is likely
that Adam10 is not playing a role downstream of EphB2-ephrinB1 sorting in these

cells.

The cells in which the role of Adam10 was discovered are epithelial colorectal
cancer cells, where Adam10 is able to cleave E-cadherin downstream of EphB2 or
EphB3. By contrast, HEK293 cells express N-cadherin rather than E-cadherin. This
difference in the type of cadherin cannot be the sole reason for the difference in
results, since Adam10 has been shown to cleave both proteins (Uemura et al,,
2006). Another difference between the cells could be their motility. Cells in

epithelia tend not to change position a lot, relative to one another (Lecuit, 2010),
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but HEK293 cells are very motile and are frequently making and breaking contacts
with one another. Consistent with this is the fact that HEK293 cells express N-
cadherin which is commonly associated with increased cell motility. The Adam10
mechanism was proposed based on experiments using E-cadherin expressing,
epithelial cells. It is likely to be more important in epithelial tissues in which
adhesions between cells are strong and can prevent them from moving, and less
important in cell types which are constantly able to break contact with one

another.

Model 3: Cadherins potentiate Eph-ephrin signalling

There is some evidence that E-cadherin is required upstream of EphA2 activation
(Zantek et al., 1999). The fact that EphB2 is still tyrosine phosphorylated in
response to ephrinB1 ligand, even in the absence of N-cadherin, demonstrates that
there is not a cell autonomous requirement for N-cadherin to facilitate EphB2-
ephrinB1 signalling (Figure 4.7). From this experiment, however we cannot tell
whether N-cadherin is required to assist interactions between cells. It is possible
that N-cadherin could be required to help cells come into contact and allow
signalling to occur. However, Eph receptors and ephrins have high affinities for
one another, so it is very likely that they could allow cells to interact even in the
absence of cadherin-mediated adhesion. Furthermore, N-cadherin knockdown
actually results in an increase in Eph receptor phosphorylation. One possibility is
that N-cadherin presence at the membrane may exclude Eph-ephrin interactions.
Another possibility is that N-cadherin knockdown decreases contacts between
cells, increasing the surface area of the cell on which EphB2 is exposed to the
ephrinB1-Fc ligand. It would be interesting to repeat the staining for phospho-
tyrosine using mixtures of EphB2 and ephrinB1 cells, rather than a soluble ligand,
to address these possibilities. From these data, N-cadherin is not required

upstream of EphB2-ephrinB1 signalling to mediate cell sorting.

The potential role of p0071

I chose to investigate the function of p0071 in Eph-ephrin segregation as it is
regulated downstream of EphB2 activation, and because of its similarity to p120 in

both structure and known function. p0071 binds classical cadherins and co-
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localises with [3-catenin at adherens junctions (Hatzfeld et al., 2003; Hofmann et al,,
2008). It has been suggested that it has similar roles in linking cadherins to the
cytoskeleton (Hatzfeld, 2007) as well as in the regulation of RhoGTPase activity
(Wolf et al, 2006). It was originally thought to localise to desmosomes, so it might
play an analogous role to that of p120 at adherens junctions by regulating
desmosomal cadherins at desmosomes, although this is under some dispute

(Hatzfeld et al.,, 2003; Hofmann et al,, 2008).

Unexpectedly, knocking down p0071 has a very different effect than knockdown of
p120 on EphB2-ephrinB1 segregation. When knocked down on its own (Figure 4.9
C,F), p0071 has only a small effect on sorting and no effect on boundary
sharpening, suggesting that it is either unimportant for sorting or that its activity is
compensated by similar proteins such as p120. However, when knocked down in
combination with p120 or N-cadherin, there is a striking additive effect and sorting
is almost completely prohibited (Figure 4.10 Q,R). p0071 co-knockdown with N-
cadherin or p120 decreases sorting in hanging drops, consistent with the 2D
sorting results (Figures 4.12, 4.9). This could suggest that p0071 is acting
independently of N-cadherin and that both together are vital for efficient sorting

through EphB2 and ephrinB1.

Cadherin staining of EphB2 cells in which p0071 has been knocked down
demonstrates that fewer cadherin-enriched junctions form between these cells.
These results are consistent with the possibility that p0071 is required for normal
cell-cell adhesion. One possibility is that p0071 could be regulating adhesion by
influencing the protrusive activity of the cell membrane. A more dynamic
membrane would be less able to form stable interactions, so would render the cell
less adhesive and vice versa. This would fit with the observed role of p0071 in

cytoskeletal dynamics through RhoGTPase regulation (Wolf et al., 2006).

In summary, p0071 is required for normal sorting in the absence of N-cadherin or
p120, though knockdown of p0071 alone has a mild segregation phenotype. Since
p0071 is required for sorting in hanging drop assays, it is likely to be involved in a
cell contact-dependent process, possibly by contributing to N-cadherin regulation

and possibly by the dynamic regulation of the cytoskeleton.

149



Conclusions

In this chapter, | have shown that cadherins are necessary for cell sorting by Eph-
ephrins. They are important in mediating cohesion between cells, which facilitates
sorting. p120, which is found downstream of EphB2 signalling, is also required for
EphB2-ephrinB1 sorting as a regulator of cadherin stability. p0071, a p120 family
protein, is also found downstream of EphB2 and is also important in EphB2-
ephrinB1 cell segregation possibly through a mechanism independent of p120 or
N-cadherin. However, it is still unclear if the requirement for these proteins in
EphB2-ephrinB1 cell segregation extends beyond their ability to mediate cohesion.
This could be cell-type dependent and the requirement for regulation of
differential adhesion could be more important in E-cadherin expressing cells.
Another approach to this question is to investigate alternative mechanisms which
could drive segregation through EphB2-ephrinB1 signalling. How N-cadherin,
p120 and p0071 affect cell migration downstream of Eph-ephrin signalling will be

discussed in the following chapter.
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5. Links between motility and adhesion

Cell movement is key to segregation by Eph receptors and ephrins

Contact inhibition of locomotion is a common characteristic of cells where, upon
contact, they cease to migrate forwards and re-orient to migrate away from the
collision. It was first identified through the observation that cells plated in a dish
tend to form a monolayer (Abercrombie, 1970) and has also been demonstrated to
be required in vivo for neural crest cells to migrate coherently (Theveneau et al,,
2010). Recent evidence has shown that N-cadherin is required for contact
inhibition of locomotion (Theveneau et al.,, 2010). Therefore, in addition to their
primary role in cell-cell adhesion, there is also evidence suggesting a role for

cadherins in the regulation of cell motility.

It has been suggested that p120 could be involved in the process of contact
inhibition of locomotion (Mayor & Carmona-Fontaine, 2010). p120 family
molecules are generally thought to activate Rac and inhibit RhoA, supporting a role
for p120 in promoting cell migration (Anastasiadis, 2007; Hatzfeld, 2007). One
possibility is that cadherin binding prevents this activity at the point of cell-cell
contact, so p120 is only active at the other side of the cell, facilitating Rac
activation and protrusion formation and re-directing migration. It has been
postulated that p120 family members act as the rheostat of adhesion and motility
and that the release of p120 from cadherins could underlie EMT (Grosheva et al.,

2001; McCrea & Gu, 2010).

Eph receptors and ephrins can also regulate cell motility. Eph-ephrins have a well-
characterised role in axon guidance, and their complementary expression in
neurons and the underlying tissue generates repulsive cues which direct the axon
to the correct path. For example, they play key roles in directing commissural
axons across the midbrain (Henkemeyer et al., 1996), and motor axons to the limb
(Helmbacher et al.,, 2000). Repulsion mediated by Eph-ephrin signalling can be
seen directly in vitro, characterised by a collapse response of axonal growth cones
(Jurney et al., 2002; Monschau et al., 1997). Such repulsion has been proposed to

underlie cell segregation by Eph receptors and ephrins (Cooke et al,, 2005;
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Poliakov et al., 2008). Recent work by Alexei Poliakov has shown that EphB2 cells
display not only a collapse response, but also they migrate with more directional

persistence after contact with ephrinB1 cells. Computer modelling has suggested

that this change in cell migration could be sufficient to explain cell sorting

(manuscript in preparation).

In the previous chapter, [ demonstrated how N-cadherin, p120 and p0071 are
required for EphB2-ephrinB1 mediated cell sorting to occur, and discussed the
effects they might have in relation to cell-cell adhesion. Given the potential for
these proteins to regulate cell migration, and the suggestion that cell repulsion
could be the driving force for sorting, | investigated whether any of these three

molecules were involved in the regulation of migration in EphB2 cells.

EphB2-ephrinB1 signalling affects directional persistence

The behaviour of EphB2 cells after collision with ephrinB1 cells was assessed
using time-lapse imaging and cell tracking. Alexei Poliakov obtained data from
time-lapse movies of EphB2 cells after interaction with ephrinB1 cells. The cells
were labelled with green (EphB2) and red (ephrinB1) fluorescent dyes, plated at
low density on fibronectin-coated glass plates and imaged every 2 mins for 5 h.
The cells were tracked using single particle tracking software GMimPro (Mashanov
& Molloy, 2007) (Figure 5.1 A). Tracks of green cells were selected which lasted 1 h
from the point of interaction with a red cell, without colliding with any further
cells. These tracks were then pooled and used to calculate various parameters

(Figure 5.1 B-H).

