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Abstract

We study the problem of learning a sparse linear regressotorunder additional conditions
on the structure of its sparsity pattern. This problem ievaht in Machine Learning, Statistics
and Signal Processing. Itis well known that a linear regoessan benefit from knowledge that
the underlying regression vector is sparse. The combia&fmoblem of selecting the nonzero
components of this vector can be “relaxed” by regularising $quared error with a convex
penalty function like the/; norm. However, in many applications, additional condisiam
the structure of the regression vector and its sparsityepatire available. Incorporating this
information into the learning method may lead to a significtatrease of the estimation error.

In this thesis, we present a family of convex penalty fundiovhich encode prior knowl-
edge on the structure of the vector formed by the absoluteesalf the regression coefficients.
This family subsumes th& norm and is flexible enough to include different models ofrspa
sity patterns, which are of practical and theoretical intgnoce. We establish several properties
of these penalty functions and discuss some examples wheyecan be computed explicitly.
Moreover, for solving the regularised least squares prohdgth these penalty functions, we
present a convergent optimisation algorithm and proximethod. Both algorithms are useful
numerical techniques taylored for different kinds of péeal

Extensive numerical simulations highlight the benefit aficttured sparsity and the advan-
tage offered by our approach over the Lasso method and adlzted methods, such as using

other convex optimisation penalties or greedy methods.



Abstract



Acknowledgements

| am greatly indebted to my supervisor, Prof. Massimiliakta¢si) Pontil. He always proved
to be very generous, and he gave me the wonderful opporttmitggme to University College
London to study Machine Learning, and to be involved in hiseegch activity. He believed
| could get a Ph.D. even after | spent three years working én“thal world”, corrupting my
brain. He has always been very encouraging and supportk,for my research and for my
life in London. It was interesting as well as fun to work wittmh and | had a stimulating and
truly enjoyable experience.

| am grateful to my second supervisor, Mark Herbster. | bésefirom graduate lectures
by him | could attend early in my studies, and from being aliearassistant a few years later.
Most importantly, | had the opportunity of working with him & research project. During that
period he was pleasant and helpful, and made me understamgbdid ideas in simple terms,
always with a graphical intuition. | learned a lot from him.

| would like to thank Charles Micchelli who collaborated witny supervisor and me in
what would become some of the key results of this thesis. Karmpressive knowledge and
an evident passion for what he does. It is inspiring to worthwim, and he provided me with
invaluable suggestions.

| thank my examiners, Serge Guillas and Tijl De Bie, for theierest in this work and for
their useful comments.

My gratitude also goes to Andreas Argyriou for many prattacdvise he offered me. He
participated in a paper we wrote towards the end of my Ph.i.hé was here at UCL when
| arrived and we shared a large number of discussions. Hethele a lot, and | admired his
excellent research skills.

| am especially thankful to Luca Baldassarre for sharingehisrgy and enthusiasm. We
worked a lot together, and | could discuss with him many tezliraspects of the experiments
that were an essential part of our research.

| am also indebted to the many students | met during thesesyehad the fortune to learn

and to grow in a lively and entertaining environment. Amoliglavish to single out Lorella



6 Acknowledgements

Campanale, for her brief, yet unmistakably high-energyhfimpact visit here in London.

| wish to thank also the people in Italy who encouraged anpdtkeine to study abroad. In
particular | am very thankful to Prof. Pietro Terna and tofPiHisao Fujita-Yashima who were
kind enough to write a reference letter on a clearly too shaorbtice.

Thanks to Stefania, who really helped me atoglgré tout

Thanks to Miriam and to Marisa, for making such a diverse aly company. It is
impossible for me not to laugh with joy when | am with you.

Finally, I wish to thank my parents who raised me, loved mppsuted me and encouraged
me to pursue my dreams even if that meant they had to miss nrgdbese years. | love you

both dearly.



Contents

1

2

Introduction 15

Background 21

2.1 Standardsparsity . . . . ... e e e e 22

2.2 Structured sparsity withgreedy methods . . . . .. . ... . ... ..... 24
221 OMPandCaSpaR ... .. ... . ... . ... 24
222 StructOMP . . . . 27
223 Compressive Sensing . . . . . . . . i e e e e e 0 3

2.3 Structured sparsity with convex optimisation . . . . . ............ 32
231 GrouplLassoandCAP . ... ... .. . . ... ... . 33
2.3.2 Grouplassovariants . . . . ... ... ... 5 3
2.3.3 Geometric interpretation . . . .. ... ... ... ... .. .. .. 36
2.3.4 Bayesian Lasso and MAP estimates . . ... ... ......... 38

Modified ¢, approach 41

3.1 Proposedpenalty . ... ... ... . .. ... 42

3.2 Functionproperties . . . . . . . . . ... 44
3.21 Derivative of2 . . . . .. 44
3.2.2 Conditions forbeinganorm . .. .. ... ... ... ........ 45
3.2.3 Compositionofpenalties . . . . . . ... ... ... ... ... .. 46
3.24 Dualnorm . ... .. 47
3.2.5 Dual norm of Lagrangian formulation . . . . .. ... ... .... 49
3.2.6 Equilibrium condition foroptimality . . . . . ... ... ... .. .. 50
3.2.7 Two quasihomogeneous properties . . . . . . . ... . ... ... 52

3.3 Examplesofset . . .. ... . .. ... 52
3.31 Boxpenalty ... ... ... . ... 53
3.3.2 WedgePenalty ... ... ... ... .. .. ... 54



Contents

3.3.3 Graphpenalty. ... ... ... ... . .. ... .. 59
334 Tree-Cand Grid-C . . . .. .. . ... ... . 64
3.4 Duality . .. .. e 64
3.5 Specialcases . .. ... . ... e 7 6
3.5.1 Euclideannormand GrouplLasso ... ............... 68
3.5.2 Dirtymodell2/¢1 . ... 68
3,53 Dirtymodel2/¢y . . . ... 70
354 Ditymodel)/é3 . . . .. 71
3.5.5 Overlapping groups . . . . . . . ..o 27
Numerical algorithms 75
4.1 Alternating algorithm . . . . . . . . .. ... .. e 76
4.1.1 Descriptionand convergence . . . . . . . . ..o e e 76
4.1.2 Solving the quadraticift . . . ... .. .. ... .. ......... 78
4.1.3 Computation of special penalties . . . .. ... ... ... ....... 79
4.2 Proximalmethods . . . . . . . .. ... ... 82
4.2.1 Computation of the Proximity Operator . . .. ........... 83
4.2.2 Accelerated Proximal Method . . . . . ... ... ... ..... ... 85
Numerical experiments 89
5.1 Experiments fordifferentsefs . . .. ... ... ... ... .. ..., 89
5.2 Efficiency experiments forNEPIO . . . . .. ... ... ... ....... 93
53 Tree-Cand Grid-C . . . . . . . . . . . e 6 9
5.4 Tree-Cand exaCt proXy . . . . . . v v v v v i i e e e e e e e e 99
Conclusions 103
Notations 105
Proofs 107
Algorithms 113
Specialised Bregman iteration 117
D.1 Generalities of Bregmaniteration . . . . . . . .. .. .. .. . ... .. 117

D.2 Special case of Grid-C Constraints . . . . . . .. .. .. ... ..o . .. 119



Contents

E Dual Problem and QCQP Formulation

E.1 Norm Constraints

E.2 Conic Constraints



10

Contents



List of Figures

2.1
2.2

3.1

3.2
3.3

5.1

5.2

5.3

54

55

5.6

5.7

Geometrical intuition for thelasso. . . . . . . . . . . . . . . . .. .. ... 37

Unitballs of¢y, Qand Group Lasso. . . . . .. .. .. .. ... .. ...... 37

(a): Functior'(-, \) for some values ok > 0; (b): FunctionI'(3, -) for some
valuesofB € R.. . . . . . e 43
Partition of3 = (—1.477,0.694, —0.173, —0.916, —1.126,0.525, —0.957). . . . 55
Unit ball of different penalty functions: (a) Wedge piegpd2(-|1V); (b) hier-
archical Group Lasso; (c) Group Lasso with groygs, 2}, {3}}; (d) Group

Lasso with groupg{1},{2,3}}; (e) the penaltyf2(-[W?2). . . ... ...... 59

Comparison between different penalty methods: (a) Boxasso; (b,c) Wedge
vs. Hierarchical group Lasso; (d) Composite wedge. Seeféexhore infor-
Mation . . . . . . .. e 90

Penalty(5|W*), k = 1,...,4, used for several polynomial modelgt) de-

greel, (b) degree2, (c) degree3; (d) degreet. . . . . ... ... ... .... 92
Silhouette of the polynomials by number of degree: k = 1, (b) k = 2, (¢)
k=3, (d) k=4 . . . 93
Penalty(3|W*), k = 1,...,4, used for several polynomial models with ran-

dom values between the rooté:) degreel, (b) degree2, (c) degree3; (d)

Lasso (top) vs. penalfy(-|A) (bottom) for Convex (left) and Cubic (right); see
text for more information. . . . . .. . ... L L o 95
Computation time vs problem size for Grid-C (top-lefifdree-C (top-right).

Difference with the solution obtained via CVX vs Picard-@lgolerance (bot-

1D contiguous regions: comparison between different metfodsne (top-

left), two (top-right), three (bottom-left) and four (both-right) regions. . . . . 97



12

List of Figures

5.8 Two 1D contiguous regions: regression vector estimated by diffemodels:

5* (top-left), Lasso (top-right), StructOMP (bottom-lef§rid-C (bottom-right). 97
5.9 2D contiguous regions: comparison between different metliodsne (top-

left), two (top-right), three (bottom-left) and four (both-right) regions. . . . . 98
5.10 2D-contiguous regions: model vector (left) and vectors estiid by the Lasso,

StructOMP and Grid-C (left to right), for one region (top gp) and two regions

(bottom group). . . . . . . e e 98
5.11 Model error for the background subtraction (left) ancheramarfright) exper-

IMENTS. . . . . e 99
5.12 Model error for the synthetic tree experiment for thee¢hsparsity patterns

described inthetext. . . .. ... ... ... ... ... ... ... 001
5.13 Model error for the wavelet tree experimeltt,x 16 (left) and32 x 32 (right). 101
5.14 Average running time against dimensions for Algorithand Algorithm 4.1. 102
5.15 Average running time (top) and number of iterationgt@mo) against dimen-

sions for alternating algorithm (AA)and Fista. . . . . . ... ... ... .. 102



List of Algorithms

4.1
4.2
4.3
Cl
C.2
C.3
CA4
D.1
D.2

Iterative algorithm to compute the wedge partition . ...... . .. .. .. .. 80
Iterative algorithm to compute the tree partiton . . . .............. 82
NEsterov Plcard-Opial algorithm (NEPIO) . . . . . . . ... ... .. ... 86
OMP, Orthogonal Matching Pursuit (adapted from [50]).. ... . . . . . ... 113
CaSpaR, Clustered and Sparse Regression (from [42])....... . . . .. .. 114
StructOMP (from [20]) . . . . . . . . . e 115
Model-based CoSaMP (from[4]) . . . . . . . . . . . . . . .. .. .. ... 116
Generalised split Bregman algorithm (adapted from@she . . . . . . . .. 119

Bregman method for functio? . . . . . ... .. .. ... ... . ... .. 120



14

LIST OF ALGORITHMS



Chapter 1

Introduction

Machine Learning provides a set of techniques used to atiwatig analyse huge amount of
data. Two of the most common goals for this analysis are ghger and prediction, for which
we distinguish between Unsupervised Learning and Supmhlisarning.

In Unsupervised Learning, the aim is to highlight structuoé the data. One common
method is to cluster together unlabelled points, so as tohasige their similarity. Another
common method is the analisys of the principal componentiseoflata, useful both for assess-
ing the main factors and for dimensionality reduction.

In Supervised Learning, the data is labelled and the aim miid a model for the rela-
tionship between labels and data. Then, the model can beapeedict the labels of new data.
As this thesis will focus on the supervised setting, we desdhe objects of the analisys. The
observations forming the data will be elements in a’etind each element will come with a
label belonging to a sét. The training set is the collection of pairs of observations and their
labels, or{(z;,y;)}"; C X x Y. We assume that the elements of this set are drawn randomly,
independently and identically distributed, from the spate ). This set will be used by the
algorithm tolearnthe model.

As the input setY’, we will consider the Euclidean spa@®’. This is already general
enough to include most of the common varieties of data, sadbranstance time series, texts
and images. As the output sBt we will consider the real lin®, so that we are performing a
regressionof the data. This is opposed tockassificationof the data, which is the case when
the set is finite (binary or multiple classes classification)

The object of the learning will be the determination of a jtdg functionf : X — Y
belonging to a predefined class of functiofgin our case, the class of real valued functions).
This function will have to encode the relationship betwees input and the output: if the
complexity of the function, the dimensionality of the datedahe number of training points

permit it, the functionf will map exactly all the observations in the training sethnibeir
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respective labels. We refer to this situation as Interpiat

Interpolation of data is not always possible nor desirabésause a function that interpo-
lates the points of the training set will often perform pgddr prediction. When the function
does not interpolate, there will be a difference betweerptkdiction f (x) and the actual value
y for at least some points in the training set. This differeiscasually measured with a loss
function L : J x Y — R, which can simply be the squared differerige- f(z))>.

The Risk associated to any functighdepends on the loss function, which is a design
choice made using knowledge of the data, and on the jointildition D of the data and the

labels. The risk is defined as

R(f) = /X o L(y, f(z))dD.

We want to find a function that minimises this quantity butas unknown, this is usually

impossible. An approximation to the risk minimisation isegi by the empirical risk
1 m

which will be the object function of our minimisation probte

If the data can be interpolated, there will be an infinite namdf functions such that
Remp(f) = 0. To have a unique solution one common technique is Regatams we min-
imise the sum of the loss function and a penalty tétweighted with a coefficiend > 0. The
learned function will be

f = argmin {Remp(f) + pP(f)} -
fer
The penalty term will treat different functions in diffeterways, so for instance it can be used
to penalise complex functions more: as a result, the soldtiaction will tend to be simpler.
Moreover, if P is strictly convex, the solution to the problem is unique.

We will apply regularisation to solve the problem of sparsgéneation. This problem is
becoming increasingly important in machine learning, ali asin statistics and signal pro-
cessing, and consists in finding a sparse solution, thatasagti few nonzero parameters. In
its simplest form, we consider linear functioriéz) = ). 5;x;, that are completely defined
by a coefficient vectog € R”™ (so we can consider both and P as functions of3). The
problem in this form consists in estimating the regressiectar 5* € R™ from a set of linear

measurementg € R™, obtained from the model
y=XB"+¢,

whereX is anm x n matrix, which may be fixed or randomly chosen gnd R™ is a vector

which results from the presence of noise.
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An important rationale for sparse estimation comes fromdbgervation that in many
practical applications the number of parameterss much larger than the data size, but
the vectors* is known to be sparse, that is, most of its components ard émguaro. Under
this sparsity assumption and certain conditions on the whataix X, it has been shown that
regularization with the/; norm, commonly referred to as the Lasso meth@®] , provides
an effective means to estimate the underlying regressictoresee for example [7, 11, 28, 52]
and references therein. Moreover, this method can relsddgct the sparsity pattern 6f [28],
hence providing a valuable tool for feature selection.

In this thesis, we are interested in sparse estimation uadeitional conditions on the
sparsity pattern of the vectg. In other words, not only do we expect this vector to be sparse
but also that it isstructured sparsenamely certain configurations of its nonzero components
are to be preferred to others. The motivation for favouritngctured sparsity arises in several
applications, ranging from functional magnetic resonantaging [16, 54], to scene recogni-
tion in vision [17], to multi-task learning [1, 25, 37] and bininformatics [44], see [24] for a
discussion.

The prior knowledge that we consider in this thesis is thatweactor|5*|, whose com-

ponents are the absolute value of the corresponding compong&s*, should belong to some
prescribed convex subsatof the positive orthant. For certain choices/othis implies a con-
straint on the sparsity pattern as well. For example, thé\sety include vectors with some
desired monotonicity constraints, or other constraintshen“shape” of the regression vector.
Unfortunately, the constraint thg#*| € A is nonconvex and its implementation is computation-
ally challenging. To overcome this difficulty, we proposeaafly of penalty functions, which
are based on an extension of thenorm used by the Lasso method and involves the solution
of a smooth convex optimisation problem. These penaltytfons favour regression vectofs
such that 3| € A, thereby incorporating the structured sparsity condsain

Precisely, we propose to estimatéas a solution of the convex optimization problem
min { || X8 — y[|3 + 20Q(B|A) : 8 € R} (1.0.1)
where||- || denotes the Euclidean normis a positive parameter and the penalty function takes

Z(ﬁ—i%—/\i):)\e/\}.

S\

the form

Q) = inf {%

As we shall see, a key property of the penalty function is thexceeds th&; norm of

B when|g| ¢ A, and it coincides with thé; norm otherwise. This observation suggests a

'P(B) =3, |Bi], see Section 2.1.
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heuristic interpretation of the method (1.0.1): among alttersg which have a fixed value
of the ¢; norm, the penalty functiof will encourage those for which3| € A. Moreover,
when|g| € A the function(2 reduces to thé; norm and, so, the solution of problem (1.0.1)
is expected to be sparse. The penalty function therefolenglourage certain desired sparsity
patterns. Indeed, the sparsity patternsas contained in that of the auxiliary vectarat the
optimum: if the setA allows only for certain sparsity patterns bfthe same property will be

“transferred” to the regression vector

There has been some recent research interest on struchaesitys see [20, 22, 24, 29,
34, 56, 57] and references therein. Closest to our appraachemalty methods built around
the idea of mixed’;-¢5 norms. In particular, the Group Lasso method [57] assumeistiie
components of the underlying regression vegtbican be partitioned into prescribed groups,
such that the restriction gf* to a group is equal to zero for most of the groups. This idea has
been extended in [24, 58] by considering the possibilityt tha groups overlap according to
certain hierarchical or spatially related structureshgitgh these methods have proved valuable
in applications, they have the limitation that they can dmindle more restrictive classes of
sparsity, for example patterns forming only a single cotetcegion. Our point of view is
different from theirs and provides a means to designing rflexéble penalty functions which
maintain convexity while modeling richer model structurEsr example, we will demonstrate
that our family of penalty functions can model sparsity @ats forming multiple connected

regions of coefficients.

In many case of interest the penalty functi@fi3|A) cannot be easily computed, and the
solution to the associated regularization problem (1i8.difficult to compute. We propose two
methods for finding the solution. Firstly, a block coordadescent algorithm inspired from [1],
which is efficient but feasible only for a limited choice of é& Secondly, an efficient proximal
point method to solve regularised least squares with thalfyefunctionQ2(3|A) in the general
case of sef\ described above. The method combines a fast fixed pointiterscheme, which
is inspired by recent work by [33] with an accelerated firstesrmethod equivalent to FISTA
[5]-

We present a numerical study of the statistical properti¢éseopenalty terms, considering
several different sparsity patterns. The error of the estns compared to what can be achieved
with state of the art greedy methods that can handle sintilactsires, like StructOMP ([20]).

We also present efficiency experiments showing the perfocesmof the proximal point
method in solving the optimisation problem: not only it istier than existing toolboxes, but it

can handle much larger problems as well.
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The thesis is organised as follows. In Chapter 2 there isdradkd information about
sparsity and structured sparsity, with a review of recepeparelated to our work.

In Chapter 3 we present the technique, describing the piiep@f our penalty functions in
Section 3.2, examples of the sebf special interest in Section 3.3, the dual problem in $ecti
3.4 and special cases of our functions in Section 3.5.

Next, in Chapter 4, we present several ways to solve nunilgritee proposed penalised
problems. In Section 4.1 we present an alternating alguriéind in Section 4.2 a proximal
method with subgradient approximated by a the fixed pointpréicular operator.

Part of this work, mostly from Chapter 3, appeared in the @edings of the Twenty-Fourth
Annual Conference on Neural Information Processing Syst@PS 2010) [32] (in particular
Section 3.1§3.2.2,583.3.1,§3.3.2,583.3.3, Section 4.1, and experiments from Section 5.1). An

extende version the same paper is to appear in Advances ip@ational Mathematics.
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Chapter 2

Background

We consider the supervised problem of learning a linear mdde make two general assump-
tions on the model we wish to learn. The first one is of spartit is the vast majority of the
regression coefficients are zero. This is a widely used gssomboth because it is realistic in
many situations, and because it leads to computationahtatyes.

Secondly, we make the assumption that the nonzero componave a structure. The pur-
pose of this assumption is to improve the estimate of the imdexploiting prior information.
There are several different types of structures that caotmeulated, leading to a very general
problem that can be specified in many useful manners.

To find the estimate of the linear model we will explore twodmt@approaches. The first
approach is to use greedy methods. These algorithms praeegtil/ely including in the model
a few components at a time, the ones that maximise the galeaturrent step. Generally
speaking, this approach is very fast but has the drawbadkittiban produce a suboptimal
solution.

The second approach is to formulate the problem as a reggdbcionvex problem, where
the estimate is found as the minimiser of a balance betweessdlinction and a penalty term
which promotes structured sparsity. Generally speakimg, dpproach is computational less
appealing, but has the theoretical guarantee of a uniquemmin. For this reason, we will
follow this second approach in the thesis. This approacks@lass intuitive, so we support it
with a geometrical and a probabilistic interpretation.

Our problem is closely related to the area of compressiveisgnwhich belongs to the
signal processing field of research. In compressive sengliregsignal of interest is sparse
or closely sparse (compressible). We will discuss briefiy gerspective presenting a greedy
approach to it.

The chapter is organised as following. Section 2.1 contam@troduction to the linear

problem and to sparsity. In Section 2.2, we review the greadthods approach used to pur-
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suit structured sparsity and in Section 2.3 we review the@olptimisation approach, with a

selection of recent algorithms.

2.1 Standard sparsity

We consider a linear model

y=XpB"+¢,
where5* € R™ is a vector of regression coefficientg,c R™ is the vector of observations
which depends linearly oX € R™*" the data matrix, and € R™ is a vector of Gaussian
noise. We address the problem of reconstructing the uridgriyectors* given the data.

The elements of the vectgrare independent Gaussian(0, o2), where the variance of
the noises? is known. The noiseless versiofi £ 0) is treated similarly.

We consider the case when the matkixs underdetermined: the number of observations
m is (much) smaller than the dimensianIf we know, as it happens is many real situations, that
the vector3* has few nonzero components, then we can exploit this priowletdge using some
techniques to reconstruct it fro(dX, ). In particular, we usually assume that the underlying
vector is at mosg-sparse, that is it has at masthonzero components. Usuallyjs less than
m, SO it is much less than. Under some properties on the data, the reconstructioneof th
underlying vector is possible.

We are interested in sparse models for several reasons patstg assumption reduces the
complexity of the learned function, which in turn has congpiohal and statistical advantages.
This assumption is also reasonable, as it appears natiurakyeral contexts. A sparse solution
is also easier to interpret, because it is an implicit feagalection.

The problem is to find the vectgt which solves

min {L(y, XA},
where L is an error function, a convex and differentiable functioithwespect to the second
variable. For simplicity, we can consider the error tefgn— X 3||3, but the logistic regression
or other functions are possible as well.

In the case of interpolation described above, the error temmrbe zero. However, this can
be an undesirable feature, because the predictive powke aégression could be poor. More-
over, it can add variability to the results. Two ways are Ugdallowed to address these issues:
either a greedy selection of variables or a regularisatioth® problem. The next sections
describes these approaches and some specific examplesmif aed popular techniques.

It should be pointed out that a greedy selection refers tdgorithm that solves a prob-

lem (including regularised objective functions), whilguéarisation is a slight modification to
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the original problem, which can be solved by different teghas (including greedy methods).
We acknowledge that the two concepts are distinct, but weasinthem because in the liter-
ature they usually form the focus of two different approacteesparsity: greedy methods are
usually used to solve the noncovex problem of finding a spsofigion, while the focus of
regularisation is to make a convex approximation to thablerm.

Greedy algorithms can solve both convex and nonconvex g@mudyl proceeding in an iter-
ative way. At each step the model is enriched by adding thabiaror group of variables that
are more relevant, that is that best explain the output anihmse the residual.

The regularisation methods change the problem into

min {L(y, XB) + pP(B)},

where P is a convex penalty function which encourages the veftto have some proper-
ties. The penalty term is weighted with a nonnegative congtavhich changes the amount of
regularisation. As botl and P are convex functions, the problem is convex, the minimiser i
unique and it is possible to find a solution numerically widmglard techniques, see for instance
[10].

Lassa In the sparsity assumption on the vecttrwe are looking for a vector with at most
s nonzero components out of This problem is combinatorial in nature, so computatitynal
hard to solve. Conceptually it is the same as regularise Rith) = #{5; : |5;| > 0}, which
is a nonconvex problem.

A common technique for sparsity (Lasso, see e.g. [49]) ioteider instead® = ||5]|1.
This problem is well studied, convex, and its solution is ppraximation to the exact noncon-
vex problem.

