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Standardisation of the USGS Volcano Alert Level System (VALS): analysis and 1	
ramifications 2	

 3	

Introduction   4	

Within the last decade significant levels of standardisation have been introduced into protocols and 5	

procedures that deal with emergency and disaster management. Notably, following the catastrophic 6	

Indian Ocean tsunami of 2004, the UN Secretary-General called for the development of a global early 7	

warning system (EWS) for all natural hazards and communities. Certainly, the scope of the disaster, with 8	

the tsunami causing loss of life in 14 countries, pointed to the need for a readily translatable, easily 9	

understood alert system that could be disseminated quickly via diverse communication media. More 10	

often, however, standardisation has been the goal and product of nation-state planning; a trend 11	

accelerated in post-9/11 United States (U.S.) and Europe as part of the drive toward increased 12	

‘securitisation’. Whereas warning systems and response measures associated with natural hazards have 13	

historically emerged from local and regional networks, now a more explicit, top-down demand for cross-14	

contextual protocols has become the norm. These protocols benefit those responsible for management of 15	

a standardised warning system, insofar as it enables scientists, for example, to ‘constrain work practices 16	

and define, describe, and contain representations of nature and reality’ (Fujimura 1987, p.205). Protcols 17	

also establish political control and legal accountability, particularly during dynamic situations such as 18	

natural hazard crises however, a number of difficulties have also ensued (Hogle 1995; Timmermans and 19	

Berg 1997; Timmermans and Epstein 2010). These relate to the simplification of what are complex 20	

volcanic events and systems, such that more targeted response efforts are hindered, but also to an 21	

accompanying shift away from the description (and explanation) of particular events towards a set of 22	

warning icons and words that lend themselves to very particular (that is, aviation) communities.   23	

 24	

Globally, volcano alert level systems (VALS; also referred to as status levels, condition levels, or colour 25	

codes) are used to provide warnings and emergency information in relation to volcanic unrest and 26	

eruptive activity, typically based upon forecasts arising from observation, monitoring and data analysis. 27	

VALS are a key sub-system within a volcano early warning system, and address the development and 28	

communication processes of warnings both prior to and during a hazard ‘event,’ which can occur in the 29	
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form of fall deposits (ash), to flow processes (lahars and pyroclastic flows), to volcanic gases, earthquakes 30	

and tsunamis. Typically, scientists assess the state of the volcano to forecast future behaviour and assign 31	

an alert ‘level’ – thereby anticipating a ‘linearised’ set of physical processes (i.e. that follow a linear 32	

progression) – that provides public and civil authorities a framework that can be used to gauge and 33	

coordinate their response to a developing volcano emergency. In 1985, the United Nations Disaster Relief 34	

Organisation (UNDRO) published the report ‘Volcanic Emergency Management’ outlining one of the 35	

first examples of a VALS, described as ‘Stages of Alert of Volcanic Eruption’ (UNDRO 1985, p.54). The 36	

report provided strong guidance in relation to limiting panic during volcanic crises via public 37	

announcements, decided prior to any emergency, with the public made aware in advance of arrangements 38	

for information provision. These details vary according to locality, region and country, according to 39	

different ‘political and social structure of the community and the technical means available. It is therefore 40	

difficult to lay down any detailed guidelines for public information and warning’ (UNDRO 1985, p.55). 41	

Due to the recognised importance of local contingency two key consequences arise: first, the majority of 42	

operational VALS have remained localised; second, published analytical and evaluative material that 43	

addresses the VALS concept has, since 1985, been sparse, and limited, to grey issued by volcano 44	

observatories, institutions and individuals, despite the fact that volcano alert levels have been 45	

implemented and used around the globe for many decades. 46	

 47	

In recent decades, however, standardisation within VALS at a national level has taken place, allowing 48	

adaptation better tailored to the type of volcanism encountered, and making provision for consistency of 49	

warnings enacted by civil authorities required to take action and facilitate national policies for emergency 50	

management. VALS in a number of countries (including Japan, New Zealand, the Philippines and the 51	

U.S.) have been standardised at a national level so that a single VALS is used for all ground-based 52	

volcanic hazards. Yet, there are variances in the way VALS are being standardised. In the U.S., for 53	

example, two standardised VALS are now in place; a textually-based version for ground hazards, and 54	

another for aviation hazards that uses colours. New Zealand, also uses two standardised VALS; one 55	

designed for hazards expected at frequently active volcanoes, and the other for restless and reawakening 56	

volcanoes. Both VALS are numerically-based using six levels ranging from 0 to 5 (GNS 2010). Notably, 57	
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both the U.S. and New Zealand VALS are based upon the current activity of a volcano, and neither 58	

advocate action nor provide advice to users involved in crisis management and mitigation. In sharp 59	

contrast, the Japanese VALS addresses the measures to be taken by specifying areas of danger, indicating 60	

extent of evacuation, and outlining the expected volcanic activity (Japan Meteorological Agency 2010). 61	

Advice on mitigatory action or evacuations to civil authorities or emergency managers is also commonly 62	

incorporated within VALS used in developing countries. On the basis of the above examples alone, it 63	

becomes apparent that designing and using a standardised VALS involves complex issues that require 64	

decisions on: the nature of the information is provided; the style of warning (for example, based upon 65	

current or forecast activity); the requirement for a separate aviation alert level system; and whether or not 66	

recommendations of mitigatory actions should be included. The World Organisation of Volcano 67	

Observatories (WOVO) notes that, although there is often worldwide interest in the status of a volcano, 68	