Initially, Alexei used GMimPro to calculate the mean squared displacement (MSD)
of the tracks. MSD is the square of the straight-line distance between a cell’s
position at a given time interval (Figure 5.1 B). The MSD curve for EphB2 cells after
collision with ephrinB1 cells (red line) is steeper than the MSD curve for EphB2
cells after interaction with EphB2 cells (blue line), resulting in a 200 pm?
difference in MSD between the conditions at 25 min intervals. The MSD curve for
pooled tracks of all EphB2 cells regardless of collisions is shown in green as a
control. MSD is proportional to the squared speed of cells and the persistence with

which they move, where persistence is defined as the average time period between
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Figure 5.1: Increased directional persistence in EphB2 cells after contact

with ephrinB1 cells

EphB2 cells and ephrinB1 cells were labelled green and red respectively and mixed
at low density. (A) Time-lapse movies of these cells were tracked using automated
tracking software, GMimPro. White lines show tracks of EphB2 cells (green) and
yellow lines show the tracks of ephrinB1 cells (red) over the 7 h time-lapse movie.
(B) Mean squared displacement (MSD) analysis of EphB2 cell tracks after
interaction with EphB2 cells (blue line) or ephrinB1 cells (red). The green line
shows the MSD of all tracks, regardless of interaction. MSD is higher after EphB2-
ephrinB1 interactions than after EphB2 cells collide with EphB2 cells. The MSD of
full-length tracks is similar to EphB2-EphB2 cell collisions. (C-E) EphB2 cells move
further and more directionally after interaction with EphB2 cells than with
ephrinB1 cells. XY coordinates of EphB2 cells after interaction with an EphB2 cell
(C) or an ephrinB1 cell (D). 50 tracks picked at random are plotted on a common
origin. (E) The endpoints, the XY coordinates of cells 25 min after interaction, are
plotted on a common origin. The solid line represents the root-mean-square of
these coordinates (red, after ephrinB1 interaction; blue after EphB2 interaction).
(F) The probability distribution function (PDF) of turning angles of the tracks. The
deviation from a straight line (turning angle) between two consecutive 5 min
intervals was calculated for every possible combination of consecutive 5 min
intervals in all tracks. There is a narrower distribution of turning angles in tracks
of EphB2 cells after an ephrinB1 cell collision than after an EphB2 cell collision.
(G,H) Values of speed (G) and persistence (H) derived from MSD curves for cells
after interactions. EphB2 cells have higher persistence after contact with ephrinB1
cells (red) than EphB2-EphB2 or ephrinB1-ephrinB1 collisions (grey), but move at
a similar speed. Raw data from Alexei Poliakov. Error bars represent standard

error of the mean.
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Figure 5.2: Tracking Analysis

(A) Analysis of a cell track. d is the distance moved by a cell between two frames of
a movie. It is the smallest distance measurable from a time-lapse dataset. The sum
of all ds of a track will give the total distance it moves in the course of the movie. D
is the final displacement of the cell - the distance from the start to the end of the
track. The more persistently or quickly the cell moves, the greater D will be. 6, the
turning angle, is the angle of deviation from a straight line between time points. (B)
Mean squared displacement equation for a cell moving with persistent random

walk (Martens et al.,, 2006).
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changes in the direction of movement greater than 67° (DiMilla et al., 1993). Cells
are assumed to travel with a persistent random walk, i.e. they do not travel directly
backwards between two time intervals. Fitting of a persistent random walk
equation (Figure 5.2 B) to these curves indicated that there was no difference in
speed between the conditions, but that EphB2 cells were more persistent after

ephrinB1 collisions than after collisions with other EphB2 cells (Figure 5.1, G, H).

Using this data and a custom-written programme (TrackParser, Robert Gilchrist) I
plotted other parameters of these tracks. Rose plots of 50 randomly selected 1 h
tracks, centred on a common origin, are shown for EphB2 cells after EphB2
collisions (Figure 5.1 C) and ephrinB1 collisions (Figure 5.1 D). EphB2 cell tracks
appear straighter after EphB2 cell collisions with ephrinB1 cells. This is also
represented by plotting the endpoint, the XY coordinate at 1 h, of each of the tracks
analysed (Figure 5.1 E). The root mean square of these coordinates is represented

by a solid line.

The final way in which these tracks were analysed was by measuring their turning
angle distributions, also using TrackParser. Each turning angle represents the
deviation from a straight line between two consecutive 4 min intervals (Figure
5.2A). The results of all cells were pooled and plotted as the probability
distribution function over turning angle. The broader the PDF curve, the more
randomly cells move. The distribution of turning angles after EphB2-ephrinB1
collisions (red) is narrower than after EphB2-EphB2 collisions (blue), suggesting

that they move more directionally (Figure 5.1 F).

Whole population analysis of EphB2 cell motility

Whilst the data above provide evidence for the increased directionality of cells
downstream of signalling through EphB2, such data is extremely time-consuming
to generate. To be able to analyse several different conditions, it was necessary to
establish a high-throughput method of analysis. To do this, we used an approach to

track a whole population of EphB2 cells mixed with ephrinB1 cells.

Cells were differentially labelled green or red and mixed together on a fibronectin-

coated glass slide. Green-labelled EphB2 cells were mixed with red-labelled
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Figure 5.3: Whole population analysis of directional persistence in EphB2

cells after contact with ephrinB1 cells

EphB2 cells move further and more directionally after interaction with EphB2 cells
than with ephrinB1 cells. EphB2 cells were labelled green and red respectively and
mixed with red-labelled EphB2 cells or ephrinB1 cells at low density. Time-lapse
movies of green cells were tracked using automated tracking software, GMimPro
(A). White lines show tracks of the cells (blue) after a 2 h time lapse. (B) Mean
squared displacement (MSD) analysis of EphB2 cell tracks mixed with populations
of EphB2 cells (blue line) or ephrinB1 cells (red). MSD is higher for EphB2-
ephrinB1 mixtures than for EphB2 cells mixed with EphB2 cells. XY coordinates of
EphB2 cells mixed with EphB2 cells (C) or ephrinB1 cells (D). 50 full-length tracks
(2 h) picked at random are plotted on a common origin from the start of the movie.
(E) The endpoints, the XY coordinates of cells 2 h after the start of the movie, are
plotted on a common origin. The solid line represents the root mean square of
these coordinates (red, after ephrinB1 interaction; blue after EphB2 interaction).
(F) The probability distribution function (PDF) of turning angles of the tracks. The
deviation from a straight line (turning angle) between two 5 min intervals was
calculated for every possible combination of 5 min intervals in all tracks. There is a
narrower distribution of turning angles in tracks of EphB2 cells after an ephrinB1
cell collision than after an EphB2 cell collision. Error bars represent standard error

of the mean.
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ephrinB1 cells or red-labelled EphB2 cells. Cells were then imaged every minute
for 2 h. They were plated at a density at which, on average, every cell would
interact with one other cell, once in the movie. The green cells were then tracked
using GMimPro single particle tracking software (Mashanov & Molloy, 2007;
Figure 5.3 A) and MSD, turning angles and cell tracks were calculated, as described
above. Around 700 cells were tracked per condition. It was found that the MSD
curve for a population of EphB2 cells mixed with ephrinB1 cells was steeper than
for EphB2 cells mixed with red-labelled EphB2 cells (red and blue lines
respectively in Figure 5.3 B), consistent with previous data for individual
collisions. The difference between the MSD after 57 min is 101 pm?, about half that
measured after individual interactions (197 um? after 25 min), as expected
because the signal is diluted using this method. The data presented is from one

experiment but is representative of at least 3 experimental repeats.

Using TrackParser, 100 tracks from each condition were picked at random and
plotted on a common origin. Tracks of EphB2 cells mixed with ephrinB1 cells are
often longer and more directional than those of EphB2 cells mixed with EphB2
cells (Figure 5.3 C, D). This is also reflected in a plot of the endpoints of these
tracks, showing their displacement after 2 h; the root mean square of these end
points for EphB2 cells mixed with ephrinB1 cells is greater than for EphB2 cells
mixed with EphB2 cells (Figure 5.3 E). Turning angle analysis of these tracks
shows that there is a higher chance of cells in the EphB2-ephrinB1 mixture
heading straight on than for cells in the EphB2-EphB2 mixture (Figure 5.3 F).

Due to a high variability between the results of experiments recorded on different
days, the cell conditions being compared were imaged in parallel, to provide

internal controls.

