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Abstract
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by João Jesus

This thesis is concerned with statistical inference in situations where one is unwilling

or unable to formulate a likelihood function. The theory of estimating functions (EFs)

provides an alternative inference framework in such settings.

The research was motivated by problems arising in the application of a class of stochastic

models for rainfall based on point processes. These models are often used by hydrologists

to produce synthetic rainfall sequences for risk assessment purposes, notably in the

UKCP09 climate change projections for the UK. In the absence of a likelihood function,

the models are usually fitted by minimizing some measure of disagreement between

theoretical properties and the observed counterparts.

In general situations of this type, two ”subjective” decisions are required: what proper-

ties to use, and how to weight their contribution to the objective function. The choice

of weights can be formalised by defining a minimum variance criterion for the estimator.

This is equivalent to the Generalized Method of Moments estimator which is widely

used in econometrics. The first contribution of this thesis is to translate the problem to

an EF framework which is much more familiar to statisticians. Simulations show that

the theory has poor finite sample performance for point process rainfall models. This is

associated with inaccurate estimation of the covariance matrix of observed properties.

A two-stage approach is developed to overcome this problem.

The second main contribution is to apply EF theory to the Whittle likelihood, which is

based on the periodogram of the data. A problem here is that the covariance matrix of

the estimators depends on fourth-order properties which are often intractable. An EF

approach provides a feasible alternative in practical applications. After establishing the

conditions under which EF theory can be applied to Whittle estimation, simulations are

once again used to explore the finite sample performance.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
joao@stats.ucl.ac.uk


Acknowledgements

First and most importantly, I would like to express my gratitude to my primary super-

visor, Dr. Richard Chandler, for his guidance and support throughout the work for this

thesis. I feel very fortunate to have had the opportunity to work with such a knowledge-

able and inspiring person who shared his ideas and time with me during the entire PhD.

I would also like to thank my subsidiary supervisor, Dr. Paul Northrop, for his reviews,

comments and suggestions, particularly during the first year. This thesis has undoubt-

edly benefited from the comments and suggestions from staff and fellow students during

departmental seminars and presentations as well as more informal discussions.

I am deeply grateful to the Department of Statistical Science and its staff, past and

present, for the opportunities that led to the present work. This thesis would not have

been possible without the inspiring experience from my first spell in the department,

when the desire to do research in the field of statistical inference was formed.

The work in this thesis was made possible through a studentship from the Engineering

and Physical Sciences Research Council.

Finally, I would like to show my deepest gratitude to my wife, Ana, who has been a

constant source of encouragement and support, even during the most difficult times.

3



Contents

Declaration of Authorship 1

Abstract 2

Acknowledgements 3

List of Figures 6

List of Tables 7

1 Introduction 9

2 Theory of Estimating Functions 12

2.1 Linear Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Non-linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Optimality and lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Consistency and asymptotic distribution . . . . . . . . . . . . . . . . . . . 19

2.5 Examples - Likelihood as estimating function . . . . . . . . . . . . . . . . 24

2.5.1 Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . . . 24

2.5.2 Marginal and Conditional Likelihood . . . . . . . . . . . . . . . . . 27

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Generalized Method of Moments 30

3.1 Generalized method of moments as estimating functions . . . . . . . . . . 30

3.2 Lower bound - Optimal weighting . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Simulation Study - Application of GMM to rainfall models 40

4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Poisson Rectangular Pulses Model - PRPM . . . . . . . . . . . . . 42

4.1.2 Poisson-Cluster Rectangular Pulses Models . . . . . . . . . . . . . 45

4.1.2.1 Neyman-Scott Rectangular Pulses Model - NSRPM . . . 46

4.1.2.2 Bartlett-Lewis Rectangular Pulses Model - BLRPM . . . 47

4.1.3 Final remark on point process rainfall models . . . . . . . . . . . . 47

4.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



Contents 5

4.2.1 Study setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1.2 Moment Conditions . . . . . . . . . . . . . . . . . . . . . 50

4.2.1.3 Estimation of Estimator Variance . . . . . . . . . . . . . 52

4.2.1.4 Weighting schemes considered . . . . . . . . . . . . . . . 53

4.2.1.5 Performance Measurement Criteria . . . . . . . . . . . . 54

4.2.2 Poisson Rectangular Pulses Model - Results and discussion . . . . 55

4.2.2.1 Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2.4 Variance estimation . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.5 Confidence Intervals and Regions . . . . . . . . . . . . . . 60

