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Abstract 

 

Nitric oxide (NO) is a freely diffusible transmitter acting throughout the mammalian 

nervous system via guanylyl cyclase activation and cGMP production. Since 

neuronal NO synthesis is linked to NMDA receptor activation, much research has 

focused on the role of NO in NMDA receptor-dependent long-term potentiation 

(LTP). The proposed role predicts that exogenous NO, paired with a standard LTP 

induction protocol, should restore the NO-dependent component of LTP when 

NMDA receptors are blocked.  Surprisingly, however, tests of this prediction have 

not been reported. Here, it was found that exogenous NO, paired with a 1-s, 100-Hz 

tetanus during NMDA receptor blockade yielded a slowly-rising, long-lasting 

potentiation of CA1 field EPSPs in hippocampal slices. Like NO-dependent LTP, 

this potentiation required the tetanus and was guanylyl cyclase-dependent. Contrary 

to predictions, however, the NO-induced potentiation was additive with subsequent 

LTP. At CA1 and other synapses, NO is viewed as a putative retrograde transmitter, 

generated postsynaptically and acting presynaptically. Discordant with this role, the 

NO-induced potentiation was not associated with a persistent change in paired-pulse 

facilitation, an index of presynaptic function. However, endogenous NO did appear 

to facilitate neurotransmitter release under conditions of basal stimulation. In this 

case, NO generated by endothelial cells was responsible, perhaps explaining the 

requirement for endothelium-derived NO in LTP. An NMDA receptor-independent 

form of LTP involving L-type voltage-gated Ca2+ channels has previously been 

described at CA1 synapses. Unexpectedly, we found that this type of LTP also 

required NO, apparently derived solely from neurons. Unfortunately, supposed 

inhibitors of neuronal NO synthesis, though widely used, were found to be 

inadequately selective to be of use diagnostically. Finally, presynaptic effects of NO, 

such as those described above, have been reported to require the guanylyl cyclase α1 

subunit. Accordingly, immunohistochemistry was used to investigate the location of 

this subunit in the hippocampus. 
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Nitric oxide (NO) is a free radical gas. It is an air pollutant found in cigarette smoke 

and car exhaust fumes, and yet is also an endogenously produced, freely-diffusible 

transmitter active throughout the body. The effects of endogenous NO signalling 

typically fall into three categories: vasodilation, neurotransmission and immune 

defence. By extension, NO is involved in huge number of physiological processes 

including, amongst others, neurodevelopment, platelet aggregation, 

phototransduction, digestion, respiration, cardiovascular function and reproduction. 

Accordingly, disordered NO signalling has been implicated in myriad pathologies, 

such as arthritis, asthma, hypertension, diabetes, stroke and Alzheimer’s disease.  

 

In the nervous system, a major role of NO that appears to have been evolutionarily 

conserved is in the regulation of synaptic plasticity, which is thought to underlie 

various aspects of neurodevelopment, as well as learning and memory in the adult. 

Since neuronal NO synthesis is linked to NMDA receptor channel opening, the 

involvement of NO in NMDA-receptor dependent long-term potentiation (LTP) has 

received much attention. LTP is a form of synaptic plasticity that can be induced in 

the laboratory and is a putative correlate of learning. In the mammalian brain, 

NMDA receptor-dependent LTP is archetypal at hippocampal Schaffer collateral-

CA1 synapses. Under various conditions, this LTP is NO-dependent. However, the 

precise role of NO remains ill-defined, and some long-standing hypotheses, most 

notably that NO is a retrograde messenger, are poorly evidenced. In this project, NO-

dependent plasticity at CA1 synapses in the hippocampus has been investigated, 

paying particular attention to the role of NO in LTP.  

 

1.1 Discovery of endogenous NO 

 

NO was first described by Joseph Priestly, who also discovered oxygen, as a 

colourless, toxic gas with a short half-life (Priestley, 1775). Indeed, toxic effects of 

inhaled NO were reported early on in the study of the molecule: first in 1800 by the 

anaesthetist, Sir Humphrey Davy (Davy, 1800), whose research interests lay in 

nitrous oxide (N2O); then in 1967 after N2O contaminated with NO killed patients in 

the Bristol Royal Infirmary, UK (Clutton-Brock, 1967).  The first indication that NO 

is a by-product of normal metabolism was the observation made by Mitchell et al. 
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(1916) that healthy male volunteers were capable of excreting more nitrate (NO3
-
), a 

metabolite of NO, than they consume. However, it was not until the 1980s that the 

roles of endogenous NO as a vasodilator, neurotransmitter and cytotoxin were 

discovered. 

 

Beginning in 1977, Ferid Murad published a series of papers revealing that various 

nitrate-based vasodilators, such as nitroglycerine, caused an increase in guanylyl 

cyclase activity in tissues including brain, kidney and liver. Nitroglycerine had been 

manufactured by Alfred Nobel (the founder of the Nobel prize) as an explosive and 

used since the mid-19
th
 century to relieve angina; although, the mechanism 

underlying its action was unknown (reviewed by Marsh and Marsh, 2000). Murad 

found that in pre-contracted smooth muscle preparations, such as guinea pig trachea, 

cGMP increase was associated with relaxation. Both the increase in cGMP and the 

relaxation could be mimicked by nitrate-based vasodilators, NO donors, such as 

sodium nitroprusside, and exogenous NO (Arnold et al., 1977; Katsuki et al., 1977a; 

Katsuki et al., 1977b; Ignarro et al., 1981). The vasodilatory properties of exogenous 

NO and concomitant increase in cGMP were then confirmed by a group led by Louis 

Ignarro using pre-contracted strips of bovine coronary artery (Gruetter et al., 1980a; 

Gruetter et al., 1980b).  

 

At roughly the same time as this work, Robert Furchgott discovered an apparently 

freely-diffusible, endothelium-derived relaxing factor (EDRF) responsible for 

acetylcholine (ACh)-mediated smooth muscle relaxation in aorta (Furchgott and 

Zawadzki, 1980). Subsequently, numerous similarities between exogenous NO and 

EDRF were reported. For example, EDRF signalling was cGMP-dependent 

(Rapoport et al., 1983). Then, in 1987, definitive evidence that endogenously-

produced NO was EDRF was reported by 2 groups. One group, led by Ignarro, 

showed that EDRF derived from bovine pulmonary artery and vein, and exogenous 

NO applied to endothelium-denuded tissues, elicited identical cGMP production and 

vasorelaxation. Using a colorimetric assay, they showed that NO is produced and 

released from artery and vein upon stimulation with a Ca
2+

 ionophore. Moreover, 

using spectrophotometry, NO and EDRF were demonstrated to react with a complex 

molecule (reduced haemoglobin) to form an identical product (nitrosylhaemoglobin), 
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thus providing chemical evidence consistent with NO being EDRF (Ignarro et al., 

1987). At the same time, a group led by Salvador Moncada showed that NO, detected 

using a chemiluminescent assay, was produced by cultured porcine endothelial cells 

upon stimulation with the hormone, bradykinin, and was sufficient to account for the 

vasodilatory effects of EDRF produced by the porcine endothelial cells on rabbit 

aorta (Palmer et al., 1987). Thus, for the first time, a free radical, freely-diffusible 

transmitter was found to be active in the mammalian body, and the active component 

of nitrate-based vasodilators was elucidated. 

 

The identification of NO as an intercellular transmitter in brain occurred in 1988. 

Years prior to the identification of EDRF as NO, it had been found that various 

agents known to depolarise excitable cells, including K
+
, the Na

+
/K

+
-ATPase 

inhibitor, ouabain, the Na
+
 channel enhancer, veratridine, and glutamate (Ferrendelli 

et al., 1973; Ferrendelli et al., 1974; Ferrendelli et al., 1976) elicited Ca
2+

-dependent 

cGMP accumulation in cerebellar and cortical brain slices. In 1977, 2 groups had 

shown that exogenous NO activated guanylyl cyclase in cerebellar and cortical 

homogenates, leading to cGMP accumulation (Arnold et al., 1977; Miki et al., 1977). 

Later, L-arginine was identified as an endogenous activator of a guanylyl cyclase that 

had been partially purified from the soluble fraction of neuroblastoma cells. NO was 

also found to activate the cyclase in a manner that was non-additive with the effect of 

L-arginine (Deguchi and Yoshioka, 1982). In 1985, John Garthwaite found that 

glutamate-induced cGMP accumulation in dissociated cerebellar cells was NMDA 

receptor-dependent (Garthwaite, 1985). By selectively ablating different cell types in 

cerebellar slices, it was discovered that the NMDA-induced cGMP accumulation 

required an intercellular transmitter, because, although granule cells were necessary 

for ~ 90% of depolarisation-induced cGMP accumulation in whole slices, the 

neurons were not required for cGMP accumulation in response to exogenous NO 

(Garthwaite and Garthwaite, 1987). A year later, Garthwaite characterised the 

missing transmitter as NO/EDRF and found it to be released from brain slices in a 

Ca
2+

-dependent manner following NMDA receptor activation (Garthwaite et al., 

1988).   
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At the same time that endogenous NO was identified as a neurotransmitter, research 

by several groups combined to assert a role for (higher concentrations of) NO as a 

cytotoxin used for host defence upon immune challenge. Table 1.1 summarises the 

major findings that led to the realisation that activated macrophages are capable of 

sustained NO synthesis, leading to the generation of supra-physiological NO 

concentrations and the apoptosis of surrounding cells (including macrophages 

themselves) by the inhibition of DNA synthesis, mitochondrial respiration and 

aconitase (for review see MacMicking et al., 1997).  

 

Publication Finding 

Mitchell et al. (1916)  

Green et al. (1981a; 

1981b) 

Urinary levels of nitrate exceeded dietary intake in healthy men and 

germfree rats, suggesting nitrates are endogenously produced by 

mammals. 

Hegesh and Shliloah 

(1982) 

Wagner et al. (1983) 

Urinary nitrate levels were increased in children with fever and diarrhoea 

and in rats upon injection with Escherichia coli (E. Coli) 

lipopolysaccharides (LPS), suggesting that nitrate biosynthesis is 

increased during illness. 

Stuehr and Marletta 

(1985) 

Experiments conducted in vitro implied that macrophages were sufficient 

to account for E. Coli LPS-induced nitrate and nitrite synthesis in mice. 

Nitrite was suggested to be involved in the production of cytotoxins used 

for host defence. 

Hibbs et al. (1987) 

Iyengar et al. (1987) 

Nitrite/nitrate synthesis by E. Coli LPS-activated macrophages, as well as 

cytotoxic effects of macrophages on cultured tumour cells, were found to 

depend upon L-arginine and result in the co-synthesis of L-citrulline. 

Hibbs et al. (1988) Exogenous NO was shown to reproduce the cytotoxic effects of activated 

macrophages on tumour cells in vitro and to be synthesised by activated 

macrophages from L-arginine in a reaction that yields L-citrulline. It is 

concluded that NO is the precursor of nitrite/nitrate synthesised by 

macrophages and it is hypothesis that it acts as a cytotoxin via formation 

of iron-NO complexes and degradation of iron-sulphur prosthetic groups. 

 

Table 1.1 Key findings relating to the discovery that NO is an effector of activated macrophage 

cytotoxicity. 

 

After the 1980’s, a huge amount of research on the physiology of endogenous NO 

was conducted. In 1992, NO was named molecule of the year by Science. In 1998, 

Furchgott, Ignarro and Murad won the Nobel Prize in Physiology and Medicine for 
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their discoveries relating to the vasodilatory effects of NO, a fitting award since 

Alfred Nobel (the founder of the prize) was among the first people to recognise 

nitroglycerine as a vasodilator (Marsh and Marsh, 2000). Now, NO is one of the 

most researched signalling molecules active in the mammalian body. Research on the 

physiology of organisms such as slime moulds (Golderer et al., 2001), jellyfish 

(Moroz et al., 2004), molluscs (Park et al., 1998), fireflies (Dudzinski et al., 2006) 

and even plants (reviewed by  Wojtaszek, 2000), has combined to show that NO 

signalling has been highly evolutionary conserved. In accordance with histological 

data showing a wide distribution of the enzymes responsible for NO synthesis and 

signal transduction throughout the mammalian body (see 1.2.2 and 1.3.2), it is 

accepted that NO has a huge number of consequences for mammalian health and 

disease. Furthermore, the NO signalling pathway is highly researched as a putative 

target of therapeutic strategies. Some successful outcomes of this research include 

anti-anginals, sildenafil (Viagra) and the use of inhaled NO to treat neonates with 

respiratory failure.    

 

1.2 Synthesis of endogenous NO 

 

Soon after NO was identified as EDRF, an assay based on the conversion of L-

arginine to L-citrulline and NO was used to isolate the enzyme responsible for NO 

synthesis, NO synthase (NOS), from rat cerebellum and identify it as nicotinamide 

adenine dinucleotide phosphate (NADPH)- and calmodulin (CaM)-dependent (Bredt 

and Snyder, 1990). This led to the cloning of brain-derived NOS (Bredt et al., 1991b) 

and its localisation to vascular endothelial cells, nerves of the peripheral nervous 

system (PNS) and discrete populations of neurons throughout the brain (Bredt et al., 

1990; Bredt et al., 1991a).  

 

There are now three identified mammalian NOS isozymes, each coded for by a 

distinct gene. Two, the neuronal NOS (nNOS) and endothelial NOS (eNOS), are 

constitutively expressed throughout the nervous system and relate NO production to 

intracellular changes in Ca
2+

 by their dependence on Ca
2+

/CaM binding for catalytic 

activity. The third, inducible NOS (iNOS), is the isoform expressed in immune cells 

such as macrophages and microglia in response to products of infection (such as 
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endotoxins) and inflammatory mediators (such as cytokines). Since iNOS expression 

is only prevalent under pathological states, it will not be considered in detail here 

(reviewed by Stuehr, 1999; Alderton et al., 2001; Daff, 2010). The existence of a 

distinct, constitutively expressed mitochondrial NOS is under debate (see Lacza et 

al., 2006 for a review). 

 

All three well-known NOS isozymes synthesise NO from L-arginine by two steps of 

monooxygenation and share a common general structure with 50-60 % homology 

(Figure 1.1). Each is conferred with distinct functionality, not only by differences in 

tissue distribution, but also by multiple differences in the regulation of their activity. 

 

1.2.1 NOS structure and reaction mechanism 

 

Functional NOS exists as a homodimer, each monomer consisting of an N-terminal 

oxygenase domain, comprising binding sites for the cofactors haem and 

tetrahydrobiopterin (BH4), and the substrate L-arginine, and a C-terminal reductase 

domain, containing sites for flavin adenine dinucleotide (FAD), flavin 

mononucleotide (FMN) and NADPH binding. The oxygenase and reductase domains 

are linked by a series of amino acids constituting a Ca
2+

/CaM-binding domain 

(Figure 1.1).  

 

The N-terminal of the most abundantly expressed (> 90 % of total) nNOS splice 

variant in the brain (Huang et al., 1993), nNOSα, contains a PDZ domain which 

allows its physical association with various proteins, most notably the NR2B NMDA 

receptor subunit, via the adaptor protein, post-synaptic density 95 (PSD-95; Brenman 

et al., 1996; Christopherson et al., 1999). The N-terminal of eNOS contains 

consensus sequences for myristoylation and cysteine palmitoylation that allow its 

association with the membrane of endothelial cells, specifically at their caveolae, 

which are protein-rich invaginations of the membrane. Inducible NOS lacks the 

ability to associate with membranes and is cytosolic (see Alderton et al., 2001; Daff, 

2010 for reviews).  
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Figure 1.1 Domain structures of the mammalian NOS isozymes. Key: Arg = Arginine; Myr/Palm = 

sites for myristoylation and palmitoylation; PDZ = PDZ domain; Zn = zinc ligating cysteine; * = 

autoinhibitory loop. Molecular masses of each monomer are given in KDa. Figure adapted from 

Alderton et al. (2001).  

 

Homodimerisation of NOS monomers creates an extensive interface between the 

oxygenase domains of the two subunits. This may be promoted or stabilised by the 

zinc iron indicated in Figure 1.1 and the haem, L-arginine, BH4 and CaM cofactors 

(see 1.2.3 NOS regulation for more on the role of CaM). There remain several 

unknowns as to the exact mechanism of NO synthesis by NOS. However, modelling 

of the NOS reductase domain on the NADPH-microsomal cytochrome P450 

reductase, which also catalyses monooxygenation and contains a diflavin reductase 

domain, as well as x-ray crystallography studies of the eNOS and iNOS oxygenase 

domains, have led to a general consensus for the mechanism of NOS action. It is 

hypothesised that Ca
2+

/CaM binding causes a conformational change in the NOS 

dimer that facilitates electron transfer through the enzyme from the reductase domain 

of one monomer to the haem iron of the oxygenase domain of the other monomer. 

Electron transfer occurs via the sequential reduction of the bound cofactors, NADPH, 

FAD and FMN (Figure 1.2).  
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Figure 1.2 Suggested pathway of electron flow through NOS. Monomers are grey and white. Flavins 

in the reductase domain accept electrons from NADPH and, in the presence of Ca2+/CaM, pass them 

to the haem group of the other monomer. Taken from Stuehr (1999). Reproduced by kind permission 

of Elsevier. 

 

The subsequent reduction of Fe
3+

 to Fe
2+

 in the bound haem allows molecular 

oxygen to bind, which is then cleaved, resulting in the monooxygenation of bound L-

arginine to N
ω
-hydroxy-L-arginine. Upon a second cycle of monooxygenation, N

ω
-

hydroxy-L-arginine is converted into an unstable compound which collapses, 

producing L-citrulline and NO (Figure 1.3).  

 

 

 

 

 

 

 

 

 

Figure 1.3 Reaction for NO synthesis by NOS. NO is synthesised from L-arginine by two stages of 

monooxygenation. Taken from Daff (2010). Reproduced by kind permission of Elsevier. 
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1.2.2 Location of NOS in brain and its intracellular distribution 

 

nNOS 

 

The first studies of the location of NOS in brain used NADPH-diaphorase staining 

(Vincent and Kimura, 1992; Southam and Garthwaite, 1993), which relies upon the 

reduction of tetrazolium salts to visible formazans in a NADPH- and NOS-dependent 

manner. Since then, immunohistochemistry (Bredt et al., 1991a; Rodrigo et al., 1994; 

de Vente et al., 1998; Burette et al., 2002) and in situ hybridisation (Keilhoff et al., 

1996) have also been used to locate nNOS protein and mRNA, and this has led to the 

consensus that nNOS is expressed throughout the entire rodent and primate brain, 

albeit at varying levels in different areas. In the cerebellum, most neurons are 

immunopositive for nNOS (Bredt et al., 1990; Southam et al., 1992). Areas such as 

the hippocampus and olfactory bulb also appear rich in the enzyme (Southam and 

Garthwaite, 1993). In other brain regions, nNOS appears to be restricted to 

populations of interneurons, as in the cerebral cortex. However, even in these areas, a 

dense network of nNOS positive fibres has been discovered, suggesting that the 

majority of brain cells could be contacted by NO (Vincent and Kimura, 1992; 

Rodrigo et al., 1994).  

 

The intracellular distribution (and physiology) of nNOS is largely dictated by its 

interaction with PDZ-containing proteins, such as PSD-95. PDZ domains are motifs 

for protein-protein interaction. By binding with a PDZ domain in the N-terminal of 

nNOSα, and another in the C-terminal domain of the NMDA receptor NR2B subunit, 

PSD-95 physically links the synthase to the NMDA receptor (Christopherson et al., 

1999). In this way, nNOS is anchored to a major site of activity-dependent Ca
2+

 

influx to cells and is therefore thought to be preferentially activated by NMDA 

receptor opening. Consistent with this, NMDA causes NO synthesis in vitro 

(Garthwaite et al., 1988; Garthwaite et al., 1989) and in vivo (Wood et al., 1990). In 

tissue supernatants prepared from various brain regions, Ca
2+

-dependent NO 

synthesis has been shown to be nNOS-dependent (Huang et al., 1993), and 

suppression of PSD-95 in cultured cortical neurons by an anti-sense oligonucleotide 

has been found to inhibit NMDA-induced cGMP production by > 60% (Sattler et al., 
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1999). Neuronal NOS and PDS-95 co-localise throughout the brain (Brenman et al., 

1996), and in the hippocampus, immunofluorescent staining has shown that nNOS, 

NR2 and PSD-95 co-localise in PSDs (Burette et al., 2002).  

 

In addition to nNOSα, there are two other splice variants of nNOS: β and γ. These 

lack a PDZ domain and are cytosolic. The γ variant appears to be inactive, though the 

β may be functional in several brain areas, including cortex, hippocampus, olfactory 

bulb and cerebellum (Brenman et al. 1996; Eliasson et al., 1997; Huang et al., 1993).  

 

eNOS 

 

An initial immunohistochemical study of the location of eNOS in the brain found it 

to be expressed in hippocampal pyramidal neurons (Dinerman et al., 1994) but this 

result has not been replicated. Rather, data collected using in situ hybridisation 

(Seidel et al., 1997; Demas et al., 1999; Blackshaw et al., 2003), 

immunohistochemistry (Stanarius et al., 1997; Topel et al., 1998) and polymerase 

chain reaction (PCR) of DNA from dissociated hippocampal neurons (Chiang et al., 

1994) has combined to assert the consensus that eNOS is exclusively expressed in 

the endothelium of blood vessels. 

 

As discussed above, eNOS has been found to associate with the membrane of 

endothelial cells, specifically in the cells’ caveolae (Garcia-Cardena et al., 1996). 

Caveolae are enriched in cholesterol and lipids. It is thought that their limited fluidity 

draws proteins together, thereby promoting protein-protein interactions (Razani et 

al., 2002). Binding of eNOS to caveolae membranes is thought to occur via the 

enzyme’s N-terminal, which contains consensus sequences for myristoylation, which 

is irreversible, and palmitoylation, which is reversible (Garcia-Cardena et al., 1996; 

Alderton et al., 2001). Palmitoylation of eNOS may be subject to dynamic 

regulation, since prolonged stimulation of eNOS has been reported to cause the 

enzymes de-palmitoylation and translocation into the cytosol, this presumably 

limiting the opportunity for eNOS activation (see 1.2.3). 
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1.2.3 NOS regulation 

 

Physiological NO signalling necessitates extremely subtle and dynamic NOS 

regulation because NO is lipid soluble and, therefore, cannot be stored prior to its 

release. As such, every molecule of NO released by a cell must be synthesised as 

directed by changing stimuli. The efficacy of normal NOS regulation is illustrated by 

the range of pathologies in which disordered NO production has been implicated 

(reviewed by Gross and Wolin, 1995;  Hobbs et al., 1999; Vallance and Leiper, 

2002) and the diversity of endogenous NO signals (for example, Hopper and 

Garthwaite, 2006).  

 

Regulation by Ca
2+

/CaM binding  

 

As discussed above, NOS is CaM-dependent. Upon binding to NOS, CaM facilitates 

the rate of electron transfer through the enzymes’ reductase domain and into the 

oxidase domain. Since CaM is activated by Ca
2+

, NO synthesis is Ca
2+

-dependent 

and can be directed by alterations in cell activity.   

 

The activity of each NOS isoform varies, and this can be partially explained by 

differences in their Ca
2+

-dependence. Inducible NOS can become active at low Ca
2+

 

levels because it has high affinity for CaM. This confers iNOS with the ability for 

continuous activity even in the absence of Ca
2+

 and allows it to generate supra-

physiological concentrations of NO. The constitutive isoforms, eNOS and nNOS, 

require higher Ca
2+

 concentrations for activity than iNOS because they contain an 

autoinhibitory loop (see Figure 1.1; Alderton et al., 2001).  It has been reported that 

purified mutant nNOS lacking the autoinhibitory loop can spontaneously oxidise 

haem and generate NO in the absence of Ca
2+

, suggesting that the loop normally acts 

to destabilise CaM binding and inhibit electron transfer from FMN to haem at low 

Ca
2+

 concentrations (Daff et al., 1999). At higher than basal concentrations of Ca
2+ 

(EC50 of purified rat brain NOS for Ca
2+

 = 200 nM; Bredt and Snyder 1990), CaM 

binding to NOS may displace the loop and initiate catalysis (Alderton et al., 2001). 

  

  

* 
* 
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Regulation by phosphorylation 

 

The original cloning of NOS revealed several potential phosphorylation sites that are 

putative sources of dynamic NOS regulation. Regarding nNOS, some interesting 

examples of this have been provided by Rameau et al. (2004; 2007). Using cultured 

cortical and hippocampal neurons, they have shown that upon glutamate (5 µM)-

induced NMDA receptor (and therefore probably nNOS) activation, phosphorylation 

of nNOS at serine-847 by Ca
2+

/CaM kinase II (CaMKII) leads to a slow (taking ~ 15 

min) but persistent inhibition of the synthase. This phosphorylation may be 

indicative of negative feedback on NO synthesis. Following the application of higher 

glutamate concentrations (≥ 100 µM), serine-847 becomes de-phosphorylated. This 

presumably relieves nNOS of inhibition and may contribute towards NO over-

production during glutamate excitotoxicity (Rameau et al., 2004). Rameau et al. have 

also found that the slow inhibition by CaMKII may be preceded by a rapid, NMDA 

receptor-dependent phosphorylation of nNOS at serine-1412 by Akt (protein kinase 

B) that is necessary for NO synthesis (Rameau et al., 2007). 

 

The cyclical phosphorylation of two sites, serine-1179 and threonine-497, is of 

particular relevance to the regulation of eNOS (reviewed by Alderton et al., 2001; 

Garthwaite, 2005). Phosphorylation of serine-1179, which is close to the eNOS C-

terminal, reduces the dependence of eNOS on Ca
2+

 and increases its catalytic rate. 

Conversely, phosphorylation of threonine-497 in the CaM binding domain increases 

the synthase’s requirement for Ca
2+

/CaM. Under basal conditions, phosphorylation at 

threonine-497 predominates over phosphorylation of serine-1179. Upon stimulation 

of eNOS, threonine-497 is de-phosphorylated and serine-1179 phosphorylated, 

leading to a persistent (over hours) enhancement of eNOS activity, even in the 

absence of Ca
2+

. This Ca
2+

-independent eNOS activity is thought to underpin the 

low-level, activity-independent, endothelium-derived NO tone that has been 

discovered in tissues including optic nerve (Garthwaite et al., 2006) and 

hippocampus (Chetkovich et al., 1993; Hopper and Garthwaite, 2006). In vivo, the 

PI3 kinase-Akt pathway is probably the primary means of generating serine-1179 

phosphorylation, although other kinases, including cAMP-regulated protein kinase A 

(PKA), cGMP-regulated protein kinase (PKG) and CaMKII may also be responsible. 



Chapter 1: General introduction 

 

27 

These kinases, as well as Akt, may be activated in response to stimuli including shear 

stress, oestrogens, insulin and vascular endothelial growth factor (Garthwaite, 2008).  

 

Regulation by protein-protein interaction 

 

As discussed above, protein-protein interactions, for example, between nNOS and 

PSD-95, serve to anchor the constitutive NOS isoforms to cell membranes where 

they may be switched on by a rise in intracellular Ca
2+

. Importantly, the binding of e- 

or nNOS to cell membranes is reversible. Indeed, the intracellular distributions of e- 

and nNOS, and thus the capacity for their activation, are subject to dynamic 

regulation by various other binding proteins.  

 

The C-terminal PDZ ligand of NOS (CAPON), is an adaptor protein that was 

identified by a yeast two-hybrid screen with nNOS. Immunohistochemistry for 

CAPON shows that it is expressed throughout the brain in a distribution overlapping 

that of nNOS. It contains a C-terminal domain which competes with PSD-95 for 

binding to the PDZ domain of the synthase. This causes the translocation of nNOS 

away from the PSD and therefore, may limit neuronal NO synthesis (Jaffrey et al., 

1998). In presynaptic terminals, interaction between a phosphotyrosine binding 

domain in the N-terminal of CAPON and synapsin 1 may direct nNOS to the 

membrane (Jaffrey et al., 2002) where nNOS may be activated by voltage-gated Ca
2+

 

channels (VGCCs), as in the PNS (reviewed by Vincent, 2010).  

 

NOS interacting protein (NOSIP) was also discovered by yeast two-hybrid screening 

with nNOS and may also modulate nNOS by altering its intracellular distribution. 

Dreyer et al. (2004) have found that NOSIP and nNOS can be co-

immunoprecipitated from rat brain lysates, and co-occur in multiple brain areas 

including the hippocampus, cortex and cerebellum. They also report that expression 

of NOSIP leads to a reduction in Ca
2+

-induced NO synthesis in an immortalised cell 

line containing nNOS, and a (moderate) shift in the location of nNOS from the 

dendrites to the soma of dissociated hippocampal neurons.  
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Other protein regulators of nNOS include ‘protein-inhibitor of nNOS’, a dynein light 

chain that may bind to and regulate the axonal transport of nNOS (Rodriguez-Crespo 

et al., 1998) and heat shock protein 90 (Hsp90), which has been shown to facilitate 

nNOS activity in vitro, likely by increasing its affinity for CaM (Song et al., 2001). 

 

Endothelial NOS is also regulated by various proteins, most notably caveolin-1. 

Caveolin-1 is a membrane scaffolding protein and constitutes the main component of 

caveolae. It has been reported that eNOS and caveolin-1 co-immunoprecipitate from 

endothelial cell lysates and co-localise in endothelial cells from bovine lung (Garcia-

Cardena et al., 1996). Using site-directed mutagenesis, it has been found that the N- 

and C-terminal domains of caveolin-1 directly interact with the eNOS oxygenase 

domain, resulting in the inhibition of NO synthesis in a manner reversible by 

Ca
2+

/CaM (Garcia-Cardena et al., 1997; Michel et al., 1997b). Accordingly, it has 

been found that transfection of mouse aorta with caveolin-1 inhibits NO synthesis 

and eNOS-dependent vasodilation in vivo (Bucci et al., 2000), whereas mice lacking 

caveolin-1 exhibit increased NO-induced vasodilation (Drab et al., 2001). It is now 

thought that the inhibition of eNOS by caveolin-1 is cyclical, being interrupted by 

activity-induced CaM binding to the synthase which causes eNOS activation, and the 

translocation of the synthase from the caveolae membrane to the cytoplasm (Michel 

et al., 1997a; Feron et al., 1998).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Scheme for regulation of eNOS by caveolin-1. Binding of caveolin-1 to eNOS inhibits NO 

synthesis and anchors it to the caveolae membrane. The interaction between eNOS to caveolin-1 may 

be disrupted by CaM, which may directly compete for the binding site in eNOS, leading to the 

activation of eNOS and re-distribution of the enzyme from the membrane to the cytosolic fraction 

(Feron et al., 1998). 



Chapter 1: General introduction 

 

29 

 

Hsp90 may also bind directly to eNOS in a Ca
2+

-dependent manner. It has been 

found to co-immunoprecipitate from endothelial cells with eNOS and caveolin-1 

(Gratton et al., 2000), and has been hypothesised to facilitate the displacement of 

caveolin-1 from eNOS by CaM. Indeed, the EC50 of Ca
2+

 and CaM for eNOS is 

reduced in the presence of Hsp90 (Takahashi and Mendelsohn, 2003a). Additionally, 

physiological stimuli for eNOS, such as vascular endothelial growth factor or shear 

stress, have been reported to increase the interaction of Hsp90 and eNOS in isolated 

cells, whereas an antibiotic-based Hsp90 inhibitor has been found to inhibit eNOS-

dependent ACh-induced vasodilation of rat aortic rings (Garcia-Cardena et al., 

1998). Co-immunoprecipitation studies also suggest that Hsp90 may facilitate a 

physical interaction between eNOS and Akt (Garcia-Cardena et al., 1998), consistent 

with findings that the effects of Hsp90 and Akt on eNOS activity are synergistic at 

low Ca
2+

 concentrations (Takahashi and Mendelsohn, 2003b).  

 

In caveolae, eNOS may also directly interact with bradykinin B2 receptors, which, 

are upstream of the phospholipase C-phosphatidylinositol 4,5-bisphosphate (PIP2) 

pathway, and the arginine transporter, cationic amino acid transporter, which may 

facilitate eNOS activity (reviewed by Nedvetsky et al., 2002). NOSIP may also 

regulate eNOS in the same way that it does nNOS: Dedio et al. (2001) have found 

that the co-expression of eNOS and NOSIP in Chinese hamster ovary cells causes a 

reduction in NO synthesis and the redistribution of eNOS from the caveolae 

membrane to the cytoplasm.  

 

1.3 NO signal transduction 

 

The identification of NO as EDRF was preceded by the discovery that NO elicits 

cGMP accumulation in tissues such as aorta, lung and brain, and that a rise in cGMP 

accompanies the relaxation of smooth muscle (see 1.1 Discovery of endogenous 

NO). About 20 years prior to this, cGMP had been detected in mammalian urine and 

various tissues. At around the same time, cAMP, produced by adenylyl cyclases, was 

recognised as a biological second messenger. This spurred research which led to the 

discovery of two major variants of guanylyl cyclase that synthesise cGMP from 
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GTP: one that is membrane-bound and consists of seven isoforms, each of which 

contain an extracellular binding domain for ligands such as natriuretic peptides and 

are unresponsive to NO; and another that does not span the membrane and contains a 

prosthetic haem group able to bind NO (reviewed by Potter, 2011; Schulz et al., 

1989). The latter cyclase was initially termed ‘soluble’, but it is now known to 

associate with membranes under some conditions (see 1.3.2) and therefore has been 

renamed ‘NO-targeted’ or ‘NO-activated’.  

 

To date, NO is the only known physiological activator of NO-targeted guanylyl 

cyclase. Cyclic GMP accumulation via the activation of this enzyme is the only 

accepted means of physiological NO signal transduction (see 1.8 and  Garthwaite, 

2008). Amongst the research that has led to this consensus are findings that mice 

lacking eNOS or the NO-targeted guanylyl cyclase are incapable of NO-induced 

vasodilation (Huang et al., 1995; Friebe et al., 2007) and that NADPH diaphorase 

histochemistry for NOS in rodent brain is remarkably coincident with 

immunohistochemistry for exogenous NO-induced cGMP accumulation (Southam 

and Garthwaite, 1993). 

 

1.3.1 NO-targeted guanylyl cyclase structure and reaction mechanism 

 

Isoforms of NO-targeted guanylyl cyclase 

 

NO-targeted guanylyl cyclase is an obligate heterodimer comprising one β and one α 

subunit (Nakane et al., 1990; Buechler et al., 1991; Harteneck et al., 1991). To date, 

two endogenous, functional isoforms of NO-targeted guanylyl cyclase have been 

discovered: the α1β1- and α2β1-containing enzymes. The isoforms appear to have a 

similar sensitivity to exogenous NO, capacity for cGMP production and 

pharmacology (Russwurm et al., 1998; Gibb et al., 2003), but different intracellular 

distributions (see 1.3.2). The α1β1 isoform was first purified from rat and bovine 

lung and subsequently both participating subunits were cloned and sequenced 

(Koesling et al., 1988; Nakane et al., 1988; Koesling et al., 1990; Nakane et al., 

1990; Russwurm et al., 1998). The α2 subunit was identified by homology screening 

with the α1 subunit. Subsequently, functional α2β1 dimers were reported to form in 
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cells transfected with both subunits (Harteneck et al., 1991) and, in 1998, were 

discovered in human placenta (Russwurm et al., 1998). Message for the α1, α2 and 

β1 subunits has now been found throughout the mammalian body and brain (Gibb 

and Garthwaite, 2001; Mergia et al., 2003).   

 

Two other NO-targeted guanylyl cyclase subunits, namely α3 and β3, have been 

cloned but identified as human variants of the α1 and β1 subunits (Zabel et al., 

1998). Messenger RNA for a β2 NO-targeted guanylyl cyclase subunit has also been 

detected in rodents, and in various organs (Mergia et al., 2003). The expression of 

this subunit with α1 in COS-7 cells has been reported to result in a functional 

cyclase, although with reduced sensitivity to NO compared to the α1β1 and α2β1 

isoforms (Gupta et al., 1997; Gibb et al., 2003). However, the transfection of other 

types of cells with α1 and β2 NO-targeted guanylyl cyclase subunits has failed to 

yield a functional enzyme (Gibb et al., 2003). Furthermore, message for the β2 

subunit in brain and other organs is negligible, and there have been no reports of an 

endogenous functional β2-containing NO-targeted guanylyl cyclase (Gibb and 

Garthwaite, 2001; Mergia et al., 2003).  

 

General structure of heterodimers 

 

Each functionally relevant NO-targeted guanylyl cyclase subunit contains a C-

terminal, catalytic domain, a dimerisation domain and an N-terminal, regulatory 

domain (see Figure 1.5). The catalytic domain appears to have been highly 

conserved across each NO-targeted guanylyl cyclase subunit, and, within the 

functional enzyme, is so homologous to that of adenylyl cyclase that substitution of 

three amino acids produces a NO-targeted, cAMP-synthesising enzyme (Sunahara et 

al., 1998). It is highly likely that the catalytic domain contains the site for GTP 

binding, and consistent with this, studies using site-directed mutagenesis have found 

the catalytic domain to be sufficient for un-stimulated cGMP production (Wedel et 

al., 1995).  

 

The N-terminal regulatory domain of each heterodimer binds one haem prosthetic 

group, primarily through an interaction with the haem Fe
2+

 and His-105 of the β1 
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subunit (Wedel et al., 1994). The α subunits, which differ significantly from each 

other within the N-terminal region, may also be necessary for haem binding (Wedel 

et al., 1995; Foerster et al., 1996; although see Koglin and Behrends, 2003), thus 

partly explaining why NO-targeted guanylyl cyclase is an obligate heterodimer. The 

haem is the NO-binding site within the cyclase. It has long been known that NO 

binds to haem; indeed its interaction with reduced haemoglobin was critical to the 

identification of NO as EDRF (Ignarro et al., 1987). As such, the haem component of 

NO-targeted guanylyl cyclase was discovered relatively soon after initial attempts to 

purify the enzyme (Craven and DeRubertis, 1978; Gerzer et al., 1981) and was 

immediately identified as a putative NO binding site. Now the evidence in favour of 

this is convincing. Studies have shown, for example, that haem loss (Foerster et al., 

1996), truncation of the N-terminal domain (Wedel et al., 1995; Foerster et al., 1996) 

or substitution of His-105 with phenylalanine (Wedel et al., 1994) renders the 

guanylyl cyclase NO-insensitive.   

 

 

 

 

 

 

 

 

 

 

Figure 1.5 The domain structure of NO-targeted guanylyl cyclase. The haem is shown in grey. 

Adapted from Bartus (2009). 

 

NO-targeted guanylyl cyclase activation and catalytic mechanism 

 

Soon after NO-targeted guanylyl cyclase was purified from lung, mass spectrometry 

and high-performance liquid chromatography were used to determine the reaction by 

which the enzyme synthesises cGMP. The accepted scheme is shown in Figure 1.6. 

NO-targeted guanylyl cyclase is thought to synthesise cGMP by the expulsion of 

pyrophosphate from GTP (Senter et al., 1983). A basic amino acid residue (labelled 
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X in the figure), the identity of which is currently unknown, is required to accept a 

proton from GTP during the reaction.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Proposed means of cGMP synthesis from GTP by NO-targeted guanylyl cyclase. A basic 

residue in the NO-targeted guanylyl cyclase (shown as X) accepts a proton from the hydroxyl group at 

position five of the ribose moiety of GTP. This leads to the displacement of pyrophosphate (PPiO) 

from the molecule and the formation of cGMP. 

 

Detailed structure-function studies are required to elucidate how NO binding to the 

NO-targeted guanylyl cyclase haem catalyses this reaction. However, studies on a 

homologous cyanobacterial NO detector, in conjunction with the analysis of UV-

visible absorbance spectra for different haem species formed during NO binding, 

have led to a general scheme in which the cyclase passes through inactive, NO-

bound and active states (Figure 1.7;  Bellamy and Garthwaite, 2002). When the 

enzyme is inactive, the haem appears to be five-coordinated, its Fe
2+

 centre 

covalently bound to the cyclase via His-105 in the N-terminal of the β1 subunit. NO 

binding to the haem, which is thought to be so rapid that it is almost diffusion-

limited, forms a six-coordinated haem and is thought to cause the haem to pivot, 

leading to the rapid (within 1 ms) translocation and subsequent rupture of the bond 

between it and His-105. Rupture of the bond is assumed to cause a conformational 

change in the cyclase that propagates to the catalytic domain by some unknown 

mechanism and causes up to a 1000-fold increase in the rate of cGMP synthesis. The 

propagation of this conformational change is thought to be the rate-limiting step in 

activation of the enzyme and is hypothesised to facilitate access of GTP to the 

catalytic site. 

X XH

PPiO

Guanosine
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Figure 1.7 Two-step model for NO-targeted guanylyl cyclase activation by NO. In its inactive state, 

the haem group is five coordinated and bound to His-105 of the cyclase β1 subunit. Upon NO binding, 

a 6 co-ordinate haem is formed. This strains the bond between His-105 and haem, resulting in its 

cleavage and the formation of the active NO-targeted guanylyl cyclase. Absorbance maximum or 

Soret peaks for each species are given. Taken from Bellamy and Garthwaite (2002). Reproduced by 

kind permission of Springer Science and Business Media. 

 

1.3.2 Location of NO-targeted guanylyl cyclase in brain and its 

intracellular distribution 

 

As assessed using quantitative reverse transcription PCR, message for the NO-

targeted guanylyl cyclase is present throughout the body, and is particularly abundant 

in the lung and brain (Mergia et al., 2003). In the latter organ, in situ hybridisation 

(Matsuoka et al., 1992; Gibb and Garthwaite, 2001), immunohistochemistry (Ding et 

al., 2004), quantitative PCR and Western blot analysis (Mergia et al., 2003) suggest 

that all three functionally relevant NO-targeted guanylyl cyclase subunits (α1, α2 and 

β1) are present, although in an uneven distribution. Overall, the amount of mRNA 

for each of the α subunits appears to be equal and ~ half the total measured for β1, 

consistent with, though not in direct confirmation of, β1 being common to both of the 

functional NO-targeted guanylyl cyclase isoforms so far identified (Mergia et al., 

2003). In some brain areas, for example, the cerebellum, hippocampus and olfactory 

bulbs, the cyclase appears to be densely expressed. In other areas, such as neocortex 

and brain stem, fewer NO-targeted guanylyl cyclase positive cells are observable. 

However, in every region NOS and NO-targeted guanylyl cyclase appear to co-

occur. Indeed, NADPH diaphorase histochemistry for NOS in rat brain shows a 

remarkably coincident distribution with cGMP immunohistochemistry following in 
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vivo perfusion of the NO donor, sodium nitroprusside (Southam and Garthwaite, 

1993).   

 

Message for the β subunit is almost always accompanied by mRNA for one or, more 

typically, both of the α subunits. Some areas appear to contain more RNA for one α 

subunit than the other. For example, the hippocampus and cerebellum appear richer 

in α2, whereas the caudate putamen and nucleus accumbens appear richer in α1 

(Gibb and Garthwaite, 2001). These trends have been confirmed by quantitative real-

time PCR (Mergia et al., 2003).  

 

Within cells, the α1β1 and α2β1 appear to differ in their location. This arises due to 

the ability of the α2 subunit to interact with PDZ-containing synaptic proteins, 

including PSD-95 and synapse associated protein-97, through its C-terminal 

(Russwurm et al., 2001). In this way, the α2β1 isoform may be anchored to the 

membrane and in remarkable proximity to sites of NO synthesis. In contrast, the 

α1β1 isoform appears to be mainly cytosolic, although, in platelets and lung 

endothelial cells, it has been found to translocate to the membrane upon raised 

concentrations of intracellular Ca
2+

. Translocation to the membrane has been found 

to increase the sensitivity of the cyclase to NO (Zabel et al., 2002), perhaps by 

placing the cyclase closer to sites of NO synthesis. 

   

1.3.3 Regulation of NO-targeted guanylyl cyclase 

 

Compared to NOS, relatively little is known about how NO-targeted guanylyl 

cyclase activity is regulated. Some putative examples of regulation are given below, 

although more work is needed to clarify whether these are physiologically relevant 

and what effect they have on NO-induced cGMP accumulation. 

 

Regulation by co-factors 

 

Several co-factors are required for the conversion of GTP to cGMP. Two Mg
2+

 per 

cyclase are required for catalytic activity and may facilitate the binding of GTP to the 

cyclase. Additionally, ATP inhibits NO-targeted guanylyl cyclase, perhaps by 
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binding to a regulatory site in competition with GTP (Ruiz-Stewart et al., 2004; Roy 

and Garthwaite, 2006). Apart from the regulation of the α1β1 intracellular 

distribution by Ca
2+

 (see 1.3.2), this cation also inhibits cGMP synthesis under 

physiological conditions (Kazerounian et al., 2002).  

 

Regulation by phosphorylation 

 

Both the α and β subunits contain several putative phosphorylation sites that might 

confer the cyclase with dynamic regulation (reviewed by Pyriochou and 

Papapetropoulos, 2005). The effect of kinases including PKA and protein kinase C 

on NO-targeted guanylyl cyclases have been researched, although studies have 

yielded contradictory results. Two studies have shown that PKG may inhibit NO-

targeted guanylyl cyclase, thereby providing cGMP production with negative 

feedback (Ferrero et al., 2000; Murthy, 2001). Murthy (2001) found that the NO 

donor, sodium nitroprusside, caused an increase in PKG-dependent 
32

P incorporation 

into NO-targeted guanylyl cyclase in gastric smooth muscle that was accompanied 

by a reduction in cGMP synthesis. Ferrero et al. (2000) have reported that NO-

targeted guanylyl cyclase is phosphorylated under basal conditions by PKG in 

chromaffin cells (neuroendocrine cells of the sympathetic nervous system) and that a 

cGMP analogue or PKG activation leads to the activation of a phosphatase, 

dephosphorylation of NO-targeted guanylyl cyclase and a subsequent decrease in 

sodium nitroprusside-induced cGMP synthesis.   

 

Regulation by protein-protein interactions 

 

 Several proteins may regulate the intracellular distribution of the NO-targeted 

guanylyl cyclases. For example, in endothelial cells, Hsp90 may physically link the 

NO-targeted guanylyl cyclase β1 subunit to eNOS (Venema et al., 2003).  
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1.4 Characteristics of NO/cGMP signals 

 

In the brain, NO may act as a neurotransmitter (discussed 1.9.1). Research suggests 

that bursts of NO are synthesised by nNOS in response to synaptic stimuli that cause 

a rise in intracellular Ca
2+ 

(Park et al., 1998; Batchelor et al., 2010). However, unlike 

classical neurotransmitters, immunohistochemistry for NOS and NO-targeted 

guanylyl cyclase, in accordance with functional studies of NO transmission, suggest 

that NO may act as anterograde (for example, Park et al., 1998), retrograde (for 

example, Arancio et al., 1995; Arancio et al., 1996; Arancio et al., 2001), and/or 

intracellular transmitter (for example, Burette et al., 2002). These effects may be 

synapse specific (see below). Tonic NO signals synthesised by continuous eNOS 

activity have also been found to effect paracrine transmission between blood vessels 

and groups of neurons (for example, Garthwaite et al., 2006; Hopper and Garthwaite, 

2006). To describe the ability of a ‘cloud’ of NO to diffuse freely from a source and 

potentially affect all receptive structures contacted by a physiologically relevant 

concentration, the term ‘volume signalling’ has been used. Despite intense research 

on the dynamics of NO signalling, details that are vital to our understanding of how 

NO is capable of such diverse signalling, such as what constitutes a physiological or 

pathological concentration of NO, or how far a physiological concentration of NO 

can spread through brain tissue from a site of synthesis, remain unclear.  

 

1.4.1 Concentration of physiological NO signals 

 

Initial attempts to measure endogenous NO employed NO/cGMP assays and NO 

electrodes, which translate a chemical reaction between NO and the electrode tip into 

an electric potential. Unfortunately, these approaches have many drawbacks, and 

have led to a wide spread of measurements (from femtomolar to low micromolar 

values). More recently, NO biosensors have been used to measure the concentration 

of endogenous NO signals elicited by physiological stimuli. These biosensors are 

composed of cGMP binding sites connected to fluorescent proteins. Cyclic GMP 

binding causes a conformational change in the protein and concomitant change in its 

fluorescence. This type of biosensor takes advantage of the amplification of NO 

signals by cGMP production and the high selectivity of cGMP-binding proteins over 
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cAMP and GTP (reviewed by Hall and Garthwaite, 2009). Using a fluorescence 

resonance energy transfer-based biosensor incorporating the cGMP-binding domain 

of NO-targeted guanylyl cyclase, Sato et al. have detected 1 nM endogenous NO 

inside un-stimulated endothelial cells.  Approximately 100 pM NO was detected 

inside a cell placed next to hippocampal neurons under the influence of spontaneous, 

oscillatory network activity or endothelial cells stimulated with ATP (Sato et al., 

2005; Sato et al., 2006). In support of such low concentrations of NO representing 

physiological signals, studies using human embryonic kidney (HEK) cells 

transfected with a biosensor composed of the cGMP-binding domain of PKG fused 

to a circularly permutated enhanced green fluorescent protein have shown that even 

smaller concentrations of exogenous NO (1-3 pM) can be detected by NO-targeted 

guanylyl cyclase, even in the presence of a phosphodiesterase (PDE; a 

phosphohydrolase that degrades endogenous cGMP (see 1.4.4); Batchelor et al., 

2010). Very recently, HEK cells containing this biosensor have been used to detect ~ 

100-200 pM endogenous NO from overlying cerebellar and hippocampal slices upon 

stimulation with NMDA (Wood et al., 2011). Consistent with such low amplitude 

physiological NO signals, only low nanomolar concentrations of NO have been 

recorded in cerebellar slices and hippocampal slice cultures following extreme 

stimuli, such as ischemia, maximal NMDA receptor activation and iNOS activation 

(reviewed by Hall and Garthwaite, 2009).  

 

1.4.2 Spread of NO through tissues 

 

NO is predicted to diffuse rapidly through tissues (tissue diffusion constant of 8.48 

µm
2
/s). At low nanomolar concentrations, the NO free radical is predicted to be 

relatively stable. For example, autoxidation of NO will be minimal. However, NO 

will react with lipid peroxyl radicals and haemoglobin in blood vessels, and it has 

been suggested that this will limit the half-life of NO in tissue to ~ 1 s (reviewed by 

Garthwaite, 2008). Further to this, the spread of NO in brain tissue appears to be 

hugely limited by an unknown means of NO inactivation. In cerebellar slices, this is 

predicted to limit the half-life of < 10 nM NO to ~ 10 ms. NO inactivation by brain 

tissue has been illustrated by a marked gradient of immunostaining for NO-induced 
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cGMP in cross-sections of 400 µm-thick cerebellar slices bathed in a solution 

containing exogenous NO (Hall and Garthwaite, 2006).  

 

Using a high estimate of the rate of NO production by nNOS (20 molecules/s as 

measured using the purified enzyme) it has been predicted that, in a 400-nm-diameter 

PSD containing 50 NMDA receptors, each linked to one nNOS and all active 

simultaneously, ~ 2 nM NO would be generated, which, upon diffusion, would 

reduce to 1 nM NO on the other side of the synaptic cleft (60 nm away from the 

central source of NO), and 250 pM 1 µm away. Upon guanylyl cyclase activation, 

250 pM NO would be capable of generating ~ 0.4 M cGMP (Garthwaite, 2008), 

which is in excess of that needed to trigger downstream signalling, for example, by 

cGMP-dependent protein phosphorylation (Francis et al., 2010).  

 

Following lower NMDA receptor activation, the NO cloud would be predicted to 

become synapse specific, a property favouring the role of NO in input-specific 

synaptic plasticity. Considering continuous NO synthesis, such as by eNOS in blood 

vessels, it should be noted that, throughout the brain, brain cells are  ≤ 25 µm (~ a 

cell diameter) away from a capillary (Pawlik et al., 1981), which are capable of tonic 

NO production (Mitchell and Tyml, 1996). Therefore, brain capillaries may be as 

well suited for bathing neurons in a low-level of NO as they are to delivering them 

O2 (Garthwaite, 2008). 

 

1.4.3 NO-induced cGMP signals 

 

NO-targeted guanylyl cyclase is highly suited to the capture and transduction of low 

amplitude, brief NO signals. As discussed above (1.3.1), NO binds the prosthetic 

haem of the enzyme. Although unremarkable in structure, the haem, once 

incorporated into the NO-targeted guanylyl cyclase, has high affinity for NO 

(dissociation constant ~ 20 nM) and exhibits remarkable selectivity for it over NO
+
, 

NO
-
 and O2. This allows physiological NO signals to be detected in the presence of > 

10,000 fold excess of O2. Unlike the binding of NO to other haem-containing 

proteins, such as haemoglobin, the binding of NO to NO-targeted guanylyl cyclase 

appears rapidly reversible (activity in cells decays with a half-time of ~200 ms upon 
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removal of NO). This endows the activation of the purified cyclase with a half-life of 

~ 2-5 s following the addition of a NO scavenger. This half-life, coupled with almost 

instantaneous (within 20 ms) guanylyl cyclase activity upon NO binding, allows the 

faithful transduction of transient NO signals. It is interesting to note that NMDA 

receptor activation, which is thought to be the preferential means of stimulating 

nNOS in vivo, follows similar kinetics (reviewed by Bellamy and Garthwaite, 2002; 

Koesling et al., 2004; Garthwaite, 2005; Garthwaite, 2008).  

 

Surprisingly, physiological signals are predicted to be several 1000-fold lower than 

the EC50 of NO-targeted guanylyl cyclase predicted using platelets and cerebellar cell 

suspensions (10 nM). Nevertheless, the remarkable sensitivity of NO-targeted 

guanylyl cyclase for picomolar concentrations of NO may be explained by a large 

receptor excess. This in turn explains why smooth muscles are capable of NO-

induced relaxation despite the deletion of > 90 % of NO-targeted guanylyl cyclase 

(Mergia et al., 2006). An excess of NO-targeted guanylyl cyclase is predicted to act 

as a sink for NO, which will create a gradient for the diffusion of NO into receptor 

pools, thereby promoting the diffusion of NO towards its targets (Batchelor et al., 

2010).  

 

1.4.4 Termination of cGMP signals 

 

Independent of the removal of NO and rapid deactivation of NO-targeted guanylyl 

cyclase, the declining phase of a cGMP signal is shaped by desensitisation of the 

cyclase and rapid (typically within 1 s) degradation of cGMP by PDEs. These 

mechanisms further enable the transduction of NO signals with high fidelity and may 

also prevent the generation of saturating concentrations of cGMP. Furthermore, 

diversity in the kinetics, sub-cellular location, tissue distribution and regulation of 

PDEs may allow NO signals to generate hugely diverse cGMP signals in different 

cells and within different intracellular compartments (see Table 1.3 and Fischmeister 

et al., 2005).  

 

PDE’s catalyse the hydrolysis of cyclic nucleotides to non-cyclised monophosphates 

(i.e. 3’, 5’-cGMP to 5’-GMP) by degrading the 3’ cyclic phosphate bond in the cyclic 
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nucleotide molecule (see Figure 1.9B). PDEs have been found to exist in all cell 

types tested. They are a superfamily comprising 11 distinct enzymes. The existence 

of multiple active subtypes of each enzyme and of splice variants has led to estimates 

that over 50 different PDEs exist in mammals. PDEs appear to exist as homodimers 

with a C-terminal catalytic domain and an N-terminal regulatory domain containing 

sites for interaction with proteins capable of influencing the enzyme’s catalytic 

activity and subcellular location. Overall, PDEs appear to share less than 30 % 

homology in structure, and this is consistent with diversity in their sub-cellular 

location, tissue distribution and activity (see Table 1.3; reviewed by Bender and 

Beavo, 2006; Francis et al., 2010).  

 

Desensitisation of NO-targeted guanylyl cyclase has been demonstrated in cerebellar 

astrocytes, platelets and striatal neurons. In intact cerebellar cells, it occurs within 

seconds (or less), increases with NO concentration (EC50 10-20 nM NO), and is slow 

to reverse (half-time of 16 min). Its mechanism is unclear, although desensitisation 

does not occur in cell lysates or to the purified enzyme, suggesting that some cellular 

factor(s) is required (Bellamy and Garthwaite, 2002; Garthwaite, 2008).  