In summary, these results from the high-throughput, whole population analysis
accurately reflect the increase in persistence of EphB2 cells after contact with

ephrinB1 cells.
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Figure 5.4: N-cadherin does not affect ephrinB1-EphB2 increase in cell

motility

N-cadherin knockdown does not affect the ability of EphB2 cells to increase their
motility in response to ephrinB1 signalling, however it does increase overall
motility. (A) Mean-squared displacement (MSD) plot calculated from the 2 h tracks
of whole populations of EphB2 cells mixed with EphB2 cells (blue lines) or
ephrinB1 cells (red lines). EphB2 cells mixed with ephrinB1 cells have steeper
MSD plots, so are more motile than EphB2 cells mixed with EphB2 cells. This is
true even when N-cadherin is knocked down (pale blue and pink lines), although
there is an increase in the motility of both conditions. (B) The ratio between the
endpoints, MSD at 57mins, of EphB2 cells mixed with ephrinB1 cells compared to
EphB2 cells mixed with EphB2 cells. The ratio between these points is the same
whether the cells are treated with a control siRNA (siCtrl) or siRNA to N-cadherin
(siNcad). (C) Comparison of the distribution of turning angles between conditions.
The probability distribution function (PDF) is calculated across all possible turning
angles for each condition. Where the turning angle is 0, a cell will move in a
straight line, hence the narrower the distribution of turning angles, the more
directionally the cells move. EphB2 cells move more directionally when mixed
with ephrinB1 cells than with EphB2 cells, either with siNcad or siCtrl. siNcad
increases the directionality of movement of the cells in both EphB2/EphB2 and

EphB2/ephrinB1 mixtures. Error bars represent standard error of the mean.
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N-cadherin does not affect the increase in EphB2 cell motility after contact with

ephrinB1 cells

When N-cadherin is knocked down in mixtures of EphB2 and ephrinB1 cells, their
segregation is reduced. Since N-cadherin has been implicated in the motility of
cells, it was important to assess whether siNcad was affecting the migratory
behaviour of cells required for segregation. To do this I used the whole population
assay described above to compare the motility of EphB2 cells mixed with EphB2
cells or with ephrinB1 cells, in the presence of siNcad or siCtrl. All four conditions
were imaged in parallel and the experiment repeated 3 times. The results shown

are from one experiment but are representative of the three repeats.

When cells are transfected with siCtrl, EphB2 cells mixed with ephrinB1 cells have
an MSD curve which is steeper than for EphB2 cells mixed with EphB2 cells (red
and dark blue respectively, (Figure 5.4 A). The average ratio between the MSD at
57 min (the endpoint) of these conditions is 1.27+0.03 (Figure 5.4 B). When
transfected with siNcad, this ratio is the same, 1.26+0.06. A similar pattern is seen
for the distribution of turning angles. There is a narrower distribution of turning
angles, consistent with an increase in directional persistence, for EphB2 cells
mixed with ephrinB1 cells compared with EphB2 cells mixed with EphB2 cells, in
the presence of either siCtrl or siNcad (Figure 5.4 C). This indicates that when N-
cadherin is knocked down, EphB2 cells still increase their directional persistence
in response to collisions with ephrinB1 cells. This suggests that N-cadherin is not
required downstream of EphB2-ephrinB1 interactions to drive directional

persistence.

However, there is a large increase in the MSD gradient of siNcad-transfected
EphB2 cells compared to siCtrl-transfected EphB2 cells, which is higher than the
increase in MSD seen after ephrinB1-EphB2 signalling. This could be explained by
an impairment of contact inhibition of locomotion after N-cadherin knockdown. If
cells no longer changed direction on contact, their persistence would be increased.
Alternatively, N-cadherin could be affecting cell migration independently of cell-

cell contacts.
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Figure 5.5: siNcad treatment does not affect the basal motility of cells

Knockdown of N-cadherin by siRNA does not increase the free migration of EphB2
cells. (B) EphB2 cells were plated at very low density to minimise interactions
throughout the course of the time-lapse. Any cells which could be seen to be
interacting were excluded from further analysis. (A) The mean squared
displacement (MSD) of tracks is plotted against increasing time intervals. The MSD
of cells transfected with siCtrl is the same as for cells transfected with siNcad.

Error bars show standard error of the mean.
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N-cadherin affects general cell motility in the presence of cell-cell contacts

To assess whether loss of N-cadherin affects migration cell-autonomously or
through contacts with other cells, tracks of cells were analysed which did not
contact any other cells. If the increase in MSD of cells after knockdown of N-
cadherin was due to a disruption of contact inhibition of locomotion, rather than a
cell autonomous effect on cell migration, then in the absence of contacts, there

would be no difference between the MSD of siCtrl and siNcad transfected cells.

EphB2 cells transfected with siCtrl or siNcad were plated at a very low density to
minimise cell-cell contacts (Figure 5.5). Time-lapse images were taken every
minute for 2 h and cells were tracked using GMimPro as described above. Tracks of
any cells which contacted another cell within the course of the movie were
removed from further analysis. Under these conditions, there was no significant
difference between the MSD of cells in which N-cadherin had been knocked down
and those in which it had not. This suggests that the increased motility seen when
N-cadherin is knocked down in EphB2 cells in the whole population analysis is due

to a change in contact-dependent migratory responses of cells.

p0071 knockdown recapitulates the N-cadherin knockdown phenotype

[ next tested the effect of knocking down p0071 on the motility of EphB2 cells.
p0071 is capable of regulating Rho activity to remodel the actin cytoskeleton at the
cleavage furrow of dividing cells (Hatzfeld, 2007; Reynolds, 2007). This RhoA-
associated actin-regulating activity and the similarity of p0071 to p120, made it
likely that p0071, could affect cell migration. If p0071 were downstream of EphB2-
ephrinB1 signalling in the control of directional persistence, one would expect a
decrease in the MSD ratio between EphB2-ephrinB1 and EphB2-EphB2 mixtures,
and a similar shift in turning angle distribution. However, when p0071 is knocked
down, there is still a substantial increase in the MSD of EphB2 cells mixed with
ephrinB1 cells (red) compared to EphB2 cells mixed with EphB2 cells (blue; Fig 5.6
B). The relative ratio of MSD between these conditions at 57 min is 1.18+0.06 in
the sip0071 knockdown compared to 1.24+0.09 when treated with siCtrl (Figure
5.6 D). Similarly, there is a narrower distribution of turning angles for EphB2 cells

mixed with ephrinB1 cells than mixed with EphB2 cells, both in the control and the
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Figure 5.6: sip120 but not sip0071 inhibits an increase in cell migration

after EphB2-ephrinB1 interactions

sip120 and sip0071 increase the overall motility of cells. sip120 but not sip0071
specifically inhibits the EphB2-ephrinB1 induced increase in motility. (A, B) Mean-
squared displacement (MSD) plot calculated from the 2 h tracks of whole
populations of EphB2 cells mixed with EphB2 cells (blue lines) or with ephrinB1
cells (red lines). EphB2 cells mixed with ephrinB1 cells have steeper MSD plots, so
are more motile than EphB2 cells mixed with EphB2 cells. This is true also when
p0071 is knocked down (pale blue and pink lines), although there is an increase in
the motility of both conditions. Knockdown of p120 also increases the motility of
both conditions but there is no difference between the MSD plots of EphB2 /EphB2
and EphB2/ephrinB1 cell mixtures, suggesting a specific effect on ephrinB1-EphB2
induced motility. (C, D) The ratio between the endpoints, MSD at 57 mins, of EphB2
cells mixed with ephrinB1 cells compared to EphB2 cells mixed with EphB2 cells.
There is a significant difference between the ratio of endpoints between siCtrl and
sip120 (p<0.02, Students t-test) but not between siCtrl and sip0071. (E, F)
Comparison of the distribution of turning angles between conditions. The
probability distribution function (PDF) is calculated across all possible turning
angles for each condition. Where the turning angle is 0, a cell will move in a
straight line, so the narrower the distribution of turning angles, the more
directionally the cells move. sip0071 but not sip120 increases the directionality of
the cells. In both cases, there seems to be little difference in the increase in
directionality between EphB2 and ephrinB1 cells between siCtrl-transfected cells
and cells transfected with sip120 or sip0071. Error bars represent standard error

of the mean.
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p0071-transfected conditions (Figure 5.6 F). This indicates that, as with N-
cadherin, p0071 is not involved in the increase in directional motility induced by

ephrinB1-EphB2 signalling.

However, as with the N-cadherin knockdown, there is an increase in the MSD of
EphB2 cells after p0071 has been knocked down. This could reflect a similar role

for p0071 and N-cadherin in the control of contact inhibition of locomotion.

p120 is involved in altering motility downstream of EphB2-ephrinB1 signalling

Unlike N-cadherin and p0071, which are not required for the ephrinB1-EphB2-
induced increase in directional persistence, p120 does appear to be involved in

changes in cell motility mediated by EphB2 activation.

When cells are treated with siRNA to p120, EphB2 cells mixed with ephrinB1 cells
(pink) have a comparable MSD curve to EphB2 cells mixed with EphB2 cells (pale
blue; Fig 5.6 A). The relative ratio between these conditions is 1.12+0.03, lower
than the ratio of 1.34+0.05 for the siCtrl treated cells (Figure 5.6 C). This indicates
that p120 knock down specifically disrupts the EphB2-activation-induced increase

in cell motility.