'with the exception of colour codes for aviation, currently there is no standardised international volcano 69	

alert levels system’ (WOVO 2008). This, it observes, is due to the ‘wide variation in the behaviour of 70	

individual volcanoes and in monitoring capabilities, and different needs of populations, including 71	

different languages and symbolism of colours or alert levels’ (WOVO 2008). The WOVO recognises the 72	

importance of local contingency, but also the fact that there is a growing demand, most notably from the 73	

aviation sector, for a standardised tool that can be deployed regardless of which airspace pilots are flying 74	

through. Consequently, the standardisation of VALS and its effectiveness is in the interest of all 75	

institutions seeking ways to improve the effectiveness of their VALS and for new volcano observatories 76	

looking for best practices in launching new VALS. Standardisation of VALS across different countries 77	

has been a topical issue within the volcanological community, discussed throughout the 1990s with the 78	

support of IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior), in 79	

the context of establishing a degree of common knowledge and understanding with regard to volcanoes 80	

that demonstrate similar behaviours and eruptive styles, and how this might – in turn – lead to the 81	

development of more comparable VALS. The development of fruitful commonality has, however, proved 82	

to be evasive; a key point of contention being the criteria used in raising and lowering alert levels.  83	

	84	
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This paper takes as its focus VALS standardisation as it has emerged in relation to addressing the volcanic 85	

threat  in the U.S.. Specifically, it analyses the development by the United States Geological Survey 86	

(USGS) of a standardised volcano alert level system (VALS); including its design, terminology, and 87	

operational procedures. The USGS monitors 169 active volcanoes characterised by a wide range of 88	

eruptive styles and located in six different tectonic settings. It has also gained experience of volcanic crises 89	

around the world via the Volcano Disaster Assistance Program (VDAP) (Ewert et al. 2007), and 90	

continues to work closely with Russia’s Kamchatka Volcanic Eruption Response Team (KVERT). Within 91	

the United States, the USGS supports five relatively well-funded volcano observatories located in regions 92	

of significant volcanic hazard, high population or important infrastructure; these operate in Alaska 93	

(AVO), the Cascades (north-western U.S.) (CVO), Hawaii (HVO), Long Valley (LVO) now the California 94	

Volcano Observatory - CalVO), and Yellowstone (Idaho, Montana, Wyoming) (YVO) (Fig. 1). In 2004 95	

the VALS developed by Alaska Volcano Observatory (AVO) was adopted by the International Civil 96	

Aviation Organisation (ICAO) as the international warning system for volcanic ash, becoming the first 97	

‘globally standardised’ VALS. In 2006, the USGS adopted two standardised VALS, one for ground-based 98	

hazards and the other for aviation ash hazards, replacing extant VALS that had been locally developed at 99	

each volcano observatory (Gardner and Guffanti 2006). This rationalisation of VALS provides a unique 100	

opportunity to examine and analyse the ramifications of upward scalability of VALS and to critically 101	

evaluate their effectiveness - at different scales - to communicate a warning. 102	

Research conducted during 2007-2008, adopting a multi-sited ethnographic study (Marcus 1995) at all five 103	

USGS volcano observatories, forms the basis of the critical analysis that addresses how, and with what 104	

impact, the USGS standardised VALS emerged.ii  First, the ‘scaling-up’ of existing locally-contingent 105	

VALS, as the basis for national-level VALS, is examined, before looking at how the resultant warning 106	

system, which offers a highly simplified categorisation of volcanic activity and no mitigatory advice, has 107	

been adopted and used by particular communities. Most crucially, the paper examines how the 108	

standardised set of protocols has in turn become subject to a ‘scaling-down,’ or  local contingency, insofar 109	

as their implementation ‘on the ground’ has proceeded in accordance with existing institutional practices 110	

and procedures. To provide some context for this discussion, however, a brief outline of how 111	

observatories proceeded to develop their own warning systems follows. Quotes used in the text are 112	
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anonymous to protect interviewee identity. So that the context of the quote is clear, however, the 113	

observatory or federal agency of the interviewee is named, or it is stated if the data source is from 114	

documents filed under the United States Freedom of Information Act (U.S. FOIA). 115	

Difference and diversity in the US volcano observatories 116	

The USGS has been involved with volcanic hazards since its formation in 1879, but this became a key 117	

area of interest in 1912, when Thomas A. Jaggar founded the Hawaiian Volcano Observatory (HVO) 118	

(Heliker et al. 1968). In 1974, the Disaster Relief Act (subsequently amended in 1988 and known as the 119	

Stafford Act), was enacted in response to severe tornadoes earlier in the year, prompting institutional 120	

efforts to provide early warning protocols across the U.S.. As a forerunner of more recent efforts at 121	

standardisation, in 1977 the USGS developed procedures for providing warnings for all the hazards for 122	

which it had been given responsibility. It drew on the research and experience of other government 123	

agencies in meteorology and hydrology to establish a three-tiered system increasing in severity from: a 124	

‘notice of potential hazard’, to a ‘hazard watch’, to a ‘hazard warning’. Only the Director of the USGS 125	

could issue warnings (Hill et al. 2002, p.33). In practice, however, the typical four day delay in getting the 126	

Hazard Warning signed off by the USGS Director illustrated that the bureaucratic process was too long 127	

to make the warning useful (LVO senior scientist 1; 22/05/08 and VHP manager 6; 21/05/08). Not until 128	

the 1980s did three major volcanic crises lead to three newly established volcano observatories (Alaska, 129	

Cascades, and Long Valley) shaping the early use and development of warning systems so as to meet their 130	

own needs, rendering their implementation more locally-specific than was originally intended.iii  131	

 132	

The 1980 eruption of Mount. St. Helens in the Cascades Range was the deadliest and most economically 133	

destructive volcanic event in the history of the U.S.. Critically, the event coincided with the expansion of 134	

media news channels, both local and national, which provided a new, communicative context with which 135	

scientists were able to engage. Between June 1980, and October 1986, during which time Mount. St. 136	

Helens continued to erupt in the form of a dome-building phase punctuated frequently by dome 137	

explosions, scientists worked to develop warnings as far as three weeks in advance for 19 out of 21 138	

explosions (Bailey and USGS 1983). This gave many scientists confidence in their ability to provide more 139	

detailed advisories than were required (HVO senior scientist 5; 16/06/08), and the alert levels issued grew 140	
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from only written information statements, to a VALS with an ‘extended outlook advisory’, a ‘volcano 141	

advisory’, and a ‘volcano alert’, labelled from one to four for increasing severity and targeted primarily at 142	