 

1.5 Major cGMP targets 

 

1.5.1 cGMP-dependent protein kinase (PKG) 

 

PKG is a serine/threonine kinase dependent upon cGMP binding for catalytic 

activity. Two isoforms of PKG, encoded by two genes, have been discovered: PKGI, 

of which there are two functional splice variants named α and β, and PKGII. All 

PKGs exist as homodimers, each subunit containing: a N-terminal domain 

responsible for dimerisation, interaction with regulatory proteins, 

autophosphorylation and autoinhibition; a regulatory domain with two homologous 

allosteric binding sites for cGMP; and a C-terminal catalytic domain with substrate- 

and ATP-binding sites (reviewed by Feil et al., 2005a; see Figure 1.8). The N-

terminal of PKGII, but not PKGIα or β, contains consensus sequences for 

myristoylation which allows the association of this isoform with plasma membranes 

(Vaandrager et al., 1996). Additionally, PKGIα and β vary in the N-terminal region, 
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and this may confer each variant with differences in sensitivity, substrate specificity 

and localisation (reviewed by Francis et al., 2010).  

 

It is unclear exactly how cGMP binding to PKG causes an increase in 

phosphorylation. Currently, it is thought that, in the absence of cGMP, the catalytic 

domain of the kinase is covalently bound to and inhibited by the N-terminal. Binding 

of cGMP to the catalytic domain is hypothesised to cause a conformational change or 

elongation of PKG that distances the N-terminal from the catalytic domain, leading 

to the relief of autoinhibition and a three- to ten-fold increase in phosphotransferase 

activity. The binding of four cGMPs to PKG (two per monomer) is required for full 

activity (Feil et al., 2005a). PKGI contains one high affinity and one low affinity 

cGMP site, whereas PKGII contains two low affinity sites. This may partly explain 

why the PKG isoforms are differentially sensitive to cGMP. Sensitivity to cGMP 

follows the order: PKGIα > PKGIβ > PKGII (Gamm et al., 1995). Gamm et al. 

(1995) report that the Ka values of recombinant PKGIα and PKGII purified from 

mouse brain and expressed in HEK 293 and Sf9 cells are 0.092 µM and 0.80 µM 

cGMP, respectively. The sensitivities of all the PKGs to cGMP may be increased by 

autophosphorylation at a site overlapping the autoinhibition domain in the N-

terminal, leading to an increase in the enzymes activity at basal cGMP concentrations 

and prolonged activation (Francis et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Predicted structure of PKGI. Monomers are labelled. The leucine zipper is the proposed 

site of homodimerisation. In the absence of cGMP, the catalytic site is inhibited by binding to the 

autoinhibitory subdomain. Binding of cGMP causes a conformational change that is proposed to 

Monomer 1

Monomer 2
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remove the catalytic site from autoinhibitory contacts (see red arrow). Adapted from Francis et al. 

(2010). Reproduced by kind permission of ASPET Journals. 

 

Like NOS and NO-targeted guanylyl cyclase, PKG appears to be widely expressed in 

the mammalian body, and is predominant in in brain, platelets and the cardiovascular 

system. Messenger RNA and protein for both PKG isoforms has been detected 

throughout the rodent brain, including in the cerebellum, olfactory bulbs, cortex and 

hippocampus. The distributions of each isoform appear to overlap (el-Husseini et al., 

1995; de Vente et al., 2001; Feil et al., 2005b). Using immunoblotting, it has also 

been shown that both the α and β PKG I splice variants are present, although to 

varying ratios in different brain regions (Feil et al., 2005b).  

 

Through the use of techniques such as 
32

P-labelling, several potential PKG targets 

have been identified (Table 1.2), and PKG-mediated phosphorylation has been 

linked to multifarious processes, including synaptic plasticity, cytoskeletal dynamics 

and smooth muscle relaxation (Feil et al., 2005a; Francis et al., 2010). Given 

problems such as the lack of a known PKG phosphorylation consensus sequence, it is 

thought that many PKG substrates/effects of PKG-dependent phosphorylation are 

unknown. Nevertheless, the effects of PKG phosphorylation so far identified 

correlate well with the phenotype of PKG knock-out mice (Schlossmann et al., 

2005). 
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Table 1.2 Potential PKG substrates. Some potential PKG substrates, their prime location and the 

processes that might be effected upon their phosphorylation by PKG are listed. CREB = cAMP 

response element-binding protein; GluR1 = AMPA receptor GluR1 subunit; InsP3 = inositol 1,4,5-

trisphosphate; IRAG = InsP3R-associated cGMP Kinase Substrate; LTD = long-term depression; 

VASP = vasodilator-stimulated protein. Arrows indicate whether PKG phosphorylation is inhibitory 

(↓) or required/facilitatory (↑). 

 

1.5.2 cGMP-regulated phosphodiesterases  

 

Some PDEs are cGMP-regulated. This may occur via cGMP-mediated 

phosphorylation of PDEs, as exemplified by an increase in the catalytic activity of 

PDE 5 upon PKG-dependent phosphorylation (Thomas et al., 1990; Corbin et al., 

2000), and/or by direct binding of cGMP to allosteric ‘GAF’ domains in PDE N-

terminals, as in PDEs 2, 5, 6 and 10. A working model of cGMP-regulated, cGMP-

hydrolysing PDE5 is shown in Figure 1.9A. 

 

 

 

 

 

 

 

 

Isoform  Substrate Substrate 

location 

Processes effected by 

phosphorylation 

Reference 

PKG 1 G-substrate  Neurons  Synaptic plasticity (LTD ↑) Detre et al. (1984) 

PDE 5 Platelets 

Smooth muscle 

Neurons 

Multiple processes 

downstream of NO/cGMP 

signalling (↓↑) 

Corbin et al. (2000) 

VASP Platelets Aggregation (↓) Massberg et al. (1999) 

Neurons Structural plasticity (LTP ↑) Wang et al. (1991) 

IRAG/InsP3 

receptors 

Smooth muscle 

Platelets 

Relaxation (↑) 

Aggregation (↓) 

Schlossmann et al. 

(2000) 

PKG11 GluR1  Neurons Synaptic plasticity (LTP ↑) Serulle et al. (2007) 

CREB Neurons Gene expression (↑) Gamm et al. (1995) 
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Figure 1.9 Predicted structure of PDE 5. A) PDE 5 is predicted to be a homodimer, each monomer 

comprising catalytic and regulatory domains. The catalytic site is found within the catalytic domain, 

close to a Zn2+ and another divalent metal ion (perhaps Mg2+ or Mn2+) which facilitate the 

polarisation of a hydroxyl ion from water for breaking the cyclic phosphate ring. Catalysis can be 

enhanced by PKGI phosphorylation at serine-102 near the amino terminus, and/or by cGMP binding 

to GAF-A. B) PDEs degrade the 3’ cyclic phosphate bond in cyclic nucleotides. Picture shows cAMP. 

Adapted from Francis et al. (2010) and Bender and Beavo (2006). Reproduced by kind permission of 

ASPET Journals. 

 

‘GAF’ domains, named after an acronym of the first three classes of protein in which 

they were discovered (cGMP-regulated PDEs, cyanobacterial adenylyl cyclase and 

Escherichia coli transcription factor Fh1a), are common to proteins involved in 

cyclic nucleotide signalling. Two GAF domains (A and B) are found in the N-

terminal of cGMP-regulated PDEs 2, 5, 6, and 10. In different PDEs, cGMP may 

selectively bind one or the other GAF domain, causing either an increase or decrease 

in cyclic nucleotide hydrolysis (see Table 1.3). It is unclear why cGMP 

preferentially binds one GAF domain over the other, and what the function(s) are of 

GAF domains that do not bind cGMP. PDE 11, which is found in skeletal muscle, 

prostate, kidney, liver, testes and pituitary glands, also contains GAF domains, 

although one is truncated and the PDE’s activity is insensitive to cGMP (reviewed by 

Bender and Beavo, 2006).  

 

PDE activity not only regulates the NO-cGMP pathway,  but may also facilitate 

cross-talk between cAMP and cGMP-dependent signalling cascades. For example, it 

has been advanced that a rise in intracellular cGMP may lead to the competitive 
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inhibition of cAMP hydrolysis by PDEs that are not substrate-selective, for example 

PDE 1C. It has also been discovered that the hydrolysis of cAMP by PDE 3 is 

inhibited by a rise in cGMP, presumably because the enzyme has high affinity for 

cGMP but hydrolyses it slowly (Degerman et al., 1997). In human cardiac myocytes, 

cGMP-mediated inhibition of PDE 3 is thought to occur downstream of NO, leading 

to cAMP accumulation, PKA activation and a phosphorylation-dependent increase in 

the activity of L-type VGCCs, which are critical to cardiac function (Kirstein et al., 

1995). The NO-cGMP-PDE 3 pathway has also been implicated in the regulation of 

other channels required for cardiac function, such as hyperpolarisation-activated, 

cyclic nucleotide-gated (HCN) channels, and is thought to act in concert with other 

cGMP-regulated PDEs, including cGMP-activated PDE 2 (Fischmeister et al., 2005). 

Outside cardiac myocytes, a cGMP-induced increase in cAMP hydrolysis by PDE 2 

has been implicated in platelet aggregation and hormone secretion from the adrenal 

gland (reviewed by Bender and Beavo, 2006). Other processes, including 

neurodevelopment and synaptic plasticity, might also be affected by PDE-mediated 

cAMP and cGMP cross-talk, since these nucleotides often act in parallel signalling 

pathways during these phenomena.  

 

Given the above, the diversity in PDE tissue distribution, substrate selectivity and 

kinetics (summarised in Table 1.3), as well as the intracellular compartmentalisation 

of PDEs by their association with kinases and scaffolding proteins, PDE activity is 

likely to have huge consequences for the diversity of cGMP signals that could be 

elicited by one NO signal in one cell (reviewed by Fischmeister et al., 2005; Bender 

and Beavo, 2006; Francis et al., 2010).  
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Table 1.3 cGMP-hydrolysing PDEs. The table lists all the known cGMP-hydrolysing PDEs, some of 

their main locations, their intracellular distribution, substrate selectivity, Km and Vmax. The column 

labelled ‘cGMP’ shows the effect of an increase in intracellular cGMP on PDE activity, where ↑ is 

facilitatory and ↓ is inhibitory. Information from Bender and Beavo (2006). 

 

1.5.3 Cyclic nucleotide-gated channels 

 

Cyclic nucleotide gated (CNG) channels were first discovered in rod cells in the 

retina (Fesenko et al., 1985) as a result of research aimed at discovering the channel 

responsible for the cGMP-mediated ‘dark current’ (reviewed by Baylor, 1996). Soon 

after this they were also found in cone cells (Bonigk et al., 1993) and olfactory 

sensory neurons (Dhallan et al., 1990), in which they generate the main odorant-

induced electrical signal (reviewed by Craven and Zagotta, 2006; Cukkemane et al., 

2011). Using techniques such as in situ hybridisation and Northern blotting, mRNA 

and protein for CNG channels has now been detected throughout the nervous system 

in brain areas including hippocampus and cerebellum, and in organs such as heart 

and kidney (reviewed by Kaupp and Seifert, 2002).  

 

CNG channels are structurally related to voltage-gated K
+
 channels, although their 

activation by voltage is negligible. Rather, they open upon direct binding of cyclic 
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nucleotides to an intracellular domain within the C-terminal. Native channels are 

heterotetrameric, each subtype, of which three have been conclusively identified, 

typically comprising a combination of three α subunits (1-3) and a regulatory subunit 

(β1α, β1β, β3 or α4). The regulatory subunits influence ligand selectivity and 

sensitivity and bind regulatory factors like CaM. Different combinations of subunits 

appear to endow CNG channels in different tissues with unique properties. For 

example, CNG channels in rod cells, which contain three CNGα1 subunits and one 

CNGβ1 subunit, are highly selective for cGMP, whereas olfactory-type channels, 

which are hypothesised to contain two CNGα2, one CNGα4 and one CNGβ1β 

subunit, respond equally well to cAMP and cGMP (Kaupp and Seifert, 2002). 

 

All subunits share a common topology, comprising six transmembrane domains with 

a Ca
2+

-permeable, cation selective pore between the fifth and sixth. Each subunit 

contains a C-terminal domain for cyclic nucleotide binding (CNBD) which has been 

likened to the cGMP binding domain within PKG and is thought to be homologous 

with the CNBD of HCN channel subunits. Based on the recent crystallisation of the 

HCN2 subunit CNBD, it is thought that each CNG channel subunit CNBD binds one 

cyclic nucleotide. The dependence of channel activation on cyclic nucleotide 

concentration is very steep, therefore allowing a broad range of inputs to be 

transduced with high fidelity. Analysis of the concentration-response curve has led to 

the hypothesis that multiple, probably four, cyclic nucleotides are required for full 

channel opening. It is unclear how nucleotide binding causes channel opening, 

although it has been proposed that occupation of the CNBD causes a conformational 

change that is transferred to the sixth transmembrane domain by a C-linker (a stretch 

of ~ 80 amino acids that is essential for channel gating and promotes tetramerisation; 

see Figure 1.10). Unusually, CNG channels do not desensitise, but their sensitivity 

to cyclic nucleotides may be significantly inhibited by CaM binding, suggesting that 

the CNG channel Ca
2+

 current can affect negative feedback on CNG channel activity 

(see reviews by Kaupp and Seifert, 2002; Craven and Zagotta, 2006). 
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Figure 1.10 Predicted topology of CNG and HCN channel subunits. Each subunit constitutes six 

transmembrane domains (S1–6), a pore loop between S5-6, and a cyclic nucleotide‐binding domain 

(CNBD) in the C-terminal connected to S6 by a C-linker (*). CNG channels conduct Ca2+ and Na+. 

HCN channels conduct Na+ and K+. It is unclear whether they conduct Ca2+. CNG channels are 

activated upon binding of either cAMP or cGMP to the CNBD, depending on the channel type. HCN 

channels are activated upon membrane hyperpolarisation which causes the movement of positively 

charged residues (+) in S4 and the opening of the pore. Binding of cAMP or cGMP to the CNBD 

causes a depolarising shift in voltage dependence.  

 

The ability of CNG channels to directly translate NO/cGMP signals into rises in 

intracellular Ca
2+

 has generated intense interest in their physiology, although many 

aspects of CNG function remain unclear. Among the processes in which the 

NO/cGMP/CNG pathway has been implicated are axonal guidance in chick retina 

during development (Wu et al., 1994), regulation of membrane potential (Vm) and 

activity-dependent conductance in frog and rat olfactory neurons (Schmachtenberg et 

al., 2003), neurotransmitter release from lizard cones (Savchenko et al., 1997) and 

synaptic plasticity (LTP) at CA1 synapses in mouse hippocampal slices (Parent et 

al., 1998).   

 

1.5.4 Hyperpolarisation-activated, cyclic nucleotide-regulated channels 

 

HCN channels were first discovered in sinoatrial node cells in the heart and then in 

neurons, including hippocampal neurons, in the late 1970s and early 1980s. They 

have now been detected throughout the rodent central nervous system, including in 

brainstem, retina, olfactory bulbs, cerebellum and spinal cord (Notomi and 
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Shigemoto, 2004; Milligan et al., 2006). They are closely phylogenetically related to 

CNG channels and are similar in structure, being tetramers comprised of varying 

(unknown) combinations of four different subunits (1-4), each including six 

transmembrane domains and an intracellular CNBD (Figure 1.10). Unlike CNG 

channels, they are primarily voltage-gated. As in voltage-gated K
+
 channels, 

positively charged residues in the fourth transmembrane domain of each subunit 

serve as a voltage sensor which move inwards during hyperpolarisation. Unusually, 

this sensor, by some unknown downstream mechanism, elicits channel opening in 

response to hyperpolarisation (at potentials negative to -50 to -60 mV (resting Vm)). 

Channel opening leads to an inward Na
+ 

current known as Ih (hyperpolarisation), Iq 

(queer), or If (funny) and depolarisation of the membrane towards the action potential 

threshold. Consequently, HCN channels have been linked to the generation of 

oscillatory activity in excitable cells, most notably in sinoatrial node cells, which are 

pacemakers for heart rate, and thalamocortical neurons, which generate rhythmic 

‘burst’ activity during non-rapid eye movement sleep (see Figure 1.11; reviewed by 

Craven and Zagotta, 2006).  
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Figure 1.11 Role of HCN channel activity in oscillatory activities in excitable cells. HCN channel 

activation underpins the oscillatory activity of sinoatrial node cells in the heart and thalamocortical 

relay neurons in the brain (see locations in upper panels). The lower panels show the ionic currents 

responsible for each phase of each form of oscillation. IT = low-voltage activated, T-type VGCC 

current. Figure compiled using images from www.texasheartinstitute.org (accessed 1/5/2012) and 

www.knol.google.com (accessed 22/09/11), Craven and Zagotta (2006) and Biel et al. (2009). 

 

Binding of either cAMP or cGMP to the HCN channel CNBD causes a depolarising 

shift in HCN channel activation (by ~ 15 mV upon stimulation of recombinant 

homomeric HCN2 channels with saturating concentrations of cAMP), speeds up 

channel opening and increases the amplitude of Ih. Accordingly, cAMP binding to 

channels in sinoatrial node cells causes an increase in heart rate. Binding of cAMP 

and cGMP have similar effects on HCN channel activity, although recombinant and 

native channels are typically less sensitive to cGMP (by ~ 10-30-fold compared to 

cAMP), which has led to doubt over whether cGMP is a natural ligand for HCN 

channels. Sensitivity to cyclic nucleotides, as well as activation kinetics and gating 

properties, appear to vary with subunit composition (reviews: Craven and Zagotta, 

2006; Biel et al., 2009).   

Sinoatrial node cells Thalamocortical neurons

IT de-inactivate 
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The unusual properties of Ih have implicated HCN channels in the setting of resting 

Vm, which will be subject to a depolarising shift in the presence of HCN channels, 

and the regulation of resting membrane resistance, which will be lowered in the 

presence of Ih. Accordingly, Ohm’s law dictates that an input current (either hyper- 

or depolarising) will evoke a smaller change in Vm when Ih is active. This will lead to 

the stabilisation of resting Vm under basal conditions and an increase in the 

amplitude attenuation of excitatory postsynaptic potentials (EPSPs) as they travel to 

the soma. Therefore, Ih is thought to be involved in dendritic integration and EPSP 

summation. Through the above processes, Ih has been found to regulate 

neurotransmission and synaptic plasticity in multiple areas of the nervous system, in 

particular the hippocampus (Biel et al., 2009).  

 

HCN channels have only recently been identified as potential targets of NO/cGMP. 

Some of the first research in support of this was performed in guinea pig and cat 

thalamocortical neurons. Pape and Mager (1992) found that the depolarisation of 

resting Vm via the NO/cGMP/HCN channel pathway causes a reduction in bursting 

by limiting the de-inactivation of T-type VGCCs and consequent rebound 

depolarisation. In this way, NO/cGMP has been hypothesised to regulate the switch 

in thalamocortical neurons from bursting behaviour during non-rapid eye movement 

sleep to ‘single spike’ mode which prevails during rapid eye movement sleep and 

wakefulness.  

 

More recently, the NO/cGMP/HCN channel has been found to regulate the 

excitability of neurons in the spine (Kim et al., 2005), optic nerve (Garthwaite et al., 

2006) and hippocampus (Neitz et al., 2011). Depolarisation of spinal neurons by 

HCN channels has been postulated to underlie central sensitisation (Kim et al., 

2005), a process likened to LTP and a correlate of chronic pain (reviewed by Ji et al., 

2003). In the hippocampus, the modulation of HCN channels by endothelium-

derived NO is thought to set a basal level of neurotransmitter release at CA1 

synapses (Neitz et al., 2011).  

 

Several aspects of NO/cGMP/HCN signalling remain ambiguous and more work will 

be needed to elucidate its impact on physiology. Given the apparent insensitivity of 



Chapter 1: General introduction 

 

53 

recombinant HCN channels to cGMP, it would be interesting to test whether the 

above effects of NO result from binding of cGMP to HCN channels directly, or 

through an indirect effect on cAMP-binding to channels, for example, by a reduction 

in PDE-induced hydrolysis of cAMP.  

 

1.6 Pharmacology of NOS and NO-targeted guanylyl cyclase 

 

Some of the major pharmacological tools available for the manipulation of 

NO/cGMP signalling are summarised in Table 1.4.  

 

Agent Example compounds and notes 

General NOS 

antagonists 

NG-nitro-L-arginine (L-NNA)  

N-methyl-L-arginine (L-NMMA)   

NG-nitro-L-arginine methyl ester (L-NAME; L-NNA pro-drug) 

 

L-arginine analogues; low micromolar Ki’s; few secondary effects; actively transported 

into cells (reviewed by Alderton et al., 2001).   

Isoform 

selective NOS 

inhibitors 

nNOS: N5-(1-Imino-3-butenyl)-L-ornithine (L-VNIO; Babu and Griffith, 1998) 

iNOS: [N-(3-aminoethylyl)benzyl]-acetamidine (1400-W; Garvey et al., 1997) 

 

The most potent, selective NOS inhibitors available; no eNOS inhibitors are available.  

NO-targeted 

guanylyl cyclase 

inhibitors 

1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ; Garthwaite et al., 1995) 

 

Prevents NO binding the cyclase by oxidising the haem prosthetic group (Schrammel et al., 

1996). Unlike other inhibitors such as methylene blue and LY83583, which inhibit 

secondary targets including NOS (Mayer et al., 1993; Luo et al., 1995) and CNG channels 

(Leinders-Zufall and Zufall, 1995), ODQ is highly selective at 10 µM. 

NO donors 1-substituted diazen-1-ium-1,2-diolates (NONOates)  

 

A series of compounds that release NO at predictable rates (reviewed by Morley and 

Keefer, 1993). Other donors such as sodium nitroprusside and S-nitroso-N-

acetylpenicillamine (SNAP) are widely used but release NO+, NO-, cyanide ions and O2- 

and decompose in an unpredictable manner (reviewed by Feelisch, 1998). 

 

Table 1.4 Major pharmacological tools used for the manipulation of NO/cGMP signalling. 
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1.7 Endogenous activators of NO-targeted guanylyl cyclase other 

than NO  

 

Carbon monoxide (CO) has been postulated by several researchers to activate NO-

targeted guanylyl cyclase. Like NO, CO is short-lived, freely-diffusible and 

endogenously produced. The enzyme responsible for its synthesis, haem oxygenase, 

is primarily responsible for degrading haem in old erythrocytes (Dawson and Snyder, 

1994). In situ hybridisation has shown that mRNA for haem oxygenase is present 

throughout the CNS in a distribution complementary to that of NO-targeted guanylyl 

cyclase (Verma et al., 1993).  

 

Endogenous CO signalling has been implicated in various processes ranging from 

olfaction (Verma et al., 1993), to LTP at hippocampal synapses (Zhuo et al., 1993), 

to NANC transmission and smooth muscle relaxation (Xue et al., 2000). Many 

studies, mostly performed on the enteric nervous system, suggest that CO and NO 

are co-transmitters.  

 

However, unlike mice lacking NOS, mice deficient in haem oxygenase display no 

gross behavioural abnormalities and have normal whole brain cGMP levels 

(reviewed by Boehning and Snyder, 2003). Some of the specific effects of CO on 

physiology are also controversial. For example, it has been reported that LTP is 

normal in mice lacking haem oxygenase, and that supposed haem oxygenase 

inhibitors, though widely used, inhibit LTP in wild-type and haem oxygenase-

deficient mice to a similar extent (Poss et al., 1995). Furthermore, serious doubts 

over whether CO is a physiological activator of guanylyl cyclase have been raised by 

the finding that millimolar concentrations of CO yield only a four-fold increase in the 

activity of purified NO-targeted guanylyl cyclase (Brune and Ullrich, 1987). The 

poor sensitivity of NO-targeted guanylyl cyclase to CO may be explained by the 

finding that CO binding to the cyclase fails to break the bond between His-105 and 

the haem prosthetic group (Stone and Marletta, 1994). Additionally, doubts over the 

availability of the haem required for CO synthesis, and the apparent lack of 

regulation of haem oxygenase (reviewed by Boehning and Snyder, 2003) have led to 
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a general consensus that CO is not a physiologically relevant activator of NO-

targeted guanylyl cyclase. 

 

1.8 NO-targeted guanylyl cyclase-independent NO signal 

transduction  

 

Some examples of presumed physiological NO signal transduction independent of 

NO-targeted guanylyl cyclase exist. For example, the heterosynaptic spread of LTP 

at synapses between rat cerebellar parallel fibres and Purkinje cells reported by 

Jacoby et al. (2001) was found to be prevented by NOS inhibition and NO 

scavenging but not by a concentration of the NO-targeted guanylyl cyclase 

antagonist, ODQ (5 µM), that was effective in blocking cerebellar LTD.  

 

It has been hypothesised that effects of NO independent of NO-targeted guanylyl 

cyclase might be transduced by the S-nitrosation of cysteine thiol (R-SH) groups. S-

nitrosation can be evoked using high concentrations of NO that can react with 

oxygen to produce nitrosating species such as N2O3. Changes in the function of 

proteins upon S-nitrosation are thought to result from changes in their tertiary 

structure, which is in part determined by the location of cysteine thiols (Dudzinski et 

al., 2006). S-nitrosation was exemplified by the negative feedback of NO on synaptic 

NMDA receptors reported by Lipton et al. (2002), who proposed that it occurred via 

S-nitrosation of NMDA receptor cysteine residues. However, this was later found to 

be an artefact of un-caging supra-physiological concentrations of exogenous NO 

using UV light, which may have led to the spurious generation of nitrosating species 

(Hopper et al., 2004). Perhaps in part because of the difficulty of studying nitrosated 

proteins, which are very unstable (Dudzinski et al., 2006), there appear to be no 

unambiguous examples of physiological NO signalling via S-nitrosation, or by a 

related process called S-nitrosylation. Moreover, the requirement for high NO 

concentrations means that, in vivo, S-nitrosation and S-nitrosylation are likely to be 

restricted to certain pathological conditions involving raised NO concentrations, for 

example, following iNOS activation (Zhang and Hogg, 2005). 
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Mitochondrial cytochrome C oxidase, which is the last enzyme in the respiratory 

electron transport chain, has also been suggested as an alternative target for NO, 

leading to speculation that NO might, by competing with O2 for binding, inhibit 

mitochondrial respiration (Erusalimsky and Moncada, 2007). An example of this in 

normal physiology is found in the firefly, in which phasic bursts of NO generated in 

the insect’s lantern may transiently inhibit mitochondrial respiration, therefore 

allowing free oxygen to accumulate to a level necessary for the initiation of the 

biochemical cascade underlying the characteristic firefly flash (Dudzinski et al., 

2006). However, in mammals at physiological O2 concentrations (20-30 µM), the 

EC50 of cytochrome oxidase C for NO (~ 120 nm) is significantly greater than even 

generous estimates of physiological NO concentrations, which are probably within 

the low picomolar range (see 1.4.1). Furthermore, endogenous NO is unlikely to 

exceed a few nanomolar following even intense stimulation of NOS (reviewed by 

Hall and Garthwaite, 2009). Thus, mitochondrial inhibition by NO is also likely to be 

restricted to conditions involving supra-physiological concentrations of NO, and/or 

very low concentrations of O2. As such, NO-targeted guanylyl cyclase is the only 

recognised physiological NO receptor.  

 

1.9   NO signalling in brain 

 

1.9.1 NO-mediated neurotransmission and modulation of cell excitability 

 

NO acts as a neurotransmitter in the brain (Garthwaite, 2008). As in the PNS, 

anterograde neurotransmission may occur upon postsynaptic nNOS activation in 

response to action potential-dependent, intra-axonal Ca
2+

 influx via N-type VGCCs 

and/or other Ca
2+

 channels (reviewed by Vincent, 2010). Anterograde 

neurotransmission by NO has been exemplified at a synapse between two identifiable 

neurons of the buccal ganglia of the pond snail, Lymnaea stagnalis. The reliance of 

this synapse on NO as a neurotransmitter means that, when the participating neurons 

are co-cultured, depolarisation of one can cause an EPSP in the other, regardless of a 

physical connection (Park et al., 1998).  
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Retrograde NO transmission may occur following the opening of postsynaptic 

NMDA receptors and has been exemplified by Arancio et al.. They have shown that, 

during LTP induction at synapses between dissociated hippocampal neurons, NMDA 

receptor activation leads to postsynaptic NO generation and a subsequent increase in 

neurotransmitter release through presynaptic NO-targeted guanylyl cyclase (Arancio 

et al., 1995; Arancio et al., 1996; Arancio et al., 2001). The relevance of this to intact 

tissues remains unclear (see Chapter 3).  

 

NO may also modulate neurotransmission by other molecules. Studies, 

predominantly of neurotransmitter efflux from tissue preparations in vitro, have 

implicated tonic and activity-dependent NO production in the regulation of the 

release of neurotransmitters including ACh, noradrenaline, dopamine, glutamate and 

GABA from brain areas as diverse as cortex, striatum, hypothalamus and 

hippocampus (see Chapter 4 for examples). Interestingly, the release of one 

neurotransmitter may be both up- and down-regulated by NO depending on the 

concentration of NO involved and the tissue under study (reviewed by Prast and 

Philippu, 2001). 

 

Most of these effects appear to be underpinned by NO-mediated changes in 

membrane excitability. Common targets for NO are K
+
 and Ca

2+
 channels (reviewed 

by Garthwaite, 2008). Other targets include, for example, GABAA receptors, as 

illustrated in dissociated cerebellar granule cells by Robello et al. (1996), serotonin 

receptors, as illustrated using invertebrate neurons (Straub et al., 2007), and the 

serotonin uptake transporter (reviewed by Garthwaite, 2007). Several effects appear 

to involve PKG-mediated phosphorylation.  As well as an increase or decrease in cell 

excitability caused by NO, studies, for example, using hippocampal slices (Makara et 

al., 2007) and in the hippocampus in vivo (Hada et al., 2003), suggest that NO can 

cause the disinhibition of synaptic activity via a reduction of GABAergic 

transmission. 
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1.9.2 NO signalling between blood vessels and neurons 

 

In the brain, NO may signal from central neurons to blood vessels, and this may link 

local synaptic activity with vasodilation. For example, application of NMDA to 

hippocampal slices has been reported to cause NO-dependent vasodilation of 

microvessels (Lovick et al., 1999). Similar effects in other brain areas such as 

cerebellum and cortex (reviewed by Garthwaite, 2008) have been found to be 

sensitive to inhibition by the Na
+ 

channel-inhibitor, tetrodotoxin (TTX), suggesting 

that the underlying mechanism is action potential-dependent. 

 

Interestingly, NO also signals from blood vessels to neurons. Convincing evidence 

for vasculoneuronal NO transmission has been provided using optic nerves, which 

contain only blood vessels and axons and no nNOS. It has been found that a low-

level NO tone produced by capillary eNOS causes tonic depolarisation of axons via a 

pathway involving HCN channels (Garthwaite et al., 2006). A low-level (~ 0.1 nM), 

endothelium-derived NO tone has also been discovered in the hippocampus (Hopper 

and Garthwaite, 2006), and eNOS appears to be necessary for NO-dependent LTP at 

CA1 (Kantor et al., 1996; Wilson et al., 1999; Bon and Garthwaite, 2003; Hopper 

and Garthwaite, 2006) and mossy fibre (Doreulee et al., 2001) synapses. Mice 

deficient in eNOS also exhibit impaired LTP in the neocortex (Haul et al., 1999) and 

striatum (Doreulee et al., 2003), suggesting that vasculoneuronal NO signals are 

active in multiple brain areas. In vivo, this form of NO signal may enable blood-

borne agents to influence neuronal activity. 

 

1.10 NO and synaptic plasticity in adults 

 

1.10.1 Synaptic plasticity 

 

The term synaptic plasticity was coined by Jerzy Konorski in 1948 to describe the 

ability of neurons to change the strength of their connections in response to activity. 

He, along with many scientists, assumed synaptic plasticity to be critical for 

information storage in the brain. This idea was first proposed by Santiago Ramon y 
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Cajal in 1894 but it was not until 1949, that this postulate was formalised into a 

hypothesis (see Andersen et al., 2007 for a review). At this time, Donald Hebb 

proposed that if two connected neurons are simultaneously and repeatedly active, 

then the efficacy of the synapse involved will increase (Hebb, 1949).  

 

1.10.2 Long-term potentiation  

 

Hebb’s hypothesis that ‘neurons that fire together, wire together’ attracted much 

attention as a putative explanation for learning and memory, but it was not until 1973 

that Hebbian plasticity was first described. In a ground-breaking report, Tim Bliss 

and Terje Lomo (1973) demonstrated a persistent (lasting hours) enhancement in 

synaptic activity following a brief tetanus (100 or 15 Hz for 3-20 s) applied to 

hippocampal perforant path-granule cell synapses in anaesthetised rabbits. Consistent 

with Hebb’s postulate, this long-lasting potentiation, later renamed LTP, was found 

to be specific to the pathway that was tetanised (Andersen et al., 1977), to depend 

upon coincident pre- and postsynaptic depolarisation that exceeded a threshold for 

LTP induction (McNaughton et al., 1978; Wigstrom et al., 1986), and to persist over 

hours or days in vitro (Bliss and Gardner-Medwin, 1973) and up to a year in vivo 

(Abraham et al., 2002). These properties of LTP have spurred its study at synapses 

throughout the brain, in areas such as the amygdala (Dityatev and Bolshakov, 2005) 

and cortex (Feldman, 2009), and in several species including humans (Cooke and 

Bliss, 2006). Now, the term ‘LTP’ has come to describe any long-lasting (> 1 hr), 

activity-dependent increase in the efficacy of a synapse. It is recognised that the 

potentiation can be composed of multiple pre- and postsynaptic expression 

mechanisms including, amongst others, increased neurotransmitter release, increased 

conductance via excitatory postsynaptic receptors, increased postsynaptic receptor 

density, a change in gene expression and/or the structural remodelling or growth of 

new synapses (Lynch, 2004; Malenka and Bear, 2004; Bliss et al., 2007). The 

recruitment of specific expression mechanisms appears to depend upon the synapse 

under study, the animal used, and the conditions of the experiment, most notably the 

induction protocol used, of which there are multiple electrical and chemical 

procedures (reviewed by Bliss et al., 2007).  
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It should be noted that the relationship between LTP, learning and memory is 

debatable (see 1.11). Additionally, the study of LTP in certain areas of the nervous 

system has led to hypotheses that it represents a physiological correlate of various 

other phenomena, for example, chronic pain caused by the central sensitisation of 

noiceceptive synapses in the spine (Ji et al., 2003) and addiction caused by the 

potentiation of dopaminergic synapses in the ventral tegmental area (Wolf, 2003). 

Similarities between the mechanisms underpinning LTP and forms of activity-

dependent synaptic plasticity thought to occur during the development and 

refinement of synapses have also been recognised (reviewed by Kandel and O'Dell, 

1992; Contestabile, 2000). 

 

In mammals, LTP is archetypal at hippocampal Schaffer-collateral/commissural CA1 

synapses. The easy study of LTP at these synapses has been permitted by the use of 

transverse hippocampal slices. Slicing the hippocampus along the transverse plane 

reveals a laminar structure and allows for the preservation of all the major neural 

pathways which can be maintained in vitro for hours, easily manipulated and 

recorded from (reviewed by Teyler, 1999). At Schaffer-collateral/commissural-CA1 

synapses, low frequency synaptic transmission is largely mediated by AMPA-type 

glutamate receptor activation (Davies and Collingridge, 1989). LTP is typically 

induced using high frequency stimulation (HFS; a 1 s, 100 Hz burst of stimuli or 

tetanus), although it has been reported following multiple other stimuli, as well as 

after some forms of learning (see 1.11.2). In all cases tested, LTP has been found to 

depend upon postsynaptic Ca
2+

 (Lynch et al., 1983; Malenka et al., 1988) and with 

few exceptions (see Chapter 5 for discussion), NMDA receptor activation 

(Collingridge et al., 1983a; Collingridge et al., 1983b; Malenka, 1991; Tsien et al., 

1996). NMDA receptor activation is glutamate- and voltage-dependent, the channel 

being blocked by Mg
2+ 

close to the resting Vm. During HFS, depolarisation of the 

postsynaptic membrane, largely due to AMPA receptor activation, summates. The 

NMDA receptor channels are relieved of Mg
2+

 and permit Ca
2+

 influx which initiates 

LTP expression (Figure 1.10). In this way, NMDA-receptors act as molecular 

coincidence detectors for simultaneous presynaptic (glutamate release) and 

postsynaptic (depolarisation) activity, thus explaining why NMDA receptor-

dependent LTP is input-specific and associative (reviewed by Bliss et al., 2007). In 
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concurrence with NMDA receptor activation, multiple other means of raising the 

intracellular Ca
2+

 concentration may be necessary for LTP induction, including the 

activation of metabotropic glutamate receptors, VGCCs and intracellular Ca
2+

 stores 

(Lynch, 2004; Bliss et al., 2007).  

 

The rise in intracellular Ca
2+

 caused by the activation of NMDA receptors and other 

channels during LTP induction initiates multiple signalling cascades responsible for 

the persistent amplification of subsequent postsynaptic responses. Details of these 

cascades remain largely unclear, although two stages of LTP expression, early (early-

LTP; > 1 hr post-induction) and late (late-LTP; usually > 4 hr post induction), have 

been distinguished by their dependency on new protein synthesis, with late-LTP 

relying on transcription and translation (Lynch, 2004; Malenka and Bear, 2004; Bliss 

et al., 2007). It is also generally agreed that both sides of the synapse are involved in 

LTP expression, yet the conditions that dictate the extent that each side contributes 

and at what time point following induction remain ambiguous. Many recent studies 

have focused on the mechanisms responsible for increases in postsynaptic AMPA 

receptor density often observed following LTP induction (Nicoll, 2003; Malenka and 

Bear, 2004; Kerchner and Nicoll, 2008; Kessels and Malinow, 2009). In presynaptic 

neurons, increases in glutamate release have also been detected using quantal 

analysis (Dolphin et al., 1982; Bekkers and Stevens, 1990) and, more recently, direct 

imaging techniques (Zakharenko et al., 2001). Indeed, a recent study by Enoki et al. 

(2009) showed that LTP at Schaffer-collateral/commissural-CA1 synapses was, 

under their conditions, almost entirely presynaptically expressed.  

 

Given that NMDA receptor-dependent LTP is induced postsynaptically, presynaptic 

LTP mechanisms necessitate a retrograde messenger, capable of relaying a signal for 

LTP expression from the postsynaptic induction site back to the presynaptic neuron. 

Several freely diffusible, as well as membrane spanning, molecules have been 

suggested as candidate retrograde messengers, including arachidonic acid (O'Dell et 

al., 1991), carbon monoxide (Zhuo et al., 1993) and cell adhesion molecules (Bliss et 

al., 2007). However, NO has received the most attention. 
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1.10.3 LTP and NO 

 

The first studies to implicate NO as an intercellular, possibly retrograde, transmitter 

in LTP showed a deficit in the maintenance of CA1 LTP in hippocampal slices 

following the application of non-selective NOS inhibitors or of the extracellular NO 

scavenger, haemoglobin, during LTP induction (Schuman and Madison, 1991; 

Bohme et al., 1991). Subsequently guanylyl cyclase inhibitors were found to have 

similar effects on LTP (Boulton et al., 1995; Lu et al., 1999; Bon and Garthwaite, 

2003). It is now generally accepted that NO/cGMP signalling may participate in LTP 

in several brain areas, possibly contributing to some forms of memory (see 1.11.3). It 

is also known that both a tonic (endothelial) and phasic (neuronal) NO signal are 

required for NO-dependent CA1 LTP (Bon and Garthwaite, 2003; Hopper and 

Garthwaite, 2006), consistent with reports that knock-out mice deficient in neuronal 

and endothelial NOS are incapable of wild-type LTP (Son et al., 1996). Similarly, 

LTP in the visual cortex (Haghikia et al., 2007) and hippocampus (Taqatqeh et al., 

2009) has also been shown to require both guanylyl cyclase isoforms, perhaps 

implying the existence of distinct NO/cGMP-mediated pathways that contribute to 

LTP. Numerous putative effectors of NO/cGMP-dependent LTP have been 

identified, including PKG (Arancio et al., 2001; Serulle et al., 2007), CaMKII 

(Ninan and Arancio, 2004), VASP (Wang et al., 2005), CREB (Lu et al., 1999), 

PDE2 (Boess et al., 2004) and CNG channels (Parent et al., 1998). However, there 

remain several unknowns regarding the precise role of NO/cGMP signalling in LTP. 

 

Firstly, the conditions under which LTP becomes NO-dependent remain undefined. 

At Schaffer-collateral/commissural-CA1 synapses, for example, LTP has been found 

by several groups to be NO-independent in vitro (Cummings et al., 1994; Phillips et 

al., 2008) and in vivo (Bannerman et al., 1994b). The involvement of NO in LTP 

may be determined by the experimental conditions used. Specific factors may be the 

LTP induction protocol used (Raymond, 2007), and/or the age or strain of animals 

(Williams et al., 1993; Holscher, 2002). It should also be noted that the majority of 

studies that do show a role for NO in LTP also show a residual NO-independent 

component, consistent with the idea that LTP can be established by multiple, 

independent mechanisms.  
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Secondly, the specific cellular mechanisms underpinning the role of NO in plasticity, 

and, indeed the locus of NO-dependent potentiation, remain unclear. 

Postsynaptically, NMDA receptor/NO/cGMP/PKG signalling may play a role in the 

increased AMPA receptor density observed following LTP induction. Serulle et al. 

(2007) report that cGMP-activated PKGII can bind to the GluR1 AMPA receptor 

subunit C-terminal domain. This results in the phosphorylation of GluR1 at serine-

845 and a subsequent increase in surface expression of AMPA receptors at extra-

synaptic sites, presumably ready for insertion to synapses. The increased membrane 

expression of GluR1 correlated with changes in synaptic transmission that were also 

NO/cGMP/PKG-dependent and, it was found that LTP was reduced in hippocampal 

slices under PKGII antagonism (Serulle et al., 2007). Lu et al. (1999) have also 

found that NO may effect changes in gene expression during late-LTP via a pathway 

involving PKG and CREB.  

 

Presynaptic actions of NO have also been reported, consistent with putative 

retrograde NO transmission (reviewed in Table 3.1). Some of the most compelling 

evidence for this has been reported by Arancio et al.. Using pairs of dissociated 

hippocampal neurons, they have revealed that NO produced postsynaptically may, 

through presynaptic NO-targeted guanylyl cyclase, PKG and CaMKII, induce a LTP 

characterised by an increase in transmitter release (Arancio et al., 1995; Arancio et 

al., 1996; Arancio et al., 2001; Ninan and Arancio, 2004). More recent studies also 

suggest a role for retrograde NO transmission in LTP, showing, for example, that 

mice lacking the AMPA receptor GluR1 subunit display a predominantly presynaptic 

LTP in the hippocampus and neocortex that is completely blocked by NOS 

antagonism (Hardingham and Fox, 2006; Phillips et al., 2008). Some 

immunohistochemical evidence is also consistent with retrograde NO transmission 

(see 1.12.5), as are reports that the remodelling of presynaptic varicosities often 

observed in culture following LTP can be induced in hippocampal slices cultures 

upon the application of NO donors (Nikonenko et al., 2003). Nevertheless, there 

remains little evidence in functional neural pathways that LTP requires retrograde 

NO transmission (see Chapter 3).  

 



Chapter 1: General introduction 

 

64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 NMDA receptor-dependent LTP induction and possible expression through NO. 1. 

Glutamate released from the presynaptic terminal. 2. Postsynaptic AMPA receptors activate, 

depolarising the cell. 3. Depolarisation summates sufficiently to relieve NMDA receptor channels of 

Mg2. 4. NMDA receptors permit Ca2+ influx which activates nNOS and NO synthesis. 5. NO may 

contribute to postsynaptic and/or presynaptic LTP mechanisms by activation of guanylyl cyclase and 

cGMP accumulation. Presynaptic mechanisms require retrograde NO transmission (blue arrows). 

 

1.10.4 Long-term depression and NO 

 

Reciprocal in nature to LTP is LTD, a persistent decrease in synaptic efficacy that 

can be induced by low frequency stimulation (for example, 100 stimuli at 1 Hz). 

NMDA receptor-dependent LTD has been described in the hippocampus at CA1 

synapses (Bliss et al., 2007), but this form of plasticity has been best characterised at 

Purkinje cell synapses in the cerebellum. At these synapses, LTD is induced by the 

repeated, low frequency activation of climbing fibre inputs, just after parallel fibre 

inputs. It is hypothesised that the climbing fibre input acts as an error signal and 

attenuates inappropriate parallel fibre input to Purkinje cells (Ito, 2001). 

  

Interestingly, NO, produced in parallel fibres or interneurons upon NMDA receptor 

activity, appears to play a critical role in cerebellar LTD (reviewed by Garthwaite, 

2008). Studies have shown that NO causes an increase in cGMP in Purkinje cells, 
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leading to PKG-mediated phosphorylation of the phosphatase inhibitor, G-substrate. 

This, in combination with protein kinase C activity, leads to a pattern of AMPA 

receptor phosphorylation which favours AMPA receptor endocytosis, a mechanism 

of LTD expression that may also be active following the induction of this form of 

plasticity at CA1 hippocampal synapses (Bliss et al., 2007).  

 

1.10.5 Other forms of synaptic plasticity 

 

Multiple forms of short-term synaptic plasticity have also been characterised, 

including facilitation (discussed in Chapters 3-4) and post-tetanic potentiation 

(PTP): a transient plasticity that is underpinned by multiple mechanisms and is 

usually observed in the first 1-2 min after LTP induction (Zucker and Regehr, 2002). 

In addition, Abraham and Bear (1996) have coined the term ‘metaplasticity’ to 

describe the hypothesis that synaptic plasticity may be influenced by past events at a 

synapse. Metaplasticity may influence the threshold level for the induction of LTP 

and LTD, as well as the direction of plasticity following synaptic stimulation. As 

such, metaplasticity may be intimately linked to the homeostasis of synaptic activity, 

preventing, for example, the saturation of efficacy at active synapses, as would be 

predicted to occur at a purely Hebbian synapse (Abraham, 2008). 

 

1.11 LTP, NO and learning and memory 

 

1.11.1 Types of memory 

 

Based mainly on studies of memory in humans with brain damage and on animal 

models of memory loss, different forms of memory have been delineated by several 

researchers (see Figure 1.13), most famously Endel Tulving. It is also recognised 

that long-term memory occurs in phases, for example, acquisition, consolidation and 

retrieval, each of which may rely on different physiological processes in different 

brain areas.  
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Figure 1.13 Current taxonomy of memory. Declarative memory is conscious. Non-declarative 

memory is non-conscious. Episodic memory refers to memory for events. Semantic memory refers to 

memory for facts. Taken from Bird and Burgess (2008).Adapted by kind permission of Nature 

Publishing Group. 

 

1.11.2 LTP and memory 

 

The initial report of LTP by Bliss and Lomo (1973), coupled with studies showing 

that it was input-specific, associative and persistent, provided the first demonstration 

of a Hebbian synaptic plasticity. The Hebbian characteristics of LTP have led many 

researchers to view LTP as a correlate of learning and memory, although this is 

highly debated. 

 

In 2000, Martin et al. formalised the ‘synaptic plasticity and memory’ (SPM) 

hypothesis. This proposes that activity dependent synaptic plasticity occurs during 

normal brain activity at synapses necessary for learning and memory, and is 

necessary and sufficient for the storage of information. Martin et al. (2000) described 

four criteria that must be met of a synaptic plasticity sufficient to explain memory. 

Based on these criteria, Bliss et al. (2007) have posed four main questions that must 

be answered to test whether LTP is a correlate of learning and memory: 1) are the 

mechanisms underlying LTP correlated with those underlying learning and 

memory?; 2) does learning induce LTP?; 3) do changes in synaptic weights 

subsequent to learning cause forgetting?; 4) does LTP induction generate a memory 

without animals having gone through learning? 
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A wealth of studies have been directed to answering the first question, and suggest 

that, in general, the mechanisms underlying LTP of synapses are correlated with 

those underlying learning and memory in tasks dependent on the same brain area. 

Early studies showed that factors such as ageing and stress impact LTP and learning 

and memory in a similar manner (reviewed by Lynch, 2004). Manipulations that 

attenuate or augment LTP were also shown to similarly affect the ability of animals 

to learn and remember some behavioural tasks. For example, Morris et al. (1986) 

found that the NMDA antagonist, D/L-AP5, inhibited LTP at perforant path-granule 

cell synapses in vivo and learning in the Morris water maze, a task that is 

hippocampus-dependent (Morris et al., 1982). Morris et al.’s findings have since 

been supported by numerous studies (for example, Tsien et al., 1996; Tang et al., 

1999). Additionally, other LTP ‘players’ appear to be required for learning and 

memory (reviewed by Lynch, 2004). For example, Giese et al. (1998) have found 

that, in accordance with multiple other reports (for example Silva et al., 1992a; Silva 

et al., 1992b), mice lacking functional αCaMKII, a kinase heavily associated with 

LTP (Lisman et al., 2002), display impaired hippocampal LTP and Morris water 

maze learning. It should also be noted that a positive correlation between LTP and 

learning and memory has been observed outside the hippocampus (reviewed by 

Lynch, 2004). For example, in the amygdala, manipulations, including the blockade 

of the NMDA/NO/cGMP pathway, that have been found to inhibit LTP at synapses 

between the lateral amygdala and auditory thalamus have also been found to 

attenuate auditory fear conditioning (for example, Bauer et al., 2002; Ota et al., 

2008), an amygdala-dependent task (Goosens and Maren, 2001) 

 

In further support of the SPM hypothesis, and consistent with the second  question (is 

learning associated with the induction of LTP?), stimuli that enhance subsequent 

learning, such as environmental enrichment and training in behavioural tasks, have 

been found to enhance field EPSPs (fEPSPs), neurotransmitter release and cause 

various biochemical changes associated with LTP, such as increased AMPA receptor 

density at synapses, in brain areas including the visual cortex, motor cortex and 

amygdala (reviewed by Lynch, 2004; Bliss et al., 2007). In the hippocampus, two 

key studies have been performed by Gruart et al. (2006) and Whitlock et al. (2006) 

who used arrays of electrodes implanted in area CA1 to measure synaptic efficacy 
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during learning. Gruart et al. (2006) found that, in mice during trace eye blink 

conditioning, the amplitude of evoked fEPSPs steadily increased in a manner that 

was NMDA receptor-dependent. Whitlock et al. (2006) found that at a minority of 

electrodes, fEPSPs were significantly and persistently increased in rats following 

one-trial inhibitory avoidance learning. Strikingly, this increase occluded subsequent 

LTP.   

 

Accordant with the third question (do changes in synaptic plasticity caused by LTP 

induction cause forgetting, i.e. by altering synaptic weights?), Brun et al. (2001) have 

found that high frequency stimulation applied to the dentate gyrus of rats through 

implanted electrodes blocked prior memory for the Morris water maze (i.e. induced 

retrograde amnesia). Interestingly, high frequency stimulation had no effect when 

applied in the presence of a NMDA antagonist, 3-(2-carboxypiperazin-4-yl)propyl-1-

phosphonic acid, suggesting that the retrograde amnesia may have been caused by a 

NMDA receptor-dependent change in synaptic weights. 

 

These data are broadly in favour of the SPM hypothesis, although it should be noted 

that there are several pieces of evidence that are inconsistent with the theory. For 

example, whereas most forms of LTP are NMDA receptor-dependent, the NMDA 

antagonist, D/L-AP5 seems only to attenuate spatial learning in task-naïve animals, 

suggesting that the relationship between LTP and learning is not direct (Bannerman 

et al., 1995; although see Chapter 5 for examples of NMDA receptor-independent 

LTP). Additionally, some, but not all (Moser et al., 1998), studies have found no 

effect of manipulations designed to saturate LTP on subsequent learning (Bliss and 

Richter-Levin, 1993). These inconsistencies perhaps reflect the possibility that 

learning and memory require the activity of multiple neural pathways involved in 

networks spanning several brain areas. Indeed many researchers agree that the view 

that ‘LTP equals memory’ is too simplistic (reviewed by Lynch et al., 1983; Bliss et 

al., 2007). 

 

The use of LTP induction protocols that are unlikely to represent natural patterns of 

neuronal activity have also raised doubts over the relevance of the mechanisms 

underlying LTP to learning, although induction protocols patterned after the theta 
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rhythm, which can be observed in the hippocampus using electroencephalography 

during exploratory behaviour, or involving ‘primed bursts’ are efficient in generating 

LTP (for example, Morgan and Teyler, 2001). The idea that synaptic plasticity, as 

modelled by LTP, is involved in memory is further complicated by the fact that it has 

not been possible to link LTP-like synaptic plasticity to a certain stage or type of 

memory. The role of other forms of plasticity such as depotentiation and LTD are 

also unclear, and a major outstanding question is whether synaptic plasticity in the 

hippocampus must persist for as long as a memory.  

 

Finally, it should be noted that synaptic plasticity has been proposed to better model 

physiological processes that are related to, but distinct from learning and memory, 

such as attention (Shors and Matzel, 1997), and that there have been no direct-tests 

of fourth prediction of the SPM hypothesis (does LTP induction generate a memory 

without animals having gone through learning?). Furthermore, it is unclear how 

plasticity at an individual synapse might affect the activity of a network. 

Nevertheless, studies, for example, those by Whitlock et al. (2006) and Gruart et al. 

(2006) are compelling. Therefore, while it cannot be said that ‘LTP equal’s memory’, 

or that LTP in the form induced in the laboratory exists naturally, the mechanisms 

underlying LTP appear to be the best molecular correlates of learning and memory 

currently amenable to study in the laboratory. Additionally, an appreciation of LTP 

mechanisms could have wide implications for our understanding of all basic 

principles of plastic synaptic transmission, especially if neurons make use of all the 

means of synaptic plasticity available to them (Bliss et al., 2007).  

 

1.11.3 NO and learning and memory 

 

If LTP is a correlate of learning, and NO is required for some forms of LTP, then it is 

predicted that NO is necessary for at least some forms of learning. In support of this 

prediction, several studies suggest that a role for NO in learning and memory has 

been evolutionarily conserved. In invertebrates such as the sea slug, Aplysia 

californica, the pond snail, Lymnaea stagnalis, and honey bee, Apis mellifera, for 

example, NO appears to be required for associational learning during classical 

conditioning. In particular, tasks involving olfactory or appetitive cues seem 
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particularly sensitive to NOS inhibition (reviewed by Susswein et al., 2004). For 

example, application of the NOS inhibitor, L-NAME, during and after aversive 

appetitive conditioning in Aplysia has been found to block short- and long-term 

memory for the conditioned stimulus. In contrast, L-NAME had no effect on 

spontaneous feeding, and no effect when applied one min after training. The authors 

therefore concluded that NO was required during the acquisition but not 

consolidation of the memory (Katzoff et al., 2002).   

 

In mammals, NOS and NO-targeted guanylyl cyclase inhibition has also been found 

to attenuate learning during hippocampus-dependent tasks. For example, 

intraperitoneal injection of the NOS inhibitor, L-NNA, was found by Bohme et al. 

(1993) to block the ability of rats to learn in a radial arm maze (which is 

hippocampus-associated) and a social recognition test involving olfactory memory. 

CA1 LTP was blocked in slices from rats that received injections of the NOS 

inhibitor. Similarly, Majlessi et al. (2008) have found that rats treated with L-NAME 

via a cannula implanted near the CA1 region of the hippocampus were impaired in 

the Morris water maze.  Specifically, escape latency and travelled distance were 

increased whereas the number of entries into the quadrant containing the platform 

decreased. No effects on motivation or sensorimotor coordination were observed and 

the inhibition could be reversed by the co-application of L-arginine, which may have 

outcompeted L-NAME for binding to NOS, as has been shown to occur in 

hippocampal slices (East and Garthwaite, 1991). In addition, 3-(5-hydroxymethyl-2-

furyl)-1-benzyl-indazole, a compound that sensitises NO-targeted guanylyl cyclase to 

NO (Ko et al., 1994) and also blocks PDEs (Galle et al., 1999), has been found to 

enhance CA1 LTP via a mechanism involving the NO/cGMP/PKG pathway and 

shorten the escape latency of mice from the Morris water maze (Chien et al., 2003; 

Chien et al., 2005).  

 

It should be noted that some forms of learning and memory in tasks associated with 

other brain areas also appear to be NOS-dependent, for example, NOS inhibition has 

been found to impair cerebellum-dependent eye blink conditioning in rabbits 

(Chapman et al., 1992) and amygdala-dependent place conditioning (Zarrindast et 

al., 2002). ‘Natural’ forms of learning, such as olfactory learning of a ewe for her 
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lamb, have also been found to require NO/cGMP signalling (reviewed by Susswein 

et al., 2004). 

As with the role of NO in LTP, more work is necessary to elucidate the contribution 

of NO to learning and memory. Reported effects of NO on learning and memory 

phenomena are so diverse that NO has not been associated with a particular stage or 

form of memory (reviewed by Susswein et al., 2004). Additionally, and consistent 

with the role of NO in LTP, several groups have found no effect of NO on learning 

in tasks which other groups have found to be NOS-dependent, for example, the 

Morris water maze (Bannerman et al., 1994a; Blokland et al., 1999). The species and 

strain of the animal under study, the behaviour being tested and crucially the training 

paradigm may dictate whether NO is required. These factors also appear to regulate 

the requirement of learning and memory during behavioural tasks for other LTP 

‘players’. For example, the requirement of mice for functional αCaMKII to learn an 

inhibitory avoidance task appears to be dependent on the number of training trials 

given (Irvine et al., 2005).  