As is the case for both N-cadherin and p0071, sip120 treatment also increases the
MSD of the cells even in the absence of EphB2-ephrinB1 cell contacts, indicating a
role in migration that is independent of EphB2-ephrinB1 contacts. This is not seen,
however, in the analysis of turning angles (Figure 5.6 E). The turning angle
distribution is narrower for EphB2-ephrinB1 mixtures (red) than EphB2-EphB2
mixtures (blue), but the sip120-treated cells (pale lines) have similar distributions
to the siCtrl-treated cells (dark lines). This indicates that the effects seen in the
MSD analysis are due to an alteration in the speed rather than the directional
persistence of the cells. Nevertheless, the data support a model where p120 is

downstream of EphB2-ephrinB1 interactions affecting cell migration.

Analysis of EphB2-ephrinB1 boundary movement

In an attempt to visualise how N-cadherin knockdown was affecting boundary

sharpening by EphB2 receptors and ephrinB1, I took time-lapse movies of the
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Figure 5.7: Shifting of the EphB2-ephrinB1 cell boundary

Quantification of the movement over time of the boundary between EphB2 and
ephrinB1 cells in time-lapse movies. (A) The start is the point where the average x-
coordinate of the green boundary is equal to that of the red boundary, i.e. the point
where the EphB2 and ephrinB1 cells meet (C, red line). (B) The end point is the
position of the boundary after 6 h (C, black line). (D) The difference between these
boundary positions was calculated for siCtrl and siNcad treated cells. Where cells
are transfected with siCtrl, the boundary moves 76um after 6 h. siRNA to N-
cadherin reduces the extent of boundary movement to 44pm. Error bars represent

standard error of the mean.
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Figure 5.7
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boundary assay with EphB2 and ephrinB1 cells transfected with either siCtrl or
siNcad.

A striking feature in the movies of the boundary assay with EphB2 and ephrinB1
cells is that the boundary moves over time. When EphB2 cells are plated on the left
and ephrinB1 on the right, the boundary moves to the left, away from the
ephrinB1-expressing territory (Figure 3.2). This boundary shift is reduced after N-
cadherin is knocked down. To quantify this effect, the average positions of the
boundary were calculated at the point where EphB2 and ephrinB1 cells meet and 6
hours later. In control cells, the boundary between EphB2 and ephrinB1 cells shifts
by 76 pm over this time. When N-cadherin is knocked down, there is still some
movement, but the shift is less than in the control situation (44 um; Figure 5.7).
That N-cadherin knockdown affects both the shift of the boundary and the
segregation assays could suggest that the assays are readouts of the underlying
mechanisms of sorting. For example, it is likely that similar cell processes such as
adhesion or contact inhibition of locomotion could be important for this shift of the
boundary as well as being important in cell segregation. This assay could therefore

provide useful insights into the process of segregation.

Discussion

ephrinB1-EphB2 cell collisions cause cell repulsion

Whilst repulsion is described in the literature as a process through which Eph-
ephrins drive sorting, until recently there was no direct evidence that repulsion

alone can cause cells to sort.

The definition of repulsion in this context is important. It can be used to refer to:
de-adhesion between cells (Cooke et al, 2005); the collapse response, which
involves the retraction of lamellipodia from the point of cell-cell contact (Poliakov
etal, 2008); or an active movement of cells away from the point of contact. All
three could be active together and the mechanisms interlinked, but it is important

to think about them as different definitions of “repulsion”.

All three of these definitions have been used to describe the behaviour of Eph and

ephrin cells after contact. Collisions between EphB2 and ephrinB1 cells bring
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about a collapse response between HEK293 cells (Poliakov et al., 2008). This
response has been suggested to bring about de-adhesion between the different
populations of cells, which could cause them to segregate by generating
differential adhesion (Cooke et al., 2005; Steinberg, 2007). Additionally, EphB2
cells increase their directionality of migration after contact with ephrinB1 cells
(Figure 5.1). By fitting parameters to the mean-squared displacement (MSD)
curves, it was possible to derive the speed and persistence of the different cell
types and show that after contact with ephrinB1 cells, there is an increase in the
persistence of EphB2 cells (Figure 5.1 H). So, EphB2-ephrinB1 mediated repulsion
refers to the collapse of protrusions and subsequent movement away of an EphB2

cell from the point of contact with an ephrinB1 cell.

The contribution of N-cadherin to cell migration

As well as its role in adhesion, N-cadherin also plays a signalling role in the
recognition of other cells and in cell migration. Cadherins have been demonstrated
to be important for the orientation of cells such that they migrate away from one
another after contact (Desai et al., 2009; Dupin et al., 2009). This contact-
dependent re-orientation of cells is similar to the function of Eph-ephrins in
causing cell repulsion. The results presented here indicate that N-cadherin does
not affect segregation downstream of EphB2 signalling, since even in the absence
of N-cadherin, EphB2 cells respond to ephrinB1 cells with an increase in
directional migration (Figure 5.4). This suggests that N-cadherin and EphB2-

ephrinB1 are working in parallel pathways to affect cell migration.

One mechanism which has been proposed through which N-cadherin could affect
cell migration is via the RhoGTPase-promoting activity of p120 (Mayor &
Carmona-Fontaine, 2010). p120 family molecules are generally thought to activate
Rac and inhibit RhoA, supporting a role for p120 in promoting cell migration
(Anastasiadis, 2007; Hatzfeld, 2007). If the interaction with cadherin prevented
this activity at the point of contact between cells, this could polarise the cell’s Rac
activity, such that it would promote protrusions away from the point of contact. If
this model were true, then p120 knockdown would phenocopy N-cadherin
knockdown in the migration assay. This would be expected anyway, since p120 is

required to stabilise N-cadherin expression at the cell surface.
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In one respect, there is a similarity between the behaviour of siNcad and of sip120
treated cells. The MSD curve of EphB2 cells is much steeper when they are treated
with sip120 than when treated with siCtrl. This could be indicative of their
collective role in contact inhibition of locomotion. However, in contrast to N-
cadherin knockdown, p120 does specifically affect the migration of cells
downstream of ephrinB1-EphB2 interactions (Figure 5.6). When p120 is knocked
down, EphB2 cells do not increase their migration in response to ephrinB1 cells.
This suggests that p120 has a role in cell migration downstream of ephrinB1-
EphB2 interactions which is independent of its association with N-cadherin

(discussed in more detail in chapter 6).

p0071 is also helping to control the migration of cells, since its knockdown also
increases EphB2 cell motility. In common with N-cadherin, however, it does not
seem to be directly affecting the increase in directionality downstream of EphB2-
ephrinB1 signalling. This result suggests that p0071 could be acting in consort
with N-cadherin in contact inhibition of locomotion. This is in contrast to the
results seen in sorting and boundary assays. There, sip0071 has a mild phenotype
compared to siNcad, but both together create a dramatic disruption to sorting. As
discussed in Chapter 4, this could suggest that there is an additive effect of the two
siRNAs because there is incomplete knockdown of p0071 on its own. Altogether,
the results suggest that p0071 could act in the same pathway as N-cadherin in

contact inhibition of locomotion.

Therefore, it seems that p0071, p120 and N-cadherin could be acting together to
effect contact inhibition responses of the EphB2 cells, and in addition p120 also
has a specific role downstream of ephrinB1-EphB2 interactions. Knockdown of N-
cadherin in cells at low density supports the idea that contact inhibition decreases
the general migration of these cells. In this case, there is no difference between the
migration of EphB2 cells in which N-cadherin has been knocked down and the
migration of EphB2 cells transfected with a control siRNA. p120 is also likely to be
involved in contact inhibition of locomotion given its role in the stabilisation N-
cadherin, and p0071 could also be important given its relationship to p120. The
involvement of p120 and p0071 in contact inhibition of locomotion could be tested

by measuring the effects of sip120 or sip0071 on the migration of cells at low
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densities, as described for N-cadherin knockdown. If the same result were seen
with p120 and p0071, this would further reinforce the idea that they act through
the same pathway as N-cadherin to increase migration. It would also be useful to
test this idea more directly by looking at cells at medium density, to assess how
often cells change direction on contact, with or without N-cadherin, p120 or p0071

expression.

Further evidence in support of the effect of N-cadherin on migration comes from
studies linking cell-cell adhesion through cadherins and cell-matrix adhesion
through integrins. Cadherin expression affects the traction exerted by cells on a
substrate, indicating that there is cross-talk between cell-cell and cell-substrate
adhesion (Dzamba et al., 2009). The relationship seems to work both ways, since
alterations in integrin-dependent traction forces affect cell-cell adhesion in MDCK
cells (de Rooij et al., 2005) and in Xenopus animal caps (Marsden & DeSimone,
2003). Integrin-mediated adhesion is indispensible for cell migration (Moissoglu &
Schwartz, 2006), so these studies indicating direct links between cell-cell adhesion
and matrix-adhesion provide another mechanism for cadherins to be influencing

directed migration.