Federal Agencies (US Forest Service 1992, pp.20-22). In response, emergency managers throughout the 143	

Cascade mountain range developed appropriate actions for each level.  144	

 145	

From May 1980, Long Valley caldera (15km by 30km) in eastern-central California began a long phase of 146	

unrest, generating serious concern amongst USGS scientists that volcanic activity might occur. The 147	

eruptive characteristics of calderas were, and still are, inadequately understood (Newhall and Dzurisin 148	

1988; Troise et al. 2006). The town of Mammoth Lakes, a ski resort popular with Californians, is located 149	

on the rim of Long Valley caldera and at the time was developing into a major international  resort with 150	

populations that swelled to more than 40,000 during peak weekends in the ski season (Hill 1998). At the 151	

time, many businesses and investors felt that negative publicity associated with the restless state of the 152	

volcano could ruin this growth potential, making management of the volcanic crisis very difficult (Hill 153	

1998, p.401). On October 11, 1983, as a consequence of bad feeling within the Mammoth Lakes 154	

community, the official 1977 USGS 3-tiered warning system was dropped to only one tier (see Federal 155	

Register v.48, n197iv): that is, ‘a formal statement by the director of the USGS that discusses a specific 156	

geologic condition, process, or potential event that poses a significant threat to the public, and for which 157	

some timely response would be expected’, (Hill et al. 2002, p.33) (author’s emphasis).  158	

 159	

Unable to operate on the basis of a single level warning system, Long Valley Observatory (LVO) has 160	

developed and changed its VALS more than any other USGS volcano observatory. The first VALS, 161	

introduced in 1991, was based on the USGS Parkfield earthquake prediction experiment, which used an 162	

alphabetic scheme of five alert levels from E to A in ascending order of concern, so that 'E' reflects weak 163	

unrest and 'A' reflects a warning for volcanic eruption (Bakun et al.` 1987; Bakun 1988). This system was 164	

adapted for volcanic hazards at LVO because it was the only formal alert level system the USGS used in 165	

California (Hill et al. 1991). Following significant levels of volcanic unrest during the 1990s it became 166	

clear via the media, however, that most people had no idea what a ‘D-level’ alert meant, other than it 167	

seemed serious and intimidated visitors to the region, and therefore was detrimental to business. In June 168	
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1997, the alphabetic VALS was converted to a four level colour VALS of Green, Yellow, Orange and Red 169	

(Fig. 2). In addition, distinctive shapes were used for the colour VALS that could be identified when using 170	

black and white print, and faxing. The shapes used were designed to match those used in the state to 171	

signify increasing difficulty of pistes, allowing skiers to more intuitively recognise the level of severity of a 172	

volcano warning (LVO senior scientist 1; 22/05/08/ and VHP manager 4; 23/05/08). As with the VALS 173	

adapted from the USGS Parkfield earthquake prediction experiment, there were detailed sub-levels and 174	

stand-down criteria, including at the red alert level. 175	

  176	

At the Alaska Volcano Observatory (AVO), yet other user groups and spatial areas of risk became crucial 177	

to the development of the observatory and the VALS. In 1986, Augustine Volcano in Alaska’s Cook Inlet 178	

erupted, generating clouds that disrupted regional air traffic (Casadevall et al. 1994). Volcanologists at the 179	

USGS office in Alaska worked with the University of Alaska Fairbanks Geophysical Institute (UAFGI), 180	

and the Alaska Division of Geological and Geophysical Surveys (DGGS), to forecast volcanic activity and 181	

advise the Federal Aviation Authority (FAA) and U.S. Air Force. By March 1986, this cooperation was 182	

formalised in the form of AVO charged with having responsibility for monitoring the four major Cook 183	

Inlet volcanoes: Augustine, Spurr, Redoubt and Iliamna. Then, in 1989, the eruption of Redoubt on 184	

December 15th, 1989, led to a Boeing 747 aircraft losing power in all four of its engines and dropping 185	

4km in altitude before reigniting the engines just 1km above the nearby mountain peaks (Brantley et al. 186	

1990). Whilst no casualties resulted, damage to the relatively new aircraft was estimated at USD80million 187	

(Steenblik 1990). This costly event widely affected commercial and military aircraft operations in the 188	

vicinity of Anchorage, causing the re-routing or cancellation of flight operations. This, in turn, seriously 189	

impacted the Anchorage economy since Ted Stevens Anchorage International Airport handles more 190	

international air freight (by dollar value) than any other airport in the U.S., and remains one of the largest 191	

cargo hubs in the world (Airport-technology 2010). Staff at the then small AVO began working with the 192	

FAA to develop a specific VALS for large ash plumes and ash clouds with the potential to impact aircraft, 193	

and introduced its colour code for aviation during the February 1990 eruption of Mount Redoubt. Unlike 194	

the VALS used by the Long Valley and Cascades volcano observatories, the AVO VALS needed to 195	

specifically communicate ash hazards as quickly as possible predominantly to the aviation community. 196	
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With this goal in mind, the AVO Scientist-in-Charge and the Volcanic Hazard Program Team Chief 197	

Scientist decided upon a simple colour-based traffic light system given the extensive use and simplicity of 198	

road traffic light systems around the world, along with an increasing use of colours in volcanic risk 199	

management already used across South America that had proved successful with local populations (AVO 200	

senior scientist 8; 22/04/08), and was renamed as the ‘aviation colour code for concern’ by AVO. 201	

 202	

With increased monitoring capabilities at AVO came recognition of increasing diversity of volcanic 203	

behaviour, which led to a number of modifications in the colour VALS. Following the 1996 Akutan 204	

volcano seismic crises, the VALS ‘description’ category (Keith 1995, p.5) was split into ‘intensity of unrest 205	

at volcano’, and ‘forecast’ (Waythomas et al. 1998, p.33). By 1998, however, the original colour code 206	

VALS were back in use suggesting that the forecasting element may have been too specific, making the 207	

alert level criteria too restrictive, and implying that volcanic activity could be forecast more accurately 208	

than actually possible in a majority of cases. On October 6th 2004, the Cascade volcano observatory 209	