 

1.11.4 The hippocampus and memory 

 

As discussed above, the archetype of LTP occurs in the hippocampus. If LTP is a 

correlate of learning and memory, then the SPM hypothesis dictates that the 

hippocampus should be required for these phenomena. Consistent with this, theories 

of hippocampal function have moved away from early hypotheses suggesting that it 

is involved in olfaction, attention or emotion and towards a role in memory 

(Andersen et al., 2007). 

 

Probably the best known evidence for a role of the hippocampus in memory came 

from a case study of a patient, named HM, by William Scoville and Brenda Milner 

(1957). HM had ~ two thirds of his hippocampus, as well as other areas of the 

hippocampal formation, removed in a surgery aimed to treat his epilepsy. The 

operation successfully alleviated his condition, but at the expense of his ability to 

form new long-term declarative memories. In accordance with the current taxonomy 

of memory (Figure 1.11), HM’s short-term and non-declarative (for example 

procedural or skills) memory remained intact (reviewed by Corkin, 2002 ). 
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Since Scoville and Milner’s study, multidisciplinary evidence has combined to assert 

the consensus that the hippocampus is required for declarative memory. Several 

theories of the specific role of the hippocampus have been developed. One of the 

first, named ‘the declarative theory’, proposes that, in concert with other areas of the 

medial temporal lobe, the hippocampus is required for the acquisition of all 

declarative memory but that, after some period, these are consolidated to the 

neocortex, explaining why old memories are often spared following hippocampal 

damage (as in HM). More elaborate theories suggest that the hippocampus is also the 

site for the long-term storage of episodic memories, and/or that the hippocampus is 

involved in the acquisition of episodic, but not semantic, memory. Another set of 

theories, for example, ‘the relational theory’, propose that, during acquisition and 

recollection, the hippocampus allows the association of information, such as the 

contextual details of an event, that are initially processed and later stored in different 

neocortical areas.  

 

An extension of the relational theory is ‘the cognitive-map theory’, which proposes 

that the major role of the hippocampus is to construct and store an allocentric 

representation of an environment in order to enable navigation through it. It is 

thought that the cognitive map may arise via the acquisition, and subsequent retrieval 

of spatiotemporal associations (reviewed by Lynch, 2004; Bird and Burgess, 2008). 

This theory was borne of findings that humans and animals with hippocampal 

damage have problems in navigation, for example during the Morris water maze (for 

example, Morris et al., 1982), and from the discovery by O’Keefe and Dostrovsky in 

1971 that pyramidal neurons are place cells- cells which fire when an animal is in or 

imagining to be in a specific location in an environment (reviewed by O'Keefe, 

2007).   

 

1.12 The hippocampus 

 

The hippocampus (Greek for sea horse) was first named by Aranzi (1587) because of 

its resemblance to the fish. The laminar structure of the hippocampus (see 1.12.2) 

facilitates the study of neurons and synaptic connections within it using extracellular 
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and intracellular electrophysiological recording in vivo and in vitro. As such, many 

basic aspects of neurotransmission, neuropharmacology and neurophysiology have 

been elucidated by studies of the hippocampus and its principal cells, pyramidal 

neurons (reviewed by Teyler, 1999; Andersen et al., 2007).     

 

1.12.1 Location of the hippocampus 

 

The hippocampus proper (sometimes called ‘Ammon’s horn’ or ‘Cornu Ammonis’ 

because of its resemblance to the rams horn of the Egyptian God, Amun) is part of 

the hippocampal formation, which also comprises the dentate gyrus (a structure 

interlocked with the hippocampus proper), the subiculum, presubiculum, 

parasubiculum, and the entorhinal cortex. The location of the hippocampus in human 

and rodent brain is shown in Figure 1.14. The hippocampal formation is part of the 

limbic system, an elaboration of the cerebral cortex in the temporal lobe that also 

contains the amygdala, mammillary bodies and entorhinal cortex, amongst other 

structures. The limbic system is not considered to have a unified function (reviewed 

by Amaral and Lavenex, 2007).  

 

 

 

 

 

 

 

 

 

Figure 1.14 Location of the hippocampus in human and rodent brain. Hippocampus shown in blue. 

Light blue image in the rodent brain shows a transverse hippocampal slice. Images from 

www.en.wikipedia.org and www.ucl.ac.uk. 

 

1.12.2 Anatomy of the dentate gyrus and hippocampus 

 

The components of the limbic system generally have fewer layers than the neocortex 

and the hippocampus and dentate gyrus are no exceptions. The dentate gyrus consists 

of three layers or strata: the principal, granule cell layer (stratum granulare), the 

Human brain                                Rodent brain
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molecular layer (stratum moleculare), and the polymorphic layer (stratum polymorph 

or hilus; see Figure 1.15A). The stratum granulare is ~ 4-8 cells thick and densely 

packed. There are ~ 1.2 × 10
6
 granule cells in one rat dentate gyrus. Their dendrites 

form a conical tree and extend perpendicularly into the molecular layer where they 

form synapses with axons of several pathways (Figure 1.15B). 

 

In 1934, Lorente de Nό subdivided the hippocampus into three regions named Cornu 

Ammonis (CA) 1-3 (see Figure 1.15A). The polymorphic layer of the dentate gyrus 

was also ascribed CA4. The principal layer of the hippocampus is called the 

pyramidal cell layer, or stratum pyramidale. Within it, pyramidal neurons are 

arranged 3-6 cells thick. They are characterised by a triangular soma (~ 20 µM in 

diameter) and extensive dendritic trees that extend perpendicularly from the stratum 

pyramidale in both directions: the basal dendritic arbour, which contains multiple 

primary dendrites, extends into the stratum oriens; the longer, apical dendrites extend 

into the strata lucidum (in CA3), radiatum and lacunosum moleculare (in CA2-1; see 

Figure 1.15B). As the stratum pyramidale extends from CA3 to CA1 and into the 

subiculum, pyramidal cells become smaller and the connections that they make 

change. On average, a single pyramidal neuron may receive 30000 excitatory and 

1700 inhibitory inputs. Excitatory synapses form on dendritic spines, whereas 

inhibitory synapses form on dendritic shafts, soma and axons. Pyramidal and granule 

neurons are predominantly glutamatergic (reviewed by Amaral and Lavenex, 2007).  
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Figure 1.15 Strata of the hippocampus. A) Image is a 10 µm-thick transverse section of adult mouse 

hippocampus stained with Mayer’s hemalum (scale = 500 µM). Key: dg = dentate gyrus; gr = 

stratum granulare; lm = lacunosum moleculare; lu = stratum lucidum; mo = stratum moleculare; or 

= stratum oriens; p = stratum pyramidale; po = stratum polymorph; ra = stratum radiatum; sub = 

subiculum. Inset shows a magnified section of CA1 stained with toluidine blue (see Chapter 7 for 

methods of staining). The stratum pyramidale is shown and the proximal apical dendrites of 

pyramidal neurons are visible. Scale is 100 µM. Orientation is as in main image. B) Line drawing 

showing the orientation of pyramidal neuron and granule cell dendrites. The directions of their 

spread are illustrated by arrows (see 1.12.4 for discussion of pathways). Image adjusted from 

www.cyberounds.com. 

 

1.12.3 Hippocampal interneurons 

 

GABAergic interneurons exist throughout all strata of the hippocampus and dentate 

gyrus, and although they are outnumbered by principal cells (pyramidal and granule 

cells), all principal cells are thought to be contacted by interneurons. The interactions 

between principal cells and interneurons are complex. For example, hundreds of 

pyramidal cells may contact one interneuron which in turn may synapse with 

thousands of pyramidal neurons. Additionally, interneurons are a major target of 

pathways entering the hippocampus from other brain areas, such as the septum and 

raphe nucleus. Interneurons are thought to effect feedback and feed-forward on 

principal neurons, and may  play a critical role in the generation of behaviourally-

A                                    B
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cued oscillatory activity in the hippocampus, such as theta rhythm (reviewed by 

Freund and Buzsaki, 1996). 

 

Multiple subtypes of hippocampal interneuron have been discovered. Each have 

different locations within the hippocampus, morphology, connections, 

electrophysiology, pharmacology and immunocytochemistry. This diversity has been 

illustrated by the finding that, in area CA1 alone, at least 16 types of interneuron 

have been delineated (Parra et al., 1998). Interneurons with cell bodies in the 

pyramidal cell layer have been classified into four groups on the basis of their 

synaptic targets. These are: 1) axo-axonic or chandelier cells, which each contact the 

axon initial segment of over 1000 pyramidal cells and regulate action potential 

initiation; 2) basket cells, which innervate and receive excitatory input from as many 

as 1000-plus pyramidal cells; 3) bistratified cells, which synapse onto apical and 

basal pyramidal cell dendrites; 4) radial trilaminar cells, which span the entire radius 

of pyramidal cell dendrites. Interneuron specific interneurons also occur throughout 

all hippocampal strata. Their axons terminate only on other interneurons (reviewed 

by Freund and Buzsaki, 1996; Amaral and Lavenex, 2007). 

 

1.12.4 Connections in the hippocampus 

 

The major input to the hippocampus is from the entorhinal cortex. This brain area 

forms an interface between the hippocampus and neocortex. It receives, and is 

thought to integrate, highly processed, multimodal sensory information from multiple 

areas of the cortex, especially the associational, perirhinal and parahippocampal 

cortices, as well as other brain areas such as the thalamus. It is thought to be required 

for declarative memory, in particular spatial memory, and grid and head direction 

cells, which may be required for spatial memory, have been found within it 

(reviewed by Bird and Burgess, 2008).  

 

A major input to the hippocampus from the entorhinal cortex occurs from pyramidal 

neurons in layer II via the perforant path, which perforates the subiculum and forms 

connections with granule cell dendrites (Figure 1.16). The perforant path may also 

contact GABA-positive interneurons in the molecular layer and apical dendrites of 
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CA3 pyramidal neurons. Additionally, neurons from layer III of the entorhinal cortex 

project to CA1 neurons and the subiculum via the temporoammonic pathway.  

 

Within the hippocampus, a trisynaptic circuit exists which is thought to conduct a 

unidirectional flow of information from CA3 to CA1 and the subiculum (Figure 

1.16). First, the granule cells give rise to distinctive unmyelinated axons, named 

mossy fibres because they display varicosities (called mossy fibre expansions) along 

their entire length. These extend into the polymorphic cell layer, where they synapse 

with GABAergic interneurons, and then enter the stratum lucidum in CA3, where 

they make large glutamatergic synapses with CA3 pyramidal neurons. A single 

mossy fibre may contact a dozen pyramidal neurons, and make ~ 30 contacts with 

each of them. Each CA3 pyramidal neuron may receive input from more than 50 

granule cells. From CA3 and CA2 pyramidal neurons, information may then be 

passed to CA1 via the Schaffer collaterals residing in the strata radiatum and oriens. 

Each CA3 pyramidal neuron may contact multiple CA1 neurons. Each CA1 neuron 

might be innervated by over 5000 CA3 cells.  

 

From CA1 pyramidal cells, connections extend into the oriens and alveus and on to 

the deep layers of the entorhinal cortex via the subiculum. The deep layers of the 

entorhinal cortex then send outputs back to the cortex. Through this pattern of 

connections, it is thought that relatively unprocessed information entering the 

entorhinal cortex from multiple cortical areas traverses the entire hippocampus, may 

be processed and perhaps associated somehow, and then returned back to the cortex, 

perhaps for long-term storage (reviewed by Bird and Burgess, 2008; Neves et al., 

2008). 

 

Finally, it should be noted that there are also multiple connections between areas of 

the hippocampus other than those noted above. Within CA3 and CA2 (but not CA1), 

for example, there are multiple recurrent (associational) connections, as well as 

connections from the contralateral CA3 and CA2 (commissural connections). 

Modifications of recurrent connections in area CA3 during the acquisition of 

information are central to a key computational mode of hippocampal function 

proposed by Marr (1971). Additionally, Marr suggests that the reactivation of some 
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recurrent connections in CA3 and subsequent hippocampal pathways by an 

incomplete cue may induce the reactivation of multiple other pathways in CA1 and 

subsequently throughout the cortex, eventually leading to the reinstatement of the 

full memory of an event by pattern completion (see Bird and Burgess, 2008 for a 

review).  This model has since been supported by findings that mice lacking NMDA 

receptors in area CA3 are impaired in the Morris water maze when only partial 

spatial cues are present (Nakazawa et al., 2002).  

 

 

Figure 1.16 Major connections of the hippocampal formation. Taken from Neves et al. (2008). 

Reproduced by kind permission of Nature Publshing Group. 

 

1.12.5 Location of NOS and NO-targeted guanylyl cyclase in the 

hippocampus 

 

At CA1-CA3 synapses, functional/pharmacological evidence detailing a role for NO 

in NMDA receptor-dependent LTP and other processes has implied the presence of 

e- and nNOS (Hopper and Garthwaite, 2006), as well as all three functionally 

relevant guanylyl cyclase subunits (a1, a2 and ß1; Taqatqeh et al., 2009), and this has 

been corroborated by histological data showing the presence of these proteins in 

relevant structures. 
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Initial histological studies found nNOS to be primarily located in the stratum 

granulare of the dentate gyrus, in the neuropil of the dentate molecular layer and 

stratum radiatum of Ammon’s horn, as well as in scattered cells, presumably 

interneurons, throughout CA1 (see Figure 1.15 for key to anatomy; Bredt et al., 

1991a; Vincent and Kimura, 1992; Valtschanoff et al., 1993; Dun et al., 1994; Lin 

and Totterdell, 1998). Since then, immunostaining and electron microscopy 

following relatively weak fixation of tissues (0.5- 1 % paraformaldehyde; PFA) has 

also revealed nNOS protein in the cytoplasm of pyramidal cell soma and at synapses 

throughout the stratum radiatum where it may contribute to synaptic transmission 

and/or plasticity (Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; Burette et 

al., 2002). This distribution of nNOS has since been confirmed by the isolation of 

nNOS mRNA from dissociated CA1 pyramidal neurons (Chiang et al., 1994). The 

increase in stained structures following immunohistochemistry for nNOS using 

relatively weakly fixed tissue may reflect better preservation of nNOS epitopes or 

improved access of the antibody to the protein due to a reduction in aldehyde cross-

linking of proteins, for example, in the PSD.   

 

Unsurprisingly, eNOS is found throughout the hippocampal vasculature (Blackshaw 

et al., 2003). As mentioned above (1.2.2), some groups have also reported eNOS 

staining in pyramidal neurons in rodent (Dinerman et al., 1994; O'Dell et al., 1994) 

and human (Doyle and Slater, 1997) hippocampus, although attempts to replicate 

these results have failed. Rather, several studies (for example Chiang et al., 1994) 

support the current consensus that eNOS expression is restricted to blood vessels.  

 

An initial study of the location of guanylyl cyclase in hippocampus using in situ 

hybridisation showed message for the protein throughout the strata pyramidale and 

granulare (Matsuoka et al., 1992). Later, mRNA for all three functionally-relevant 

subunits of the NO-targeted guanylyl cyclase, α1, α2 and β1, was shown to be 

present in the developing and adult rat hippocampus (Gibb and Garthwaite, 2001; 

Mergia et al., 2003). In contrast to other brain areas in which the amount of mRNA 

for each of the α subunits is approximately equal, Mergia et al. (2003) have found 

that, in the hippocampus, mRNA for the α2 subunit is significantly more abundant 

than message for the α1 subunit. Using in situ hybridisation, Gibb and Garthwaite 
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(2001) detected an abundance of mRNA for the α2 and β1 subunits in the stratum 

pyramidale, but it was unclear whether the α1 subunit was also present in pyramidal 

cells or in the surrounding strata radiatum and oriens (Gibb and Garthwaite, 2001). 

 

At CA3-CA1 synapses, functional evidence detailing both post- (for example, 

Serulle et al., 2007) and presynaptic (for example, Phillips et al., 2008) effects of NO 

following the induction of LTP has been corroborated by a complimentary 

distribution of guanylyl cyclase and nNOS either side of the synapse (Burette et al., 

2002). Using immunohistochemistry optimised to detect synaptic proteins, Burette et 

al. (2002) have shown that nNOS and the guanylyl cyclase β1 subunit preferentially 

associate with each other at a subpopulation of synapses (< 10 %) within CA1. In 

support of putative retrograde NO transmission, post-embedding immunogold 

electron microscopy revealed nNOS within the PSD of asymmetric axospinous 

synapses and in close spatial proximity to presynaptic guanylyl cyclase β1 located 

within axon terminals. Additionally, Burette et al. (2002) imply that a minority of 

postsynaptic densities were positive for guanylyl cyclase β1 and presynaptic 

varicosities positive for nNOS, suggesting that anterograde and/or intracellular NO 

transmission may occur. The location of the NO-targeted guanylyl cyclase α subunits 

is the topic of Chapter 5. 

 

1.13 General Aim 

 

Interest in the role of NO in LTP is largely rooted in the hypothesis that NO, 

synthesised by nNOS upon NMDA receptor channel opening, acts as a retrograde 

messenger during NMDA receptor-dependent LTP (reviewed by Feil and Kleppisch, 

2008). In this way, NO might account for presynaptic effects of LTP. Although 

evidence for a presynaptic effect of NO during LTP has been yielded from studies of 

synapses between dissociated hippocampal pyramidal neurons (Arancio et al., 1995; 

Arancio et al., 1996; Arancio et al., 2001), and many researchers describe NO as a 

retrograde messenger, there is little unambiguous evidence for retrograde NO 

transmission or a presynaptic effect of NO following LTP induction at synapses in 

intact tissues (reviewed in Table 3.1). The first aim of the project was therefore to 

isolate the NO-dependent component of NMDA receptor-dependent LTP at CA3-
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CA1 synapses in intact tissues (transverse hippocampal slices) and to test whether it 

was characterised by a persistent increase in neurotransmitter release using changes 

in the magnitude of PPF of CA1 fEPSPs as an indicator of presynaptic efficacy (see 

Chapter 3). 

 

Related to this, the second aim was to investigate the effect of NO on 

neurotransmitter release at CA1 synapses under basal stimulation (i.e. stimulation 

causing no observable persistent plasticity; see Chapter 4). The major reason was 

that mice lacking the NO-targeted guanylyl cyclase α1 subunit had recently been 

found to exhibit reduced CA1 PPF under basal conditions, consistent with tonic 

facilitation of neurotransmitter release at wild-type CA1 synapses (Taqatqeh et al., 

2009). We hypothesised that if NO was found to regulate neurotransmitter release at 

CA1 synapses under basal conditions, then the isoform responsible might be eNOS, 

because a low-level, activity-dependent, endothelium-derived NO tone exists in the 

hippocampus (Chetkovich et al., 1993; Hopper and Garthwaite, 2006). 

 

A third aim related to whether the role of NO in CA1 LTP is strictly NMDA 

receptor-dependent (see Chapter 5). Although nNOS is thought to be preferentially 

activated by NMDA receptor opening, we noticed that the properties of a NMDA 

receptor-independent CA1 LTP (reviewed by Teyler et al., 1994) were similar to 

NO-dependent LTP. Therefore, we tested the involvement of NO in the NMDA 

receptor-independent CA1 LTP.    

 

Finally, we wanted to investigate the location of the NO-targeted guanylyl cyclase in 

the hippocampus. Of specific interest was the location of the cyclases’ α subunits 

(Chapter 7), because it had been recently suggested that the α1β1 and α2β1 isoforms 

of the cyclase have distinct roles in LTP (Taqatqeh et al., 2009). 
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2.1 Materials 

 

2.1.1 Pharmacological compounds 

 

The pharmacological compounds/ peptides that were used are listed in Table 2.1. 

Unless otherwise stated, compounds were prepared such that the final concentration 

of the solvent applied in vitro was no more than 1:100, or 1:1000 for DMSO. See 2.5 

Key to Suppliers for supplier details.  

                

Compound/ 

Peptide 

Chemical name and primary reason for 

use* 

Solvent Supplier 

Acetylcholine 

chloride (ACh) 

2-acetyloxyethyl(trimethyl)azanium chloride 

(Cholinergic agonist) 

H2O Sigma 

ω-Agatoxin IVA - 

(P/Q-type VGCC inhibitor) 

H2O Alomone 

D-AP5 (2R)-2-amino-5-phosphonopentanoic acid 

(NMDA antagonist)  

NaOH Tocris 

L-Arginine (2S)-2-amino-5-

(diaminomethylideneamino)pentanoic acid 

(NOS substrate) 

aCSF Sigma 

BAY 60-7550 2-[(3,4-dimethoxyphenyl)methyl]-7-[(1R)-1-

hydroxyethyl]-4-phenylbutyl]-5-methyl-imidazo[5,1-

f][1,2,4]triazin-4(1H)-one 

(PDE 2 inhibitor) 

DMSO Cayman  

Cadmium sulphate cadmium trisulphate octahydrate 

(VGCC antagonist (non-selective)) 

H2O Sigma 

2-Chloroadenosine (2R,3R,4S,5R)-2-(6-amino-2-chloropurin-9-yl)-5-

(hydroxymethyl)oxolane-3,4-diol 

(Adenosine receptor agonist) 

aCSF Sigma 

CNQX disodium disodium 6-cyano-7-nitroquinoxaline-2,3-diolate 

(AMPA/kainate receptor inhibitor) 

DMSO Tocris 

ω-Conotoxin GVIA - 

(N-type VGCC inhibitor) 

H2O Sigma 

EGTA 2-[2-[2-[2-

[bis(carboxymethyl)amino]ethoxy]ethoxy]ethyl- 

(carboxymethyl)amino]acetic acid 

NaOH Sigma 
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(Ca2+ chelator) 

Forskolin [(3R,4aR,5S,6S,6aS,10S,10aR,10bS)-3-ethenyl-

6,10,10b-trihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-

5,6,6a,8,9,10-hexahydro-2H-benzo[f]chromen-5-

yl]acetate 

(Adenylyl cyclase agonist) 

DMSO Tocris 

FPL 64176 methyl 4-(2-benzylbenzoyl)-2,5-dimethyl-1H-

pyrrole-3-carboxylate 

(L-type VGCC current enhancer) 

DMSO Tocris 

FX-4053.3HCl 6-{[(3R,4R)-4-(2-{[2,2-difluoro-2-(3- 

fluorophenyl)ethyl]amino}ethoxy)pyrrolidin-3-

yl]methyl}-4-methylpyridin-2-amine trihydrochloride 

(nNOS inhibitor) 

DMSO Prof. 

Richard 

Silverman 

Gadolinium (III) 

chloride  

Trichlorogadolinium hexahydrate 

(Transient receptor potential channel antagonist) 

DMSO Sigma 

IBMX 1-methyl-3-(2-methylpropyl)-7H-purine-2,6-dione 

(PDE inhibitor (non-selective)) 

DMSO Sigma 

JK-5.3HCl 6-{[(3R,4R)-4-(2-{[2-(3-chloro-5-fluorophenyl)-2,2- 

difluoroethyl]amino}ethoxy)pyrrolidin-3-yl]methyl}-

4-methylpyridin-2-amine trihydrochloride 

(Proposed nNOS inhibitor) 

DMSO Prof. 

Richard 

Silverman 

S-MCPG 4-[(2S)-2-amino-1-hydroxy-1-oxopropan-2-

yl]benzoic acid 

(Metabotropic glutamate receptor inhibitor)  

NaOH Tocris 

(+)-MK-801 

maleate 

(+)-5-methyl-10,11- dihydro-5H-

dibenzo[a,d]cyclohepten-5,10-imine maleate 

(NMDA receptor open channel blocker) 

H2O Tocris 

NBQX disodium 2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline -7-sulfonamide 

disodium 

(AMPA/kainate receptor inhibitor) 

DMSO Tocris 

Nifedipine dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-

dihydropyridine-3,5-dicarboxylate 

(L-type VGCC inhibitor) 

DMSO Tocris 

NMDA (2R)-2-(methylamino)butanedioic acid 

(NMDA receptor agonist) 

NaOH Tocris 

L-NNA 2-amino-5-[[amino(nitramido)methylidene]amino] 

pentanoic acid 

(NOS inhibitor (non-selective)) 

HCl Tocris 
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LY 341495 2-[(1S,2S)-2-carboxycyclopropyl]-3-(9H-xanthen-9-

yl)-D-alanine 

(Metabotropic glutamate receptor inhibitor) 

NaOH Tocris 

Nickel(II) chloride Dichloronickel 

(T/R-type VGCC inhibitor) 

H2O Sigma 

ODQ [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one 

(NO-targeted guanylyl cyclase antagonist) 

DMSO Sigma 

PAPA/ NONOate N-[3-aminopropyl(propyl)amino]-N-hydroxynitrous 

amide 

(NO donor) 

NaOH Enzo 

Thapsigargin (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-4-

(butyryloxy)-3,3a-dihydroxy-3,6,9-trimethyl-8--2-

oxo-2,3,3a,4,5,6,6a,7,8,9b-decahydroazuleno[4,5-

b]furan-7-yl octanoate 

(Sarco/endoplasmic reticulum Ca2+ ATPase 

inhibitor) 

DMSO VWR 

TTX (citrate free) (4R,4aR,5R,6S,7S,8S,8aR,10S,12S)-2-

azaniumylidene-4,6,8,12-tetrahydroxy-6-

(hydroximethyl)-2,3,4,4a,5,6,7,8-octahydro-1H-

8a,10-methano-5,7-(epoxymethanooxy)quinazolin-

10-olate 

(Na2+ channel blocker) 

C2H4O2 Latoxan 

L-VNIO.HCl N5-(1-imino-3-butenyl)-L-ornithine,

monohydrochloride 

(nNOS inhibitor) 

DMSO Enzo 

1400-W.2HCl N'-[[3 (aminomethyl)phenyl]methyl]ethanimidamide 

dihydrochloride 

(i/nNOS inhibitor) 

H2O Enzo 

 

Table 2.1 Pharmacological compounds used.*Secondary actions of each compound are discussed in 

the text where appropriate.  
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2.1.2 Antibodies 

 

The antibodies that were employed are listed in Table 2.2. 

 

Primary antibodies 

Antigen Host Concentration used Catalogue number and/or 

supplier 

Actin 1-19 Goat 1:500 SC-1616; Santa Cruz Biotechnology 

cGMP Rabbit 1:560 Made  by Dr Giti Garthwaite 

Guanylyl cyclase 

α1 subunit  

Rabbit 1:400 immunoperoxidase 

staining; 1:500 Western 

blot analysis 

G4280; Sigma 

Guanylyl cyclase 

β1 subunit 

 

Rabbit 1:250  CAY-160897-1; Cayman Chemical 

Rabbit 1:600 Prof. Soenke Behrends (see van 

Staveren et al., 2004) 

nNOS Rabbit 1:700 61-7000; Invitrogen (Zymed) 

Biotinylated secondary antibodies (Immunoperoxidase staining) 

Antigen Host  Concentration used Catalogue number and 

supplier 

Rabbit Donkey 1:200  AP182B; Chemicon 

Horseradish peroxidase-conjugated secondary antibodies (Western blot analysis) 

Antigen Host  Concentration used Catalogue number and 

supplier 

Rabbit Goat 1:15000  31460; Perbio, Fisher 

Goat Donkey 1:20000 SC-2020; Santa Cruz Biotechnology 

 

Table 2.2 Antibodies used. 

 

 

2.1.3 PCR primers 

 

Where used, transgenic mice were genotyped by PCR and gel electrophoresis. The 

primers that were employed are detailed in Table 2.3. Stocks of primers were 

prepared in double-distilled H2O. 
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Genotyping of CaMKII
T286A

 mice 

Primer Sequence (5’-3’) Supplier 

Lox 1 CTG TAC CAG CAG ATC AAA GC Invitrogen 

Lox 2 ATC ACT AGC ACC ATG TGG TC Invitrogen 

Genotyping of eNOS
-/-

  mice 

Primer Sequence (5’-3’) Supplier 

eNOS forward GGT GTT TGG CTG CCG ATG C Sigma 

eNOS reverse GCA CAG CAC ACG GTG AAC C Sigma 

NEO forward GCA TAC GCT TGA TCC GGC TAC C Sigma 

NEO reverse GAA GGC GAT GCG CTG CGA ATC Sigma 

 

Table 2.3 Primers used for PCR. 

 

2.1.4 Other special materials 

 

The other special materials that were used, including assay kits and enzymes, are 

listed in Table 2.4. Standard chemicals that have not been listed were purchased 

from VWR International.  

 

Reagent/ enzyme Abbreviation Supplier 

Agar, noble - DIFCO 

Agarose gel - BioLine 

Bicinchoninic acid protein assay kit BCA protein assay kit Fisher 

Bovine serum albumin (fraction V) BSA Sigma 

100 base pairs DNA ladder - Promega 

Bromophenol blue  - Sigma 

Chromium potassium sulfate dodecahydrate Chrome alum Sigma 

ColourPlus prestained protein ladder - New England 

BioLabs 

Cyclic guanosine monophosphate (sodium 

salt) 

cGMP Sigma 

Deoxyribonucleotide trisphosphates  dNTPs Takara 

3,3’-Diaminobenzadine DAB  Sigma 

threo-1,4-Dimercapto-2,3-butanediol  DTT Sigma 

Dimethyl sulfoxide DMSO Sigma 

Di-n-butylphthalate in xylene  DPX Agar Sci. 



Chapter 2: General materials and methods 

 

88 

Disodium ethylenediaminetetraacetate 

dehydrate 

EDTA  Sigma 

Donkey serum - Millipore 

Ethidium bromide - Sigma 

Gelatine - Sigma 

Glycerol - Sigma 

GoTaq hot start DNA polymerase - Promega 

Halt protease inhibitor cocktail - Fisher 

High performance chemiluminescence film  - GE Healthcare 

Hydrogen peroxide in H2O H2O2 Sigma 

Hyperladder 1 - BioLine 

Mayer’s hemalum - Merck 

Sodium hydroxide NaOH Sigma 

Optimal cutting temperature embedding 

medium 

OCT Fisher 

Paraformaldehyde PFA Sigma 

PCR buffer (10 x) - Invitrogen 

Peroxidase suppressor - Fisher 

Phosphate buffered saline  PBS Sigma 

Pico Fluor 40 scintillant - PerkinElmer 

Polyvinylidene fluoride membrane  PVDF membrane Millipore 

Polyvinylpyrrolidone PVP Sigma 

Potassium methyl sulphate     KMeSO4 Fisher 

Proteinase K from Tritirachium album - Sigma 

Ready gels - Bio-Rad 

Restore Western blot stripping buffer - Fisher 

Sodium azide - Sigma 

Sodium dodecyl sulphate SDS Sigma 

SuperSignal west pico chemiluminescent 

substrate 

- Fisher 

Taq DNA polymerase (recombinant) - Invitrogen 

Toluidine blue - Sigma 

Tris base, acetic acid and EDTA buffer  TAE Sigma 

Trisma base            Tris Sigma 

Tritium-labelled cGMP [3H]-cGMP GE Healthcare 

Triton X-100           - Sigma 

Tween 20 - Sigma 

Vectastain avidin biotin complex ABC Vector 
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Table 2.4 Special chemicals, reagents and enzymes used. 

 

2.1.5 Key to suppliers 

 

Agar Sci. Agar Scientific Ltd., Essex, UK. 

Alomone Alomone Labs Ltd., Jerusalem, Israel. 

BioLine BioLine Ltd., London, UK. 

Bio-Rad Bio-Rad Laboratories Ltd., Hertfordshire, UK. 

Cayman IDS Ltd. (Cayman Chemical), Tyne and Wear, UK. 

Chemicon Chemicon Europe Ltd., Hampshire, UK. 

DIFCO BD, Oxford, UK. 

Dr Giti Garthwaite Dr Giti Garthwaite, UCL, London, UK. 

Enzo Enzo Life Sciences Ltd., Exeter, UK. 

Fisher Fisher Scientific, Leicestershire, UK. 

GE Healthcare GE Healthcare, Bucks, UK. 

Invitrogen Invitrogen Ltd., Paisley, UK. 

Latoxan Latoxan Laboratories, Valence, France. 

Merck MSD, Hertfordshire, UK. 

Millipore Millipore (UK) Ltd., Watford, UK 

New England BioLabs New England BioLabs (UK) Ltd., Herts, UK. 

PerkinElmer PerkinElmer, Cambridge, UK. 

Prof. Richard Silverman Prof. Richard Silverman, Northwestern University, Chicago, USA. 

Prof. Soenke Behrends Prof. Soenke Behrends, Technische Universität Braunschweig, 

Braunschweig, Germany. 

Promega Promega Corporation UK, Southampton, UK. 

Santa Cruz Biotechnology Santa Cruz Biotechnology, Inc., Heidelberg, Germany 

Sigma Sigma-Aldrich Company Ltd., Dorset, UK. 

Takara Takara Bio. Inc., Shiga, Japan. 

Tocris Tocris Cookson Ltd., Bristol, UK. 

Vector Vector Labs Ltd., Peterborough, UK. 

VWR  VWR International Ltd., Leicestershire, UK. 

 

Table 2.5 Suppliers of materials 
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2.1.6 NO donors 

 

In various experiments, the NO donor, PAPA/NONOate, was used. The NONOates 

offer several advantages over other commercially available NO donors such as 

nitroprussides, since they release the authentic NO radical at predictable rates when 

pH < 8 (Keefer et al., 1996).  Figure 2.1 shows a generalised NONOate structure.  

 

 

 

 

 

 

Figure 2.1 General NONOate structure.R1 and R2 = alkyl groups. 

 

Table 2.6 details the structure and properties of PAPA/NONOate in comparison with 

DEA/NONOate. 

 

NONOate Structure ~ ENO ~ t½ (pH 7.4) 

DEA/NONOate 

 

1.5 16 at 22-25 ºC 

 

2 at 37 ºC 

PAPA/NONOate 

 

1.5 77 at 22-25 ºC 

 

15 at 37 ºC 

 

 

Table 2.6 Structure and properties of PAPA/NONOate. ENO = efficiency of NO release (mol NO/ mol 

NO donor); t½ (pH7.4) = half-life at pH 7.4 (min).  Structures and values from Enzo (see 2.5 Key to 

Suppliers). Details for DEA/NONOate are included for comparison. 
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PAPA/NONOate was used since it was predicted to release NO over a time course 

well-suited to the experiments, causing rapid (~ 2 min) accumulation of NO in 

oxygenated buffer to a concentration that would remain ~ stable for several minutes 

under the prevailing conditions (pH 7.4, 30 ± 1 ºC; Figure 2.2).  

 

Figure 2.2 Predicted profile of NO release from two NONOates at 30 ºC, pH 7.4. t½ = 8 min for 

DEA/NONOate; 45 min for PAPA/NONOate. PAPA/NONOate is predicted to release NO slower than 

DEA/NONOate, resulting in a smaller accumulation of NO that remains roughly stable over 10 min. 

See below for details on how to calculate the release profile. 

 

To prevent decomposition prior to application in vitro, PAPA/NONOate was 

prepared freshly on the day of each experiment as a 10 mM stock in 10 mM NaOH 

(pH > 12) and kept on ice until immediately before use. It should be noted that 

during the application of PAPA/NONOate to tissues, there will undoubtedly be 

uncontrolled losses of NO that have not been accounted for in calculating the above 

profile of NO release. These losses will occur due to evaporation from in vitro 

solutions and through diffusion out of tubing used in tissue perfusion systems 

(unpublished observations made in the laboratory). Precise estimates of the 

concentration of NO in a bath that will permeate a tissue are also not possible, partly 

because the proportion of PAPA/NONOate that will release NO within a tissue, as 

opposed to in the bathing solution, is unknown.  
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Calculating NO release from a NONOate at a given time 

 

The NO release profiles shown in Figure 2.2 were calculated using a ~ t½ at 30 °C 

of 8 and 45 min for DEA/NONOate and PAPA/NONOate respectively and an 

accepted model of NO release from a NONOate (Schmidt et al., 1997). The model 

assumes that in oxygenated solution at pH 7.4: 1) NONOates decay exponentially; 2) 

the primary route of removal of the resulting NO is via autoxidation. Therefore, the 

concentration of NO released by a NONOate (CNO) at a given time (t) in oxygenated 

solution at pH 7.4 can be calculated as the difference in the rate of NONOate decay 

and the autoxidation of NO: 

 

 

 

where initial conditions are:  

 

cD(0) = c0 and cNO(0) = 0 
 

and: 

 

= –k1cD(t) 

 

 

 

 

and: 

 

t = time (s) 

cNO(t) = concentration of NO at time t (M) 

cD(t) = concentration of donor at time t (M) 

c0 = initial concentration of donor (M) 

eNO = mol of NO per mol donor 

O2 = concentration of oxygen (M); estimated at 1 mM in carbogenated aCSF 

k1 = rate constant for donor decomposition (s
-1

) 

k2 = rate constant for NO oxidation (M
-2

s
-1

); estimated at 13.6x10
6
  

 

2.1.1 General solutions 

 

aCSF was composed of (in mM) 120 NaCl, 2.5 KCl, 1.3 MgCl2, 1 NaH2PO4, 26 

NaHCO3, 10 D-glucose, 2 CaCl2, equilibrated with 95% O2/5% CO2 to pH 7.4 at 30 

ºC. 

2

221 )()()( tcOketcktc
dt

d
NONODNO 

dt

tdcD )(
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Inactivation buffer comprised (in mM) 50 tris-HCl, 4 EDTA adjusted to pH 7.4. 

 

2.2 General methods 

 

2.2.1 Animals 

 

All experiments were performed in accordance with British Home Office regulations 

on laboratory animal use and welfare. With the exception of those that employed 

transgenic mice, experiments were conducted using 6-8 week-old, male C57Bl/6 

mice or 8-9 day-old, male Sprague Dawley rats (Charles River, Kent, UK).  

 

2.2.2 Preparation of transverse hippocampal slices 

 

Mice were euthanised by cervical dislocation and decapitated. The brains were 

removed and the hippocampi were swiftly dissected out into ice-cold aCSF and 

mounted on an agar (4 % in 1 % saline) block. Transverse slices (400 µm thick) were 

cut from the middle of the hippocampi (as shown in Figure 2.3) using a vibratome 

(Series 100 Sectioning System, Technical Products International Inc., St Louis, MO, 

USA). As a precaution against NMDA receptor-dependent, glutamate excitotoxicity, 

buffer in which the hippocampi were sliced contained 6 mM MgCl2. After slicing, 

tissues were placed on a nylon net submerged in aCSF constantly bubbled with 

oxygenated aCSF and were allowed to recover at room temperature for at least 1 hr. 
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Figure 2.3 The location of the hippocampus within the rodent brain and the orientation of transverse 

slices. CA- = corpus ammonis -; DG = dentate gyrus; mf = mossy fibre; pp = perforant path; s (slice) 

= subiculum; s (brain) = septal nuclei; sc = Schaffer collateral; t = temporal cortex; TRANS = 

transverse plane. Adapted from Amaral and Witter (1989). Reproduced by kind permission of 

Elsevier. 

 

2.2.3 Extracellular electrophysiological recordings at hippocampal CA3- 

CA1 synapses 

 

After recovery, slices were transferred to a submerged recording chamber under a 

dissecting microscope (Carl Zeiss Ltd., Hertfordshire, UK) and superfused with 

oxygenated aCSF at a rate of 1-1.5 ml/min at 30 ± 1 °C. Field EPSPs were recorded 

from the stratum radiatum of CA1 following stimulation of the Schaffer-

collateral/commissural pathway at 0.033 Hz (Figure 2.4A). Recording electrodes 

were pulled from borosilicate glass capillaries and filled with aCSF (1-3 MΩ 

resistance). A concentric bipolar stimulating electrode was used (SNEX: 100x, David 

Kopf Instruments supplied by Bilaney Consultants Ltd., Kent, UK). Field EPSPs 

were amplified using an Axoclamp-2B (Axon Instruments supplied by Molecular 

Devices, Sunnyvale, CA, USA), filtered at 1 kHz, and sampled using Clampex 10.2 

(Molecular Devices).   

 

Synaptic efficacy was quantified using the initial slope (20-50 % of the peak 

amplitude) of the fEPSP. The initial slope is a reliable indicator of synaptic efficacy 

and is less vulnerable to contamination by population spikes than the peak amplitude 

(Figure 2.4B-C). Once the initial slope had stabilised, input-output curves were 
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measured. The stimulus intensity was then set to 40-50 % of that necessary to 

produce a population spike. After slices acclimatised to the conditions of the 

recording chamber, a baseline of responses was recorded for at least 30 min prior to 

the beginning of the experiment. In a minority of cases, responses recorded over this 

time were unstable. The fEPSP initial slope either steadily decreased from the start of 

the recording or was consistently too variable from the average (± > 20%). These 

slices were rejected.  

 

LTP was induced using a 1-s, 100-Hz tetanus (i.e. 100 pulses; high frequency 

stimulation; HFS) or a 200-ms, 200-Hz train (i.e. 40 pulses) delivered 10 times at 5-s 

intervals at a stimulus intensity that evoked a 0.5-1 mV population spike in the 

stratum pyramidale adjacent to the recording electrode (high frequency burst 

stimulation). Drugs were delivered through the perfusion system and took ~ 20 s to 

reach the recording chamber, as determined in a separate experiment using a 

coloured indicator. Experiments were interleaved or run simultaneously with 

controls.  
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Figure 2.4 Stimulating and recording from Schaffer collateral-CA1 synapses in transverse 

hippocampal slices. A) The target sites of the stimulating (red) and recording (blue) electrode during 

a typical experiment are illustrated using an image of a 10 μm-thick transverse section of the 

hippocampus stained with Mayer’s hemalum (methods for sectioning and staining tissue are detailed 

in Chapter 7). Scale = 500 µm. B) A representative fEPSP recorded at high stimulus amplitude to 

show a population spike (ps). fv = fibre volley; is = initial slope; sa = stimulus artefact (truncated). 

C) Comparison of a fEPSP (black) recorded in the stratum radiatum with an EPSP (red) 

simultaneously recorded in a pyramidal neuron (identified by its electrophysiology) in an adjacent 

section of the stratum pyramidale using a sharp electrode filled with KMeSO4 (120 MΩ). Note the 

relationship between the fEPSP and EPSP initial slopes. Responses are an average of 10 consecutive 

traces. Methods for intracellular recording are detailed in Appendix 1. 
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2.2.4 Protein measurement 

 

Intact tissues were individually sonicated in inactivation buffer. The protein content 

of the resulting homogenates, or of lysates prepared for Western blot analysis, was 

measured using the bicinchoninic acid (BCA) method and a series of bovine serum 

albumin (BSA) standards (0-100 µg/ml inactivation buffer). 10 µl of each sample or 

BSA standard were dispensed in triplicate into a 96-well plate.  200 µl BCA reagent 

was added to each well and the plates were incubated for 30 min at 37 ºC to allow for 

the assay reaction to occur. The assay reaction comprises two steps: 1) Cu
2+

 is 

reduced to Cu
+
 by protein in the sample/standard; 2) Cu

+
 chelates the BCA to form a 

purple, water soluble complex that exhibits a strong absorbance at 562 nm.  After 

this, the plates were allowed to cool to room temperature and absorbance was 

measured at 562 nm using a Spectra Max 250 spectrometer (Molecular Devices, 

California, USA). As shown in Figure 2.5, the magnitude of the absorbance was 

dependent on the concentration of the starting protein and, over the concentration 

range of the BSA standards, was linear. From this, the protein content of each sample 

was quantified. 

 
Figure 2.5 An example of absorbance at 562 nm by a series of BSA standards (0-100 µg/ml 

inactivation buffer) following the BCA protein assay. Data are means of triplicate measurements ± 

SE. The inset shows the linear function used to fit the data, where a = intercept, b = slope. The 
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goodness of fit was verified by the residual sum of squares and the adjusted R2 statistic showed that 

the fit could be used to quantify the unknown protein content of the samples.  

 

2.2.5 Measurement of endogenous cGMP 

 

Following protein measurement (see 2.2.4), the remainder of each sample was 

centrifuged at 12500 rpm for 1 min at room temperature. The resulting pellet was 

discarded and the cGMP in the supernatant was measured using radioimmunoassay 

(performed by Kathryn Harris) and a series of standards containing a known 

concentration of cGMP.   

 

Radioimmunoassay (first described by Wood and Marks (1978)) is highly sensitive 

and selective for cGMP over other nucleotides, such as cAMP (observations in the 

laboratory). Briefly, 100 µl of each sample supernatant or standard comprising 0-10 

µM cGMP sodium salt in inactivation buffer were added to 50 µl inactivation buffer 

containing [
3
H]-cGMP (8 x 10

-4
 µCi) and 50 µl of a solution of cGMP antibody and 

left on ice to allow the cGMP species to compete for binding to the antibody. After 

2-18 hr, 1 ml of an ice-cold, 60 % saturated solution of ammonium sulphate (2.95 M 

in double-distilled H2O) was then added in order to precipitate the antibody-cGMP 

complex. After 5 min, the solution was centrifuged (12500 rpm; 5 min; 4 ºC) to 

pellet the complex and the supernatant containing unbound cGMP was discarded.  1 

ml double-distilled H2O was added and the pellet was left for 30 min to dissolve. 

Subsequently, 0.95 ml of the resulting suspension was added to 5 ml Pico Fluor 40 

scintillant. After mixing well, the radioactivity of the solution was measured in 

disintegrations per min (dpm; the number of atoms in a quantity of radioactivity that 

decay per min) for 5 min using a scintillation counter (LS6500 model, Beckman 

Coulter Ltd., High Wycombe, UK). 

         

A lower radioactivity count is indicative of a higher concentration of cGMP in the 

sample, since it has displaced more [
3
H]-cGMP from binding to the cGMP antibody. 

Figure 2.6 shows an example standard curve obtained after radioimmunoassay from 

which the endogenous cGMP in each experimental sample was determined.  
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Figure 2.6 An example standard curve obtained by radioimmunoassay. The inset shows the equation 

used to fit the data where y = dpm, A1 and A2 = minimum and maximum dpm, p = slope, x = pmol 

cGMP/standard, x0= pmol cGMP at which half the displacement has occurred. Note that the first data 

point on the abscissa is actually zero. The adjusted R2 statistic showed that the fit was good and could 

be used to quantify the endogenous cGMP in each experimental sample processed at the same time. 

 

2.2.6 Genotyping by PCR and agarose gel electrophoresis 

 

DNA extraction 

 

Approximately 5 mm of tail or 0.2 mm
2 

ear were removed from each mouse and 

added to 100 μl of tail lysis buffer which contained 10 mM tris (pH 8), 100 mM 

NaCl, 10 mM EDTA (pH 8), 1 mM Ca
2+

 acetate (pH 7.5) and 100 μg/ml proteinase 

K (~ 0.5-1.3 units) prepared in 50 % glycerol, 0.5 % SDS. This was then warmed to 

55 ºC to provide optimal conditions for enzymatic digestion. After at least 24 hr the 

lysates were vortexed to destroy any hard tissue and then diluted 1/10 with double-

distilled H2O.  
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PCR 

 

DNA from each lysate was amplified for electrophoresis using hot-start PCR. Unless 

otherwise stated, 25 μl reactions were set up in 200 μl PCR tubes which contained: 

0.2 µM primers, 200 µM deoxyribonucleotides, 0.5 U recombinant Taq DNA 

polymerase (Invitrogen, Paisley, UK) and 1 μl of genomic DNA lysate (obtained as 

above) in 1 x PCR buffer (Invitrogen).  

 

PCR reactions were carried out in a MWG-Biotech Primus 96 plus (Ebersberg, 

Germany). Samples were denatured at 93 ºC for 2 min. 35 PCR cycles were then 

performed, each composed of: 30 s at 93 ºC, during which samples are denatured, 30 

s at 58 ºC, in which primers anneal to the sample, and 30 s at 72 ºC for DNA 

extension. Samples were then left at 72 ºC for 10 min to allow for the completion of 

DNA extension. Each PCR included a negative control, in which the DNA sample 

was replaced with double-distilled H2O, and a positive control including DNA of a 

known genotype. PCR products were stored at 4 ºC until further use. 

 

Agarose gel electrophoresis 

 

After PCR, the products were mixed with 5 µl loading buffer containing ficol and 

dyed with bromophenol. Unless otherwise stated, 5 µl of each product were then 

electrophoresed in 2 % agarose gel in a tank containing 1 x TAE and 5 µg/ml 

ethidium bromide for a minimum of 45 min at 80 V. DNA bands were visualised 

under UV light using a Chemi-imager 4400 v 5.1 (Alpha Innotech, California, USA). 

 

2.2.7 Statistics and data analysis 

 

Statistics were performed using GraphPad InStat 3 software (GraphPad Software 

Inc., California, USA). The significance level was 0.05. Where necessary, data were 

fit with a logistic or exponential decay model using Origin Pro 8.1 (OriginLab 

Corporation, Massachusetts, USA). The equations used are given below.  
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where: 

 
A1 = initial predicted value of y 

A2 = final predicted value of y 

x0 = value of y at which x is half-maximal 

p = slope 

 

 

 

              

where: 

 
y0 = the offset of y 

A = initial predicted value of y 

e = exponential constant, ~ 2.718281828 

t = decay constant or τ 

Logistic equation 

 

Exponential equation 
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3.1 Introduction 

 

LTP is a long-lasting (> 1 hr), activity-dependent increase in the efficacy of a 

synapse, typically with Hebbian characteristics and therefore, intensely studied as a 

correlate of information processing and storage in the nervous system (see Chapter 

1). Since Bliss and Lomo (1973) reported a persistent (up to 10 hr) enhancement in 

synaptic activity following brief tetanic stimulation of hippocampal perforant path-

granule cell synapses in anesthetised rabbits, LTP has been studied throughout the 

mammalian nervous system, and in several species, including humans (Cooke and 

Bliss, 2006).  

 

The archetype of LTP occurs at Schaffer-collateral/commissural-CA1 synapses in the 

hippocampus. Often, this is induced using high frequency stimulation (HFS; 1-s, 

100-Hz tetanus), although it has been generated by multitude other electrical and 

chemical stimuli in vitro and in vivo (Bliss et al., 2007), and by learning in rodents 

(Whitlock et al., 2006). Its induction is dependent upon postsynaptic Ca
2+

 influx 

(Lynch et al., 1983; Malenka et al., 1988) and, typically, NMDA receptor activation 

(Collingridge et al., 1983a; Collingridge et al., 1983b; Malenka, 1991), thereby 

explaining why LTP is associative and input specific. Its expression is thought to rely 

upon multiple, pre- and postsynaptic mechanisms (Malenka and Bear, 2004; Bliss et 

al., 2007). However, the details of these expression mechanisms and the conditions 

under which they are recruited are, to varying extents, unclear. In particular, the 

retrograde messenger presumably required to reconcile the postsynaptic induction 

with presynaptic expression of NMDA receptor-dependent CA1 LTP, is, despite 

intense and long-lasting interest, yet to be conclusively identified.   

 

Amongst several candidate retrograde messengers, such as CO and arachidonic acid 

(reviewed by Tao and Poo, 2001), NO has, arguably, received the most attention 

since there appears to be a particularly good match between the properties of NO 

signals necessary for LTP and the requirements of a retrograde messenger (see Table 

3.1 and Chapter 1 for general discussion of the role of NO in LTP ).  
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Requirements of a 

retrograde transmitter 

active in LTP 

Evidence consistent with retrograde NO 

transmission in NMDA receptor-dependent CA1 

LTP 

The machinery for 

synthesis/release of the 

transmitter is located 

postsynaptically 

Immunohistochemistry with electron microscopy on hippocampal 

sections has shown that nNOS is expressed post- (and pre-) 

synaptically (Burette et al., 2002; Szabadits et al., 2007). 

LTP-inducing stimuli elicit 

synthesis of the transmitter  

NMDA has been found to induce NO synthesis in hippocampal 

slices (see Chapter 5) and in vivo (Luo and Vincent, 1994). Tetanic 

stimulation (three, 1-s, 100-Hz trains) sufficient for LTP has been 

shown to elicit NO synthesis in slices (Chetkovich et al., 1993).  

Postsynaptic injection of 

inhibitors that block the  

synthesis of the transmitter 

inhibit LTP 

In dissociated hippocampal neurons: post- but not presynaptic 

injections of the NOS inhibitor, L-NMMA, found to block tetanus 

(three 50-Hz, 2-s trains at 20 s intervals, Mg2+-free solution)-

evoked LTP (Arancio et al., 1996). 

In slices: postsynaptic L-NMMA and L-NNA shown to block 

pairing-induced LTP (Schuman and Madison, 1991; O'Dell et al., 

1991). 

Extracellular scavengers of the 

transmitter inhibit presynaptic 

LTP 

In dissociated hippocampal neurons: oxymyoglobin, an 

extracellular NO scavenger, blocked potentiation evoked by a weak 

tetanus paired with photolysis of caged NO in the postsynaptic 

neuron, but had no effect on potentiation when caged NO was 

presynaptic (Arancio et al., 1996). 

In slices: haemoglobin blocked pairing-induced, NO-dependent 

LTP (Schuman and Madison, 1991; O'Dell et al., 1991). 

The transmitter affects a 

presynaptic target  

Immunohistochemistry with electron microscopy on hippocampal 

sections indicates that NO-targeted guanylyl cyclase is expressed 

pre- (and post-) synaptically (Burette et al., 2002; Szabadits et al., 

2007).  

Presynaptic injections of 

inhibitors of the presynaptic 

target inhibit LTP. 

Not-tested. 

The retrograde transmitter and 

its presynaptic target cause an 

increase in the probability of 

neurotransmitter release and/or 

number of active release sites 

In dissociated hippocampal neurons:  

 exogenous NO (5-10 nM) or 8-Br-cGMP (50-100 µM) found 

to elicit a persistent increase in the frequency, independent of 

the amplitude, of miniature excitatory postsynaptic currents 

(O'Dell et al., 1991; EPSCs; Arancio et al., 1995).  

 activation of the NMDA receptor/NO/cGMP pathway shown to 
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enhance neurotransmitter vesicle recycling (Micheva et al., 

2001; Micheva et al., 2003).  

 LTP found to cause a rapid increase in presynaptic protein 

clusters via the NMDA receptor/NO/cGMP pathway (Ninan 

and Arancio, 2004; Wang et al., 2005). 

In slices:  

 the NO donors, hydroxylamine and sodium nitroprusside, 

caused an increase in the efflux of noradrenaline and ACh from 

un-stimulated hippocampal slices (Lonart et al., 1992).  

 theta burst stimulation-induced LTP in slices from mice 

lacking the AMPA receptor GluR1 subunit found to be 

presynaptic (as assessed using PPF) and abolished by NOS 

antagonism (Phillips et al., 2008).  

 a decrease in PPF (consistent with an increase in 

neurotransmitter release) measured 2 min after HFS-induced 

LTP was observed in wild-type slices but not in slices from 

mice lacking the NO-targeted guanylyl cyclase α1 subunit 

(Taqatqeh et al., 2009). 

 endogenous NO was necessary for the rapid 10-30 min) 

NMDA receptor-dependent remodelling of presynaptic 

varicosities in area CA1 of hippocampal slice cultures 

following theta burst stimulation (Nikonenko et al., 2003). 

Exogenous retrograde 

transmitter induces or 

facilitates presynaptic LTP 

In dissociated hippocampal neurons:  

 NO (< 60 s, 10 nM) paired with a weak tetanus (50-Hz, 0.5-s) 

during NMDA receptor blockade produced a persistent 

potentiation that was blocked by pre- but not postsynaptic 

injection of oxymyoglobin (Arancio et al., 1996). 

 pre- but not postsynaptic cGMP or PKG I paired with a weak 

tetanus produced a similar potentiation (Arancio et al., 1995; 

Arancio et al., 2001). 

In hippocampal slices: see discussion below. 

 

Table 3.1 Evidence consistent with retrograde NO transmission during NMDA receptor-dependent 

LTP at CA1 synapses. The table summarises some of the main requirements of a retrograde 

transmitter responsible for facilitating neurotransmitter release during NMDA receptor-dependent 

LTP in area CA1, and some of the key NO research consistent with each requirement. The list of 

requirements has been adapted from Bliss et al. (2007). 
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Given the above, NO has become widely described as a retrograde messenger during 

LTP (for example, Feil and Kleppisch, 2008). However, three aspects of research on 

the role of NO in LTP should not be overlooked when considering putative 

retrograde NO transmission during synaptic plasticity. First, the results of some 

studies of the role of NO in LTP are discordant with retrograde NO transmission. 