The standard sparsity is an assumption only on the suppagst,obut no relationships
between the nonzero variables are defined and exploitedheliasso, all components are
treated alike. In the next sections, we will see how a strectin the support of* can be
defined in different ways. This structure will be used asrimfation to better recover vector.

While describing structures of nonzero sparsity, it is mftseful to put components of
into groups. A generic group of indices will beC N,, = {1,...,n}, and the vector containing
only the components of the vect@rindexed by the elements of the groupwill be 5;. The
set of all groups will be7. In general,7 needs not be a partition &f,, , as some groups may
overlap (i.e. some indices may belong to more than one grauhley may not exhaust the set

N,, (i.e. some indices may not belong to any group).
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2.2 Structured sparsity with greedy methods

Greedy methods for structured sparsity are iterative @lgos which estimate the model using
only the features belonging to an active set of indideS N,,, and keep adding elements Ao
until a suitable stopping criterion is reached. At stefhe estimates(®) is |Al-sparse, and the
differencer(® = y — X 3(®) between the output and the prediction is called the residual

In the language of sparse approximation, we say fas a dictionary ofn atomsX =
[1,...,2,], and we assume thgthas ans-term representation over the dictionaxy Also, it
is often assumed that columns_&fare normalised, so that each Haas the value of; norm.

The order in which components are chosen is set as to maxihresenprovement of the
estimate. Usually, an estimate is good if its residual islsma

These methods are usually fully deterministic, but the omdevhich they include com-
ponents depends heavily on the data makfixso their performance may be highly variable.
Moreover, the way to resolve ties may be random.

The simplest algorithm we consider is Orthogonal MatchingsBit, OMP (see [50]),
which can be extended quite naturally to recover clustensoozero components (Clustered
and Sparse Regression algorithm, CaSpaR [42]).

Then we describe StructOMP ([20]), another extension of AbddBed on information
theory. This algorithm tries to learn a model which is as lemsplex as possible. For its
flexibility and its superior performances to others greedsthuds, it will be the focus of the
experimental comparison with our convex optimisation apph.

Finally, we describe how the compressive sensing fits irgagmeral sparsity discussion
we are making, and we present the Model-based version (58d¢8structured sparsity of the
algorithm CoSaMP, similar to OMP.

The algorithms described in this chapter are summarisegpeAdix C for easy reference.

In § 2.2.1 we present a simple greedy algorithm and a naturahsixte In§ 2.2.2 we
describe the algorithm based on information theory.§ 12.2.3 we review the compressive

sensing viewpoint on sparsity, presenting a greedy metblodicn to it.

2.2.1 OMP and CaSpaR

OMP. The algorithm Orthogonal Matching Pursuit (OMP), oridinalevised for sparse ap-
proximation, can be used for signal recovery as explaind80h The algorithm performs
iterations, repeatedly selecting the colummXothat has the largest correlation with the current
residual. OMP is equivalent to the statistical techniqguevkmas Forward Stepwise Regression

(see e.g. [19)]).
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The algorithm will build a sequence of matrica&?, X1, ... X() adding columns
from X. Initially, we define the matrixX(®) as empty, and the residual® asy: we have
not yet an estimate, so the whole signal is unexplained. @ftgémeric step, the algorithm
performs two operations: it selects the index of the featmadd to the model, and it produces

a new estimate. The index is selected as

j* = argmax {\(r(t_l),xjﬂ} , (2.2.1)
7j=1,...,n

which corresponds to the column mostly correlated with #®dual. A tie may be broken
deterministically by taking the lower index for which the xiraum value is achieved. The
columnz;- is included in the active set, and is concatenated to theesumatrix, X (©) =

[X(t‘l),xj*]. Then, the new estimate for the signal is computed setting

B® = argmin {HX(t)ﬁ — y||2} . (2.2.2)
BeRIAI

Consequently, the new residual is nof¥) = y — X® 3 Note that the vectoB*) has one
component for each element in the active set, and that theatst3 for the full model in any
given stept will be produced by setting; = B](.t) if j € A, andj; = 0 otherwise.

The algorithm has a greedy approach in the sense that, asesgght tries to minimise the

residual as much as possible. If we consider the recurreiaton

Pt — g Z wjﬂj(_t-i-l) + xj*ﬁj(_i-i-l) — 0 _ xj*ﬁj(-ffrl),
JjeA\{s*}
then the length of the residual can be written as

<T(t+1)’r(t+1)> _ <T(t)’r(t)> I (5J(_i+1)>2 B 253(-3“) <T(t)’xj*>‘
Using the assumption thdt -, z;+) = 1, this expression supports the selecting criterion for
J* of Equation (2.2.1). Moreover, note that the residual isagbnal to all the elements; for
j € A, so the new selected indgx will not yet be in A, and no column will be selected twice.
This algorithm will run untils indices will be added to the model, so the numbenust
be known a priori. Alternatively, a tuning parametecan be used to stop the algorithm when
the contribution of the added column, measured as the decddhe residual, is negligible.
The solution to problen2.2.2) can be computed incrementally from the solution of the
previous step, and is thus very efficient. The computationat of the algorithm is dominated
by the first step, that is computir{g.2.1) (see [50]).
For the algorithm to achieve exact recovery, the output lshoome noiselessly from the

input. Moreover, the matriX should be incoherent, that is that the quantity

X) = :
p(X) = max (@l



26 Chapter 2. Background

which is called the coherence of mattk and which is the maximum inner product between
different columns ofX, should be small. Otherwise, the algorithm could seledcaglnot in
the support of the original vector.

The algorithm is very easy to implement, and can be fully ys®d theoretically because
of its simplicity. It does not promote a particular struetim the sparsity pattern of the estimate:

we will focus on two of its many variants that indeed promdtaciure.

CaSpaR In some applications, the underlying model is likely to parse and to consist of few
connected regions of nonzero components. In [42], as acpkatiexample, they assume that in
a protein the mutations tend to cluster around “active sifHsis is sustained by the knowledge
of proteins’ structures: it is in the active sites that prwebind and have interactions with
molecules. To exploit this assumption for prediction of atigns, they developed the algorithm
Clustered and Sparse Regression (CaSpaR), a variant afribsiepwise regression procedures
like OMP. Unlike the simplest original algorithm, each eation(r(*~1), z,) is weighted with

a constant¥; so as to favour the selection of indices near the active set.

Initially, all weights are set td, so that no column is privileged. The two steps from
Equations £.2.1) and @.2.2) are initially performed unchanged. At the generic iterati, just
before steff2.2.1), a new set of weights is computed:

1 .
= > K(d(i, ),

€A

W

for all j € N,,. The functiond is a generic distance between two indi¢eand j, and K is a
kernel function (non-negative integrable function). Thaght for index; is the average of the
distances, transformed by the kernel function, betweand all elements itd. The step from
Equation £.2.1) is now changed as

j* = argmax {Wﬂ(r“‘”,xﬁ]} , (2.2.3)
JEA

with the result that the selected index will be encouragédmktong to one of the clusters, defined
by the distancel, of elements in sefl.

The suggested choice for the kernel function is the mixture
K(z)=a+ (1 —a)K.(z),

whereK, is the Epanechnikov kernel, thatié.(z) = 3(1 — 2?) for |z| < 1 andK.(z) =0
otherwise, although other mixtures are possible. The mgiparametery € [0, 1] controls the
effect that the distances between the index and the clusdsren the weights: when= 1, all

weights become equal and the algorithm reduces to the atiGiNP.
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The natural choice for the distance functiond{g, j) = |¢ — j|, but it could be modified
according to the situation. For instance, if the model is edded in a graph, thet could
measure the length of the shortest path between noaled;.

The stopping criterion for the algorithm jsr(t‘l),wj*ﬂ < 7, that is when the improve-
ment of addingj* drops below a positive threshold.

The mixing parametet: gives the theoretical guarantee that CaSpaR cannot beroutpe
formed by the standard OMP. However, the ideal value for dn@apeter must be tuned via
cross validation, and by the same means the threshattlist be tuned as well. The grid
search becomes a computational challenge, even if we stibkAy: the use of a kernel with a
parametrised bandwidth introduces a third parameter apithandegree of complexity.

Even if the algorithm is flexible, as it can be customised bgnging the definition ofl,
it is still suitable only for a particular structure, namelgnnected regions. The next variant of

OMP is more general, and consequently less simple.

2.2.2 StructOMP
The algorithm StructOMP, proposed by [20], is a variant ahgfard OMP which is based on

information theory. It lies on a generalisation of the cqotaaf sparsity: a sparse vector has a
low number of nonzero components, which means that it has adatent of information. The
algorithm hinges on how the information is encoded, so thapsrts with particular structures
may be easier to describe and hence are promoted. It is atvafi®@MP in the sense that, at
each step, it includes one or more columns into the models $o laoth maximise the decrease
of the value of the loss function and minimise the increas®tomplexity of the model.

Let ' be a nonempty subset of the $&t of indices. By definition, the coding length is a

function cl F") such that

yooodm <, (2.2.4)
FCN,, F#£0

We use the coding length to define the complexity of thelsas the function g F') = |F'| +
cl(F), where|F| is the number of elements @f. Finally, we can define the complexity of a

coefficient vecto3 € R™ as the complexity of the simplest set containing the suppiost

c(8) = min {c;(£) : supp(f) € F'}- (2.2.5)
Block sparsity. A first useful type of structured sparsity arises by comsmdeblocks of vari-
ables. A blockB is a set of indices, and the sBtis the set of all blocks in which we are
interested: the algorithm will promote models with a supgbat can be constructed as the

union of few elements aB.
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The block set consists of a subset of the power set (all jessilibsets) oN,,, that isB C
2N~ To be well-formed, the sets must be an exhaustive colledfdndices:UpcpB = N,,.
This condition follows trivially if all singletons belongtthe block set, of j} € B, for all
j € N,,. Moreover, this later assumption implies that &nyC N,, can be expressed as a union
of elements of3, which does not follow from the first condition alone.

We assume that glis a coding length function for elements of the block set. Aay&
elementF' C N,, can be written as the union of elementsifso its coding length can be

defined in terms of the functionl

Cl(F') = min { Z [Clo(B)+1]: F = UBeBB} . (2.2.6)

BeB

This coding length can be used to define a cost function c fsrafendicesF’, using Equa-
tion (2.2.5).

For instance, we can consider the blocks of consecutivecesdi that isB =
{{a,a+1,...,b},1 <a < b<n}, and assume that each set has the same code length. Then,
each of these blocks provid@sog,(n) bits of information,log,(n) to store the position of the
firstindex andog,(n) to store the number of indices. ConsequentlyBgl= 21log,(n) for any
B € B. Since2~¢I(B) = 1, and there aréB| = -1 such blocks, then Equatia.2.4) is
satisfied and cl is indeed a code length function. This blatlcan be used to promote models

where the support is made of connected regions of indidesjdithe CaSpaR algorithm.

The algorithm. StructOMP solves the problem

B = argmin{L(S) : ¢(B) < s}, (2.2.7)
BeR™

wheres is a parameter controlling the complexity of the learnedtatecThe focus is on the
quadratic losg.(8) = || X3 — y||3, as it allows for some formula simplification.

The supportF of the estimate3 produced by Problem (2.2.7) is a union of blocks3n
The blocks are chosen one per step, so atstéghe algorithm, a new blocB(®) is added to
the model: the support of the estimate at stepll be supp(8®) = F®) = W y...uBW.
Note that the algorithm ignores blocks that can be expreasdtie union of blocks already
in the model. Moreover, it will automatically add all blocks which the complexity of the
support is not increased.

From step — 1 to stept, the new estimate is computed such that the loss functioedses

as much as possible, and at the same time the cost incrediitle as possible (because of the
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information necessary to store blogk?)). Then the goal is to maximise the gain ratio

L(3¢Y) ~ L (5)

MO = 5@y —egeny

(2.2.8)

When L is the quadratic loss\(¢) can be approximated by a functignof the added blociB:

A ~ 3(B) = X poren XBTD — yl
(t) = ¢(B) = ¢(BUF(=D) — ¢(F(-1) "’

which is easy to compute by testing all blocks in the block $bt algorithm terminates when

the complexity of the current estimateis larger than a threshold.

Other block sets Grouping indices together in a single block creates astradn the sparsity
pattern. We revert to standard sparsity when the indices@rgrouped, and each block is a
singleton, orB = {{j} : j € J}. A single index provides: bits of information, to store
its position, so ¢J({j}) = logy(n) for all j € N,,. Since a sef" is uniquely expressible as
the union of|F'| singletons, by Equatiof2.2.6) we have olF') = |F| (logy(n) + 1), and its
complexity is ¢F') = |F| (logy(2n) + 1).

The most general setting considered in [20] is the graphs@gail he model is embedded
into a graph7, so that each component is represented by a node (but tHemapcontain other
nodes as well, for further generality). In this case, theirggdiength is defined as a function
of the neighbours of each node. The algorithm promotes tstreg of nonzero components
clustered together. In fact, a connected region is easidedoribe because its coding length is
computed using only the information about the boundary.

A grid graph has a lattice of nodes: each one represents aqfixan image and it is
connected with its four adjacent pixels. Thanks to the sipetcipology of the grid, the clusters
promoted by the algorithm are regions that are visually ected. The application is called
denoising, and corresponds to the case wKes [ andy is the observed version, corrupted
with noise, of the original imagg*. If we have reasons to assume thathas the property that
it consists of a foreground of connected regions over a diackground (zero values), then we
can use the algorithm to recover it.

A second specific example of graph sparsity is given by a traphg where the blocks
are all the connected subgraphs, including the single nodgain, a possible application is
in image manipulations. Any image can be decomposed usingvalet basis, that is a set of
orthogonal functions that represent successive apprdixing coarser to finer, of the data, and
the corresponding wavelet coefficients. By constructitkesé functions arrange themselves

hierarchically into a tree graph, where a wavelet is gerdréitom the wavelet of the father
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node. Here the assumption is that the nonzero coefficientiseoimage are clustered in the
tree. The algorithm is performed in the wavelet space, aace#timated wavelet coefficients
are used to reconstruct the estimated image.

This algorithm represents a good compromise between easetand effectiveness. It is
conceptually simple, and it always involves just the s@acof a block of variables at a time.
Yet, it is general enough to encompass several differemttsires, even nonconvex constraints
such as contiguous regions in a graph. Moreover, it can by ealapted to other structures, as
only the block set and the coding length needs to be redefined.

One possible drawback of the algorithm is that it can be cdatjmnally expensive. In
fact, at each step all blocks must be evaluated for inclugioa dimension of the block set is
n from the the starting point of the standard sparsity, andenamrd more blocks are added in
other cases. The coding length of the support, as per for(2e6), depends on the best union
of blocks that describes it, which leads to several diffecemfigurations to try.

Finally, because it is a greedy algorithm, it suffers frora gossibility to be stuck into a
local minimum. Consequently, it may happen that a block,cWldontains variables that do
not belong to the true model, is selected because it maxgntiee gain ratio (2.2.8). Subse-
guently, more wrong variables are likely to be selected ftbenalgorithm, because of the low

information cost they carry. When this happens, the restiltnate can be very poor.

2.2.3 Compressive Sensing

We review some concepts of compressive sensing followiage#position of [4]. The frame-
work of compressive sensing is that we observe a vecterd S5 that is generated from a signal
B € R™ via a measurement matrik. Moreover, we assume that the signal can be represented
asp = Ya, where the square matrik contains a predefined basis, while the vect@ontains
the coefficients of the representation.

The signals is said to be sparse if at moskelements oty are nonzero, whergis much
smaller tham. This definition of sparsity is at the level of the represtataof the signal, while
the signal itself may not be sparse. We can always assumarfplicty that ¥ is the identity
matrix, so that the signal has few nonzero componentsyaadba.

The assumption of compressive sensing is that a signalqoefiresentation) is sparse.
This assumption can be relaxed by allowing the signal to beceqimately sparse, or compress-
ible. This means that its sorted coefficients decay fastgméo be approximated satisfyingly
by ans-sparse vector.

More precisely, we consider a signaitfor which the elements are ordergg), 5, - - -

by decreasing absolute value, thalig)| > [3;)| for i > j. Suppose that the signal decays in
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a power-law fashion, that ;)| < Gi~/" for some constant§' andr. We approximate3 by
the s-sparse vectos, which minimises: = ||3— f;||,, the error of the approximation computed
with the/,, norm. The vectop is calledg-compressible if < p ande < (rq)‘l/PGs‘q, where

q= % — %: that is the error of the best approximation decays as a plamewhens increases.

Restricted Isometry Property. Compressive sensing theory relies on the definition of a key
property for matrices. We recall that an isometry isiax n matrix A such that| Az||3 = ||z||3

for all vectorsz € R™. That is, an isometry preserves the Euclidean length of anjov. This
property can be restricted to be true only fesparse vectors, and to allow the length of the

vector to be partially distorted. Precisely, a matfihas the restricted isometry property if
(1=8)l1203 < [ 4=]3 < (1 +8)l|=13

is true for alls-sparse vectors iR"™. The positive constardt controls the amount of relaxation.

This property is used to prove that the signal can be recdveraese results go beyond
the scope of this thesis, so we just give an intuition. If tregnr U has the restricted isometry
property (or just¥ if & = I), then eachn x s submatrices are close (up to a constant) to be an
isometry. This preserves distance and the information @iaase or compressible signal, and
thus guarantees that the signal can be recovered.

To recover a sparse signal, we should solve the probieny {||3]|o} such thaty =
®p3. This problem is an NP-hard combinatorial problem, and #w®very is not stable when
the observation is noisy. A stable and feasible recoverybeamade either by relaxing the
problem using convex optimisation (see SectioB), or using an iterative greedy algorithms.
Examples of greedy algorithms especially designed for cesgive sensing include lIterative

Hard Thresholding, IHT ([8]) and Compressive Sampling Matg Pursuit, CoSaMP ([35]).

Model-based CoSaMP An extension of compressive sensing to structured sigmasconsid-
ered in [4], where the recovery algorithm CoSaMP is modifi&f. will not describe CoSaMP
as it is similar to OMP (se§ 2.2.1). The notion of compressible signal is extended to the
one of structured compressible signal, and the originadrdtym is adapted to handle general
structures. In particular, tree sparsity and block spaesi considered.

We define a structure by allowing only signals with suppogfbging to the union of
predefined sets. i, is one of the allowed supports, then we defitjg to be the subspace of
R™ containing all signalg such that supp3) C Q,,. The structured sparsity model is defined
asM = Uy,>1X,. The restricted isometry property used in the analysis isfdatgorithm is

restricted to vector§ € M.
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The algorithm depends on the computation of the best stetttsparse approximation of

the signal:
M(B) = argmin {||5 — z||2},
zEM

which is the projection of a signal on the sparsity madi¢l The algorithm has been adapted
specifically for tree sparsity and block sparsity. In thege ¢ases, known procedures compute
the projection efficiently.

At each step, the support of the current estimate is mergtrdtiaé support oM (X 7'r),
wherer is the current residual. The resulting set, let itlhds used to form a new estimabe
we set tochTy (the pseudo-inverse) the component$ wfdexed byT’, and to0 the components
indexed by its complemert® = N,,\7. The resulting vector is then pruned by projecting it
back onto the sparsity model, to produce the signal estiffate= M(b).

In model-based recovery, the class of structured comfmessignals does not coincide (in
fact, it is much larger) with the class of sparse signals. thisrreason the restricted isometry
property is not enough to assure recovery and other pregextie mention the nested approx-
imation property (NAP) and the restricted amplificationgedy (RAmMP), which involves the
residual subspaces of the model, must be used.

To define block sparsity as considered in [4], the signal riestegarded as a matrix,
where each column corresponds to a block. This design igkssral than the one supported
by StructOMP, where blocks are not confined to particulartipos and may overlap, leading
for instance to connected regions.

The algorithm computes the functidvi twice at each step: first to extend the support of
the estimate (by projecting”r onto M), then by pruning the estimate again projecting a
vector ontoM. This can be expensive for a general structure, and a paraliebe drawn with
StructOMP’s step of computin{R.2.6). In the case of StructOMP, however, the estimate is

always within the current allowed support, and there is rexrfer pruning it.

2.3 Structured sparsity with convex optimisation

In the same way as the Lasso technique promotes sparsitpvaxcpenalty term can be used
to promote structured sparsity. The completely convexreatd the problem has two main
benefits. The first one is that the optimum always exists anahigue. The second benefit is
that there are general efficient algorithms that can be usedrpute this optimum.

The minimisation of the loss function subject to a constraim the number of nonzero
components of the support is a nonconvex problem. Evendadsird sparsity, we approximate

such number with thé, norm. Likewise, a structure in the support of the model iscoorex,
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and must be approximated. Itis evident, then, that the dediguch a penalty term is not easy:
not only this function has to be convex, but it must be ablertorte a specific structure.

A patrticularly elegant extension to tlfe norm regularisation is the Group Lasso penalty
([56]), which is a mixture off; and/,. The components of the vector are grouped together
and the penalty term is the sum of thenorms for each group. The effect is that each group
will contain either zero or nonzero components. Apart fraheovariants of,/¢s mixtures, or
substituting the;, for a general, norm, a key extension to the Group Lasso is the Composite
Absolute Penalty (CAP, [58]), which allows the groups torte. The effect is that certain
components, belonging to different groups, are more pegdilthan others. In this way we
can enforce a hierarchy among components, useful for irmpbapplications such as ANOVA
models.

Other extensions to the Group Lasso and to CAP focus on thgdekthe groups in such
a way as to promote one contiguous region in the model, bathBDoand 2D topologies. A
support as a union of groups can be promoted using a var@fowablem, and the hierarchy of
a two layered tree has been expressly studied.

The/; norm as a penalty term is successful in promoting sparsitgdee its unit ball has
nondifferentiable points along the axes. This geometiralition can be extended for group
sparsity, as the set of nondifferentiable points are onlya@mall subsets of axes. Even if we
cannot visualise in higher dimension, this idea, with itsils, can be helpful to gain some
insights about the problem.

Finally, we discuss the Bayesian interpretation of¢hesgularisation, where the estimate
of the Lasso model can be seen as the maximum a posterioriagéstof the model when we
adopt the hypothesis that its prior distribution is Laplacais interpretation can be extended
to other penalty terms.

In § 2.3.1 we describe the Group Lasso and CAR, (3.2 other variants of the Group
Lasso are described. The geometrical interpretation obglaesity encouraging terms is de-

scribed in§ 2.3.3, while it Bayesian interpretation can be found i 3.4.

2.3.1 Group Lasso and CAP
Group Lassa. In the Group Lasso [56], the penalty term takes the form
PE) = 2 V17115l
JeJg

that is we have a mixef /{5 nhorm. Group Lasso treats all the components in the same group

in the same way, so they are all selected or discarded at the: thae.
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Each addend is multiplied by the coeﬁiciaﬁ?, which is proportional to the dimension

of the group, but a more general weighting can be used. Merethe/s norm can be replaced
by |51k ,, where|n||x = \/nT Kn is the vector norm defined by a positive definite matrix

K that can be different for each group.

CAP. The Composite Absolute Penalty family [58] extends theceph of group lasso in two

ways. In the case of non-overlapping groups, the penalty is

P(B) =D 11Bsllp,™,

Jeg
where, for generality, thé, , norm is used for group’, and the/.,; norm to they,-th power is
computed for these norms.

The CAP was developed to consider a hierarchical structaréhe components aof,
defined by a Directed Acyclic Graph (DAG). Each nade V' of the DAG corresponds to a
variable. If one variable is not included in the final modeén all the variables corresponding
to descendants of, that is the variables of nodd3(v), are excluded from the model as well.

To achieve this, the penalty function is modified not in thexsh but in the definition of groups:

P(B) = 1(Bo:Bpw)ll-

JeJ
This construction implies that, if(3., Bp(w)) ., is zero, then|Bp(.,ll,, must be zero. The
enforced hierarchy is useful in many applications, notibean ANOVA, where if a main factor

is excluded from the model, its mixed factors should be aleduas well.

Sparse Group Lasso The sparse Group Lasso criterion proposed in [14] is a GL@agso

which encourages sparsity within each group, mixing theu@taasso with af; norm penalty:

PB)=n >_lB8sll2+2l8]1-

JeJg
In the standard Group Lasso, the selected nonzero grougstideoe dense. Here, the
¢1 norm is added to help preventing this from happening. Paemse, and~, should be

estimated via cross validation.

Huber. Another hybrid¢,/¢; penalisation, suggested in [40] and useful for standardsigpa

comes from the use of the inverse Huber function in the pgtatin. We define

i i <1
B(@-){ 61 181<1

2+1
BLQ ‘Bz’ >1
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and set the penalty term as
5.
P(#) =} B (7’ :
(2
wherer is a scale parameter.
The functionB is a scaled’; norm for values smaller than, and is quadratic for larger
values. The intention is to overcome two limitations of thgslo: that no more than nonzero

coefficients are selected (inconvenient in our case wherem) and that it has less accurate

prediction thar?s.
2.3.2 Group Lasso variants

Contiguous regions The Group Lasso when groups overlap has been investigafed]i The
originality of the Structured Lasso lies in the selectiogdups, while using thé, norm within
groups:

PB) =Y _1Bsll2-

JeJg
If the components of are thought to be aligned in a sequential order, then by derisgy

all groups of the typd1,...,k} and{k,...,n}, fork = 1,...,n, itis possible to encourage
the selection of a contiguous pattern of variables. Theore&sr this is that the/; norm has
the effect of excluding from the model any initial or final eétvariables, leading to a pattern
without holes.