(CVO) adopted the AVO colour VALS for ash, incorporating it into an updated VALS. In 2003, 210	

however, CVO staff working on the volcanic eruption response plans for Mount. Baker and Glacier Peak 211	

were asked by their workgroup stakeholders whether it would be possible to change the names of the 212	

alert levels to those used by the National Weather Service (NWS) for flood and tsunami warnings: 213	

‘Advisory’, ‘Watch’ and ‘Warning’ (CVO user – emergency manager 3; 13/04/08). It was felt by the CVO 214	

scientists that ‘a change to [National] Weather Service alert titles would prevent confusion during volcano 215	

crises and that a single alert scheme would be more useful for educating the public about hazard alert 216	

levels’ (U.S. FOIA).  217	

Hawaii Volcano observatory, by way of contrast, had never developed a VALS. High levels of activity at 218	

Kilauea, including its constant eruption from 1983 to the present, facilitated close relationships between 219	

the observatory and the local agencies (Tilling et al. 1987). Islanders have experienced numerous volcanic 220	

crises and emergency responders have developed sophisticated communication and responsive 221	

procedures within their communities (HVO user – emergency manager 1; 24/06/08), without the use of 222	

a VALS.  223	

 224	
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Within two decades, the USGS’s Volcano Hazards Program (VHP) had evolved in response to a number 225	

of crises and warning systems changes, few of which were the result of in-depth consultation or design. 226	

For the most part, these systems were driven by perceived local need, usually over a short time frame. Yet 227	

pressures to adopt a national aviation VALS, and user demands for the CVO VALS to comply with 228	

National Weather Service terms suggested that nationalisation of VALS was worthy of discussion, which 229	

would require consultation with the USGS’s external partners and VALS stakeholders. Within USGS 230	

management there was growing concern at having different conventions within the VHP, whilst 231	

promoting uniformity for aviation VALS. The question of standardisation was certainly being considered 232	

at observatory level; these discussions, however, were to be overtaken by federal decision-making, and a 233	

top-down series of directives.  234	

Scaling-up VALS in a post-9/11 United States 235	

Following 9/11, U.S. Congress passed the Homeland Security Act (2002), creating the Department of 236	

Homeland Security (DHS) in an effort to improve coordination between the different federal agencies 237	

that deal with law enforcement, disaster preparedness and recovery, border protection and civil defence. 238	

This led, in the same year, to the launch of Homeland Security Advisory System - a colour coded 239	

terrorism risk advisory scale created to accommodate the Presidential Directive to provide information 240	

relating to terrorist acts to federal, state, and local authorities and the public (US Department of 241	

Homeland Security 2010) - and the establishment of a national emergency warning system (EAS). In 242	

2004, one year after discussion and vetting, the National Incident Management System (NIMS) was also 243	

accepted for all federal departments, including the U.S. emergency management agencies, as a national-244	

level policy for incident management in order to enable effective and efficient incident management and 245	

coordination through provision of a flexible, standardised incident management structure (Department of 246	

Homeland Security 2008, p.1). To do this, three key elements were developed: the Incident Command 247	

System (ICS), Multiagency Coordination Systems (MACS), and Public Information that provided 248	

standardisation through consistency of terminology and commonality of established organisation 249	

structures (e.g. the Joint information Centres; JICs). Crisis management was now tailored to address the 250	

terrorist threat and, as a consequence, policies to standardise systems for procedures and warnings across 251	

a multi-hazard platform dominated the period from 2002. 252	
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	253	

In 2004, the International Civil Aviation Organisation (ICAO) incorporated the AVO colour VALS into 254	

its �Handbook on the International Airways Volcano Watch’, with one modification (the removal of 255	

height thresholds associated with particular alert levels) (ICAO 2004). By September 2005, the AVO 256	

colour code of concern VALS was formally adopted in principle by ICAO to provide notification of the 257	

status of a volcano for the purpose of supporting operational decisions to issue warnings globally. ICAO 258	

specifies that ‘the colour code [alert level] describes conditions at / near the volcanic source circa the time 259	

of eruption and is not intended to describe the hazard potential of the drifting ash cloud itself at locations 260	

distant from the volcano or after the volcano has stopped erupting’ (ICAO 2005, p.5-9). In contrast, no 261	

consensus had, at this time, been built for an internationally standardised VALS for ground-based 262	

hazards.  263	

 264	

At an observatory level, it became clear that VALS stakeholders were not only diverse, but required 265	

different information across a range of temporal and spatial scales. At an institutional level it was argued 266	

by USGS staff that the multiple VALS within the VHP presented a fragmented appearance, lacked 267	

consistency, and complicated the role the overseas VDAP team when advising about the adoption of a 268	

VALS at different volcanoes. The U.S. President himself, it was argued, wanted to have a simple system 269	

whereby he could quickly visualise and understand the relative danger levels associated with a hazard 270	

(VHP manager 6; 21/05/08).  271	

 272	

In 2003, the VHP team Chief Scientist formed a 'standardisation committee', instructed to determine 273	

whether a single alert level notification scheme could be developed to cover all possible volcanic hazard 274	

scenarios, and if no generally-applicable system could be determined, what the alternative options were 275	

(CVO manager; 07/05/08). The committee comprised a representative member from each volcano 276	

observatory along with the USGS Project Chief of the World Volcanic Activity and Aviation Hazards 277	

project. The requirements to comply with other federal agency alert systems and adhere to the U.S. 278	

Emergency Alert System (EAS) and Common Alert Protocol (CAP) meant that warnings must be 279	

compatible between alerting technologies (using an XML-based data format) to simplify warning 280	
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activation and increase a warning’s effectiveness (AVO collaborator 2; 17/04/08). The single most 281	

contentious aspect of the entire process, however, were questions related to the design of the VALS. For 282	

example; how many VALS and alert levels would be needed? should they be based upon words or 283	

colours? would a focus on volcanic activity or forecast behaviour be most appropriate?, what criteria 284	

would best define the different alert levels. At the same time, the extant aviation VALS was under 285	

discussion for adoption by the International Civil Aviation Organisation (ICAO), thereby restricting 286	

potential designs for a standardised VALS.  287	

 288	

In May 2004, based upon discussions with Cascadian coordination groups that bring together the 289	

different stakeholders involved in a potential volcanic crisis, a white paper written by the standardisation 290	

committee reviewed the feasibility of a single unified VALS for all U.S. volcanoes (Gardner et al. 2004).v  291	