Technical aspects of cell tracking in dense mixtures

Investigation into cell migration poses a number of problems. Analysis of tracks of
a whole population of 500 cells or more only gives an average idea of how cells are
behaving. This is particularly problematic when we are only interested in a small
proportion of each track - the time after it has interacted with a different cell type
(red with green, e.g. EphB2 with ephrinB1). This means there will be a lot of non-
specific signal in each dataset contributed by free migration of cells or migration of
cells during contact or after contact with like-cells (red with red, e.g. EphB2 with
EphB2). Thus, any change in migration seen will be an underestimate of the actual
change of migration after interaction between different cell types. In addition,
since the data does not represent a “pure” population of cells, it was not possible to
fit any standard equation which represents cell movement, so it was not possible
to derive values of speed or persistence. The data just give an average overview of

the change in cell behaviour, which is represented by the MSD curve.
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One way of “cleaning up” the dataset is to select the tracks of interest. Alexei
Poliakov performed this analysis by manually selecting tracks of cells which have
just interacted with unlike cells. To some extent, this method is prone to bias since
the experimenter can choose which tracks to include in the analysis. An ideal
method would be to automate this process computationally. This could be done by
measuring proximity of cell centroids and only choosing tracks after cell centres
have come within a certain range of one another. This sort of analysis would also
be prone to error, however, since cells vary in their shape and size and two cells
could be close to one another and not touching, or far away and contacting through
fine protrusions. Selecting by hand ensures that the maximum number of
interactions is detected. However, it is extremely time consuming and was not

suitable for analysis of the several conditions that are described here.

For all of this analysis it is important to note the difficulty in distinguishing
between speed and persistence. The distance moved by a cell between any time
interval will be proportional to both speed and persistence, and we can not be sure
that the speed we measure, even at the shortest time interval, is not contributed to
by the directionality of cell movement. Another contributing factor is the small
distance over which the cells move in this assay - over 1 h, a cell will move an
average distance of 15um, around the diameter of a cell. This means that small
fluctuations in the cell centroid could account for some of the movement detected.
A more reasonable estimate of cell speed can be gained by fitting an equation for
the migration of cells to the MSD curve. However, this can only be done for tracks
of cells after cell-cell interactions, since analysis of whole populations of cells
proved too noisy to fit reliably to the equation (see above). An alternative
approach was to try to directly quantify the directionality of cells. Measuring the
turning angle distribution of a collection of tracks gives an idea of how persistently
the cells are moving. We assume that the wider the turning angle distribution, the
less persistent is the migration. This approach should be less affected by the speed
of cells, although their speed may have an intrinsic effect on their ability to change

direction.
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Possible explanations of boundary movement

One of the striking phenotypes which appears in time-lapse movies of the
boundary assay is the shift of the boundary back into the EphB2 domain (Figure
3.2), which is reduced in the absence of N-cadherin. What could be responsible for

this movement?

The two most obvious explanations are the same as the mechanisms underlying
cell segregation. Firstly, an increase in adhesion between EphB2 cells could cause
their compaction and apparent retraction from ephrinB1 cells, shifting the
boundary. Alternatively, the boundary movement could be a consequence of the
repulsion of EphB2 cells from ephrinB1 cells. In this case, as in the segregation
assays, N-cadherin could be required for basal cell-cell adhesion, which would
allow the cells to migrate cohesively (Theveneau et al, 2010). In these movies,
siNcad cells appear to move more erratically than siCtrl treated cells, which is in
agreement with the idea that the coherence of cells is important. This is consistent
with the reported requirement for N-cadherin in the collective migration of neural
crest cells by a combination of contact inhibition and coherent movement
(Theveneau et al, 2010). These boundaries are also less sharp, suggesting a

relationship between boundary sharpness and coherent cell movement.

In EphB2 and ephrinB1 cell segregation assays, when N-cadherin is knocked down
only in EphB2 cells, this has less effect on boundary sharpness than when it is
knocked down in both populations (Figure 4.5). However, N-cadherin knockdown
in only ephrinB1 cells has a dramatic effect on boundary sharpness. It would be
interesting to observe the extent of boundary movement in each of these
conditions to see whether movement is permissible where only ephrinB1 cells
express N-cadherin, or if it is required more between EphB2 cells in facilitating cell
cohesion. The movement of the boundaries could provide a new method for
revealing mechanisms that underlie the collective behaviour of cells expressing

Eph or ephrin, which may be important in vivo.
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6. Discussion

Mechanisms of sorting through Eph-ephrins

It had previously been suggested that two cellular mechanisms could be regulated
by Eph receptors and ephrins to achieve cell segregation. One was repulsion, based
on the ability of Eph-ephrin signalling to mediate repulsion in other situations,
such as axon guidance (Poliakov et al., 2004 2010). Other evidence suggested that
they could act by regulating cell adhesion (Cortina et al., 2007; Parrinello et al.,
2010; Solanas et al,, 2011), which could generate differential adhesiveness
between sorting cells (Steinberg, 2007). I have explored the relationship between
these two mechanisms using in vitro assays to investigate the sorting and

behaviour of EphB2 and ephrinB1 expressing cells.

Initially, I compared cell sorting driven by EphB2 and ephrinB1, with sorting
driven by differential adhesion in the segregation, boundary and hanging drop
assays. | found that, whilst differential adhesion can drive segregation in 3D assays,
it is inefficient in two-dimensional assays (Figure 3.7), whereas EphB2 and
ephrinB1 are capable of driving cell sorting in both three-dimensional and two-
dimensional assays. This suggested that the mechanisms underlying sorting
downstream of EphB2-ephrinB1 interactions are different from differential
adhesion. Interestingly, siRNA knockdown of N-cadherin, a key cell-cell adhesion
molecule, disrupted EphB2-ephrinB1 cell segregation, indicating that cadherin-
mediated adhesion was required for cell sorting (Figure 4.1). To investigate this
further, I took advantage of studies that have identified targets of Eph-ephrin
signalling (Jorgensen et al., 2009; Zhang et al.,, 2008). These targets included
members of the p120ctn family, p120 and p0071, which were strong candidates to
regulate adhesion downstream of EphB2-ephrinB1 signalling. Knockdown of p120
or p0071 disrupts cell segregation mediated by EphB2 and ephrinB1 (Figure 4.9).

It has been previously reported that Eph-ephrin signalling mediates repulsion and
directional migration on contact between cells (Figure 5.1; Astin et al,, 2010;
Poliakov et al., 2008). This is a behaviour also exhibited by cadherins which, as

well as being important for cell-cell adhesion, are also required for contact
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inhibition of locomotion (Mayor & Carmona-Fontaine, 2010; Theveneau et al,
2010). An intriguing possibility was that cadherin-mediated contact inhibition of
locomotion and Eph-ephrin mediated repulsion could be related. However, EphB2
cells were able to respond to ephrinB1 signalling with an increase in directional
migration even in the absence of N-cadherin, suggesting that these two
mechanisms are not directly linked. Interestingly, tracking analysis suggested that
p120 has an N-cadherin independent function in promoting directional migration

downstream of ephrinB1-EphB2 interactions.

How these observations could fit into a model for Eph-ephrin activity in the cell

sorting process will be discussed (Figure 6.1).

Eph-ephrins drive sorting through repulsion

Repulsion is a cellular response downstream of signalling through Eph receptors
and ephrins which consists of at least two phases (Astin et al, 2010; Jurney et al,,
2002; Monschau et al., 1997). It initially takes the form of a collapse response,
characterised in EphB2 cells by the retraction of protrusions away from the point
of contact with an ephrinB1 cell (Poliakov et al, 2008). Secondly, the EphB2 cell
moves with increased directionality after contact with an ephrinB1 cell (Figure
5.1). One possibility is that the mechanisms which cause the collapse response may
persist and are the same as the mechanisms which allow the cell to migrate with

increased directionality.

Such repulsive behaviour can be seen in neurons to guide growing axons, for
example EphA4 is required for the correct localisation of developing motor
neurons in the avian limb (Eberhart et al., 2002). Experiments in Xenopus suggest
that there is a continued cycle of repulsion and adhesion which is responsible for
allowing migration of ectoderm over mesoderm during gastrulation, while
maintaining a distinct boundary between the germ layers (Rohani et al.,, 2011).
Time-lapse imaging of membrane-labelled explants of the cell types allows
visualisation of this dynamic process and demonstrates a requirement for EphB-

ephrinB signalling in cell repulsion.