Most notably, several groups have observed NO-independent LTP at CA1 synapses 

(for example, Cummings et al., 1994; Bannerman et al., 1994b; Phillips et al., 2008, 

and see the discussion in Chapter 5).  

 

Second, some of the evidence consistent with retrograde NO transmission is also 

consistent with a postsynaptic effect of NO in LTP. For example, the blockade of 

pairing-induced LTP by postsynaptic injection of NOS inhibitors reported by 

Schuman and Madison (1991) and O’Dell et al. (1991) could have resulted if NO 

acts as an intracellular transmitter. Evidence consistent with intracellular NO 

transmission shows that NOS and NO-targeted guanylyl cyclase co-localise in some 

CA1 dendrites (Burette et al., 2002). The inhibition of the LTP described by 

Schuman and Madison (1991) and O’Dell et al. (1991) by extracellular NO 

scavengers is also consistent with intracellular NO signalling because an efficient 

extracellular scavenger will draw NO out of a cell by keeping the NO concentration 

gradient across the membrane steep (Garthwaite, 2008).   

 

Third, most evidence in favour of a presynaptic effect of NO following long-lasting 

plasticity has been generated using pairs of dissociated hippocampal pyramidal 

neurons (as shown in Table 3.1). The use of dissociated hippocampal neurons offers 

several advantages over using intact tissues, such as transverse slices, in which 

presynaptic terminals are inaccessible. Some of the most compelling research has 

been performed by Arancio et al. who have reported that NO produced 

postsynaptically is, through presynaptic cGMP and PKG I, critical for NMDA 

receptor-dependent LTP (Arancio et al., 1995; Arancio et al., 1996; Arancio et al., 

2001). In accordance with these findings, NO/cGMP signalling at synapses between 

dissociated hippocampal neurons has been positively linked to neurotransmitter 

release (see Table 3.1). However, the relevance of these data to the role of NO in 

LTP at synapses in intact tissues is unclear. It has, for example, been speculated that 



Chapter 3: NO-induced, long-lasting potentiation at hippocampal CA1 synapses 

 

107 

differences in the developmental stage of neurons maintained in slice preparations 

versus dissociated cultures may cause differences in LTP expression (Enoki et al., 

2009). Additionally, eNOS, which is expressed only in blood vessels (Stanarius et 

al., 1997; Blackshaw et al., 2003; Chan et al., 2004) and, therefore, was unlikely to 

be present in the neuronal cultures used by Arancio et al., has recently been 

positively linked to neurotransmitter release at CA1 synapses under conditions of 

basal stimulation (Chapter 4 and Neitz et al., 2011) and is required for some forms 

of CA1 LTP (Hopper and Garthwaite, 2006). Therefore, it is possible that the 

presynaptic effect of NO during LTP at synapses between dissociated neurons was 

favoured because: 1) the NO necessary for the potentiation had compensated for a 

lack of eNOS; 2) the probability of neurotransmitter release and/or number of active 

release sites present at synapses between the dissociated neurons was unnaturally low 

during baseline recording. Indeed, it has been reported that an increase in the 

probability of neurotransmitter release and/or number of active release sites at CA1 

synapses following LTP is more likely if the initial probability and/or number are 

low (Schulz et al., 1994). 

 

In more intact tissues, some evidence consistent with a positive link between NO and 

neurotransmitter release during LTP at CA1 synapses has been reported. For 

example, if NO acts as a retrograde messenger to cause presynaptic changes 

following NMDA receptor-dependent LTP induction, one prediction is that 

exogenous NO should partially overcome the inhibitory effect of NMDA receptor 

blockade on potentiation and induce a presynaptic component of LTP (the last 

requirement in Table 3.1). Using hippocampal slices, three different groups have 

provided evidence consistent with part of this prediction (Zhuo et al., 1993; Malen 

and Chapman, 1997; Bon and Garthwaite, 2003). They have shown that a sub-

threshold induction protocol (for example, 0.1-s, 50-Hz), unable to produce LTP 

alone, could, when delivered in the presence of exogenous NO, produce a significant 

and long-lasting potentiation that was independent of NMDA-receptor activation. 

Zhuo et al. (1993) showed that this potentiation was pathway specific and, consistent 

with a subsequent study by Bon and Garthwaite (2003), that it was also activity-

dependent, insensitive to NMDA receptor-antagonism and occluded tetanus-induced 

LTP. Later it was also reported that a potentiation with similar properties, which also 
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occluded subsequent LTP, could be induced at CA1 synapses by pairing of one of 

two cGMP analogues with a weak, sub-threshold tetanus (Zhuo et al., 1994).  

 

These data are consistent with a presynaptic effect of NO and are regarded as the 

major evidence in favour of NO as a retrograde messenger at CA1 synapses in intact 

tissues (for example, Hawkins et al., 1994). They also concur with the data collected 

from dissociated cells by Arancio et al. (see above) and with more recent work on 

CA1 LTP in slices from transgenic mice (see penultimate row of Table 3.1). 

However, the data presented by Bon and Garthwaite (2003), Malen and Chapman 

(1997) and Zhuo et al. (1993) are also consistent with a postsynaptic NO-induced 

potentiation, and tests of this possibility are missing in the literature. Furthermore, 

the potentiations observed by Zhuo et al. (1993) and Bon and Garthwaite (2003) 

could only be induced when exogenous NO was paired with simultaneous synaptic 

activity. Indeed, there are no examples of potentiation by exogenous NO under 

physiological conditions in the absence of high frequency synaptic stimulation. This 

suggests that simultaneous synaptic activity is required for the NO-dependent 

component of LTP. Since the potentiations observed by Zhuo et al. (1993), Malen 

and Chapman (1997) and Bon and Garthwaite (2003) were induced using a sub-

threshold induction protocol, a different complement of LTP mechanisms may have 

been activated from those recruited by the induction protocols typically used in 

studies of hippocampal LTP and perhaps by natural stimuli causing synaptic 

potentiation in vivo. Surprisingly, given the proposed role of NO in NMDA receptor-

dependent LTP, tests of the prediction that exogenous NO, paired with a standard 

induction protocol, should restore the NO-dependent component of LTP when 

NMDA receptors are blocked have not been reported. 

 

3.2 Aim 

 

Initial characterisation of LTP at Schaffer-collateral/commissural-CA1 synapses in 

hippocampal slices under our conditions found it to be NMDA receptor- and NO-

dependent (data shown below). Given the above, we therefore aimed to test the 

prediction that exogenous NO paired with a standard LTP induction protocol (a 1-s, 

100-Hz tetanus or high frequency stimulation; HFS) during NMDA receptor 
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blockade would restore a persistent NO-dependent component of LTP. In this way 

we sought to isolate the long-lasting, NO-dependent component of LTP from other 

mechanisms of LTP expression and to test its locus (pre and/or postsynaptic) at 

synapses in functional neural pathways.  

 

3.3 Methods 

 

3.3.1 Animals 

 

Experiments were conducted using 6-8 week-old male C57Bl/6 mice (Charles River, 

Margate, UK). Transgenic mice incapable of αCaMKII autophosphorylation 

(aCaMKII
T286A

; Giese et al., 1998) were obtained as heterozygotes in a 

129sv/C57Bl/6 background and bred. Siblings were not mated with each other. In 

preparation for experiments, pups were genotyped, heterozygotes were euthanised 

and an appropriate number of male wild-type and homozygote mice were kept. On 

the day of each experiment, a second person selected either a homozygote or wild-

type mouse for use. The experimenter was left blind to genotype until after all 

experiments and data analysis were completed. Mice were used at 6-9-weeks old.  

 

3.3.2 Transverse hippocampal slice preparation and extracellular 

electrophysiology 

 

Transverse hippocampal slices were prepared and extracellular electrophysiological 

recordings of activity at CA3-CA1 synapses were made as described in Chapter 

2.2.2-3. LTP was induced using high-frequency stimulation (HFS; a 1-s, 100-Hz 

tetanus). PPF (reviewed by Zucker and Regehr, 2002; Bliss et al., 2007) was induced 

at 0.033 Hz using pairs of stimuli separated by various intervals (called the inter-

stimulus interval (ISI)), which ranged from 10 to 400 ms. The magnitude of PPF was 

measured using the mean paired-pulse ratio (PPR; calculated by the initial slope of 

the second fEPSP/the initial slope of the first fEPSP) of ~ 10 consecutive pairs of 

fEPSPs.  
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In experiments using the NO donor, PAPA/NONOate, the optimum concentration for 

use was determined by a concentration-response curve. Under the conditions 

prevailing in Figures 3.6-9, 3.12 and 3.14-16, the optimum PAPA/NONOate 

concentration was found to be 3 µM (data shown in Figure 3.6). Subsequent to these 

experiments, the effect on synaptic efficacy of 3 µM PAPA/NONOate was found to 

be diminished. This was most likely because the introduction of a drop chamber into 

the perfusion system, which was done in order to minimise electrical noise, enhanced 

NO loss from the aCSF prior to its entry into the recording chamber. To compensate 

for this, 10 µM, rather than 3 µM PAPA/NONOate was used in subsequent 

experiments (Figures 3.10-11, 3.13 and 3.19). With the altered perfusion system, 10 

µM PAPA/NONOate produced a similar effect on synaptic plasticity as had 

previously been observed using 3 µM (see Figure 3.13 and 3.19).  

 

3.3.3 Genotyping of αCaMKII
T286A

 mice 

 

The αCaMKII
T286A

 mice (described in Giese et al., 1998) were genotyped using PCR 

and gel electrophoresis, as described in Chapter 2.2.6. For PCR, primers flanking 

loxP sites present only in the transgenic DNA were used (Giese et al., 1998; see 

Table 3.2 for primer sequences).  

 

Primer Sequence 5’-3’ Stock Concentration 

loxP 1 CTG TAC CAG CAG ATC AAA GC 5 μM 

loxP 2 ATC ACT AGC ACC ATG TGG TC 5 μM 

 

 

 

Each PCR included a negative control, in which the DNA sample was replaced with 

double-distilled H2O, and a positive control including DNA of a known genotype.  

 

After PCR, the products were electrophoresed and DNA bands were visualised under 

UV light. In accordance with the inclusion of Lox P sites in transgenic DNA only 

(Giese et al., 1998), distinct wild type and homozygous bands separated by ~ 80 base 

pairs (~ the length of two loxP sites) were observed. Heterozygote lysates showed 

Table 3.2 LoxP primers used for PCR of αCaMKIIT286A mouse DNA. 
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both bands. Each gel included a DNA ladder (Hyperladder 1, Invitrogen; 1 µl), 

positive and negative control (Figure 3.1).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Genotyping wild-type and αCaMKIIT286A mice. PCR products were electrophoresed and 

visualised under UV light. The labelled columns show: (i) the DNA ladder (relevant bands are 

indicated); (ii) heterozygote bands; (iii) a wild-type band; (iv) a homozygote band ~ 80 base pairs 

(bp) longer; (v) a negative control containing no DNA. 

 

3.3.4 Analysis and Statistics 

 

In each figure, fEPSP slopes have been normalised to the first 10 min of baseline 

recording (in the absence of any drug). Unless otherwise stated, values of LTP 

quoted in the text are mean values ± standard error of the mean (SEM) measured 55-

60 min post HFS. In each figure, HFS was applied at the arrow and inset traces 

represent the mean fEPSP recorded at the time indicated by the numbered bars. For 

clarity, the stimulus artefacts of the representative fEPSPs have been truncated. Two-

tailed t-tests and ANOVA with an appropriate multiple comparisons test were used 

to assess statistical significance between data sets. 

 

 

 

 

 

 

400 bp

200 bp

i ii  iii       iv                                   v  
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3.4 Results 

 

3.4.1 Initial characterisation of HFS-induced LTP 

 

In accordance with several previous reports, HFS (1-s, 100-Hz tetanus) applied to 

Schaffer collateral/commissural fibres in area CA3 yielded a transient PTP followed 

by a stable LTP in area CA1 that lasted longer than 1 hr (Figure 3.2A). As is typical, 

LTP was accompanied by a leftward shift in input-output and stimulus-response 

curves (Figure 3.2B-C). Consistent with the LTP constituting a synaptic change, 

rather than a change in presynaptic excitability, there was no effect of LTP on the 

relationship between stimulus and fibre volley amplitude (see half-max. values, 

Figure 3.2D).   

 

Figure 3.2 Characterisation of HFS-induced LTP. A) A typical example of LTP (n = 1 of > 20). B-D) 

LTP was accompanied by a leftward shift in the input-output (B) and stimulus-response curves (C) but 
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there was no effect of LTP on the relationship between stimulus amplitude and mean normalised fibre 

volley amplitude (see half-max. values). Data were recorded 20 min prior to, and 60 min after HFS. 

Each point is a mean of 5-10 consecutive fEPSPs measured from one typical slice. In B-C, data has 

been normalised to the maximum mean value in each data set. In D, data have been normalised to the 

maximum value recorded after LTP. The half-max. values were determined using the logistic fits 

shown (adjusted R2 > 0.99; see Chapter 2 for logistic equation). The data coloured in green were 

measured from the mean fEPSP shown in B. The fibre volley amplitude was measured as the negative 

peak relative to the baseline. 

 

Under certain conditions, LTP at CA1 synapses can be NMDA receptor- (Grover and 

Teyler, 1990) and NO-independent (Cummings et al., 1994; Phillips et al., 2008). 

Therefore, we tested the involvement of NMDA receptors and NO in LTP under our 

conditions.  

 

In agreement with the majority of previous findings at CA3-CA1 synapses (for 

example, Collingridge et al., 1983a; Collingridge et al., 1983b; Malenka, 1991), the 

NMDA antagonist, D-AP5 (50 µM, applied 10 min prior to and 5 min after HFS), 

reversibly blocked HFS-induced LTP: following HFS in the presence of D-AP5, the 

initial fEPSP was unchanged compared to the last 5 min of baseline recording, 

although a second HFS, delivered ~ 1 hr after washing the antagonist, yielded 

significant LTP (Figure 3.3A). There was no significant effect of D-AP5 on baseline 

transmission (Figure 3.3A and Figure 3.3B).  
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Figure 3.3 Requirement of LTP for NMDA receptor channel opening. A) Following the establishment 

of a stable baseline of responses, HFS was delivered in the presence of the competitive NMDA 

antagonist, D-AP5 (50 µM). Compared to the last 5 min of baseline, this had no effect on synaptic 

efficacy (55-60 min post HFS in the presence of D-AP5: 115 ± 5 %; paired t-test, p = 0.287; 0.5-60 

min post HFS in the presence of D-AP5: 117 ± 6 %; paired t-test, p = 0.112 compared to the last 5 

min of baseline). However, HFS delivered after washing D-AP5 for ~ 1 hr yielded significant LTP 

(174 ± 15 %; p = 0.0375 compared to fEPSP slope measured 5 min prior to HFS). There was no 

effect of D-AP5 on baseline transmission (first vs. last 5 min of baseline, paired t-test, p = 0.183). B) 

Analysis of stimulus response curves measured prior to and 30 min after constant perfusion of D-AP5 

(50 µM) showed no effect of the antagonist on baseline transmission. Data are 5-10 consecutive 
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fEPSPs measured from one slice and are normalised to the maximum mean value recorded in each 

data set. 

 

The involvement of endogenous NO in HFS-induced LTP was tested using the non-

selective NOS antagonist, L-NNA (100 µM, applied 30 min prior to, and at least 30 

min after HFS). Consistent with previous reports (for example, Hopper and 

Garthwaite, 2006; Taqatqeh et al., 2009), HFS in the presence of L-NNA resulted in 

a steadily declining potentiation. One hr after HFS, this potentiation was significantly 

smaller than the LTP generated in un-treated, interleaved controls, although the 

initial slope was significantly augmented from the baseline. There was no effect of 

L-NNA on baseline transmission (Figure 3.4A and Figure 3.4B).  
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Figure 3.4 Involvement of NOS in LTP. A) HFS was delivered in the presence or absence of the non-

selective NOS antagonist, L-NNA (100 µM). In the absence of L-NNA, a stable LTP was induced 

(black). In the presence of L-NNA, HFS elicited a slowly declining potentiation. 55-60 min post HFS, 

this potentiation was significantly smaller than the LTP elicited in interleaved, untreated controls 

(137 ± 9 % vs. 173 ±7 %; unpaired t-test, p = 0.0021), although the initial slope was significantly 

different from baseline (paired t-test, p = 0.0033 compared to the last 5 min of baseline). There was 

no effect of L-NNA on baseline transmission (first vs. last 5 min of baseline, paired t-test, p = 0.259). 

B) Analysis of stimulus-response curves measured before and 30 min after constant perfusion of 100 

µM L-NNA showed no effect of the inhibitor on baseline transmission. Data are means of 5-10 

consecutive fEPSPs recorded in one slice and are normalised to the maximum mean value in each 

data set. 
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The effect of the NOS substrate, L-arginine, on LTP was also investigated. L-

arginine is present in the cerebrospinal fluid of adult rats (50-80 µM; Takasugi et al., 

2003) and humans (20 µM; Martens-Lobenhoffer et al., 2007). However, the amino 

acid is not normally added to solutions used in vitro, raising the possibility that the 

concentration of L-arginine might limit NO synthesis and therefore NO-mediated 

plasticity in hippocampal slices. Previously it has been reported that NMDA-induced 

cGMP accumulation is augmented in rat hippocampal and cerebellar slices pre-

incubated with L-arginine (Garthwaite et al., 1989; East and Garthwaite, 1991), but 

there are no reports of the effect of L-arginine on NO-dependent LTP in vitro.  

  

To test the effect of L-arginine on our LTP, the amino acid (50 µM) was applied 30 

min before HFS and remained present for the duration of the experiment.  Compared 

to un-treated interleaved controls, there was no significant effect of L-arginine on the 

magnitude of LTP or on baseline transmission (Figure 3.5). 

 

Figure 3.5 Dependency of LTP on extracellular L-arginine. L-arginine (50 µM) was applied 30 min 

prior to HFS and for the remainder of the experiment. Compared to the LTP induced in interleaved, 

untreated controls, the magnitude of LTP induced in slices perfused with L-arginine was not 

significantly altered (with L-arginine (grey): 155 ± 4 %; without L-arginine (black): 170 ± 7 %; 
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unpaired t-test, p = 0.109). There was also no significant effect of L-arginine on baseline 

transmission (mean fEPSP slope over the first vs. last 5 min of baseline transmission = 101 ± 0.7 % 

vs. 101 ± 4 %; paired t-test, p = 0.871). Note that control data is the same as that shown in Figure 3.4 

but has been shown again for ease of comparison. 

 

3.4.2 Effect of pairing exogenous NO with HFS during NMDA receptor 

blockade 

 

Under our conditions, LTP was NMDA receptor- (Figure 3.3) and NO-dependent 

(Figure 3.4). Therefore the hypothesis that pairing exogenous NO with HFS during 

NMDA receptor blockade should restore the NO-dependent component of LTP was 

valid and could be tested.  

 

For this purpose, the NO donor, PAPA/NONOate was used. As previously described 

(see Chapter 2.1.6), PAPA/NONOate releases NO in a predictable manner (t½ = 15 

min at 37 ºC in oxygenated aCSF, pH 7.4; Keefer et al., 1996). Since the 

concentration of NO generated at a synapse during LTP is unknown, the effects of 

different concentrations of PAPA/NONOate, co-applied with the D-AP5 during HFS, 

were investigated. Tests of each concentration were interleaved with each other and 

with control experiments in which: 1) HFS was delivered alone (as a positive control 

for LTP induction and expression); 2) HFS was delivered in the presence of D-AP5 

only (to control for the NMDA receptor-dependency of LTP; data have been shown 

in Figure 3.3 and are shown again for ease of comparison).  

 

As above, HFS delivered alone yielded a significant LTP (data shown in grey in 

Figure 3.6). As shown previously (Figure 3.3), and again here for ease of 

comparison, LTP was blocked by the NMDA antagonist, D-AP5 (data shown in 

black in Figure 3.6). Consistent with our prediction, application of 3 µM 

PAPA/NONOate in the presence of 50 µM D-AP5 and HFS yielded a long-lasting 

potentiation (data shown in blue Figure 3.6A). This ‘NO-induced potentiation’ was 

slow to develop (half-maximal value = 18 ± 2 min; red line in Figure 3.6A) but 

reached a magnitude comparable to that observed in control slices that received HFS 

alone (compare blue and grey in Figure 3.6A).  
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The magnitude of the NO-induced potentiation was dependent on the concentration 

of PAPA/NONOate. Concentrations lower than 3 µM failed to give rise to a 

significant potentiation in fEPSP slope, as did concentrations above 3 µM (ANOVA 

with one factor Dunnett’s test, p < 0.05 compared to the fEPSP slope measured after 

HFS in the presence of D-AP5 alone; Figure 3.6B-G).  
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Figure 3.6 Effect of PAPA/NONOate application during HFS and NMDA receptor blockade on 

synaptic efficacy. A) HFS yielded a significant LTP (grey; 170 ± 5 %; paired t-test = 4.50 × 10-6 

compared to the last 5 min of baseline; n = 8) that was blocked by the NMDA antagonist, D-AP5 (50 
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µM; black; 115 ± 5 %; paired t-test, p = 0.287 compared to the last 5 min of baseline recording; n = 

6; note that these data have been previously shown in Figure 3.3). Application of 3 μM 

PAPA/NONOate during HFS in the presence of D-AP5 led to a significant, long-lasting potentiation 

in fEPSP slope (blue; 150 ± 8 %; one factor ANOVA with Dunnett’s test,  p < 0.01  compared to the 

fEPSP slope measured following HFS in the presence of D-AP5 alone (black)). This was slowly-rising 

(red; half-maximal value = 18 ± 2 min as estimated using a logistic fit of the data 3 min after HFS; 

adjusted R2 = 0.664; see Chapter 2 for fit details) but reached a magnitude comparable to control 

HFS-induced LTP (grey; unpaired t-test; p = 0.0545). B-F) Pairing of HFS and D-AP5 with lower 

(0.3-1 µM; B-C) or higher (10-30 µM; D-F) concentrations of PAPA/NONOate had no significant 

effect on synaptic efficacy (one factor ANOVA with Dunnett’s test, p > 0.05 compared to the fEPSP 

following HFS in the presence of D-AP5 alone). Black and grey data are the same as in panel A but 

have been shown repeatedly for ease of comparison. G) Summary showing the magnitude of NO-

induced potentiation 55-60 min following HFS as a function of [PAPA/NONOate]. Numbers above 

points are n values; ** = one factor ANOVA with Dunnett’s test, p < 0.01 compared to HFS in the 

presence of D-AP5 alone. 

 

3.4.3 Characterisation of NO-induced potentiation 

 

The NO-induced potentiation (generated using 3 µM PAPA/NONOate) was 

consistent with the possibility that exogenous NO had bypassed the requirement for 

NMDA receptor activity during LTP induction and prompted the expression of the 

NO-dependent component of HFS-induced LTP. To test this and begin to 

characterise the NO-induced potentiation, we investigated the relationship between 

the NO-induced potentiation and standard HFS-induced LTP. 

 

Interaction between the NO-induced potentiation and HFS-induced LTP 

 

It was hypothesised that, if the NO-induced potentiation relied upon the same 

mechanisms as the NO-dependent component of HFS-induced LTP, then these forms 

of plasticity would be non-additive. To test this postulate, a second HFS was 

delivered to slices at the end of the experiments shown in Figure 3.6 (i.e. 1 hr after 

pre-treatment with D-AP5, PAPA/NONOate and HFS). After pre-treatment with 3 

µM PAPA/NONOate, which generated significant NO-induced potentiation (see 

Figure 3.6A and 3.7A), a second HFS (labelled HFS 2 in Figure 3.7A) generated 

significant LTP,
 
of an apparently remarkably high magnitude (255 ± 11 %; Figure 
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3.7A). The magnitude of the HFS-induced LTP appeared to be related to the 

magnitude of the preceding NO-induced potentiation (Figure 3.7B-D).   

 

  

 

Figure 3.7 Impact of the NO-induced potentiation on subsequent HFS-induced LTP. A) Slices 

received HFS in the presence of D-AP5 alone (black) or HFS in the presence of D-AP5 and 3 µM 

PAPA/NONOate, which generated a significant NO-induced potentiation (blue; same data as in 

Figure 3.6A). One hr later, all slices received a second HFS (labelled HFS 2). In both conditions, this 

resulted in significant LTP (paired t-tests, p < 0.05 compared to the initial slope measured 5 min 

prior to HFS). In slices that had undergone NO-induced potentiation, the LTP was of a remarkably 

high magnitude (unpaired t-test, p = 0.0162 compared to LTP in control slices after D-AP5 wash-out 

(black)). B- C) Subsequent to treatment with HFS, D-AP5 and lower (0.3 µM; B) or higher (30 µM; 

C) concentrations of PAPA/NONOate, HFS-induced LTP was not significantly different to that 

observed in control slices after D-AP5 wash-out (one factor ANOVA with Dunnett’s test, p > 0.05). D) 

The magnitude of the NO-induced potentiation (measured 55-60 min post HFS 1) and the magnitude 

of subsequent HFS-induced LTP (measured 55-60 min post HFS 2) were similarly dependent on 
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[PAPA/NONOate]. Numbers by points are n; * = one factor ANOVA with Dunnett’s test, p < 0.05 

compared to the magnitude of HFS-induced LTP in control slices after D-AP5 wash-out (see black 

bar). 

 

Relative to the initial slope measured 5 min prior to HFS 2, the amount of LTP 

yielded by HFS subsequent to the NO-induced potentiation (generated using 3 µM 

PAPA/NONOate) was not significantly different from the amount yielded by HFS 

subsequent to pre-treatment with D-AP5 alone (unpaired t-test, p = 0.0516; see 

Figure 3.7A). This suggested that the NO-induced potentiation was additive with 

subsequent HFS-induced LTP. 

 

Further analysis of the relationship between the magnitude of the NO-induced 

potentiation generated using 3 µM PAPA/NONOate and subsequent HFS-induced 

LTP was also consistent with a purely additive interaction: the magnitude of the NO-

induced potentiation (generated using 3 µM PAPA/NONOate) was significantly 

positively correlated with the magnitude of subsequent HFS-induced LTP (Figure 

3.8, red); there was no significant correlation between the NO-induced potentiation 

and subsequent LTP when the latter was normalised to the former (blue); the mean 

magnitude of HFS-induced LTP, once normalised to the magnitude of the NO-

induced potentiation, was not significantly different from the magnitude of control, 

HFS-induced LTP (grey bar vs. blue mean). 
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Figure 3.8 Correlation between the magnitude of the NO-induced potentiation and subsequent HFS-

induced LTP. NO-induced potentiation was generated using 3 µM PAPA/NONOate and 1 hr later, 

LTP was induced by HFS. Red: the magnitude of the NO-induced potentiation was positively 

correlated with that of the HFS-induced LTP (Pearson’s ρ = 0.566, p = 0.00168). Spearman’s 

correlation coefficient was similar (0.523, p = 0.00432) suggesting that the trend over this data range 

was linear. Blue: when the magnitude of HFS-induced LTP was normalised to the magnitude of the 

preceding NO-induced potentiation, the data were not correlated (Spearman’s ρ = -0.264, p = 0.174). 

Grey: The grey bar shows the mean magnitude of the control LTP shown in Figure 3.6 ± SEM. There 

was no significant difference between the mean grey and blue value (unpaired t-test, p = 0.478). 

Filled points are means. Fits are linear. 

 

There were at least two possible reasons why the NO-induced potentiation and 

subsequent HFS-induced LTP were additive: 1) the potentiations shared common 

mechanisms, but one HFS did not saturate them; 2) the NO-induced potentiation was 

mechanistically distinct from HFS-induced LTP. To address these possibilities and 

determine in which context the NO-induced potentiation should be interpreted, 

experiments were designed to assess: 1) the number of HFS needed to saturate HFS-

induced LTP; 2) the effect of the NO-induced potentiation on the maximum possible 

magnitude of HFS-induced LTP.  
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HFS was paired with D-AP5 and 3 µM PAPA/NONOate, or D-AP5 alone. As above, 

pairing of HFS with D-AP5 and PAPA/NONOate resulted in a significant 

potentiation, although pairing of HFS with D-AP5 alone did not. Thirty min later, 

one HFS was delivered every 30 min until no difference in the magnitude of LTP 

generated by consecutive tetani was observed (Figure 3.9A).  

 

Using repeated measures ANOVA with Dunnett’s test to compare the fEPSP slope 

25-30 min after each HFS (labelled 1-4 in Figure 3.9) to that measured after the last 

HFS (labelled 5), it was determined that, regardless of previous NO-induced 

potentiation, the magnitude of LTP was not saturated by one HFS. It was reasoned 

that, if the NO-induced potentiation was representative of a NO-dependent 

component of LTP, then LTP subsequent to it would saturate one HFS earlier than 

the LTP subsequent to pre-treatment with D-AP5 alone. However, LTP saturated 

after HFS 3 in both groups (see Figure 3.9C). It was also hypothesised that, if the 

NO-induced potentiation was representative of a NO-dependent component of LTP, 

then LTP subsequent to the NO-induced potentiation would saturate at the same 

magnitude as LTP subsequent to pre-treatment with D-AP5 alone. However, the 

magnitude of LTP 25-30 min after each HFS was consistently and significantly 

higher in slices that had previously undergone NO-induced potentiation than in slices 

that were pre-treated with D-AP5 alone (Figure 3.9B). This effect was not 

observable when the data within each condition was normalised to the fEPSP slope 

25-30 min after HFS1 (see Figure 3.9B inset), implying that the NO-induced 

potentiation had no effect on the magnitude of LTP generated by each HFS, 

compared to controls.  
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Within group analysis of data in B: Repeated measures ANOVA 

with Dunnett’s test 

D-AP5 alone D-AP5 and PAPA/NONOate 
Comparison Mean Diff. 

(%) 

p value Comparison Mean Diff. 

(%) 

p value 

1 vs. 5 -93 < 0.01 1 vs. 5 -108 < 0.01 

2 vs. 5 -48 < 0.01 2 vs. 5 -40 < 0.01 

3 vs. 5 -20 > 0.05 3 vs. 5 -15 > 0.05 

4 vs. 5 7 > 0.05 4 vs. 5 3 > 0.05 

 

 

Figure 3.9 LTP saturation subsequent to NO-induced potentiation. A) In experiments separate from 

those shown in Figure 3.6-7, HFS was paired with D-AP5 and PAPA/NONOate, thereby generating 

significant NO-induced potentiation (measuring 135 ± 4 % 25-30 min after HFS; paired t-test, p = 
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0.00401 compared to the last 5 min of baseline), or D-AP5 alone, which had no significant effect on 

the fEPSP slope (111 ± 5 % 25-30 min after HFS; p = 0.103 compared to the last 5 min of baseline). 

30 min later a series of HFS were delivered to slices (one every 30 min; HFS 2-5) until the magnitude 

of LTP was saturated (see comparison 4 vs. 5 in C). B) The mean fEPSP slope recorded 25-30 min 

following each HFS (1-5) is plotted. ** = the magnitude of LTP measured 25-30 min after each HFS 

was significantly higher in slices that had undergone NO-induced potentiation than in slices pre-

treated with D-AP5 alone (two factor ANOVA with repeated measures across HFS, p = 0.0007). 

Inset: within each group, the data have been normalised to the value recorded after HFS 1. C) Within 

each group, the magnitude of LTP yielded after each HFS is compared to that after the last HFS (HFS 

5) using repeated measures ANOVA with Dunnett’s test.  Within both groups, LTP was saturated after 

HFS 3. 

 

The above results were discordant with the possibility that the NO-induced 

potentiation and subsequent LTP were additive because one HFS was not saturating 

LTP. Rather, they were consistent with the possibility that the NO-induced 

potentiation and subsequent LTP were mechanistically distinct. To test this, a series 

of HFS were delivered to slices (one every 30 min; see HFS 1-5 in Figure 3.10A) 

until there was no observable effect of consecutive tetani on the magnitude of LTP. 

As above, repeated measures ANOVA with Dunnett’s test used to compare the 

magnitude of LTP 25-30 min following each HFS (labelled 1-4) to that recorded 

after the final tetanus (labelled 5) showed that 3 tetani were required to saturate the 

magnitude of LTP (see Figure 3.10B). Subsequently, HFS was delivered in the 

presence of PAPA/NONOate (see HFS 6 in Figure 3.10). If the NO-induced 

potentiation was mechanistically distinct from HFS-induced LTP, then pairing of 

exogenous NO with HFS was predicted to further increase the fEPSP slope. 

However, there was no significant effect of pairing HFS with PAPA/NONOate 

(Figure 3.10B).  
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Figure 3.10 The number of HFS required to saturate LTP and the effect of exogenous NO on 

saturated LTP. A) One HFS was delivered to slices every 30 min until there was no observable 

difference between the magnitudes of LTP yielded by consecutive tetani. Subsequently, 

PAPA/NONOate was paired with HFS (HFS 6). B) The mean fEPSP slope recorded 25-30 min 

following each HFS (1-6) is plotted and compared to that after HFS 5 (the last HFS prior to NO) 

using repeated measures ANOVA with Dunnett’s test; ** = p < 0.01; * = p < 0.05; ns = p > 0.05. 

Note that 10 µM PAPA/NONOate was used due to the reasons outlined in 3.3.2. 

 

Further investigation revealed that there was also no effect of exogenous NO paired 

with HFS on the magnitude of LTP in slices that had not undergone any previous 

long-lasting potentiation (Figure 3.11). 
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Figure 3.11 Effect of exogenous NO on control LTP. Slices received HFS, or HFS in the presence of 

PAPA/NONOate. PAPA/NONOate had no significant effect on the magnitude of the resulting LTP 

(HFS alone = 178 ± 8 %; HFS and PAPA/NONOate = 166 ± 6 %; unpaired t test, p = 0.199). Two 

concentrations of PAPA/NONOate were tested due to the reasons discussed in 3.3.2. 

 

Mechanisms underlying the NO-induced  potentiation 

 

The NO-induced potentiation was additive with subsequent HFS-induced LTP 

(Figure 3.7-9) and this could not be explained by the inability of one HFS to saturate 

LTP (Figure 3.9). These findings were discordant with the hypothesis that 

exogenous NO paired with a standard LTP induction protocol during NMDA 

receptor blockade would restore a persistent NO-dependent component of LTP and 

suggested that the NO-induced potentiation was mechanistically distinct from LTP. 

However, exogenous NO paired with HFS had no significant effect on the magnitude 

of the resulting potentiation (Figure 3.10-11). Possible explanations for this are 

detailed below (see 3.5 Discussion). To further investigate whether the NO-induced 

potentiation was dependent upon similar mechanisms as NMDA receptor-and NO-

dependent LTP, key properties of the NO-induced potentiation were investigated.  
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Firstly, we sought to test whether the NO-induced potentiation was dependent on 

HFS. Activity-dependence is a hallmark characteristic of LTP and associative 

synaptic plasticity. In the present study, it was found that HFS (labelled HFS 1 in 

Figure 3.12) was critical for the generation of NO-induced potentiation and 

subsequent high-magnitude HFS-induced LTP. Regardless of whether HFS 1 was 

delivered, there was no significant difference in the amount of LTP generated by 

subsequent HFS (labelled HFS 2 in Figure 3.12). This was consistent with the results 

shown in Figure 3.8 and the conclusions drawn from Figure 3.9. 

 

 

Figure 3.12 Activity-dependence of NO-induced potentiation. PAPA/NONOate and D-AP5 were 

applied to slices and this application was either paired or not with HFS (HFS 1). HFS 1 was critical 

for NO-induced potentiation (without HFS 1: 109 ± 7 %; paired t-test, p = 0.158 compared to 

baseline; with HFS 1: 137 ± 6 %; paired t-test, p = 0.0039 compared to baseline; without HFS 1 vs. 

with HFS 1: unpaired t-test, p = 0.00479; left panel) and subsequent high-magnitude, HFS-induced 

LTP (without HFS 1: 189 ± 15 %; with HFS 1: 239 ± 8 %; unpaired t-test, p = 0.0172; without HFS 1 

vs. with HFS 1: unpaired t-test, p = 0.0147). Measured from the fEPSP slope 10 min prior to HFS 2, 

the magnitude of LTP in each condition was not significantly different (unpaired t-test, p = 0.155).  

Note that the two parts of this experiment have been illustrated on different scales.  

 

Classically, the requirement of LTP for HFS is explained by its requirement for 

NMDA receptor activity. However, the NO-induced potentiation was insensitive to a 
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high concentration of the NMDA antagonist, D-AP5 (50 µM), raising the question: 

what does HFS contribute to the NO-induced potentiation? 

  

Following high frequency (200 Hz) burst stimulation or long-lasting theta burst 

stimulation, several groups have observed a NMDA receptor-independent, L-type 

VGCC (L-VGCC)-dependent LTP at CA1 synapses that may rely on distinct 

expression mechanisms from those involved in NMDA receptor-dependent LTP 

(Grover and Teyler, 1990; Cavus and Teyler, 1996; Morgan and Teyler, 1999; 

Bayazitov et al., 2007). Like the NO-induced potentiation, this L-VGCC-dependent 

LTP was slowly rising and measured ~ 150 % (Grover and Teyler, 1990). 

Furthermore, it has been hypothesised that L-VGCCs could become active during 

100 Hz HFS (Cavus and Teyler, 1996), although, to our knowledge, this has not been 

tested. Therefore, to determine whether the NO-induced potentiation was related to 

NMDA receptor-independent, L-VGCC-dependent LTP, and whether a requirement 

for L-VGCC opening accounted for the activity-dependence of the NO-induced 

potentiation, the L-VGCC antagonist, nifedipine (30 µM) was employed.  

 

As shown in Figure 3.13, there was no effect of nifedipine on the magnitude of the 

NO-induced potentiation and no effect of nifedipine pre-treatment on subsequent 

HFS-induced LTP. Note that, under our conditions, the same concentration of 

nifedipine was effective in blocking a NMDA receptor-independent, L-VGCC-

dependent LTP at CA1 synapses (see Chapter 5). 
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Figure 3.13 Impact of L-VGCC inhibition on NO-induced potentiation. The selective L-VGCC 

antagonist, nifedipine (30 µM; applied 20 min prior to HFS), had no significant effect on the NO-

induced potentiation (with nifedipine: 143 ± 7 %; without nifedipine: 139 ± 5 %; unpaired t-test, p = 

0.668) and there was no effect of nifedipine pre-treatment on subsequent HFS-induced LTP (with 

nifedipine: 208 ± 10 %; without nifedipine: 204 ± 27 %; unpaired t-test, p = 0.794). Control 

experiments were separate from those shown in Figure 3.12.  

 

It has been previously reported that HFS-induced LTP at CA1 synapses requires both 

eNOS and nNOS activity. The former is thought to provide a tonic, activity-

independent NO signal (Hopper and Garthwaite, 2006) that is D-AP5-insensitive 

(Bartus, 2009). The latter is hypothesised to provide a phasic, activity-dependent NO 

signal (Hopper and Garthwaite, 2006) and is thought to be preferentially elicited 

upon NMDA receptor activity (Garthwaite, 2008).  Therefore, to test the 

involvement of D-AP5-insensitive, endogenous NO in the NO-induced potentiation 

the non-selective NOS inhibitor, L-NNA (100 µM) was used. In common with its 

effect on HFS-induced LTP (Figure 3.4), L-NNA caused a steady decline in the NO-

induced potentiation such that, 55-60 min post HFS, the potentiation was 

significantly reduced compared to that observed in un-treated controls. In slices pre-

treated with L-NNA, subsequent HFS-induced LTP was also reduced compared to 
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that observed in un-treated controls (Figure 3.14). It is unclear whether this was a 

consequence of reduced NO-induced potentiation, or incomplete L-NNA wash-out. 

 

 

Figure 3.14 Requirement of NO-induced potentiation for NOS. The non-selective NOS inhibitor, L-

NNA (100 µM), was applied to slices 30 min prior to and after HFS. This caused a steady decline in 

the NO-induced potentiation such that, 55-60 min post HFS it was significantly reduced compared to 

interleaved, un-treated controls (118 ± 8 % vs. 148 ± 11 %; unpaired t-test, p= 0.0383). In slices pre-

treated with L-NNA, subsequent HFS-induced LTP was also significantly reduced compared to that in 

un-treated controls (160 ± 11 % vs. 238 ± 19 %; p = 0.0049). 

 

Physiological NO signal transduction is thought to occur via guanylyl cyclase 

activation and cGMP accumulation (Garthwaite, 2008). Consistent with this 

mechanism, NO-dependent CA1 LTP has been found to be significantly inhibited by 

the NO-targeted guanylyl cyclase antagonist, ODQ (for example, Boulton et al., 

1995; Lu et al., 1999; Bon and Garthwaite, 2003). Accordingly, we sought to test the 

requirement of the NO-induced potentiation for NO-targeted guanylyl cyclase 

activity. In common with the effect of L-NNA, ODQ (10 µM) caused a significant 

decline in the expression of the NO-induced potentiation, and in slices pre-treated 

with ODQ, the magnitude of subsequent HFS-induced LTP was also significantly 
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reduced compared to un-treated controls (Figure 3.15). As above, this could be 

explained by reduced NO-induced potentiation or incomplete ODQ wash-out.        

 

 

Figure 3.15 Dependence of NO-induced potentiation on NO-targeted guanylyl cyclase activity. The 

NO-targeted guanylyl cyclase antagonist, ODQ (10 µM), was applied to slices 20 min prior to and 5 

min after HFS. This caused a significant decline in the NO-induced potentiation, such that, 55-60 min 

post HFS, it was significantly reduced compared to interleaved, untreated controls (115 ± 8 % vs. 138 

± 5 %; unpaired t-test, p= 0.0341). Subsequent HFS-induced LTP was also significantly reduced in 

slices pre-treated with ODQ compared to that recorded in untreated controls (159 ± 10 % vs. 228 ± 

14 %; unpaired t-test, p = 0.0064). 

 

Finally, the involvement of αCaMKII in the NO-induced potentiation was tested. 

This kinase is viewed as a general effector of LTP at mature CA1 synapses (Lisman 

et al., 2002) and is required for NO/cGMP-dependent LTP between pairs of 

dissociated hippocampal neurons (Ninan and Arancio, 2004). Although αCaMKII is 

Ca
2+

-activated, autophosphorylation at threonine-286 (T286) allows it to maintain 

activity hours after the dissociation of CaM. Replacement of T286 with alanine 

(T286A) renders autophosphorylation of the kinase impossible and has been reported 

to block LTP at CA1 synapses and learning of hippocampus-dependent tasks (Logue 

et al., 1997; Giese et al., 1998). Therefore, to test the requirement of the NO-induced 

potentiation for αCaMKII, we attempted to generate NO-induced potentiation in 
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slices prepared from αCaMKII
T286A

 homozygote and wild-type mice (described by 

Giese et al., 1998).  

 

At CA1 synapses in slices prepared from wild-type littermates, significant NO-

induced potentiation was observed. However, at synapses in slices from 

αCaMKII
T286A

 homozygote mice, neither the NO-induced potentiation nor 

subsequent HFS-induced LTP could be induced (Figure 3.16A).  

 

Compared to the magnitude typically observed in C57Bl/6 mice, a relative decrease 

in the magnitude of the NO-induced potentiation and subsequent HFS-induced LTP 

was apparent in the wild-type mice (NO-induced potentiation in wild-type data set: 

130 ± 4 %; subsequent LTP: 183 ±  10 %; n = 5). However, the magnitude of NO-

induced potentiation was identical to the degree of HFS-induced LTP observed in a 

pilot experiment using 1 wild-type littermate (130 %; Figure 3.16B). The relative 

decrease may, therefore, be inherent to these mice and caused, perhaps, by their 

background.  
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Figure 3.16 Involvement of αCaMKII in NO-induced potentiation. A) Neither the NO-induced 

potentiation, nor subsequent HFS-induced LTP could be induced in αCaMKIIT286A homozygote mice 

(NO-induced potentiation: 99 ± 8 %; paired t-test, p = 0.461 compared to baseline; subsequent HFS-

induced LTP: 101 ± 9 %; p = 0.367 compared to baseline).  However, both forms of potentiation 

could be observed in wild-type littermates (NO-induced potentiation: 130 ± 4 %; paired t-test, p = 

0.0006 compared to baseline; HFS-induced LTP: 183 ± 10 %; paired t-test, p = 0247 compared to the 

last 5 min of the NO-induced potentiation). B) HFS-induced LTP in a wild-type littermate (130 %). 

 

3.4.4 Synaptic locus of the NO-induced potentiation 

 

Although the precise relationship between the NO-induced potentiation and HFS-
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potentiation showed that it had properties in common with at least some forms of 

LTP. For example, the NO-induced potentiation required HFS (Figure 3.12), 

endogenous NO (Figure 3.14), NO-targeted guanylyl-cyclase activity (Figure 3.15), 

and functional αCaMKII (Figure 3.16). Given the hypothesis that the NO acts as a 

retrograde messenger during LTP (see 3.1 Introduction), we therefore sought to test 

the synaptic locus (pre- or postsynaptic) of the NO-induced potentiation.  

 

To this end, the effect of the NO-induced potentiation on PPF, at CA1 synapses was 

investigated. PPF, which can be elicited when a pair of stimuli are delivered to 

synapses in quick succession (typically with an ISI < 500 ms), is characterised by a 

transient increase in synaptic efficacy (for example, see Figure 3.17). Although 

some doubts exist over the synaptic locus of PPF (reviewed by Bliss et al., 2007), the 

facilitation can be explained by a change in presynaptic efficacy caused, for example, 

by residual Ca
2+

 in the axon bouton (Wu and Saggau, 1994b) or a related 

mechanism, such as the saturation of a presynaptic Ca
2+

 buffer (Rozov et al., 2001). 

Therefore changes in PPF are often used to diagnose a presynaptic change in efficacy 

following LTP induction. Specifically, an increase in the probability of 

neurotransmitter release following LTP is thought to reduce the scope for a 

subsequent increase during PPF and, therefore, cause a decrease in the magnitude of 

PPF (measured using the PPR; the initial slope of the second fEPSP/the initial slope 

of the first fEPSP; Zucker and Regehr, 2002; Bliss et al., 2007).   

 

Initial characterisation of PPF 

 

Before testing the effect of the NO-induced potentiation on the magnitude of PPF at 

CA1 synapses, we sought to characterise PPF under our conditions and determine 

whether statistically significant, evoked changes in the PPR could be detected. In 

accordance with previous reports (Creager et al., 1980), initial studies showed that 

PPF of CA1 fEPSPs could be consistently generated using ISIs of 10-400 ms (Figure 

3.17). The magnitude of PPF (determined using the PPR) was dependent on the ISI 

used, and the relationship was remarkably similar to that previously described at 

CA1 synapses in rat hippocampal slices (Creager et al., 1980; Dunwiddie and Haas, 

1985) and in awake C57/Bl6 mice (Fontinha et al., 2009).  
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Figure 3.17 PPF of CA1 fEPSPs. PPF of CA1 fEPSPs could be consistently elicited by stimulating 

the Schaffer collateral/commissural fibres twice in quick succession (ISI = 10-400 ms). The 

magnitude of PPF (determined using the PPR) was dependent on the ISI: the PPR increased from 10 

ms to peak at 25 ms and then decreased exponentially over the range of 25-400 ms. The PPR was 

half-maximal at 81 ± 6 s (see τ; see Chapter 2 for exponential equation; adjusted R2 = 0.993). In 

individual experiments, PPRs were measured from the mean of 10 consecutive pairs of fEPSPs (an 

example is inset). 

 

To determine whether, at a given ISI, statistically significant, evoked changes in PPF 

could be detected under our conditions, we measured alterations in the PPR in 

response to 2 compounds, 2-Cl-adenosine and forskolin, known to have opposite 

effects on the magnitude of PPF at CA1 synapses. To avoid ceiling effects on any 

changes in the PPR, the ISI was set to 100 ms, since this ISI was found to elicit ~ 

half-maximal PPF in initial experiments (see τ in Figure 3.17). 

 

In accordance with previous studies of the effect of adenosine on PPF at CA1 

synapses in adult rat hippocampal slices (Dunwiddie and Haas, 1985; Dumas and 

Foster, 1998), bath application of 2-Cl-adenosine (0.5 µM) elicited a depression of 

fEPSP 1 and, to a lesser extent, fEPSP 2 (Figure 3.18A), causing a significant 

increase of the mean PPR from baseline (Figure 3.18C). As shown in Figure 3.18B, 

the increase in PPR was observed in all the slices tested.   
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After washing of 2-Cl-adenosine and re-establishing a steady baseline, 0.5 µM 

forskolin was applied. As has been previously observed at CA1 synapses in rat 

hippocampal slices (Dumas and Foster, 1998; Lu and Gean, 1999; Wu et al., 1999), 

forskolin caused a potentiation of fEPSP 1 and, to a lesser extent, fEPSP 2 (Figure 

3.18A), resulting in a significant decrease of the mean PPR from baseline (Figure 

3.18C). This decrease was observed in the majority of slices tested, although two of 

seven showed an increase (see Figure 3.18B).  

 

 

 

Figure 3.18 Effect of 2-Cl-adenosine and forskolin on PPF. A) Paired pulses (ISI = 100 ms) were 

delivered to CA1 synapses every 30 s. 2-Cl-adenosine (0.5 µM) and forskolin (50 µM) were applied at 

the times indicated and their effects on the mean initial slopes of fEPSP 1 and 2 were recorded. B) 

Summary showing the mean PPR recorded at the colour coded bars in A in each experiment (grey) 

and on average (black). C) Summary of the mean change in PPR from the preceding baseline caused 

by 2-Cl-adenosine and forskolin. 2-Cl-Adenosine caused a significant increase in the mean PPR 
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(mean change (red minus black in A and B): 0.31 ± 0.08; ** one factor t-test, p = 0.00482 compared 

to zero). Forskolin induced a significant decrease in the mean PPR (mean change (green minus blue 

in A and B): 0.14 ± 0.05; * one factor t-test, p = 0.0436 compared to zero change). Numbers above 

bars are n. 

 

Effect of HFS-induced LTP and the NO-induced potentiation on the 

magnitude of PPF 

 

The above results suggested that significant bidirectional changes in PPF could be 

detected under our conditions. Therefore, the effects of the NO-induced potentiation 

and subsequent HFS-induced LTP on PPF were determined. For the reasons outlined 

in 3.3.2, 10 µM PAPA/NONOate was used to generate a significant NO-induced 

potentiation, which measured 138 ± 5 %. Subsequent LTP was 222 ± 11 %. 

Additionally, experiments were performed to control for the effect of HFS paired 

with D-AP5 on PPF. In these experiments, HFS in the presence of D-AP5 alone had 

no significant effect on fEPSP slope, although HFS subsequent to D-AP5 wash-out 

generated significant LTP (Figure 3.19A). PPF was induced at the coloured bars 

shown in Figure 3.19A. As above, the ISI was set to 100 ms.  

 

As shown in grey in Figure 3.19B, the effects of all treatments on PPF varied 

between experiments. On average, there was no significant change in the mean PPR 

from baseline after pairing D-AP5 with HFS, or after LTP induced subsequent to D-

AP5 wash-out. Compared to the change in PPR following HFS in the presence of D-

AP5 alone, there was no significant effect of the NO-induced potentiation on PPR. 

Compared to the change in PPR following LTP in slices pre-treated with D-AP5 

alone, LTP subsequent to the NO-induced potentiation also had no effect on mean 

PPR (Figure 3.19C).  
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Figure 3.19 Changes in PPF subsequent to the NO-induced potentiation. A) Pairing of 

PAPA/NONOate and HFS in the presence of D-AP5 generated significant NO-induced potentiation 

(138 ± 5 %; paired t-test, p = 8.56 × 10-5 compared to the last 5 min of baseline) and 1 hr later, 

delivery of a second HFS yielded significant LTP (222 ± 11 %; paired t-test, p = 5.94 × 10-6 
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compared to the last 5 min of NO-induced potentiation). HFS in the presence of D-AP5 alone 

generated no significant potentiation (107 ± 5 %; paired t-test, p = 0.312 compared to the last 5 min 

of baseline), although after washing D-AP5, a significant LTP was generated (163 ± 8 %; paired t-

test, p = 7.08 × 10-6 compared to fEPSP slope 5 min prior to HFS). Paired stimuli (ISI = 100 ms) 

were delivered at the bars number i-iii. B) The magnitudes of the PPF elicited at the time points 

indicated by the numbered bars in A in individual experiments (grey) and on average (black or blue) 

are plotted. C) Summary showing the average change in PPR following HFS 1 or 2 (see panel A) in 

slices treated with D-AP5 or D-AP5 and PAPA/NONOate compared to baseline. The average changes 

in PPR following treatment with 0.5 µM 2-Cl-adenosine or 50 µM forskolin (ISI = 100 ms; see 

Figure 3.17) are shown again for comparison. Statistics: one factor t-tests compared to zero change: 

** = p < 0.01, * = p < 0.05, ns= p > 0.05 compared to zero; #: unpaired t-test, p > 0.05. 

 

Finally, to place the above results into context, the effect of HFS-induced LTP on 

PPF was evaluated. In these experiments, LTP measured 179 ± 6 % (Figure 3.20A). 

As shown in Figure 3.20B, the effect of HFS-induced LTP on PPF when the ISI was 

100 ms was very variable (PPR increased in 4 slices and decreased in 6 slices) and 

on average, there was no significant change. Similar results were obtained when the 

ISI was 25 or 200 ms (Figure 3.20C).     
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Figure 3.20 Control HFS-induced LTP and PPF. A) Paired-stimuli (various ISIs) were delivered 

before (bar labelled i) and after (bar labelled ii) HFS-induced LTP (LTP measured 179 ± 6 %; paired 

t-test, p = 1.04 × 10-6 compared to last 5 min of baseline; n= 10). B) The mean PPRs (ISI = 100 ms) 

measured before and after LTP are shown for individual experiments (grey) and on average across all 

experiments (black). Four slices showed a decrease in PPF and 6 an increase. C) Summary showing 

the average change in PPR following LTP when ISI = 25, 100 or 200 ms. None of the changes were 

statistically significant (one factor t-test, p > 0.05 compared to 0). The mean changes in PPR 

following treatment with 0.5 µM 2-Cl-adenosine and 50 µM forskolin (ISI = 100 ms; see Figure 3.17 

for full details) are shown for comparison. **: one factor t-test, p < 0.01 compared to zero change; *: 

one factor t-test, p < 0.05 compared to zero. 
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3.5 Discussion 

 

Under our experimental conditions, LTP at CA1 synapses in hippocampal slices was, 

in accordance with several previous reports (Collingridge et al., 1983a; Collingridge 

et al., 1983b; Schuman and Madison, 1991; Bohme et al., 1991; Malenka, 1991; Son 

et al., 1996; Hopper and Garthwaite, 2006), NMDA receptor- (Figure 3.3) and NO-

dependent (Figure 3.4). The aim of this study was to test the prediction that 

exogenous NO, paired with a standard LTP induction protocol during NMDA 

receptor blockade would restore a persistent NO-dependent component of NMDA 

receptor-dependent LTP. In this way, we sought to isolate the long-lasting NO-

dependent component of LTP from other LTP expression mechanisms (such as those 

observed > 1 hr post HFS in the presence of L-NNA; Figure 3.4) and test its locus 

(pre and/or postsynaptic).  

 

3.5.1 NO-induced potentiation 

 

We report that pairing of the NO donor, PAPA/NONOate, with HFS of Schaffer 

collateral/commissural fibres in the presence of a NMDA receptor antagonist yielded  

a long-lasting potentiation of CA1 fEPSPs that we have called ‘NO-induced 

potentiation’. Surprisingly, given the proposed role of NO in NMDA receptor-

dependent LTP, tests of the effect of pairing NO with a standard LTP induction 

protocol on synaptic efficacy have not been previously reported. Multiple groups 

have, reported a long-lasting potentiation of activity at CA1 synapses after a sub-

threshold tetanus was paired with exogenous NO (Zhuo et al., 1993; Malen and 

Chapman, 1997; Bon and Garthwaite, 2003). In common with this potentiation, and 

consistent with the effect of the NOS inhibitor, L-NNA, on HFS-induced LTP 

(Figure 3.4), the NO-induced potentiation that we observed was slowly rising (half-

max. ~ 18 min) and, could reach a magnitude similar to HFS-induced LTP (Figure 

3.6).  