4.2.2.6 Some conclusions . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2.7 Improved performance . . . . . . . . . . . . . . . . . . . . 63

4.2.2.8 Improved estimation of S . . . . . . . . . . . . . . . . . . 65

4.2.3 Extension to Neyman-Scott Rectangular Pulses Model . . . . . . . 67

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Spectral Likelihood 71

5.1 Definition of spectral likelihood . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Cumulants and spectral densities . . . . . . . . . . . . . . . . . . . 74

5.1.2 Properties of the sample Fourier coefficients . . . . . . . . . . . . . 75

5.2 Some useful convergence results . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Spectral Likelihood and Estimating functions . . . . . . . . . . . . . . . . 85

5.3.1 Rewriting the spectral scores . . . . . . . . . . . . . . . . . . . . . 85

6 Simulation Study - Application of spectral likelihood to rainfall models 94

6.1 Derivation of spectral likelihood . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Results for the Poisson Rectangular Pulses model . . . . . . . . . . . . . . 98

6.3 Results for the Neyman-Scott Rectangular Pulses model . . . . . . . . . . 101

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusion 104



List of Figures

4.1 Schematic diagram of a generic point-process rainfall model. Vertical
dashed and dotted lines mark the start and end times of rain cells respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Distribution of estimation errors for each PRPM parameter, obtained
using different weighting matrices in the GMM estimator. All distri-
butions are obtained from 1000 simulated data sets, each containing
20 independent 30-day sequences and generated using parameter values
log(λ) = −3.5, log(µX) = 0, log(σX/µX) = 0, log(µL) = 1.1 . . . . . . . . . 56

4.3 Estimated densities of theoretical standard errors from 1000 simulations
together with the “average” standard errors (vertical lines). For each pa-
rameter except log(σX/µX), the axis scales are the same for each weight-
ing scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Estimated densities for the determinants of the theoretical covariances

from 1000 simulations, together with det
(

Var(θ̂)
)1/8

(solid line) and

det
(

V̂ar(θ̂)
)1/8

(dashed line) for different weighting schemes . . . . . . . 60

4.5 Normal probability plot of the estimates for each parameter under differ-
ent weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Boxplot of estimation errors for different weighting matrices . . . . . . . . 68

6.1 Distribution of estimation errors for each PRPM parameter. All dis-
tributions are obtained from 1000 simulated data sets, each containing
20 independent 30-day sequences and generated using parameter values
log(λ) = −3.5, log(µX) = 0, log(µL) = 1.1 . . . . . . . . . . . . . . . . . . 98

6.2 Estimated densities of theoretical standard errors from 1000 simulations
together with the empirical standard errors (vertical lines) and the average
theoretical standard errors (vertical dotted lines), for each parameter. . . 100

6.3 Distribution of estimation errors for each NS parameter, obtained using
the spectral likelihood estimator. All distributions are obtained from
1000 simulated data sets, each containing 20 independent 30-day se-
quences and generated using parameter values log(λ) = −4, log(µX) =
−0.44, log(µC) = 2.46, log(β) = 1.8, log(µL) = −0.37 . . . . . . . . . . . . 101

6



List of Tables

4.1 Properties and parameters for the PRPM with exponential cell duration
aggregated over time intervals of length h (Rodriguez-Iturbe et al., 1987) 45

4.2 Estimated bias for each parameter under different weighting schemes,
together with their standard errors. . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Minimum of the eigenvalues of the matrix resulting from the difference
(Var(θ̂A)−Var(θ̂B)), for each combination of weighting schemes . . . . . 57

4.4 Standard errors obtained by averaging the theoretical covariance matrices
obtained in each simulation, for each parameter and weighting scheme . . 58

4.5 det
(

Var(θ̂)
)1/8

and det
(

V̂ar(θ̂)
)1/8

for different weighting schemes . . . 60

4.6 Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels. . . . 61

4.7 Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels . . . . . . . . . . . . . . 62

4.8 Coverage of confidence region based on objective function threshold under
two different settings of sample size, for two weighting schemes and two
confidence levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels, when
bootstrapping is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels, when bootstrapping is
used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.11 Standard errors obtained from the empirical and average theoretical co-
variance matrices calculated using a two step procedure, for each param-
eter and for two different weighting schemes . . . . . . . . . . . . . . . . . 66