In October of that year, however, as the white paper awaited sign-off at CVO by the VHP team Chief 292	

Scientist, Mount. St. Helens began erupting, leaving CVO personnel no choice but to use the established 293	

CVO VALS that was familiar to stakeholders. During this resulting hiatus, debate over the design of a 294	

standardised VALS continued, with suggestions for the form it should take became more diverse as 295	

stakeholder input increased. 296	

 297	

During 2004 and 2005, discussion driven by members of the standardisation committee, particularly those 298	

that worked within the aviation sector (CVO manager; 07/05/08 CVO senior scientist 2; 09/05/08), 299	

resulted in concerns over the adoption of a single VALS; ‘the sticking point was one colour really can’t 300	

capture activity in the way that is relevant to both ground and aviation’ (VHP manager 1; 22/05/08). 301	

Email correspondence from AVO senior management to the VALS standardisation committee in 302	

September 2005 (U.S. FOIA) outlined concerns that – in the proposed single VALS - ground hazard 303	

users and the public would use the colour code instead of the National Weather Service descriptive terms, 304	

which could create confusion. The driver that led to the division of the proposed single VALS into two 305	

separate alert level systems appears to have been the need to provide a separate tailored product for 306	

aviation stakeholders; perhaps understandable given their financial investment in the VHP (particularly at 307	

AVO) and their different requirements. A pilot needs to access warning information quickly due to the 308	
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high velocities of commercial aircraft, whereas for ground hazard stakeholders a lead-time is preferred so 309	

as to educate and inform those who need to know. 310	

 311	

In March 2006, after three years of long and complex discussions, an agreed standardised VALS was 312	

implemented as a dual system. The ground hazard VALS reflects the level of activity / conditions at the 313	

volcano, and on-going or expected hazardous volcanic phenomena, using National Weather Service 314	

terminology, while an aviation colour code (VALS) (adopted by ICAO) is based upon the initial colour 315	

VALS developed by AVO in 1990 (Figs. 3 and 4).vi  316	

 317	

For most eruptive activity, the ‘alert-level term’ and ‘code colour’ change together (e.g. Yellow and 318	

Advisory). Because some volcanic eruptions generate hazards that affect ground and aviation 319	

communities differently, however, the VHP decided that in these cases the alert level and colour code can 320	

move independently so as to provide flexibility in accommodating end members in the spectrum of 321	

volcanic activity;  322	

 323	

For example, an eruption of a lava flow that threatens a community but produces no significant ash 324	

might warrant a volcano alert level of Warning but an aviation colour code of Orange. On the other 325	

hand, an eruption that produces a huge cloud of volcanic ash that does not drift over inhabited areas 326	

might warrant a volcano alert level of Watch and an aviation colour code of Red (Gardner and 327	

Guffanti 2006, p.4). 328	

 329	

Whilst this created flexibility in the use of the VALS, there were concerns that this might lead to 330	

inconsistencies between its operation at different volcano observatories, which could create confusion for 331	

the public and other stakeholders. The final decision to split the VALS was not unanimous. A quote from 332	

one of the key scientists involved in the process at CVO summarises the strong influences on the final 333	

form and its adoption: 334	

 335	

We didn't have a completely blank slate to work with. We couldn't hatch our own system from 336	

scratch. We were working in the context, and the context was that there is this colour code that the 337	
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aviation industry had adopted and there was this National Weather Service code that not only a lot of 338	

ground-based managers adopted, but apparently also wanted us to use, and so given those two things 339	

I don't really see that we have a choice (CVO scientist 3; 07/05/08). 340	

 341	

The pressure to accommodate aviation demands due to the financial benefits that the aviation sector 342	

provided to the VHP was of key importance at a time, post-9/11, when all federal agencies were 343	

experiencing the Bush Administration’s squeeze on funding resources (CVO manager; 07/05/08 and 344	

LVO senior scientist 1; 22/05/08).  345	

 346	

AVO was the first observatory to adopt the new mandated VALS since they already operated the aviation 347	

code, and on 1st October 2006, CVO adopted the new VALS as the reduced level of activity at Mount. 348	

St. Helens meant that the VALS could be changed without confusing stakeholders. No formal notices 349	

about the change in VALS were issued, and there was minimal coverage by the media (CVO user – 350	

media; 13/05/08), which is perhaps a reflection of the public’s lack of interest in VALS. Later in 2006, 351	

HVO, LVO and YVO adopted the VALS, although LVO were less keen to adopt a new VALS having 352	

just redesigned their own alert level system in 2002 (LVO senior scientist 1; 22/05/08). Each observatory 353	

had responsibility for educating the public and other stakeholders about the standardised VALS, and to 354	

aid this a USGS Fact Sheet was produced and disseminated to stakeholders and the public online and via 355	

printed sheet (Gardner and Guffanti 2006).  356	

 357	

The four key requirements established by the USGS for the standardised VALS were to: ‘1) accommodate 358	

various sizes, styles, and duration of volcanic activity; 2) work equally well during escalating and de-359	

escalating activity; 3) be equally useful to both those on the ground and those aviation; and 4) retain and 360	

improve effective existing alert notification protocols’ (Gardner and Guffanti 2006, p.1). These 361	

requirements focus on hazard assessment, in light of a volcano’s activity, and do not address issues of risk 362	