In the same vein, if the components @fare thought to be on a grid, it is possible to
construct the groups corresponding to all halfplanesistpftom the four sides. The resulting
nonzero pattern will be encouraged to be a rectangle. Byngddfiore halfplanes with dif-
ferent orientation (e.g. all multiples &), the sparsity pattern can be approximately convex.
The approximation improves the more halfplanes are coraigdéehough the complexity of the
algorithm increases.

A weighting system allows a weight for each component witkath group, so that a
particular elemeng; can have different weights, one for each group it belong3tis leads to

further generality, but no specific examples are suggested.

Overlapping groups. The goal in [22] is quite different: the support of the modek union of
K groups. This can be achieved by considering the Group Lagkoowerlapping groups. In
particular

P(B) = inf {ZHUJ”z :VJ € J,v; € R" supp(vy) C J, ZvJ:ﬂ}.

VsV g
JeJg JeJ
If the groups do not overlap and form a partitionNf, then the penalty is the same as the

Group Lasso, because there exists a unique decompositigrindd vectorsv; such that for
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each”J € J, the components af; indexed by.J are the same as the componentg of In that
case, the penalty induces the estimation of a sparse vedtoge support is the complement of
a union of groups.

If groups overlap, then the support of the learned vectatdén be a union of groups. One
application is the Graph Lasso: in an undirected graph, eadbx is a covariate. If overlapping
groups are all linear subgraphs of lengththe penalty tends to select covariates connected to
each other. Group Lasso with overlapping groups has beetwgito be a norm, which can be

useful if, for numerical reasons, the dual problem is adsbds

Hierarchical penalisation. The structure of a two layered tree for coefficientsidias been
considered in [48]. The meaning of this graphical represt@nt is that a node in the first layer
represents group of variables (grodphas a weight so that any variabte which belongs to

J will be weighted withoy;) and a node in the second layer represents individual coergsn
each one with its own weighty;. The goal is to select a small number of groups and to shrink
variables within each group.

The proposed penalty is
B
P(ﬁ) - ZZ: \/0'110'22"

The weights must be normalised: at the group level, it mukt ti@t . ; 01; = ‘—}| for all
groupsJ and inside each group .y o2; = 1. Interestingly, even if not evident, this penalty

function is convex.

2.3.3 Geometric interpretation

In [18] we get a geometric argument as to why the reguladeatising the/; norm as penalty
term is an effective way to select few nonzero components.eligorate on it here showing
how the same intuition applies to others penalty terms.

We consider two dimensions, and focus for simplicity on thease loss function. In this
case, all the points with a fixed loss value lie on an ellipsgree around3 = Xy, whereX’
is the pseudoinverse df. On the other hand, the set of points with a fixed penalty visluie
the ¢, case, a diamond centred around the origin. This is the boyraddahe scaled unit ball
By = {z: ||z|1 <1}. See Figure 2.1.

We can imagine to expand these two shapes trying to find a delbetween the loss
function and the penalty term. The solution will be a singlegent point, because when the
shapes are secant we can move inside one of the two, thusrgdhe objective function. As

a result of this process, it is clear that most of the time thet®n will be a point on one axis.
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A

B,

Figure 2.1: Geometrical intuition for the lasso.
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Figure 2.2: Unit balls of, 2 and Group Lasso.

Indeed, the only case when this will not happen is when thigsellis tilted exactiy5 degrees
and faces directly a side of the diamond.

It is evident then that the shape of the unit ball of the pgrfaihction plays a central role
in the determination of the set of points that are more likelpe the solution. The key feature
of By is to have non-differentiable points along the axes. Moeeowe note that thé; norm
promotes sparsity without structure, in the sense thah@edxis is in a privileged position.

We consider now the unit ball of two structured sparsity ftes® the Group Lasso and
the function(2, which will be discussed in Chapter 3.

In Figure 2.2 we see how the two penalty functions are rel&bethe /4 norm. Both

functions can be defined in several ways. For the Group Lags@onsider the hierarchically
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overlapping groups; = {z1, 22} andJy = {2}, so that the unit ball is
Bar ={z: ||z|2 + |w2| < 1}

For function2, we use the line graph penalty= {\ : A\; > X2} (see Section (3.3.2) for
details). We can write the unit ball explicitly:
{z :[z1] = |zof, lzfly < 1}
{a:|z1] < |z, |J2fl2 < V2}.

In both cases, the nondifferentiable points are onthaxis: a sparse solution of the form

Bqo ={x:Q(z|A) =1} =

(z,0) will be far more likely than a sparse solution of the fof ).

In three dimensions, the square loss produces an ellipadiithe nondifferentiable points
of the unit ball of the penalty function are privileged catates to be a solution. In three
dimensions these points can form a curve, see Figure 3.2foe £xamples of unit balls in
three dimensions. Of course the intuition soon becomegsseals the number of dimensions
increases, but nevertheless it is an important vehicleridetstand how sparsity can be recov-

ered with convex penalty functions.

2.3.4 Bayesian Lasso and MAP estimates

MAP estimates The Maximum A Posteriori is an estimate of a paramétgiven an observed
sampler. For any fixed value of the parameter, we assume that the lpilitypdistribution of the
output is known, that ig(x|6). Moreover, we assume to know the distribution of the paramet
0, that isp(#). The MAP estimatd is given by the argmax of the posterior probabilii§f)| ),
which can be computed from the observations

By applying Bayes’' theorem, we have that the posterior ibigtion of the parameter
given the observations is proportional to the likelihoodobkerving the data given a param-
eter,p(z|0), times the prior distribution of that parametg(?).

The MAP estimate is defined as
6 = argmax{p(0|z)} .
In an equivalent way, we minimise the negative log-postatistribution, that is
6 = argmin {~log(f(6]z))} = argmin { ~log(p(x[0)) — log(p())} .
This second expression is easier to handle, and will leaditd #o regularisation.
MAP as regression We consider the linear modgl= X 5* + &, where the noise is Gaussian:

¢ ~ N(0,0%1,,). Then, the conditional distribution gfgiven a modep3, that is the likelihood
of the observation, is Gaussiag;3 ~ N (X3, 021,,).
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The corresponding negative log-likelihood4slog(2mo?) + ﬁ ly — XB||3, and is max-

imised for the vecto3 which is the solution of the ordinary least squares. Thigoreis also
the MAP estimate of the parameter when the unconditionatilolision of 5 is assumed to be
uniform (improper prior), because in that case its prolighit a constant and does not effect
the minimiser.

Making different assumptions on the prior distribution loé tmodels leads to MAP esti-

mates that are equivalent to minimising the quadratic losstfon plus a penalty term.

MAP as Lasso The estimate of the Lasso technique, where we Bdd) = |/5]|:, can be
interpreted as the estimate which maximises the postesbituition of 5 assuming thag | is
Gaussian and that;, ~ LapIace(O, %) The Laplace distribution with parametérsand%
isp(5i) = Lz 7 V2.

In this case, to the quadratic loss function, we need to aglddiyative log-prior for vector

B, which isnlog (Tv/2) + QHﬁHl. We recognise the resulting problem as the Lasso.
Note that, after normalisation, thife norm is multiplied by the tuning parametgmwhich

depends on the variance$ and72. In particular,y = 20—2§.

Ridge regression For ridge regression, whet@(3) = || 3|3, we have that the estimate can
be interpreted as the MAP @f assuming that botly|5 and 5 are Gaussian. We assume that
B~ N (0,721,), so that its negative log-prior ¥§ log (2772) + %.

We recover ridge regression problem where#haorm has the coefficient = ‘;—3 that is

it depends on the variances of thandj.

Bayesian Lasso This variant of the Lasso was introduced in [41]. Here, thermlistribution of
; given the value o&? to be Laplacian, using a representation of Laplace digtdbuas mix-
ture of normals. Specifically, we assume that?, 72, ..., 72 ~ N(0,02D), whereD is the
diagonal matrix collecting the auxiliary variables representing the variances of each compo-
nent. Finally, we assume that and the auxiliary variablesare normally distributed. This for-
mulation is useful for their approach to solve the problerseolon Expectation-Maximisation
(EM) algorithm.

Bayesian Lasso coincides with the variational formulafmmthe ¢, norm. For anys, we
have||||1 = 3 infy {Zi (6—; + Ai) tAE R1+}, whereR . is the open positive orthant. We
assume thag|(3, \) is Gaussian, and decompose the distribution of the vetasp(5, \) =
p(BINP(A).

The conditional distribution of given X is Normal, 5|\ ~ N(0,diag(\1, ..., \,)), and
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its negative log-distribution is
log (2) log<HA>+%Z§—$.
This term will be added to the negative log-prior Xaf so we choose a distribution such that

the term%log(]‘[i)\ ) simplifies. This happens ik; ~ I’ (2, 2) as the negative log-prior

distribution is
n 1 1
5 log(2m) — 5 log (TTA:) + 51Nl

We conclude that the estimate

(6.3 = angnin {1y — 513+ 35 (S 40 ) ],

1, corresponds to a MAP estimate of parametgi@nd A assuming that the

for J(8) = ~I18
likelihood of the observation is Gaussiai(3, \) ~ N (X 3,521,,), that the conditional prior

of 8 given \ is Gaussiang|A ~ N (0,diag(\1, ..., \,)), and finally that the prior distribution
of X is Gammay\; ~ I' (2, 3). After rescaling, we note that = 202. As we will see, this

formulation resembles our proposed penalty funcfipisee Chapter 3.



Chapter 3

Modified ¢; approach

Our aim is to exploit the prior knowledge of a structured spamodel by means of a convex
regularization problem. The starting point is the Lassbitégue, which promotes an unstruc-
tured solution by using thé, norm as penalty term. It is well known that this norm can be
rewritten as the infimum of a sum of quadratic functions. Maigational formulation is con-
venient because the quadratic functions are smooth appatixins from above of thé norm.
This formulation depends on free auxiliary variables R’} , , the open positive orthant.

As we shall see, when the auxiliary variables are uncomstdqithat is they belong to the
positive orthant without further restrictions, we reduoetiie Lasso technique. We propose
to constraint these auxiliary variables within a subseif the positive orthant. The result is
a richly parametrised family of penalty functiofiy:|A). By imposing a structure on, we
are indirectly imposing a similar structure grn but we have the advantage that the resulting
problem remains convex.

There are several convenient choices for theAssome of them more general that others.
For instance, by introducing relational constraints betweomponents, or between differences
of components, of vectok, we can model hierarchical order on its coefficients, origoioius
regions of nonzero values. We analyse a selection of sonfeeahainy possibilities.

We also study functiof(-|A) in detail. Among the results, we derive the proximal op-
erator of the function; we prove a number of properties, shgwhe conditions for which the
function is a norm and deriving its dual; we show that othecfions, such as the penalty terms
for the Group Lasso and for Dirty Models, are indeed speciaés of our function.

We begin by defining in detail our proposed penalty functiorSection 3.1. Many im-
portant properties of this function are discussed in Se@i@, while various members of the
penalty family are proposed in Section 3.3. In Section 3.4meose a duality viewpoint which
links the primal variable® of the model to the dual variables Finally, in Section 3.5, we

show some interesting special cases of the function Omega.



42 Chapter 3. Modified, approach
3.1 Proposed penalty

The prior knowledge that we consider is that the vegtéf, whose components are the absolute
value of the corresponding components36f should belong to some prescribed convex subset
A of the positive orthant. For certain choices Mfthis implies a constraint on the sparsity
pattern as well. For example, the geimay include vectors with some desired monotonicity
constraints, or other constraints on the “shape” of theasgion vector. Unfortunately, the
constraint thai*| € A is nonconvex and its implementation is computational eimafing.

To overcome this difficulty, we propose a family of penaltpdtions, which are based on an
extension of thé; norm used by the Lasso method and involves the solution obagntonvex

optimization problem. These penalty functions incorpathe structured sparsity constraints.

Precisely, we propose to estimatéas a solution of the convex optimization problem
min {[| X8 — y||> + 20Q(B|A) : B € R"} (3.1.1)

where|| - || denotes the Euclidean normis a positive parameter and the penalty function takes
the form

Q(B|A) = inf {% > <§—2 + )\Z«> A€ A} : (3.1.2)

Z-EN’!L

As we shall see, a key property of the penalty function is thalways exceeds thé
norm of 3 unless|3| € A and it is strictly greater than thig norm otherwise. This observation

suggests that the penalty function encourages the desitexiused sparsity property.

Our approach also suggests that the parameteontrols the degree of regularization on
the corresponding regression coefficight The case that the sdt consists of one poink is
instructive. In this case, the solution of the optimizafproblem (3.1.1) can be obtained explic-
itly as a solution to a Tikhonov regularization. It is impemt to realize that this optimization
problem requires that all the components)oéire non-zero. However, the optimal solution,
which we call3()\), can be shown to be defined even if some of the componetsu zero.
Indeed, when some of the components of the vekigo to zero on some sdtC N,,, the same
components off(\) on this set go to zero as well. Moreover, the remaining coraptsnof3(\)
on the complement of provide a vector which solves the optimization problemrretstd to
all vectors whose components drare zero. We will substantiate these observations in Sectio

3.4.

In this section, we provide some general comments on thdtgdnaction. To this end,

we letR"} | be the open positive orthant, we I8, be the set of positive integers upstoand
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—B=0.20
---B=1.00
- - B=2.00

—abs
---A=0.75
- - A=1.50

(a) (b)
Figure 3.1: (a): Functioi'(-,\) for some values oi > 0; (b): FunctionI'(3,-) for some

values ofs € R.

define the functiod’ : R™ x R} , — R by the formula
2
(B, \) = %g\; (i— + /\i> .
We let A be a nonempty subset &f} , and for every3 < R", we define the penalty function
Q:R" — Ratgas
Q(BIA) = inf{T'(B,\) : A € A}. (3.1.3)

Note thatl’ is convex on its domain because each of its summands areidiaenvex func-
tions. Hence, when the satis convex it follows thaf)(-|A) is a convex function and (3.1.1) is
a convex optimization problem.

An essential idea behind our construction of this functierthat, for every\ € R, ., the
quadratic functior’(-, \) provides a smooth approximation 8| from above, which is exact
atg = +A. We indicate this graphically in Figure 3.1-a. This facidals immediately by the
arithmetic-geometric inequality, which states, for every > 0 that(a + b)/2 > /ab.

A special case of the formulation (3.1.1) with= R’ , is the Lasso method, which is

defined to be a solution of the optimization problem

min {|ly — XB|* + 2p||81 : B € R"}

where the/;-norm of the vectod = (3; : i € N,,) € R" is defined ag8|[1 = ey, |5il-
Indeed, using again the arithmetic-geometric inequatitioliows thatQ(3|R} ) = ||5]1.
Moreover, if for every: € N,, 8; # 0, then the infimum is attained fox; = |3;|. This
important special case motivated us to consider the gemertilod described above. The utility
of (3.1.3) is that upon inserting it into (3.1.1) results m@ptimization problem ovek and 3

with a continuously differentiable objective function. hte, we have succeeded in expressing



44 Chapter 3. Modified, approach

a nondifferentiable convex objective function by one whghontinuously differentiable on its

domain.

3.2 Function properties

We have already seen that the proposed penalty term is aajjeagon of the Lasso. In this
section we explore many properties that belong to the fané.

The first result is the computation of the derivative of thedtion. This derivative depends
on the value of the auxiliary vector at the minimum, so it aatraiirectly be used to solve the
problem, but it is of theoretical relevance.

Next, we show that, when the satis a convex cone, the functiof? is a norm. The
assumption is not unrealistic, as it encompasses a veryigen@ample like the Graph penalty
(see§ 3.3.3). This property is desirable because it lets the fandhherit the properties of the
norms.

We have a way to compose new penalties starting from a pesetity and mixing it with
a linear map. This rule was used for instance to design thepOsite Wedge (see Section 5.1).

Writing explicitly the dual norm of the function, wheh is a cone, is helpful as it allows
to directly formulate the dual problem.

We show a necessary condition for the auxiliary variablesoreo be the minimiser. This
gives us one more insight about the role of this vector, anceaused as an alternative way to
solve the problem.

Finally, functionf2 has some properties of quasi homogeneity, which will be urs&8.5.2
to define links with other algorithms.

In § 3.2.1 we present the derivative Qf The conditions for the function to be a norm are
in § 3.2.2. In§ 3.2.3 we present a linear composition rule §I18.2.4 we show what is the dual
norm. The necessary condition for the auxiliary variablesia § 3.2.6. Properties of quasi

homogeneity are if§ 3.2.7.

3.2.1 Derivative of{2
For any real numbers < b, we define the parallelepipéd, b = {z : . = (x; : i € N},),a <

z; < b, ZGNn}

Definition 3.2.1. We say that the set is admissible if it is convex and, for all b € R with

0 < a < b, the setA,;, := [a,b]™ N A is a nonempty, compact subset of the interioAof

Proposition 3.2.1. If 5 € (R\{0})" and A is an admissible subset & ,, then the infimum

above is uniquely achieved at a poikt3) € A and the mapping3 — \(3) is continu-



3.2. Function properties 45

ous. Moreover, the functiof2(-|A) is continuously differentiable and its partial derivatsvare

given, for anyi € N,,, by the formula

0QBIA) _ B (3.2.1)

9P Ai(B)

We postpone the proof of this proposition to Appendix B. Weertbat, since2(-|A) is
continuous, we may compute it at a vectyrsome of which components are zero, as a limiting
process. Moreover, at such a vector the funcitinA) is in general not differentiable, for

example consider the cas¥s|R"} | ) = ||5]]1.

3.2.2 Conditions for being a norm

The next proposition provides a justification of the penéltyction as a means to incorporate
structured sparsity and establish circumstances for wthietpenalty function is a horm. To

state our result, we denote Bythe closure of the sef.

Proposition 3.2.2.For everys € R”, it holds that|| 5]|; < ©(8|A) and the equality holdi and
only if |3] := (|B;| : i € N,,) € A. Moreover, ifA is a nonempty convex cone then the function

Q(:|]A) is a norm and we have th&(5|A) < w]||B|1, wherew := max{Q(ex|A) : k € N,,}

and{ex : k € N, } is the canonical basis @&".

Proof. By the arithmetic-geometric inequality we have that|; < I'(5, A), proving the first
assertion. Ifi3| € A, there exists a sequenéa” : k € N} in A, such thatimy_,., \¥ = |].
SinceQ(B]A) < T'(B, A¥) it readily follows thatQ(3|A) < ||3]|1. Conversely, ifi 3| € A, then
there is a sequende\” : k € N} in A, suchv(8,\F) < ||31]| + 1/k. This inequality implies
that some subsequence of this sequence converges o & Using the arithmetic-geometric
we conclude thah = |3| and the result follows. To prove the second part, observeiftha
is a nonempty convex cone, namely, for anye A andt > 0 it holds thattA € A, we have
that Q2 is positive homogeneous. Indeed, making the change ofblarid = )\/|t| we see
that Q(¢5|A) = [t|Q2(B|A). Moreover, the above inequalitf(5|A) > |51, implies that if
Q(B|A) = 0 theng = 0. The proof of the triangle inequality follows from the honeogity
and convexity of2, namelyQ(a + 8|A) = 2Q ((a + 5)/2|A) < Q(a|A) + Q(B|A).

Finally, note that2(8|A) < w||A]1 if and only if w = max{Q(B|A) : ||3]s = 1}. Since

Q2 is convex the maximum above is achieved at an extreme pothedf unit ball. ]

This proposition indicates that the functi®q-|A) penalizes less vectofswhich have the

property that3| € A, thereby encouraging structured sparsity. Specificatly,mermutation of
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the coordinates of a vectgr with the above property will incur in the same or a larger ealu
of the penalty function. Moreover, for certain choices af etA, some of which we describe

below, the penalty function will encourage vectors which anly are sparse but also have
sparsity pattern§ly s, oy : i € Np,) € A, wherel., denotes the indicator function. Note also
that, the alternative formulation in which the constraitite A is added directly as a constraint

to the Lasso problem is not convex.

3.2.3 Composition of penalties

The next proposition presents a useful construction whiely tme applied to generate new
penalty functions from available ones. It is obtained by poging a se® C ]Ri’?Hr with a

linear transformation, modeling the sum of the componehts wector, across the elements
of a prescribed partitiorP = {P, : ¢ € Ny} of N,,. To describe our result we introduce

the group average maplp : R® — R* induced byP. It is defined, for eact € R, as

Ap(B) = (I8P, ll1 : £ € Ny).

Proposition 3.2.3.1f © C R% ., 3 € R" and P is a partition ofN,, then

Q(B145'(©)) = Ap(B)|O).

Proof. The idea of the proof depends on two basic observations. Tdteifies the set theoretic

formula

A71©) = | 451 0).
0cO

From this decomposition we obtain that
Q(BIAZ(©)) = inf {inf {T(B,\) : A € A" (0)} : 0 € ©}. (3.2.2)

Next, we writed = (6, : £ € Nj) € © and decompose the inner infimum as the sum
B! 52 .
> inf 52 TN P N =00,X>05€ i
LeN, jede J JEJe

Now, the second essential step in the proof evaluates thedrifi the second sum by Cauchy-

Schwarz’s inequality to obtain that

. . N W LA
inf {T(BI\) : A € A7 (9)}_22 6 +6,).

£eNg

We now substitute this formula into the right hand side ofadigun (3.2.2) to finish the proof.m
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3.2.4 Dual norm

When the sef\ is a nonempty convex cone, to emphasize that the fun€lied) is a norm we
denoted it byj| - || . We end this section with the identification of the dual noifnfj o||, when

A is a nonempty convex cone, which is defined as
1Blea = max {BTu: u € R", |luljp =1}.

Proposition 3.2.4.1f A is a nonempty convex cone, then there holds the equation
ZieN )‘iﬁz'z
| 8]+, = sup =t —:)EA;.
ZieNn Ai
Proof. By definition, o = ||3||. A is the smallest constagt such that, for everj\ € A and

u € R", it holds that

2
¥ uz’ T
r —t ) > (.
2§ <)\i+)\l> B'u>0

€Ny,
Minimising the left hand side of this inequality farc R" yields the equivalent inequality

o > D ieN, Aiﬁ?.
ZieNn Ai
Since this inequality holds for every € A, the result follows by taking the supremum of the

right hand side of the above inequality over this set. [ |

The formula for the dual norm suggests that we introduce #te\s= {A: X\ €

A, > ien, Ai = 1}. With this notation we see that the dual norm becomes

[1B]l«,a = sup \/W A el
1€N,

Moreover, a direct computation yields an alternate formtfer original norm given by the

equation

Extreme points. Let exi{A) be the set of extreme points &f that is all the points of that
cannot be expressed as linear combination of other poirttseisame set. Since the function
> ieN, ;3% is linear in A\, by the Fundamental Theorem of linear programming (seeexer
ample, [6, Prop. B.21, p. 705]), we know that the optimum vgagls attained at an element of

ext(A). This means that we can rewrite the expression for the duai as

1Bl e.a = max 4[> X821\ € ext(A)
S\



48 Chapter 3. Modified, approach

The set of extreme points characterises the possible gppasierns allowed by thg3||.. A
penalty. When\ is a polyhedral convex cone, this set is finite, as is the dasénstance, of
the Wedge and Tree penalties (see Sections 3.3.2 and 3[&i8) however, can be extended to

cases when efd) is a countable infinite set.

Infimum convolution. We use the definition of dual norm to show h@i| » can be generalised
by an infimum convolution, as suggested in [30]. In that pajherauthors define the norm

181l :m Zinf{ > vmll cvm € H, Y Muy 25}7

MeM MeM
where M is a finite or countably infinite set of linear operators dids a real Hilbert space.

In our setting, we can také&1 to be a set of matrices arfd to beR"™. They prove that the dual

of this norm is

1Bl = D I1MB.

MeMm
If we consider the set of diagonal matrices having as nonzalues the square roots of

the extreme sets of, that is
M = {diag(ﬁ) e ext(A)} :
then we can see immediately thal/ 3|| becomes />, AifZ. This implies that botH- || ¢

and||-||x share the same dual norm and are then equivalent.
For completeness, we prove tha o is a norm, adapting the proof of [30, Thm. 7, p. 10]

to our setting. We prove the following.

Proposition 3.2.5. Let M be a countably infinite set of real x n symmetric matrices. We
assume that, for every € R", withz # 0, we haveM z # 0 for someM € M. Moreover,
we assumethat sup ;e |M|| < oo. We define the set of vectoty M) = {v : v =
(var) mem, v € R™}. Then

181lm = inf{ D lloull s v € VM), Y Muar = ﬂ}

MeM MeM
is a norm.