179



Figure 6.1: Eph-ephrin driven sorting

Model for Eph-ephrin driven cell sorting. Initially intermixed Eph and ephrin cells
begin to sort by a repulsion response in the Eph cells on contact with ephrin cells.
Clusters are stabilised by adhesive interactions between Eph cells. As cluster size
increases over time, due to sorting and proliferation of cells, the strength of

adhesions between cells increases by increased recruitment of cadherins.
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Figure 6.1
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RhoGTPase activity and cell migration

The change in cell migration downstream of Eph-ephrin signalling is likely to
involve the activity of Rho GTPases, especially Rac1l and RhoA, which control cell
protrusions via regulation of the actin cytoskeleton. RhoGTPases have a well-
studied role in directing cell migration but there is extensive cross-talk between
these proteins and their activity is complex. The traditional view is that active Rac1
promotes the formation of lamellae all around the cell, promoting random walk
migration (Pankov et al,, 2005). Reduced levels of Rac1 increase the directional
persistence of the cell concomitant with formation of a stable lamellipodium at the
leading edge, to which active Racl is largely localised. Thus total levels of Rac and
localisation of active Rac1 at the leading edge are important for directional
migration. RhoA is also important for cell migration, but is active at the trailing
edge of cells. There is mutual antagonism between Racl and RhoA, which helps to
stabilise this polarised localisation of the proteins, and therefore directional

migration (Mayor, 2010).

More recent work using high temporal resolution time-lapse and FRET
(fluorescent resonance energy transfer) microscopy suggests a more complex
relationship between the RhoGTPases (Spiering & Hodgson, 2011). Spiering et al.
demonstrate that there is activity of Rho, Rac and Cdc42 at the forming
lamellipodia of a cell, though they are excluded from each others’ domains both
spatially and temporally (Machacek et al., 2009). Several effectors of RhoGTPases
have been identified which explain their role in modulating the dynamics of the
actin cytoskeleton (Figure 6.2). For example, RhoA can directly interact with ROCK
which regulates actin contractility through myosin light chain phosphorylation,
and Cdc42 and Racl can indirectly activate Arp2/3 to promote actin
polymerisation (Spiering & Hodgson, 2011). The contribution of each Rho GTPase
to motility is thus highly dynamic and its regulation equally so. More sophisticated
methods of analysis will need to be used to fully understand the relative

contributions of each component to migration.
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Figure 6.2: RhoGTPase activity in a migrating cell

Localised activity of different RhoGTPases is important for directed migration of
cells (A). Cdc42 is important in the formation of filopodial protrusions at the
leading edge of the cell. Rac1 promotes activity of the lamellipodium at the leading
edge and mutually inhibits the opposing activity of RhoA in this region. RhoA is
active at the trailing edge of the cell where it regulates the activity of focal
adhesions and the contraction of stress fibres which pull the back of the cell
forwards. (B) Summary of the known pathways through which the RhoGTPases
mediate their effects. Racl, Cdc42 and RhoA all interact with the actin

cytoskeleton, being responsible for its polymerisation or contractility.
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Figure 6.2
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PCP and polarity components are important in the migratory responses downstream
of Eph-ephrin interactions

Previous work has suggested that the PCP (planar cell polarity) and Par proteins
play a role in regulating the balance of Rac and Rho to drive directional migration
downstream of EphB-ephrinB signalling. Cell sorting assays demonstrated a
requirement for PCP component Dishevelled (Dvl) and RhoA in sorting mediated
by EphB-ephrinBs in Xenopus blastomeres (Tanaka et al., 2003). Dvl was also
required for migration in the Xenopus eye field, downstream of ephrinB1 (Lee et

al,, 2006).

Several PCP and Par proteins were identified downstream of EphB2 in proteomics
screens, including Dvl, Daam1, Par3 and Par6. It was found that siRNA knockdown
of either Dvl2 or Par6B disrupted the increase in directional migration
downstream of ephrinB1-EphB2 signalling (Lauren Gregory, Thesis, 2011). This
led to a model where, in control cells, Dvl2 and Par6B form a complex with aPKC
which is bound to EphB2 and is capable of activating Racl and inhibiting RhoA.
When ephrinB1-binding induces phosphorylation of the EphB2 receptor, the
complex dissociates, relieving RhoA inhibition and allowing its increased activity
at the point of cell-cell contact. This results in polarisation of the cell, which allows

migration away from the point of contact as well as sustained persistent migration.

p120 affects migration downstream of Eph-ephrins

p120 also acts downstream of Eph-ephrin interactions to mediate increased cell
motility, since siRNA knockdown of p120 specifically inhibits the ability of EphB2
cells to migrate further after contact with ephrinB1 cells (Figure 5.6). The activity
of p120 in directing cell migration can also be explained by its regulation of
RhoGTPases. The p120 family generally activates Rac and inhibit Rho
(Anastasiadis, 2007; Hatzfeld, 2007). Consistent with this, reduction of p120 levels
leads to increased levels of activated Rho in many cell lines (Reynolds, 2007), and
forced expression of p120 in fibroblasts leads to a branching morphology
indicative of increased Rac activity (Reynolds et al., 1996). It has been shown in
SV80, NH3T3 and CHO cells, that expression of full-length p120 induces protrusive
activity. This correlates with an increase in migration of these cells and occurs via

activation of Rac and Cdc42 without inhibiting Rho (Grosheva et al, 2001). The
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behaviour of p120 has been attributed to its acting as a Rho guanine dissociation
inhibitor (RhoGDI), whereby Rho activity is inhibited by preventing normal

exchange of guanine nucleotides (Castano et al., 2007).

ephrinB1-EphB2 signalling impacts on the phosphorylation state of p120, which
affects its activity. The large-scale screens identifying phosphorylation targets of
ephrinB1-EphB2 signalling demonstrate that Y217, Y228, Y257 and Y904 or p120
have consistently decreased phosphorylation in EphB2 cells mixed with ephrinB1
cells but increased phosphorylation in EphB2 cells stimulated with soluble
ephrinB1-Fc (Jorgensen et al., 2009). So ephrinB1-EphB2 signalling could either
upregulate or downregulate phosphorylation of p120. Use of soluble ligands,
although they are artificially clustered, is thought not to be representative of
normal signalling, since it does not induce the same level of multimerisation of the
Eph-ephrin complex as occurs at cell-cell contacts (Jorgensen et al, 2009). Thus,
the mixture of EphB2- and ephrinB1- expressing cells is more representative of in
vivo signalling. However, the difference in response between these two cases could
also hints at a response to signalling that is variable depending on the timing of

contacts and context in which the cells find themselves.

How do changes in the phosphorylation state of p120 affect its activity? Some
reports suggest that none of the phosphorylation sites are necessary for cell-cell
adhesion (Mariner et al, 2004; Xiao et al., 2003), since phospho-tyrosine defective
mutants can efficiently bind and stabilise E-cadherin at the cell surface. This is
consistent with the idea that changes in phosphorylation could instead modulate
directional migration. Different isoforms of p120 have been implicated in the
differential regulation of migration through their varying effects on Rho activity,
although they do not affect Rac1 activity (Yanagisawa et al., 2008). One hypothesis
is that longer isoforms of p120 have increased affinity for RhoA, leading to reduced
RhoA activity and increased migration and tumour invasiveness. p120 was shown
to be able to bind RhoA in vivo (Magie et al.,, 2002), consistent with its proposed
role as a RhoGDI. Other evidence suggests that p120 may inhibit Rho via the
recruitment of p190RhoGAP (Wildenberg et al., 2006). Phosphorylation could also
affect this binding to RhoA. For example, it has been reported that phosphorylation
of Tyr217 and Tyr228 by Src promotes a higher affinity of p120 towards RhoA
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Figure 6.3: p120 directs migration downstream of ephrinB1-EphB2

signalling and cadherins

In a freely migrating cell, p120 inhibits RhoA either by direct binding or by
interaction of p190RhoGAP (A). On contact with a like cell, p120 association with
N-cadherin changes its conformation and facilitates activation of RhoA (B). This
causes a local activation of RhoA, which stimulates increased migration away from
the point of contact. (C) When an EphB2 cell comes into contact with an ephrinB1
cell, signalling changes the phosphorylation state of p120. De-phosphorylation of
tyr217 and 228 prevents binding to RhoA, resulting in higher levels of active RhoA

and a stronger “push” away from the point of contact.
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(Castano et al.,, 2007), which would inhibit RhoA activity. Since both of these sites
are affected by ephrinB1-EphB2 signalling, this could provide a mechanism
through which ephrinB1-EphB2 signalling affects RhoA activity and migration. The
phosphorylation state of p190RhoGAP is also influenced by ephrinB1-EphB2
signalling, providing another mechanism through which this could work
(Jorgensen et al., 2009). | propose a model where p120 is found at the leading edge
of a freely migrating cell, inhibiting RhoA either by direct binding or through
p190RhoGAP, and promoting lamella formation (Figure 6.3). On cell-cell contact,
p120 binds to the cadherin which accumulates there, and this causes a
conformational change in p120 which allows RhoA activation, resulting in a change
of cell polarity and increased migration away from the point of contact. When an
EphB2 cell contacts an ephrinB1 cell, the resultant signalling induces de-
phosphorylation of tyr217 and tyr228 in cytosolic p120 near the contact, which
will prevent binding to RhoA, allowing the latter to become active and

strengthening the repulsion response.