4.12 Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels, when
a two step procedure is used . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels, when a two step proce-
dure is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Estimated bias for each parameter under different weighting schemes,
together with their standard errors. . . . . . . . . . . . . . . . . . . . . . . 69

4.15 det
(

Var(θ̂)
)1/8

and det
(

V̂ar(θ̂)
)1/8

for different weighting schemes . . . 69

4.16 Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels . . . . 69

7



List of Tables 8

4.17 Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels . . . . . . . . . . . . . . 69

6.1 Estimated bias for each parameter together with their standard errors. . . 99

6.2 Empirical standard errors together with the standard errors obtained from
the median and mean of the theoretical covariance matrices for each of
the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Determinants of the empirical, median and mean theoretical covariance
matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Coverage rates for confidence intervals based on normality assumption
for the individual parameters, and for the confidence region based on an
objective function threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Estimated bias for each parameter together with their standard errors. . . 102

6.6 Empirical and theoretical standard errors for each of the parameters. . . . 102

6.7 Determinants of the Empirical and theoretical matrices. . . . . . . . . . . 102

6.8 Coverage rates for confidence interval based on normality assumption. . . 102



Chapter 1

Introduction

The likelihood function is fundamental to most modern methods of statistical inference.

Suppose a data vector y is considered as the realized value of a random vector Y with

joint density f(y; θ), for a parameter vector θ in some set Θ. Then the likelihood function

is defined as L(θ|y) ∝ f(y; θ) for θ ∈ Θ, and can be used to make inference about the

value of θ on the basis of the data y.

Likelihood-based inference yields point estimates of θ, as well as assessments of un-

certainty such as confidence regions. Unfortunately, inference based on the likelihood

function is not always feasible. This may be because the structure of a model may be

too complex to derive the joint density f(y; θ); or because the full probability structure

of a statistical model has not been specified, either because it is not possible or not

desirable. Some examples can be found in Fuentes (2007), Li and Yin (2009), Mikosch

et al. (1993).

An important example is the class of models based on point processes (Cox and Isham,

1980) which in fact provided a motivation for the work presented here. This class of

processes is often used by hydrologists and meteorologists to model rainfall, their use is

widespread across UK institutions from which we highlight the Department for Environ-

ment Food and Rural Affairs (DEFRA). The UK Climate Projections, and in particular

UKCP09, is based on a weather generator that models rainfall using a Neyman-Scott

Rectangular Pulses Model(NSRPM) (Burton et al., 2008), these models are described

later in the thesis. The NSRPM and the Poisson Rectangular Pulses Model(PRPM)

will be used in this thesis to show the application of the different methods of estimation,

also with the aim of evaluating finite sample performance of asymptotic theory.

9



1. Introduction 10

The theory of estimating functions provides a general framework that is useful in the

absence of a likelihood function as it allows for consistent estimation of θ as well as

characterization of uncertainty. The groundwork of the estimating functions theory

was introduced by Godambe (1960) and Durbin (1960), where a major share of their

work has been devoted to finding optimal estimating functions, in the sense that the

resulting estimators have the smallest possible standard errors within some class. In

Chapter 2 we present definitions and results that are paramount to the remainder of

the thesis. We will describe the theory of estimating functions in detail, discussing the

concept of optimality and deriving some asymptotic results, with focus on the statement

of conditions for consistency and asymptotic distribution in a way that these can be

checked in practical applications. Towards the end of Chapter 2 we show how some

likelihood based estimators can be fitted in the estimating functions framework.

In many applications (e.g. Rodriguez-Iturbe et al. (1987), Wheater et al. (2005) , Ander-

son and Sørensen (1996) and Li and Yin (2009)) the model can be specified in terms of

a restricted set of constraints representing the relationship between the parameters and

the data. These commonly involve summary statistics, T (y), (e.g. means, variances and

autocorrelations) computed from the observations y which are somehow matched with

their expectations under the model, τ(θ). Methods for dealing with these situations have

been developed via separate frameworks in the fields of statistics and econometrics, see