Proof. (Nonnegative and positivitylhe function is clearly nonnegative, being a sum nonneg-
ative terms. It is also positive i # 0. Suppose then that# 5 = >, \, Mvas. Using the
triangle inequality of thés norm, we can write

18I < Y Moyl < > 1M floa] < sup [|] > loal,

Mem Mem Mem

with the notation] A|| we refer to the operator norm, definedsag { Lol

:v;éO}.
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where the middle inequality comes from the definition of @p@r norm. Now, taking the

infimum with respect te, we get

0 <18l < sup [IM[|B]la
Mem

and, asup,,c v | M| < oo by hypothesis, we can conclude thja#| o4 > 0.

(Homogeneousycalings by a constané amounts to scaling ally; by the same constant,
which in turn, by homogeneity of th& norm, givesal||5||m-

(Triangle inequality)Let 5,7 € R™ andw® € V(M) be a set of auxiliary vectors such
that Y, c v Mwh, = B and, for alle > 0, [|B]am + € > 3yl || Letw? be a similar
set of vectors fory.

By definition,

16 +~lla = inf { > loull cv € V), Y Moy =8 +7} .

MeM MeM

Since bothw® € V(M) andw” € V(M), thenw® + v € V(M). Moreover, we have
Yo Mem M(w% +wl) = D pmem Muwh, + S vem Mwh, = B+ . Thenw” + w7 is a
feasible set of auxiliary vectors fgr+ ~, which cannot yield a value smaller than the infimum.
That is

18 +lae < D Hlwhy +wi < S I+ 3 il < 181w+ 1 llag + 2e.
MeM MeM MeM

where the second inequality is the triangle inequality Fer 4 norm and the third inequality
comes from the assumptions. Finally, sirds free to go td), the triangle inequality fof{-|| ¢

follows. [ |

3.2.5 Dual norm of Lagrangian formulation
Suppose that : R" — R is a norm, and define the constraint det= {\ : w(\) < a}, for
a positive parametat. The infimum in the definition of2 can be written in the equivalent
Lagrangian formulation

inf {% ZEZN:” <§—Zj + /\i> +7w(/\)} ,
using the additional termw()\), wherey is a positive Lagrangian variable. Here we will prove
that the Lagrangian formulation is a norm, and we derive iital.d Specifically, we have the

following proposition.

Proposition 3.2.6.If w : R™ — R is a norm, then the function

2
181 = inf {% > (5 ) +7w(A)}, (329

ieN’!L
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is a norm.

Proof. (Nonnegative and positivityllhis function is clearly nonnegative, being a sum of non-
negative terms. It is also positive if # 0. In fact, in order for||5||,, to be zero, it must be
w(A) = 0, which gives an infinite value whef # 0. Indeed, the function is bounded by the
<181l +~yw(B).

(Homogeneoud)et a > 0 be a scalar. We can solve the problem

L3 (W) +w<A>},

— inf { =
Bl ;20{2_
ZeNn

by transforming the variables; — |a|\;. That way we can collect a leading tefnj and get,

value we obtain when = ||,

as desiredja||| 5. -

(Triangle inequality)The function} ;- <§—2 + A,-) is jointly convex inA and 3, while
w(A), being a norm, is convex in. Overall, we are taking the infimum with respecttmf
a function which is jointly convex, so the resulting functis convex (see, for instance, [10,
Section 4.2.4]). Finally, sincgg||., is convex and homogeneous, then it satisfies the triangle

inequality, becaus#s + €|, = 2|2 ||, < |18l + ||€]|, as desired. n

We can derive the dual norm of (3.2.3), in a similar way to whkatdid in§ 3.2.4.

Proposition 3.2.7. The dual norm of| 5]|., is

i3
1€Ny,
1Bl = sup{\/zzeN w )}.

Proof. By definition, » = ||3||.. IS the smallest constagt such that for everys € A and

u € R™, it holds that
EZ u_22+)\, +yw(N) _ZB">O
2 2 A, i yw ' Wi = V.
€Ny, i€ENy,

We minimise over to obtain the condition

4,02 > ZieNn ﬂzz)‘l ‘
Z’ieNn Ai +yw(A)

Since this inequality holds for every > 0, the result follows by taking the supremum with

respect to\. [ ]

3.2.6 Equilibrium condition for optimality

In this section we establish a relationship between thet pioifm)r which the infimum is attained,

and the value of functiof2 when the constraint st is a cone.
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Proposition 3.2.8. Let A be a cone, a vector in R", and let A\ € A such that

g2« 32
> ieN, <A— + /\Z-> <D icr, <T + /\Z-> forall A € A. Then we have

2
281 = I = 3 B (3.2.4)

ZGNn

Proof. We begin by noting that, within any ray belonging to A, the minimum of
LS ien, (5 + i) is attained for a pointh ¢ R for which the equilibrium condition
> ieN, §—2 = Y ien, A Is satisfied. Letw be any point inA, and rescale it to define the

ray R, = {\: A= kv, k > 0} C A. Then itis easy to see that= > ieN, i—f/1 /D ien, Vi

2 ~
is the root of the derivative of >, (,{% + k‘vi> with respect tok, that iskv is the min-

imiser within the ray. Moreovery ;- o \/ZZGNn LS e, Vi = Dien, ki, SO kv

satisfies the equilibrium condition.

Thisis a necessary condition for optimality, so it must hiiséiad by the point\ as well.
ThenY,cn, 2 = Ve N = 3 (ZieNn §—2 + 3 ierm 5\,-) = Q(B|A) as required. ]

The equilibrium condition is satisfied by exactly one poimt éach ray inA, so whenA
consists of a single ray, it becomes a sufficient conditiarofimality. In§ 3.5.1 this case is
explicitly considered.

The possibility of rescaling a vector suggests an altereatiay of computing the value of
52

ienn o and minimising|[v[|1; the sought value will ensue after

restoring the equilibrium condition by scaling. Precis@hg have the following result.

Q2 by restricting the value of _

Proposition 3.2.9.If A is a cone, then
52
Q(B|A) = min Vil Y= (3.2.5)
1€ENn Yi
and if ¢ is the point for which the minimum is attained, then= 4/+/][4[; is the solution to

the original problem, that i§2(8|A) = 2 >~ .y, (i—Q + A,)

Proof. We call ¢ the value of the solution of3(2.5) and prove that2(8|A) = ¢. Leto
be the minimiser of ¥.2.5), so thaty = +/[[é]:. Then we rescale this vector by =
1/+/][0[]1 so as to satisfy the equilibrium condition: for the scaledtoe\° = ki we have
LS ienn (3 +X2) = VT = ¢, concluding tha(5]4) < .

Let now A be the minimiser ofL > cnm (— + A). We rescale this vector by =

Y icNn i so that the new vectar’ = kA is a feasible point of:2.5), i.e. > ;cx, v—2 = 1.

Then/[[v°]l; = +/IIAIh Y icNn i— = Q(B|A), where the last equality follows from Proposi-

tion (3.2.8). We conclude that it is < Q(5|A) as well, so consequently(5|A) = ¢. [ |
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In a similar way it can be proved the related alternative whgamputing the value of

Q(B|A) by changing the roles of’ H and||v||;, that is

1€ENn v;

Q(BIA) = inf

inf =1 (3.2.6)

3.2.7 Two quasihomogeneous properties

Let a be a nonnegative constant afich cone, so that ik € A, then\ = /a\ € A. Then

2
%)i\rg\ { > (ﬁ— + a)\i> } = VaQ(g|A), (3.2.7)
ieN, !

becausel- = /a5 anda); = Vak;.

Something similar happens wheris the coefficient of the first term:

Lint Z(ﬁg +/\-> - Lopn (3.2.8)
5 o o TN (T ‘ -2

For this second case, we are looking for a transformaklpm— h\; for some positive

ZeNn

coefficienth such that bothj—i and \; will have a common coefficient, that can be collected
outside the summation. Here we h% = c% andh\; = c);. SinceZ- = ¢ = h, it readily
follows thath = % implying the change of variables — %)\Z—. Analogous considerations
lead to the first result.

WhenA is not a cone, then we can still bring the constamiutside the function. In that
case, though, the functiaf will have a constraint sek containing all\ = Va or A= %
forall A € A.

3.3 Examples of set\

We discuss some specific instances of the\sahd the associated penalty functions. These will
prove to be important cases both from a theoretical and frpnaetical point of view.

The Box penalty introduces the constraint that the absetaiige of each individual com-
ponent of the vector is bound to be in an interval. This typerakcle information is hard to
exploit because it is not the actual value to be confined imgmial: the absolute value regards
as equal two possibilities of opposite signs, thus leading problem combinatorial in nature.
This penalty has a closed form which resembles the Hubef463s

The Wedge penalty models the very natural assumption tleaalisolute values of the
components of the model are sorted. We prove that this gehak an analytical solution
related to the Group Lasso. The penalty can be extended hmgdlpolynomial silhouette for

the model: we constrain the differencesketh order to be nonnegative fér> 1.
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A natural generalisation of the Wedge is the Graph penalhgrer a hierarchy on the
absolute values are imposed from arbitrary topology. Sipadly, we embed the model in a
graph, so that each component is a node, and each directededgdering constraint between
components of these nodes. In general, this penalty haeed:form solution. However, we
present a closed form solution when the graph is a tree.

As we shall see, the Tree penalty shares a general form vétisthd-C penalty, in which
the sum of absolute values of the differences of arbitraiss md auxiliary variables is bounded,
in a fashion similar to the Fused Lasso.

In § 3.3.1 we present the Box and its closed form.§18.3.2 we present the Wedge. In

§ 3.3.3 we present the Graph penalty§18.3.4 we present Tree-C and Grid-C.

3.3.1 Box penalty

We proceed to discuss some examples of thé\setR’} , which may be used in the design of
the penalty functiorf2(-|A).

The first example, which is presented in this section, cpomeds to the prior knowledge
that the magnitude of the components of the regression webtmld be in some prescribed
intervals. We choose = (a; : i € N,), b= (b; : i € N,,) € R", 0 < a; < b; and define
the corresponding box aB[a,b] := {(A\; : ¢ € N,,) : A\; € [a;,bi], i € N,}. The theorem
below establishes the form of the box penalty. To state aultewe define, for every € R,

the function(t)+ = max(0,t).

Theorem 3.3.1.We have that
1 2 1 2
Q(B|Bla,b]) = [|Bll + Z 2_w(ai — B3 + Tb(\ﬂz’! —bi)i |-
ieN, ‘ !
Moreover, the components of the vecdp) := argmin{I'(8,\) : A € Bla,b]} are given by
the equations\;(3) = |8i| + (a; — |Bi|)+ — (18i| — bi)+, 7 € Np.

Proof. SinceQ(8|Bla,b]) = > iy, 2(Billai, bi]) it suffices to establish the result in the case
n = 1. We shall show that ifi, b, 5 € R, a < b then

Blla, b)) = 161+ 5-(a — 8)% + 58]~ b)%. (33.)

Since both sides of the above equation are continuous @ngctf 3 it suffices to prove this

equation fors € R\{0}. In this case, the functiof'(j, ) is strictly convex, and so, has a

i

occurs at\ = a, whereas if5| > b, it occurs at\ = b. This establishes the formula fa(3).

unigue minimum iNR . atA = |3 < a the minimum

, see also Figure 3.1-b. Moreover,
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Consequently, we have that
181, if |8] € [a, 0]
AUbllab) =3 3 (2 +a), if[8]<a
2 .
%(%er), it 18] > b.
Equation (3.3.1) now follows by a direct computation. [ |

We also refer to [21, 40] for related penalty functions. Nibigt the function in equation
(3.3.1) is a concatenation of two quadratic functions, eoted together with a linear function.

Thus, the box penalty will favor sparsity only far= 0.

3.3.2 Wedge Penalty

In this section, we consider the case that the coordinatéseofector\ € A are ordered in a
nonincreasing fashion. As we shall see, the correspond@nglty function favors regression
vectors which are likewise nonincreasing.

We define the wedge
W = {)\ A= ()\z 11 € Nn) ERT_|L_+7)\Z' > )\i+17 1€ Nn—l}-

Our next result describes the form of the penéltin this case, for which we use the notation
||-|lw . To explain this result we require some preparation. Welsalyet partition7 = {J, : ¢ €
Ny} of N,, is contiguousf for all i € Jy, 5 € Jpi1, £ € N_1, it holds thati < j. For example,

if n = 3, partitions{{1, 2}, {3}} and{{1}, {2}, {3}} are contiguous bu{1,3},{2}} is not.

Definition 3.3.1. Given any two disjoint subsets K C N,, we define the region iR™

1813 _ 11813 } (332)

QJ,K:{ﬁiﬁeR"> ] > K]

Note that the boundary of this region is determined by the get of a homogeneous polyno-

mial of degree two. We also need the following construction.

Definition 3.3.2. For every subset C N,,_; we setk = |S| + 1 and label the elements of
S in increasing order asS = {j, : ¢ € N;_1}. We associate with the subsgta contiguous
partition of N,,, given by 7(S) = {J; : £ € N}, where we defind, := [j,_1 + 1,/ N N,,

¢ € N, and setj, = 0 andj, = n.

A subsetS of N,,_; also induces two regions iR which play a central role in the iden-
tification of the wedge penalty. First, we describe the negidich “crosses over” the induced

partition 7 (.5). This is defined to be the set

Os = [ \{@uresr : € € Np_r} (3.3.3)
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J ={1} J ={2,3,4,5) k=167

R )

Figure 3.2: Partition oB=(—1.477,0.694, —0.173, —0.916, —1.126, 0.525, —0.957).

In other words,3 € Og if the average of the square of its components within eacltomeg
Jp strictly decreases witld. The next region which is essential in our analysis is thayst
within” region, induced by the partitio/ (S). To identify this region we use the notation

Joq:=1j:J € Ji,j <q}andis defined by the equation

Is i= ({@sn,, s 0 € Je L € Ny} (3.3.4)

where(@ denotes the closure of the @t In other words, all vector$ within this region have
the property that, for every se, € 7(S), the average of the square of a first segment of
components off within this set is not greater than the average oeMe note that ifS is the

empty set the above notation should be interpreted@as- R™ and

[S = ﬂ{@N'qu i q S Nn}

Figure 3.2 illustrates an example of a contiguous partitadang with the set7(.S), for
a vectorg = (—1.477,0.694, —0.173, —0.916, —1.126, 0.525, —0.957). We can check that,

for this vector, the partitioq{1},{2,3,4,5},{6,7}} belongs both to region® and . For

2 2 2 2 2 2
the crosses over region it must be tisgt > 22010 o S5t \which is the case since

; o aHO3HBI+5E
2.182 > 0.655 > 0.596. For the stays with region it must be th 4= Is larger
2 2 2 2 2 2 2
than 2, 62253 and B2+B§+B4, and moreovelﬂﬁg—ﬁ7 > (2. This is the case becaudes5 >

max(0.482,0.256,0.450) and0.596 > 0.276.

From the cross-over and stay-within sets we define the region
Ps=0gnNlIg.

Alternatively, we shall describe below the g8 in terms of two vectors induced by a vector
B € R™ and the sef C N,,_;. These vectors play the role of the Lagrange multiplier ded t

minimizer \ for the wedge penalty in the theorem below.

Definition 3.3.3. For every vectors € (R\{0})" and every subsef C N,,_; we let7(S) be
the induced contiguous partition &f,, and define two vector§(3, S) € Rﬁlfl andé(g,9) €
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R’ by
0, if g€ SU{0,n),
<l1(ﬁvs) =
1817, 113 .
|Jé,q| |JZ| Hg]e q‘227 ifge Jy,l €Ny,
and
e

54(8,5) q € Jp,l €Ny (3.3.5)

VI’

Note that the components 6f/3, S) are constant on each sét ¢ € Nj.
Lemma 3.3.1. For everyg € (R\{0})" andS C N;_; we have that
(@) p € Psifandonlyif((8,S) > 0andd(3,S) € int(W);
(b) If6(8,S51) =46(8,52) ands € Og, N Og, thenS; = Ss.

Proof. The first assertion follows directly from the definition okthequisite quantities. The
proof of the second assertion is a direct consequence ofathietat the vectod (3, .S) is a
constant on any element of the partitiof{.5) and strictly decreasing from one element to the

next in that partition. [ |

For the theorem below we introduce, for evéhe N,,_; the sets
Ug := Ps N (R\{O})"

We shall establishes not only that the collection of sets- {Us : S C N,,_; } form apartition
of (R\{0})™, that is, their union igR\{0})™ and two distinct elements &f are disjoint, but

also explicitly determine the wedge penalty on each elerofht

Theorem 3.3.2. The collection of set® := {Ug : S C N,,_;} form a partition of(R\{0})".
For eachss € (R\{0})"™ there is a uniques C N,,_; such that5 € Us, and

1BIw = > V17118, 2: (3.3.6)

LeNy,
wherek = |S|+1. Moreover, the components of the vect¢f) := argmin{I'(5,\) : A € W}
are given by the equations;(3) = ¢, j € Jo, £ € Ny, where

_ Hﬁu,v,ll.
VI

Proof. First, let us observe that there ate- 1 inequality constraints defining/. It readily

(3.3.7)

follows that all vectors in this constraint set aegular, in the sense of optimization theory, see

[6, p. 279]. Hence, we can appeal to [6, Prop. 3.3.4, p. 316RPand. 3.3.6, p. 322], which
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state that\ € R’} , is a solution to the minimum problem determined by the wedgealty, if

and only if there exists a vectar= («; : i € N,,_1) with nonnegative components such that

2

—)\—32 +1+ Qj_1 — O = 0, jeN,, (3.3.8)
J

where we setyy = a,, = 0. Furthermore, the following complementary slackness damri

hold true

Oéj()\j_H — /\J) =0,75€N,_1. (339)

To unravel these equations, we lgt:= {7+ Aj > Ajs1,J € N1}, which is the subset of
indexes corresponding to the constraints that are not tijtenk > 2, we express this set in
the form{j, : £ € N;_} wherek = |S|+1. As explained in Definition 3.3.2, the s¢tinduces
the partition.7(S) = {J; : £ € N;} of N,,. Whenk = 1 our notation should be interpreted to
mean thatS is empty and the partitioﬂ(S) consists only oN,,. In this case, it is easy to solve
equations (3.3.8) and (3.3.9). In fact, all components efctor\ have a common value, say

w1 > 0, and by summing both sides of equation (3.3.8) gverN,, we obtain that
B 2
2 1813

n

Moreover, summing both sides of the same equation p¥velN, we obtain that

2
. _zjiN; 5.,
and, sincer, > 0 we conclude that € Iy = Pg.

We now consider the case that> 2. Hence, the vectak has equal components on each
subsetJy, which we denote by, ¢ € Ni_;. The definition of the seb implies that the
sequencey, : ¢ € N} is strictly decreasing and equation (3.3.9) implies that= 0, for
everyj € S. Summing both sides of equation (3.3.8) oyef .J, we obtain that

—%ZB?HJA:O (3.3.10)
tjede
from which equation (3.3.7) follows. Since the are strictly decreasing, we conclude that
B € Og. Moreover, choosing € J, and summing both sides of equations (3.3.8) gverJ, ,
we obtain that

184,113
0< o= _% + [Jeql

3
which implies thats € @JM[ . Since this holds for every € J, and? € N, we conclude that

B € I and therefore, it follows that € Us.
In summary, we have shown that= ¢(S, S), A = 0(B, §), andg € Ug. In particular,

this implies that the collection of setscovers(R\{0})". Next, we show that the elements of
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U are disjoint. To this end, we observe that, the computatestidbed above can lbeversed
That is to say, conversely fany S C N,,_; and3 € U we conclude thai(3, S) and¢ (8, S)
solve the equations (3.3.8) and (3.3.9). Since the wedgaltyemnction isstrictly convexwe
know that equations (3.3.8) and (3.3.9) have a unique solutlow, if 5 € Ug, N Ug, then it
must follow thatd(3, S1) = §(53, S2). Consequently, by part (b) in Lemma 3.3.1 we conclude
thatS; = .Ss. [

Note that the sef and the associated partitiQgfi appearing in the theorem is identified
by examining the optimality conditions of the optimizatiproblem (3.1.2) folA = W. There
are2"~! possible partitions. Thus, for a givéhe (R\{0})", determining the corresponding
partition is a challenging problem. We explain how to do thiSection 4.1.

An interesting property of the Wedge penalty, which is iatlkdd by Theorem 3.3.2, is that
it has the form of a Group Lasso penalty as in equation (3.%#d) groups not fixed-priori
but depending on the location of the vectar The groups are the elements of the partition
and are identified by certain convex constraints on the vettd-or example, fom = 2 we

obtain thatQ(8|W) = ||8]|1 if |B1] > |B2| andQ(B|W) = /2|| 8|2 otherwise. Fon = 3, we

have that
1811, if 8] > 8] > |83 J = {{1},{2}, 3}}
V202 F B2) + |Bsl, if |B1] < |Bo] and > g2 7 = ({1,2},{3}}
QBIW) =

B + 2B+ B, if B <|Bs| and 82 > B 7 (11}, {2,3})

V3(B? + B3+ B3), otherwise J ={{1,2,3}}

where we have also displayed the partiti@rinvolved in each case. We also present a graphical
representation of the corresponding unit ball in Figure&.3or comparison we also graph-
ically display the unit ball for the hierarchical Group Lassith groups{1, 2,3}, {2, 3}, {3}
and two Group Lasso in Figure 3.3-b,c,d, respectively.

The wedge may equivalently be expressed as the constrainthe difference vector
DY(\) :== (A\j41 — Aj : j € N,_1) is less than or equal to zero. This alternative interpre-

tation suggests thieth order difference operator, which is given by the formula

Dk()\) = ()\j—i-k + Z (—1)£ <IZ> )\j+k—f 1] € Nnk)

LeN,
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(d) (e)
Figure 3.3: Unit ball of different penalty functions: (a) W penalty2(-|1V); (b) hierarchi-

cal Group Lasso; (c) Group Lasso with groufsl, 2}, {3}}; (d) Group Lasso with groups
{{1},{2,3}}; (e) the penalty2(-[W?).

and the correspondingth wedge
WF.={A:XeR%,, DF(\) >0} (3.3.11)

The associated penalfy(-|IW*) encourages vectors whose sparsity pattern is concentrated
at mostk different contiguous regions. Note thidf! is not the wedgéV considered earlier.
Moreover, the2-wedge includes vectors which have a convex “profile” and sehsparsity

pattern is concentrated either on the first elements of th®reon the last, or on both.

3.3.3 Graph penalty
In this section we present an extension of the wedge set whittspired by previous work
on the Group Lasso estimator with hierarchically overlagpgroups [58]. It models vectors
whose magnitude is ordered according to a graphical steictu

Let G = (V, E) be a directed graph, whefé is the set ofn vertices in the graph and
E CV x Vs the edge set, whose cardinality is denotedrbyif (v, w) € E we say that there

is a directed edge from vertexto vertexw. The graph is identified by thex x n incidence
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matrix, which we define as

1, ife=(@ww)eE weV

Aew =19 -1, ife=(w,v)€EE, weV

)

0, otherwise.

We consider the penalty - |5, for the convex cone\¢ = {\ : A € R}, A\ > 0} and
assume, from now on, thét is acyclic (DAG), that is(z has no directed loops. In particular,
this implies that, ifv, w) € E then(w,v) ¢ E. The wedge penalty described above is a special
case of the graph penalty corresponding to a line graph. 4 rbw discuss some aspects of the
graph penalty for an arbitrary DAG. As we shall see, our rdeqiéad to an explicit form of the
graph penalty whery is a tree.

If (v,w) € E we say that vertex is a child of vertex» andv is a parent ofv. For every
vertexv € V, we letC'(v) and P(v) be the set of children and parentswpfespectively. When
G is atree,P(v) is the empty set ib is the root node and otherwig&(v) consists of only one
element, the parent ef which we denote by(v).

Let D(v) be the set of descendants«fthat is, the set of vertices which are connected
to v by a directed path starting in, and letA(v) be the set of ancestors of that is, the set
of vertices from which a directed path leadsitoWe use the convention thate D(v) and
v ¢ A(v).

Every connected subsgt C V induces a subgraph @& which is also a DAG. Ifi’; and
V5 are disjoint connected subsets1of we say that they are connected if there is at least one
edge connecting a pair of verticeslih and V5, in either one or the other direction. Moreover,
we say thafl; is belowV; — written V5 || V43 — if V3 andV; are connected and every edge

connecting them departs from a nodelof

Definition 3.3.4. Let G be a DAG. We say that' C FE is a cut ofG if it induces a patrtition
V(C) = {V; : £ € N} of the vertex se¥’ such that(v, w) € C if and only if verticess and w

belong to two different elements of the partition.

In other words, a cut separates a connected graph in two @& coomected components
such that every pair of vertices corresponding to a disottedeedge, that is an element@f
are in two different components. We also denoteClb§) the set of cuts of7, and byD,(v)
the set of descendants owithin setV,, for everyv € V; and? € Ni. Figure 3.3 illustrates an
example of a partition of a tree.