This mechanism could be working in combination with the PCP and Par polarity
components previously proposed. In addition, a direct link has been identified
between the PCP pathway and p120 through the Xenopus transcription factor
Kaiso (Kim et al., 2004). Association of p120 with xKaiso relieves its repression of
xWnt11, interactions which are vital for gastrulation movements in the developing

embryo. It would be interesting to explore this connection further.

Basal requirement for adhesion for cell sorting driven by repulsion

Knockdown of N-cadherin or p120 disrupts EphB2-ephrinB1 cell sorting indicating
that adhesion is required for this process. However, the data presented here also
reveal that differential adhesion cannot explain EphB2-ephrinB1 mediated sorting
and indicate that directional migration is a likely process driving the segregation of

cells. This raises the question: what is the role of cell-cell adhesion in this process?

If cell repulsion can mediate sorting, there is no need for differential adhesion to
do so, although the two processes could be working in parallel (see Chapter 4).
Instead, the requirement for cadherins is likely to be in establishing a basal level of

adhesion, so that cells can stick to one another. On this background, repulsion
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would be able to drive sorting with adhesion helping to stabilise clusters, whose
stability will be constantly disrupted by motile cells. This conclusion fits well with
the data from this study and with the results of computer simulations described

below.

However, Eph-ephrin interactions could set up differential adhesion which could
contribute to cell sorting in addition to these migratory mechanisms. For one thing,
repulsion between cells can contribute to the decrease in adhesion between Eph
and ephrin expressing cells by breaking contacts between them. This sets up a
difference in adhesiveness between the cell types that could contribute to their

segregation.

There may also be a context-dependent requirement for differential adhesion to be
set up downstream of Eph-ephrin signalling. In the intestinal epithelium, E-
cadherin is required for cell compartmentalisation, in combination with EphB-
ephrinB signalling (Solanas et al.,, 2011). It has been suggested that specific
cleavage of E-cadherin by Adam10 at the site of cell-cell contact, in response to
EphB-ephrinB signalling, establishes an area of decreased adhesion and
differential adhesion between EphB and ephrinB cells. These cells are epithelial, so
potentially less motile than some other cell types, with better-established cell-cell
adhesion through mature adherens junctions. Differential adhesion may be a more

important mechanism in the sorting of strongly adhesive cells such as these.

The extensive separation between cells that occurs in a cell culture dish is
something which would not occur in vivo, since adhesion is required to maintain
the integrity of the embryo from very early stages. N-cadherin mutants (parachute
and glass onion in zebrafish), for example, have strong defects in neural tissues and
somites and are only viable if N-cad or E-cad expression is used to rescue defects
in heart tissues (Lele et al,, 2002; Luo et al, 2001). In this context, where cells
adhere to one another on all sides, additional mechanisms may be required to
downregulate adhesion in segregating cells. An alternative interpretation of the
Solanas et al. results could be that cadherin is cleaved to facilitate repulsion
between EphB and ephrinB cells. De-adhesion through an active cleavage process
at the point of EphB cell and ephrinB cell contact could be important in allowing

the cells to move away from one another.
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[ propose that whilst adhesion is required between cells in order for EphB2-
ephrinB1 interactions to drive sorting, differential adhesion is not the main
mechanism underlying the segregation of HEK293 cells. However, the regulation of
cadherins by Eph-ephrins may be an important additional mechanism in some
circumstances, such as between highly adhesive epithelial cells, to facilitate cell

segregation.

Cadherin enrichment could help to maintain EphB2-ephrinB1 sorting

In HEK293 cells, there is an increase of N-cadherin staining at the membranes
between EphB2 cells within sorted EphB2 clusters but not at earlier stages of
sorting. This suggests a model in which changes in cadherin enrichment at cell-cell
interfaces are not required to drive EphB2-ephrinB1 sorting. In support of this is
the observation that N-cadherin is not required for EphB2 cells to cluster when
mixed with ephrinB1 cells which do express N-cadherin (Figure 4.5). However, an
increase in cadherin-mediated adhesion could be important for maintaining

clusters of EphB2 cells once they have formed.

It has previously been reported that Eph receptor activation results in an
upregulation of cadherins at the cell membrane. EphA2 cell stimulation by
ephrinA1-Fc induces cell compaction and maturation of E-cadherin cell-cell
junctions in MDCK cells (Miura et al.,, 2009). This represents the start of a feedback
loop, since E-cadherin is also able to enhance signalling through EphA2, indicating
complex interactions between the pathways. In colorectal cancer cells, EphB2
activation by ephrinB1-Fc seems to induce a re-localisation of E-cadherin from the
cytoplasm to the cell membrane (Cortina et al, 2007). In Schwann cells, there is an
upregulation of N-cadherin at the membrane, which correlates with an increase in
total protein in the cell and is concomitant with increased cell clustering
(Parrinello et al., 2010). This upregulation is a longer-term result of EphB2
signalling, since it requires increased transcriptional activity of the transcription
factor Sox2 and is seen only after several hours. This implies that the activity of N-
cadherin is not required for early stages of sorting but rather for the maintenance

of segregation.

191



Adherens junctions mature with time after a nascent contact, with increasing E-
cadherin localised to them (Yamada & Nelson, 2007). It is possible that the
increase in E-cadherin localisation in EphB2 cell clusters is a result of an increased

duration of cell-cell contact, allowing adhesive complexes to increase in strength.

Whilst cadherin expression does affect the adhesive strength between cells
(Duguay et al,, 2003; Foty & Steinberg, 2005), other factors, such as cortical
tension, can also affect it (Krieg et al.,, 2008; Schotz et al., 2008). It would be useful
to determine whether the expression or activation of EphB2 and ephrinB1 affects
the cohesiveness of cells. Re-aggregation assays of gastrula stage Xenopus embryos
demonstrate that Eph and ephrin expression affect the adhesiveness between the
different germ layers. However, they also demonstrate that these differences in the
adhesiveness of the ectoderm and mesoderm do not correlate with their
segregation. Instead, they show that the repulsive activity of EphB-ephrinB
signalling correlates better with the pattern of segregation and is likely to be
important in maintaining a boundary between these compartments (Rohani et al,

2011).

Atomic force microscopy has been used to measure the relative adhesiveness of
different germ layers in zebrafish and could be used to determine differences in
adhesion between Eph and ephrin cells (Krieg et al., 2008). This sort of assay could
provide insights into the intrinsic differences in adhesion between EphB2 and

ephrinB1 expressing cells.

Modelling cell sorting

Whilst it is clear that Eph-ephrin signalling can lead to an increase in the
directional persistence of cells, it was not known whether this was sufficient to
explain cell sorting. To address this question, a collaboration between Alexei
Poliakov and Willie Taylor led to the development of a computer model based on

the EphB2 and ephrinB1 cell segregation assay (Taylor et al., 2011).

This model was used to simulate cell sorting in silico (Figure 6.4). Briefly, cells
were modelled based on parameters extracted from time-lapse imaging of HEK293
cells, similar to that described in previous sections. The model incorporates two

basic parameters which control the of amount and direction of displacement of
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Figure 6.4: Repulsion can generate sorting in a computer model

Computer simulations based on the parameters of cell behaviour of HEK293 cells
demonstrate that repulsion can mediate cell sorting. (A, B) Start and end points of
a control simulation where parameters of movement and stickiness are the same
for each cell type and no sorting is seen. (C, D) Start and end points of a simulation
of differential adhesion, in which cells of each type stick preferentially to other
cells of the same type, demonstrate that there is segregation between red and
green cells. (E, F) Start and end point of a simulation of repulsion, in which green
cells move with increased directional migration after contact with red cells,
demonstrate that repulsion is sufficient to segregate cells. (G, H) Cartoon and
representative image of individual cells within the model. Cells are modelled as a
string of 10 balls, each with radius, r, which are always within a fixed distance, d, of
their neighbours and within a distance, R, from the centre of mass of the cell. Cells
are described as coming into contact when D (the distance between their centres
of mass) is equal to 2R. (I,]) Basal adhesion is required for repulsion driven cell
sorting. Cells segregate by repulsion when a basal level of adhesion is applied to all
cells. However, in the absence of this basal adhesion, cells do not sort by repulsion

alone.
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virtual cells and which can be manipulated to simulate different types of individual
cell movement and cell-cell interactions. The real cells move with persistent
random walk which can be modelled and scaled to fit real life. They have a “hook”
parameter, such that when two cells collide, the probability of them staying
together in the next step of the simulation is higher or lower. Secondly, the “kick”
parameter defines the increase in distance cells move after a collision, which
decays in time as cells move away from one another. Two populations of cells (red

and green) can be assigned varying values of hook and kick.

Differential adhesion can be simulated by assigning different values of hook to the
red or green population of cells (Figure 6.4 D). To assess the real rate of sorting of
these in silico cells, the parameters of the model were scaled according to real life
observations. It was found that the model could account for the extent of
segregation by differential adhesion seen using L cells expressing different
cadherins in 2D culture (Figure 3.8). However, the model indicates that differential
adhesion could not account for the extent of segregation seen between EphB2
receptor and ephrinB1 expressing cells within the observed time interval. To
achieve this amount of segregation, using only a difference in adhesion, would take

10 times longer in silico.