Bera and Bilias (2002) for a review. In the statistics literature, the treatment is usually

via estimating functions, where in econometrics inference is often carried out using a

generalized method of moments (GMM). The foundations of the GMM methodology for

econometric problems were set out by Hansen (1982). In the GMM context the con-

straints representing the relationship between the parameters and the data are called

moment conditions, and estimation is done by minimizing a weighted sum of squares or

quadratic form as a measure of disagreement between observed and theoretical proper-

ties. In Chapter 3 we establish the parallels between the econometrics and the statistics

building blocks of moment based inference, within the framework of estimating func-

tions. We translate the requirements for consistency and asymptotic distribution shown

in Chapter 2 into the GMM settings, and by further exploring the concept of optimal

estimating function within a certain class we show the optimal way of combining any

given set of moment conditions - optimal weighting. In Chapter 4 a simulation study is

performed with data generated using PRPM and NSRPM; The aim is to look at finite

sample performance when inference is done using asymptotic approximations (asymp-

totic distribution and optimal weights), and show that even for a modest sample size

the use of such approximations can prove useful.
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There are also situations where the features of interest of the model can be defined in

terms of its spectral representation, effectively the absence of L(θ|y) is surrounded by

the existence of the second order spectral density, h(w, θ). This leads to estimation in

the spectral domain where the Whittle likelihood (Whittle, 1953) is the most common

method. The rationale behind such method is that the Fourier coefficients of a stationary

process are approximately Gaussian in large samples, and this allows for the construction

of an approximate likelihood for the transformed data. Although the original work

in Whittle (1953) was based on the assumption that the original data was Gaussian,

Hannan (1973) and Robinson (1978) proved the consistency and asymptotic normality

of the Whittle estimator for the wider classes of stationary processes with no long range

dependence. One of the weaknesses of the Whittle likelihood approach is that the

covariance matrix of the estimator depends on the fourth order spectrum which for

many processes of interest is very difficult to obtain. The translation of the Whittle

likelihood principles into the estimating functions framework can provide a solution for

this problem in practical applications. In Chapter 5 we start by giving an overview of the

developments in parametric estimation in the frequency domain, we then present some

steps involved in deriving the Whittle likelihood as this is important to understand the

approximations involved in the Whittle method. We then proceed to prove that applying

asymptotic results from the estimating functions theory makes it possible to obtain an

asymptotic distribution for the estimator that does not depend on the expression of

fourth order spectrum. The finite sample properties of the Whittle estimator are studied

using simulations of PRPM and NSRPM in Chapter 6.



Chapter 2

Theory of Estimating Functions

In this chapter we describe in some detail the theory of estimating functions, we start

by presenting some notation and a definition of estimating functions. Then through the

treatment of the particular case where the estimating functions are linear, we show some

concepts that are later generalized to a broader class of estimating functions. In this

chapter we will cover issues like optimality, lower bounds, consistency and asymptotic

distribution for a very generic class of estimating functions. The final part of the chapter

focus on the broad character of this theory by showing that some more traditional

approaches can be seen as particular cases of this theory. The theory of estimating

functions provides a general framework for when the investigator wants to estimate one

or several parameters of interest that belong to the representation of some statistical

model. Assume that there is available a data vector of length n, regarded as the realized

value of a vectorY of random variables. The distribution, or process, generating the data

Y is considered to be a member of some family of distributions (or processes) indexed by

the parameter θ ∈ Θ ⊆ R
p. We denote by θ0 the value of the parameter corresponding

to the data on hand, i.e., the estimation target. In cases where the functional form of

the distribution is fully specified, we denote the density of Y by f(y;θ).

Suppose we have a vector-valued function g(θ;Y), Rp × R
n 7−→ R

k, k ≥ p, such that:

Eθ0
[g(θ0;Y)] = 0 (2.1)

where 0 is a k × 1 vector of zeros, and Eθ0
is the expectation with respect to the

true distribution of Y. Such function is called an estimating function (EF), and the

12



2. Theory of Estimating Functions 13

corresponding equations

g(θ;Y) = 0 (2.2)

are called estimating equations (EE) (Godambe, 1960). The statistic θ̂(Y) is an es-

timator of θ if equation (2.2) is satisfied by θ = θ̂(Y). Some authors (e.g. Durbin

(1960)) use the terminology unbiased EF alluding to the fact that the estimator θ̂(Y)

is asymptotically unbiased for θ; however, more conditions are required on the EF for

that to hold, as will become clear in Section 2.4 below. Furthermore if the following

conditions are satisfied

∂g/∂θ exists for all θ ∈ Θ; (2.3)

Eθ0
[∂g/∂θ]2 > 0 for all θ ∈ Θ; (2.4)

∫

g(θ;y)f(y;θ)dy is differentiable with respect to θ under the integral sign ; (2.5)

then g(θ;y) is called a regular estimating function (Godambe, 1960). For the remainder

of this section and so that the following results are valid it will be assumed that g(θ;y)

is a regular estimating function with the same dimension as the parameter (i.e. k = p)

and its corresponding EE has solution θ̂(y), which is assumed to be unique. We start by

looking at the case where g(θ;y) is linear and then move to a more general framework.