Next, for everyC' € C(G), we define the regions iR™ by the equations

Oc = ({Quiws = Vi, V2 € V(O), V2 I V1} (3.3.12)
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and
Io = ({ @by € € Nesv € Vi (3.3.13)

These sets are the graph equivalent of the sets defined bticetpuéd.3.3) and (3.3.4) in the
special case of the wedge penalty in Section 3.3.2. We atsBse- O¢c N I¢.

Moreover, for evenyC' € C(G), we define the sets

Uc = Po[ \(R\{0})".

As of yet, we cannot extend Theorem 3.3.2 to the case of atvaagbDAG, even if we suspect

it to be true. However, we can accomplish this wiiers a tree.

Lemma3.3.2.LetG = (V, E) be atree, letd be associated incidence matrix and fet (z, :

v € V) € R™. The following facts are equivalent:

(a) Foreveryv € V it holds that

Z zy > 0.

ueD(v)

(b) The linear systeml "o« = —z admits a non-negative solution far= (. : e € F) €
R™.

Proof. The incident matrix of a tree has the property that, for eveeyV ande € E,

Z Aeu = _56,(])(1)),1)) (3314)
ueD(v)

where, for every, ¢’ € E, §. .- = 1 if e = ¢/ and zero otherwise. The the linear system in (b)

can be written componentwise as

E Acy0te = —24.

eeE

Summing both sides of this equation ovee D(v) and using equation (3.3.14), we obtain the

equivalent equations

Ap(v)v) = Z Zu

ueD(v)

The result follows. [ ]

Definition 3.3.5. Let G = (V, E) be a DAG. For every vectas € (R\{0})" and every cut
C € C(G) we letV(C) = {V; : £ € Ni}, k € N, be the partition oft induced byC, and
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define two vectorg(3,C') € R~ ands(B,C) € R,.. The components @f 3, C) are given
as
0, ifeeC,
Ce(B,C) =

2
\72 WBipyenlz |Dg(u)|, ife=(u,v),u € Vy,v € Dy(u), £ € Ng

181v, 113
whereas the componentsd&f3, C') are given by

_ 18jv, ll2

Vel

5,(3,C) L v eV, e N, (3.3.15)

Note that the notation we adopt in this definition differsnfrahat used in the case of
line graph, given in Definition 3.3.3. However, DefinitiorB% leads to a more appropriate

presentation of our results for a tree.

Proposition 3.3.1. LetG = (V, E) be a tree and4 the associated incidence matrix. For every

g € (R\{0})™ and every cutC € C(G) we have that

(@ 8 € Poifand only if ((8,C) > 0, A§(5,C) > 0 andd,(8,C) > §,(5,C), for all
veVi,weV,, (v,w) € E, V1,V € V(C);

(b) 1 5(8,C1) = 5(B,Cs) andB € O¢, N Oc, thenCy = Cs.

Proof. We immediately see that € O¢ if and only if A6(5,C) > 0andd, (5, C) > d,(5,C)
forallv € Vi,w € Vo, (v,w) € E, Vq,V5 € V(C). Moreover, by applying Lemma 3.3.2 on
each element; of the partition induced b¢’ and choosing = (|W|ﬁ —1l:veV),we
conclude that (8, C") > 0 if and only if 5 € I. This proves the first assertion.

The proof of the second assertion is a direct consequenbe ddt that the vector(5, C)
is a constant on any element of the partitid(C') and strictly decreasing from one element to

the next in that partition. [ |

Theorem 3.3.3.LetG = (V, E)) be a tree. The collection of sgis:= {Uc : C € C(G)} form
a partition of (R\{0})™. Moreover, for everys € (R\{0})" there is a unique”’ € C(G) such
that

1Blac = > VIVillBw, 2 (3.3.16)

Veev(C)
and the vecton(5) = (A\,(8) : v € V') has components given By (5) = u¢, v € Vi, £ € Ny,

1
pe=,[— > B2 (3.3.17)
¢ weVy

where
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Proof. The proof of this theorem proceeds in a fashion similar ta &fiarheorem 3.3.2. In
this regard, Lemma 3.3.2 is crucial. By Karush-Kuhn-Tuctteyory (see e.g. [6, Theorems
3.3.4,3.3.7]) A is an optimal solution of the graph penalty if and only if thexistsce > 0 such
that, for everyy € V

and the following complementary conditions hold true
Q) (Aw — Ay) =0, v € Viw € C(v). (3.3.18)

We rewrite the first equation as
52
Aphe) = D Cww) =33 — L (3.3.19)
weC (v) v
Now, if A € Ag solves equations (3.3.18) and (3.3.19), then it inducest &'ca E and a
corresponding partitiol(C') = {V; : £ € N} of V such that\, = u, for everyv € V. That
is, \y, = A foreveryv,w € V;, £ € N, anda, = 0 for everye € C. Therefore, summing
equations (3.3.19) far € V, we get that
vy Il
VIV

Moreover, sincegu, > g, if V, || V, we see thatt € O¢. Next, for every! € N, andu € V,

we sum both sides of equation (3.3.19) foe D,(u) to obtain that

_ Bipew 3
WDz _

X (p(u),u) = Dy (u)]. (3.3.20)

Hy
We see thati € I~ and conclude that € Ug¢.

In summary we have shown that the collection of gétsover(R\{0})™. Next, we show
that the elements dif are disjoint. To this end, we observe that, the computatiescidbed
above can beeversed That is to say, conversely fany partitionC' = {V1,..., Vi } of V and
B € Uc we conclude by Proposition 3.3.1 that the vectr$, C)) and((3, C') solves the KKT
optimality conditions. Since this solution is uniquesife Uq, N Ug, then it must follow that

0(8,C1) = 6(B,Cs), which implies thatC; = Cs. [

Theorems 3.3.2 and 3.3.3 fall into the category of aAs&€f R" chosen in the form of a
polyhedral cone, that is

A={\:XER" A\ >0}

where A is anm x n matrix. Furthermore, in the line graph of Theorem 3.3.2 alsd the

extension in Theorem 3.3.3 the matriikonly has elements which arel, 1 or 0. These two
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examples that we considered led to explicit descriptiorhefriorm|| - ||». However, there are
seemingly simple cases of a matrixof this type where the explicit computation of the norm

| - ||a seem formidable, if not impossible. For exampleyif= 2, n = 4 and

-1 -1 1 0
0 -1 -1 1

A=

we are led by KKT to a system of equations that, in the case ofastive constraints, that is,

A) = 0, are the common zeros of tWourth orderpolynomials in the vectok € R2.

3.3.4 Tree-C and Grid-C

We consider two more sefs of the form
A={XeR} :AXe S}

whereS is a convex set and is ak x n matrix. Two main choices of interest are whéns
a convex cone or the unit ball of a norm. We shall refer to theesponding sef\ asconic
constraintor norm constraintset, respectively. We next discuss two specific exampleghwh
highlight the flexibility of our approach and help us undanst the sparsity patterns favoured
by each choice.

Within the conic constraint sets, we may chosse= R ., so thatA = {\ € R, :
AN > 0}, which can be used to encourage hierarchical sparsity. Ahtf®y considered the
setA = {A € R}, : Ay > --- > \,} and derived an explicit formula of the corresponding
regularizerQ2(3|A). Note that for a generic matrid the penalty function cannot be computed
explicitly. In Chapter 4, we show how to overcome this diffigu

Within the norm constraint sets, we may chods& be thel;-unit ball andA the edge
map of a grapltz with edge sef, so thatA = {A eRY, : Z(m)eE IXi — Ay < 1} . This set
can be used to encourage sparsity patterns consisting afiemected regions/subgraphs of the
graphG. For example it is a 1D-grid we have that = {\ € R"} | : S i — A < 13,

so the corresponding penalty will favour vectgrsvhose absolute values are constant.

3.4 Duality

In this section, we comment on the utility of our class of pgnnctions, which is fundamen-
tally based on their construction as constrained infimumuaidgatic functions. To emphasize
this point both theoretically and computationally, we dss the conversion of the regulariza-

tion variational problem ovef € R™, namely

E(A) =inf {E(B,\): BER" )\ € A} (3.4.1)
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where
E(B,)) := |ly — XB|* + 2p0'(B, \),

into a variational problem ovex € A.

To explain what we have in mind, we introduce the followindimi&on.
Definition 3.4.1. For every\ € R", we define the vectgi(\) € R" as
B(N) = diag(\)M (X)X Ty
whereM (\) := (diag(A) X" X + pI)~ L.
Note that3(\) = argmin{E(3, \) : § € R"}.

Theorem 3.4.1.For p > 0,y € R™, anym x n matrix X and any nonempty convex setve

have that
E(A) = min {pyT (Xdiag(\) X ™ 4 pI) "y + ptr(diag(N) : A € AN R’}r} (3.4.2)
Moreover, if\ is a solution to this problem, the(ﬁl(ﬂ) is a solution to problen(3.4.1)

Proof. We substitute the formula faR(5|A) into the right hand side of equation (3.4.1) to
obtain that
E(N)=inf{H\): A€ A} (3.4.3)

where we define

H(\) = min {E(B,)\) : B € R"}

A straightforward computation confirms that
H(\) = py" (Xdiag \) X" + pI) "'y + ptr(diag(N)).

SinceH (\) > ptr(diag())), we conclude that any minimising sequence for the optirianat
problem on the right hand side of equation (3.4.3) must hasgbaequence which converges.
These remarks confirm equation (3.4.2).

We now prove the second claim. Fbre R”} , a direct computation confirms that

L(B(A),A) = % (y" XM (N)diag(A)M (M) X Ty + tr(diag(}))) -

Note that the right hand side of this equation provides aigoatis extension of the left hand
side toX € R’}. For notational simplicity, we still use the left hand sidedenote thisontinu-

ous extensian
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By a limiting argument, we conclude, for evekyc A, that
Q(BA)[A) S T(B(A), A). (3.4.4)

We are now ready to complete the proof of the theorem ALt a solution for the optimization

problem (3.4.2). By definition, it holds, for amye R™ and\ € A, that
ly = XB)I? + 200 (B(A),A) = HQA) < HQ) < [ly = XB|* + 200(8, ).
Combining this inequality with inequality (3.4.4) evaledtat\ = ), we conclude that
ly = XBVI? +202(B(N)[A) < [ly — XB]* + 20T (8,A)

from which the result follows. [ |

An important consequence of the above theorem is a methoddafsolutions to the
optimization problem (3.4.1) from a solution to the optiation problem (3.4.2). We illustrate

this idea in the case tha& = I.

Corollary 3.4.1. It holds that

2 —
min {||8 — y[5 + 2pQ(B|A) : B € R"} = pmin { Z )\'yj_p + A€ A} . (3.4.5)
i€N, "

Moreover, if) is a solution of the right optimization problem then the veat(\) = (5;()) :

i € N,), defined as

~

By = i (3.4.6)

is a solution of the right problem.

We further discuss some examples of the/s&ir which we are able to solve this problem
analytically. If A = R, for which €2 is the /; norm, the solution to problem (3.4.5) is
A= (ly| — p)+, and the corresponding regression vector is obtained bwéfteknown “soft
thresholding” formulad(\) = (|y| — p)4sign(y).

If A= [a,b], we solve the problem (3.4.5) by appealing to Theorem 3.8dlaachange of
variables. We obtain that; = |y;| — p+ (a — |yi| + p)+ — (lyi| — p — b) 4 fori € N,,, and we
can computed()) accordingly.

For the Wedge and Tree penalties we find that the solutioretpribblem (3.4.5) is

A=A =)+,

where\(y) is given by Theorem 3.3.2 or Theorem 3.3.3 respectively.eBovehy this must be

true, we focus on the most general case of the Tree, and vesvftile proof of Theorem 3.3.3.
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Note that the only difference from the problem solved in tietorem is that now the vari-
ables corresponding to the leaves of the graph should bé&gthany. For this reason, to the

slackness conditions of (3.3.18), we have the additionatlitions
ay(p—Ay) =0,

for all leavesv of the tree graph.

Now let v be a generic leaf node of the graph. In order fgrto be a minimiser of the
unconditional version of problem (3.4.6), it should cartbel derivative. It means that it should
be\, = |y»| — p. Two cases can follow.

If |y,| < p, and because of the constraint that> 0, we have to conclude thét;, =0,
and consequently,, > 0. The problem is thus reduced by one dimension, as we cantrepea
reasoning for a different leaf without node

If, on the other handy,| > p, then the optimal value is achieved foy = |Yyn| — p > 0.
This implies that the corresponding slackness variahlg is- 0, and we can continue to follow
the original proof having assigned in either way a value tthlibe leaves nodes and the new
slackness variables.

Finally, we note that Corollary 3.4.1 and the examples foithg it extend to the case that
XTX = I by replacing throughout the vectgrby the vectorX "y. In the statistical literature

this setting is referred to as orthogonal design.

3.5 Special cases

For particular choices of the constraints gethe functionf2 reduces to known penalty terms.
We have already seen that this is true for th@orm.

For trivial sets like a ray or a point, the functiéhreduces to thé; norm or the squared
£5 norm. For another simple structure, where all componenisarke equal inside a group, the
Group Lasso penalty with no overlapping groups is recovered

A dirty model (see [23]) splits the model into the sum of twetees and penalises each of
them indepently using two different functions. For a paic setA, we obtain the dirty model
é%/él, where the/; norm penalises an auxiliary vector which is close to the rhdbe distance
being measured with the squar&dnorm.

We also consider dirty models in which the distance is meabwith the functior? itself.
Specifically, we prove that the dirty modely'¢; and2/¢3, both corresponds to special cases
of the function().

The Overlapping groups technique (see [22]) discusséd?il.2 is not in general a spe-

cial case of the? function. However, it can be expressed in a related way andemusome
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assumptions on the grouping, can be recovered for someechbic

In § 3.5.1 we present the special caseg,aform and Group Lasso. The dirty modé) /;
is presented i 3.5.2, while the dirty models involving, that isQ2/¢; and)/¢2, appear in
§ 3.5.3 and; 3.5.4 respectively. 1§ 3.5.5, the Overlapping groups case is discussed.

3.5.1 Euclidean norm and Group Lasso
¢5 norm. The ¢, norm is obtained when the st consists of a single ray. In general, let
A={\: X=av,a > 0}, wherev is a given and fixed vector in the positive orthant. The value

of Q will be

Q(B]A:% { ZBMZ%}: Z Zuz (3.5.1)

1€Ny, iGNn ZENn

In fact, the lower bound provided by the arithmetic-geomdtrequality is achieved by =

B/
ZieNn v_z-/ ZieNnvi'

In the special case when vectohas all components equal to a common positive value

2
5 and > ien, vi simplify to |3(13 andnk respectively.

Ui

we find that the expressio@iem

Then we have

Q(BIA) = vnl|Bll2, (3.5.2)

forA={\: A= (a,...,a),a > 0}.
£ norm squared. We obtain the square of tifg norm when the set is a singleton When the
only element ofA is a given vectow in the positive orthantQ(5|A) = 5 ZleNn - + 2ol

The special case when= (k, ..., k) for k > 0 is again of interest, leading to

Q(B|A) = % (Hm’? - k> (3.5.3)

for A = {(k,...,k)}.
Group Lasso Finally, we note that a normalized version of the Group bgssnalty [57] is
also included in our setting as a special casd.Jlf: ¢/ € N}, k € N,,, form a partition of the

index setN,,, the corresponding Group Lasso penalty is defined as
QcL(8) = D VI 18,12 (3.5.4)
teN,,
where, for every/ C N,,, we use the notatiofi; = (8; : j € J). Itis an easy matter to verify
thatQgr, = Q(-[A)for A= {A: Xe R}, \j =0, j€Jp, £ €Ny, 6, >0}
3.5.2 Dirty model ¢2/¢,

In this and in the following subsections we show how some@dar examples oflirty linear

models can be recast as special cases of fun€tion
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The dirty model framework decomposes the underlying vegtas a sum of two terms,
8 — a and «, which are penalised independently with different pensdtyns. The result is
in contrast with the correspondirgean models, the ones obtained with just one of the two
penalties.

As an example, [23] propose to penalise the matrix model aliliipte regression problem
with two penaltied: |-||1.., to encourage block sparsity, afje|; 1, to encourage standard
sparsity. One claim of the paper is that under general dondion the data matrices, the dirty
model outperforms both clean models.

We begin by considering the simple dirty setting fy¢; norms (the/s is squared):
min {[ly - X5l + 18 - alls + pllafl : € R”, 5 € R"} . (3.5.5)

In ridge regression we penalise the vegtowith the ¢, norm alone. Here, instead, we use the
{5 norm to penalise thdistanceof 5 from an auxiliary vector, which in turn is encouraged
to be sparse by the presence of theorm.

By noting that the loss function is independent from the eat we can write the penalty

term explicitly as
J(8) = min {||8 = all3 + pllafl } - (3.5.6)

This function is called the Moreau envelope, and its sofuisdhe well-known soft-thresholding
operator. We will see that this penalty function has the séma of the function2 for a
particular choice of the constraint s&t Note that just the/; norm is multiplied with the
coefficientp > 0: this is indeed sufficient, as a coefficient for thenorm could be easily
factored out of the minimisation problem.

Ouir first step is to use the variational formulation for thenorm, writing it as
llaf]s = 1 inf {aTM_loz + Z u}
= f :
2 ueRT, i€N,
where M~ = diag(y; !, ..., ;). Since the term|3 — o3 is independent fromu, we can

bring it inside the infimum and change the order of the optatss, to obtain

J(B) = inf {min {Hﬁ — a3+ gaTM_loz} + g Z ,ul} . (3.5.7)

€R? acR”™ :
’ ++ ZeNn

The inner minimisation problem is quadratic, and can beesbomponent-wise. For a

generic index; (here omitted), we need to minimigg — «)? + ﬁaz, which has derivative

2with the notation|| A||.,,, we refer to the nornjj-||, computed on the vector whogeth component is the norm

|||l» of the k-th column of matrixA.
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—2(—a)+ ﬁa, So we havey = Zj—ipﬁ and the value at the minimum %p. The penalty

L B
J(B) = 5“61% Z Sty T PH | (o

i€N, 2p

term becomes

and after the change of variablgs= % + % we have

87 2~ noo
> <ﬁ+p m>}—zp-

ieN, N

1
J(B) = = inf
()= 3 inf {
We can exploit the quasi-homogeneous property discusse8.i7 to reduce this expression

to the form of functiort2. Then, by the changing of variables = pji;, we can write
n 9
T(8) = pUBIA) — 77",

whereA = {\: 2\ > p}.

Indeed, the constraint sét produces the Box penalty defined§r8.3.1, where the con-
straint setB[a, b] has parameters = £ andb — co. We use the closed formula for the
Box penalty with these parameters, so that we can finallyirewre penalty term of Equation
Equation (3.5.6) as

16 = olsl+ 3 (5 -181) - 20
€Ny,

We conclude by showing that this function is the same as theeMoenvelope. Since the
variables are clearly decomposable, it is sufficient to imnsthe caser = 1. Let J1(8) =
(B —&)? + p|d| be the envelope computed at the proximal operater (]3| — §).sgn(3), and
J2(B) = plBl + (5§ — |5|)i — % be the Box penalty function. It is an easy matter to compute
J1(B) = J2(8) = p|B| — % when% < |8], and.J;(8) = J2(3) = 32 otherwise, obtaining the

Huber-like penalty induced by the Box constraint.

3.5.3 Dirty model /¢,

We consider now a more general dirty model. We assume thaettter 3 can be decomposed
into a vectorS — « which has a structured support and a vectavhich is sparse. To exploit
this assumption, we penalise the first vector with the famcfi(-|A), and the second one with
/1. So, differently from what we did if 3.5.3, we are now providing a structure usingwith

an appropriate and unspecified degtinstead of using-. We study the problem
min {{ly - XB[5 + (8 - ald) + pllalls : a € R", f € R"}, (3.5.8)

and we want to show that it is a special case of regularisatidim 2. We begin our manip-

ulations by expanding th& norm and rearranging the order of operations, thus rewritie
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penalty term as

J(B) = inf {min {Q(B —alA) + gaTM_la} + g Z uz} .

peR? . | acRn 5
To carry out the computation of the inner minimisation widspect tax we expand the
function() as well and rearrange to get the subproblem

1 inf {min {(B- )I'DYB—a)+ pozTM_loz} +p Z /\Z} ,

2 \eA €Rn
@ 1ENy,

where the diagonal matrix is defined Bs' = diag A\[ ', ..., A7 1).
Again, we solve component-wise the quadratic inner miratios. Omitting the indices,
we want to minimise(§ — «)?5 + pa® <. Its first derivative is-2(5 — «)5 + 2p%, which is

zero fora = ﬁﬁ and has minimum valugJ:;pAﬁz. Then we can rewrite the penalty term as

1. B
J(B) =3 inf inf {GZN: <mp + pi + A,> } : (3.5.9)

. . . . . 2 A
By the arithmetic-geometric mean mequaht%,(%p+pu+ /\) > 4] p%.
i pptA  _ pptA i i
Moreover, ifp < 1, then preers Wl vy > p, so the generic element of the sum is no
smaller tharp|3;|. Indeed, this lower bound is achieved far= |3;| and\; = 0, so

J(B) = pllBl

for p < 1 and anyA containing the origin.
We propose a second way to look at this result. We assumeptkatl, and note that

J(B) = mingern {Q(5 — a|A) + p|laf|1} can indeed be||5||; for the valued = 5. Now

we prove that/(/3) cannot be less thap||5

1, completing the argument. By the properties

of Q, we have that2(5 — o|A) + pllalls = (I8 — ally + pllells = [[IBll = llall] + plle

1
where the second inequality is a consequence of the triametgiality. If 3]y > ||al/1, then
J(B) > 1Bllr + llelli(p = 1) = [[Bllx + [|Bll1(p — 1) = pl|B][1- Similarly, if |3]l; < [lo
thenJ(B8) > [lalli(1 + p) = I8l > 181 (1 + p) = [1B]lx = pll Bl

1,

3.5.4 Dirty model Q/¢2

We notice that the mixture di and the squared, norm can be expressed once again as our

infimum problem. We want to solve

min = {[ly — X3 + 98~ alA) + Fllof3 : a c B S "}

)
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so the explicit penalty term ofi is

- P
J®) = min {203 - aln) + 2o}

aeR”

1, : (Bi — i)
- 5&2&{3&3{2 <T+”O‘?>}+ZA’}'

€Ny, €Ny,

Again, the inner minimisation problem is quadratic: thetfiksrivative ofB=2S ) + pa?is

—%(5 — «) + 2pa, which is zero fora = The value at the minimum |§—p, so the

1+p>\
expression for the penalty term can be written as

_ 1. 52 1 n

which becomes ifi2 form as

J(B) = QBIA) — o,
for A = {5\:5\:%+)\,)\6A}.
3.5.5 Overlapping groups

The regulariser in [22], discussed drR.3.2, can be reformulated in a forsimilar to that of(2

function. We repeat here for reference the definition of tegity term:

IBll7 = inf {Z lvsll2 s VT € T 05 € RY, supp(vy) €7, vy = ﬁ} . (3.5.10)
Ytk | Jeg Jeg

whereJ = {Ji,..., Jx} is a set of (possibly overlapping) groups of indices, whaeheyroup

J; is a subset oN,, and each index belong to at least one group, thats = N,,.

Then we have the following proposition.

Proposition 3.5.1.LetT; = {i : j € J;}, for j € N,,, be the set of indices of groups containing

componeny. Then we can write function (3.5.10) with a variational fafation:

18ll7 = inf | gj N (3.5.11)

whereA = {)\ X ERYL N =Y ep i € Ny € Rf+}.
This Proposition can be proved by means of the followingrmeliate result.

Lemma3.5.1.1f € R}, andz € R, then

. Z/] . . z?
ylen[g" { Z Z yj = w} == (3.5.12)

jeNn jJEN, ZJEN" K
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, 2
Proof. The constraint is equivalent t& = (3, ¥j)* = (Z N % /_uj> . As a conse-
n n 7

2
quence of Cauchy-Schwarz inequality, this quantity is a$m<(ZJ€N o ) (ZJEN uj) , SO
n J
the value of the infimum cannot be smaller t% Indeed, this lower bound is attained
for g; = wzui [ |

jEN, Hi

We are now able to prove Proposition 3.5.11.