(such as risk evaluation or risk maps) which are typically completed by emergency and disaster 363	

management (Federal, State, or local) in close collaboration with the USGS.  Additionally there was 364	

pressure for the VHP to adopt the commonly known and used National Weather Service (NWS) 365	
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terminology (also adopted for tsunami warnings in the U.S.). Volcanic hazards, however, are very 366	

different from meteorological ones, and the NWS bases its warnings on probabilities. Since the frequency 367	

of recorded volcanic activity is typically insufficient to allow comparably accurate probabilistic models, 368	

the NWS terms in the VALS are used in a way that is different to that when applied to meteorological 369	

hazards.  370	

 371	

In summary, the key factors that led to the standardisation of the USGS VALS were only marginally 372	

related to the current scientific understanding of volcanic behaviour and hazards, and how to best 373	

represent these in a warning, and more driven, ultimately, by the social context of the post 9/11 U.S., 374	

which shaped the broader emergency management policy. Prior to 9/11, the USGS volcano observatories 375	

were able to use their scientific understanding of the volcanoes for which they were responsible to design 376	

appropriate VALS that, had evolved over time to incorporate local cultural aspects, such as the piste 377	

difficulty level shapes at Mammoth Lakes, to make their VALS more relevant to local stakeholders and 378	

vulnerable population. The latter, however, also include those in the air or further afield, whose 379	

vulnerability to volcanic activity is better addressed through scaling-up of VALS standardisation, which is 380	

beneficial for national and international stakeholders such as the U.S. Government, ICAO, and national 381	

emergency managers, although less pertinent to local communities. 382	

Scaling-down VALS  383	

It is through the practical application of the standardised VALS that it becomes apparent that local 384	

contingency unravels even the best efforts at standardisation. Three key issues contribute to the 385	

breakdown of standardisation in practice: first, the diversity of volcanic behaviour and hazards, including 386	

spatially and temporally; second, the pluralistic social and institutional contexts of the different volcano 387	

observatories; and third, differential abilities to effectively communicate a warning.  388	

 389	

A wide range of hazards can be sourced at a volcano, whether it is active or not; potentially occurring at 390	

geographically distinct locations and at different times. All of these hazards, except for ash, are excluded 391	

from the standardised VALS, which relates only to the occurrence of eruptive activity at a volcano and 392	

not to associated hazards. Observatories have, therefore, developed independent alert level systems for 393	
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different hazards that require specifically tailored warning systems. The problem of sulphur dioxide gas 394	

release in Hawaii, for example, has resulted in the development of two volcanic gas warning systems: one 395	

operated by the Hawaii Civil Defense authorities (Hawaii State Dept. of Health and County Civil Defense 396	

2008) and a second by the USGS with the Hawaii Volcanoes National Park (Hawaii Volcanoes National 397	

Park 2008). At Long Valley volcanic gases also have an important focus, being one of the volcanic 398	

hazards that has recent taken lives in the caldera. In 2006, three ski patrol staff succumbed to carbon 399	

dioxide poisoning when they fell into a hole melted in overlying snow by a fumerole (LVO user – 400	

Mammoth Lakes town 2; 4/06/08 and LVO user – emergency manager 1; 03/06/08). Consequently, 401	

Long Valley caldera is monitored for carbon dioxide, particularly around Horseshoe Lake where, in 1990, 402	

the gas resulted in the death of trees across an area of 170 acres (Sorey et al. 1996), (LVO senior scientist 403	

1; 22/05/08). Similarly, lahars present a distinctive and serious threat at some U.S. volcanoes since they 404	

can travel at velocities up to 80kmph down valleys towards populated areas, usually facilitating a warning 405	

that provides emergency managers with less than an hour in which to evacuate vulnerable populations 406	

(Scott et al. 2001). As a result, rapid warning systems have been specifically designed for lahars (Lockhart 407	

and Murray 2004). At CVO this is a significant concern since large lahars have occurred in the past on 408	

many of the Cascade volcanoes, travelling significant distances (sometimes greater than 100km) across 409	

what is now densely populated or industrialised land. 410	

 411	

Whilst the standardised VALS was intentionally designed to allow the flexibility required by different 412	

observatories to cater for specific volcanoes and their hazards by de-coupling the two sets of warnings, in 413	

practice this was experienced differently according to the observatories’ historical legacy. HVO, for 414	

example, which had no prior institutional experience of using a VALS, had to assign active but non-415	

erupting volcanoes an alert level and discuss them at science meetings, which they had never done before. 416	

One HVO scientist said ‘all of a sudden we are debating about what colour [alert] Mauna Loa should be 417	

rather than focusing on the science and what it means’ (HVO scientist 2; 27/06/08) (author’s emphasis). 418	

When assigning Mauna Loa an alert level conflict arose because, although it had shown signs of unrest in 419	

recent years, staff who had worked at other observatories felt it did not warrant a Yellow / Advisory alert 420	

level since it gave little scope to issue a higher alert level should further abnormal activity occur. There 421	
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was clear conflict between those scientists at HVO who had worked with VALS before, and understood 422	

the strategic nature of how VALS can be used in a given context, and those that had no experience with 423	

them and relied on the description of the VALS as a strict criterion for assigning an alert level (HVO 424	

scientist 2; 27/06/08).  425	

 426	

Each volcano, then, has its own behaviour patterns or 'character' as the scientists described it (CVO 427	

scientist 9; 05/05/08), making it difficult to use standardised monitoring parameters to determine the 428	

volcano’s level of activity:	‘I have been a sceptic about this standardisation all along,’ one noted, 429	

 430	

mainly because I look out across the globe and see so many different situations and scenarios, 431	

that I think it could be difficult, that it might not be informationaly sound and correct to try and 432	

cookie cutter something that applies in every situation [to] every volcano everywhere. Now many 433	

of my colleagues completely disagree with me on this […]. I always feel like modern society 434	

needs to box everything into organised cubicles and have something that applies to everything. 435	

I'm just not sure that this really lends itself [to that process] (AVO senior scientist 1; 10/04/08). 436	

	437	

The great majority of scientists interviewed actually identified with this problem, but also defended the 438	

use of the standardised VALS as the best possible solution to the problem of issuing volcano warnings at 439	

U.S. volcanoes, given constraints of time and resources. That is, despite concerns about the standardised 440	