 

Characterisation of the NO-induced potentiation revealed that it shared other 

properties with the potentiation induced by Bon and Garthwaite (2003) and Zhuo et 

al. (1993), as well as with NO-dependent LTP in general. Firstly, it was found that 
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the NO-induced potentiation was HFS-dependent and presumably, therefore, 

pathway-specific (Figure 3.12). This would serve to restrict the effects of the 

exogenous NO to synapses that are active at the same time, thereby allowing NO to 

participate in Hebbian signalling, rather than as a simple volume transmitter. The 

dependence of the NO-induced potentiation on HFS suggests that it is dependent 

upon NMDA receptor-independent, as well as NMDA receptor-dependent 

mechanisms. Activity presumably provides a pre- and/or postsynaptic signal that 

primes or tags synapses for potentiation, perhaps by activating a signalling cascade 

convergent with the NO-cGMP pathway. The signalling cascade that converges with 

the NO-cGMP pathway might involve CaMKII (Figure 3.16), or alternatively, 

CaMKII may be downstream of NO-cGMP during NO-induced potentiation, as has 

been suggested by Ninan and Arancio (2004). The signal provided by the HFS 

appears to be independent of L-VGCC activation (Figure 3.13), suggesting that the 

NO-induced potentiation is distinct from the slowly-rising, NMDA receptor-

independent, L-VGCC-dependent LTP that has been described at CA1 synapses 

(reviewed by Teyler et al., 1995). Other possible sources of Ca
2+

 that may be 

required for the signal include other VGCCs, metabotropic glutamate receptors 

and/or intracellular Ca
2+

 stores, all of which have been implicated in LTP (reviewed 

by Bliss et al., 2007).   

 

Secondly, the NO-induced potentiation was attenuated by NOS antagonism (Figure 

3.14). This finding was consistent with LTP at CA1 synapses requiring a phasic, 

neuronal, and tonic, NMDA receptor-independent, endothelial NO signal (Hopper 

and Garthwaite, 2006; Bartus, 2009).  

 

Third, the NO-induced potentiation was inhibited by NO-targeted guanylyl cyclase-

inhibition (Figure 3.15). This finding was consistent with the current consensus that 

physiological NO signal transduction is achieved by NO-targeted guanylyl cyclase 

activation (reviewed by, Garthwaite, 2008) and with previous reports that NO-

dependent LTP is transduced through NO-targeted guanylyl cyclase (for example, 

Boulton et al., 1995; Lu et al., 1999; Bon and Garthwaite, 2003).  
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Fourth, the NO-induced potentiation and subsequent HFS-induced LTP were 

abolished in αCaMKII
T286A

 mice (Figure 3.16). This kinase constitutes ~ 1-2 % of 

total brain protein and co-localises with NMDA receptors at CA1 synapses. 

Although the kinase is Ca
2+

-activated, autophosphorylation at threonine-286 allows it 

to maintain activity hours after the dissociation of CaM. The ability of the kinase for 

autophosphorylation has led to the hypothesis that αCaMKII may play multiple roles 

in LTP, firstly as a transducer for the Ca
2+

 signal required during LTP induction and 

secondly as a persistent mechanism for LTP expression (Lisman et al., 2002). 

Replacement of threonine-286 with alanine (T286A) renders autophosphorylation of 

the kinase impossible, blocks LTP at CA1 synapses (Giese et al., 1998; Cooke et al., 

2006) and delays hippocampus-dependent maze learning (Jarrard, 1993; Giese et al., 

1998; Irvine et al., 2005), even though the enzyme’s CaM-dependent activity 

remains intact (Giese et al., 1998). In combination with other evidence (reviewed by  

Lisman et al., 2002), these findings have led to the view that αCaMKII is a critical 

for NMDA receptor-dependent LTP. It should be noted that some exceptions to this 

apply (Cooke et al., 2006), and it could be argued that the deficit in LTP observed in 

αCaMKII
T286A

 mice is due to secondary effects of the point mutation, since the 

nervous system has developed without the functional protein.  Indeed αCaMKII is 

required for developmental processes including dendrite morphogenesis and 

stabilisation (Lisman et al., 2002). Nevertheless, the original characterisation of the 

αCaMKII
T286A

 mice argues against a major effect on synaptic transmission in CA1 

(Giese et al., 1998). Therefore, the lack of NO-induced potentiation in slices from 

αCaMKII
T286A

 mice suggests that the plasticity is dependent on signalling pathways 

typically required for ‘classical’ NMDA receptor-dependent LTP. Interestingly, a 

study performed using dissociated neurons has suggested that CaMKII may act 

downstream of NO-cGMP during LTP (Ninan and Arancio, 2004). 

 

The data discussed above are consistent with the hypothesis that pairing of 

exogenous NO with HFS during NMDA receptor-antagonism should restore the NO-

dependent component of LTP, and suggest that the NO-induced potentiation is a 

useful model for the NO-dependent component of LTP, in isolation of other LTP 

expression mechanisms. Importantly, the data conflict with (but do not rule out) the 

possibility that the NO-induced potentiation represents a general change in neuronal 
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excitability. However, in stark contrast with the potentiation yielded by Zhou et al. 

(1993) and Bon and Garthwaite (2003) after pairing exogenous NO with a sub-

threshold tetanus, the NO-induced potentiation that we observed did not occlude 

subsequent LTP (Figure 3.7-9), raising the possibility that the NO-induced 

potentiation was distinct from the NO-dependent component of LTP, and that pairing 

of exogenous NO with HFS during NMDA receptor blockade had resulted in more 

than a simple rescue of the NO-dependent component of LTP.  

 

3.5.2 Relationship between the NO-induced potentiation and HFS-

induced LTP 

 

The magnitude of the NO-induced potentiation and of subsequent HFS-induced LTP 

showed a similar biphasic pattern of dependence upon the concentration of 

PAPA/NONOate (Figure 3.7). A diffusion-inactivation model suggests that 

application of 3 µM PAPA/NONOate would, under the conditions used, give a 

concentration in the recording bath of ~ 0.4 µM NO 5 min following application (i.e. 

during HFS) that would remain stable until wash-out began at 8 min (see Figure 

2.2). Studies in cerebellar slices estimate that this would give rise to ~ 1 nM NO on 

average in the slice (Hall and Garthwaite, 2006), close to the hypothesised 

physiological NO concentration at active synapses (Garthwaite, 2008) and in excess 

of that necessary to cause a physiologically relevant rise in cGMP (see Chapter 1: 

General introduction). Considering that the NO-induced potentiation generated 

using 3 µM PAPA/NONOate was blocked by ODQ, the increase in magnitude from 

0.3 to 3 µM PAPA/NONOate likely reflects increasing NO-targeted guanylyl cyclase 

stimulation. The decrease in the NO-induced potentiation following the application 

of higher concentrations (from 3 to 60 µM) could reflect several factors, including 

guanylyl cyclase de-sensitisation or an increase in PDE 2 or 5 activity through cGMP 

feedback (Garthwaite, 2008). It could be argued that the decrease in magnitude might 

reflect a pathological effect of high NO concentrations, for example on 

mitochondrial respiration, as NO competes with O2 for cytochrome C oxidase. 

However, contrary to expectations if metabolism were being inhibited, there was no 

effect of any NO concentration applied on baseline transmission and it is unlikely 
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that the concentration of NO generated would be able to compete with physiological 

O2 concentrations for binding to cytochrome oxidase C (Bellamy et al., 2002).  

 

Analysis of the relationship between the NO-induced potentiation and subsequent 

HFS-induced LTP showed that the phenomena were additive (Figure 3.8). As 

discussed in the results section, two main explanations for this effect arose: 1) HFS 

was not saturating for LTP; 2) the NO/HFS-induced potentiation was mechanistically 

distinct from HFS-induced LTP. Upon testing of these possibilities, it was found that 

multiple HFS were necessary to saturate LTP under our conditions (Figure 3.9). 

However, this result could not account for the failure of the NO-induced potentiation 

to occlude subsequent LTP, since the NO-induced potentiation had no significant 

effect on the number of HFS required to saturate subsequent LTP. Furthermore, the 

NO-induced potentiation offset the ceiling magnitude of subsequent HFS-induced 

LTP (Figure 3.9). Rather, the data presented in Figure 3.9 were consistent with the 

phenomena being mechanistically distinct.  

 

If the NO-induced potentiation and LTP were mechanistically distinct, it was 

predicted that pairing of exogenous NO with HFS would result in a potentiation 

higher in magnitude than control, HFS-induced LTP. However, tests of this 

possibility revealed no such effect (Figure 3.10-11). These results were hard to unite 

with the finding that the NO-induced potentiation was additive with subsequent LTP, 

and with the conclusion that the NO-induced potentiation was distinct from LTP. 

Precedent for such a relationship between a slowly rising potentiation and LTP has 

previously been reported at CA1 synapses in vivo (Li et al., 2007). In this case, a 

slowly rising potentiation elicited by metabotropic acetylcholine antagonists was 

found to be additive with subsequent LTP, but occluded if LTP was induced first. 

The antagonist-induced potentiation was later found to rely upon PKA and PKMζ 

(Hayes et al., 2008), but, an explanation for its relationship with tetanus-evoked LTP 

was not provided.  

 

Several possible reasons for the relationship between the NO-induced potentiation 

and LTP were considered. A working scheme for HFS-induced LTP that 
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accommodates all the data is illustrated in Figure 3.21. Consistent with current 

views of LTP expression (Lynch, 2004; Malenka and Bear, 2004; Bliss et al., 2007), 

the scheme relies upon the assumption that HFS activates multiple signalling 

cascades that act in concert to generate ‘classical’ LTP. Within the scheme, rapid 

onset LTP is unstable and decays to baseline over time. Rapid onset LTP is NO-

independent but NMDA receptor-dependent. In accordance with the typical effect of 

NOS inhibition on LTP (for example see Figure 3.4), the NO-dependent component 

of LTP is proposed to be slowly-rising, becoming maximal > 40 min post HFS. This 

time-course matches that of the NO-induced potentiation, which within the 

boundaries of this scheme, can be interpreted as representative of the NO-dependent 

component of HFS-induced LTP. Consistent with results found on pairing of a LTP 

induction protocol with exogenous NO during NMDA receptor-blockade, the NO-

induced potentiation would be generated by activating part of the pathway labelled 

‘c’ and all of pathway labelled ‘d’ (and ‘a’) in Figure 3.21. The results of our tests of 

the properties of the NO-induced potentiation (Figures 3.12-16) support the 

possibility that the NO-induced potentiation is representative of the NO-dependent 

component of LTP.  

 

The expression of both the rapid onset and slowly-rising phases of LTP shown in the 

scheme rely upon HFS-induced, NMDA receptor-independent signals. This reliance 

potentially explains why inhibitors of certain NMDA receptor-independent 

mechanisms inhibit LTP in a manner similar to NMDA antagonists (reviewed by 

Bliss et al., 2007), and why the NO-induced potentiation necessitates HFS (Figure 

3.12).  Importantly, the pathways contributing to the rapid onset phase of LTP 

(labelled ‘a’ and ‘b’ in Figure 3.20) would determine the amplitude generated by one 

HFS, as well as the maximum ceiling. This hypothesis accommodates an additive 

interaction between the NO-induced potentiation and subsequent LTP (Figure 3.9), 

because induction of the NO-induced potentiation would not involve the expression 

of rapid onset LTP. The hypothesis also explains why exogenous NO paired with 

HFS fails to effect the magnitude of the resulting LTP (because rapid onset LTP 

dictates the LTP amplitude; Figure 3.10-11).  
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Figure 3.21 Working scheme for the involvement of NO in NMDA receptor-dependent LTP. HFS 

activates a, b, c and d, and this results in the expression of classical LTP. Both a and b are required 

for the expression of rapid onset LTP, which is decaying. Both c and d are required for the expression 

of slow onset, slowly rising LTP. During the induction of the NO-induced potentiation, a, part of c and 

d are activated, yielding a slowly-rising, NO-dependent component of LTP. Pathways a and b limit 

the amount of potentiation that can be yielded by one HFS, and dictate the ceiling magnitude of LTP. 

NMDAR = NMDA receptor. 

 

An outstanding issue relates to why the NO-induced potentiation we observed did 

not occlude subsequent LTP, whereas the potentiation induced by pairing a sub-

threshold tetanus (ST) with exogenous NO did (Zhuo et al., 1993; Bon and 
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Garthwaite, 2003). On this point, it is worth noting that even if the NO-induced 

potentiation characterised in the present study were representative of the NO-

dependent component of HFS-induced LTP, we would not expect it to occlude 

further HFS-induced LTP, because one HFS was not saturating of LTP under our 

conditions (Figure 3.9-10). Given the scheme presented in Figure 3.21, a tentative 

explanation for the results obtained using the ST is that this stimulus failed to 

activate pathway ‘a’. Pathway ‘a’ could act like a switch for subsequent HFS-

induced LTP and determine the magnitude of LTP generated by one HFS. HFS 

subsequent to pairing exogenous NO with the sub-threshold tetanus would activate 

pathway ‘a’ for the first time, enabling the expression of rapid onset LTP. This rapid 

onset LTP would be equal in magnitude to the potentiation induced by the ST and 

exogenous NO. Since rapid onset LTP would determine the magnitude of 

potentiation that can be yielded by one HFS, no further slow onset LTP would be 

induced, giving the appearance that the potentiation induced by the weak threshold 

paired with exogenous NO had occluded subsequent HFS-induced LTP.    

 

It should be noted that the scheme outlined in Figure 3.21 is one of several possible 

explanations for our data. However, with the exception of a role for eNOS in LTP, 

the scheme does accommodate all of the data presented in this chapter and in the key 

literature on the role of NO in NMDA receptor-dependent LTP. Therefore, it may be 

a useful guide for further tests of the role of NO in the NO-induced potentiation and 

LTP.  

 

3.5.3 Synaptic locus of the NO-induced potentiation 

 

Given that NO is a putative retrograde messenger during LTP, but that there is little 

evidence for this at wild-type synapses in intact tissues (see Table 3.1), we sought to 

test the locus (pre- or postsynaptic) of the NO-induced potentiation, a presynaptic 

effect being consistent with retrograde NO transmission. To do this, the effect of the 

NO-induced potentiation on PPF, a standard indicator of presynaptic efficacy, was 

determined. Initially, we sought to measure changes in the PPF of pyramidal neuron 

EPSCs, using intracellular sharp electrodes, as well as CA1 fEPSPs, because: 1) it 

was unclear whether significant changes in fEPSP PPF would be detectable; 2) 
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intracellular recordings are more amenable than extracellular recordings to other 

measurements of presynaptic efficacy, such as changes in the coefficient of variation 

of postsynaptic responses (discussed by Korn and Faber, 1991). However, ~ 50 % of 

intracellular recordings were too short-lasting to allow for experiments to be 

completed (< 20 min), and although LTP was consistently observed using adjacent 

field electrodes, ~ 50 % of recorded neurons were incapable of LTP (induction and 

expression; see Appendix 1). One explanation for the lack of LTP in this proportion 

of cells was that not all pyramidal neurons contribute to the LTP of nearby fEPSPs, 

and therefore, we conducted experiments using field electrodes only. 

 

To determine whether statistically significant evoked changes in the magnitude of 

fEPSP PPF could be detected under our conditions, control experiments using 2-Cl-

adenosine or the adenylyl cyclase agonist, forskolin, were conducted. Each 

compound was found to cause a statistically significant change in fEPSP PPF (ISI = 

100 ms; Figure 3.18). The directions of the changes were consistent with previous 

findings of the effects of adenosine and forskolin on PPF at CA1 (Dunwiddie and 

Haas, 1985; Dumas and Foster, 1998; Lu and Gean, 1999; Wu et al., 1999) and other 

synapses (Kahle and Cotman, 1993; Chen and Regehr, 1997; Chen and Roper, 2003), 

and on other measures of presynaptic efficacy such as mEPSC frequency (Wu and 

Saggau, 1994a; Sokolova et al., 2006; Bender et al., 2009). The changes in PPF that 

were under observed our conditions were accompanied by changes in the slope of the 

first fEPSP that were similar in magnitude to the NO-induced potentiation. 

Therefore, it was reasoned that the locus of the NO-induced potentiation could be 

investigated by its effect on fEPSP PPF. 

 

Contrary to predictions based on work using dissociated hippocampal neurons, which 

has shown a primarily presynaptic effect of NO following LTP (Arancio et al., 1995; 

Arancio et al., 1996; Arancio et al., 2001), we observed no significant change in PPF 

following the NO-induced potentiation (Figure 3.19). Considering the results of our 

control experiments, which showed that a significant change in PPF could be 

detected under our conditions following ~ 50 % changes in fEPSP initial slope 

(Figure 3.18), there were two different explanations for the lack of a significant 

change in PPF following the NO-induced potentiation: 1) the potentiation was 
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primarily postsynaptic (see Chapter 1: General introduction for examples of 

postsynaptic NO-dependent plasticity); 2) the NO-induced potentiation relied upon 

coordinated pre- and postsynaptic effects which yielded no net observable change in 

the probability of presynaptic neurotransmitter release and/or number of release sites. 

Given current estimates of the spread of NO through tissues (see Chapter 1: 

General introduction), NO is well-placed to affect plasticity at both sides of the 

synapse, and could do so almost simultaneously. Consistent with NO acting on both 

sides of the synapse, studies of LTP at synapses between dissociated hippocampal 

neurons have shown that the activation of the NO/cGMP/PKG pathway elicits a 

rapid (within 1-10 min) increase in pre- and postsynaptic clusters (Antonova et al., 

2001; Wang et al., 2005). Nikonenko et al. (2003) also report that theta burst 

stimulation of Schaffer collateral/commissural fibres in hippocampal slice cultures 

yields NO-dependent synaptogenesis in area CA1 with a time-course similar to that 

of the NO-induced potentiation (occurring within 10-30 min). 

 

It should also be noted that our PPF analysis raises the issue that the role of NO in 

LTP at synapses between dissociated neurons may not be directly applicable to the 

role of NO in LTP at synapses in intact tissues. As discussed in 3.1 Introduction, a 

lack of eNOS in neuronal cultures may give rise to differences in NO-dependent 

synaptic plasticity at synapses between dissociated cells, compared to plasticity at 

cells in intact tissues.  

   

Finally, the lack of a significant change in PPF following HFS-induced LTP (Figure 

3.20), though consistent with some other studies of the effect of CA1 LTP on PPF 

(Schulz et al., 1994), and suggestive of the NO-induced potentiation being 

representative of the NO-dependent component of LTP, is discordant with the effect 

of NO-dependent CA1 LTP on PPF reported by some groups (Taqatqeh et al., 2009). 

The difference between our results and those of other groups could arise from subtly 

different experimental conditions or from the use of different protocols to induce 

LTP (HFS vs. TBS). Indeed, the induction protocols used to generate LTP are known 

to affect the expression mechanisms recruited (Raymond, 2007). Alternatively, the 

difference could reflect the different time points relative to LTP induction at which 

PPF is sampled. Taqatqeh et al. (2009) sampled PPF 2 min post TBS, whereas we 
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tested for persistent presynaptic effects by measuring PPF 55-60 post HFS. On this 

point, it should be noted that the after-effects of PTP, which is distinct from LTP 

(Zucker and Regehr, 2002) and lasted ~ 2 min under Taqatqeh et al.’s conditions, 

may have confounded their PPF analysis.  

 

3.6 Conclusion 

 

Consistent with the proposed role for NO in NMDA receptor-dependent LTP,  

pairing of exogenous NO with HFS in the presence of D-AP5 was found to elicit an 

enduring potentiation of activity at CA1 synapses. This NO-induced potentiation 

shared several properties with classical, control LTP and with a potentiation yielded 

at CA1 synapses by pairing a sub-threshold tetanus with exogenous NO (Bon and 

Garthwaite, 2003; Zhuo et al. 1993). However, in contrast with the plasticity 

observed by Bon and Garthwaite (2003) and Zhuo et al. (1993), the NO-induced 

potentiation that we observed was additive with LTP. This raised the possibility that 

the NO-induced potentiation might be distinct from the NO-dependent component of 

LTP. Unfortunately, our data leave this possibility open. However, our data led to the 

generation of a scheme (Figure 3.21) for NO-dependent, HFS-induced LTP that 

accommodates the current literature on the role of NO in LTP, and may be a useful 

guide for the generation of further testable hypotheses. The scheme assumes that the 

NO-induced potentiation is representative of the NO-dependent component of LTP, 

and if correct, this implies that the NO-induced potentiation is a useful correlate for 

persistent NO-dependent potentiation in isolation of other LTP expression 

mechanisms.  

 

The mechanisms underlying the NO-induced potentiation, and the NO-dependent 

component of LTP, require further investigation. The slow rise time of the NO-

induced potentiation, as well as other forms of NO-dependent plasticity (for example, 

Bon and Garthwaite, 2003; Phillips et al., 2008), and the slow effect of NOS 

inhibition on HFS-induced LTP, are consistent with an expression mechanism that is 

slow to take effect. As outlined above, one reported outcome of NO-dependent 

plasticity that has an appropriate time-course is the synthesis of new synapses. This, 
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or a combination of changes on both sides of the synapse, could explain the lack of 

effect of the NO-induced potentiation, and HFS-induced LTP, on PPF.   



 

 

 

 

 

 

 

 

Chapter 4: 

Modulation of basal synaptic efficacy by NO in area CA1 of 

the hippocampus 
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4.1 Introduction 

 

NO signalling has been linked to the expression of activity-dependent synaptic 

plasticity (see Chapter 3). Most research has focused on the role of NO in NMDA 

receptor-dependent LTP at CA1 synapses in the hippocampus, a plasticity that is 

usually induced by high frequency (100 Hz) or theta burst stimulation (Bliss et al., 

2007). In contrast, the potential for endogenous NO to modulate the efficacy of 

‘naive’ synapses (i.e. where no attempt has been made to induce long-lasting 

plasticity) undergoing ‘basal’ stimulation (i.e. that causes no observable change in 

synaptic efficacy) has received little attention. 

 

Recently, it was reported by Taqatqeh et al. (2009) that the magnitude of PPF (ISI = 

20-50 ms) of EPSCs at ‘naive’ CA1 synapses undergoing ‘basal’ stimulation (0.033 

Hz) is larger in hippocampal slices from mice lacking the NO-targeted guanylyl 

cyclase α1 subunit than in slices from wild-type mice. As discussed in the previous 

chapter, PPF can be explained by an increase in the probability of neurotransmitter 

release (reviewed by Zucker and Regehr, 2002; Bliss et al., 2007) caused by residual 

axonal Ca
2+

 (Wu and Saggau, 1994b) or a related mechanism, such as the saturation 

of a Ca
2+

 buffer (Rozov et al., 2001).  Therefore, one interpretation of the finding 

made by Taqatqeh et al. (2007) is that, at wild-type synapses under basal conditions, 

there is less scope for an increase in the probability of neurotransmitter release 

during PPF because neurotransmitter release is tonically facilitated by a NO/α1-

containing NO targeted guanylyl cyclase/cGMP pathway. 

 

Consistent with this, direct measurements of the efflux of various neurotransmitters, 

such as glutamate, GABA and dopamine, from brain areas including the 

hypothalamus and corpus striatum have been reported to be subject to increase or 

decrease by exogenous NO or NOS inhibitors, respectively (reviewed by Prast and 

Philippu, 2001). Regarding the hippocampus, the NO donors, sodium nitroprusside 

(10-30 mM) and hydroxylamine (1-300 µM), have been found to increase the basal 

efflux of radiolabelled noradrenaline and ACh from slices (Lonart et al., 1992). Brief 

applications of more physiological concentrations of exogenous NO (5-10 nM; 

O'Dell et al., 1991) or a cGMP analogue (50-100 µM 8-Br-cGMP; Arancio et al., 
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1995) to dissociated hippocampal neurons have been also been found to cause an 

increase in the frequency, independent of the amplitude, of miniature EPSCs, 

consistent with an increase in the efficacy of neurotransmitter release (Bliss et al., 

2007).  

 

The mechanisms underlying NO-dependent or -induced increases in neurotransmitter 

release are unclear. However, some research links NO to the modulation of resting 

neuronal excitability in brain areas including the visual cortex and hypothalamus by 

the modulation of targets such as voltage-gated K
+
, HCN and CNG channels. This 

may shape the presynaptic action potential and thereby effect neurotransmitter 

release (reviewed by Garthwaite, 2008; Steinert et al., 2010). Long-term regulation 

of basal neurotransmitter release by NO might also occur via the regulation of the 

number of functional release sites, since it has also been reported that application of 

an NO donor (150 µM DETA/NONOate, 2 days) or cGMP analogue, 8-Br-cGMP (5 

mM, 2 days), to hippocampal slice cultures causes an increase in the proportion of 

multiply-innervated spines in area CA1. Conversely, chronic NOS inhibition (using 

200 µM L-NAME, 2 days) was found to reduce synapse density (Nikonenko et al., 

2008). Alternatively, the mechanisms may be similar to those underlying NO-

dependent, activity-dependent increases in neurotransmitter release (see previous 

chapter, Table 3.1). 

 

The notion that basal synaptic efficacy might be facilitated by endogenous NO raises 

questions over the isoform(s) of NOS involved. It is unclear whether nNOS, which is 

thought to be preferentially activated by NMDA receptor opening (Garthwaite, 

2008), is spontaneously active at synapses or whether it can become activated during 

basal stimulation such as that used by Taqatqeh et al. (2009; 0.033 Hz). However, it 

is well-known that eNOS can become Ca
2+

- and consequently activity-independent 

upon phosphorylation by kinases, most notably protein kinase Akt (Fulton et al., 

2001).  Although endothelial NOS is expressed solely in blood vessels (Stanarius et 

al., 1997; Blackshaw et al., 2003; Chan et al., 2004), it is estimated that central 

neurons are ~ 25 µm (equivalent to ~ one cell diameter) at most from a capillary 

(Pawlik et al., 1981). Early work on the physiology of endothelium-derived NO was 

focused on its synthesis in endothelial cells upon innervations by cholinergic nerves 
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and subsequent diffusion to smooth muscle to affect vasodilation (Furchgott and 

Martin, 1985). However, a study using optic nerve has now set a precedent for NO 

signalling from blood vessels to nerves in the CNS (Garthwaite et al., 2006), the 

effect being the tonic depolarisation of axons. Moreover, an activity-independent, 

eNOS-dependent low-level NO tone has been discovered in the hippocampus and 

found to influence the expression of LTP in area CA1. These findings have generated 

the hypothesis that eNOS may prime synapses for activity-induced plasticity (Hopper 

and Garthwaite, 2006), perhaps, we speculate, by providing a prerequisite level of 

synaptic efficacy.  

 

4.1  Aim 

 

The possibility that endogenous NO might regulate the basal efficacy of CA1 

synapses is by itself intriguing and may also have far-reaching implications for our 

understanding of the role of NO in activity-dependent plasticity. Nevertheless,  

adequate tests of the effect of endogenous NO on basal synaptic efficacy in the 

hippocampus are lacking. Musleh et al. (1993) have reported that the non-selective 

NOS inhibitor, N-methyl-L-arginine (L-NMA; 125 µM), has no effect on the 

magnitude of PPF at CA1 synapses in adult rat hippocampal slices. Yet it is known 

that L-NMA can become hydroxylated in situ and metabolised by NOS, resulting in 

the formation of amino acid products, including L-arginine, several of which are 

capable of activating NOS (Olken and Marletta, 1993).  

 

Given the above, we investigated whether endogenous NO could modulate the 

efficacy of basal neurotransmission at CA1 synapses in intact tissues (containing 

both e- and nNOS), and, if so, aimed to test the potential involvement of each NOS 

isoform present.  
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4.2  Methods 

 

4.2.1 Animals 

 

Unless otherwise stated, 6-8-week-old male C57Bl/6 mice were used (Charles River, 

Margate, UK). Male, 6-9-week-old, 129sv/C57Bl/6 transgenic mice lacking 

functional eNOS (eNOS
-/-

; Huang et al., 1995) were kindly provided by Dr Adrian 

Hobbs (UCL, London, UK).  

 

4.2.2 Transverse hippocampal slice preparation and electrophysiology 

 

Transverse hippocampal slices were prepared as detailed in Chapter 2.2.2. 

Electrophysiological activity at Schaffer collateral/commissural-CA1 synapses was 

recorded extracellularly using the methods described in Chapter 2.2.3. Pairs of 

stimuli were delivered to Schaffer collateral/commissural fibres at 0.033 Hz at a 

stimulus intensity set to 40-50 % of that required to elicit a population spike. The ISI 

was 10 or 100 ms. PPF of CA1 fEPSPs was measured using the PPR (the initial 

slope of fEPSP 2/the initial slope of fEPSP 1; Figure 4.1). Drugs were delivered 

through the perfusion system. In all figures, fEPSP slopes have been normalised to 

the mean slope of fEPSP 1 during the first 10 min of baseline recording shown (in 

the absence of any drugs). In each experiment, baseline measurements of PPR were 

made over 5 min immediately prior to the application of drugs. To avoid sample bias, 

PPR in the presence of L-NNA, ODQ and D-AP5 was measured 30-35, 15-20 and 

10-15 min respectively following their application. These times were chosen based 

on the duration that each drug was applied to slices prior to HFS in the experiments 

shown in the previous chapter.    

 

 

 

 

 

 



Chapter 4: Modulation of basal synaptic efficacy by NO in area CA1 of the hippocampus 

 

161 

Figure 4.1 A typical example of PPF. CA1 synapses were stimulated twice in quick succession (ISI = 

25 ms in this example). This resulted in the temporary facilitation of the second fEPSP (fEPSP 2). 

 

4.3.3 Genotyping of eNOS
-/-

 mice 

 

Mice lacking functional eNOS due to the insertion of a neomycin (NEO) cassette in 

the eNOS gene (eNOS
-/-

; see Huang et al., 1995) were genotyped by PCR and gel 

electrophoresis. Briefly, lysates were prepared from samples of mouse tail using 

proteinase K (see Chapter 2.2.6 for further detail). Hot-start PCR was performed 

using ‘GoTaq Hot Start polymerase’ (Promega) and primers for wild-type eNOS and 

a NEO cassette (Table 4.1).  

 

Primer Sequence 5’-3’ Stock Concentration 

(pmol/μl) 

eNOS forward GGT GTT TGG CTG CCG ATG C 2 

eNOS reverse GCA CAG CAC ACG GTG AAC C 2 

NEO forward GCA TAC GCT TGA TCC GGC TAC C 1.5 

NEO reverse GAA GGC GAT GCG CTG CGA ATC 1.5 

 

 

 

Each PCR and gel included a negative control, in which the DNA sample was 

replaced with double-distilled H2O, and a positive control containing DNA from an 

Table 4.1 PCR primers used for genotyping eNOS-/- mice. 
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age-, sex- and strain-matched wild-type mouse (obtained from Harlan, Wyton, UK) 

prepared under identical conditions as the transgenic samples. A DNA ladder (1 µl, 

100 base pairs ladder, Promega) was also run on each gel.  DNA for a NEO cassette, 

but not for wild-type eNOS could be detected in PCR products of eNOS
-/-

 lysates. 

DNA for wild-type eNOS but not for a NEO cassette could be detected in PCR 

products of wild-type lysates (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Genotyping wild-type and eNOS-/-mice. PCR products were electrophoresed in a 2 % 

agarose gel and visualised under UV light. A typical gel is shown in which the lanes were filled with 

PCR products of a negative control containing no DNA (negative), eNOS-/- lysates (KO) and a wild-

type lysate (WT) amplified using eNOS (E) and NEO cassette (N) primers. Bands of the ladder are 

labelled in base pairs. Note that the first lane after the ladder was empty. 

 

4.3.4 Analysis and Statistics 

 

Unless otherwise stated, values quoted in the text are means ± SEM. In each figure, 

inset traces represent the mean fEPSPs recorded at the time indicated by the colour 

coded bars. For clarity, the stimulus artefacts of the representative fEPSPs have been 

truncated. Two-tailed t-tests were used to assess whether differences between data 

sets were statistically significant. 
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Results 

 

4.4.1 Effect of endogenous NO on PPF at naive CA1 synapses 

 

To test the hypothesis that NO modulates the efficacy of naive CA1 synapses during 

basal stimulation, we investigated the effect of endogenous NO on the magnitude of 

PPF of CA1 fEPSPs in hippocampal slices. It is predicted that, following any 

manipulation of synaptic efficacy that results in an increase in the probability of 

neurotransmitter release, the scope for further increase during PPF will be reduced, 

and, therefore, a decrease in the magnitude of PPF will be observed (measured using 

the PPR; the initial slope of the second fEPSP/ the initial slope of the first fEPSP; 

Zucker and Regehr, 2002; Bliss et al., 2007). The results of previous experiments 

showed that statistically significant, evoked changes in PPF could be detected under 

our conditions (see experiments using 2-Cl-adenosine and forskolin, Figure 3.18).  

 

Pairs of stimuli were delivered to slices at 0.033 Hz and the effect of the non-

selective NOS inhibitor, L-NNA (100 µM, 30 min), on the magnitude of the resulting 

PPF (measured using the PPR) was tested (see Figure 4.3A for the time course of 

experiments). In order to determine whether any changes in the PPR were consistent 

when PPF was induced using different ISIs, and because the magnitude of basal PPF 

reported in mice lacking the α1 NO-targeted guanylyl cyclase subunit deviated most 

from wild-type PPF at short ISIs (< 50 ms; Taqatqeh et al. 2010), experiments were 

conducted using an ISI of 100 ms (as in the experiments detailed in Figure 3.18) and 

10 ms.  

 

When PPF was continuously elicited at 0.033 Hz, the PPR was stable and there was 

no effect on the initial slope of fEPSP 1 (see baseline in Figure 4.3A). Application of 

the non-selective NOS inhibitor, L-NNA, caused  a significant increase in the mean 

PPR (measured 30-35 min after the application of L-NNA) relative from that 

measured over the last 5 min of baseline prior to L-NNA application (Figure 4.3B-

D). This was observed whether the ISI was 100 or 10 ms (change in PPF when ISI 

was 10 ms: 0.19 ± 0.04; one factor t-test, p = 0.00144 compared to zero change; n = 

10; change in PPF when ISI was 100 ms: 0.12 ± 0.05; one factor t-test, p = 0.0487 
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compared to zero change; n =10). This increase in PPR was observed in the majority 

of individual experiments, although a decrease was observed in 1 of 10 slices when 

the ISI was 10 ms (Figure 4.3B), and two of ten slices when the ISI was 100 ms 

(Figure 4.3C).  

 

To assess whether the effect of L-NNA could be reversed by exogenous NO, the NO 

donor, PAPA/NONOate (10 µM, 10 min) was co-applied with L-NNA. On average, 

the PPR measured in the presence of PAPA/NONOate and L-NNA was not 

significantly different from that measured in the presence of L-NNA alone (Figure 

4.3B-D; ISI = 10 ms: paired t-test, p = 0.708; ISI = 100 ms: paired t-test, p = 0.537).  
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Figure 4.3 Involvement of endogenous NO in basal PPF. A) The time-course of a typical experiment 

is illustrated. Pairs of stimuli (ISI = 10 or 100 ms) were delivered to slices every 30 s and the initial 

slopes of fEPSP 1 and 2 (upper panel) and the PPR (lower panel) were continuously monitored. The 

general NOS inhibitor, L-NNA (100 µM), and the NO donor, PAPA/NONOate (10 µM) were applied 

at the times indicated. The red dashed lines in each figure show the mean fEPSP slope or PPR 

recorded prior to L-NNA application. B-C) The mean PPRs recorded at the times indicated by the 

colour-coded bars in A during individual experiments (grey) and on average (black) are plotted (B: 
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ISI = 10 ms; C; ISI = 100 ms; n = 10). The data drawn in red in B were collected from the experiment 

shown in A. D) The mean changes in the PPR from baseline (black bar in A-C) measured during the 

application of L-NNA (red bar A-C), L-NNA and PAPA/NONOate (blue bar A-C), and where tested, 

after PAPA/NONOate wash-off  (green bar A-B; n = 5) are illustrated. The effects of 0.5 µl 2-Cl-

adenosine and 50 µl forskolin on mean PPR (ISI = 100 ms) are shown for comparison (see Figure 

3.18 for full details of the experiments using these compounds). One factor t-test, p = ** < 0.01, * < 

0.05 compared to zero change. 

 

4.4.2 Effect of NO-targeted guanylyl cyclase activity on PPF at naive CA1 

synapses 

 

The effect of L-NNA on the magnitude of PPF was consistent with the hypothesis 

that endogenous NO facilitates basal synaptic activity at CA1 synapses. Since 

physiological NO transduction is thought to be NO-targeted guanylyl cyclase- and 

cGMP-dependent (reviewed by Garthwaite, 2008), we next sought to determine 

whether the effect of L-NNA could be mimicked by the NO-targeted guanylyl 

cyclase antagonist, ODQ (10 µM).  

 

Figure 4.4A illustrates the time-course of a typical experiment. As in experiments 

using L-NNA, CA1 synapses received paired stimuli (ISI = 10 or 100 ms) at 0.033 

Hz. Following the establishment of a stable baseline of responses, ODQ (10 µM) was 

applied. The PPR was measured 15-20 min later and compared to the baseline PPR 

measured over the last 5 min of baseline prior to ODQ application.   

 

In accordance with the effect of L-NNA on PPF, and regardless of the ISI used, ODQ 

caused a significant increase in the mean PPR from baseline (ISI = 10 ms: 0.08 ± 

0.02; one factor t-test, p = 0.0097 compared to zero change; n = 10; ISI = 100 ms: 

0.07 ± 0.03; one factor t-test, p = 0.0225 compared to zero change; n = 11; Figure 

4.4D). This increase was observed in the majority of the slices tested; however some 

slices did not follow this trend. When the ISI was 10 ms, PPR increased in 9 slices 

but decreased in 1 slice (Figure 4.4B). When the ISI was 100 ms PPR increased in 9 

slices and decreased in 2 slices (Figure 4.4C).  
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It should be noted that the increase in mean PPR from baseline caused by ODQ was 

smaller than that caused by L-NNA (Figures 4.4D), and, when the ISI was 10 ms, 

this trend was statistically significant (ISI = 10 ms: unpaired t-test, p = 0.0303; n = 

10; ISI = 100 ms: unpaired t-test, p = 0.375; n = 10-11). 

 

Figure 4.4 Contribution of NO-targeted guanylyl cyclase to basal PPF. A) The time-course of a 

typical experiment is shown. Paired stimuli (ISI = 10 or 100 ms) were delivered to slices every 30 s 

and the initial slopes of fEPSP 1 and 2 (upper panel) and the PPR (lower panel) were continuously 

recorded. The NO-targeted guanylyl cyclase antagonist, ODQ (10 µM) was applied at the time 
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indicated. The red dashed lines in each figure show the mean fEPSP slope or PPR recorded prior to 

ODQ application. B-C) The mean PPRs recorded at the times indicated by the colour-coded bars in A 

during individual experiments (grey) and on average (black) are plotted. The red data in C 

correspond to the experiment in A. D) Summary of the mean change in PPR from baseline (black bar 

in A-C) caused by ODQ (red bar; A-C; n = 10-11). The effect of L-NNA on the mean PPR is shown 

for comparison (see Figure 4.3 for full details). One factor t-test, p = ** < 0.01, * < 0.05 compared 

to zero change. Unpaired t-test, p = † < 0.05 compared to the mean change in PPR from baseline 

caused by L-NNA in experiments using the same ISI. 

 

4.4.3 Isoform of NOS involved in the regulation of PPF by endogenous 

NO 

 

Like the NOS inhibitor, L-NNA (Figure 4.3), the NO-targeted guanylyl cyclase 

antagonist, ODQ, caused a significant increase in the magnitude of PPF at naive CA1 

synapses (Figure 4.4). As previously discussed (see Chapter 1), two constitutively 

expressed isoforms of NOS, endothelial and neuronal, are present in the 

hippocampus. Both are thought to be required for the expression of NO-dependent 

LTP at CA1 synapses, although they may provide distinct activity-dependent, phasic 

(neuronal) and activity-independent, tonic (endothelial) NO signals (Hopper and 

Garthwaite, 2006).  

 

To elucidate the NOS isoform(s) underlying the effect of L-NNA and ODQ on PPF 

at naive synapses, and therefore characterise the nature of the NO signal involved, 

the experiment illustrated in Figure 4.3 (using L-NNA) was repeated using slices 

prepared from eNOS
-/-

 mice (see Figure 4.5A). In contrast to the effect of L-NNA on 

PPF at wild-type synapses (Figure 4.3), L-NNA had no significant effect on the 

average magnitude of PPF at eNOS
-/-

 synapses. The mean change in PPR from 

baseline following L-NNA application was 0.02 ± 0.04 (one factor t-test, p = 0.665 

compared to zero change; n = 9; Figure 4.B) when the ISI was 10 ms and 0.05 ± 

0.04 (one factor t-test, p = 0.536 compared to zero change; n = 9; Figure 4.5D) when 

the ISI was 100 ms. Accordingly, the mean change in PPR from baseline evoked by 

L-NNA was smaller in transgenic compared to wild-type slices, and when the ISI 

was 10 ms (though not 100 ms), this was statistically significant (ISI = 10 ms: 
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unpaired t-test, p = 0.00897; n = 9-10: ISI = 100 ms: unpaired t-test, p = 0.0993; n = 

9-10; Figure 4.5D).  

 

Figure 4.5 Effect of NOS inhibition on the magnitude of PPF in slices from eNOS -/- mice. A) The 

time-course of a typical experiment is shown. Paired stimuli (ISI = 10 or 100 ms) were delivered to 

slices every 30 s and the initial slopes of fEPSP 1 and 2 (upper panel) and the PPR (lower panel) 

were continuously monitored. The general NOS inhibitor, L-NNA (10 µM) was applied at the time 
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indicated. The red dashed lines in each figure show the mean fEPSP slope or PPR recorded prior to 

L-NNA wash-on. B-C) The mean PPRs recorded at the times indicated by the colour-coded bars in A 

during individual experiments (grey) and on average (black) are plotted. The red data in B were 

collected during the experiment shown in A. D) Summary of the mean change in PPR from baseline 

(black bar in A-C) caused by L-NNA (red bar; A-C; n = 9) in eNOS-/- mice, and, for comparison, wild-

type C57Bl/6 mice (see Figure 4.3). One factor t-test, p = ** < 0.01, * < 0.05 compared to zero 

change. Unpaired t-test, p = † < 0.01 compared to the change in wild-type mice in experiments using 

the same ISI. 

 

The above findings were consistent with eNOS providing the entire NO responsible 

for the regulation of basal PPF at naive CA1 synapses. However, it should be noted 

that, in contrast with the proposed role of eNOS in regulating basal PPF, the mean 

basal (baseline) PPR was significantly lower in slices from eNOS
-/-

 compared to 

wild-type mice when the ISI was 100 ms (baseline PPR in eNOS
-/-

 mice vs. baseline 

PPR shown in Figure 4.3-4: unpaired t test, p = 0.0042), although not when the ISI 

was 10 ms (unpaired t-test, p = 0.140). This could be explained by natural variation, 

or if a compensatory mechanism also responsible for the regulation of basal PPF 

were acting at synapses in slices from eNOS
-/-

 mice. Alternatively the discrepancy in 

PPF between slices might be explained by strain differences between the eNOS
-/-

 and 

wild-type mice. Unfortunately, the prevailing lack of eNOS inhibitors (Alderton et 

al., 2001) meant that the role of eNOS could not be directly tested in wild-type mice. 

Likewise, no reliable means of testing the effect of nNOS on PPF are available 

because the best characterised nNOS-deficient mice express active splice variants in 

the hippocampus (Eliasson et al., 1997), and our recent results show that supposed 

nNOS inhibitors are inadequately selective to be of use diagnostically (Chapter 6). 

Therefore, based on the assumption that, in brain, nNOS is preferentially stimulated 

by NMDA receptor activity (Garthwaite, 2008), we used the NMDA receptor 

antagonist, D-AP5, to test the involvement of the NMDA receptor-nNOS pathway in 

modulating basal neurotransmitter PPF (see Figure 4.6A).  

 

As shown in Figure 4.6, D-AP5 (50 µM; pre-applied for 10 min) had no significant 

effect on the average magnitude of PPF when the ISI was 10 ms (-0.07 ± 0.09; one 

factor t-test, p = 0.928 compared to zero change; n = 9; Figure 4.6D) or 100 ms 

(0.12 ± 0.10; one factor t-test, p = 0.264 compared to zero; n = 8; Figure 4.6D).  
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Figure 4.6 NMDA receptor-dependency of basal PPF in wild-type mice. A) The time-course of a 

typical experiment is shown. Paired stimuli (ISI = 10 or 100 ms) were delivered to slices every 30 s 

and the initial slopes of fEPSP 1 and 2 (upper panel) and the PPR (lower panel) were continuously 

recorded. The NMDA receptor antagonist, D-AP5 (50 µM) was applied at the time indicated. The red 

dashed lines in each figure show the mean fEPSP slope or PPR recorded prior to perfusion with D-

AP5. B-C) The mean PPRs recorded at the times indicated by the colour-coded bars in A during 

individual experiments (grey) and on average (black) are plotted. The red data in C are from the 
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experiment in A. D) Summary of the mean change in PPR from baseline (black bar in A-C) caused by 

D-AP5 (red bar in A-C; n =8- 9). 

 

4.3  Discussion 

 

Under many, though not all conditions, NO is required for the expression of long-

lasting, activity-dependent plasticity, in particular NMDA receptor-dependent LTP at 

CA1 synapses (Garthwaite, 2008). Some studies of the effect of exogenous NO or 

NO-targeted guanylyl cyclase α1 subunit knock-out on neurotransmitter release from 

hippocampal neurons have also suggested that endogenous NO, via cGMP, might 

regulate the basal efficacy of CA1 synapses, through the up-regulation of 

neurotransmitter release (O'Dell et al., 1991; Lonart et al., 1992; Arancio et al., 

1995; Taqatqeh et al., 2009).   

 

Here, we report that superfusion of hippocampal slices with the NOS or NO-targeted 

guanylyl cyclase antagonists, L-NNA (100 µM) or ODQ (10 µM), caused a 

significant increase in PPF of fEPSPs in area CA1 (Figure 4.3-4). The increase in 

PPF could not be mimicked by inhibition of NMDA receptors, suggesting that the 

NMDA receptor-nNOS pathway (Figure 4.6) was not involved in the basal 

regulation of PPF. However, the effect of L-NNA was abolished in slices lacking 

functional eNOS (Figure 4.5). This finding was against the possibility that the rise in 

PPF observed in experiments using L-NNA and ODQ was the effect of a general 

increase in basal PPF over time (for example, caused by baseline drift).  

 

These findings are in accordance with the facilitation of neurotransmitter release at 

naive CA1 synapses under basal conditions by endogenous NO/cGMP and, although 

tests of the involvement of each NOS isoform present were limited, with the 

conclusion that eNOS provides all the NO necessary for the regulation of basal 

synaptic efficacy. (Note that our data cannot exclude the influence of NMDA 

receptor-independent nNOS activity). It was found that L-NNA and ODQ caused an 

increase in PPF in C57/Bl6 mice when the ISI was both short (10 ms) and long (100 

ms; Figure 4.3-4). Because the duration of inhibitory postsynaptic potentials (IPSPs) 

measured at CA1 synapses under our conditions using sharp intracellular electrodes 
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was < 100 ms (for an example trace see Appendix 1), it seems unlikely that the 

changes in PPF caused by L-NNA and ODQ were the result of changes in the 

inhibitory input to pyramidal neurons. However, GABAergic transmission was not 

blocked in these studies and therefore, endogenous NO might have been acting at 

inhibitory and/or excitatory synapses on pyramidal cells to regulate neurotransmitter 

release under basal conditions. It should be noted that at CA1 synapses in slices from 

mice lacking the NO-targeted guanylyl cyclase α1 subunit, PPF was significantly 

increased from that recorded in slices from wild-type mice only when the ISI was < 

50 ms (Taqatqeh et al., 2009). However, an insignificant increase in PPF was 

observed by Taqatqeh et al. when the ISI was 100 ms and it is possible that if paired 

statistical analysis were permitted, this would become a significant increase.  

 

At the time of this investigation, Neitz et al. (2011) published the results of a series 

of experiments also aimed at determining the effect of endogenous NO on basal 

synaptic efficacy at naive CA1 synapses in hippocampal slices. They also focused on 

the potential presynaptic effects of NO. In accordance with the effects of L-NNA and 

ODQ on the magnitude of PPF observed in the present study, Neitz et al. (2011) 

found that the frequency, but not the amplitude, of AMPA receptor-mediated 

miniature EPSCs was reduced in area CA1 of mice lacking the NO-targeted guanylyl 

cyclase α1 subunit. The reduction in frequency was reversed by application of the 

cGMP analogue, 8-Br-PET-cGMP (100 µM), and replicated in slices from wild-type 

mice upon L-NNA or ODQ application. Concordant effects of NO-targeted guanylyl 

cyclase α1 subunit knock-out and ODQ on the frequency of minimally evoked 

EPSCs and magnitude of EPSC PPF were also found. The effects on miniature EPSC 

frequency were replicated by the HCN channel blocker, ZD7288 (10 µM), 

suggesting that NO, via cGMP and the regulation of Ih might facilitate 

neurotransmitter release by enhancing axon depolarisation, as in the optic nerve 

(Garthwaite et al., 2006).  

 

To address the question of which NOS isoform was responsible for maintaining a 

reduced PPF at synapses in slices from wild-type mice, Neitz et al. (2011) used the 

supposedly isoform selective nNOS inhibitor, L-VNIO (0.1 µM). They found no 

effect of 0.1 µM L-VNIO on miniature EPSC frequency and therefore, concluded 
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that eNOS, but not nNOS, was responsible for the modulation of basal synaptic 

efficacy in area CA1. While our data support this conclusion, our recent findings 

strongly suggest that L-VNIO was completely ineffective in inhibiting NOS at the 

concentration used by Neitz et al. (Chapter 6). 

 

Apart from the experiments using L-VNIO, the results of Neitz et al. (2011) clearly 

add strength to the conclusions that can be drawn from our study, in which the effect 

of endogenous NO on only one indicator of synaptic efficacy was assessed. 

Nevertheless, there are at least three points that need to be addressed to clarify the 

effect of endogenous NO on basal synaptic efficacy at naive CA1 synapses.  

 

Firstly, in our study, the mean change in PPR from baseline caused by ODQ was 

significantly smaller than that caused by L-NNA when the ISI was 10 ms, and 

therefore experiments are necessary to elucidate the source of this difference (Figure 

4.4). It is unlikely that this reflects a difference between the potencies of L-NNA and 

ODQ, since the concentrations of each inhibitor that were used (100 µM and 10 µM, 

respectively) are considered to be supra-maximal for enzyme inhibition. 

Furthermore, we have found that both inhibitors abolish cGMP accumulation in our 

hippocampal slices in response to maximal doses of NMDA (see Chapter 5). It also 

seems unlikely that the difference reflects the involvement of guanylyl-cyclase-

independent NO signalling, since almost all physiological NO signals are transduced 

by cGMP (Garthwaite, 2008). Rather, the most parsimonious explanation is natural 

variation, especially considering that Neitz et al. (2011) report that the effects of L-

NNA and ODQ on miniature EPSC frequency were comparable and that, as is 

typical of evoked changes in PPR (for example Schulz et al., 1995), the amplitude of 

the change in PPF that we observed was small and highly variable. This may also 

explain why eNOS knock-out caused a significant change in PPR compared to wild-

type PPR when the ISI was 10, but not 100 ms (Figure 4.3). 

 

Secondly, the finding that the NO donor, PAPA/NONOate (10 µM, applied for 10 

min), could not reverse the effect of L-NNA on PPF (Figure 4.3) is seemingly at 

odds with the facilitation of basal synaptic activity by endogenous NO. It seems 

unlikely that the effect of L-NNA on PPF can be attributed by an effect other than 
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NOS inhibition, since no secondary targets of L-NNA are known (Alderton et al., 

2001) and, consistent with the effect of ODQ on PPF, NMDA-induced cGMP 

accumulation in hippocampal slices treated with L-NNA can be reconstituted by 

exogenous NO (Bartus, 2009). Therefore, investigations are necessary to determine 

whether a longer application and/or different concentration of exogenous NO is 

required to reverse the effect of L-NNA on PPF. Regarding this possibility, it is 

interesting to note that the NO-induced potentiation described in the previous chapter 

was induced during NMDA receptor (and therefore presumably nNOS) antagonism 

but was inhibited by L-NNA and ODQ (see Figures 3.6 and 3.13-14), suggesting 

that the exogenous NO used to induce it (3 or 10 µM PAPA/NONOate, applied for 8 

min in total) was not sufficient to mimic completely the endogenous NO profile.  

 

Finally, it should be also be noted that as with most parameters used to define the 

locus of changes in synaptic efficacy, including those used by Neitz et al. (2011), 

evidence provided by PPF analysis is suggestive rather than conclusive. Typically, 

changes in the magnitude of PPF are explained by changes in the probability of 

presynaptic release and/or number of release sites (reviewed by Zucker and Regehr, 

2002; Bliss et al., 2007), and all the data presented in this study, as well as the 

studies discussed above, are consistent with NO acting on a presynaptic target to 

effect the modulation of basal synaptic efficacy. Furthermore, immunohistochemistry 

and in situ hybridisation studies suggest that the α1 NO-targeted guanylyl cyclase 

subunit is presynaptic in area CA1 (Szabadits et al., 2007; although see Chapter 7). 

However, a change in postsynaptic efficacy could account for our results, as well as 

those of the above studies, if, for example, NOS inhibition caused the internalisation 

of postsynaptic receptors and this was favoured at synapses with a high probability of 

release, as during LTD at CA1 synapses (Bliss et al., 2007). On this point, it should 

be noted that HCN channels appear to be predominantly postsynaptic in area CA1 

(Notomi and Shigemoto, 2004).    

 

4.4  Conclusion 

 

Clearly, further experiments are necessary to clarify the effect of endogenous NO on 

the efficacy of naïve CA1 synapses, especially because effect sizes yielded from PPF 
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analysis are typically small and highly variable. Certain caveats of the data also limit 

the strength of the conclusions that can be drawn from our study, for example, the 

inability of exogenous NO to reverse the effect of L-NNA on PPR. However, the 

potential role of eNOS and NO in the modulation of basal synaptic efficacy in area 

CA1 does extend the finding that NO derived from blood vessels influences axons in 

the optic nerve (Garthwaite et al., 2006), and suggests a novel role for the eNOS-

derived NO tone discovered in the hippocampus (Chetkovich et al., 1993; Hopper 

and Garthwaite, 2006). As discussed above, it has been hypothesised that eNOS 

primes CA1 synapses for LTP (Hopper and Garthwaite, 2006) and it is conceivable 

that this could occur via the setting of a prerequisite, basal level of neurotransmitter 

release (or postsynaptic quantal amplitude). Indeed, homeostatic mechanisms are 

thought to be critical in maintaining the ability of synapses and networks to be both 

up- and down-regulated in response to varying stimuli (Pozo and Goda, 2010), and 

the potential involvement of eNOS in this links NO to metaplasticity (reviewed by 

Abraham, 2008).  

 

The requirement of basal synaptic efficacy and LTP expression for eNOS in area 

CA1 complicates the interpretation of NO-dependent LTP between dissociated 

pyramidal neurons, since blood vessels are unlikely to be present in neuron cultures. 

This lack of eNOS could explain why Arancio et al. (1995; 1996; 2001) found that 

NO-dependent LTP at synapses between pairs of dissociated neurons was 

presynaptic, whereas the NO-induced potentiation described in the previous chapter 

was not accompanied by a persistent decrease in PPF. For example, it is possible that 

the increase in transmitter release that was observed by Arancio et al. was caused 

because the NO necessary for the LTP had compensated for a lack of eNOS, or 

because the baseline probability of neurotransmitter release was unnaturally low. 

Indeed, it is well-known that the magnitudes of PPF recorded under basal conditions 

and following LTP are inversely correlated (Schulz et al., 1995). Accordingly, 

Serulle et al. (2007) have found that neither NOS nor NO-targeted guanylyl cyclase 

antagonism alters the magnitude of PPF in dissociated hippocampal neurons.  

 

Finally, it should be noted that endothelium-derived NO is unlikely to be the only 

mechanism capable of regulating PPF at CA1 synapses, since baseline PPF (in the 
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absence of any drugs) was not significantly increased in eNOS
-/-

 slices (Figure 4.5). 