Proof. To prove the proposition, we begin by making two preliminatgps. Firstly we apply
the variational formulation to express the sum of tefms. [|v||2 in Equation (3.5.10) as the
result of an infimum problem on variablee R%_ . Secondly we expand each teftfv,||»)*:

if (vs); is thej-th component of vector;, then(|jvs|2)? = > jen, (V7). The result of these

passages is

vy.)?
Y olvslle =5 Elnf > <( JZ,)]> + i

JeJ Riv |ieng \yemNn Hi
We use this formulation in the definition of problem (3.5,18)d proceed by inverting
the order of the summations. Now note that, because of thetreamt supgv,;) C .J, we can
restrict the inner sum to only the groups that contain thé¢iqudar index; of the outer sum.
Moreover, for this reason we can rewrite the constraing. 7vg = [ as then constraints
>ier, (v;); = B, forall j € N,
By further interchanging the order of the infimum operatjoms will obtainn indipendent

inner subproblems that can be solved as a direct applicafibemma 3.5.12:
(vs,)> 32

inf 7. (v1.); = B; =_J

{vs; }ier; g;] i zeZT:] ! ! ZieTj i

So that the original problem is now

2
1817 —% inf ¢ > (Zﬁ ) + > g (3.5.13)

RE | e, ieT; Hi ieNg
As a result of the arithmetic-geometric mean inequalitg tjuantity cannot be lower than

\/ZJEN” (532/2@6:@ M,—) Y _ieNy Mi» SO We can change the expression inside the infimum.
After the change of variablel; = >_;cp 11/ 3_;cn, 1, the claim of the Proposition follows.

Note that the sed is not restricted by considering elements with componants- ZZETJ_ 7%

for nonnegative components pf as they will be proportional tb/ ZzeNK i [ |

In general Equation (3.5.13) cannot be written in the samm faf function{2. However,
it become possible to do so for a special case of the grougingpecifically, we assume that

each component belongs to exactlyn groups. This assumption is not artificial, as it fits for
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example the description of Graph Lasso [22] for particulapgs, i.e. when the graph is a
clique and there is a group of variables for each sub-clique.

We can use the property §3.2.7 to multiply the sum of variableEieNK u; bym (and at
the same time to get rid of th§ coefficient). This restores the number of occurrences di eac

variablesy;, so by the change of variableg = ZieTj 1; We get precisely the expression for

I8lls =/ Zs1A) (3.5.14)

with A = {)\ NERY A = Yiep i d € No i € RL}.

functionQ:



Chapter 4

Numerical algorithms

In Chapter 3, we proposed the problem of penalising a losgtitmwith the function?, spe-
cially designed for structured sparsity. This problem igémeral hard to solve and all-purpose
toolboxes that rely on common techniques are slow and cdranradle a large number of di-
mensions. In this chapter we address the issue of implentetite learning method (3.1.1)
numerically for some particular cases. We present two dlgos that can be used for the
Wedge and Tree penalties described 813.2 and; 3.3.3 and for the norm and conic constraint

sets described if13.3.4. Using these algorithms, our technique becomedbleasi practice.

A natural approach is an algorithm that minimises in an atténg way with respect to
the two blocks of variableg; and\. As we focus on the square loss function, the minimisation
with respect to5 is trivial to compute. The minimisation with respect tas a subproblem
which is not in general easy. However, for the mentioned ispeases of the Wedge and the
Tree penalties, we can use theoretical results from Ch&ptersolve it efficiently. For the
Wedge, the running time of the subproblem is linear in the Imemnof dimensions. The overall

alternating algorithm has good performances.

Our second proposed algorithm, NEPIO, is a proximal mettasgth on a numerical com-
putation of the proximity operator. As we will see, the praiy operator can be computed as
the fixed point of a particular linear operator. Convergetactéhe fixed point can be stopped
earlier to allow for an efficient computation, which is apgroate but sufficient for the whole
algorithm to converge. We apply this algorithm to the norrd aanic constraint sets. The al-
ternating algorithm can handle only the Wedge and the Treealfdes, which are indeed special
cases of the conic constraint set. While this algorithm $tefiafor a small number of dimen-
sions, NEPIO scales better and can handle a larger numbémefdions. Moreover, NEPIO

can handle the norm constraint set.

We describe the alternating algorithm in Section 4.1, an®NEn Section 4.2.
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4.1 Alternating algorithm

In this section we describe a natural blockwise coordin@scent algorithm inspired from
[1]. This approach updates the minimiser by considerindatsées A and g independently,
minimising alternatingly with respect to both vectors. Faigorithm introduces the subproblem
of minimising with respect ta\, i.e. computing the value of functigd. In general this is not
easy, but for the cases of the Wedge and the Tree penaltiesnwappeal to Theorems 3.3.2 and
3.3.3 to do so. In order to apply these theorems, we need tblba@mcompute a partition of
vector g that satisfies some conditions, which are discusseéd3ii3.3 and; 3.3.2. We present
an efficient partitioning algorithm that can be used to stietask for the two cases.

In § 4.1.1, we describe completely the alternating algorithm pirove that it converges.
In § 4.1.2 we discuss the step which minimises with respegt.tdn § 4.1.3, we discuss the

algorithms for the subproblems of minimising with respeck t

4.1.1 Description and convergence

Since the penalty functiof(:|A) is constructed as the infimum of a family of quadratic reg-
ularisers, the optimisation problem (3.1.1) reduces tonsukaneous minimisation over the
vectors and . For a fixed\ € A, the minimum oves € R™ is a standard Tikhonov regulari-
sation and can be solved directly in terms of a matrix ineersFor a fixed3, the minimisation
over\ € A requires computing the penalty function (3.1.2). Thesenladions naturally sug-
gests an alternating minimisation algorithm, which hasay been considered in special cases
in [1]. To describe our algorithm we choose- 0 and introduce the mappingf : R” — R”

whosei-th coordinate ap € R™ is given by

05 (B) =/ B +e.

Forp € (R\{0})", we also let\(5) = argmin{I'(3, A) : A € A}.
The alternating minimisation algorithm is defined as fokowchoose)\y € A and, for

k € N, define the iterates
gF = B (4.1.1)
R CACR) (4.1.2)
The following theorem establishes convergence of thisrilga.

Theorem 4.1.1.If the setA is admissible in the sense of Definition 3.2.1, then the ti@mna

(4.1.1)—(4.1.2) converges to a vectgf) such that

~(e) = argmin { ||y — X B3 + 2pQ(¢(B)|A) : B € R"} .
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Moreover, any convergent subsequence of the seql{e/f(c}a) : £ € N} converges to a solution

of the optimisation probler(8.1.1)

Proof. We divide the proof into several steps. To this end, we define
E(B8,A) = lly — XB|I* + 20T(¢°(8), A)

and note thaB(\) = argmin{ E(a, A) : « € R™}.
Step 1.We define two sequence, = E. (8%, \*~1) andy, = E.(8*, \¥) and observe,
foranyk > 2, that

Vi < Hk < V1. (413)

These inequalities follow directly from the definition ogthlternating algorithm, see equations
(4.1.1) and (4.1.2).

Step 2We define the compact sBt= {5 : 8 € R", ||8|l1 < 61}. From the first inequality
in Proposition 3.2.2 and inequality (4.1.3) we conclude gieeryk € N, thats* € B.

Step 3.We define the functiog : R — R at3 € R™ as

9(8) = min{Ec(a, A(¢°(8))) : « € R"}.

We claim thaty is continuous orB. In fact, there exists a constamt> 0 such that, for every

~1,~% € B, it holds that

19(v") — 9(7*)] < BIA (7)) = M (7)) [l oo- (4.1.9)

The essential ingredient in the proof of this inequalityhis tact that there exists constarand
b such that, for alB € B, A(¢(3)) € [a,b]". This follows from the inequalities developed in
the proof of Proposition 3.2.1.

Step 4.By step 2, there exists a subsequefigé&’ : ¢ ¢ N} which converges t# € B
and, for allg € R™ and\ € A, it holds that

Ec(B,A(¢°(8))) < Ec(B, A(¢°(5))),  Ec(B, A(¢°(8))) < Ec(B, A). (4.1.5)

Indeed, from step 1 we conclude that there exjsts R, . such that
lim 0, = lim v = 9.
k—o0 k—o0

Since, by Proposition 3.2.4(3) is continuous foB € (R\{0})", we obtain that

Jim X = x(6°(5).
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By the definition of the alternating algorithm, we have, firiac R™ and ) € A, that
Qk—i—l = Ee(ﬁk—i_l» >\k) < Ee(ﬁa /\k)a Vg = Ee(ﬁk> >\k) < Ee(ﬁka /\)

From this inequality we obtain, passing to limit, inequakt(4.1.5).

Step 5.The vector(3, A(¢(8)) is a stationary point. Indeed, sindeis admissible, by
step 3\(¢°(B) € int(A). Therefore, sincé, is continuously differentiable this claim follows
from step 4.

Step 6. The alternating algorithm converges. This claim followsnfr the fact thatF,
is strictly convex. HenceF. has a unigue global minimum iR™ x A, which in virtue of
inequalities (4.1.5) is attained @&, \(¢<(3))).

The last claim in the theorem follows from the fact that the{sge) : ¢ > 0} is bounded

and the functiom\(3) is continuous. [ |

4.1.2 Solving the quadratic ing

At each iteration of the alternating algorithm, we minimike objective function with respect

to 5. We consider, as a function ¢f the quadratic

~Jly— XBI3+5D"'5, @.16)

whereD = diag(\1, ..., \,). The minimiser of (4.1.6) depends on the tuning paramgtand

it is easily found by setting its first derivative to zero:
% 2 o1 -1 2 T
By=|—=—X"X+~D —X"y. 4.12.7)
m m

We can compute explicitly the limit as— 0, that is the case of interpolation. By factoring
D~! = D=1/2D~1/2 and applying the inverse property for a product, we can uselfinition

of pseudoinverseof the matrixX D'/2. Finally we have
A T
B = DV/? (XDW) y. (4.1.8)

The repeated computation, for each iteration, of (4.1.74dL.8) is expensive. We can
apply a “Kernel trick” to improve performances (for backgnal, see for instance [47]). We

begin by considering the problem of the ridge regression:

—lly = XBI3 +575. @19

The use of the ternX 3 in the loss function can be interpreted as the use of thalttfigature

mapao(z;) = x;, fori = 1,...,n. Under this assumption, the representer theorem assuates th

For a matrix4, its pseudoinverse id" = lim,_,o(ATA 4+ ~I)~* AT,
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the solution to the problem will be of the forii” ¢ for anm-dimensional vector of coefficients
c. The new function can be written ds||y — Ge[|3 + vc' Ge, whereG = X X7 is the Gram
matrix. The value of which minimises this function i8 = (G + m~I)~'y, andf = XTé.

When the additional term i§7 D~13, as in (4.1.6), we can repeat the simpler case with
the change of variableX — X D'/2 and8 — D~1/23. We then revert the solutiofi = X7é

to the original variables to get finally
~ —1
B, = DXT (XDX n %7[) . (4.1.10)

Note thatB,y as computed in (4.1.8) requires the inversion ofraxx n matrix, while
the same vector as computed with (4.1.10) requires thedioreof anm x m. This is very

appealing, as we are interested in the case n.

4.1.3 Computation of special penalties

The most challenging step in the alternating algorithmesabmputation of the vector. Fortu-
nately, if A is a second order cone, problem (3.1.2) defining the penatigtion2(-|A) may be
reformulated as a second order cone program (SOCP), sed@]gTo see this, we introduce

an additional variableé € R™ and note that

Q(,B‘A) = mln{z ti + N H(2ﬁiyti — )\Z)”Q <ti+N,t; >0,72€N,, A€ A} .
S\

In particular, the examples discussed in Sections 3.3.23zh8, the sef\ is formed by lin-

ear constraints and, so, problem (3.1.2) is an SOCP. We nagtyube available toolboxes to
compute the solution of this problem. However, in speciabsahe computation of the penalty
function may be significantly facilitated by using avaikalanalytical formulae. Here, we de-

scribe how to do this in the case of the Wedge penalty, foltblasethe Tree penalty.

Wedge penalty As described in Theorem 3.3.2, it is possible to computeré¢ictor \(3) given
a partition7 = {J; : £ € Ny} which satisfies two conditions presented in (3.3.3) and43.3
We repeat them here for reference. The “cross over” comdiigatisfied if

181,03 18170113
| Je | Jo41]

for each indeX < k, while the “stay within” condition is satisfied if

1813 _ 1Bl
[ Jel K]

wherekK is each possible subset of the generickdbrmed by its firs{ K| < |.J,| components.
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Algorithm 4.1 Iterative algorithm to compute the wedge partition
Input: g € R”

Initialisation: k£ < 0

fort=1tondo

Jrg1 < {t}

k+—k+1

whilek>1and ”j‘ﬁ;lb < H@‘%2
Jp—1 < J1 U Jg
k+—k—1

end

end

Output: Jy,...,J;

Note that these conditions define a unique partitibrwhich depends on the vectgr.
Also, the number of groups in the partition is not known a priand its construction is not
obvious. To this end, we present an efficient algorithm, Widcsummarised in Algorithm 4.1.

For the purpose of describing the partitioning algorithrthmcase of the Wedge, we define
a vectorg € R™ to be admissible if, for every € N,,, it holds that]| By, [|2/vVE < [|8]l2/v/7.

The proof of the next lemma is straightforward and we do raib@late on the details.

Lemma4.1.1.1f 3 € R" andé € R? are admissible and3||2/+/n < ||6]|2/,/p then(B,9) is

admissible.

Algorithm 4.1 processes the components of ve@tan a sequential manner. Initially, the
very first component forms the only set in the partition. Aftee generic iteration — 1, where
the partition is composed @fsets, the index of the next components put in a new sef ;.
Two cases can occur: the means of the squares of the setssarietidescending order, or this
order is violated by the last set. The latter is the only chsae tequires further action, so the
algorithm merges the last two sets and repeats until therséte partition are fully ordered.
Note that, since the only operation performed by the algoriis the merge of admissible
sets, Lemma 4.1.1 ensures that after eachistiee current partition satisfies the “stay within”
conditions. Moreover, thehile loop ensures that after each step the current partitioafisesj
for every ¢ € Ni_q, the “cross over” conditions. Thus, the output of the aldpni is the
partition 7 defined in Theorem 3.3.2. In the actual implementation oéigerithm, the means
of squares of each set can be saved. This allows us to conffguegtan of squares of a merged

set as a weighted mean, which is a constant time operatioce $iere are — 1 consecutive
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terms in total, this is also the maximum number of merges ti@atalgorithm can perform.
Each merge requires exactly one additional test, so we caciugte that the running time of
the algorithm is linear. In the experimental section (segifé 5.14 ing 5.4), we will show an

empirical validation of this last remark.

Tree penalty. The case of the Tree penalty is similar because, as dedanbEheorem 3.3.3,
we can compute\(3) from a certain partition7 = {.J1,... J;} which depends o alone.

Summarised in Algorithm 4.2, we present an iterative atborito find this partition .

The two conditions satisfied by partitiQfi are analogous to the “stay within” and “cross
over” conditions described earlier, see (3.3.12) and 13)3.These conditions are a generalisa-
tion of the ones for the line graph, taking into account theer@mmplex topology of the tree
graph. For the “stay within” condition, for each group instead of considering the first few
components starting from the left, we now consider the faast Eomponents starting from the
root and reaching each node. For the “cross over” conditimtead of pairs of consecutive sets
Jp andJy, 1, we now consider pairs of sets such that one is “under” therpth |} J>, meaning

that there is an arch from one nodejndirected to one node ifk.

Here again, the algorithm processes the components ofrvédtoa sequential manner.
Initially, each leaf of the tree is a singleton of the paotiti7. All the other components are
considered following an order which can be precomputed, vanidh is such that all nodes
(except the leaves) will be traversed in inverse depth psiethat the root node will always
be the last node. This order is fundamental for the algorithsnit ensures that, when a node
is considered, all the nodes and groups of nodes that arefUitchre stable. At the generic
iteration, S will be the set of elements in the current partitions that‘areler” the current set
Jnew. This set is then tested against the elemerf @fith higher value, and a merge can then

occur.

The complexity of this algorithm depends on the topologyheftree, i.e. on its depth and
its branching factor. While, as we have seen, it can run igalirtime for the Line graph, its
performances slow down as the tree becomes more complexaldbmthm is still competitive
in the case we have tested, where each node has four chieenFigure 5.14 i§ 5.4 for an

efficiency experiment.

Note that this algorithm can be parallelised easily by tglkidvantage of the structure of
the tree graph. In our example, the four trees having as m®tchild of the original root can
be partitioned simultaneously by four instances of theritlym. Finally, the original root will

be added to the four results using the same procedure. Weotligst this technique because
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Algorithm 4.2 Iterative algorithm to compute the tree partition
Input: 8 € R™, tree graphz

Initialisation: L < Leaves(G)k « |L|; J; < {L;}fori=1,..., k; orderC N"~* (see text)
for ¢t € orderdo

stable< 0; Jnew < {t}

whi | e not stable

S%{JE{Jl,...,Jk}:JU,JNEw}

if|S|=0then
stable« 1
end
JImax zamglfnauxM
Jes VI
1 T < e then
JINEW < JINEW U JMAX
Jmax < NULL
k+—k—-1
el se
stable« 1
end
end
k+—k+1
Ji < JINEW
end

Output: Jy,..., Jg

the proposed sequential one was fast enough for our purposes

4.2 Proximal methods

In this section, we discuss how to solve problem (3.1.1)giaimaccelerated first-order method
that scales linearly with respect to the problem size, as Wlestiow in the experiments in
Chapter 5.

Proximal methods rely on the computation of the proximitem@or of the functiol
restricted toR™ x A. In some cases, like the Wedge and Tree penalties, thistopean be

computed exactly. In general, though, this computatiorotgossible or too expensive.

We consider the constraints getefined ing 3.3.4. We argue that in this case the proxim-
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ity operator corresponds to the fixed point of a linear mag,sdrow that this fixed point can be

computed efficiently, hence recovering the proximity opmrto be used in the main algorithm.
In § 4.2.1 we describe the computation of the proximity operawofixed point of a lin-

ear map. I 4.2.2 we describe how to incorporate this proximity oper&boan accelerated

proximal method.
4.2.1 Computation of the Proximity Operator

We want to solve the optimisation problem
1
inf{§|]X5—yH§+pP(B,)\) : 3 GR",)\GA} (4.2.1)

under the general assumption tat= {\ € R"}, : A\ € S}. Note that the loss function
is here divided by while in (4.1.6) it was divided by the sample size This is done just to
simplify the exposition: it has no effects on the solutiorcdogse a positive coefficient applied
to the loss function is absorbed by the tuning of parameter
The proximity operator for a functiom : R* — R, and computed at a poiat € R?, is
defined as
prox, (x) = argmin {%Hy el +wly) iy e Rd} |

According to this definition, the proximity operator Bfat (o, ;1) € R™ x R is the solution of

the problem
.1 n
win {150 — (@)l + 95,0 S e RN A€ A . @22)
For any fixed), a direct computation yields that the objective function4rR2.2) attains its
minimum at
Qi
() = ———, 4.2.3
BN = 355 (4.23)
which can be used to rewrite (4.2.2) into the simplified peafl
. 1 2, P - 0%2 .
mln{zH)\ ] +2;<)\i+p+)\z>.)\eA}. (4.2.4)

This problem can still be interpreted as a proximity map cotaton, and we discuss how to
solve it with a fixed-point algorithm.

In addition to our general assumption that= {\ € R}, : A\ € S}, we assume that
the projection of the sef can be easily computed. This latter assumption holds focdkes of
Tree-C and Grid-C constraints.

The key step to compute the proximity operator is to rewtitgsia composition of func-
tions. To this end, we define thie + k) x n matrix

)

B =
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and the functionp(s,t) = ¢1(s) + @a(t), for (s, ) € R" x R, where

=23 (

ieN’!L

042
1
Y D,
S; + P 5 Rt (SZ)>

andpq(t) = d5(t). With the notationys(-) we refer to the indicator function: & C R”, then
dc : R™ — R is the function which i$) if z € C and+oo otherwise. Note that the solution of
problem (4.2.4) is the same as the proximity map of the ligeazmposite functionp o B at j,

which solves the problem
: 1 2 n
min 5”)‘_:“” +@(B\): AeR" .

Variable A now must not satisfy any constraint, because they have loggeally trans-
ferred inside the indicator functions. Nevertheless, ti@® problem does not seem easier to
solve. It turns out, however, that if the proximity map of faection ¢ has a simple form, the
following theorem adapted from [33, Theorem 3.1] can be ueeatcomplish this task. For

ease of notation we sét=n + k.

Theorem 4.2.1.Lety be a convex function dR¢, B ad x n matrix, u € R™, ¢ > 0, and define

the mappingd : R — R? atv € R as
H(v) = (I — proxe )((I — cBB")v + Bp).
Then, for any fixed point of H, it holds that

ProX,op (1) = p—cBTo. (4.2.5)

ThePicard iterates{v : s € N} C R, starting atyy € R?, are defined by the recursive
equationus = H (vs—1). Since the operataf — prox,, is nonexpansive(see e.g. [12]), the map
H is nonexpansive i€ ¢ [0, ﬁz} Because of this, the Picard iterates are not guaranteed to
converge to a fixed point dff. However, a simple modification with an averaging scheme can

be used to compute the fixed point.

Theorem 4.2.2.[38] Let H : R¢ — R be a nonexpansive mapping which has at least one
fixed point and lef,, := xI + (1 — k)H. Then, for every: € (0,1), the Picard iterates of,,

converge to a fixed point ¢f .

2A mappingT : R? — R? is called nonexpansive jfI'(v) — T'(v')||2 < |lv — ¥’ ||2, for everyv, v’ € R,
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The required proximity operator of is directly given, for everys, t) € R" x R¥, by

prox, (s, t) = (prox,, (s), prox,, (t)) -

Both prox, and prox,, can be easily computed. The latter requires computing thiegiron
on the setS. The former requires, for each component of the vestarR", the solution of a

cubic equation as stated in the next lemma.

Lemma 4.2.1. For everyu,a € R andr,p > 0, the functionh : R, — R defined ats as
h(s) == (s — p)? +r (% + s> has a uniqgue minimum on its domain, which is attained at

(zo — p)+, Wherez is the largest real root of the polynomiak? + (r — 2(u + p))z? — ra.

Proof. Setting the derivative of equal to zero and making the change of variable s + p
yields the polynomial stated in the lemma. Lgtbe the largest root of this polynomial. Since
the functionh is strictly convex on its domain and grows at infinity, its miim can be attained

only at one point, which isg — p, if o > p, and zero otherwise. [ ]

4.2.2 Accelerated Proximal Method

Theorem 4.2.1 motivates a proximal numerical approach teirgp problem (4.2.1). Let
E(B) = 3| X8 — y|3 and assume that an upper boubdf || XTX| is knowr?. Proximal
first-order methods — see [12, 5, 36, 51] and referencesitherean be used for nonsmooth
optimisation, where the objective consists of a stronglyatin term, plus a nonsmooth part,
in our caseF andI” + §,, respectively. The idea is to replagewith its linear approximation
around a pointu; specific to iteratiort. This leads to the computation of a proximity operator,

and specifically in our case to

2
g += (B M) +—argmin {§ 8.0 = (1= VB )| 4@ 5 R A e A} .
2

Subsequently, the point; is updated, based on the current and previous estimatee ebth-
tion us, us_1, ... and the process repeats.

The simplest update rule, which is also a commonly used @ne; = u;. By contrast,
accelerated proximal methogsoposed by [36] use a carefully chogempdate with two levels
of memory,u;, u; 1. If the proximity map can be exactly computed, such schembibié a
fast quadratic decay in terms of the iteration count, thahesdistance of the objective from the
minimal value isO () afterT iterations. In the case that the proximity operator is cotegu
numerically it has been shown only very recently [53, 46] that, underesoircumstances, the

accelerated method still converges with the @té%). The main advantages of accelerated

3For variants of such algorithms which adaptively leétrsee the following references.
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methods are their low cost per iteration and their scatgititi large problem sizes. Moreover,
in applications where a thresholding operation is involveas in Lemma 4.2.1 — the zeros in

the solution are exact.

Algorithm 4.3 NEsterov Plcard-Opial algorithm (NEPIO)
Input: w1, w; < arbitrary feasible values

fort«+1,2,...
Compute a fixed point®) of H, by Picard-Opial
Upp] — Wy — %VE(wt) o 5
W1 = T U1 — (M1 — 1)ug

end

Output: w

For our purposes, we use a version of accelerated methoderioéd by [51]. Our final
algorithm is calledNEPIO and is summarised in Algorithm 4.3. According to Nestero®][3

the optimal update is

1
Wig1 & U1 + Opp1 <9— - 1) (U1 — wp),
t

where the sequendg is defined byy; = 1 and the recursion

101 1
=—. 4.2.6

We have adapted [51, Algorithm 2] (equivalent to FISTA [5f)dmmputing the proximity

operator of? o B using the Picard-Opial process described in Section 4¥elrephrased the

algorithm using the sequenege:=1—60; + 1 —0; =1 — 6; + ijl for numerical stability.
At each iteration, the maf, is defined by

Hy(v) = (I - prox%> ( (I - %BBT> v— %B(VE(wt) - Lwt)> .

We also apply an Opial averaging so that the update at stafjthe proximity computation is
vs+1 = KUs + (1 — k)Hy(vs). By Theorem 4.2.1, the fixed point process combined with the
assignment of; are equivalent ta | < ProXe .5 (wr — $VE(wy)).