VALS, a majority of staff felt that it is useful, regardless of its design or operation, because without it 441	

information cannot be easily communicated or disseminated. The following quote from a CVO scientist 442	

on the standardisation committee captures the dilemma of using a simple VALS to communicate complex 443	

messages: 444	

 445	

It’s a very tricky business; any time you try to communicate a complex message in a simple way, it's 446	

very, very difficult. You still have to do it, it is still necessary, it’s still important, but it's difficult 447	

because volcanoes are so complex and diverse and situations are so different, it’s just fundamentally 448	

different if you have a volcano doing a certain thing within reach of a large population centre, or not, 449	

whether you are intensively monitoring a volcano or whether it is out in the middle of the Aleutians 450	
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and you have very little monitoring. It’s very hard to standardise, because the situations you are trying 451	

to describe in a single colour or single alert level can just be so varied (CVO senior scientist 1; 452	

16/05/08). 453	

	454	

With regard to communication, however, the users interviewed emphasised that clarity is very much 455	

lacking in relation to what a particular alert level means within a specific context, as by itself an alert level 456	

‘can be vague’ (LVO user – emergency manager 1; 03/06/08). Stakeholders want to know why there was 457	

a change in alert level and seek further, specific, information; they are ‘not just going to look at red and 458	

evacuate’. (HVO user – emergency manager 1; 24/06/08). VALS do not relate to a number of volcanic 459	

hazards that can cause a great deal of concern; therefore, the ‘alert level itself is less important as to what 460	

they have to do in response to about it’ (CVO scientist 6; 30/04/08). Although messages accompanying 461	

volcano alert levels have been used at U.S. volcano observatories since the 1980s, so as to provide more 462	

contextual information, these messages are becoming standardised in the form of communication 463	

products referred to as the Volcanic Activity Notice (VAN) and Volcano Observatory Notices for 464	

Aviation (VONA) that are computer generated by a scientist populating pre-assigned data fields.  465	

VALS, then, impinge upon and interact with a number of complex scientific, social and institutional 466	

issues. Figure 5 provides a summary of these issues in relation to each U.S. volcano observatory, and 467	

details how the standardised VALS has so far been adapted to cope with them. It can be seen that in 468	

practice a number of variables of a scientific, social and institutional nature have contributed to the 469	

adaptation of the standardised VALS; the very act of adaptation highlighting limitations to the 470	

effectiveness of the ‘scaled-up’ standardisation, since this process is inevitably undertaken in order to 471	

address local contextual factors. 472	

 473	

In Conclusion: to standardise or not? 474	

This paper has identified a number of advantages and disadvantages for local and national users in 475	

relation to the development of local and nationally standardised VALS, which are summarised in Figure 6.  476	

Using a local system provides greater flexibility with regard to adapting to local needs (both hazard-related 477	

and socially focused) and integrates the VALS into the management processes of the crisis.  Local systems 478	
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are, however, becoming increasingly constrained by nationally standardised disaster protocols such as the 479	

National Incident Management System (NIMS) and Common Alerting Protocol (CAP). Dependence on 480	

common terminology for each alert level may help streamline communications but equally can be 481	

misleading as a standardised VALS cannot provide the specific information that a locally developed 482	

VALS can. Limitations in the ability of a standardised VALS to provide diversity and pluralism suggest 483	

that there may not be enough flexibility in the design. It is clear that designing one standardised VALS 484	

(even with two separate systems) to accommodate all possible contingencies in all possible circumstances 485	

at all U.S. volcanoes is difficult. The principle of ‘one size fits all’ does not apply to VALS, which need to 486	

be adaptable so as to reflect changes in a particular volcano’s behaviour and its impact on the local 487	

population, and this is better accomplished when considered from a holistic perspective that allows 488	

incorporation all possible variables, some of which may not be apparent prior to the development of a 489	

volcanic crisis situation. 490	

 491	

Whether the standardised VALS work at different scales and for different stakeholders may be a 492	

reflection of the drivers underpinning the standardisation process. It is clear that in the U.S. case, the 493	

design of the standardised VALS was led by social, political, and economic circumstances that followed 494	

from 9/11 and the implementation of national policies (NIMS and CAP) rather than the scientific needs 495	

specific to each U.S. volcano. As a result, implementing the standardised VALS has been challenging for 496	

three reasons: first, the diversity and uncertain nature of volcanic hazards at U.S. volcanoes, occurring at a 497	

range of different temporal and spatial scales, have resulted in the development of specific warning 498	

systems designed to address specific hazards and the related requirements of local stakeholders, making 499	

the standardised VALS redundant in a number of volcanic crisis situations. Second, the dual standardised 500	

VALS operates within plural social and institutional contexts in which prior historical VALS were already 501	

embedded, posing challenges in the ability of the standardised VALS to respond to local knowledge and 502	

context, which time and again has proven to be vital element in the handling of volcanic crises in the U.S.. 503	

Third, the contingencies of local institutional dynamics, which change over time and from place to place, 504	

may hamper the ability to communicate effective warnings. Nevertheless, a need for standardisation is 505	

recognised, and a number of positive aspects for the USGS, policy makers, government and other 506	
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stakeholders, arising from the adoption of a standardised VALS, have been identified. In addition, a 507	

standardised VALS has proven to be more applicable for the aviation sector, which requires a standard 508	

format that it can relate to across the U.S. and its territories, and is also more suited to emergency 509	

managers operating under standardised emergency procedures following the implementation of the 510	

NIMS.  511	

 512	

From the perspective of the USGS, most of the staff interviewed felt that the standardised VALS has 513	

generally worked well resulting in a number of benefits, but also some drawbacks for the Volcano Hazard 514	

Program team (Fig. 7). From a managerial or policy perspective, it could be argued that the standardised 515	

VALS works well operationally, since all the observatories use it to relay the status of volcanic activity. 516	