In fact, baseline PPF was significantly decreased in slices from eNOS
-/-

 compared to 

wild-type mice when the ISI was 100 ms. If eNOS is truly responsible for the 

regulation of basal synaptic efficacy at CA1 synapses, it is also likely to affect 

synaptic transmission at other synapses, since eNOS and guanylyl cyclase are 

expressed throughout the brain (; eNOS: Seidel et al., 1997; Stanarius et al., 1997; 

Topel et al., 1998; Demas et al., 1999;  NO-targeted guanylyl cyclase: Matsuoka et 

al., 1992; Gibb and Garthwaite, 2001; Ding et al., 2004). It is tempting to speculate 

that, in a situation where NO derived from blood vessels influences neurons and vice 

versa (reviewed by Garthwaite, 2008), changes in blood flow, basal neuronal 

efficacy and the probability of plasticity might be coordinated. As well as the 

physiological implications of this, it is conceivable that disordered NO signalling 

might contribute to pathologies characterised by anomalous network or synaptic 

efficacy, such as hippocampal epileptogenesis, which may result from the increase in 

neuronal excitability of CA3 neurons capable of generating recurrent bursts of 

activity (Walker et al., 2007), or central sensitisation (a processes likened to LTP) of 

noiceceptive synapses in the spine (Ji et al., 2003). 
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5.1 Introduction 

 

Ca
2+

 influx to cells via NMDA receptors plays a central role in the induction of LTP, 

and this has been particularly well-studied in the hippocampus at CA1 synapses (see 

Chapter 3). However, LTP cannot be entirely explained by NMDA receptor-

dependent mechanisms. In fact, forms of NMDA receptor-independent LTP have 

been discovered throughout the nervous system (for example, see Nicoll and 

Schmitz, 2005), including at CA1 synapses (Grover and Teyler, 1990). If, as is 

currently thought, a rise in intracellular Ca
2+ 

is an absolute requirement for LTP 

(Lynch et al., 1983; Malenka et al., 1988; Grover and Teyler, 1990), then an NMDA 

receptor-independent mechanism of increasing intracellular Ca
2+

 is necessary to 

explain some types of long-lasting synaptic plasticity.  

 

5.1.1 L-type Voltage Gated Ca
2+

 Channels 

 

L-type voltage-gated Ca
2+

 channels (L-VGCCs) may represent one mechanism for 

increasing intracellular Ca
2+

 during NMDA receptor-independent LTP. L-VGCCs 

are high-voltage activated (typically half-maximally activated between ~ -20 to 10 

mV), heteropentameric transmembrane channels (see Figure 5.1), that can be 

delineated from other VGCCs (named N, P/Q, R and T)  by their slow inactivation 

kinetics (τ ~ 5 to 30 ms) and inhibition by dihydropyridines, phenylalkylamines and 

benzothiazepines (Catterall et al., 2009).  

 

 

 

 

 

 

 

 

Figure 5.1 Predicted subunit structure and composition of L-VGCCs based on channels purified from 

skeletal muscle. The γ subunit may only be present in skeletal muscle (Catterall, 2000). The cylinders 

membrane 
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depict predicted α-helices and lengths of lines approximate lengths of polypeptide segments. Diagram 

taken from Catterall et al. (2005). Reproduced by kind permission of ASPET journals. 

 

The α1 L-VGCC subunit forms the pore of the channel and contains the voltage 

sensor, the selectivity filter and antagonist binding sites. On its own, the α1 subunit is 

capable of forming a functional channel (Perez-Reyes et al., 1989; Striessnig, 1999), 

although other subunits (see Figure 5.1) may influence its cell surface targeting, 

electrophysiological properties and stability of the channel.   

 

So far, four subtypes of the α1 subunit have been discovered (Cav1.1-1.4; Table 5.1). 

These subtypes vary in their electrophysiological properties (kinetics and voltage-

dependency of activation and inactivation and channel conductance), tissue 

distribution and physiology. This diversity is reflected in the myriad physiological 

processes and pathologies that L-VGCCs have been implicated in, which range from 

smooth muscle contraction, blood pressure regulation and hypertension (Ozawa et 

al., 2006) to neurotransmitter release and the modulation of neuronal excitability 

(Lacinova et al., 2008), pain sensitisation (Park and Luo, 2010), psychiatric disorders 

(Casamassima et al., 2010), Alzheimer’s disease (Anekonda et al., 2011) and 

epilepsy (N'Gouemo et al., 2010). 
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Class Antagonists Subtype Subtype localisation Subtype function(s) 

L  

 

Dihydropyridines; 

phenylalkylamines; 

benzothiazepines 

Cav1.1 Skeletal muscle Muscle contraction 

Cav1.2 Cardiac and smooth 

muscle; endocrine cells; 

neurons (soma and 

dendrites) 

Muscle contraction, hormone 

secretion, neurotransmission, 

gene transcription, synaptic 

plasticity, learning, memory 

Cav1.3 Cardiac muscle; 

pacemaker cells; 

endocrine cells; cochlear 

hair cells; neurons (soma 

and dendrites) 

Smooth muscle contraction, 

hormone secretion, 

neurotransmission  

Cav1.4 Retinal rod and bipolar 

cells; mast cells; adrenal 

gland 

Neurotransmission 

N  

 

ω-conotoxins Cav2.2 Neurons (axons and 

dendrites); 

neuroendocrine cells 

Neurotransmission, hormone 

release 

P/Q 

 

ω-agatoxins Cav2.1 Neurons (axons and 

dendrites); 

neuroendocrine cells 

Neurotransmission, hormone 

release 

R SNX-482 Cav2.3 Neurons (soma and 

dendrites) 

Neurotransmission 

T Ni2+  

Flunarizine 

Mibefradil 

Ethosuximide 

 

Cav3.1 Neurons (soma and 

dendrites); cardiac and 

smooth muscle 

Pacemaking, repetitive firing. 

Cav3.2 Neurons (soma and 

dendrites); cardiac and 

smooth muscle 

Pacemaking, repetitive firing. 

Cav3.3 Neurons (soma and 

dendrites) 

Pacemaking, repetitive firing. 

 

Table 5.1 Summary of the pharmacological properties, tissue distribution and function of L-VGCC 

subtypes. Different subtypes contain different α1 subunits. Information for N-, P/Q-, R- and T-type 

VGCCs are given for comparison. Like L-VGCCs, N-, P/Q- and R-VGCCs are high voltage activated. 

T-type VGCCs are low voltage activated. Adapted from Catterall et al. (2009). 

 

In the hippocampus, where radioligand binding has shown the Cav1.2 subtype to 

predominate (Clark et al., 2003), L-VGCC subunits appear to be densely expressed 
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in the membrane of pyramidal cell soma and at the base of apical dendrites. Subunits 

have also been detected histologically in granule cells, interneurons and at synapses 

in more distal dendrites of pyramidal neurons, particularly in area CA3 (Ahlijanian et 

al., 1990; Westenbroek et al., 1990; Hell et al., 1993). They may be activated by 

back-propagating somatic action potentials and/or EPSPs (Mermelstein et al., 2000), 

and, like NMDA receptors, have been demonstrated to cause significant intra-

dendritic Ca
2+

 influx to pyramidal neurons. Fura-2 measurements in hippocampal 

slices, for example, show that L-VGCCs contribute ~ 30 % of the whole-cell Ca
2+

 

current during spiking (Regehr and Tank, 1992; Christie et al., 1995) and this is in 

agreement with estimates made using electrophysiological recordings from 

dissociated pyramidal neurons (Mermelstein et al., 2000). Following step 

depolarisations to negative voltages (-30 mV) designed to approximate the effect of 

an EPSP, the contribution of L-VGCCs to the total Ca
2+

 current was found to 

increase to ~ 50 % (Mermelstein et al., 2000). L-VGCC activity is also thought to 

contribute to the resting intracellular Ca
2+

 concentration of pyramidal neurons 

(Magee et al., 1996), neuronal excitability in response to depolarising pulses 

(Lacinova et al., 2008), and has been implicated in hippocampal synaptic plasticity, 

learning and memory (see below). 

 

5.1.2 L-VGCC-dependent LTP at CA1 synapses 

 

Following 200 Hz- or prolonged theta burst stimulation of hippocampal Schaffer 

collaterals in vitro, a high magnitude ‘compound’ LTP has been observed at CA1 

synapses that is composed of two pharmacologically-separable components: one 

blocked by NMDA receptor-antagonism, the other independent of NMDA receptor 

blockade but attenuated by L-VGCC inhibitors (Grover and Teyler, 1990; Grover 

and Teyler, 1994; Cavus and Teyler, 1996; Morgan and Teyler, 2001). Similar 

findings have been made in vivo (Morgan and Teyler, 1999), and L-VGCC inhibitors 

have also been reported to attenuate spike timing-dependent potentiation (Fuenzalida 

et al., 2010), as well as CA1 LTP induced by various other stimuli (Aniksztejn and 

Ben-Ari, 1991; Kato et al., 1993; Huang and Malenka, 1993; Impey et al., 1996).  
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Like NMDA receptor-dependent LTP, L-VGCC-dependent LTP has been reported to 

be input-specific, blocked by Ca
2+

 chelators (Grover and Teyler, 1992), induced 

postsynaptically and yet expressed on both sides of the synapse (Grover, 1998; 

Bayazitov et al., 2007). While some studies indicate that the expression mechanisms 

underlying L-VGCC-dependent LTP may be shared with NMDA receptor-dependent 

LTP (for example, Little et al., 1995), several indicate that L-VGCC- and NMDA 

receptor-dependent LTP are, at least in part, mechanistically distinct. For example, 

using synapto-pHlourin to continuously monitor presynaptic vesicle recycling in area 

CA1, it was found by Bayazitov et al. (2007) that the L-VGCC-dependent 

component of compound LTP induced using 200 Hz burst stimulation was slow to 

start (t½ ~ 35 min), partly presynaptic and long-lasting (of ~ maximal magnitude at 

least 3 hr post induction). Conversely, the NMDA receptor-dependent component 

was found to be almost immediate, largely postsynaptic and, although clearly evident 

3 hr post-induction, was not of maximal magnitude over this time.  

 

The difference in the onset of NMDA receptor- and L-VGCC-dependent LTP has 

also been observed electrophysiologically (for example, Grover and Teyler, 1990) 

and the distinction between their synaptic loci is supported by studies using FM-143 

to monitor presynaptic plasticity (Zakharenko et al., 2001; Zakharenko et al., 2003). 

Using a spatially-restricted brain-derived neurotrophic factor (BDNF) knock-out 

mouse, Zakharenko et al. (2003) also identified BDNF release from CA3 neurons as 

critical for L-VGCC-dependent, but not NMDA receptor-dependent LTP at CA1 

synapses. This was in accordance with a previous report showing that the expression 

of the BDNF receptor, tyrosine kinase B (TrkB), is up-regulated following L-VGCC, 

but not NMDA receptor-dependent LTP (Teyler et al., 1994), and has since been 

supported by evidence that TrkB is necessary for 200 Hz burst stimulation-induced 

LTP (Gruart et al., 2007).  

 

The persistent expression of L-VGCC-dependent but not NMDA-receptor dependent 

LTP noted by Bayazitov et al. (2007) also accords with other data showing that L-

VGCCs, but not NMDA receptors, are necessary for CA1 late-LTP and cAMP 

response element (CRE)-mediated β-galactosidase expression induced by multiple 

100-Hz tetani in hippocampal slices (Impey et al., 1996). L-VGCC activation has 
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also been reported to be critical for activity-dependent gene expression in cortical 

neurons (Murphy et al., 1991) and glutamate-induced, CRE-regulated transcription 

in hippocampal neurons (Bading et al., 1993). Indeed, several authors have 

hypothesised that the dense expression of L-type channels at the base of dendrites 

makes them likely candidates for the transduction of distal dendritic activity to the 

soma where alterations in gene expression may occur (for example, Westenbroek et 

al., 1990). Further, the requirement of late-LTP for L-VGCC’s may explain why 

more stringent induction protocols than those needed for NMDA receptor-dependent 

early-LTP are necessary for its induction and expression. 

 

5.1.3 Physiological relevance of L-VGCC-dependent LTP 

 

In the past, it has been suggested that, because L-VGCCs are typically high voltage-

activated (Catterall et al., 2009), the natural occurrence of L-VGCC-dependent long-

lasting plasticity may be restricted to pathological conditions such as epileptogenesis 

during which cell excitability may become supra-physiological (Huang and Malenka, 

1993). Since then, however, L-VGCCs have been shown to account for a significant 

proportion (30-50 %) of the whole cell Ca
2+

 current of pyramidal neurons following 

stimulation designed to mimic dendritic EPSPs, as well as spikes (Regehr and Tank, 

1992; Christie et al., 1995; Mermelstein et al., 2000) and it has been ventured by 

Morgan and Teyler (1999) that the activation requirements for L-VGCC-dependent 

long-lasting plasticity in vitro may be met in nature by short, aperiodic, high-

frequency (200 Hz), high-magnitude (1-3 mV) sharp waves (population EPSPs) 

produced by Schaffer collaterals that project onto CA1 neurons and interneurons. 

Furthermore, pharmacological, electrophysiological and behavioural evidence has 

combined to show that L-VGCC and NMDA receptor dependent plasticity may have 

distinct functions, modulating different aspects of memory. For example, it has been 

reported that, while systemic injection of the NMDA receptor antagonist, MK-801, 

inhibits rats’ ability to acquire memory of an eight-arm radial maze, which is a 

hippocampus-dependent task (Jarrard, 1993), the L-VGCC inhibitor, verapamil, and 

not MK-801, inhibits long term (7-10 days) retention of the memory (Borroni et al., 

2000; Woodside et al., 2004). Injection with both drugs during the task training 

blocks all acquisition and retention. 
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It should be noted that other studies in the hippocampus have failed to find an effect 

of L-VGCC inhibition on memory retention/consolidation, and that some research 

has found L-VGCC inhibition to enhance spatial memory formation, although these 

effects are most common when learning and memory is already compromised 

(reveiwed by Casamassima et al., 2010). Research surrounding the issue of whether 

fear extinction in amygdala is L-VGCC dependent has also highlighted the problems 

of interpreting data following systemic injection of L-VGCC inhibitors, which can 

have multiple indirect effects on learning and memory through, for example, actions 

on locomotor activity and cerebral blood flow (Schafe, 2008). Nevertheless, 

temporally-restricted knock-out of Cav1.2 in the hippocampus and neocortex has 

been reported to result in a selective loss of NMDA receptor-independent LTP at 

Schaffer collateral/commissural-CA1 synapses and a gross impairment in 

performance of spatial learning (maze) tasks  (Kleppisch et al., 2004; Moosmang et 

al., 2005a; Moosmang et al., 2005b). Deletion of Cav1.3, which accounts for ~ 20 % 

of L-VGCCs present in the hippocampus, has not been found to effect NMDA 

receptor-independent LTP at CA1 synapses (Clark et al., 2003), although it has been 

reported to attenuate LTP in the lateral amygdala and to severely limit the 

consolidation of fear conditioning (McKinney and Murphy, 2006; McKinney et al., 

2009). 

 

5.1.4 NO and L-VGCC-dependent LTP 

 

Previously, it was noted that L-VGCC-dependent LTP follows a similar time course 

to HFS-dependent, NO-induced potentiation (see Chapter 3) and to other slowly-

rising forms of NO-dependent LTP observed at CA1 synapses. Using nifedipine (30 

µM), it was found that the HFS-dependent, NO-induced potentiation did not rely on 

L-VGCCs, either for induction or expression. However, the involvement of NO in L-

VGCC-dependent LTP at CA1 synapses remained untested. 

 

As a freely diffusible and putative retrograde transmitter, the involvement of NO in 

L-VGCC-dependent LTP could reconcile previous results showing that L-VGCC-

dependent LTP is postsynaptically induced (Grover, 1998), yet, at least in part, 

presynaptically expressed (Bayazitov et al., 2007). Indeed it has been previously 
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hypothesised that a retrograde messenger must be necessary for L-VGCC-dependent 

LTP (Bayazitov et al., 2007). Furthermore, NO-dependent LTP has been shown to 

rely on similar mechanisms to L-VGCC-dependent LTP. For example, NO/cGMP is 

also necessary for late-LTP and activity-induced CREB phosphorylation at CA1 

synapses (Lu et al., 1999). Evidence that NO- and BDNF-dependent LTP rely on 

common mechanisms has also recently been reported (Lessmann et al., 2011).  

 

5.2 Aim 

 

Given the above, we sought to determine whether NO is necessary for L-VGCC-

dependent LTP, with the aim to better understand NO- and L-VGCC-dependent 

synaptic plasticity. 

 

5.3 Methods 

 

5.3.1 Animals 

 

Unless otherwise stated, 6-9-week-old, male, C57Bl/6 mice were used (Charles 

River, Margate, UK). In some experiments, male, 6-9 week-old, 129sv/C57Bl/6 mice 

lacking a functional eNOS gene (eNOS
-/-

; Huang et al., 1995) were used. These were 

kindly provided by Dr Adrian Hobbs (UCL, London, UK). Age-, sex- and strain-

matched wild-type mice obtained from Harlan (Wyton, UK) were used as controls. It 

was requested from the supplier that these animals were not part of the subpopulation 

of Harlan C57Bl/6 mice known to lack α-synuclein (Specht and Schoepfer, 2001), 

which is necessary for efficient transmitter release in several brain areas and for 

some forms of LTP (Abeliovich et al., 2000; Liu et al., 2004; Liu et al., 2007). 

 

5.3.2 Transverse hippocampal slice preparation and extracellular 

electrophysiology 

 

As has been detailed in Chapter 2.2.2-2.2.3, transverse hippocampal slices were cut 

using a vibratome and fEPSPs were recorded from the stratum radiatum of CA1 
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following stimulation of the Schaffer-collateral/commissural pathway. LTP was 

induced using high frequency (200 Hz) burst stimulation according to the protocol 

described by Cavus and Teyler (1996): a train of 40 stimuli were delivered at 200 Hz 

at a stimulus intensity that evoked a 0.5-1 mV population spike in the adjacent 

stratum pyramidale (Figure 5.2). This train was repeated 10 times every 5 s.  

 

Figure 5.2 Example extracellular recordings of synaptic activity made in one area of the stratum 

pyramidale. Single stimuli were applied to area CA3 at the amplitude indicated above each trace and 

synaptic activity was recorded from an area of the stratum pyramidale in CA1. Population spikes 

were measured as the difference between peak and anti-peak amplitude in the response. Traces are an 

average of 8 consecutive responses. Stimulus artefacts have been truncated. 

 

Field EPSP initial slopes were normalised to the first 10 min of recording shown in 

each figure. Drugs were delivered through the perfusion system and took ~ 20 s to 

reach the recording chamber (as measured in a separate experiment using a coloured 

indicator). Nifedipine, which is light-sensitive, was prepared freshly on the day of 

each experiment and was applied to slices in the dark. Experiments were interleaved 

with, or run simultaneously with, controls. 

 

 

 

3.5                              6.5 V                          9.5 V

Population spike

20 ms

3 mV
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5.3.3 Measuring cGMP production in hippocampal slices 

 

Hippocampal slices from multiple animals were randomly assigned to flasks of 

oxygenated aCSF (30 ºC) held in a shaking water-bath. NOS dependent-cGMP 

production was stimulated by submerging the slices in high K
+
 (30-122.5 mM) aCSF 

for 5 min. Standard aCSF contained 2.5 mM K
+
 (see Chapter 2). The concentration 

of Na
+
 in high K

+
 aCSF was lowered to maintain osmolarity. After stimulation, slices 

were individually inactivated by submersion in 200 µl boiling buffer containing 50 

mM tris-HCl and 4 mM EDTA (pH 7.4) for ~ 30 min and then sonicated. The cGMP 

content of the resulting solution was measured by radioimmunoassay and protein 

using the BCA method (see Chapter 2 for methods).  

 

In order that endogenous cGMP generation could be detected, all slices were 

incubated with an inhibitor of PDE 2 (BAY 60-7500, 1 µM, 30 min), which is the 

main PDE responsible for cGMP breakdown in the hippocampus (van Staveren et 

al., 2001; Suvarna and O'Donnell, 2002; van Staveren et al., 2003), prior to 

submersion in high K
+
, low Na

+
 aCSF. TTX (1 µM, 35 min) was also pre-applied to 

prevent network activity upon stimulation, and D-AP5 (100 µM, 35 min) to isolate 

the NMDA receptor-independent response. In every experiment, un-stimulated/basal 

and NMDA-induced cGMP levels were measured so that the consistency of cGMP 

accumulation could be monitored. NMDA was applied for 2 min at 100 µM in the 

absence of D-AP5.  

 

5.3.4 Estimating membrane potential (Vm) as a function of extracellular 

K
+ 

concentration  

 

The effect of extracellular K
+ 

concentration ([K
+
]o) on Vm was estimated using the 

Goldman-Hodgkin-Katz equation: 
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where: 

 

Vm = membrane potential (V) 

R = universal gas constant (8.314 J.K
-1

.mol
-1

) 

T = absolute temperature (303.15 K in these experiments) 

F = Faraday's constant (96485 C mol
-1

) 

px = relative membrane permeability of ion x. Estimated values were pk = 1, pNa = 

0.05 and pCl = 0.45 (Trezise et al., 2010; www.physiologyweb.com). 

[x]o = extracellular concentration of ion x (mM). Under basal conditions (standard 

aCSF) [K
+
]o = 2.5 mM and [Na

+
]o = 147 mM. [Cl

-
]o = 127.8 mM.  

[x]i = intracellular concentration of ion x (mM). Estimated values were [K
+
]i = 140 

mM, [Na
+
]i = 15 mM, [Cl

-
]i = 10 mM (Trezise et al., 2010; 

www.physiologyweb.com). 

 

The relationship between [K
+
]o and the K

+
 equilibrium potential (Ek) is given by the 

Nernst equation:  

 

   
  

  
    

    
    

  

 

5.3.5 Genotyping of eNOS
-/-

 mice 

 

Mice lacking functional eNOS due to the inclusion of a NEO cassette in the eNOS 

gene (eNOS
-/-

; see Huang et al., 1995) were obtained from Dr Adrian Hobbs (UCL, 

UK) and genotyped according to the protocol described in Chapter 4.  

 

5.3.6 Analysis and Statistics 

 

Analysis of LTP  

 

Unless otherwise stated, values of LTP quoted in the text are means ± SEM 55-60 

min post HFS. In each figure, HFS was applied at the arrow and insets represent the 

mean fEPSP recorded at the time indicated by the numbered bars. In all sample 

fEPSPs, the stimulus artefact has been truncated. Two-tailed t-tests or repeated 
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measures, one-factor ANOVA with Bonferroni test were used to assess statistical 

significance between data sets 55-60 min post HFS. 

 

Analysis of NOS activity assays 

 

Values in the text are means ± SEM. Statistical significance was assessed using one-

factor ANOVA with Dunnett’s test or unpaired t-tests. 

 

5.4 Results  

 

5.4.1 Characterisation of LTP induced by high frequency (200 Hz) burst 

stimulation 

 

As was found originally by Grover and Teyler (1990), LTP could be reliably induced 

at CA1 synapses by 200 Hz burst stimulation (Figure 5.3). Consistent with the 

original observation, the LTP was of high magnitude (200 ± 13 %; n = 3). As 

expected of a compound LTP, no further significant potentiation could be yielded by 

subsequent 200 Hz burst stimulation or HFS (100-Hz, 1-s), suggesting that the 

limiting factor(s) for the magnitude of this plasticity was saturated.  

 

Unlike LTP induced by HFS, or the LTP originally observed by Grover and Teyler 

(1990) and Cavus and Teyler (1996) using 200 Hz burst stimulation, the LTP 

induced by 200 Hz burst stimulation was not preceded by PTP. Rather, a short-

lasting (1-2 min) post-tetanic depression of the initial slope measuring ~ 50 % from 

baseline was consistently observed (Figure 5.3-4). Consequently, the potentiation 

was more reminiscent of the slow onset (10-15 min to maximum slope) LTP induced 

by 200 Hz burst stimulation in vivo by Morgan and Teyler (1999). Since it is known 

that high frequency burst stimulation can induce a transient (lasting ~ 5 min) 

heterosynaptic depression of synaptic activity in area CA1 (Grover and Teyler, 

1992), it is conceivable that in this study, small methodological differences led to the 

induction of a stronger depression than that induced by Grover and Teyler (1990) and 

that this masked PTP. This would explain the biphasic shape of the potentiation 
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shown in Figure 5.3 and more clearly in Figure 5.4 over the first 15 min post 

tetanus. 

 

Figure 5.3 LTP induced by high frequency (200 Hz) burst stimulation. Following an initial depression 

in fEPSP slope, 200 Hz burst stimulation yielded a persistent LTP of high magnitude (200 ± 12 %). 

This potentiation prevented further LTP by subsequent 200 Hz burst stimulation (252 ± 5 %; p > 

0.05) and 100-Hz HFS (p > 0.05). Statistics are repeated measures ANOVA with Bonferroni post-test. 

 

To test whether the LTP was composed of separable NMDA receptor- and L-VGCC-

mediated components, the NMDA receptor inhibitor, D-AP5, and the L-VGCC 

antagonist, nifedipine, were employed. To ensure effective NMDA receptor 

inhibition, slices were pre-incubated with 50 or 100 µM D-AP5 for 20 min prior to 

200 Hz burst stimulation. These concentrations of D-AP5 were 2 and 4 times higher 

than that shown previously to maximally block NMDA receptor-mediated 

depolarization in hippocampal slices in response to 200-Hz burst stimulation (Grover 

and Teyler, 1990; Grover and Teyler, 1994).  

 

In accordance with previous findings (Grover and Teyler, 1990; Cavus and Teyler, 

1996), 200 Hz burst stimulation in the presence of 50 or 100 µM D-AP5 generated a 

stable LTP. This LTP was significantly reduced compared to that observed in 

interleaved controls not treated with D-AP5; however its magnitude was significantly 

different from baseline (Figure 5.4A).  
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Figure 5.4 Effect of NMDA receptor and L-VGCC inhibition on LTP induced by 200 Hz burst 

stimulation. A) In the presence of the NMDA receptor antagonist, D-AP5 (50 or 100 µM), 200 Hz 

burst stimulation produced a stable, but significantly reduced LTP (unfilled circles) compared to 

interleaved untreated controls (50 µM D-AP5: 149 ± 5 %; n = 3; 100 µM D-AP5: 166 ± 7 %; n = 2; 

no D-AP5: 200 ± 13 %; unpaired t-test, 50 and 100 µM D-AP5 (which were not significantly different 

from each other: unpaired t-test, p = 0.137),  vs. no D-AP5, p = 0.009). This potentiation was 

significantly different from baseline, however (paired t-test, p = 1.91 × 10-4 compared to the last 5 
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min of baseline) B) The D-AP5 insensitive LTP was significantly attenuated when induced in the 

presence of nifedipine (155 ± 6 % vs. 125 ± 5 %; unpaired t-test, p = 0.004), although it was 

significantly different from baseline 55-60 min post HFS (paired t-test, p = 0.00469 compared to the 

last 5 min of baseline). The decay constant (τ) of the potentiation induced in the presence of nifedipine 

was 57 ± 2 min (calculated using an exponential fit (blue line) of the data 10 min after burst 

stimulation; adjusted R2 = 0.843; offset set to 100; see Chapter 2 for exponential equation). No effect 

of nifedipine on baseline transmission was observed (paired t-test between the first and last 5 min of 

baseline transmission, p = 0.455). All conditions were interleaved. The D-AP5 insensitive LTP shown 

in A has been shown again in B for ease of comparison.  

  

In interleaved experiments, co-application of nifedipine (30 µM) with D-AP5 

resulted in a gradually declining potentiation. This potentiation was significantly 

smaller than the D-AP5-insensitive LTP 55-60 min post HFS, although it was 

significantly different from baseline (Figure 5.4B).  

 

Nifedipine is a member of the 1,4-dihyropyridines, which are thought to alter L-

VGCC open/closed state probabilities by binding to an allosteric site in the α1 

subunit, causing the stability of the selectivity filter in conducting/non-conducting 

configurations to change (Catterall and Striessnig, 1992; Hockerman et al., 1997; 

Striessnig, 1999). Dihydropyridines are widely regarded to be selective for L-

VGCCs over other types of VGCCs, but it should be noted that effects of nifedipine 

other than on L-VGCCs have been reported. For example, the compound has been 

shown to inhibit cAMP- and, to a lesser extent, cGMP-hydrolysing PDE’s purified 

from bovine heart and porcine smooth muscle cells (Norman et al., 1983; Kishi et 

al., 1995). Nevertheless, 2 different concentrations of nifedipine (10 µM, Grover and 

Teyler, 1990;  30 µM, Cavus and Teyler, 1996), another dihydropyridine, 

nitrendipine (20 µM; Bayazitov et al., 2007), and a non-dihydropyridine-based L-

VGCC inhibitor, verapamil (10 mg/kg; Morgan and Teyler, 1999) have all been 

shown to inhibit 200 Hz burst stimulation induced LTP at CA1 synapses over a 

similar magnitude and time-course to that shown in Figure 5.4B. In support of a 

direct effect of these compounds on L-VGCCs, it has also been reported that CA1 

LTP induced in the presence of D/L-AP5 by 200 Hz burst stimulation is significantly 

inhibited in hippocampal slices lacking CaV1.2 (Moosmang et al., 2005a). Against 

any major effect of 30 µM nifedipine on synaptic transmission, we report that it did 

not alter the baseline fEPSP slope (paired t-test between the first and last 5 min of 
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baseline recording, p = 0.455; n = 5). Therefore, it was concluded that LTP induced 

by 200 Hz burst stimulation could be dissociated into a NMDA receptor-dependent 

and a NMDA receptor-independent, L-VGCC-dependent component, and the role of 

NO in the latter could be tested. 

 

5.4.2 Contribution of NO to NMDA receptor-independent, L-VGCC-

dependent LTP 

 

To test whether NO was required for the L-VGCC-dependent, NMDA receptor-

independent LTP, the non-selective NOS inhibitor, L-NNA (100 µM), was used 

(Figure 5.5). Compared to the LTP observed following 200 Hz burst stimulation in 

the presence of D-AP5, the potentiation induced in the presence of L-NNA and D-

AP5 was unstable and significantly reduced 55-60 min following induction. 

Although it was significantly different from baseline 55-60 min post HFS, it 

appeared to be declining further.  
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Figure 5.5 Involvement of NOS in NMDA receptor-independent, L-VGCC-dependent LTP. Compared 

to the stable LTP produced by 200 Hz burst stimulation in the presence of D-AP5 (unfilled circles; 

156 ± 9 %), LTP induced during application of D-AP5 and the non-selective NOS inhibitor, L-NNA 

(100 µM), was significantly reduced (grey; 120 ± 4 %; unpaired t-test, p = 0.008). The potentiation 

was significantly different from the last 5 min of baseline (paired t test, p = 0.0108), however it 

appeared to be declining further. The decay constant of the LTP induced in the presence of L-NNA 

was 49 ± 2 min (calculated as in Figure 5.4; adjusted R2 = 0.861; offset set to 100). 

 

5.4.3 Role of NO-targeted guanylyl cyclase in NMDA receptor-

independent, L-VGCC-dependent LTP 

 

To test for the involvement of NO-targeted guanylyl cyclase in the L-VGCC-

dependent component of LTP, ODQ (10 µM) was applied to slices 20 min prior to 

tetanus. This resulted in a significant inhibition of the L-VGCC-dependent LTP 

compared to controls. As above, the potentiation was significantly different from 

baseline 55-60 min post HFS, but it appeared to be declining further (Figure 5.6). 

The decay constant of the potentiation (60 ± 3 min) was remarkably similar to that 

observed following HFS in the presence of nifedipine (57 ± 2 min; Figure 5.4B) and 

L-NNA (49 ± 2 min; Figure 5.5). 
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Figure 5.6 Requirement of L-VGCC-dependent, NMDA receptor-independent LTP for NO-targeted 

guanylyl cyclase. Compared to the stable LTP produced by 200 Hz burst stimulation in the presence 

of D-AP5 (black; 155 ± 7 %), LTP induced during application of D-AP5 and the NO-targeted 

guanylyl cyclase antagonist, ODQ (10 µM), was significantly reduced 55-60 min following tetanus 

(green; 134 ± 7 %; unpaired t-test, p = 0.031). Measured 55-60 min post HFS, this potentiation was 

significantly different from the last 5 min of baseline (paired t-test, p = 0.00304), however it appeared 

to be declining further. The decay constant of the LTP induced in the presence of ODQ was 60 ± 3 

min (calculated as in Figure 5.4; adjusted R2 =0.450; offset set to 100). Note that control data was 

pooled with that shown in Figure 5.5. 

 

5.4.4 NOS isoform involved in NMDA receptor-independent, L-VGCC-

dependent LTP 

 

L-NNA and ODQ inhibited the NMDA receptor-independent, L-VGCC-dependent 

component of the LTP induced by 200 Hz burst stimulation (Figure 5.5-6). As 

previously discussed, both eNOS and nNOS are thought to be required for NO-

dependent LTP at CA1 synapses induced by a 1-s. 100-Hz tetanus (HFS). The former 

isozyme is thought to provide a basal NO tone, the latter to generate an activity-

dependent, phasic NO signal (Hopper and Garthwaite, 2006).  
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To elucidate the NOS isoform(s) required for NMDA receptor-independent, L-

VGCC-dependent LTP, and therefore begin to characterise the nature of the NO 

signal involved, eNOS
-/-

 mice were used. Neither nNOS inhibitors nor nNOS knock-

out mice were used due to reasons outlined in Chapter 6.  

 

We observed no significant difference between the NMDA receptor-independent, L-

VGCC-dependent LTP induced in slices from eNOS
-/-

 or age-, sex- and strain-

matched wild-type mice (Figure 5.7A). However, in interleaved experiments, LTP in 

eNOS
-/-

 mice was significantly reduced by L-NNA (Figure 5.7B).  
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Figure 5.7 NMDA receptor-independent, L-VGCC-dependent LTP in eNOS-/- mice. A) No significant 

difference was detected between the LTP induced in slices from eNOS-/- and matched wild-type mice 

(148 ± 6 % vs. 141 ± 5 % respectively; unpaired t-test, p = 0.374). B) The non-specific NOS inhibitor, 

L-NNA, significantly attenuated LTP in eNOS-/- slices (124 ± 6 % vs. 148 ± 6 %; unpaired t-test, p = 

0.021). All conditions were interleaved. 
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5.4.5 Relationship between NOS and L-VGCC’s in LTP 

 

L-VGCC-dependent LTP was reduced by a general NOS inhibitor and NO-targeted 

guanylyl cyclase antagonist (Figure 5.5-7), but expressed normally in eNOS
-/-

 slices. 

Since iNOS is not expressed in healthy hippocampus (Hopper and Garthwaite, 2006), 

these results are consistent with nNOS being the only NOS isoform required for L-

VGCC-dependent LTP. The results shown in Figure 5.4B-6 suggest that L-VGCCs, 

nNOS and NO-targeted guanylyl cyclase might act in series to affect L-VGCC-

dependent LTP, because, the inhibition of LTP caused by the NOS antagonist, L-

NNA, and the guanylyl cyclase antagonist, ODQ, was remarkably similar to that 

generated by nifedipine (compare τ in Figure 5.4B-6). This suggestion is supported 

by other lines of evidence (see Discussion). However, it was unclear whether L-

VGCCs might activate nNOS-guanylyl cyclase, presumably via their Ca
2+

 

conductance, or vice versa. Moreover, our results could not exclude the possibility 

that nNOS and L-VGCCs operate in parallel pathways, perhaps with a common 

target.  

 

Previously, NOS activity has been measured in brain slices in response to 

depolarising agents, including K
+ 

(Ferrendelli et al., 1973). We took advantage of 

this to provide a simple test of whether, under conditions of crude synaptic 

stimulation, L-VGCC opening can cause nNOS activity in the hippocampus. 

Hippocampal slices were depolarised (presumably causing L-VGCC activation) by 

submersion in high K
+
-aCSF ([K

+
]o ranged from 15-122.5 mM; note that standard 

aCSF contained 2.5mM K
+
) for 5 min and the effect of nifedipine or the L-VGCC 

agonist, FPL-64176 (reviewed in Rampe and Kane, 1994), on the resulting NOS-

dependent cGMP accumulation was tested. Cyclic GMP was measured by 

radioimmunoassay since this represents the most sensitive assay of endogenous NOS 

activity currently widely available. Prior to stimulation with high K
+ 

aCSF, slices 

were pre-treated with the PDE inhibitor, BAY 60-7550 (1 µM, 30 min), to increase 

the sensitivity of the technique and allow direct measurement of cGMP production, 

D-AP5 (100 µM, 35 min), to isolate NMDA receptor-independent cGMP 

accumulation, and TTX (1 µM, 35 min), to negate the effects of network activity on 

the response.  
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As shown in Figure 5.8A, submersion of slices in high K
+
 aCSF for 5 min induced 

cGMP accumulation in hippocampal slices in a manner that was dependent on the 

[K
+
]o (black). This was blocked by pre-incubating slices with L-NNA (100 µM, 35 

min; red), ODQ (10 µM, 35 min; blue) or in Ca
2+

-free aCSF containing the Ca
2+

 

chelator, EGTA (1 mM, 35 min; green). To place the amount of cGMP generated by 

K
+
 into context, some slices were treated with a concentration of NMDA (100 µM, 2 

min) shown previously to evoke maximal NMDA-induced cGMP accumulation in 

10-day-old rat hippocampal slices (Bartus, 2009). For these experiments, slices were 

maintained in standard aCSF (2.5 mM K
+
) and were pre-treated with BAY 60-7550 

(1 µM, 30 min) and TTX (1 µM, 35 min) but not D-AP5. The average response 

across all experiments was 19 ± 1 pmol/mg protein (grey bar; n = 13). Cyclic GMP 

accumulation was not significantly greater after treatment with 300 µM NMDA for 2 

min (24 ± 2; p = 0.240; n = 2), suggesting that 100 µM NMDA was saturating. 

 

To determine which isoform(s) of NOS was likely responsible for the cGMP 

response, eNOS
-/-

 mice were used. There was no significant difference between 

cGMP accumulation in wild-type and eNOS
-/-

 slices (Figure 5.8B), implying that the 

response was mediated by nNOS. 
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Figure 5.8 K+-induced cGMP accumulation in hippocampal slices. A) In slices incubated in standard 

aCSF (2.5 mM K) and pre-treated with BAY 60-7550, and TTX, NMDA (100 µM, 2 min) generated 19 

± 1 pmol cGMP/mg protein on average (grey bar). In slices pre-treated with BAY 60-7550, TTX and 

D-AP5, K+ induced cGMP accumulation in a concentration-dependent manner (black) that was well 

described by a logistic equation (R2 =0.997; see Chapter 2 for logistic equation). Slices treated with 

the highest concentration of K+ (122.5 mM) produced significantly more cGMP than those treated 

with NMDA (ANOVA with Dunnett’s test, p < 0.01). Where tested, K+-induced cGMP accumulation 
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was blocked in slices pre-incubated with L-NNA (100 µM, 35 min; red), ODQ (10 µM, 35 min; blue) 

or in Ca2+ free medium containing the Ca2+ chelator, EGTA (1mM; green). B) Following stimulation 

with 122.5 mM K+, cGMP accumulation was not significantly different between wild-type and eNOS-/- 

slices (wild-type: 18 ± 2 pmol/mg protein; eNOS-/-: 22 ± 4 pmol/mg protein; unpaired t-test, p = 

0.322). In all experiments, D-AP5 (100 µM) and TTX (1 µM) were pre-applied for 35 min and BAY 

60-7550 (1 µM) for 30 min. 

 

Neither nifedipine (30 µM, pre-incubated for 35 min) nor FPL 64176 (1 µM, pre-

incubated for 20 min) had any significant effect on the mean cGMP generated in 

hippocampal slices upon exposure to any [K
+
]o used (Figure 5.9).  

 

Figure 5.9 Effect of L-VGCC modulators on K+-induced cGMP accumulation. Slices were pre-

incubated with nifedipine (red) or FPL-65176(blue) and stimulated with various concentrations of K+ 

for 2 min. There was no effect of nifedipine (30 µM; 35 min pre-incubation; red) nor FPL-64176 (1 

µM; 35 min pre-incubation; blue) on cGMP accumulation in response to any [K+]o tested (ANOVA 

with Dunnett’s test, p > 0.05). All experiments were interleaved. In all experiments, D-AP5 (100 µM) 

and TTX (1 µM) were pre-applied for 35 min and BAY 60-7550 (1 µM) for 30 min. 
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(V0.5) vary in the literature and measurements are rarely made using native L-

VGCCs. Instead L-VGCC subunits are usually expressed in dissociated cells. Many 

estimates for rodent neuronal CaV1.2 and 1.3 containing channels, which, as 

described above, are the predominant L-VGCCs in hippocampal pyramidal neurons, 

are between -15 to -20 mV (Catterall et al., 2010a; Catterall et al., 2010b). In a study 

by Helton et al. (2005), for example, the V0.5 of Ca
2+

 currents recorded from tsA201 

cells transiently co-expressing Cav1.2, Cavβ3, Cavα2δ1 subunit DNA was ~ 18 mV. In 

dissociated rat pyramidal neurons, the V0.5 of native L-VGCCs has been reported to 

be ~ -14 mV (Mermelstein et al., 2000). In this study, significant activation of L-

VGCCs was also observed at more negative potentials (-30 mV).  

 

To estimate the Vm of pyramidal neurons in hippocampal slices subject to varying 

[K
+
]o, and therefore, to identify whether L-VGCC’s were likely to be active, the 

Goldman-Hodgkin-Katz equation was used (see 5.3.1 for details). As shown in 

Figure 5.10, exposure to 100 mM and 122.5 mM K
+
 was predicted to depolarise the 

Vm of neurons to ~ - 16 mV and - 11 mV, respectively, and this was within the range 

of most estimates of the V0.5 of rodent neuronal L-VGCCs (see Discussion).  

 

It should be noted that the values for ion permeability and intracellular concentration  

used to calculate Vm were approximated and that our experiments do not control for 

L-VGCC inactivation during the K
+
 stimulus. Nevertheless, the calculated Vm under 

basal conditions (standard aCSF in which [K
+
]o = 2.5 mM) was ~ -69 mV, the 

average resting Vm measured from pyramidal neurons in hippocampal slices under 

the same conditions as applied in this study (oxygenated aCSF, pH 7.4, 30 ± 1 ºC) 

using intracellular sharp electrodes (see Appendix 1 for details). The Ek was also 

calculated as a function of [K
+
]o using the Nernst equation, since this relies on fewer 

approximated values than the calculated Vm. High concentrations of K
+
 (100-122.5 

mM) were predicted to cause ~ 100 mV shift in Ek, which would be very likely to 

activate L-VGCCs even if the true Vm varied from that predicted using the Goldman-

Hodgkin-Katz equation. 
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Figure 5.10 Estimating Vm and Ek as a function of [K+]o. As expected, Ek (red) was logistic (note log 

scale). As predicted by the Nernst equation, the slope of the line over a 10-fold change in [K+]o = 

(RT/F)*2.3 = 60 mV, where 2.3 is the conversion factor of ln to 1og10. As is standard, Vm deviated 

from Ek,  at low [K+]o. This reflects the influence of the other ions taken into consideration by the 

Goldman-Hodgkin-Katz equation, largely Na+, on Vm. 

 

5.5 Discussion 

 

In favour of the hypothesis that NO is required for NMDA receptor-independent, L-

VGCC-dependent LTP at hippocampal CA1 synapses, the main finding of this study 

was that the non-selective NOS antagonist, L-NNA, caused a steady decline in the 

potentiation. This was remarkably similar to the effect of the L-VGCC antagonist, 

nifedipine (compare Figure 5.4B-5). The NO-targeted guanylyl cyclase antagonist, 

ODQ, also inhibited L-VGCC-dependent LTP, and in a similar manner (compare 

Figure 5.4B and 5.6), suggesting that, in common with the vast majority of 

physiological NO signals (Garthwaite, 2008), the NO involved was transduced by 

cGMP. 

 

Previously, NO has been shown to be required for other forms of NMDA receptor-

independent LTP. For example, a slowly-rising form of NMDA-receptor independent 
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min), 100-Hz burst stimulation has been reported to be blocked by the NOS 

antagonist, L-NAME, and in eNOS
-/-

 mice (Haul et al., 1999). It has also been 

reported that LTP induced in the presence of D-AP5 at synapses between the dentate 

gyrus mossy fibres and the proximal-apical dendrites of CA3 pyramidal neurons 

using a 1-s, 100-Hz tetanus is reduced in eNOS
-/-

 mice (Doreulee et al., 2001; 

although see Nicolarakis et al., 1994). However, to our knowledge, this is the first 

report that endogenous NO is necessary for NMDA receptor-independent and L-

VGCC-dependent LTP at CA1 synapses. 

 

Following a 100-Hz, 1-s tetanus (HFS), LTP is, in our hands, NMDA receptor-

dependent (Chapter 3). This LTP likely requires both nNOS and eNOS (Hopper and 

Garthwaite 2006). Endothelial NOS, which after phosphorylation can become 

tonically active (Fulton et al., 2001), is thought to provide a continuous, low-level 

NO tone which may prime synapses for potentiation  (Hopper and Garthwaite, 2006), 

perhaps by modulating basal levels of presynaptic transmitter release at CA1 

synapses (Neitz et al., 2011 and see Chapter 4). Neuronal NOS, on the other hand, 

is thought to produce a phasic, activity-dependent signal necessary for hippocampal 

LTP induction (Hopper and Garthwaite, 2006).  

 

To characterise the NO signal necessary for the L-VGCC-dependent LTP, the NOS 

isoform(s) required was determined. Given previous evidence, it seemed reasonable 

that both sources of NO could be involved in L-VGCC-dependent LTP: NMDA 

receptor-independent nNOS activity has been previously reported (see below) and 

NMDA-receptor-independent forms of LTP at mossy fibre synapses (Doreulee et al., 

2001) and in the somatosensory cortex (Haul et al., 1999) are reportedly reduced in 

eNOS
-/-

 mice. However, our experiments using eNOS
-/-

 mice favoured the conclusion 

that nNOS was the only source of the NO needed for L-VGCC-dependent LTP 

(Figure 5.7). Note that, unfortunately, selective nNOS inhibitors were unavailable 

for use (see Chapter 6) and mice lacking active splice variants in the hippocampus 

could not be obtained within the time constraints of this project. Taken together with 

previous findings (Hopper and Garthwaite, 2006), the lack of effect of eNOS knock-

out on the L-VGCC-dependent LTP immediately suggested that the NO signal 

involved in the LTP was activity-dependent, rather than tonic, and synthesised in 
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neurons, rather than endothelial cells. The lack of effect also implies that eNOS and 

its effects on neurotransmission, for example, through the tonic modulation of 

neurotransmitter release onto CA1 cells (Chapter 4 and Neitz et al., 2011), are not 

necessary for all forms of CA1 LTP. Furthermore, the result provides important 

support for the role of nNOS in LTP, which has been disputed by findings that nNOS 

knock-out mice are capable of normal NOS-inhibitor sensitive LTP at CA1 synapses 

(O'Dell et al., 1994; although it should be noted that the mice involved may have 

expressed active nNOS splice variants; Eliasson et al., 1997), and that nNOS 

inhibitors shown previously to attenuate CA1 LTP (Hopper and Garthwaite, 2006), 

are not useably selective for nNOS over eNOS (see Chapter 6).    

 

As discussed above (see 5.1 Introduction), NO-, and L-VGCC-dependent forms of 

LTP at CA1 synapses have previously been shown to rely on similar mechanisms, 

and both NO and L-VGCCs have been found to modulate activity-dependent changes 

associated with gene expression, learning and memory in the hippocampus. It is also 

interesting to note that an interaction between NO and L-VGCC’s during long-lasting 

synaptic activity, and perhaps learning and memory, may extend beyond CA1 

synapses because L-VGCCs and NO have been found to be necessary for some 

forms of LTP in the lateral amygdala, as well as amygdala-dependent learning, such 

as auditory fear conditioning (Weisskopf et al., 1999; Bauer et al., 2002; Ota et al., 

2008). However, the critical role of NO in L-VGCC-dependent LTP was, to some 

extent, unexpected and this was for two main reasons.  

 

Firstly, several groups have long-hypothesised that LTP induction protocols using 

high stimulus intensities favour the expression of NO-independent LTP (Haley et al., 

1993; Chetkovich et al., 1993; O'Dell et al., 1994; Wilson et al., 1999), thus 

explaining why some forms of LTP are independent of NO (for example, Cummings 

et al., 1994; Bannerman et al., 1994b; Phillips et al., 2008). This hypothesis has, 

arguably, received more attention than theories that other factors, such as the 

temperature at which the experiments were performed (Williams et al., 1993), or the 

age and strain of the animals used (Holscher, 2002), determine whether NO is 

involved in LTP. However, we report clear evidence that NO-dependent LTP can be 

induced using an induction protocol delivered at relatively high stimulus intensities 
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(≥ 1 V higher than that typically used to evoke the baseline fEPSP (see 5.3 Methods 

for details)). Our data suggest therefore suggest that some other variable(s) dictate 

the involvement of NO, or another factor capable of compensating for NO, in LTP 

and that the above hypothesis should be reconsidered. Furthermore, our results are 

accordant with more recent findings that postsynaptic somatic action potentials, the 

generation of which would be favoured by high vs. low intensity stimulation (and 

may also be necessary for L-VGCC activation), are necessary for NO-dependent 

LTP at CA1 synapses (Phillips et al., 2008). 

 

Secondly, physiological nNOS activation is thought to be achieved preferentially 

through NMDA receptors. It is well known that nNOS can bind the NMDA receptor 

subunit, NR2B, via PSD-95 (Christopherson et al., 1999) and in situ hybridisation 

studies show that message for nNOS is co-localised with mRNA for PSD-95 

throughout the brain (Brenman et al., 1996). In the hippocampus, immunofluorescent 

staining has shown that nNOS, NR2B and PSD-95 co-localise in pyramidal cell 

dendritic spines (Burette et al., 2002). NMDA has been shown to increase NO 

production in the hippocampus in vivo (Luo and Vincent, 1994) and in vitro (Figure 

5.8A), and this has been shown to be nNOS- (Huang et al., 1993) and PSD-95-

dependent (Sattler et al., 1999). A simple explanation for the requirement of L-

VGCC-dependent LTP for nNOS, therefore, was incomplete antagonism of NMDA 

receptors during 200 Hz burst stimulation. Nevertheless, evidence presented by 

Grover and Teyler (1990, 1994) strongly suggests that glutamate released during this 

tetanus would be insufficient to overcome the concentrations of D-AP5 (50-100 µM) 

used throughout this study. For example, they report that, in the presence of 50 µM 

D/L-AP5 (equivalent to 25 µM D-AP5), 95 % of NMDA receptors are blocked 

during 200 Hz burst stimulation, and that raising the concentration of D/L-AP5 to 

200 µM yields no further inhibition of NMDA receptors, nor any inhibition of L-

VGCC-dependent LTP (Grover and Teyler, 1990). Therefore, the finding that NO 

was required for L-VGCC-dependent, NMDA receptor-independent LTP implies 

that, following 200 Hz burst stimulation, nNOS was activated by a source of Ca
2+

 

influx other than NMDA receptors. 
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Several lines of evidence suggest that L-VGCCs might be responsible for nNOS 

activation during L-VGCC-dependent CA1 LTP. First, histological studies have 

shown that nNOS and L-VGCCs may co-localise in pyramidal cell soma, at the base 

of apical dendrites and in interneurons (Westenbroek et al., 1990; Ahlijanian et al., 

1990; Hell et al., 1993; Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; 

Burette et al., 2002). Interestingly, some histological and functional data also shows 

that CaV1.2 L-VGCCs are expressed in the postsynaptic densities of more distal 

pyramidal cell dendrites where they may lie in close proximity to NMDA receptors, 

and therefore, probably nNOS (Hell et al., 1996). Second, as assessed using Fura-2 

in hippocampal slices (Regehr and Tank, 1992; Christie et al., 1995) and whole cell 

recordings of dissociated pyramidal neurons (Mermelstein et al., 2000), L-VGCCs 

have been reported to cause significant (~ 30-50 % of the total) Ca
2+

 influx into 

pyramidal cell soma and dendrites during spikes and ramp depolarisations (to -30 

mV) designed to approximate the effects of EPSPs. Third, as mentioned above, LTP 

induced in the presence of nifedipine, L-NNA and ODQ was characterised by a 

similar decay constant (Figure 5.4B-6). Fourth, L-VGCCs have previously been 

reported to activate nNOS in the nervous system. In the PNS, for example, in the 

enteric nervous system, Ca
2+

 influx via VGCCs, including L-VGCCs, is well-known 

to trigger NOS activation, leading to NANC transmission and smooth muscle 

relaxation (reviewed by Vincent, 2010). In primary cultures of mouse cortical 

neurons, in which non-neuronal cells constituted only ~ 5 % of the total, K
+
 (25-50 

mM for 10-15 min) induced NOS-dependent, presumably nNOS-dependent, cGMP 

accumulation that was insensitive to TTX, MK-801 and CNQX but was attenuated 

by the L-VGCC antagonists, 4-(4-fluorophenyl)-2-methyl-6-(5-

piperidinopentyloxy)pyrimidine hydrochloride (NS-7; Suma et al., 1997; Tatsumi et 

al., 1998) and nifedipine (Oka et al., 1999). Furthermore, the L-VGCC agonist, BAY 

K-8644, concentration-dependently increased K
+
-induced cGMP accumulation and 

this was also attenuated by NS-7 and nifedipine (Oka et al., 1999).  

 

Nevertheless, it should be noted that the results presented in Figure 5.4B-6 are 

equally consistent with two other possibilities, both consistent with another, 

unknown source of Ca
2+

 influx to neurons being responsible for stimulating nNOS. 

The first possibility is that NO could have activated L-VGCCs, as has been shown in 
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various biological systems, including the cardiac system (reviewed by Striessnig, 

1999). In human atrial myocytes, for example, picomolar concentrations of the NO 

donor, 3-morpholinosydnonimine (SIN-1), and cGMP (500 nM) have been reported 

to increase L-VGCC-mediated currents, most likely via an effect on cGMP-inhibited 

PDE 3, leading to cAMP accumulation, PKA activation, L-VGCC phosphorylation 

and an increase in the open state probability of the channels (Kirstein et al., 1995). 

The second possibility is that L-VGCCs and NO acted in parallel pathways, 

separated for example, by intracellular compartmentalisation, but with a common 

target necessary for LTP expression. In support of this, L-VGCC-dependent LTP is 

thought to require sources of Ca
2+

 influx to neurons other than L-VGCCs, such as  

metabotropic glutamate receptors (Little et al., 1995). Furthermore, Kullmann et al. 

(1992) have shown that, although repeated depolarising pulses applied to CA1 

neurons in hippocampal slices elicit a D-AP5-insensitive, nifedipine-sensitive 

increase in pyramidal cell EPSPs and EPSCs, this potentiation is transient (decaying 

back to baseline within ~ 30 min) and requires coincident synaptic activity for 

persistent expression. These findings suggest that another factor is required for L-

VGCC-dependent LTP. This factor could be responsible for nNOS activation, and 

may also lend L-VGCC-dependent LTP its input-specificity, which, because L-

VGCCs are most densely clustered in the pyramidal cell soma and at the base of 

apical dendrites, is difficult to explain.  

 

Using a crude stimulus (2.5 – 122.5 mM K
+
, 5 min) to depolarise hippocampal slices 

and activate L-VGCCs, we found no evidence that L-VGCCs activate nNOS (Figure 

5.9). The Goldman-Hodgkin-Katz equation predicts that the Vm of neurons exposed 

to the highest concentrations of K
+
 used was close to or above the V0.5 of the L-

VGCC’s present (Figure 5.10), suggesting that L-VGCCs were active under our 

conditions. Furthermore, cGMP generation was quantified using the cGMP 

radioimmunoassay, which provides the most sensitive measure of NOS activity 

currently widely available. Therefore at present, it is reasonable to assume that, in the 

hippocampus, L-VGCC-dependent, K
+
-induced nNOS activation is minimal or does 

not occur. Of course, this cannot rule out the possibility that during 200 Hz burst 

stimulation, L-VGCCs do activate nNOS. However, without any indication that L-
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VGCCs can activate nNOS in the hippocampus, the relationship between L-VGCCs 

and nNOS in L-VGCC-dependent LTP remains an open question.  

 

5.6 Conclusion 

 

NO/cGMP appears to play a diverse role in hippocampal synaptic plasticity. In 

Chapter 4 it was shown that, under our conditions, NMDA receptor-dependent LTP 

at CA1 synapses requires endogenous NO. In addition to this, the data presented in 

Figures 5.4-6 suggest for the first time that NO/cGMP is also necessary for L-

VGCC-dependent, NMDA receptor-independent CA1 LTP. Consistent with the 

results of experiments using eNOS
-/-

mice (Figure 5.7) and the reported lack of iNOS 

in healthy hippocampus (Hopper and Garthwaite, 2006), nNOS may be the sole 

isoform of the NO required for L-VGCC-dependent LTP, implying that a NMDA 

receptor-independent mechanism, most likely involving an increase in intracellular 

Ca
2+

, is capable of activating nNOS during synaptic stimulation (Figure 5.7). This 

could hold considerable influence over NO physiology and pathology.  