To simulate directional persistence, kick is applied to green cells after interaction
with red cells. When a simulation is run with this condition, cells sort (Figure 6.4 F)
more quickly than using differential adhesion alone (manuscript in preparation).
Interestingly, this sorting is only seen when a uniform value of hook is applied to
all cells, indicating that a basal level of adhesion is required for cell sorting to occur
via differential migration (Figure 6.4 1,]). This is consistent with the findings in this
study, which suggest that general cohesion between all cells in combination with

cell repulsion is sufficient to explain sorting by Eph-ephrins.

Sharpening boundaries as part of the cell sorting process

By understanding cell sorting, we hope to gain some insight into the mechanisms
which underlie boundary sharpening in vivo. However, there could be different
mechanisms underlying these two stages of sorting. For example, sorting can

result in a pattern with separate clusters which have rough boundaries (Figure 1.3
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A; Foty, 2005) but would nevertheless be classified as sorted. Meanwhile, studies
of clones in Drosophila epithelia, for example, are only considered fully sorted
when they have smooth boundaries to separate them from the surrounding cells
(Chang et al., 2011). The key difference between these situations is the resolution
at which they are observed. In the first, hundreds of cells are often considered,
whereas a clone can be seen to sort even if it only consists of tens of cells. Thus, in
the latter case, sorting will only be apparent based on local changes in the

alignment and shape of cells, as opposed to their large-scale rearrangement.

Several mechanisms could be responsible for the long-term maintenance of
boundaries in addition to the mechanisms that drive sorting. One is an
accumulation of ECM at the boundary between adjacent compartments, which
could provide a physical barrier to sorting. This has been demonstrated at
boundaries between the zebrafish somites. Here Eph-ephrin signalling activates
integrin clustering and fibronectin accumulation which is required for boundary
maintenance (Koshida et al., 2005; Julich et al.,, 2009). Accumulation of fibronectin
is also seen at the boundaries between rhombomeres in the chick hindbrain, which

may also have a barrier function (Heyman et al., 1993; Lumsden & Keynes, 1989).

Another method of creating a physical barrier between compartments is by the
assembly of actin and myosin to create a contractile cable which prevents cell
mixing (Landsberg et al., 2009; Major & Irvine, 2005; Monier et al.,, 2010). As has
been discussed previously, this mechanism is involved in the sorting of cells at the
dorso-ventral and anterior-posterior compartment boundaries of the Drosophila
wing disc as well as at parasegment boundaries, where an enrichment of actin and
phospho-myosin II correlates with alignment of cell bonds (Landsberg et al., 2009;
Major & Irvine, 2005; Monier et al.,, 2010). Tension generated by actin and myosin
could be an important mechanism for the maintenance of these compartments as
well as the original establishment of their boundaries. A recent paper has
demonstrated that the generation of acto-myosin tension is required to maintain a
sharp boundary after the establishment of clusters by differential adhesion (Chang
etal,2011).

These mechanisms work effectively in an epithelium whose main challenge to cell

positioning is cell division. However, in other tissues, there is continuous
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movement between cells and more dynamic mechanisms may be required to
maintain boundaries. In support of this, acto-myosin cables are not seen at
boundaries between somites in zebrafish (Fagotto, ISDB conference talk, 2009) or
between hindbrain rhombomeres, although F-actin is enriched in an Eph-ephrin
dependent manner at the boundary between ectoderm and mesoderm (Rohani et

al, 2011).

Another possibility is that fine-tuning of the mechanisms used for sorting is
responsible for maintaining sharp boundaries. Eph-ephrin signalling is capable of
driving both sorting and sharpening of the boundary. Sharpening is visible even at
high magnification where a change in the shape of cells is particularly visible at the
boundary (Figure 4.2 L). In this case, it has been suggested that continued
repulsion of the membrane from the boundary at the cellular level is capable of
maintaining separation between different cell types (Rohani et al,, 2011). This fits
with the observations at high magnification that Eph-ephrin signalling drives a
collapse response in cells in addition to a sustained change in their direction of
migration (Poliakov et al., 2008). Thus, the repulsive mechanisms that underlie
directional migration downstream of ephrinB1-EphB2 signalling could also be
responsible for the continued repulsion of the membrane required for sharpening
of the boundary. As suggested above, in some circumstances Eph-ephrin signalling
may result in clustering and increased adhesion between like-cells (Cortina et al,,
2007; Parrinello et al., 2010; Solanas et al, 2011). This is another mechanism for
long term maintenance of separate regions of cells which could act in addition to

continued repulsion to sharpen boundaries.

Cross-talk between adhesion and migration

The data described here are derived from experiments looking at a mixture of
single cell responses or responses in a whole organism. It is likely that the different
contexts in which cells are observed will influence their behaviour. This is
particularly important when considering pathways which link cell-cell adhesion to
cell migration since, for example, the dynamics of RhoGTPase activity are likely to
vary greatly between cells surrounded with contacts and cells which are totally

free of contacts with other cells. In light of this, it would be interesting to study the
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dynamics of such molecules in vivo. Emerging techniques should allow us to look at
high spatial and temporal resolution at the dynamics of Rho and Rac in response to

Eph-ephrin signalling and how they are affected in the absence of p120 and N-cad.

It would also be interesting to observe the larger-scale movement of cells in an in
vivo context. In vitro, EphB2 cells move more directionally after contact with
ephrinB1 cells even at a high density (Poliakov, unpublished data). Whether this
same directed movement away from a boundary is seen in vivo is not known,
although there is dynamic membrane ruffling at some boundaries (Rohani et al,,
2011), and cells do shuffle around in some developing tissues (Marie Breau,
unpublished data). Such data suggest that repulsion between Eph-ephrin cells at
boundaries could be a common sharpening mechanism, but it would be interesting
to track cells to establish how this occurs in a living embryo. This sort of behaviour
would require dynamic interactions between cell-cell adhesion and cell-matrix

interacting pathways.

Another way of testing these assumptions is to use computer models. Now that the
framework exists for modelling cells which have properties based on the cell
culture system used in the lab, it will be interesting to exploit this further. For
example, it could be extended to considering more dense or three-dimensional
mixtures of cells. It would be particularly interesting to adjust the parameters of
adhesion and repulsion to determine the extent to which basal cell adhesion is
required compared to repulsion in this model. Even more interesting would be to
connect the two processes, as the mechanisms are connected through regulation of
similar molecules in vivo, and to test whether extensive cross-talk between

pathways is a requirement for sorting.

Finally, it would be interesting to know more about how Eph-ephrin signalling
persists within the cell. For instance, adhesion generally appears to increase in
EphB2 cell clusters after EphB2-ephrinB1 signalling. If this is a direct consequence
of signalling, does it require that all EphB2 cells come into contact with ephrinB1
cells at one point, or is there a transduction of signals between EphB2 cells at the
boundary and EphB2 cells within the cluster? It would be relatively

straightforward in the sorting assay to track cells within the clusters to see

198



whether they do all contact an ephrinB1 cell during the course of sorting, and it

would be interesting to find out how this translates to the embryo as well.

Final Comments

We have developed a series of in vitro assays which demonstrate that EphB2-
ephrinB1 signalling is capable of driving cell sorting and boundary sharpening, and

which have allowed us to begin to dissect the mechanisms behind this process.

Using cell sorting and boundary sharpening assays, I have been able to
demonstrate that Eph-ephrin mediated cell sorting is unlikely to be driven by the
generation of differential adhesion. This is in contrast to some previously
published hypotheses (Solanas et al., 2011; Steinberg, 2007), but is supported by
the idea that cell repulsion could be the main driving force for sorting downstream
of Eph-ephrins (Poliakov et al,, 2008; Rohani et al., 2011; Xu et al., 1999).
Nevertheless, there is still a requirement for cadherins in basal cell-cell adhesion,

which is important for stabilising segregation.

We have shown that EphB2 cells respond to ephrinB1 signalling by increasing
their directional migration. N-cadherin also has a role in migration as described in
neural crest cells (Theveneau et al., 2010), but this requirement is basal and N-
cadherin directed migration is not responsible for the directional migration

downstream of ephrinB1-EphB2 interactions.

p120ctn family proteins p120 and p0071 are also required for cell sorting and
boundary sharpening through Eph-ephrins, but are differently regulated. It is
likely that both are required to assist in cadherin-mediated adhesion and contact
inhibition of locomotion. In addition, p120 is specifically required in directional
cell migration downstream of Eph-ephrin signalling, suggesting a novel, cadherin-

independent role for this protein.

Taken together, these results support a model where EphB2-ephrinB1 interactions
cause cell repulsion which drives segregation in the presence of a basal level of
cell-cell adhesion. It will be interesting to see the extent to which this model
applies to other systems and particularly how it relates to cell segregation and

boundary sharpening in vivo.
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