The reason for resorting to Picard-Opial is that exact cdatfmn of the proximity operator
(4.2.4) is possible only in simple special cases for theAseBy contrast, our approach can
be applied to a wide variety of constraints. Moreover, werareaware of another proximal
method for solving problems (4.2.1) or (3.1.1) and altemeatlike interior point methods do

not scale well with problem size. In Chapter 5, we will dentaate empirically the scalability
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of Algorithm 4.3, as well as the efficiency of both the proxiynmap computation and the
overall method.

As noted in Section 3.4, we can compute exactly and effigieht proximity operator in
the case of the Wedge and the Tree penalties by performinthtashold\ = (My) — p)+s
where\(y) is computed using Algorithms 4.1 or 4.2. As can be seen in @nh&p Figure 5.15,

the running time scales better in the number of dimensions.
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Chapter 5

Numerical experiments

The goal of this chapter is threefold. The first one is to usided the usefulness of the many
examples of penalties showed in Section 3.3. To this end,esgded several different sparse
and structured models, so that the advantage of some of tfadtips over other convex tech-
niques (e.g. many Group Lasso variants) become apparent.

The second one is to test the algorithms to solve the probtepoped in Chapter 4. This,
in particular for algorithm NEPIO (Section 4.2), is done lymparison with an all-purpose
toolbox. We show that our algorithm scales well, and thatit be used for problems much
larger than those handled by a generic toolbox, or by othitieg techniques.

Finally, the last goal is compare the performances of ourrtiegie to greedy algorithms.
Specifically, we focused on StructOMP ([20]) because, thdalkts flexibility, it can be used in
situations where no other greedy algorithm can be usefglptied. In these situations, it can
exploit prior knowledge comparable to that available toveartechniques.

The experiments in Section 5.1 appeared in [32], while oéxperiments have been in-

cluded in other submitted work.

5.1 Experiments for different setsA

In this section we present some numerical simulations wieghgroposed method. For sim-
plicity, we consider data generated noiselessly frpra X 3%, wheres* ¢ R!% is the true
underlying regression vector, aidis anm x 100 input matrix,m being the sample size. The
elements ofX are generated i.i.d. from the standard normal distribytoa the columns ok

are then normalized such that théimorm is1. Since we consider the noiseless case, we solve
the interpolation problemmin{Q(3) : y = X3}, for different choices of the penalty function
Q. In practice, (3.1.1) is solved for a tiny value of the partameor examplep = 10~8, which

we found to be sufficient to ensure that the error term in £3.i. negligible at the minimum.

All experiments were repeatéd times, generating each time a new matkix In the figures



90 Chapter 5. Numerical experiments

-©-Lasso

—©-Lasso
300 —*—Box—Al 350 --Wedge
——Box-B 300 —-GL-lin
250 —=-Box-Cj|
5 5 250
5 200 5
T < 200
B 150 B
s = 150
100 1 1008
50 | 50\8\5\6\_
G[!\ﬁ\l O 0>\L a 2 & &
12 15 18 20 25 50 75 100 12 15 18 20 25 50 75 100
Sample size Sample size
(a) (b)
700 5000 . . . . .
-©-Lasso -6-Lasso
600 —=-Wedge —&-C-Wedge|
- GLin 4000y ~-GL-ind
500 —+—GL-hie
= 5 GL-con
S © 3000
5 400; 5
s e
8 300
= £ 2000
200
1000}
100
o 0 D
92 15 18 20 2 0 15 100 2 15 18 20 25 55 75 100
Sample size Sample size
(©) (d)

Figure 5.1: Comparison between different penalty meth@gsBox vs. Lasso; (b,c) Wedge vs.

Hierarchical group Lasso; (d) Composite wedge. See texhfme information

we report the average of the model error of the vegttearned by each method, as a function
of the sample sizen. The former is defined as MB) = E[||3 — 8*||2]. In the following,
we discuss a series of experiments, corresponding to elifferthoices for the model vector
and its sparsity pattern. In all experiments, we solved fht@rozation problem (3.1.1) with the
alternating algorithm presented in Section 4.1. Whenewssiple we solved step (4.1.2) using
analytical formulas and resorted to the solver CMtg://cvxr.com/cvy¥/in the other cases.
For example, in the case of the wedge penalty, we found tleatdmputational time of the
algorithm in Figure 4.1 i495, 603, 665, 869, 1175 times faster than that of the solver CVX for
n = 100, 500, 1000, 2500, 5000, respectively.

Box. In the first experiment the model i$)-sparse (it had0 nonzero components), where
each nonzero component, in a random position, is an integtrmly sampled in the interval
[—10, 10]. We wish to show that the more accurate the prior informagibaut the model is,
the more precise the estimate will be. We use a box penaleyTheorem 3.3.1) constructed
“around” the model, imagining that an oracle tells us thatheeomponent ;| is bounded
within an interval. We consider three boxBsa, b] of different sizes, namely; = (r — |5;|)+

andb; = (|5f| —r)+ and radiir = 5,1 and0.1, which we denote as Box-A, Box-B and Box-C,
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respectively. We compare these methods with the Lasso —igaeFs.1-a. As expected, the
three box penalties perform better. Moreover, as the ramfiasbox diminishes, the amount of

information about the true model increases, and the pedonoaimproves.

Wedge In the second experiment, we consider a regression vegtwse components are
nonincreasing in absolute value and only a few are nonzepecifically, we choose &0-
sparse vector; = 11 — j, if j € Nyjp and zero otherwise. We compare the Lasso, which
makes no use of such ordering information, with the wedgelpef2(5|17) (see Theorem
3.3.2) and the hierarchical group Lasso in [58], which botkeuse of such information. For
the group Lasso we chooSEfS) = 3 sy, 1817, with Jo = {£,£ +1,...,100}, £ € Nygp.
These two methods are referred to as “Wedge” and “GL-lin” iguFe 5.1-b, respectively. As
expected both methods improve over the Lasso, with “GL-ialhg the best of the two. We
further tested the robustness of the methods, by addingdditi@nal nonzero components with
value of10 to the vector5* in a random position betwe& and100. This result, reported in

Figure 5.1-c, indicates that “GL-lin” is more sensitive tech a perturbation.

Composite wedge Next we consider a more complex experiment, where the seigne vec-
tor is sparse within different contiguous regioRs, . .., Pip, and the/; norm on one region
is larger than thé; norm on the next region. We choose sBts= {10(: — 1) +1,...,10:},

i € Nig and generate @sparse vectof* whosei-th nonzero element has valgeé—i (decreas-
ing) and is in a random position iR;, for i € Ng. We encode this prior knowledge by choosing
Q(BIA) with A = {X € R : |[Ap,[1 > ||Ap, |1, i € Ng}. This method constraints the sum
of the sets to be nonincreasing and may be interpreted asthgosition of the wedge set with
an average operation across the getsvhich may be computed using Proposition 3.2.3 . This
method, which is referred to as “C-Wedge” in Figure 5.1-dcosnpared to the Lasso and to
three other versions of the group Lasso. The first is a stdnglaup Lasso with the nonover-
lapping groups/; = P;, i € Nyg, thus encouraging the presence of sets of zero elementsh whi
is useful because there atsuch sets. The second is a variation of the hierarchicalpgragso
discussed above with; = U}Ozin, i € Njg. A problem with these approaches is that the
norm is applied at the level of the individual sdts which does not promote sparsity within
these sets. To counter this effect we can enforce contigumozero patterns within each of the
P;, as proposed by [24]. That is, we consider as the groups teda@ened by all sequences
of ¢ € Ny consecutive elements at the beginning or at the end of eatiedfetsP;, for a
total of 180 groups. These three groupings will be referred to as “GL;if@L-hie”, “GL-
con” in Figure 5.1-d, respectively. This result indicates tidvantage of “C-Wedge” over the

other methods considered. In particular, the group Lasgbads fall behind our method and
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Figure 5.2: Penaltf(3|W*), k = 1,...,4, used for several polynomial models:) degreel,

%2 2‘5 Zé

(b) degree2, (c) degrees; (d) degreet.

the Lasso, with “GL-con” being slight better than “GL-indheé “GL-hie”. Notice also that
all group Lasso methods gradually diminish the model errdil they have a point for each
dimension, while our method and the Lasso have a steepegrtteseaching zero at a number
of points which is less than half the number of dimensions.
Polynomials The constraints on the finite differences (see equati@ 1B)) impose a struc-
ture on the sparsity of the model. To further investigate gassibility we now consider some
models whose absolute value belong to the sets of constrdiit wherek = 1,...,4.
Specifically, we evaluate the polynomialg(t) = —(t + 5), p2(t) = (¢t + 6)(t — 2),
ps(t) = —(t+6.5)t(t — 1.5) andpy(t) = (t+6.5)(t — 2.5)(t + 1)t at 100 equally spaced)(1)
points starting from-7. We take the positive part of each component and scalelii,tso that
the results can be seen in Figure 5.3. The roots of the poliatetmas been chosen so that the
sparsity of the models is eithég or 19.

We solve the interpolation problem using our method with gleealty Q(5|WF), k =
1,...,4, with the objective of testing the robustness of our meththa: constraint setV’*
should be a more meaningful choice whéh| is in it, but the exact knowledge of the degree is

not necessary. We see in Figures 5.2 that this is indeed #a t&/-k” outperform the Lasso
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for everyk, but among these methods the best one knows the deg|g¥ of

(c) (d)
Figure 5.3: Silhouette of the polynomials by number of degr@) £ = 1, (b) & = 2, (¢)
k=3,(d)k=4.

One important feature of these sparsity pattern is the numbeontiguous regionsi,
2, 2 and3 respectively. As a way of testing the methods on a less aatietting, we repeat
the experiment using the same sparsity patterns, but ieglaach nonzero component with a
uniformly sampled random number betweeand2. In Figure 5.4 we can see that, even if now
the models manifestly don’t belong W%, we still have an advantage because the constraints
look for a limited number of contiguous regions.

Finally, Figure 5.5 displays the regression vector founth®l_asso and the vector learned
by “W-2” (left) and by the Lasso and “W-3" (right), in a singtan with sample size d?0 and
35, respectively. The estimated vectors (green) are supedpwosthe true vector (black). Our

method provides a better estimate than the Lasso in botks.case

5.2 Efficiency experiments for NEPIO

In this section, we present experiments with method (4.2ThHe goal of the experiments is
to both study the computational and the statistical estongtroperties of this method. One
important aim of the experiments is to demonstrate that tethad is statistically competitive

or superior to state-of-the-art methods while being comunally efficient. The methods
employed are the Lasso, StructOMP [20] and method (4.2 th)tvé following choices for the

constraint sef\: Grid-C, A, = {X : ||A\||1 < o}, whereA is the edge map of a 1D or 2D grid
anda > 0, andTree-G A = {) : A\ > 0}, whereA is the edge map of a tree graph.



94 Chapter 5. Numerical experiments

50 50
¢ —-©-Lasso
40t —=-Wedge 40
—-W-2
30 —-W-3 30
W-4

Model error
Model error

10%%

%2 25 28 30 35 50 5 100 %2 25 28 30 35 50 5 100
Sample size Sample size

50 50
—©-Lasso | -©-Lasso
4 - Wedge 40f —8-Wedge||
= —-W-2 _ —©-W-2
g 30" ——=W-3 g 30% ——W-3
° w-4 2 W-4
S S
oS 20 © 20 ~
= =
10 10 N
~*
) ) ) ) ) ) ) ) - —
%2 25 28 30 35 50 75 180 %2 25 28 30 35 50 75 100
Sample size Sample size

(¢) (d)
Figure 5.4: Penaltf(3|W*), k = 1,...,4, used for several polynomial models with random

values between the root&:) degreel, (b) degree2, (c) degree3; (d) degreet.

We solved the optimization problem (4.2.1) either with thallbox CVX or with the proxi-
mal method presented in Section 4.2. When using the proxim#thod, we chose the parameter
from Opial’s Theorem: = 0.2 and we stopped the iterations when the relative decrease in t
objective value is less tharD—®. For the computation of the proximity operator, we stopped
the iterations of the Picard-Opial method when the relalifference between two consecutive
iterates is smaller thatD—2. We studied the effect of varying this tolerance in the nextes-
iments. We used the square loss and computed the Lipschitasdl using singular value

decomposition. (Where not possible, a Frobenius estintatkel dbe used.)

First, we investigated the computational properties ofgtaximal method. Our aim in
these experiments was to show that our algorithm has a timmpleaity that scales linearly
with the number of variables, while the sparsity and retatimmber of training examples is
kept constant. We considered both the Grid and the Treereamtst and compared our algo-
rithm to the toolbox CVX, which is an interior-point methodhger. As is commonly known,
interior-point methods are very fast for small problemg, ¢ not scale well with the prob-
lem size. In the case of the Tree constraint, we also compaitbda modified version of the

alternating algorithm of [32]. For each problem size, weegdpd the experiments) times
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and we report the average computation time in Figurefygeftand Figure 5.6Fop-right for
Grid-C and Tree-C, respectively. This result indicates ¢tlua method is suitable for large scale
experiments.

We also studied the importance of the Picard-Opial tolexdioc converging to a good
solution. In Figure 5.@ottom we report the average relative distance to the solutioaioédd
via CVX for different values of the Picard-Opial toleran&¥e considered a problem wit)0

variables and repeated the experiméntimes with different sampling of training examples,
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considering both the Grid and the Tree constraint. It isrdlest decreasing the tolerance did not
bring any advantage in terms of converging to a better swiutivhile it remarkably increased
the computational overhead, passing from an average fr a tolerance ofl0=2 to 40s for

10~8 in the case of the Grid constraint.

Finally, we considered the 2D Grid-C case and observed tieatiimber of Picard-Opial
iterations needed to reach a tolerancaé @f?, scales well with the number of variables For
example whem varies betweef00 and6400, the average number of iterations varied between

20 and40.

5.3 Tree-C and Grid-C

This section shares the same experimental protocol of @ebiR.

One dimensional contiguous regions In this experiment, we chose a model vectdr €
R2% with 20 nonzero elements, whose values are randdmWe considered sparsity patterns
forming one, two, three or four non-overlapping contiguoegions, which have lengths 26,

10, 7 or 5, respectively. We generated a noiseless output from axnstiwhose elements have
a standard Gaussian distribution. The estimatfes several models are then compared with the

original. Figure 5.7 shows the model er% as the sample size changes frdgn(barely
above the sparsity) up t00 (half the dimensionality). This is the average o@érruns, each
with a different3* and X. We observe that Grid-C outperforms both Lasso and StruéOM
whose performance deteriorates as the number of regionsrisaised. For one particular run
with a sample size which is twice the model sparsity, Figugeshows the original vector and

the estimates for different methods.

Two dimensional contiguous regionsWe repeated the experiment in the case that the sparsity
pattern of3* € R2°%20 consists oRD rectangular regions. We considered either a sifgles
region, two regions4x 4 and3 x 3), three3 x 3 regions and fouB x 2 regions. Figure 5.9 shows
the model error versus the sample size in this case. FigliBeshows the original image and the
images estimated by different methods for a sample sizehwbivice the model sparsity. Note
that Grid-C is superior to both the Lasso and StructOMP aatd$tructOMP is outperformed
by Lasso when the number of regions is more than two. Thiswiahia consistently confirmed
by experiments in higher dimensions, not shown here foritytev

Background subtraction. We replicated the experiment from [20, Sec. 7.3] with outhrod.
Briefly, the underlying modeb* corresponds to the pixels of the foreground of a CCTV image,
that is the portion of the image representing two standimggres. We measured the output

as a random projection plus Gaussian noise. Figure Beftishows that, while the Grid-C
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group).
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outperforms the Lasso, it is not as good as StructOMP. Weusgttecthat this result is due to
the non uniformity of the values of the image, which makesider for Grid-C to estimate the
model.

Image Compressive SensingIn this experiment, we compared the performance of Tree-C
on an instance of 2D image compressive sensing, followirgeperimental protocol of [20].
Natural images can be well represented with a wavelet basisttaeir wavelet coefficients,
besides being sparse, are also structured as a hierartgleaWe computed the Haar-wavelet
coefficients of a widely usechmeramarimage. We measured the output as a random projection
plus Gaussian noise. StructOMP and Tree-C, both explothegree structure, were used to
recover the wavelet coefficients from the measurements@mgared to the Lasso. The inverse
wavelet transform was used to reconstruct the images wéhetliimated coefficients. The
recovery performances of the methods are reported in FiglEeRight which highlights the

good performance of Tree-C.
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Figure 5.11: Model error for the background subtractiofit)(lend cameramar(right) experi-

ments.

5.4 Tree-C and exact proxy

We explore the statistical properties of the tree penalgeI€ by means of two experiments.
In the first synthetic experiment, we embed the true vegtor R® into a tree structure where
each node has exactly four children. Trees with the samehirag factor can be used to order
the wavelet coefficients of real images, as we will do in themad experiment. We want to show
that our method, which is called Tree-C in the plots labalsyéll suited to recover underlying
vectors with a hierarchy of components given by the tree.

We compare Tree-C with other methods that should perforrhimvttis case. The first one
is StructOMP [20], a greedy method based on informationrthé&hen applied to trees, this
method prefers models whose components are connectedjthtioel tree graph. The second

method is the hierarchical Group Lasso [58], GL-Hie. Giverageful choice of overlapping
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scribed in the text.

groups, this method favours models that respect the higrafs a benchmark, we also include
the solution of the Lasso. For each model, except StructGiPried the valueg = 107,
i =3,2,...,—10,—11 for the regularisation parameter, and selected the onelvdudhieves

the minimum model error. For StructOMP we used the complgdirameter of the model.

The sparsity of the model i€0% of the number of variables, and nonzeros elements have
valuel. We consider three different sparsity patterns: in the éingt, all nonzero elements are
clustered at the root of the tree; in the second, half of thezam components are connected
to the root, and half are at a middle depth; finally, in thedhgatterns all nonzero components
are at a middle depth. As a measure of statistical performmamcuse the model error, which
is defined ag)3 — *||2/||3* > for each estimated vectgt. This quantity, averaged ovef

replicates, is shown in Figure 5.12.

As expected, the performance of the Lasso is not affectedeoglifferent sparsity patterns.
For the first pattern (Figure 5.IBp-lef), which is entirely consistent with the tree structure,
the method GL-Hie has a strong advantage. However, thetsestubw that its performance
is consistent with StructOMP and Tree-C. The results forsbeond pattern, (Figure 5.12-
Top-right), which is an intermediate situation, show that Tree-C isamobust than the other
methods. For the third pattern, which is completely incstesit with the tree structure, we see

that all methods are negatively affected.
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Figure 5.13: Model error for the wavelet tree experiméftx 16 (left) and32 x 32 (right).

For the second experiment, we consider an instance of a 2@eim@ampressive sensing
problem. Natural images can be well represented with a wabealsis and their wavelet coef-
ficients, besides being sparse, are also structured asaadhimal tree, like the synthetic one
we used in the first experiment. We follow the experimentatqwol of [20] to compare the
performance of Tree-C against the other methods. We comhpléeHaar-wavelet coefficients
of the widely usedcameramarimage, scaled tdé6 x 16 and32 x 32 pixels. Despite being or-
ganized in a tree structure, ond2% and47%, respectively, of the wavelet coefficients respect
the hierarchy. We measured the output as a random projggliisnGaussian noise with zero
mean andr = 0.01. The inverse wavelet transform was used to reconstructribges from the
estimated coefficients. The recovery performances of thads against the sample size are
reported in Figure 5.13. For model selection, we restrited/alues op to 10~%,4i = 1,3, 5, 7,
as this proved to be enough.

We observe that for this problem all methods perform veryilanhy, with Tree-C and GL-
Hie being slightly better. This result indicates that, ewdren the tree hierarchy is not strictly
respected by the true regression vector, estimation wétiptbposed Tree-C penalty can still be
used effectively.

We performed a simulation to empirically analyze the efficieof algorithms 4.2 and 4.1.
In Figure 5.14, we present the average time needed for tlogithign to compute the partition
for random vector embedded in a tree of uRB600 variables. The trees where generated with
four children for each node. From the partition, it is pokestio compute the proximity operator
as per Equation (3.4.6).

The same experiment has been repeated for the line graph, \|g#o 25600 variables,
and the results are shown in Figure 5right. In this case the amount of time increases linearly

in the number of dimension.

The exact computation of the proximity operator is used éstiatistical experiments as the
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for alternating algorithm (AA) and Fista.

inner step of the Fista-like algorithm, see [5]. The pantitof the tree gives the minimization of
the original problem, i.e. Problem (4.2.1), with respedt® variables\. It can be used in the
alternating algorithm described in 4.1. As an empirical panison between the two algorithms,
Figure 5.15top shows their average running time and Figure Sob&omtheir average number

of iterations.
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Conclusions

We proposed a family of penalty functions that can be used ddemstructured sparsity in
linear regression. We provided theoretical, algorithmmd aomputational information about
this new class of penalty functions. Our theoretical obstoms highlight the generality of this
framework to model structured sparsity. An important feataf our approach is that it can
deal with richer model structures than current approachake wnaintaining convexity of the
penalty function. Our practical experience indicates thase penalties perform well numeri-
cally, improving over state of the art penalty methods fancture sparsity, suggesting that our
framework is promising for applications.

The methods developed here can be extended in differendtidine. We mention here
several possibilities. For example, for any 0, it readily follows that

18|12 = in {HLl Z i—z + %A;" A€ R1+} (6.0.1)
i€Np
wherep = 2r/(r + 1) and|| 3|, is the usualP-norm onR™. This formula leads us to consider
the same optimization problem over a constraintAselote that ifp — 0 the left hand side of
the above equation converges to the cardinality of the stpbthe vectors.

Problems associated with multi-task learning [1, 2] dem@uadrix analogs of the results
discussed here. In this regard, we propose the followinglyashunitarily invariant norms on
d x n matrices. Letc = min(d,n) ando(B) € R be the vector formed from the singular
values ofB. WhenA is a nonempty convex set which is invariant under permutateur point

of view in this thesis suggests the penalty
|Blla = Q(a(B)[A).

The fact that this is a norm, follows from the von Neumann abtarization of unitarily invari-
ant norms. Wher = R __this norm reduces to the trace norm [2].
Finally, the ideas discussed in this thesis can be used icahiext of kernel learning, see

[3, 26, 27, 31, 43] and references therein. k&t ¢ € N,, be prescribed reproducing kernels
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on a set¥, and H, the corresponding reproducing kernel Hilbert spaces wotms || - ||,. We
consider the problem

2

mind > yi— Y fulw) | +pQ ((Hfz”e L€ Nn)|A) fe€ Hp,t €Ny

ZEN"L ZEN’!L

and note that the choicke = R”} | corresponds to multiple kernel learning.

All the above examples deserve a detailed analysis and westoggrovide such in future
work.

We proposed new families of penalties and presented a newitalg and results on the
class of structured sparsity penalty functions propose{BB}; These penalties can be used,
among else, to learn regression vectors whose sparsitgripatt formed by few contiguous
regions. We presented a proximal method for solving thissclat penalty functions and de-
rived an efficient fixed-point method for computing the proky operator of our penalty. We
reported encouraging experimental results, which highlipe advantages of the proposed
penalty function over a state-of-the-art greedy method.[2& the same time, our numeri-
cal simulations indicate that the proximal method is corapanally efficient, scaling linearly
with the problem size. An important problem which we wish tiieess in the future is to
study the convergence rate of the method and determine arhigth optimal rateﬁ(%z) can
be attained. Finally, it would be important to derive spansle inequalities for the estimators

studied here.



Appendix A

Notations

5 is the vector of coefficients of the model.
£* is the underlying model, unknown and object to our research.
A is the estimate.
n is the dimensionality of the data. That ¢ R".
y is the observed vector.
m is the sample size, number of points in the training set.
X isthem x d matrix.
z a feature, column of the matrix.
L is the loss function.
P penalty function.
~ is the regularization parameter
J is a group of variables.
J is a set of groups.
AT is the transpose od.
At is the Moore-Penrose pseudoinversedof
dc itthe indicator function of the sét, thatisoc(z) = 0if = € C, ¢ (x) = +o0 otherwise.
supp(3) is the support of vectos, that is the sefi € N,, : 8; # 0}.

R” , is the positive orthant, that is the et € R™ : z; > 0,7 € N, }.
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Appendix B

Proofs

In this appendix we describe in detail a result due to J.M.dRam which we use in the proof

of Proposition 3.2.1.

Definition B.0.1. Let f be a real-valued function defined on an open subsedf R™ and
u € R™. The directional derivative of atz € X in the “direction” u is denoted by D, f)(x)

and is defined as

(D f)(x) = lim L) = (@)

t—0 t
if the limit exists. When the limit is taken through nonnegatvalues oft, we denote the

corresponding right directional derivative by;".

Let Y be a compact metric spack,: X x Y — R a continuous function on its domain

and define the functiori : X — Ratz € X as

f(x) =min{F(z,y) :yeY}.