 

Taking advantage of previous findings that K
+
 induces NOS-dependent cGMP 

accumulation in hippocampal slices, and a highly sensitive assay for cGMP 

detection, experiments were performed to ascertain whether, under crude stimulation, 

L-VGCCs activate nNOS. Under these conditions, significant NMDA receptor-

independent, NOS-dependent cGMP accumulation was recorded (Figure 5.8), 

consistent with the suggestion that nNOS can become activated by an unknown, 

NMDA receptor-independent mechanism(s). No evidence for L-VGCC-induced 

nNOS activity was found (Figure 5.9). This was not in favour of L-VGCC-induced 

nNOS activation during 200 Hz burst stimulation, although it must be emphasised 

that it is unclear how comparable the neuronal consequences of K
+
 and tetanic 

stimulation are. Experiments to identify the source(s) of Ca
2+

 influx responsible for 

K
+
-induced cGMP-accumulation have been performed (see Appendix 1), but were 

inconclusive.  Interestingly, a cGMP sensor with picomolar sensitivity has been 

developed very recently (Batchelor et al., 2010) and future application of this to 

hippocampal slices could allow L-VGCC-dependent NO synthesis to be re-

investigated with improved sensitivity and following 200 Hz burst stimulation. 
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Finally, it is tempting to speculate that NO- and L-VGCC-dependent signalling 

pathways activated during LTP may converge on pathways linked to gene expression 

and/or BDNF release (see 5.2 Aim). Concerning the former, NMDA receptor-

independent NO synthesis during conditions also activating L-VGCCs could explain 

the discrepancy in the literature as to why NMDA receptors and NO are necessary 

for early-LTP induced by a 1-s, 100-Hz tetanus (HFS), but only the latter is required 

for late-LTP and some associated changes in gene expression induced by multiple 

HFS (see 5.1 Introduction). 
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6.1 Introduction 

 

This study resulted from attempts to identify the isoform of NOS involved in the 

NO-dependent plasticity’s described in Chapter 4-5 using nNOS inhibitors. The use 

of NOS inhibitors represents a major strategy for investigating NO physiology, as 

has been demonstrated throughout this thesis, and is also an attractive means of 

treating pathologies hypothesised to involve NO overproduction by NOS. These 

pathologies include disorders of the nervous system thought to involve nNOS, such 

as stroke and Parkinson’s disease, and inflammatory diseases considered to involve 

iNOS, such as asthma and arthritis (reviewed in Gross and Wolin, 1995; Hobbs et 

al., 1999; Vallance and Leiper, 2002). 

 

The first series of NOS inhibitors to be developed were L-arginine derivatives such 

as L-NMMA, L-NNA (see Table 6.1) and its prodrug, L-NAME. These compete 

with L-arginine for binding to NOS and are non-selective for any NOS isozyme. 

They are actively transported into cells and typically have IC50 values in the low 

micromolar range (Alderton et al., 2001).  

 

Early on, L-NNA and L-NMMA were reported to block eNOS-dependent, ACh-

induced relaxation of rabbit aorta, which could be restored upon application of L-

arginine or exogenous NO (Moore et al., 1990). L-NMMA was also shown to dose-

dependently increase blood pressure in two patients with septic shock who had failed 

to respond to conventional treatment. L-NAME was reported to have a similar effect 

in one of the patients (Petros et al., 1991). Since then, the L-arginine-based inhibitors 

have been shown to inhibit various NO-dependent phenomena in different tissues 

and to benefit patients with other disorders involving NO overproduction, such as 

chronic tension-type headache (Ashina et al., 1999b) and migraine (Lassen et al., 

1997), which may result from central sensitisation of noiceceptive synapses by 

overactive nNOS (Ashina et al., 1999a).  

 

However, the interpretation of research using non-selective NOS inhibitors is limited 

because all three isoforms of NOS may be simultaneously active in one tissue. The 

therapeutic applications of non-selective NOS inhibitors are also hampered for the 
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same reason. For example, non-selective NOS inhibitors cannot be used to treat 

asthma, which may be augmented by excessive iNOS activity, because eNOS 

inhibition causes vasoconstriction in the airways (Hansel et al., 2003). Likewise, 

nNOS and eNOS inhibition appear to have opposing consequences for tissue damage 

after ischemic insult (Huang et al., 1994; Huang et al., 1995; Huang et al., 1996). 

 

To avoid these problems, NOS inhibitors selective for one isozyme are necessary, 

but, unfortunately, their development has been demanding (Alderton et al., 2001). 

The two most selective and potent nNOS inhibitors currently commercially available 

are L-VNIO (or Vinyl L-NIO; Babu and Griffith, 2008) and 1400-W (Garvey et al., 

1997; see Table 6.1). Both are competitive with L-arginine for binding to NOS. 

1400-W is foremost known as a potent iNOS inhibitor, although it is also used as a 

nNOS inhibitor in healthy tissues, since in isolated enzyme assays it has been 

reported to exhibit significant selectivity for nNOS over eNOS (Table 6.1), and 

endogenous iNOS expression usually requires immune challenge (Kroncke et al., 

1998). Indeed, L-VNIO (0.1 μM) and 1400-W (1 μM) have been reported to block 

NMDA-induced cGMP accumulation in adult rat hippocampal slices, which is well-

accepted to be nNOS-dependent (Huang et al., 1993), and NO-dependent LTP at 

CA1-CA3 synapses in adult mouse hippocampal slices. The latter could be restored 

upon application of exogenous NO. At the same concentrations, neither compound 

affected cGMP accumulation in rat aortic rings upon stimulation with ACh (Hopper 

and Garthwaite, 2006), which is eNOS-dependent (Furchgott and Zawadzki, 1980; 

Huang et al., 1995). 

 

Since these findings were published, L-VNIO and 1400-W have been used at the 

above concentrations (0.1 μM and 1 μM, respectively) to test for the involvement of 

nNOS in the physiology of various tissues, including hippocampus, cortex and 

cerebellum (for example, Hall and Attwell, 2008; Taqatqeh et al., 2009;  Romberg et 

al., 2009;  Neitz et al., 2011). However, recent findings indicate that their potency 

and selectivity may vary in different tissue preparations. First, it was reported that 

10-fold higher concentrations of L-VNIO were required to block NMDA-induced 

cGMP accumulation in immature rat hippocampal slices and that this concentration 

also inhibited ACh-induced cGMP accumulation in aortic rings (Bartus, 2009). 
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Second, tests of the NOS isoform(s) involved in the modulation of basal 

neurotransmitter release (Chapter 4) and expression of NMDA receptor-independent 

LTP (Chapter 5) at CA1 synapses led us to the finding that 0.1 µM L-VNIO and 1 

µM 1400-W have no effect on cGMP accumulation in slices of adult mouse 

hippocampus (see Figure 6.1 and 6.3 below).  

 

6.2 Aim 

 

Given the diverse roles of nNOS in the mammalian CNS, the wealth of research 

being directed to understand these roles, and the potential therapeutic benefits of 

nNOS inhibition, alternative inhibitors to L-VNIO and 1400-W that are potent and 

selective for nNOS across different tissues are highly desirable.  

 

Work in the laboratory of Professor R.B. Silverman (Northwestern University, 

Chicago, USA) has produced a series of pyrrolidine (C4H9N)-based compounds 

shown to potently inhibit nNOS in cell-free and cell-based assays with unrivalled 

selectivity over e- and iNOS (Ji et al., 2009; Lawton et al., 2009; Xue et al., 2010a; 

Xue et al., 2010b). One of the most recently developed compounds, described in Xue 

et al. (2010a) and called FX-5043 here, has a Ki (calculated using an IC50 measured 

in an isolated enzyme assay) of 80 nM, and is ~ 780- and ~ 650-fold selective over 

eNOS and iNOS, respectively (as calculated using Ki values; see Table 6.1 for 

structure).  

 

Concerns over the bioavailability of other pyrrolidine based nNOS inhibitors have 

been raised (Lawton et al., 2009; Xue et al., 2010a). However, unlike its parent 

compound (Compound 1 in Table 6.1), which, at physiological pH, is predicted to be 

mostly (> 85 % as assessed using MarvinSketch 5.4.1.1, ChemAxon Kft., Budapest, 

Hungary) charged at both NH groups, FX-5043 is predicted to be mostly 

monocationic, because the CF2 group, which is electron withdrawing, is expected to 

lower the pKa of the adjacent NH (Xue et al., 2010a). As a result, FX-5043 has been 

found to cross membranes ~ 2.5-fold better than its parent compound (calculated by 

comparing ratios of IC50 values measured using cell-free and cell-based assays;  Xue 

et al., 2010a) and retain high potency for rat nNOS over-expressed in HEK T293 
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cells (~ IC50 determined after 8 hr pre-incubation in the presence of a Ca
2+

 

ionophore and 10 µM L-arginine = 19 µM; Xue et al., 2010a; see Fang and 

Silverman, 2009 for further details of the cell-based assay). Therefore, we aimed to 

test the potential of the compound as a selective nNOS inhibitor using intact tissues. 

A second potential nNOS inhibitor, JK-5 (see Table 6.1), with a structure based 

upon FX-5043 was also tested.  
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Compound name and structure ~ Ki (µM) ~ Selectivity 

nNOS eNOS iNOS e/n i/n e/i 

L-NNA
i
 

 

0.015 0.039 4.4 2.6 293.3 0.009 

L-VNIO
ii
 

 

0.1 12 60 120 600 0.2 

1400-W
iii

 

 

2 50 0.007 25 0.004 > 7000 

Compound 1
iv
 

 

0.015 31 9.5 > 2000 633.3 3.3 

FX-4053
iv

 

 

0.08 62 52 775 650 1.2 

JK-5
v
 

 

- - - - - - 

 

Table 6.1 Summary of NOS inhibitors discussed. Structures were taken from suppliers. For L-NNA, 

note that if the groups highlighted by the red box were replaced with NH2, the structure would show 
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L-arginine. Ki data were taken from: i Furfine et al. (1993) and Garvey et al. (1994); ii Babu and 

Griffith (1998); iii Garvey et al. (1997); iv Xue et al. (2010a). v No published Ki is available. Selectivity 

was calculated as the ratio of Ki values. 

 

6.3 Methods 

 

6.3.1 Animals 

 

Studies of the effect of L-VNIO and 1400-W on nNOS activity in hippocampus were 

performed using male 6-8 week-old C57/Bl6 mice from Charles River (Margate, 

UK). For all other experiments, male, 9-10 day-old Sprague Dawley rats (Charles 

River) were used.  

 

6.3.2 Preparation of transverse hippocampal slices 

 

Hippocampal slices, 400 µm-thick, were cut using the methods described in Chapter 

2.2.2.   

 

6.3.3 Preparation of cerebellar slices and aortic rings 

 

Sprague Dawley rat pups were culled and decapitated. The cerebella were removed 

from the brains and 400 µm-thick sagittal slices were cut using a McIlwain tissue 

chopper (Campden Instruments, Loughborough, UK). In one experiment, aortic rings 

were prepared by Prof. John Garthwaite (UCL, London, UK). The aorta was exposed 

and the perivascular connective tissue was removed. The thoracic portion was 

dissected out into ice-cold Krebs solution containing (in mM) 120 NaCl, 2 KCl, 26 

NaHCO3, 1.19 MgSO4, 1.18 KH2PO4, 11 D-glucose, 2 CaCl2, equilibrated with 95 % 

O2/ 5 % CO2 (pH 7.4). Any remaining blood was washed away and 2-3 mm-wide 

rings were cut using a razor blade. Tissues were then recovered in oxygenated Krebs 

solution at 37ºC for at least 1 hr. 
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6.3.4 Extracellular electrophysiological recordings at CA3-CA1 synapses 

 

Extracellular electrophysiological recordings were made at CA3-CA1 synapses using 

the methods detailed in Chapter 5.3.3. 

 

6.3.5 cGMP measurement 

 

Hippocampal slices were randomly assigned to flasks of oxygenated aCSF (30ºC) 

and cerebellar slices and aortic rings to flasks of oxygenated Krebs solution (37ºC), 

all held in a shaking water-bath. Neuronal NOS dependent-cGMP production was 

stimulated in brain slices by exposure to NMDA (100 µM, 2 min). ACh (10 µM, 1 

min exposure) was used to stimulate eNOS in aortic rings. In order that a significant 

accumulation of cGMP could be detected, hippocampal slices were pre-treated with 

the PDE 2 inhibitor, BAY 60-7550 (1 µM; 10 min pre-incubation) and aortic rings 

with the non-selective inhibitor, IBMX (1 mM; 20 min pre-incubation). PDE 

inhibition was not necessary to detect cGMP in cerebellar slices. Details of all other 

drugs applied are given in the text.  

 

Immediately after stimulation (within 30 s), tissues were individually inactivated by 

submersion in 200 µl boiling buffer containing 50 mM tris-HCl and 4 mM EDTA 

(pH 7.4). Cyclic GMP was measured by radioimmunoassay and protein using the 

BCA method (see Chapter 2.2.4-5 for methods). In every experiment, un-stimulated 

cGMP levels and the effect of the non-selective NOS inhibitor, L-NNA (100 µM, 

minimum 20 min pre-incubation) on the stimulated cGMP response were measured.  

 

6.3.6 Liquid chromatography-mass spectrometry 

 

Liquid chromatography-mass spectrometry was performed by Dr. Matthew Gooding 

(UCL, London, UK). Buffer for mass spectrometry contained formic acid, which 

added 1 proton to each sample compound. 
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6.3.7 Analysis and Statistics 

 

Analysis of LTP  

 

Values of LTP quoted in the text are means ± SEM 55-60 min post HFS. Statistical 

significance was assessed using two-tailed unpaired t-tests. 

 

Analysis of NOS activity assays 

 

Values in the text are means ± SEM. To assess statistical significance between data 

sets, two-tailed t-tests or one-factor ANOVA with Tukey-Kramer or Dunnett’s 

multiple comparisons test were used.  

 

6.4 Results 

 

6.4.1 Effect of L-VNIO on NMDA-induced cGMP accumulation in adult 

mouse hippocampal slices 

 

Hopper and Garthwaite (2006) determined that 0.1 µM L-VNIO and 1 µM 1400-W 

completely inhibit nNOS in adult rat hippocampal slices by measuring their effect on 

NMDA-induced cGMP accumulation. This is well-accepted to depend upon nNOS, 

since, in the hippocampus, Ca
2+

-dependent NO synthesis has been shown to be 

absent in nNOS-deficient mice (Huang et al., 1993). They also showed that LTP at 

CA1 synapses in adult mouse hippocampal slices was blocked after 15 min 

incubation with 0.1 µM L-VNIO. 

 

In adult mouse hippocampal slices, it was therefore expected that L-VNIO would 

inhibit a form of CA1 LTP that was NO-dependent but eNOS-independent (see 

Chapter 5 for details of the LTP). However, pre-incubation of slices for 15 min with 

0.1 µM of the compound had no effect on the potentiation (Figure 6.1A).  
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To control for the lack of effect of 0.1 µM L-VNIO on the LTP, its effect on NMDA-

induced cGMP accumulation was tested. In slices pre-incubated with the PDE2 

inhibitor, BAY-60 7550 (1 µM, 10 min), NMDA (100 µM, 2 min exposure) 

generated a significant accumulation of cGMP compared to the amount of cGMP 

measured in basal/un-stimulated slices. This response was abolished in slices pre-

treated with 100 µM L-NNA for 25 min, but unaffected by L-VNIO (Figure 6.1B).  

 

 

Figure 6.1 Effect of L-VNIO on NMDA-induced cGMP accumulation and nNOS-dependent LTP in 

adult mouse hippocampal slices. A) There was no significant effect of 0.1 µM L-VNIO on nNOS-

dependent LTP at CA1 synapses (unpaired t-test, p = 0.928). High frequency burst stimulation was 
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applied at the arrow. The insets represent the mean fEPSP recorded at the time indicated by the 

numbered bars. The stimulus artefacts have been truncated. B) In slices pre-treated with 10 µM BAY-

60 7550, NMDA (100 µM, 2 min exposure) induced a significant accumulation of cGMP from basal 

levels (p < 0.05). This was inhibited by pre-treatment with 100 µM L-NNA (p > 0.05 compared to 

basal cGMP) but not with 0.1 µM L-VNIO (p > 0.05 compared to NMDA-induced cGMP). Pre-

incubation times for BAY-60 7550, L-NNA and L-VNIO were 10, 25 and 15 min, respectively. 

Statistics are ANOVA with Tukey-Kramer. Numbers in bars are n values. 

 

One simple explanation for the lack of effect of L-VNIO on NMDA-induced cGMP 

accumulation and nNOS-dependent LTP was that the compound was not authentic. 

Therefore a sample was processed for liquid chromatography-mass spectrometry. As 

shown in Figure 6.2, the compound appeared to be undegraded and free of major 

impurities.   

  



Chapter 6: Evaluation of nNOS inhibitors using intact tissues 

 

223 

 

Figure 6.2 Chemical analysis of L-VNIO. A) Liquid-chromatography of L-VNIO yielded a single 

major peak in the chromatogram at ~ 45 s. Inset shows the structure and exact mass of L-VNIO. B) 

Analysis of this peak by mass spectrometry showed that the most abundant molecular ion present had 

a mass to charge ratio (blue) of 200.1, the predicted exact mass of L-VNIO (199.13) plus 1 proton. 

 

6.4.2 Effect of 1400-W on NMDA-induced cGMP accumulation in adult 

mouse hippocampal slices 

 

In light of the above results, the effect of 1400-W, the next most potent and selective 

nNOS inhibitor available, on NMDA-induced cGMP accumulation was tested. As 

shown in Figure 6.3, 1400-W applied at the same concentration and for the same 

duration as Hopper and Garthwaite (2006; 1 µM, 15 min pre-incubation), failed to 
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inhibit cGMP accumulation in response to NMDA (100 µM, 2 min exposure), 

although the response was blocked by 100 µM L-NNA.  

 

Figure 6.3 Effect of 1400-W on NMDA-induced cGMP accumulation in adult mouse hippocampal 

slices. In slices pre-treated with the PDE2 inhibitor, BAY 60-7550 (10 µM) for 10 min, NMDA (100 

µM, 2 min exposure) generated a significant accumulation of cGMP (p < 0.001 compared to basal 

cGMP). This was not effected by 1400-W (1 µM, 15 min pre-incubation; p > 0.05 compared to 

NMDA-induced cGMP), although it was abolished by L-NNA (100 µM, 25 min; p > 0,05 compared to 

basal cGMP). Statistics are ANOVA with Tukey-Kramer. Numbers in bars are n values. 

 

Using liquid chromatography-mass spectrometry, 1400-W was also found to be 

authentic, undegraded and free from major impurities (Figure 6.4). 
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Figure 6.4 Chemical analysis of 1400-W. A) Chemical structure of 1400-W as specified by the 

manufacturer. B) A single peak in the chromatogram was recorded. C) Using mass spectrometry it 

was found that this peak was largely composed of a compound with a mass to charge ratio (blue) 

equal to the  predicted exact mass of 1400-W, 177.12 (plus 1 proton donated by formic acid). 

 

6.4.3 Effect of gem-difluorinated, pyrrolidine-based compounds on cGMP 

accumulation in immature rat tissues 

 

The above results are contrary to previous reports that 0.1 µM L-VNIO and 1 µM 

1400-W block NMDA-induced cGMP accumulation in adult rat hippocampal slices 

(Hopper and Garthwaite, 2006). As discussed above, L-VNIO (0.1 µM) has also 

been reported to be ineffective in blocking NMDA-induced cGMP accumulation in 

immature (10 day-old) rat hippocampal slices (Bartus, 2009). A 10-fold higher 
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concentration (1 µM) was effective but also inhibited eNOS-dependent, ACh-

induced cGMP accumulation in immature rat aortic rings. Therefore, to address the 

lack of available potent and selective nNOS inhibitors which are effective across 

multiple tissues, two potentially highly potent and selective nNOS inhibitors (Xue et 

al., 2010a; Xue et al., 2010b) were obtained from Professor Richard B. Silverman 

(see FX-5043 and JK-5 in Table 6.1) and their efficacy in intact tissues was 

evaluated.  

 

First, their effect on nNOS-dependent, NMDA-induced cGMP accumulation was 

determined. To improve the sensitivity of the assay and negate the requirement for 

PDE inhibition, rat immature cerebellar slices were used, since they have been 

shown in the laboratory to produce significantly more cGMP in response to NMDA 

than hippocampal slices.  

 

In initial experiments, exposure to 100 µM NMDA for 2 min yielded 224 ± 21 pmol 

cGMP/mg protein (n = 9). This response was inhibited by L-NNA (100 µM, 25 min 

pre-incubation) and by FX-5043 or JK-5 (with 20 min pre-incubation) in a 

concentration-dependent manner (IC50 values were ~ 30 µM; Figure 6.5A). 

Subsequently, it was found that inhibition by 30 µM FX-5043 increased 

exponentially with pre-incubation time (Figure 6.5B; note log scale), concordant 

with the idea that short pre-incubations are insufficient to allow for complete tissue 

penetration.  
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Figure 6.5 Characterisation of the putative nNOS inhibitors, FX-5043 and JK-5, using immature rat 

cerebellar slices. A) Exposure of slices to 100 µM NMDA for 2 min generated a significant increase 

in cGMP (ANOVA with Tukey-Kramer, p < 0.001 compared to basal cGMP) which was inhibited by 

L-NNA (100 µM pre-incubated for 25 min; p > 0.05 compared to basal cGMP) and by FX-5043 or 

JK-5 in a concentration-dependent manner (*p < 0.05, ** p < 0.01 compared to cGMP in slices 

treated with NMDA alone; ANOVA with Dunnett’s test).  B) Inhibition by 30 µM FX-5043 was 

improved with longer pre-incubation (note log scale). Numbers in bars are n values. 
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Following pre-incubation with 100 µM FX-5043 or JK-5 for 90 min, NMDA-

induced cGMP accumulation was blocked. Treatment with the vehicle (DMSO) 

alone had no effect (Figure 6.6).  

Figure 6.6 Effect of 100 µM FX-5043 and JK-5, pre-incubated for 90 min, on NMDA-induced cGMP 

accumulation in rat cerebellar slices. NMDA-induced cGMP accumulation was reduced to basal 

levels by FX-5043, JK-5 and L-NNA (all 100 µM, 90 min pre-incubation; ANOVA with Tukey-

Kramer, p > 0.05 compared to basal). DMSO itself had no effect (p > 0.05 compared to cGMP in 

slices treated with NMDA alone). Numbers in bars are n values. 
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eNOS-dependent, ACh-induced cGMP accumulation in aortic rings. The same 

animals and conditions as in Figure 6.6 were used. Rings were pre-treated with the 

non-selective PDE inhibitor, IBMX (1 mM), for 20 min. ACh (10 µM for 1 min) 

generated a significant increase in cGMP from basal levels. This was reduced to 
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Basal DMSO FX-5043 JK-5 L-NNA

0

50

100

150

200

250

300

44

4

3

3

M
e

a
n

 c
G

M
P

 (
p

m
o

l/
m

g
 p

ro
te

in
)

NMDA

3



Chapter 6: Evaluation of nNOS inhibitors using intact tissues 

 

229 

 

Figure 6.7 Effect of 100 µM FX-5043 and JK-5, pre-incubated for 90 min, on ACh-induced cGMP 

accumulation in rat aortic rings.  Aortic rings were pre-treated with 1 mM IBMX for 20 min. Animals 

and conditions were the same as Figure 6.6.  ACh-induced significant cGMP accumulation from 

basal levels (ANOVA with Tukey-Kramer, p < 0.001). This was reduced to basal levels by FX-5043, 

JK-5 and L-NNA (all 100 µM, 90 min pre-incubation; p > 0.05 compared to basal/un-stimulated 

levels). DMSO alone had no effect (p > 0.05 compared to cGMP in rings treated with ACh alone).  

 

6.5 Discussion 

 

Since the initial characterisation of the effect of L-VNIO and 1400-W on NMDA-

induced cGMP accumulation and CA1 LTP in adult rat and mouse hippocampus, 

respectively (Hopper and Garthwaite, 2006), L-VNIO and 1400-W have been widely 

used at standard concentrations (0.1 µM and 1 µM, respectively) to affect selective 

nNOS inhibition in various tissues (for example, Hall and Attwell, 2008; Taqatqeh et 

al., 2009; Romberg et al., 2009; Neitz et al., 2011). In one case, NO-dependent 

synaptic plasticity at CA1 synapses in adult mouse hippocampal slices that was 

insensitive to 0.1 µM L-VNIO was assumed to be nNOS-independent (Neitz et al., 
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(0.1 µM) nor 1400-W (1 µM) are at all effective in inhibiting NMDA-induced cGMP 

accumulation in adult mouse hippocampal slices (Figure 6.1 and 6.3).  

 

There could be several reasons for the discrepancy between our findings and those of 

Hopper and Garthwaite (2006). Given that L-VNIO and 1400-W are competitive for 

binding to nNOS with L-arginine (Garvey et al., 1997; Babu and Griffith, 1998), one 

explanation could be that the concentration of the amino acid varies between 

different tissues and tissue preparations. This is conceivable since L-arginine, which 

can be as concentrated as 80 µM in the cerebrospinal fluid of 8-week old rats 

(Takasugi et al., 2003), is not normally included in solutions used to incubate tissues 

in vitro. Other reasons are likely to be related to the bioavailability of the compounds 

or their affinity for NOS in different tissues from different species. Factors 

underlying differences in bioavailability could include tissue and cell permeability, 

metabolism and transport of compounds. Differences in the compounds’ affinity for 

NOS could arise, for example, through phosphorylation of the enzyme.  The only 

clear methodological difference between the experiments performed by us and 

Hopper and Garthwaite (2006) to measure the effect of L-VNIO and 1400-W on 

NMDA-induced cGMP accumulation is the PDE 2 inhibitor used (BAY 60-7550 vs. 

EHNA). Experiments are planned to test whether these factors may account for the 

differences in potency of the inhibitors. 

 

Regardless of the explanation, L-VNIO and 1400-W are clearly not ideal nNOS 

inhibitors and should not be used to determine the role of nNOS in biological 

phenomena without the appropriate tissue-specific controls for their potency. In light 

of the above results, published data on the effect of L-VNIO and 1400-W on 

biological phenomena should perhaps be re-interpreted and in future, the ‘inhibitors’ 

should be used cautiously, if at all. 

 

The selectivity of other established nNOS inhibitors is also in doubt. For example, at 

the isolated enzyme level, the compound, N-propyl-L-arginine (NPA), reportedly 

displays high selectivity for nNOS over iNOS (3158-fold difference) and eNOS 

(149-fold difference) (Zhang et al., 1997), but this has not been confirmed in vivo 

(Gowda et al., 2004). 7-nitroindazole (7-NI) is also widely used as a selective nNOS 
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inhibitor in vitro and in vivo, although it has been reported to be completely non-

selective at the isolated enzyme level (Alderton et al., 2001). Its apparent selectivity 

in intact tissues could be explained if it accumulates preferentially in neurons rather 

than endothelial cells. Nevertheless, selective nNOS inhibition should ideally be 

achieved by the differential action of compounds on NOS isozymes, rather than 

through differences in compound bioavailability.   

 

To address the lack of potent and selective nNOS inhibitors effective across multiple 

tissue preparations, we sought to evaluate two, new, gem-difluorinated, pyrrolidine-

based compounds (FX-5043 and JK-5). As discussed above, FX-5043 has been 

shown to potently inhibit nNOS with unrivalled selectivity over both e- and iNOS in 

isolated enzyme and cell-based assays (Xue et al., 2010a). However, under the 

conditions necessary to effect complete inhibition of nNOS-dependent, NMDA-

induced cGMP accumulation in adult rat cerebellar slices (100 µM, 90 min pre-

incubation), we found that FX-5043 and JK-5 blocked eNOS-dependent, ACh-

induced cGMP accumulation in adult rat aortic rings (Figure 6.6 and 6.7).   

 

One possible explanation for the apparent lack of selectivity for nNOS over eNOS in 

intact tissues was that they also inhibit NO-targeted guanylyl cyclase. This could 

have explained why FX-5043 was observed to selectively inhibit nNOS over eNOS 

and iNOS using a cell-based assay, because this assay relied upon the measurement 

of the accumulation of nitrite, a metabolite of NO, in the medium (Fang and 

Silverman, 2009). However, tests of this possibility have since shown that the 

compounds have no significant effect on DEA/NONOate-induced cGMP production 

by purified bovine NO-targeted guanylyl cyclase (Prof. John Garthwaite, 

unpublished work).  

 

Another reason for the apparent lack of selectivity of the compounds in intact tissues 

could be that they preferentially accumulate in endothelial cells over neurons to the 

extent that, at the concentration necessary to affect nNOS inhibition, the 

concentration in endothelial cells is so high that it inhibits eNOS. Given the reported 

Ki values of the compound (Xue et al., 2010a), the difference in concentration 

between endothelial and neuronal cells would probably have to be ~ an order of 
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magnitude. Also, it cannot be ruled out that the compounds have some other, perhaps 

toxic, secondary effect on intact tissues, leading to a decrease in cGMP production.  

 

Irrespective of the explanation, the main conclusion to be drawn from the data is that, 

while FX-5043 and JK-5 might be useful for selectively inhibiting nNOS at the level 

of the isolated enzyme or cell-based assay, their application to intact tissues is not 

appropriate. Since both compounds had a relatively high IC50 in cerebellar slices (~ 

30 µM following 20 min pre-incubation; Figure 6.5A), require long pre-incubation 

times to be effective, likely due to poor tissue penetration, and may  have unknown 

secondary effects, they should also not be used as non-selective NOS inhibitors over 

L-arginine-based compounds such as L-NNA, which have IC50 values in the low 

micromolar range (see above for details), are actively transported into cells and have 

no known secondary effects in tissues (Alderton et al., 2001).   

 

Recently a symmetric, double headed aminopyridine has been developed that shows 

lower potency and selectivity for nNOS but increased cell permeability compared to 

the gem-difluorinated compounds used here (Xue et al., 2011). This, as well as the 

above data, could be useful in directing the development of more compounds with 

high potency and selectivity for nNOS in its native state. Meanwhile, the results of 

studies using ‘selective’ nNOS inhibitors currently widely available should be 

interpreted with caution. 
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7.1 Introduction 

 

As discussed previously (see Chapter 1), functional evidence has implicated 

NO/cGMP signalling to be active in multiple brain regions in several species in 

which it may contribute to the generation of diverse phenomena (Garthwaite, 2008). 

Accordingly, studies employing in situ hybridisation and immunohistochemistry 

have suggested the presence of NOS and NO-targeted guanylyl cyclase throughout 

the developing and mature rodent brain, albeit at varying levels in different regions 

(nNOS; Vincent and Kimura, 1992; Rodrigo et al., 1994; eNOS ; Seidel et al., 1997 ; 

Stanarius et al., 1997; Topel et al., 1998; Demas et al., 1999; NO-targeted guanylyl 

cyclase; Matsuoka et al., 1992; Gibb and Garthwaite, 2001; Ding et al., 2004). 

Moreover, NADPH diaphorase histochemistry for NOS in rat brain has shown a 

remarkably coincident distribution with structures immunopositive for cGMP 

following in vivo perfusion of the NO donor, sodium nitroprusside (Southam and 

Garthwaite, 1993), consistent with functional evidence that guanylyl cyclase is the 

primary target of endogenous NO.  

 

In the hippocampus, functional studies suggest that eNOS, nNOS and all three 

functionally relevant guanylyl cyclase subunits, α1, α2 and β1, are present in area 

CA1 (Chapters 3-6; Hopper and Garthwaite, 2006; Taqatqeh et al., 2009). This has 

largely been corroborated by histological data (see Chapter 1); however, the precise 

location of the guanylyl cyclase α1 subunit has recently come under question.  

  

Studies employing NO-targeted guanylyl cyclase α1- and α2- lacking mice 

(NOGCα1
-/-

and NOGCα2
-/-

, respectively) have shown that both the α1β1 and α2β1 

isoforms are necessary for LTP in the visual cortex (Haghikia et al., 2007) and 

hippocampus (Taqatqeh et al., 2009). In the hippocampus, Taqatqeh et al. (2009) 

report that under basal conditions, and following LTP, PPF at CA1 synapses in 

NOGCα1
-/-

 mice is increased compared to wild-type mice and recently, evidence in 

favour of α1-dependent tonic modulation of transmitter release at CA1 synapses has 

been extended (Neitz et al. 2011 and Chapter 4). The results of these studies 

consistently imply that the α1β1 isoform is located presynaptically and is responsible 

for transducing NO-dependent changes in transmitter release onto CA1 neurons.  
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Conversely, knocking-out the α2 subunit appears to have no effect on PPF or other 

measures of presynaptic transmitter release, such as miniature EPSC frequency 

(Taqatqeh et al., 2009; Neitz et al., 2011). One interpretation of this is that the α2β1 

isoform is postsynaptic.  

 

Changes in PPF at CA1 synapses following plasticity are typically interpreted as a 

result of changes in presynaptic transmitter release occurring directly at Schaffer-

collateral axon terminals. Much research has been directed to understanding these 

presynaptic forms of LTP and the involvement of NO in them (Arancio et al., 1995; 

Arancio et al., 1996; Arancio et al., 2001). However, there is no unambiguous 

evidence that the α1 subunit is present at CA3-CA1 synapses. In a report by Gibb 

and Garthwaite (2001), low magnification images of hippocampus labelled for α1 

mRNA showed message for the subunit to be located in the stratum radiatum, but it 

was unclear whether the subunit was in pyramidal neurons or interneurons. Rather, a 

key study using in situ hybridization and immunohistochemistry in conjunction with 

electron microscopy showed that α2 (which was co-localised with β1) was expressed 

only in pyramidal cells and α1 (also co-localised with β1) only in interneurons. These 

interneurons, the majority of which were parvalbumin- or cholecystokinin-positive 

and therefore probably basket cells, formed synapses on CA1 pyramidal cell soma, 

dendrites and axon initial segments. Neuronal NOS was found to be localised to the 

PSD of these synapses, suggesting that GABAergic inputs to CA1 pyramidal neurons 

may be retrogradely modulated by NO-targeted α1β1 guanylyl cyclase activity 

(Szabadits et al., 2007). This distribution of NOS and α1β1 has since been confirmed 

in the developing hippocampus (Cserep et al., 2011). 

 

Taken together, the studies discussed above suggest that NO regulates transmitter 

release at the GABAergic, rather than glutamatergic, inputs to CA1 pyramidal 

neurons. Consistent with this, NO has been shown to modulate GABAergic 

transmission in several brain areas (for a review see Garthwaite, 2008). In the ventral 

tegmental area, for example, NO produced by dopaminergic neurons upon NMDA 

receptor activation has been found to retrogradely modulate GABA release from 

nearby inhibitory axon terminals, resulting in a heterosynaptic long-term potentiation 

of GABAA-mediated synaptic transmission (Nugent et al., 2007). In the 
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hippocampus, NO may act in conjunction with endocannabinoids as a retrograde 

messenger to depress GABAergic IPSCs (Makara et al., 2007). Depression of 

GABAergic transmission in area CA1 by NO via the NO-targeted α1β1 guanylyl 

cyclase isoform has also recently been reported to occur in slices from young (p5-p8) 

mice (Cserep et al., 2011). However, the notion that apparent changes in transmitter 

release following LTP may be due to the effect of NO at GABAergic rather than 

glutamatergic synapses is at odds with findings that NO, produced postsynaptically 

may, through cGMP and PKG, induce a presynaptic LTP characterised by an 

increase in transmitter release between pairs of pyramidal neurons (identified by 

electrophysiological properties) in dissociated cell culture (Arancio et al., 1995; 

Arancio et al., 1996; Arancio et al., 2001). 

 

7.2 Aim 

 

The pattern of α1 expression reported by Szabadits et al. (2007) was consistent 

following immunofluorescent, immunoperoxidase and in situ hybridization 

techniques in tissue fixed with 4 % PFA and accorded with immunostaining for α1 in 

sections of immature hippocampus, also fixed with 4 % PFA (Cserep et al., 2011). 

However, it is known that the distribution of proteins as determined by histochemical 

methods can be significantly altered by the conditions under which the tissues are 

processed. Several groups have reported immunostaining for nNOS and the guanylyl 

cyclase β1 subunit in pyramidal neurons in hippocampus fixed with 1 % PFA but not  

≥ 4 % PFA (Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; Burette et al., 

2002). It has been hypothesised that aldehyde cross-linking of proteins following 

strong fixation protocols may mask antibody epitopes and/or reduce the access of the 

antibody to its target protein. The latter circumstance may be particularly common 

when target proteins are located in PSD’s or presynaptic varicosities. Therefore, we 

sought to re-investigate the distribution of α1 in the hippocampus, using weakly 

fixed tissue (1 % PFA). The aim was to either confirm the work of Szabadits et al. 

(2007), or to uncover new structures, perhaps pyramidal neurons, immunopositive 

for the NO-targeted guanylyl cyclase α1 subunit.  
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7.3 Methods 

 

7.3.1 Animals 

 

Unless otherwise stated, adult (8 week-old), male, C57/Bl6 mice were used. For 

some experiments, adult (2 8-9 week-old, 1 19 week-old), male, C57/Bl6/SV129 

mice lacking the NO-receptor guanylyl cyclase α1 subunit (NOGCα1
-/-

) were used. 

These were kindly provided by Dr Adrian Hobbs (UCL, London, UK). Male 8-9 

week old wild-type siblings were used as controls. Rat brain lysate was prepared 

from an 8 day-old, male Sprague Dawley pup. All work was conducted in 

accordance with British Home Office regulations on laboratory animal use and 

welfare. 

 

7.3.2 General Solutions 

 

Phosphate buffer (PB; 0.2 M) was composed of 19 % 0.2 M NaH2PO4.2H2O and 81 

% 0.2 M Na2HPO4.2H2O in double-distilled H2O adjusted to pH 7.4. 

 

Tris-buffered saline (TBS) comprised 48.4 mM trisma base and 150.2 mM NaCl in 

double-distilled H2O equilibrated to pH 7.6 with concentrated HCl. 

 

TBS-triton (TBS-T) additionally included 0.1 % triton X-100. 

 

TBS-tween comprised TBS plus 0.05 % tween 20. 

 

Tissue-lysis buffer consisted of 60 mM tris-HCl (pH 6.8), 1 % SDS, 1 % tween 20 

and 1 x Halt protease inhibitor cocktail in double-distilled H2O. 
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7.3.3 Immunohistochemistry 

 

Preparation of transverse hippocampal sections 

 

Mice were euthanized by cervical dislocation and decapitated. The hippocampi were 

either left in the brain during fixing and sectioning, or swiftly dissected out and 

sliced as described in Chapter 2: General materials and methods. In the former 

case, the brains were removed from the skulls and submerged in freshly prepared, 

ice-cold 1 % PFA prepared in 0.1 M PB and adjusted to pH 7.4. The anterior and 

posterior ends of the brains were cut (leaving the middle of the hippocampi intact) 

using a razor blade and the hemispheres were separated and fixed for 2 hr in 1 or 4 % 

PFA on a rocker at 4 ºC. In the latter case, slices were left to recover in oxygenated 

aCSF for 1 hr before being fixed for 1 hr using 1 % PFA on a rocker at room 

temperature. Just prior to fixing of tissue from NOGCα1
-/-

 and wild-type mice, the 

cerebellum was removed for Western blot analysis (see below for methods). 

 

After fixing, tissues were washed with 0.1 M PB (4 times, 5 min) and cryoprotected 

with sucrose in 0.1 M PB (5 % sucrose for 4 h, then 20 % overnight, then 30 % for 4 

hr and finally 50:50 30 % sucrose: OCT for 2 hr, all at 4 ºC). They were then washed 

and embedded in OCT and swiftly frozen on dry ice made extra cold with 

isopentane. Tissue was stored at -80 ºC prior to sectioning. 

 

For sectioning, the embedded tissue was mounted on a cutting chuck using OCT. 10 

μm transverse hippocampal sections were made on 0.05 % chrome alum/ 0.5 % 

gelatine-coated slides using a cryostat (Model OTF, Bright Instruments Co Ltd., 

UK). During this process, some slides were stained with toluidine blue in order that 

the hippocampus proper could be visualised and the cutting plane adjusted as 

necessary. 1 % toluidine blue was prepared as a stock solution in 1 % borate. Before 

use, this was diluted 1/10 in tap H2O and filtered. Slides were dried over a flame, 

washed with filtered toluidine blue for approximately 30 s, rinsed with tap H2O, 

dried and mounted in di-N-butyle phthalate in xylene (DPX).   

 

Slides were stored at -20 ºC prior to immunohistochemistry.  
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Immunoperoxidase staining 

 

The sections were rehydrated by washing with ice-cold TBS-T twice for 5 min and 

incubated for 15 min with a peroxidase suppressor obtained in a methanol solution, 

thereby reducing the probability of false positive staining due to endogenous 

peroxidase activity. After washing twice with cold TBS-T for 3 min, the tissue was 

incubated with 20 % filtered donkey serum (in TBS-T) for at least 1 hr and then with 

the primary antibody (see Table 7.1) in 1 % donkey serum in TBS-T overnight in a 

humid environment at 4 ºC. Controls for the selectivity of secondary antibody 

binding were included in each experiment. These sections were from the same 

animal as experimental sections and were fixed and cut at the same time. They 

received 1 % donkey serum in the absence of primary antibody. 

 

Primary antibodies 

Antigen Host Concentration 

used 

Catalogue number and/or 

supplier 

Guanylyl cyclase 

α1 subunit  

Rabbit 1:400 G4280; Sigma 

Guanylyl cyclase 

β1 subunit 

 

Rabbit 1:250  CAY-160897-1; Axxora (UK) Ltd. 

(Cayman Chemical) 

Rabbit 1:600 Prof. Soenke Behrends (see van 

Staveren et al. 2002) 

nNOS Rabbit 1:700 61-7000; Invitrogen (Zymed) 

Biotinylated secondary antibody 

Antigen Host  Concentration 

used 

Catalogue number and/or 

source 

Rabbit Donkey 1:200  AP182B; Chemicon 

 

Table 7.1 Antibodies used for immunoperoxidase staining, their concentration and supplier. Note that 

the α1 primary antibody is the same as was used by Szabadits et al. (2007). 

 

The next day, the sections were washed twice for 10 min with cold TBS-T and once 

with TBS, also 10 min. A donkey anti-rabbit biotinylated secondary antibody (see 

Table 7.1) was then applied at 1:200 TBS for 1h at room temperature in a humid 
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environment. Slides were then washed (3 times for 10 min in ice-cold TBS), 

incubated with Vectastain avidin biotin complex for 45 min at room temperature, 

stained for 4 min with 0.05% 3,3'-diaminobenzidine in TBS and then counterstained 

with Mayer’s haemalum solution. Mayer’s haemalum was applied for 2-10 s and the 

slides were then rinsed in tap H2O for 25-30 s. After washing slides in double-

distilled H2O, they were left to dry overnight and then mounted in DPX. Slides were 

photographed using an upright microscope (Leitz, UK) fitted with a digital camera 

(Q-imaging, Canada). 

 

Analysis 

 

Experimental and control sections were photographed under the same conditions. 

Images were adjusted for brightness and contrast using Adobe Photoshop (Adobe, 

USA)/ Microsoft PowerPoint (Microsoft, USA).  

 

All images are representative of at least two sections from at least two animals. 

Images of NOGC
α1-/-

 tissue are representative of sections from three animals. All 

NOGC
α1-/-

 mice were genotyped by Richard Burt (UCL). Additionally, we confirmed 

the phenotype of the NOGC
α1-/-

 mouse from which the sections imaged in this report 

were taken using Western blot analysis (see below). 

 

7.3.4 Western Blotting 

 

Tissue homogenisation and protein preparation 

 

Animals were culled by cervical dislocation and decapitation. The head was 

immediately submerged in ice-cold PBS to cool the brain and remove excess blood. 

The brain was quickly removed to an ice-cold surface upon which the cerebellum 

was isolated and the hemispheres separated from each other. Each portion was 

transferred to a separate mortar containing 2 ml ice-cold tissue-lysis buffer. Tissue 

was smoothed using a glass pestle and the homogenate removed to tubes on ice. To 

further prevent protein degradation by proteases, the homogenates were heated for 10 

min at 70 °C. They were then sheared using a 27 G needle to remove any outstanding 
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solid tissue and centrifuged for 10 min at 13,000 rpm (5 °C). The resulting 

supernatant, containing solubilised proteins, was removed and the pellet was 

discarded. Finally, the protein concentrations of the supernatants were measured 

using the BCA method, as described in Chapter 2: General materials and 

methods. 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) 

 

For SDS PAGE, 50 μg of sample protein was loaded per lane. Samples were brought 

to the same volume using tissue-lysis buffer (minus protease inhibitors). Then gel 

loading buffer, comprising 416 mM SDS, ~ 0.9 mM bromophenol blue, 778 mM 

dithiothreitol, 3 % 2 M tris (pH 6.8) and 47 % glycerol prepared in double-distilled 

H2O, was added 1 in 3 to give a final volume of 13.3 µl.  

 

SDS PAGE was run for 35 min at 200 V. A Mini-PROTEAN 3 Cell and 4-15 % 

Ready Gel (both Bio-Rad Laboratories, Hertfordshire, UK) were used. Running 

buffer contained (in mM): 25 tris; 192 glycine and 3.5 SDS. All 13.3 μl of sample 

were loaded per lane and one lane per gel contained 5 μl New England BioLabs 

ColourPlus prestained protein ladder.   

 

Gel to membrane protein transfer 

 

Following SDS PAGE, the gel was equilibrated for 30 min in transfer buffer 

additionally containing 0.2 % triton X-100. Transfer buffer comprised, in mM: 25 

trisma base; 192 glycine; 3.5 SDS and 2.5 % methanol. Immediately before use, a 

polyvinylidene fluoride membrane was submerged in methanol for 30 s, rinsed with 

double-distilled H2O and soaked in transfer buffer. A submerged transfer method 

was implemented at 0.38 A constant for 2 hr at 4 °C using the Amersham Bioscience 

(GE Healthcare Life Sciences, Buckinghamshire, UK) TE 22 Mighty Small Tank 

Transfer Unit.  
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Membrane probing 

 

After transfer, the membrane was rinsed in double-distilled H2O, then TBS and 

submerged in blocking buffer containing 3 % skimmed milk, 0.2 % tween 20, 0.5 % 

polyvinylpyrrolidone, and 1.5 % sodium azide in TBS. After 1 hr the membrane was 

washed for 5 min with TBS and the primary antibodies (see Table 7.2), diluted 1:500 

in 50 % blocking buffer in TBS, were applied for 1 hr. The membrane was then 

washed 3 times for 5 min in TBS-tween, once for 5 min in TBS and submerged in an 

appropriate horseradish peroxidase-conjugated secondary antibody (Table 7.2) 

diluted in 50 % blocking buffer in TBS. After 1 hr, the membrane was washed 3 

times in TBS-tween and once in TBS (all 5 min) and then blotted to remove excess 

solution. All treatments/washes were performed at room temperature on a shaking 

platform. 

 

Antibody binding was visualised using the Thermo Scientific SuperSignal West Pico 

Chemiluminescent Substrate system. Luminol/enhancer solution and peroxide 

solution were mixed in equal measures and applied to the membrane for 5 min at 

room temperature on a shaker. The membrane was then blotted and covered in a 

plastic film. Luminescence was developed after exposure to High Performance 

Chemiluminescence Film for 5-20 min.  

 

In order to control for protein loading, some membranes were stripped of guanylyl 

cyclase antibodies and probed for actin. Membranes were stored at room 

temperature. As necessary, they were re-hydrated in methanol, washed in double-

distilled H2O once for 2 min and then in TBS for 5 min. Thermo Scientific Restore 

Western Blot Stripping Buffer was applied for 10 min and membranes were rinsed 

for 5 min with TBS. The primary and secondary actin antibodies (see Table 7.2) 

were then applied following the method detailed above. Due to high background 

staining, the membranes were then washed copiously in TBS-tween (4 x 5 min; 5 x 

15 min at room temperature). Antibody binding was exposed as above except that the 

membrane was exposed to the photographic film for 5-30 s. 
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Primary antibodies 

Antigen Host Concentration 

used 

Catalogue number and/or 

supplier 

Guanylyl cyclase 

α1 subunit  

Rabbit 1:500 G4280; Sigma 

Actin 1-19 Goat 1:500 SC-1616; Santa Cruz Biotechnology 

Horseradish peroxidase-conjugated secondary antibodies 

Antigen Host Concentration 

used 

Catalogue number and/or 

source 

Rabbit Goat 1:15000  31460; Perbio 

Goat Donkey 1:20000 SC-2020; Santa Cruz Biotechnology 

 

Table 7.2 Summary of antibodies used for Western blotting, their concentration and supplier. 

 

Analysis 

 

Films were scanned using a CanoScan LiDE (Canon UK Ltd., Surrey, UK). The 

presence/absence of bands was confirmed by calculating the average grey value 

across each row of pixels in each vertical lane, normalised to average grey values 

recorded outside a lane (background) using ImageJ (National Institutes of Health, 

USA). The area under each peak in grey values is indicative of total protein content.  

 

Following grey value analysis, some blots were altered for brightness/contrast using 

Microsoft PowerPoint (Microsoft, USA). Blots within each figure were adjusted 

equally. 
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7.4 Results 

 

7.4.1 Location of the NO-targeted guanylyl cyclase α1 subunit in adult 

mouse hippocampus 

 

Evaluation using tissue fixed with 4 % PFA 

 

Before testing the hypothesis that immunostaining of weakly fixed (1 % PFA) 

hippocampal sections would reveal the NO-targeted guanylyl cyclase α1 subunit to 

be present in pyramidal neurons, the distribution of the protein was evaluated by 

immunoperoxidase staining of sections fixed using 4 % PFA. After 

immunofluorescence and immunoperoxidase staining of hippocampus fixed with 4 % 

PFA using the same α1 primary antibody as employed in this study, Szabadits et al. 

(2007) found that only interneurons were immunopositive for α1. In accordance with 

this result, we found that cells outside the stratum pyramidale, presumably 

interneurons and/or glia, were most intensely stained (Figure 7.1 C, E). However, in 

the stratum pyramidale, cell soma and fibres resembling apical dendrites of 

pyramidal neurons were faintly immunopositive (Figure 7.1 D, E, and F). Although 

interneurons are found throughout this layer, the morphology and number of 

immunopositive cell soma favoured their classification as pyramidal neurons. 

 

The neuropil in every strata was also densely stained compared to that in control 

sections not treated with the primary antibody (Figure 7.1 A, B), indicating that a 

wealth of α1-containing fibres run through or terminate in the hippocampus. 

Particularly prominent were fibres running throughout the stratum polymorph of the 

dentate gyrus and the stratum lucidum (Figure 7.1 A, F). Given their position, it is 

likely that these were mossy fibres (labelled mf in Figure 7.1 A, F; Amaral and 

Witter, 1989) which, interestingly, have also been reported to be strongly 

immunoreactive for cGMP hydrolysing-PDE 2 (Stephenson et al., 2009) and subject 

to NO-dependent LTP at synapses with CA3 neurons (Doreulee et al., 2001; 

although see Nicolarakis et al., 1994).  As shown in Figure 7.1 B and G no non-

selective secondary antibody binding was observed. 
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Figure 7.1 Immunoperoxidase staining for the NO-targeted guanylyl cyclase α1 subunit in transverse 

hippocampal sections fixed with 4 % PFA. A) The hippocampus major. Two juxtaposed images. B) 

Control for secondary antibody binding in A.  mf = possible mossy fibres. C-F) Higher magnification 

images of a second section stained for α1 showing an area of the stratum oriens (so; C), stratum 

pyramidale (sp; D) and stratum radiatum (sp; E) of CA1, and an area of CA3/stratum lucidum (F). G) 

Control for secondary antibody binding in C-F. Unfilled arrows (D, E) indicate possible apical 
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dendrites of pyramidal neurons. Control sections were not treated with the primary antibody. Scale 

bar in A: 500 µm, A-B; bar in C: 100 µm, C-G. Filled arrows (C, E) indicate interneurons.  

 

Evaluation using tissue fixed with 1 % PFA 

 

In accordance with the distribution of staining observed in Figure 7.1, cells scattered 

outside the stratum pyramidale and fibres running throughout the dentate gyrus and 

stratum lucidum were strongly stained after identical treatment with tissue fixed with 

1 % PFA (Figure 7.2 A, C). Unlike the staining observed in tissues fixed with 4 % 

PFA, however, and in favour with the hypothesis that pyramidal neurons express α1, 

cell soma and proximal apical dendrites in stratum pyramidale throughout Ammon’s 

horn were very strongly immunopositive (Figure 7.2 C). Whether the rest of the 

dendritic arbour was also immunopositive, as is suggested by functional evidence 

implicating the α1β1 guanylyl cyclase in synaptic plasticity (Taqatqeh et al., 2009; 

Neitz et al., 2011), was unclear because the dendrites of pyramidal neurons become 

rapidly thinner as they deviate from the apical fibre (Routh et al., 2009), and using 

light microscopy, are usually indistinguishable from the rest of the neuropil.  

 

Blood vessels throughout the hippocampus and subiculum were also immunopositive 

(Figure 7.2 A, C). This was not observed following staining of tissue fixed with 4 % 

PFA, but was consistent with functional evidence implicating NO-targeted guanylyl 

cyclase α1β1 heterodimers in smooth muscle relaxation and vasodilation (Mergia et 

al., 2006; Nimmegeers et al., 2007). Moreover, some immunohistochemical data 

collected using a α1β1 antibody also shows guanylyl cyclase to be present in 

endothelial, as well as smooth muscle cells surrounding blood vessels (Zhan et al., 

1999; Jarry et al., 2003). 

 

Some scattered cells, for example, in the stratum radiatum in Figure 7.2 C were 

immunonegative. Some non-selective staining was observed in the fimbrium and 

alveus surrounding the hippocampus and, to a lesser extent, in the lacunosum 

moleculare, (Figure 7.2 B).  
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Figure 7.2 Immunoperoxidase staining for the NO-targeted guanylyl cyclase α1 subunit in transverse 

hippocampal sections fixed with 1 % PFA. A) The hippocampus major. Two juxtaposed images. bv = 

blood vessel; mf = possible mossy fibres. Inset box approximates location of image shown in C. B) 

Control for secondary antibody binding in A. Filled arrows (A-B) indicate non-selective staining. C) 

Higher magnification of area labelled C shown in A. Note the blood vessel (bv) in bottom left corner. 

Unfilled arrows indicate immunonegative cells in the stratum radiatum (sr). so = stratum oriens; sp = 

stratum pyramidale. D) Higher magnification of an area of CA1 in the section shown in B. Scale bar 

in A = 500, A-B; bar in C = 100 µm, C-D. 

 

Although in the hippocampus and other brain areas, such as the molecular layer of 

the cerebellum, neuropil is not well preserved following 1 % PFA fixation, staining 

of a section of the same tissue as shown in Figure 7.2 with toluidine blue indicated 

that the cells were healthy at the time of fixing and apical dendrites of pyramidal 

neurons were intact (Figure 7.3).  
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Figure 7.3 Toluidine blue staining of a section of the same tissue as shown in Figure 7.2. A) CA3. B) 

CA1. sl = stratum lucidum; so = stratum oriens; sp = stratum pyramidale; sr = stratum radiatum. 

Scale bar in A: 100 µm, A-B. 

 

7.4.2 Location of the NO-targeted guanylyl cyclase β1 subunit and nNOS 

in adult mouse hippocampus 

 

In favour of the hypothesis that pyramidal cells express α1, Figure 7.2 shows for the 

first time that, in tissues fixed with 1 % PFA, hippocampal pyramidal neurons can be 

immunostained for the NO-targeted guanylyl cyclase α1 subunit using standard 

methods.  

 

In immature granule cells of the developing cerebellum, mRNA for the NO-targeted 

α2 subunit has been reported to be expressed without the β1 subunit (Gibb and 

Garthwaite, 2001). Intense signals for β1 subunit mRNA have also been detected in 

brain areas apparently with relatively little or no mRNA for either of the α subunits 

(Mergia et al., 2003; Krumenacker et al., 2006; Pifarre et al., 2007). Since 

heterodimerisation of subunits is required for guanylyl cyclase catalytic activity, 

these data, if correct, suggest that individual NO-targeted guanylyl cyclase subunits 

may function in ways other than to transduce NO signals via cGMP.  
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Therefore, to determine the possible functional significance of our findings and their 

relevance to the role of α1 in NO/cGMP-mediated synaptic plasticity, we sought to 

investigate whether the structures found to express α1 in this study were 

immunopositive for β1 under the same conditions. To assess the consistency of 

staining, two different primary antibodies raised against β1 were used (see Table 7.1 

for details).  