From a stakeholder perspective, however, it lacks the capability to: provide details about specific hazards 517	

associated with a particular restless or erupting volcano; differentiate between temporal and spatial 518	

elements of a specific hazard; or provide guidance on what action or response to take, which is left to the 519	

stakeholders to decide. Notwithstanding this, neither the data, nor the experience, are available to fully 520	

balance the long term benefits against the drawbacks of a standardised VALS that has not long been in 521	

place. 522	

  523	

Although consistency is frequently identified as a key justification for standardisation, in the context of 524	

VALS consistency is dependent not on its standardisation, but on the flexibility provided through the 525	

many communication products (e.g. VANS, VONA’S, and information statements) and networks 526	

developed between the scientists and the users. These products facilitate the essential need for follow-up 527	

effective communication of additional information to clarify the designation of, or changes in, an alert 528	

level, whichever VALS is used, that are of particular value to stakeholders. This paper has established that 529	

while it is not possible to completely exclude local requirements in a standardised VALS, due to variances 530	

in hazards, social contexts, and institutional practices within each observatory, it is through the 531	

development and effective utilisation of communication products, as implemented at the USGS, that a 532	

standardised VALS can operate successfully. 533	
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In future, efforts to standardise VALS at national and international scales look likely to proceed rapidly in 534	

response to the requirements of ‘global’ clients such as the aviation industry. Yet, there have been real 535	

challenges in getting the ICAO aviation code adopted globally. It is still only used within the U.S. and 536	

although on paper it has been accepted for global use, operationally it has not, so far, been actively 537	

adopted outside of the U.S.. Whether or not all countries that host active volcanoes will be pressured by 538	

ICAO in the future to comply with the U.S. VALS remains to be seen, but policy implementation at such 539	

a scale will undoubtedly generate some interesting challenges. The USGS VALS case study that forms the 540	

basis of this paper highlights the fact that balancing the needs of local, national, and international users 541	

when standardising a VALS is both a difficult and complex process, but one that is made significantly 542	

easier through the use of communication products between different stakeholders that facilitate the 543	

transfer of tailored and specific information. Perhaps adopting a less prescriptive VALS that is scalable 544	

and flexible for the use of local users via standardised communication products that may help 545	

accommodate local contingency yet, adhere to national policy.	Using such a VALS may facilitate greater 546	

and more practical levels of seamless communication so as to overcome the diversity of physical and 547	

social complexities involved in generating effective volcanic warnings.    548	

																																																													
ii The observatories are: the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), 
Hawaiian Volcano Observatory, Long Valley Observatory (now California Volcano Observatory - 
CalVO), and the Yellowstone Volcano Observatory (YVO). The collaborative partners are: University of 
Alaska, Fairbanks (UAF), Alaska Division of Geological and Geophysical Surveys (ADGGS), University 
of Washington (UW), University of Hawaii, Hilo (UHH), University of Utah (UU), Yellowstone National 
Park (YNP).   
	
iii Semi-structured interviews were completed with a number of actors involved in the VALS: scientists 
within the USGS Volcano Hazard Program (VHP), including volcanologists, seismologists, glaciologists 
and chemists; with users of the VALS at other federal agencies; and with collaborative partners, such as 
Universities and State officials. There are a diverse range of VALS users, ranging from emergency 
managers to land owners (U.S. Forest Service, National Monuments, private land) who are generally local, 
to partner organisations (collaborative universities and institutes), state geologists, and the National 
Weather Service (NWS), which are regionally at state-level, and the aviation sector (VAACs and Air 
Traffic Control), which are national. The interviews provide insights into the personal perspectives of the 
variety of scientists and users involved in the design and implementation of the VALS. This is 
complemented by ethnographic observational data on the interactions between these different 
perspectives in practice, and document analysis on the historical emergence and stabilisation of these 
policies. Data are also derived from the archive released under the Freedom of Information Act (U.S. 
FOIA), including emails of different staff within the VHP that discuss the standardisation of the VALS.  
	
iv	The Federal Register is available online, but only since 1994. Access to v.48. n197 from October 11, 
1983 can only be provided by Federal depository libraries within the U.S.. Outside the U.S., some major 
libraries may also carry the Federal Register.	
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v Still in effect (to date of writing), the official (bureau-level) USGS hazard notifications system can only 
issue a formal hazard warning, although no official warnings have been issued since the 1984 eruption of 
Mauna Loa, Hawaii on March 29th (email correspondence from Menlo Park scientist to standardisation 
committee in March 2003, U.S FOIA archives). 
	
vi The odd thing is that the NWS terms that usually describe meteorological hazards are not used to 
describe the ash hazards influenced by meteorological systems, but the ground hazards (AVO 
collaborator 3; 17/04/08). 
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Fig. 1: The USGS’ Volcano Hazard Program (VHP) observatories and their collaborative 

partners
1
 (USGS VHP Website 2008). Image credit: U.S. Geological Survey Volcano Hazard 

Program 

Fig. 2:  Summary of Colour-Code Conditions and associated U.S. Geological Survey (USGS) 

responses for volcanic unrest in Long Valley Caldera and the Mono-Inyo Craters region (Hill et 

al. 2002, p.2). Image credit:  U.S. Geological Survey  

Fig. 3: Volcano Alert Levels (Gardner and Guffanti 2006, p.2) Image credit:  U.S. Geological 

Survey 

Fig. 4: Aviation Colour Codes (Gardner and Guffanti 2006, p.3) Image credit:  U.S. Geological 

Survey 

Fig. 5: Summary of the different influences at each observatory and their impact on how the 

VALS is used.  

Fig. 6:  The pros and cons of local and standardised VALS. 

Fig. 7: Perceived benefits and drawbacks of the use of the standardised VALS within the USGS 

                                                             
1 The observatories are: the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), 

Hawaiian Volcano Observatory, the Long Valley Observatory (now California Volcano Observatory, 

CalVO), and the Yellowstone Volcano Observatory (YVO). The collaborative partners are: University of 

Alaska, Fairbanks (UAF), Alaska Division of Geological and Geophysical Surveys (ADGGS), University 

of Washington (UW), University of Hawaii, Hilo (UHH), University of Utah (UU), Yellowstone National 

Park (YNP).  
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