We say that" is Danskin function if, for every, € R, the functionF,, : X x Y — R defined
at(x,y) € X xY asF!(z,y) = (D,F(-,y))(x) is continuous onX x Y. Our notation is

meant to convey the fact that the directional derivativaken relative to the first variable &f.

Theorem B.0.1.If X is an open subset ®", Y a is compact metric spacé; : X x Y isa

Danskin functiony € R™ andx € X, then
(Dyf f)(x) = min {Fy(z,y) -y € Yo}
whereY, :={y:y eV, F(z,y) = f(z)}.

Proof. If z € X, y € Y, andu € R" then, for all positivet, sufficiently small, we have that

flx+tu) — f(x) < F(:E+tu,y)—F(:L",y)'

t t
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Lettingt — 0, we get that

s £@+ 1) = @)

t—0t t

< min {F}(z,y) 1y € Y, }. (B.0.1)

Next, we choose a sequenfg : k € N} of positive numbers such thAtny . ¢, = 0 and

Cfa ) - f@) et (@)
k—o0 tr t—0+ t

From the definition of the functiorf, there exists a;, € Y such thatf(z + tyu) = F(z +
tru,yr). SinceY is a compact metric space, there is a subsequépge: ¢ € N} which
converges to somg,, € Y. It readily follows from our hypothesis that the functighis

continuous onX. Indeed, we have, for eveny;, x5 € X, that

|f(z1) = f(22)] < max {|F(z1,y) — F(x2,y)| :y €Y},

Hence we conclude that, € Y,. Moreover, we have that
F(x + tpu, yr) — F(x, yx)

flz+tpu) = f(@)
tr - tr ’

By the mean value theorem, we conclude that there is positimebers;, < t; such that the

J(x +tpu) — f(x)
12

> F,(z + opu, yr).

We let/ — oo and use the hypothesis thtis a Danskin function to conclude that

lim inf flzttu) - f@)
t—0+ t

> Fy(2,Yoo) > min { Fy (z,y) 1y € Yz } .

Combining this inequality with (B.0.1) proves the result. [ |

We note that [6, p. 737] describes a result which is attribdteDanskin without refer-
ence. This result differs from the result presented above r€sult in [6, p. 737] requires the
hypothesis of convexity on the functidn. The theorem above and its proof is an adaptation of
Theorem 1in [13].

We are now ready to present the proof of Proposition 3.2.1.

Proof of Proposition 3.2.1The essential part of the proof is an application of Theoreth1B
To apply this result, we start with@ < (R\{0})™ and introduce a neighborhood of this vector

defined as

X(®) = {azae Aol < 2521,

whereS,in = min{|g;| : i € N,,}. Theorem B.0.1 also requires us to specify a compact subset

Y (B) of R™. We construct this set in the following way. We choose a fixedl A and a positive
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e > 0. From these constants we define the constants

(5 — Z<(|ﬁi|+_ﬁmin/2)2+xi>7

1ENp, )\Z

2
Bmin

4(c(B) +e)’

b(B) = max(a(P),c(B) +e).

With these definitions, we choose our compactses) to beY (3) = Ayp)p(5)- TO apply
Theorem B.0.1, we use the fact, for amye X (), that

Q(a]A) = min{T'(a, A) : A € Y (5)}. (B.0.2)

Let us, for the moment, assume the validity of this equatioth proceed with the remainaing
details of the proof. As a consequence of this equation, welade that there exists a vector
A(B) such thatQ(5|A) = T'(8,A(B)). Moreover, whend € (R\{0})" the functionI's :
R%, — R, defined forA € R"} ,, asI'g(\) = I'(B, ) is strictly convex on its domain and so,
A(p) is unique.

By construction, we know, for every € X (), that

ax { a(f) +b(8)

/\Z(Oé) — 5
From this inequality we shall establish thet3) depends continuously g To this end, we

1 €N,

} _ alB) +b(8)
- 2

choose any sequendg” : k ¢ N} which converges t@ and from the above inequality we
conclude that the sequence of vectafs*) is bounded. However this sequence can only have
one cluster point, namely(3), becausd’ is continuous. Specifically, ifimy,_, . A(3¥) = A,
then, for every € A, it holds thafl’(8%, A(8¥)) < I'(8*, A) and, passing to the limit(3, \) <
['(3,)), implying thatA = \(3).

Likewise, equation (B.0.2) yields the formula for the palrderivatives of2(-|A). Specif-
ically, we identify F and f in Theorem B.0.1 witil" andQ2(:|A), respectively, and note that

o0 ar Bi
0B B, Ai(B)

Therefore, the proof will be completed after we have essabli equation (B.0.2). To this

(BIA) = min{ (B.0): A€ A, T(B,A) = Q(BIA)} = S =2

end, we note that ih = (\; : ¢ € N,,) € A\Y(B) then there existg € N,, such that either
Aj < a(B)orA; > b(53). Thus, we have, for every € X (), that

1 1. (B () +e €



110 Appendix B. Proofs
This inequality yields equation (B.0.2). [ |

We end this appendix by extracting the essential featuréiseofonvergence of the alter-
nating algorithm as described in Section 4.1. We start with tompact setsX C R™ and
Y C R™, and a strictly convex functio’ : X x Y — R. Corresponding td& we introduce

two additional functionsf : X — R andg : Y — R defined, for every € X,y € Y as
f(z) = min{F(z,y) : v €Y}, g(y) = min{F(2',y) : 2’ € X}.

Moreover, we introduce the mappings : ¥ — X and¢, : X — Y, defined, for every

reX,yeY,as
¢1(y) = argmin{F(z,y) : x € X}, ¢o(x) = argmin{F(z,y) 1y € Y'}.
Lemma B.0.1. The mappingg; and ¢, are continuous on their respective domain.

Proof. We prove thatp; is continuous. The same argument applieg4o Suppose thafy” :
k € N} is a sequence il which converges to some poipte Y. Then, sinceF’ is jointly
strictly convex, the sequende (v*) : k € N} has only one cluster point i, namelyo; (y).
Indeed, if there is a subsequeng (v*¢); ¢ € N} which converges t&, then by definition,
we have, for every: € X, ¢ € N, that F'(¢;(y*), y*) < F(z,y**). From this inequality it
follows that F'(z,y) < F(z,y). Consequently, we conclude that= ¢ (y). Finally, sinceX

is compact, we conclude that then,_, .. ¢1(y*) = é1(y). [

As an immediate consequence of the lemma, we seefthatlg are continuous on their

respective domains, because, for everyg X,y € Y, we have thaff (z) = F(z, ¢2(x)) and

9(y) = F(o1(y),y)-
We are now ready to define the alternating algorithm.

Definition B.0.2. Choose any), € int(Y") and, for everyk € N, define the iterates

fL’k — ¢1(yk—1)

and

Y = po(a").

Theorem B.0.2.If F': X x Y — R satisfies the above hypotheses and it is differentiable on
the interior of its domain, and there are compact subséfsC int(X), Yy C int(Y") such that,
forall k € N, (z*,4*) € X, x Yy, then the sequenclz*,4*) : k € N} converges to the

unique minimum of” on its domain.
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Proof. First, we define, for every: € N, the real numberd, = F(z* y*1) andy, =

F(z*,y*). We observe, for alk > 2, that
vp < 0 < vp_y.

Therefore, there exists a constansuch thatimy,_, ., 0, = limy_, vx = 1. Suppose, there is
a subsequencgr® : ¢ € N} such thalimy_,o, 2% = x. Thenlimy_, o ¢2(2¥¢) = ¢o(z) =: y.

Observe that;, = f(z*) andf,1 = g(y*). Hence we conclude that

SinceF is differentiable(x, y) is a stationary point of” in int(X) x int(Y"). Moreover, since

F is strictly convex, it has a unique stationary point whiclkurs at its global minimum. =
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Appendix C

Algorithms

The algorithms summarised in this appendix are the onesideddn Chapter 2: Ortogonal
Matching Pursuit, model-based Cosamp as described by B&ra&tructOMP by Tong Zhang

and Caspar by Wasserman.

Algorithm C.1 OMP, Orthogonal Matching Pursuit (adapted from [50])
Input: X, y, sparsity levek.

Initialisation: Active setA = 0, initial residuer(®) = y, iteration countet = 1. X(© is the
empty matrix.
1. Find the index of the most correlated factgt:= arglmax\(r(t‘l),xm.
=1,
2. Include the index into the active set:= AU j*, and include the new factor in the matrix
X0 = [ XD ]

3. Solve the least squares probleft?) = argmin|| X® 3 — y||3.
B

4. Calculate the new residualt) =y — X® ),

5. Increment, and go to step 1 if < s.

Output: Estimatij = ﬁ](.s) for j € A, 0 otherwise.
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Algorithm C.2 CaSpaR, Clustered and Sparse Regression (from [42])
Input: X, y, distance functior, kernel functionk’, o € (0,1), 7 >0

Initialisation: Active setA = (.
1. Fit the linear modef = argmin {|| X3 — y||3}, such that supp3) C A.
6€Rn

2. ComputelV; = ‘7}| >_gicay Kn(d(i, 5)), forall j ¢ A. If this is the first iteration, then
W; = 1forall j.

3. Setj* = argmax {W;|(X 8 — vy, z;)|}.
JgA
4. If (XB —y,z;+)| < T, then stop, else set = AU j* and go to Step 1.

Output: Estimates.
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Algorithm C.3 StructOMP (from [20])
Input: X,y,Bc27,5s>0

Initialisation: Let F(9) = ¢ and3(®) = 0. Iteration counted = 1.

1. SelectB(") e B to maximise the gain ratio

||X£_F(t71) (Xﬁ(t_l) - Z/)H%

c(BUF(t-1)) —¢(Ft-1) ~

2. LetF® = &) y plt-1),
3. Letp®") = argmin{L(B) : supp(8) c F®}.
B
4. If ¢(B®) > s stop, else incrementand go to Step 1.

Output: Estimate3 = 8,
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Algorithm C.4 Model-based CoSaMP (from [4])

Input: X, y, structured sparse approximation algorithfins > 0

Initialisation: 5y = 0,7 =y, ¢t = 0.
1. Increment.
2. Lete = XT'r be the residual estimate.
3. Compute the support of the bassparse approximatior2 = supp(M(e)).
4. Merge the new supporfy = Q U supp(ﬁ(t‘l)).
5. Form new signal estimaté}; = X}y, blrc = 0.
6. Prune according to structurg) = M(b).
7. Calculate the new residual:=y — X 3.
8. If halting critarion is true, stop, else go to Step 1.

Output: Estimate3®).
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Specialised Bregman iteration

In this appendix we present an alternative algorithm to asmthe Grid-C penalty. We did not
compare the efficiency of this algorithm but describe it Fee@ reference.

The Bregman iteration is a technique proposed by [15] toesgdneral optimisation prob-
lems where the penalty part contains a composition of theorm. As this is the framework of
the Grid-C penalty function in its Lagrangian form, we caapidthat algorithm to our case.

The implementation of the algorithm to compute our penatiyuires the solution of a
particular subproblem. We show how this can be found usieghkory of [33], which relies
on the computation of a compaosition of proximity map. Thigproximated via a fixed point
algorithm in a similar manner done for NEPIO (see Sectioi. 4.2

In Section D.1 we revise the Bregman iteration techniqueiarg&kction D.2 we explain

the implementation for the Grid-C penalty.

D.1 Generalities of Bregman iteration

The Split Bregman method, as proposed by [15], can be usemv® groblems with a compo-

sition of /1 norms as regularisation part. The most general definitidgheproblem is
min {[[®(u)[ls + H(u)}, (D.1.1)

where both® and H are convex functions.
To begin with, we consider the problem of finding the minimuina single function® (u),

potentially non-differentiable, with a quadratic pendkym, that is
. A 2
min < F(u) + EHAu —bl5¢- (D.1.2)

The minimisation ofE(u) subject to the system of linear equatioAs = b can be obtained
recursively using a series of increasing values for therpatar\. This procedure, however, is

not numerically stable.
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In the case tha#l is a matrix (instead of a more general linear operator), thersolution

to (D.1.2) can be found with the Bregman iteration:

w1 = argmin {E(u) + %HAU - ka%} , (D.1.3)

VL = bF b — Auk. (D.1.4)

The vectorb”, at iterationk, represents the error of the linear system. This simple ftase
[39] and [55] hides a more complex iterations based on BregDiatance and subgradients,
which arises whenl is not a matrix.

The splitting technique modifies the problem (D.1.1) introidg a new variable, allowing
to cast the problem in a form similar to (D.1.2), so that theddnan iteration can be used.
Specifically, we will constraint the new variabfeto take the values ob(u). The Lagrangian

form of the new minimisation problem will be

mip { s + H( + 5114 - 2(0)13 . (0.L5)

This problem has a form very similar to that of (D.1.2), and ba solved in a similar way:
W) = arguin {aly + G0 + 1a - 00 - B} (©16)
prrl = b + (®(uF ) — dk+h. (D.1.7)

Furthermore, we note that this problem computes/theorm and the functio on different
variables. One of the difficulties of the original problem1[1) is precisely the fact that this is
not the case: both functions are computed for the same lariab

We can perform step (D.1.6) minimising alternatively wittspect tou and tod. The

minimisation with respect ta is

ubtt = arginin {H(u) + %Hdk — ®(u) — bk||§} ,
and so its difficulty depends on functidif. The second step is

@41 = argunin { a1+ 4 - #(u) - 043}
and has the closed formula

1
k1 : k+1 k
ditt = shrmk(@(u ), +bj’X>

where shrink-) is the soft thresholding operator, i.e. $gh(|z| — \)+.
To summarise, Algorithm D.1 will provide a solution to theoplem in (D.1.1). The
authors of [15] suggest to set the paramé¥er= 1. No suggestions are given for the starting

points ofu, d andb, nor for the value\.
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Algorithm D.1 Generalised split Bregman algorithm (adapted from Osher)
Input: H,®, >0, A > 0, integerN

Initialisation: wu, d, b
whi | e [juf —uf=1)| > 7
forn=1to N
uht = argmin { H (u) + 5||d* — ®(u) — b*[|3}
di = shrink (@ (ut+1); +0f, 1)
end
bk—l—l — bk + ((I)(uk—i-l) _ dk—l—l)
end

Output: solution (i, d).

D.2 Special case of Grid-C Constraints

We will use AlgorithmD.1 to find the value of the functiof® for the Grid-C case (s€g3.3.4).
The constraints set i8, = {\ : |[LA|1 < a}, wherea is a positive parameter and is the
incidence matrix of a DAG. In theéD case, matrix. will be then x (n— 1) matrix with 1 on the
main diagonal—1 on the superdiagonal aridotherwise. This corresponds to the constraints
setAq = {A: > [N — Aisa] < ol

Our goal is to find the infimum of 3", <5§+e + uz-> = H(u) + @ where the com-

Us

ponents of the vectof are perturbed by a slight positive amountor numerical stability.
Moreover, the components afare constrained to be nonnegative and to satjgfy|; < a.

We can rewrite our problem as

r&lg{ﬂ(u) +@+)\(|1Lu\\1 —a)}, (D.2.1)

for a positive Lagrangian multipliex.
We apply the splitting technique by introducing two new &btesd ande, and by enforc-
ing the constraintel = u ande = Lu via quadratic error terms. This allow us to compute

function H and the/; norm on different vectors. The new form of the problem is

. d
win {10 + U904 x(Jels — @)+ S0 B+ S~ ulB}.  ©22)
d.e

for a positive weight.. No real benefit is gained from weighing the two quadratintewith
different parameters. This problem is equivalent to thgioal problem (D.2.1), and is similar
to (D.1.5), so that Algorithm D.1 can be applied.

The efficiency of the algorithm depends on how fast we caresible step of minimisation
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with respect tay, that is

w1t = argmin {H(u) + g <||dk —u— b3+ |leF — Lu — bﬁ”%)} . (D.2.3)

u>0

We added two further vector variablég and b, to absorb the error for the new constraints,
where in step (D.1.3) we only needed one variable. If welet d* — b% andw = e* — bF,
then the solution to (D.2.3) will be a function fgat v, w). We will see later that this function
can be computed using a fixed point technique. Note thatuhistion also depends ai, that
is on 3, but this will be omitted for simplicity.

The minimisation with respect t@ is made again using the shrink operator. In this case

the step is

. 1
it = shnnk((u’““)j + ()5, ﬂ) : (D.2.4)

Finally, the updates of the error variables are
PR = bh 4 (uF T — @R (D.2.5)
PEFL = bk 4 (uF L — R, (D.2.6)

Using all the updating steps together, we can now show AlgorD.2 which provides a

solution to the problem (D.2.1).

Algorithm D.2 Bregman method for functiof?
Input: 3,7 > 0, u > 0, integerN

Initialisation: u, d, b, by
whil e |[uf — o1 > 7
forn=1to N
uM 1l = fpnt (u*, d* — b, ¥ — bF)
dE+t = shrink () + (8);. 5 )
end
BEFL = bk 4 (uE T — gty
BT = BE g (D ekt
end

Output: solution.

We now describe how to solve (D.2.3) using the fixed point hebat can be found in

[33]. Consider the problem

. 1 Z
mm{gzu—i+c\|v—u\|§+c||w—LuH%} , (D.2.7)
(2

u>0
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wherez; = 32, c = & for all 4.

By considering the first two terms, we have the problem

min {5uu ol X 6{u>o}} = min {;w —vl3+ h1<u>} . (D29

that is the proximity operator of the functidn (v) = w;(Bu), with B = I, the identity. By
the theory of the fixed point;; can be computed if we know the proximity operatorgf with

A a positive constant. That is, we need

1 7
proxe: (t) = argmin {§Ht — o3+ kD % + 5{¢>0}} :

ad 8
A

with k = ﬁ. Since the variables are decomposable, we can solve thiepragomponentwise,
which involves taking the positive root of a cubic polynothia

Considering now the second two terms of (D.2.7) we have thklpm

. 1 1 ) 1
min {31 = ol + o — Ll + 80 | = min { 3= ol + ha(w) |

Again, this is the composition of a proximity operator, isthasehs(u) = wo(Bu), B = I,

so we need
(1 1 LT\ LTw
prov () = angain {Sl-ol+ pxho-zolg) = (1+ 55) (14 52).

computed finding the minimum of the quadratic form.
We define a functiori{ which is a composition of the proximity operators we havenfibu

so far and an affine mag:
H(t) = I — proXw; +w, (A(t)).
A

The solution to the original problem is the fixed point@f that isH(r) = r. This is
obtained by applying the Picard iteration using Opial'sotieen

1 1
r—>§I+§H(r)

until convergence. This is usually very fast.
In the fixed point theory, the proximity operator of the core@ad functionw o B at the

point x can be found as the fixed point &f where

A(z) = (I = A\BBT)z + Bz,

~ 3 3
'For completeness, itis; = r + &, withr = Ja + B+ Ya — B,a= & + 21, 8= /a? + 2op= -
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For a pointt € R", we have computed; (Bt) andws(Bt). So

H(t) = (I — proxe: (A(t)) — proxwz (A(t)).

’ %
Finally, our two proximity functions are computed on diffat vectors that are bound together
by settingt = (t1,t2), B = [I;I]”.
With this algorithm we considered just the functifn If we are interested in minimising
the regularised loss with this function, we have to intradadurther step when we minimise
with respect tgs:

-1

2
ZxTy.
n

8= <%XTX + ydiag(ul_l, . ,u;1)>
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Dual Problem and QCQP Formulation

The content of this section is not used in the thesis, but wieide it here for completeness.
We derive the dual of problem (4.2.1) whén= {\ : A € R ., A\ € S}, whereA # 0Ois a
prescribedt x n matrix andsS is a convex set. We are particularly interested in eithectdse
that S is a convex cone a8 = {|| - || < 1}, where|| - || is anarbitrary norm. These cases are
described irg 3.3.4. We will show that the dual formulation, in the sensthefFenchel duality,

is, in many cases of interestaaguadratically constrained quadratic progra(@CQP).

E.1 Norm Constraints
We first study problem (3.1.1) in the case that
A= AAvH” = {)\ tAE€ R:L__,’_, ||A)\|| < 1}

Definef :R xR = R,¢g:R™ x R¥ > Ras
b2 .
Z+E HE>0
FB8 =1 ¢

+00 if <0

andg(¢,n) = 3¢ — |13 + 05(n), whereB is the unit ball of| - ||.

Note that the convex conjugate g¢kquals
9" (p.q) = %HpH% + (0, y) + llall-
where|| - ||« denotes the dual norm ¢f- ||.
Lemma E.1.1. The conjugate of equalsf* = dc, whereC is the parabolic region
C={(7,0) cRxR:~4%+40 < 4}. (E.1.1)
Moreover,(b, &) € 9(f*)(v,0) if and only if
y=2,¢>0andy*+40 =4 or

(E.1.2)
b=¢=0and2+40<4
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We can now obtain a dual problem of (4.2.1). Let us nse; to denote theé-th columns

of X, A, respectively.
Proposition E.1.1.If A = A4 .|, then problen{4.2.1)is equivalent to
)1
mm{j@—M@+Mm:p€Rﬂq€Rﬁ
<xl7p>2+2p<a27q> sza vZ:177n} (E13)

Moreover, if(p, §) is a solution of(E.1.3) then(ﬁ, 5\) is a solution of(4.2.1) if and only ifthe

following equations hold

Bi = %<$iaﬁ>;\i it (zi,5)° + 2p (a;,§) = p? ’ (E.L.4)
Bi=Xi=0 if (2:,0)° +2p(a;,d) < p?
foralli=1,...,n,
XB=y—p, (E.1.5)
AN € argmax{( — g,n) : ||| < 1} (E.1.6)
AeER™. (E.1.7)

Proof. We apply Fenchel’s duality theorem [9, Thm. 3.3.5], notihgttthe Slater condition

0 € int(R™ x B — R(X) x AR, ) holds. Recalling the formulgg f)*(-) = & f* (%(-)) ,we

obtain the problem

1
sup{ —5IIpl} + (p.4) — llall- : p € R™,q € R,
(%(mi,p>, %(ai,q>> eC,vVi=1,... ,n} ,

which is equivalent to (E.1.3), and that the supremum isregth

The primal-dual pair of solutions should satisfy the caodis
(B M) € 0f*) (i), 2 )

and

These, combined with (E.1.2) and norm duality, yield cdodg (E.1.4), (E.1.6) and (E.1.5).
[ |
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We remark that in many cases of interest, dual problem (Ei4.8 quadratically con-
strained quadratic progranfQCQP) [10]. These include the case thjat|| is a polyhedral
norm, such as thé norm.

Recovering primal solutions from dual ones requires sglwet another optimisation
problem. Thus, iff = 0, the solutions satisfj}(AS\H < 1, equations (E.1.4), (E.1.5) and (E.1.7).
If ¢ #0, ) can be obtained by solving the problem

min{||A>\|| HATGA) = Il AERE S Wit pa =y —p}, (E.1.8)
ieJ
where.J denotes the set aktive constraintsthat is, the indices for whiche;, p)2+2p (a;, §) =
p%. In learning problems exhibiting sparsity, the gdtas small cardinality and program (E.1.8)
has a small number of variables. Moreover, in the case ohgalsal norms, (E.1.8) islmear

program

E.2 Conic Constraints

Another case of interest imposes alternative constraingsdifferent character on. Namely,

we consider the optimisation problem (4.2.1) when
A=Ay :={ : XeR} A\ € K},

whereK is aconvex coneAs mentioned in [32], such cases correspond to the penalttibn
Q2 in equation (3.1.2) being a norm.
To derive the corresponding dual problem we work as in Sedid. In this case, however,

the Slater condition is not automatically satisfied and wednen assumption oA and K. If

a weaker Slater condition involving ttrelative interior of K, denoted byi(X), holds then
[45, Cor. 31.2.1] can be employed. To this end, we recall tmeept of goolar cone— see, for
example, [9, Sec. 3.3]. The polar cone of akes the setk — = {¢ : (¢, z) <0, Vo € K}. It
is easy to see that, = dx— and thatp € ddx (z),x € K, ifand only if ¢ € K—, (¢, z) = 0.

Proposition E.2.1.1f A = A4 i and there existd € R”} , such thatA) € ri(K), then problem

(4.2.1)is equivalent to
)1 2 m _
min §Hp_y‘|2 IpGR 7q€ -K )
(i, P2+ 2p(ai,q) < p*, Vi=1,... ,n} . (E.2.1)

Moreover, if(p, §) is a solution of problengE.2.1) then(ﬁ, 5\) is a solution of problen¢4.2.1)
if and only if equationg(E.1.4) (E.1.5) (E.1.7)and A\ € K, (X, A7§) = 0 hold.
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In most cases of interest, the Slater condition can be easilfied andK ~ is known. For
example, ifK = R", corresponding to the constraidt\ > 0, the cone is self-dual, meaning
that— K~ = R’} In this case, (E.2.1) is a QCQP and the set of solutioissthe polytope

{>\ tA€ R:LﬂA)\ € Rﬁ-v </\>AT(j> = 072 %)\Z<$Z,]§>l‘2 =Y _ﬁ}
ieJ
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