 

Figure 7.4 shows immunoperoxidase staining for β1 in a section of tissue fixed with 

4 % PFA using an antibody kindly provided by Prof. Soenke Behrends (antibody 

described in Behrends et al., 2001; van Staveren et al., 2004). All structures shown to 

be immunopositive for α1 in tissue fixed with 1 % PFA (Figure 7.2), including 

pyramidal neurons throughout Ammon’s horn, cells scattered outside of the stratum 

pyramidale, potential mossy fibres and blood vessels, were immunopositive for β1 

(Figure 7.4 A-E). Staining of pyramidal cells in area CA1 (Figure 7.4 A, C) was in 

accordance with published results using this antibody (van Staveren et al., 2004). No 

staining was observed in control sections treated only with the secondary antibody 

(Figure 7.4 F).  
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Figure 7.4 Immunoperoxidase staining for β1 in transverse hippocampal sections fixed with 4 % PFA 

using a primary antibody kindly provided by Prof. Soenke Behrends. A) The hippocampus major. Two 

juxtaposed images. bv = blood vessel; boxes b, c, d and e show positions of higher magnification 

images below. B-E) Higher magnification images of the section presented in A showing the stratum 

oriens (so; B), stratum pyramidale (sp; C), stratum radiatum (sr; D) and area CA3/stratum lucidum 

(E). F) Control for the selectivity of secondary antibody in A-E. Scale bar in A = 500 µm. Scale in B: 

100 µm, B-F.      
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The above results therefore suggested that all the structures that were found to be 

immunopositive for α1 in tissue fixed with 1 % PFA are capable of forming 

functional α1β1-containing guanylyl cyclase, and this was supported by 

immunoperoxidase staining of sections fixed with 1 % PFA using a β1 antibody 

supplied by Cayman (see Table 7.1 for antibody details). As shown in Figure 7.5, 

staining with this antibody was observed in the stratum pyramidale, blood vessels 

and a proportion of cells scattered throughout the hippocampus. As described by 

Burette et al. (2002), pyramidal cell staining was inhibited by strong (4 % PFA) 

tissue fixation.  

 

Unlike the staining observed in Figure 7.4, fibres surrounding CA3 in the stratum 

lucidum were only very weakly immunopositive. This could have resulted from a 

difference in the overall efficacy of the two β1 antibodies used, because, in the 

cerebellum, staining for β1 using the Cayman antibody is weaker than staining 

observed using the antibody provided by Prof. Behrends (unpublished observations, 

Giti Garthwaite and Kathryn Harris, UCL, London, UK).  

 

Some non-selective staining was observed in the alveus and fimbrium surrounding 

the hippocampus and, to a lesser extent, in the lacunosum moleculare (Figure 7.5 B).    

 

 

Figure 7.5 Immunoperoxidase staining for β1 in transverse hippocampal sections fixed with 4 % PFA 

using a primary antibody obtained from Cayman. A) The hippocampus major. Two juxtaposed 

images. bv = blood vessel. B) Control for secondary antibody binding in B in which the primary 
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antibody was omitted. Filled arrows (A-B) indicate non-selective staining. Scale bar in A: 500 µm, A-

B. 

 

Further to the functional significance of the above findings, and in accordance with 

previous results (Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; Burette et 

al., 2002), immunoperoxidase staining for nNOS suggested that it was present 

throughout the hippocampus and in a distribution complimentary to that of α1 and β1 

(Figure 7.6). Immunopositive structures included cells and fibres in the stratum 

oriens, radiatum and pyramidale (Figure 7.6 C-E). As was previously found 

(Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; Burette et al., 2002), 

staining of pyramidal neurons was dependent on weak tissue fixation (1 vs. 4 % 

PFA). As expected, no staining of blood vessels was detected.  
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Figure 7.6 Immunoperoxidase staining for nNOS. Tissue was fixed with 1 % PFA. A) The 

hippocampus major. Two juxtaposed images. Boxes c and d show locations of higher magnification 

images below. B) Control for secondary antibody binding in A. Filled arrows (A-B) indicate non-

selective staining. C) Stratum oriens. D) Stratum pyramidale. E) Stratum radiatum of a different 

section. Unfilled arrows indicate immunopositive fibres. F) Control for the selectivity of secondary 

antibody binding in C-D.  G) Control for secondary antibody binging in E. Scale in bar in A: 500 µm, 

A-B. Scale in C: 100 µm, C-G.  
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7.4.3 Selectivity of the α1 primary antibody for α1 protein 

 

As would typically be expected if the immunoperoxidase staining shown in Figure 

7.2 was representative of the true expression pattern of the protein in vivo, all the 

immunopositive structures also stained for β1 and were in close proximity to those 

that stained for nNOS (Figure 7.2-6). However, the selectivity of the α1 antibody 

required testing because: 1) stringent-tests of its selectivity are absent in the 

literature, and tests should be performed under identical conditions to those in Figure 

7.2; 2) other antibodies thought to selectively bind the α1 subunit have been found to 

bind the α2 subunit (Ding et al., 2004), which would also be expected to be found in 

β1-containing structures close to nNOS; 3) the distribution of α1 staining observed in 

this study was strikingly different to that observed previously by Szabadits et al. 

(2007). 

 

Therefore, Western blot analysis was performed. In order that weak, non-selective 

antibody binding might be detected, films were exposed until the strongest bands 

began to saturate. As shown in Figure 7.7, only one main antigen, which migrated at 

the molecular weight of rodent α1 (~ 80 kDa; Kamisaki et al., 1986), was detected by 

the α1 antibody after incubation with blots of mouse and rat forebrain and 

cerebellum lysates. 

 

Figure 7.7 Western blots of rat and mouse cerebellum (cb) and forebrain (fb) lysates for α1. The first 

three films were exposed for 2, 5 and 10 min (left to right) to the membrane and show that the α1 

antibody detected only one antigen which migrated at an apparent molecular weight (MW) of ~80 

MW     Mouse   Rat

cb fb cb fb
kDa

230  -

100  -

80  -

25  -
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kDa. Very faint bands just heavier than 80 kDa are also detected in the last film which was exposed to 

the membrane for 20 min. MW as approximated from the ladder. 

 

Following incubation of blots of NOGCα1
-/- 

mouse cerebellum with the α1 antibody, 

no bands could be detected, although a band migrating at ~ 80 KDa could be 

detected in blots of cerebellum taken from a wild-type sibling. A very faint band, 

migrating at ~ 50 kDa, was detected following grey value analysis of lanes 

containing both wild-type and NOGCα1
-/- 

lysate (Figure 7.8 A). Actin could also be 

detected in both lanes, and grey value analysis of the pixels contributing to each actin 

band indicated approximately equal protein loading in each lane (Figure 7.8 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Western blot analysis of NOGCα1-/- cerebellum lysate. A) The α1 antibody detected one 

main antigen in lysate from a wild-type mouse (WT). This antigen displayed the same molecular 

weight (MW) as the α1 protein (~80 kDa) and was absent from lanes containing NOGCα1-/- lysate 

(KO). A very faint band was detected in both lanes at ~ 50 kDa following analysis of grey values. B) 

Stripping of the membrane and re-probing with an actin antibody revealed a band at the expected 
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molecular weight (~ 40 kDa) in both the WT and KO lanes. Analysis of grey values was indicative of 

approximately equal protein loading in each lane. Red bar in each panel indicates area of membrane 

to which grey values were normalised. Similar results were obtained following analysis of NOGCα1-/- 

forebrain lysate. 

 

Under the conditions of Western blot, therefore, the α1 antibody displayed high 

selectivity for the α1 protein. However, immunoperoxidase staining of sections of 

NOGCα1
-/- 

and wild-type hippocampus fixed with 4 % PFA was identical (Figure 

7.9). All structures that had previously been identified as strongly immunopositive 

for α1 in tissue from C57/Bl6 mice were intensely stained in sections from NOGCα1
-

/- 
mice, including cells outside the stratum pyramidale and fibres throughout the 

stratum polymorph, lucidum and the rest of the neuropil. Weak staining of pyramidal 

neurons was also observed. As before, blood vessels were immunonegative.  
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Figure 7.9 Immunoperoxidase staining of NOGCα1
-/- 

(KO) and wild-type (WT) tissue for the NO-

targeted guanylyl cyclase α1 subunit. Tissue fixed with 4 % PFA. A-B) Staining in the hippocampus 

proper and equivalent control for the selectivity of the secondary antibody. Two juxtaposed images. 

mf = possible mossy fibres; boxes c-e show approximate location of magnified images below. C-F) 
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Magnified images showing an area of the stratum oriens (so; C), stratum pyramidale (sp; D) and 

stratum radiatum (sr; E) of CA1 in A and stratum pyramidale of CA1 in B (F). G-I) Images of CA1 in 

a section of wild-type tissue showing the stratum oriens (G), stratum pyramidale (H) and stratum 

radiatum (I). J) Equivalent control for the selectivity of secondary antibody in G-I.  K-L) CA3 of a 

section of NOGCα1
-/-

tissue and equivalent control for secondary antibody binding. M-N) CA3 of a 

section of wild-type tissue and equivalent control for secondary antibody binding. Scale bar in A: 500 

µm, A-B. Scale in C: 100 µm, C-J. Scale in K: 100 µm, K-N. Note that the phenotype of mice used was 

confirmed by Western blot. 

 

Immunostaining of NOGCα1
-/- 

and wild-type tissue fixed with 1% PFA was also 

identical (Figure 7.10). As found in C57/Bl6 tissue (Figure 7.2), pyramidal neurons 

and blood vessels were intensely stained. 
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Figure 7.10 Immunoperoxidase staining of NOGCα1
-/- 

(KO) and wild-type (WT) tissue for the NO-

targeted guanylyl cyclase α1 subunit. Tissue fixed with 1 % PFA. A-C) Images showing an area of the 

stratum oriens (so; A), stratum pyramidale (sp; B) and stratum radiatum (sr; C) of CA1 in a section of 

NOGCα1
-/- 

tissue. bv = blood vessel. D) Equivalent control for secondary antibody binding in A-C. E-

F) Images of CA1 in a section of wild-type tissue showing the stratum oriens (E), stratum pyramidale 

(F) and stratum radiatum (G). H) Equivalent control for the selectivity of secondary antibody in E-H. 

I-J) CA3 of a section of NOGCα1
-/-

tissue and equivalent control for secondary antibody binding. K) 

CA3 of a section of wild-type tissue. Scale bar in for A: 100 µm, A-H. Scale in I: 100 µm, I-K. Note 

that the phenotype of mice used was confirmed by Western blot. 

  

Clear staining for α1 in the cells and neuropil of the cortex was also observed in 

tissue from NOGCα1
-/- 

mice, whether fixed with 4 % PFA (Figure 7.11) and 1 % 

PFA (not shown).  



Chapter 7: The location of NO-targeted guanylyl cyclase in adult mouse hippocampus  

 

260 

 

Figure 7.11 Immunoperoxidase staining for α1 in NOGCα1
-/- 

(KO) and wild-type (WT) cortex 

(transverse sections) fixed with 4 % PFA. A-B) Primary visual cortex of wild-type mouse and 

corresponding control for secondary antibody binding. C-D) Primary somatosensory cortex of 

NOGCα1
-/- 

mouse and equivalent control for secondary antibody binding. E-F) Piriform/ entorhinal 

cortex of NOGCα1
-/- 

mouse and relevant control for secondary antibody. Layer 1 is at the top of each 

image. G-H) Cortical nucleus of the amygdala and equivalent control for secondary antibody. Scale 

bar in A: 200 µm, A to F. Scale in G: 100 µm, G-H. Note that the phenotype of the NOGCα1-/- mouse 

was confirmed by Western blot analysis.     
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7.4.4 Results summary 

 

The above results are summarised in Table 7.3. 

 

Structure 

               

Antibody 

α1 β1 

(Behrends) 

β1 

(Cayman) 

nNOS 

WT KO 

4 % 1 % 4 % 1 % 4/1 % 1 % 1 % 

Pyramidal 

neurons  

+ +++ + +++ +++ ++ ++ 

Interneurons +++ +++ +++ +++ +++ +++ +++ 

Granule cells + + + + + + + 

Mossy fibres ++ ++ ++ ++ ++ + - 

Neuropil + + + + + + + 

Blood vessels - +++ - +++ +++ ++ - 

 

Table 7.3 Summary of results. The relative intensity of staining in each of the structures listed (as 

judged by the experimenter) is indicated. Key: - = immunonegative/no staining; + = 

weak/inconsistent staining; ++ = moderate staining; +++ = strong/intense staining. WT = wild-type 

tissue; KO = NOGCα1-/- tissue. Percentages indicate the concentration of PFA used to fix tissues.  

 

7.5 Discussion 

 

Given the role of NO/cGMP signalling in hippocampal physiology, and the 

possibility that NO may operate as a retrograde, anterograde and/or intracellular 

transmitter (Garthwaite, 2008), the precise location of NO sources and targets in the 

hippocampus is of great interest. As discussed above (see 7.1 Introduction), the 

location of the NO-targeted guanylyl cyclase α1 subunit is contentious. Using 

immunohistochemical techniques, the subunit has been found in interneurons in the 

adult (Szabadits et al. 2007) and developing (Cserep et al., 2011) hippocampus, 

suggesting that, if functional studies are correct (Taqatqeh et al., 2009; Neitz et al., 

2011), presynaptic effects of NO may be restricted to synapses involving these cells.  
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Szabadits et al. (2007) and Cserep et al. (2011) used tissues fixed with 4 % PFA to 

perform their immunohistochemical studies but it has been reported that this 

concentration of PFA inhibits immunostaining of hippocampal pyramidal neurons for 

synaptic proteins including nNOS and the β1 NO-targeted guanylyl cyclase subunit 

(Wendland et al., 1994; Gonzalez-Hernandez et al., 1996; Burette et al., 2002). 

Possible explanations for this inhibition are that high concentrations of PFA (4% vs. 

1 %) mask antibody epitopes and/or restrict the access of antibodies to their target 

proteins by excessively cross-linking proteins. In PSD’s and presynaptic varicosities, 

where protein density is high and nNOS, β1 and α1 are expected to reside, the latter 

circumstance may be particularly likely. Therefore we reinvestigated the distribution 

of α1 in the hippocampus by immunoperoxidase staining of weakly fixed (1 % PFA) 

tissue to see whether evidence for the α1 subunit in pyramidal neurons had been 

overlooked.  

 

In accordance with Szabadits et al. (2007) and Cserep et al. (2011), we found that 

cells scattered outside of the stratum pyramidale, presumably interneurons and/or 

glia, were most intensely immunopositive for α1 after staining of tissues fixed with 4 

% PFA. The same antibody as employed by Szabadits et al. (2007) and Cserep et al. 

(2011) was used. However, pyramidal cell soma and apical dendrites throughout 

Ammon’s horn were also weakly immunopositive (Figure 7.1) and, in accordance 

with the notion that pyramidal neurons must be weakly fixed to be immunostained 

for some synaptic proteins, staining of these cells was intensified after identical 

treatment of tissues fixed with 1 % PFA.  

  

Considering that pyramidal neurons were also found to be immunopositive for the β1 

NO-targeted guanylyl cyclase subunit and nNOS (Figure 7.4-6), and in light of the 

studies by Taqatqeh et al. (2009) and Cserep et al. (2011), the distribution of α1 

staining that we observed in tissues fixed with 1 % PFA suggested that α1β1-

dependent NO-induced modulation of transmitter release might occur at CA1-CA3 

synapses. NO-regulated neurotransmitter release at CA1-CA3 synapses is consistent 

with the effect of NO at synapses between pairs of dissociated pyramidal neurons 

during LTP (Arancio et al., 1995; Arancio et al., 1996; Arancio et al., 2001).  

 



Chapter 7: The location of NO-targeted guanylyl cyclase in adult mouse hippocampus  

 

263 

The distributions of staining for α1, β1 and nNOS observed in tissues fixed with 1 % 

PFA (see Figure 7.2-7.6) were remarkably similar. This was in favour of the α1 

antibody selectively binding protein for the α1 subunit, and therefore, with the 

distribution of α1 protein observed in tissues fixed with 1 % PFA being 

physiologically relevant. Indeed, these possibilities were supported by several other 

observations.  

 

First, blood vessels were found to be intensely immunopositive for α1 following 

staining of tissue fixed with 1 % but not 4 % PFA (Figure 7.1-2). This was 

consistent with immunohistochemical and functional evidence suggesting the 

presence of α1β1 in the smooth muscle of blood vessels, such as arteries (Mergia et 

al., 2006; Nimmegeers et al., 2007). Notably, smaller blood vessels, such as those 

that were found to be immunopositive in this study, also contain smooth muscle (for 

example, venules measure on average ~ 20 µM; Germann and Stanfield, 2002). 

Moreover, endothelial cells in kidney and lung have also been reported to express 

α1β1 (Zhan et al., 1999; Jarry et al., 2003). Second, and in apparent discord with the 

notion that all structures in the hippocampus were non-selectively stained, some cells 

scattered outside the stratum pyramidale, for example, in the stratum granulare, were 

immunonegative for α1 in tissues fixed with 1 % PFA (Figure 7.2). Third, and most 

importantly, Western blot analysis showed that, in tissue lysates prepared from 

C57/Bl6 mice, the α1 antibody detected only one main antigen which had the same 

molecular weight as the α1 subunit (~ 80 kDa; Kamisaki et al., 1986) and was absent 

from lysates prepared from NOGCα1
-/- 

tissue (Figure 7.7-7.8). 

 

However, immunoperoxidase staining of sections from mice lacking the α1 subunit, 

as confirmed by Western blotting, revealed that, at least under our conditions, the α1 

antibody was not selective for the α1 protein. As shown in Figure’s 7.9-10, all the 

structures found to be immunopositive after staining of tissues prepared from 

C57/Bl6 or NOGCα1
-/-

 wild-type mice were also immunopositive in sections 

prepared from NOGCα1
-/-

, regardless of fixing with 1 or 4 % PFA. Similarly, 

immunostaining was prevalent throughout sections of cortex prepared from 

NOGCα1
-/-

 mice (Figure 7.11).    
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Since the protein sequence for the α1 antibody epitope is not present anywhere else 

in the mouse proteome (as assessed using the Basic Local Alignment Search Tool 

(BLAST); www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=10090l; 

accessed 20/01/2011) it is hard to make a firm hypothesis as to what the α1 antibody 

was binding to. The distribution of staining for α1 was remarkably coincident with 

the distribution of staining for β1 (Figure 7.2 and 7.3), so it could be hypothesised 

that the α1 antibody binds the β1 subunit. Alternatively, it could be speculated that 

the α1 antibody recognises the α2 subunit, which weighs ~ 82 kDa ( ß1 weights ~ 70 

KDa; Kamisaki et al., 1986; Harteneck et al., 1991), because following Western 

blotting of lysates of rat forebrain and cerebellum for α1, faint bands surrounding the 

major signal at ~ 80 kDa could be detected after a long (20 min) exposure of the 

blotting membrane to film (Figure 7.6). This would also explain why the β1 

antibodies yielded similar distributions of immunoperoxidase staining to the α1 

antibody.  Notably, another antibody thought to selectively bind the α1 subunit has 

been found to bind protein for the α2 subunit (Ding et al., 2004). One way to test the 

possibility that the α1 antibody bound protein for the α2 or β1 protein would be to 

stain tissues prepared from animals deficient in these subunits. However, it is should 

be noted that the α1 subunit may have bound a protein unrelated to guanylyl cyclase. 

Consistent with this, grey analysis of images of Western blots probed with the α1 

antibody revealed a very faint signal in both NOGCα1
-/-

 and wild-type lysates that 

was unlikely to be a guanylyl cyclase subunit (~ 50 kDa; Figure 7.7).  

 

The conditions used for immunohistochemistry vary widely between groups of 

experimenters and therefore, it cannot be said that other observations made using the 

α1 antibody (for example, Szabadits et al., 2007; Fukutani et al., 2009; Wilson and 

Garthwaite, 2010; Cserep et al., 2011), are artefactual. Indeed, the lack of any major 

signal following Western blotting of NOGCα1
-/-

 tissue with the α1 antibody shows 

that the antibody does selectively bind the α1 subunit under some conditions. 

Furthermore, in the study by Szabadits et al. (2007), the reported distributions of α1 

and α2 subunit mRNA, as assessed using in situ hybridisation, were distinct from 

each other, and the distribution of α1 mRNA was complementary with the 

distribution of the α1 protein, as judged by immunofluorescence and 
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immunoperoxidase, consistent with the distribution of immunostaining for α1 

reflecting the true expression pattern of this subunit.  

 

Unfortunately, indicators of selective binding like those included in the study by 

Szabadits et al. (2007) are absent in other studies using the α1 antibody and stringent, 

relevant-tests of the antibody’s selectivity are, inexplicably, missing in the literature. 

Therefore, the present work clearly complicates the interpretation of the results of 

published studies employing the antibody. (It should be noted that adequate controls 

for the selectivity of both of the β1 antibodies used here are also lacking and, until 

they are provided, the precise location of β1 in the hippocampus will also remain 

uncertain). To clarify the location of the α1 subunit in hippocampus, future work 

must determine the conditions, if any, under which the α1 antibody is selective for its 

target. Interestingly, precedent for selective antibody binding under the conditions of 

Western blotting but not conventional immunoperoxidase staining exists in the 

literature (Watanabe et al., 1998). Watanabe et al. (1998) found that the selective 

binding (as assessed using knock-out tissue) of primary antibodies for the NMDA 

receptor subunits NR1 and NR2A and B in 4% PFA-fixed sections of mouse brain, 

including the hippocampus, was dependent on the pre-treatment of sections with 

pepsin, which facilitated the access of very low, previously sub-threshold 

concentrations of the antibodies to their targets. The resulting pattern of staining was 

drastically different to that observed in pepsin-untreated sections using higher 

antibody concentrations that were non-specific. In fact, they accorded better with 

expectations of the distribution of a synaptic protein (since, for example, dendritic 

staining in the hippocampus became stronger than staining of cell soma) and with the 

distribution of the NMDA receptor subunits’ mRNA, as assessed by in situ 

hybridisation. Similar results have been reported following the combined use of 

pepsin and very low concentrations of antibodies to stain for other synaptic proteins, 

such as PSD-95 (Fukaya and Watanabe, 2000), and it is noteworthy that the 

distribution of the non-specific staining for NMDA receptor subunits observed in 

pepsin un-treated sections by Watanabe et al. (1998) was remarkably similar to the 

distribution of staining that we observed following immunoperoxidase staining for 

the NO-targeted guanylyl cyclase α1 subunit in 1 % PFA-fixed tissue. Therefore 
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pepsin treatment could represent a strategy for obtaining selective binding of the NO-

targeted guanylyl cyclase α1 antibody.  

 

If no conditions for selective antibody binding are found, the development of an 

alternative antibody with higher selectivity for the α1 protein will be desirable. 

Considering that functional evidence implies that presynaptic effects of NO are α1-

dependent (Taqatqeh et al., 2009; Neitz et al., 2011), the true location of α1, whether 

in interneurons and/or pyramidal neurons will be very interesting and could be of 

critical importance to researchers seeking to understand NO/cGMP-dependent 

plasticity.   
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8.1 NO and NMDA receptor-dependent LTP 
 

It is well accepted that various forms of synaptic plasticity require NO. Brain areas in 

which NO-dependent forms of LTP have been studied include the hippocampus (for 

example, Son et al., 1996; Doreulee et al., 2001; Hopper and Garthwaite, 2006), the 

neocortex (for example, Haul et al., 1999; Hardingham and Fox, 2006; Haghikia et 

al., 2007) and amygdala (Watanabe et al., 1995). At CA1 synapses, where LTP is 

archetypal, both endothelium-derived and neuronal NO signals are thought be 

required for stable NMDA receptor- and NO-dependent LTP (Son et al., 1996; 

Hopper and Garthwaite, 2006).  

 

8.1.1 Role of nNOS 

 

Given the physical link between nNOS and NMDA receptors in neurons, and that 

NO is a putative retrograde transmitter at synapses, thoughts on the role of NO in 

LTP usually centre around its generation upon NMDA receptor channel opening and 

action on presynaptic targets (Feil and Kleppisch, 2008; Garthwaite, 2008). 

Compelling evidence for retrograde NO transmission has been provided by studies of 

LTP at synapses between dissociated hippocampal neurons. However, there are few 

examples of presynaptic effects of NO (consistent with retrograde transmission) 

during LTP at synapses in intact, wild-type tissues (see Table 3.1).  

 

Given the above, the study presented in Chapter 3 was designed to test the 

prediction that exogenous NO, when paired with HFS, would restore the NO-

dependent component of NMDA receptor-dependent LTP at CA1 synapses when 

NMDA receptors were blocked. In this way we aimed to isolate the NO-dependent 

component and test its locus (pre- or postsynaptic). Consistent with the prediction, 

we report for the first time that the NO donor, PAPA/NONOate, generated a 

persistent enhancement of CA1 fEPSPs when paired with HFS in the presence of the 

NMDA antagonist, D-AP5. In accordance with the typical effect of NOS inhibition 

on NMDA receptor-dependent LTP (see Figure 3.4), this NO-induced potentiation 

was of slow onset but reached a magnitude similar to HFS-induced LTP. Further 

characterisation of this NO-induced potentiation was consistent with it being 
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representative of a NO-dependent component of LTP (although see Chapter 3 for a 

broader discussion), suggesting that the potentiation may be useful tool for the study 

of long-lasting NO-dependent potentiation in isolation of other mechanisms 

underlying LTP. 

 

The hypothesis that NO acts as a retrograde messenger during LTP at synapses in 

intact tissues, in conjunction with studies of LTP at synapses between dissociated 

cells, predicted that the NO-induced potentiation would be presynaptic. However, we 

found no evidence for this. While our data cannot rule out a presynaptic effect of NO 

during HFS-induced and other types of LTP, including those that may occur 

naturally in vivo, they are not consistent with this possibility. Furthermore, much of 

the evidence in favour of a presynaptic effect of NO during LTP in intact tissues is 

also consistent with NO acting postsynaptically. Additionally, the data imply that 

conclusions drawn from studying synapses between dissociated neurons may not be 

applicable to synapses in intact tissues (perhaps due to a lack of eNOS in the former 

preparation; see below). 

 

In the future, fluorescent indicators of presynaptic efficacy (reviewed by Blundon 

and Zakharenko, 2008) could be used to further test the possible presynaptic effect of 

NO during LTP at synapses in intact tissues. At present, we conclude that an action 

on both sides of the synapse is most parsimonious with the current data on the role of 

NO/cGMP in LTP (see Garthwaite, 2008; Feil and Kleppisch, 2008 for a review). 

Such a role for NO in LTP may enable it to coordinate synaptic plasticity across the 

synapse; a potentially important action of which few other molecules would be 

capable.   

 

8.1.2 Role of eNOS 

 

The NO-induced potentiation detailed in Chapter 3 was facilitated by endogenous 

NO. Based on the current literature (Hopper and Garthwaite, 2006), the endogenous 

NO required was probably endothelium-derived. Endothelial NOS has been reported 

to generate a low-level, activity-independent NO tone in optic nerve and 

hippocampus. In optic nerve, this NO signal causes the tonic depolarisation of axons 
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via a pathway involving HCN channels (Garthwaite et al., 2006). In hippocampus, 

the NO tone has been postulated to prime synapses for LTP (Hopper and Garthwaite, 

2006), but, prior to the present study, it had no defined role.  

 

The data presented in Chapter 4 imply that eNOS activity elicits the tonic 

facilitation of neurotransmitter release at CA1 synapses under conditions of basal 

stimulation (i.e. stimulation causing no observable change in synaptic efficacy). 

Although our data are limited, our conclusion is consistent with a recent study by 

Neitz et al. (2011), and proposes a novel role for the endothelium-derived, activity-

independent NO tone in the hippocampus. The consequences of such a role for eNOS 

may be of critical importance to NO-dependent plasticity, since factors that influence 

neurotransmitter release during LTP induction likely influence LTP expression. 

Indeed, it is noteworthy that the effect of (e)NOS inhibition on PPF under basal 

conditions was observed when the ISI was 10 ms- the same ISI as occurs during 

HFS. We hypothesise that the facilitation of neurotransmitter release at CA1 

synapses by eNOS may regulate the stimulus threshold for the induction of stable 

LTP, thus explaining why some forms of LTP require endothelium-derived NO (for 

example, Haul et al., 1999; Son et al., 1996; Hopper and Garthwaite, 2006). Since 

eNOS activity is subject to dynamic regulation (Chapter 1), it is, given the above 

hypothesis, also tempting to speculate that endothelium-derived NO may contribute 

to metaplasticity. On this point it is interesting to note that exercise, which causes an 

increase in eNOS activity in the cardiovascular system and brain, probably via the 

shear stress of endothelial cells (reviewed by Walther et al., 2004; Faraci, 2006), has 

been proposed by those studying adult neurogenesis in the dentate gyrus, LTP and 

learning in spatial tasks to prime the hippocampus for plasticity as animals move 

through environments and increase their capacity for experience (Kempermann, 

2002; Kempermann et al., 2010). 

 

Recently, it has been reported that the regulation of neurotransmitter release 

under basal conditions by NO (eNOS) requires the α1β1 isoform of NO-targeted 

guanylyl cyclase (Taqatqeh et al., 2009; Neitz et al., 2011). Message and protein 

for the α1 NO-targeted guanylyl cyclase has been detected in hippocampal 

interneurons but not pyramidal cells (Szabadits et al., 2007; Cserep et al., 2011). 
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Using conditions that have been reported to enhance the staining of other 

presumed synaptic proteins in fibres and principal cells (Burette et al., 2002; 

Wendland et al., 1994; Gonzalez-Hernandez et al., 1996), we made attempts to 

determine whether the NO-targeted guanylyl cyclase α1 subunit was also present 

in hippocampal pyramidal neurons, as effects of NO on neurotransmitter release 

at synapses between pairs of dissociated pyramidal neurons would suggest (see 

Table 3.1). Under these conditions, immunoperoxidase staining for the α1 

subunit was detected in pyramidal neurons (Chapter 7). However, the staining 

was found to be entirely non-specific based on the use of α1-null mice. 

Importantly, interneuron staining, regardless of the conditions used, was also 

non-specific. Although the α1 antibody that we used is the most commonly 

employed for immunohistochemistry, no other stringent tests of its specificity 

have been reported. The specificity of antibodies used for the detection of the β1 

subunit is also unclear and tests of this are hampered by a lack of viable β1-

deficient mice. Given the wealth of physiological processes and pathologies 

thought to involve NO/cGMP, and the intriguing possibility that pre- and 

postsynaptic effects of NO might be differentially transduced by the α1- and α2-

containing NO-targeted guanylyl cyclase isoforms, further, controlled tests of the 

location of NO-targeted guanylyl cyclase are required (see Chapter 7 for a 

strategy).    

 

8.2 NO and NMDA receptor-independent LTP 

 

The data presented in Chapter 5 show for the first time that a form of NMDA 

receptor-independent, L-VGCC-dependent LTP at CA1 synapses requires NO, in this 

case, apparently generated solely by nNOS. This finding challenges the view that 

neuronal NO is preferentially synthesised by NMDA receptor channel opening. L-

VGCC-dependent forms of synaptic plasticity have been correlated with learning and 

memory (Borroni et al., 2000; Kleppisch et al., 2004; Woodside et al., 2004; 

Moosmang et al., 2005a), and may be particularly important for changes in gene 

expression during synaptic plasticity (Murphy et al., 1991; Bading et al., 1993; 

Impey et al., 1996). Therefore, our data indicate that a potentially important role for 

NO in the regulation of synaptic efficacy may have been previously overlooked. 
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Neuronal NOS activation during NMDA receptor-independent, L-VGCC-dependent 

LTP likely results from a rise in intradendritic Ca
2+

. Although we were unable to 

identify a potential source of Ca
2+

 responsible for nNOS activation during L-VGCC-

dependent LTP (Chapter 5 and Appendix 2), the use of a new biosensor with 

unrivalled sensitivity to NO (described in Batchelor et al., 2010; Wood et al., 2011) 

may, in the future, enable the elucidation of the signalling pathway(s) responsible.  

 

The role of nNOS in L-VGCC-dependent LTP was deduced from studies using a 

non-selective NOS inhibitor (L-NNA) in conjunction with eNOS-deficient mice. 

Ideally, the role of nNOS would also have been tested using a selective inhibitor. 

Unfortunately, the study described in Chapter 5 led to the discovery that the most 

potent nNOS inhibitors (L-VNIO and 1400-W) currently available, were, at the 

standard concentrations for use (0.1 µM and 1 µM, respectively), ineffective in 

blocking NMDA-induced, NOS-dependent cGMP synthesis in adult mouse 

hippocampal slices (see Chapter 6). Prior to our discovery, similar findings were 

made using slices of immature mouse hippocampus (Bartus, 2009). Our data were 

particularly surprising since the original characterisation of L-VNIO (0.1 µM) and 

1400-W (1 µM) as selective nNOS inhibitors in intact tissues was done using adult 

hippocampus (Hopper and Garthwaite, 2006). Taken together, the data presented in 

Chapter 6 and by Bartus (2009) suggest that the compounds, which, have been 

widely used at the above concentrations, are inadequately selective for nNOS over 

eNOS to be of use diagnostically. Experiments to address the difference between the 

results of the present study and those of Hopper and Garthwaite (2006) are in 

progress. Since a wealth of studies using these compounds lack appropriate controls 

for selective nNOS inhibition (for example, Neitz et al., 2011), the related data 

should be re-interpreted.  

 

To address the lack of useable nNOS inhibitors, we tested another compound (FX-

5043), shown previously to inhibit nNOS with unrivalled potency and selectivity in 

cell-free and cell-based assays (Xue et al., 2010a). In testament to the challenges that 

face that the development of selective NOS inhibitors (reviewed by Alderton et al., 

2001), neither FX-5043, nor a similar compound, JK-5, were found to be appropriate 

for use in intact tissues (Chapter 5). Therefore more work is needed to develop 
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selective nNOS inhibitors for research, and potentially clinical (see Gross and Wolin, 

1995; Hobbs et al., 1999; Vallance and Leiper, 2002), use. 

 

8.3 Some general outstanding issues 

 

The data presented here add support to some key hypotheses of the role of NO in 

LTP, and show novel roles for NO in synaptic plasticity. Additionally, a scheme for 

NMDA receptor and NO-dependent, HFS-induced LTP laid out in Figure 3.21 may 

be a useful foundation for further tests of the role of NO in LTP.  

 

Overall, the results are consistent with the view that physiological NO signals are 

transduced by NO-targeted guanylyl cyclase and cGMP accumulation, but the 

mechanisms downstream of NO/cGMP in synaptic plasticity largely remain to be 

elucidated (see Chapter 1 for review). The definition of mechanisms downstream of 

NO/cGMP during LTP may help to explain how two NO/cGMP signals 

(endothelium-derived and neuronal) act upon one synapse simultaneously. Based on 

recent work by others (Taqatqeh et al., 2009; Neitz et al., 2011), it is tempting to 

speculate that NO signals produced by eNOS and nNOS may differentially target the 

α1β1 and α2β1 cyclases, and that these may be confined to different sides of the 

synapse. If eNOS and nNOS act on the same sides of the synapse, but have distinct 

roles, the compartmentalisation of NO/cGMP signals by PDEs may be important, as 

may be the involvement of downstream effectors with different sensitiveness to 

cGMP, such as PKGI and PKGII (see Chapter 1).  

 

There are, of course, many alternatives to the ‘one synapse’ hypothesis for NO action 

in LTP. Immunohistochemical evidence, for example, suggests that astrocytes 

respond to NO in multiple brain areas (de Vente et al., 1998). Interestingly astrocytes 

have low PDE activity, and are therefore highly sensitive to NO (Garthwaite, 2005). 

Although little is known about the physiological significance of possible signals 

conveyed to astrocytes by NO, astrocytes are well-placed to regulate synaptic 

plasticity. Actions that may influence LTP include: the regulation of synaptogenesis; 

neurotransmitter uptake; and the release of gliotransmitters (reviewed by Barker and 

Ullian, 2010). Many of these actions could conceivably be influenced by changes in 



Chapter 8: Summary 

 

274 

astrocyte morphology and, considering the potential role of NO in structural synaptic 

plasticity (Nikonenko et al., 2003; Nikonenko et al., 2008), it is interesting that the 

NO pathway has been found to regulate the morphology of rat cerebellar astroglia in 

culture (Boran and Garcia, 2007), in this case via cGMP/PKG, and astrocyte-like 

cells in hypothalamus (De Seranno et al., 2004). 

 

Additionally, an emerging focus of research with relevance to the involvement of 

NO in synaptic plasticity is on the role of NO in GABAergic transmission at 

interneuron synapses. It has long been recognised that NO regulates the release of 

GABA at synapses in various brain regions (reviewed by Prast and Philippu, 

2001).  In the ventral tegmental area (Nugent et al., 2007) and the hippocampus 

(Makara et al., 2007; Cserep et al., 2011), evidence consistent with the activity-

dependent synthesis of NO in pyramidal neurons and subsequent down-

regulation of GABAergic transmission via retrograde transmission has been 

reported (see Chapter 7, 7.1 for discussion). In the hippocampus, it is tempting 

to speculate that such an NO-mediated depolarisation-induced suppression of 

inhibition would influence the LTP induction threshold at pyramidal cell 

synapses. The effects of NO on GABAergic transmission in the developing 

hippocampus appeared to be regulated by the α1β1-containing guanylyl cyclase 

(Cserep et al., 2011), which has recently been identified as presynaptic and 

tonically active on the basis of functional evidence (Taqatqeh et al., 2009; Neitz 

et al., 2011; Chapter 4). 

 

Excitingly, the future use of a new biosensor able to detect picomolar concentrations 

of NO/cGMP in real-time (Batchelor et al., 2010; Wood et al., 2011) may enable a 

multitude of questions regarding the physiology of NO and its role in synaptic 

plasticity to be answered. If the biosensor can be transfected into hippocampal cells, 

it may permit direct tests of questions as fundamental as whether or not neuronal NO 

signals generated during LTP are synapse specific (see above) and/or subject to 

potentiation themselves.  
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We investigated the effects of HFS-induced LTP and the NO-induced potentiation 

described in Chapter 3 on PPF in individual pyramidal neurons in area CA1 in 

hippocampal slices using standard methods for intracellular electrophysiological 

recording with sharp electrodes. Sharp electrode recording offered three major 

advantages over patch-clamp recording. First, sharp electrode recordings can be 

maintained for longer than patch-clamp recordings because sharp electrodes confer 

experiments with greater physical and biochemical stability. Second, and in 

accordance with the first advantage, sharp electrode recording has less effect on the 

postsynaptic cell cytoplasm. Third, sharp electrodes can be advanced into the slice to 

the depth where field recordings are typically made and away from tissue damage 

caused by slicing. This point was especially important since the concentration of 

bath-applied exogenous NO that penetrates a brain slice is known to decline steeply 

as a function of depth into the slice (Hall and Garthwaite, 2006).    

 

Intracellular sharp electrodes, ~ 70-120 MΩ when filled with 2-3 M KMeSO4, were 

placed within the stratum pyramidale in area CA1, adjacent to an extracellular 

recording electrode in the stratum radiatum (Figure 9.1; see Chapter 2 for details of 

field electrode recording). Pyramidal neurons were identified by their 

electrophysiological properties, including their resting Vm (~ - 69 mV), action 

potential threshold (~ 50 mV), slow after-hyperpolarisation (AHP) and spike 

frequency adaptation (Figure 9.1B-C; see Spruston and McBain, 2007 for 

comparison). Presumed pyramidal cell EPSPs were largely inhibited by CNQX (10 

µM). A slower, CNQX-resistant, D-AP5 (50 µM)-sensitive EPSP could be observed 

on raising the stimulation amplitude. These findings were consistent with the 

synaptic activation of AMPA/kainate and NMDA receptors (Figure 9.1C). 
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Figure 9.1 Intracellular recording of pyramidal cell activity in hippocampal slices using sharp 

electrodes. A) The target sites of the stimulating and recording electrodes are indicated using a 

Mayer’s Hemalum-stained transverse section of the hippocampus. Scale = 500 µm. B) Typical 

response of a pyramidal neuron recorded using a sharp electrode in response to the current injection 

shown in the inset. C) Typical responses of cells presumed to be pyramidal and non-pyramidal 

neurons in response to identical current injection. Note the AHP and accommodation (indicated by 

the arrows) shown by the pyramidal but not the non-pyramidal cell. D) EPSPs were recorded from a 

typical pyramidal cell following a pair of stimuli delivered 50 ms apart. Note the PPF of the second 

EPSP. The AMPA/kainate receptor antagonist, CNQX (10 µM), and the NMDA receptor antagonist, 

D-AP5 (25 µM), were applied in the order shown in the legend (top to bottom). The EPSPs were 

found to be composed of a large CNQX (10 µM)-sensitive, AMPA receptor-dependent potential, a 

slow D-AP5 (50 µM)-sensitive, NMDA receptor-dependent potential and a small IPSP (shown in 

green). Traces are means of consecutive EPSPs recorded from one typical slice. 

 

Paired-pulse stimulation resulted in PPF of EPSPs (Figure 9.1) which lasted at least 

400 ms (Figure 9.2). As is standard, the PPR (response 2/response 1) decreased as 
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the ISI was increased. Remarkably, PPF of EPSPs was similar to PPF of adjacent 

fEPSPs (Figure 9.2), suggesting that extracellular measurements of PPF across 

multiple dendrites were representative of PPF occurring in single cells.  

 

Figure 9.2 PPF of pyramidal cell EPSPs and fEPSPs in hippocampal slices. Pairs of stimuli were 

delivered at the ISI indicated and the PPRs of the resulting responses were measured as the slope of 

fEPSP 2/fEPSP 1 (black) or the peak amplitude of EPSP 2/EPSP 1 from baseline (grey). n = 2-15 

slices. Inset EPSPs (ISI = 75 ms) are a mean of 10-15 consecutive traces and were recorded at the ISI 

indicated by the filled red data point. 

 

In a proportion of intracellular recordings, HFS of Schaffer collaterals/commissural 

fibres yielded LTP of fEPSPs and EPSPs in area CA1 (Figure 9.3). 

 

 

 

 

 

0 50 100 150 200 250 300 350 400 450

1.25

1.50

1.75

2.00

2.25

2.50

 Initial slope of fEPSP 2/initial slope of fEPSP 1

 Amplitude of EPSP 2/amplitude of EPSP 1 

P
P

R

ISI (ms)

100 ms

7 mV



Appendix 1: Intracellular recording of synaptic activity in area CA1 using sharp electrodes 

 

279 

Figure 9.3 LTP of adjacent fEPSPs and pyramidal neuron EPSPs. A typical example of CA1 LTP 

induced by HFS (1-s, 100-Hz tetanus) of Schaffer collaterals/commissural fibres and recorded using 

an extracellular field electrode in the stratum radiatum (black) and an adjacent sharp electrode 

within a presumed pyramidal neuron in the stratum pyramidale (grey). The data recorded 

intracellularly has been truncated since the cell fired during PTP. Sample traces are the mean 

response recorded at the times indicated by the colour-coded bars. 

 

However, ~ 50 % of recordings could not be maintained for the duration required, 

and ~ 50 % of neurons from which stable recordings were made were unable to 

support LTP (induction and expression). The lack of stable LTP could have resulted 

from a combination of factors, including poor slice or neuron health, instability of the 

intracellular electrode or the possibility that not all neurons adjacent to the field 

electrode contributed to LTP of the fEPSP. In support of the latter possibility, studies 

of LTP and LTD at CA1 synapses in transverse hippocampal slices and organotypic 

hippocampal slice cultures suggest that a small proportion of CA1 synapses do not 

exhibit synaptic plasticity (Petersen et al., 1998; Debanne et al., 1999). We favour 

this possibility as an explanation for the lack of LTP because, in all cases, the fEPSP 

appeared to be healthy and could be potentiated, baseline EPSPs were maintained 

despite the lack of LTP, and PTP was not observed in cells that failed to potentiate. 
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Given the above, extracellular recording was taken as the sole approach to the 

investigation of the effect of LTP and the NO-induced potentiation on PPF. To 

determine whether statistically significant changes in PPF of fEPSP could be 

detected, experiments using two compounds, 2-Cl-adenosine and forskolin, shown 

previously to affect opposite changes in PPF were performed (see Chapter 3).   
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Neuronal NOS is thought to be preferentially activated by NMDA receptor channel 

opening. However, nNOS activity appears to be critical for the expression of NMDA 

receptor-independent, L-VGCC-dependent LTP at CA1 synapses in the 

hippocampus. As shown in Chapter 5, exposure of hippocampal slices to high 

concentrations of extracellular K
+
 ([K

+
]o) elicited D-AP5-insensitive, nNOS-

dependent cGMP accumulation in a concentration-dependent manner (Figure 5.8). 

Following stimulation with the highest [K
+
]o tested (122.5 mM), cGMP 

accumulation was significantly greater than that induced by a maximal concentration 

of NMDA, implying that if the mechanism(s) underlying the K
+
-induced cGMP 

response were active following more physiological stimuli, they could hold 

considerable influence over NO physiology and/or pathology in the hippocampus, 

including during synaptic plasticity and conditions of excitotoxicity. Therefore a 

preliminary set of experiments aimed at identifying the mechanism(s) underlying the 

K
+
-induced cGMP accumulation in hippocampal slices were performed.  

 

Hippocampal slices were stimulated with 122.5 mM K
+
 for 5 min. In all experiments, 

slices were pre-incubated with D-AP5 (100 µM, 35 min), to block NMDA receptor-

dependent cGMP accumulation, TTX (1 µM, 35 min), to block network activity, and 

BAY 60-7550 (1µM, 30 min), to inhibit the major PDE present in the hippocampus 

(PDE 2; van Staveren et al., 2001; Suvarna and O'Donnell, 2002; van Staveren et al., 

2003), thus increasing the sensitivity of the measurement of cGMP production (see 

Chapter 5 for full methods). In interleaved experiments slices were pre-incubated 

for 35 min with one of the inhibitors listed in Table 10.1, or with thapsigargin (10 

µM, 100 min). Statistical significance was tested using one-factor ANOVA with 

Dunnett’s test.  
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Inhibitor Conc. 

(µM) 

Primary 

target 

Reason for use 

NBQX 

disodium 

10 AMPA/ 

kainate 

receptors 

AMPA reportedly induces NOS-dependent cGMP production in 

rat cerebellar slices (Southam et al., 1991; Okada, 1992) and 

conversion of radiolabelled L-arginine to citrulline in adult rat 

hippocampus in vivo (Bhardwaj et al., 1997b). 

LY 341495 100 All mGluRs mGluR agonism shown to induce NOS-dependent cGMP 

generation in rat cerebellar slices (Okada, 1992), and conversion 

of radiolabelled L-arginine to citrulline in adult rat hippocampus 

in vivo (Bhardwaj et al., 1997a), likely via Ca2+ release from 

InsP3-sensitive intracellular stores. 

S-MCPG 500 Group I/II 

mGluRs 

Shown to block NMDA receptor-independent, L-VGCC-

dependent LTP at CA1 synapses in adult hippocampal slices 

(Little et al., 1995). Also see reason for using LY 341495. 

(+)- MK-801 10 NMDA 

receptors 

NMDA causes NO synthesis in the hippocampus in vitro 

(Chapter 5) and in vivo (Luo and Vincent, 1994). 

Cadmium 

sulphate  

200 All VGCCs  See reasons for using ω-agatoxin IVA, ω-conotoxin GVIA and 

nickel (II) chloride. 

ω-conotoxin 

GVIA 

1 N-VGCCs N-VGCCs necessary for some forms of NO-dependent, NANC 

transmission and smooth muscle contraction in the PNS 

(reviewed in Vincent, 2010). 

Nickel (II) 

chloride 

50 R/T-VGCCs Reported to inhibit un-stimulated, basal NOS-dependent cGMP 

accumulation in immature rat hippocampal (Bartus, 2009). 

ω-agatoxin 

IVA 

1 P/Q-VGCCs Shown to attenuate K+-induced, NOS-dependent cGMP 

generation in isolated mouse cortical neurons (Tatsumi et al., 

1998) and conversion of L-arginine to L-citrulline in rat 

cerebrocortical slices (Alagarsamy et al., 1994).  

Gadolinium 

(III) chloride  

30 Some TRP 

channels  

Reportedly inhibits un-stimulated, basal NOS-dependent cGMP 

accumulation in immature rat hippocampal slices (Bartus, 

2009). 

 

Table 10.1 Inhibitors used to identify the molecular mechanism of K+-induced, nNOS-dependent 

cGMP accumulation in hippocampal slices. The names, concentrations used, primary targets and 

reasons for use of each antagonist are given. All compounds were pre-applied for 35 min. 

Abbreviations: mGluR = metabotropic glutamate receptor; IP3 =inositol trisphosphate; NANC = 

non-adrenergic, non-cholinergic; TRP = transient receptor potential. Note that many of the 

compounds used affect secondary targets 
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As shown above (Figure 5.8) and again in Figure 10.1 for ease of comparison, 

application of 122.5 mM K
+
 for 5 min caused a significant increase in cGMP 

accumulation relative to that recorded in un-stimulated slices. This rise in cGMP was 

blocked by the NOS antagonist, L-NNA, the NO-targeted guanylyl cyclase 

antagonist, ODQ, and was unaltered in slices from mice lacking eNOS, suggesting 

the response was mediated by the nNOS/NO/cGMP pathway. The response was also 

significantly attenuated in slices incubated in Ca
2+

-free aCSF containing the 

membrane impermeable Ca
2+

 chelator, EGTA, consistent with NOS being 

Ca
2+

/CaM-dependent (Alderton et al., 2001) and implying that Ca
2+

 influx across the 

neuronal membrane was required for the cGMP response, either to directly activate 

nNOS or to maintain intracellular Ca
2+

 stores necessary for indirect nNOS activation.  

 

Since high [K
+
]o would depolarise neurons, the above results were consistent with 

nNOS activation by the voltage-gated entry of Ca
2+

 into cells, and therefore, the 

effect of VGCC inhibition (various inhibitors, 35 min) on the K
+
-induced cGMP 

accumulation was tested. It was found that the general Ca
2+

 channel antagonist, 

cadmium sulphate (200 µM; Cd
2+

) significantly reduced the cGMP response to K
+
, 

but  neither the R/T VGCC inhibitor, Ni
2+ 

(50 µM), nor the highly selective toxins, 

ω-conotoxin GVIA (1 µM) and ω-agatoxin IVA (1 µM), which block N and P/Q 

VGCCs respectively, had any significant effect on the K
+
-induced cGMP rise 

(Figure 10.1; note that the effect of L-VGCC inhibition on the cGMP response was 

tested in Chapter 5 using nifedipine).  

 

To try to determine what other mechanism(s) could render the response to high [K
+
]o 

dependent on extracellular Ca
2+

, we tested whether the cGMP response required 

glutamate receptor activity because glutamate release would be expected to be Ca
2+

-

dependent. To test the possibility that K
+
-induced glutamate release had overcome 

the competitive blockade of NMDA receptors by the D-AP5 present in our 

experiments, leading to NMDA receptor-dependent nNOS activation, slices were 

pre-incubated with the non-competitive, use-dependent NMDA receptor-antagonist, 

(+)-MK-801 (10 µM, 35 min), in conjunction with D-AP5 (100 µM, 35 min). This 

had no significant effect on the mean cGMP response (Figure 10.1). Neither did pre-

incubation of slices with the AMPA/kainate inhibitor, NBQX (10 µM), or the 
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metabotropic glutamate receptor inhibitors, LY 341495 (100 µM) or S-MCPG 

(Figure 10.1). 

 

To test the potential involvement of Ca
2+

 released from intracellular stores, slices 

were pre-incubated with 10 µM thapsigargin for 70 min prior to the addition of the 

PDE inhibitor, BAY 60-7550 (100 min prior to stimulation with K
+
). This was 

expected to inhibit the sarco/endoplasmic reticulum Ca
2+

 ATPase (SERCA), 

therefore causing intracellular Ca
2+ 

stores to empty prior to K
+
 stimulation (Treiman 

et al., 1998). We found no effect of thapsigargin was found on the K
+
-induced cGMP 

rise (Figure 10.1). 

 

Finally, to test the potential involvement of transient receptor potential (TRP) 

channels in the K
+
-induced cGMP accumulation, Gd

3+
 (30 µM) was used. Pyramidal 

cell Ca
2+

 influx has previously been reported via TRP channels, which are a large 

family of mixed-cation channels that are active at basal conditions and in response to 

factors such as temperature and BDNF (reviewed by Moran et al., 2004). Gd
3+

 is one 

of the most commonly used TRP channel inhibitors. However, it also attenuates the 

activity of non-TRP channels, such as VGCCs (reviewed by Caldwell et al., 1998). It 

was found that Gd
3+ 

significantly inhibited cGMP accumulation (Figure 10.1), but to 

a lesser extent than Cd
2+

. 

  



Appendix 2: Mechanism of K+-induced, NOS-dependent cGMP accumulation in hippocampus 

 

286 

 

Figure 10.1 Pharmacological profile of high [K+]o-evoked cGMP accumulation in hippocampal 

slices. Data showing cGMP accumulation in un-stimulated slices (basal), and in slices stimulated with 

122.5 mM K+ (5 min) but pre-incubated with the NO-targeted guanylyl cyclase antagonist, ODQ (10 

µM, 35 min), the NOS antagonist, L-NNA (100 µM, 35 min), or in Ca2+-free media containing 1 mM 

of the extracellular Ca2+ chelator, EGTA, (35 min) has been shown previously in Chapter 5 but is 

shown here for ease of comparison. Compared to the mean cGMP response in  K+-treated slices, the 

non-selective Ca2+ channel antagonist, Cd2+ (200 µM), significantly attenuated the mean cGMP 

response to 122.5 mM extracellular K+ (p < 0.01 compared to untreated controls; first yellow vs. first 

grey bar). None of the class-selective VGCC inhibitors (Ni2+, 50 µM; ω-conotoxin GV1A, 1 µM; ω-

agatoxin IVA, 1 µM) had any effect on the cGMP response (yellow vs. grey bars). Neither the NMDA 

receptor inhibitor, (+)- MK-801 (10 µM), the AMPA/kainate inhibitor, NBQX (10 µM), nor the 

metabotropic glutamate receptor antagonists, LY 341495 (100 µM) or S-MCPG (500 µM), had any 

effect on the cGMP response (p > 0.05; hatched bars vs. grey bar).  The SERCA inhibitor, 

thapsigargin, was also without effect (p > 0.05; blue vs. grey bar). The TRP channel blocker, Gd3+ 

(30 µM), significantly reduced the K+-induced cGMP response (p < 0.05 compared to untreated 

controls; blue hatched vs. grey bar). All experiments were interleaved. All inhibitors were pre-applied 

for 35 min, except thapsigargin, which was pre-applied for 100 min. Statistics are ANOVA with 

Dunnett’s test where ** = p < 0.01, * = p < 0.05 compared to slices treated with K+ alone (first grey 

bar). Numbers in bars are n values. 
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In summary, the results presented here and in Chapter 5 show that significant 

NMDA receptor-independent, nNOS-dependent cGMP accumulation is possible in 

the hippocampus and requires a rise in intracellular Ca
2+

. This finding is accordant 

with a role for NO in NMDA receptor-independent CA1 LTP. Of the inhibitors used 

to identify the source of the rise in intracellular Ca
2+

 responsible for the K
+
-induced 

cGMP accumulation, Cd
2+

 most potently inhibited the NMDA receptor-independent, 

K
+
-induced cGMP response. However, a residual Cd

2+
-insensitive cGMP 

accumulation was observed. This might represent incomplete Ca
2+

 channel inhibition 

during depolarisation (Thevenod and Jones, 1992), an inadequate Cd
2+

 concentration 

for complete Ca
2+

 channel block, or a Cd
2+

-induced increase in intracellular Ca
2+

 

caused, for example, by SERCA inhibition and the release of Ca
2+

 from intracellular 

stores (Visser et al., 1993). Previous work in the laboratory has shown that 200 µM 

Cd
2+

 does not inhibit exogenous NO-induced cGMP production in immature 

hippocampal slices (Bartus, 2009), ruling out the possibility that the inhibitory effect 

we observed was due to a direct effect of Cd
2+

 on the NO/cGMP pathway, and 

against a toxic influence of Cd
2+

 (Li et al., 2000).  

 

No selective VGCC inhibitor could account for the effect of Cd
2+

 on the cGMP 

response, suggesting that the compound was acting on a Ca
2+

 channel whose 

involvement was not-tested, or a combination of Ca
2+

 channels activated by the 

relatively crude stimulus. Perhaps because Ca
2+

 is such a ubiquitous signalling 

molecule, it is not completely surprising that significant NO-induced cGMP 

accumulation can occur in neurons independent of NMDA receptor activation and 

that a single source of Ca
2+

 necessary for the K
+
-induced, nNOS-cGMP 

accumulation could not be isolated in these experiments. Taking into account the 

non-physiological nature of the stimulation, the lack of selective pharmacological 

tools and the potential complexity of investigating a combinatorial effect of Ca
2+

 on 

NOS, we did not make any further attempts to isolate the source of Ca
2+

 responsible  

for the K
+
-induced cGMP response. 
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