2.1 Linear Estimating Functions

The theory of estimating functions was originally developed by Durbin (1960) and Go-

dambe (1960, 1976). Durbin considered in particular the case where g(θ;y) is linear in

θ and k = p. In this section we examine this class of linear estimating functions, as a

means of establishing some fundamental ideas that will be required later. For this class

the estimating equation takes the following form:
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g(θ;y) = T1(y)θ + T2(y) = 0 (2.6)

where T1(y) is a p × p matrix and T2(y) is a p × 1 vector, both depending only on the

observations, and 0 is a p× 1 vector of zeros. If� T1(y) is non-singular with probability one� Eθ0
[T1(Y)θ0 + T2(Y)] = 0

then (2.6) is called a set of linear estimating equations, and conditions (2.3-2.5) hold.

We now introduce the idea of an optimal estimating function within the class of linear

estimating functions. The principle is that the optimality of the estimator defined as the

solution of an estimating equation is closely related to the optimality of the estimating

function, as will be shown in the following sections. For any class of regular estimating

functions, and in particular the linear case, desirable properties of g(θ;y) are as follows:

1. Evaluating the estimating function at the true value of the parameter given any

set of observations y should result in a value as close to zero as possible.

2. For values of θ = θ0 + δ, say, different from the true parameter value the ex-

pectation Eθ0
[g(θ0 + δ;Y)] should be as large as possible for an arbitrary small

δ.

In the one parameter case (i.e. when θ is scalar), the first criterion can be summarized

as minimizing the variance of g(θ0;Y), which is the same as minimizing Eθ0
[g(θ0;Y)2],

from (2.1). The second criteria can be achieved by maximizing Eθ0

[

∂g(θ;Y)

∂θ
|θ0

]2
.

For the multi-parameter case the notion of variance is extended to the concept of co-

variance matrix,

Var[g(θ;Y)] = E[g(θ;Y)g(θ;Y)T ] . (2.7)

Minimizing Var[g(θ;Y)] in the matrix sense conserves the meaning set out in point 1.

above, similarly for the parameter vector case the criterion defined in point 2. above can

be achieved by maximizing Eθ0

[

∂g(θ;Y)

∂θ
|θ0

]2
in the matrix sense. A rigorous definition

of matrix comparison is that A > B ⇔ A−B = C, where C is a positive-definite matrix;
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if C is positive semi-definite then we can claim A ≥ B, and this definition will be used to

define the concept of optimal estimating function. From Definition (2.6) and (2.7), given

a particular choice of T1(Y)and T2(Y) it is possible to find T ∗
1 (Y) and T ∗

2 (Y) leading to

arbitrarily small elements of the covariance matrix without changing the solution of (2.6).

This can be done by multiplication of T1(Y) and T2(Y) by an appropriate p x p matrix

of constants. This shows the need to further restrict our class of estimating functions.

Durbin (1960) suggested the comparison to be made between standardized versions of

the estimating functions, with standardization constant being E
[

∂g(θ;Y)

∂θ

]−1
. It is clear

that for estimating functions of the form in (2.6),
∂g(θ;y)

∂θ
= T1(y). The standardized

version of (2.6) is therefore

T̃1θ + T̃2 = 0

where T̃1 = E[T1(Y)]−1T1(Y) (so that E[T̃1] = I, where I is the identity p× p matrix)

and T̃2 = E[T1(Y)]−1T2(Y).

Having determined an appropriate standardization, we can consider what might be the

“best” set of estimating functions within the linear class considered in this section.

According to criteria 1. above, these will be the estimating functions with the lowest

variance. Thus if there are T̃ ∗
1 and T̃ ∗

2 such that for all other linear estimating functions

having E[T̃1] = I

Var[T̃1θ0 + T̃2]−Var[T̃ ∗
1 θ0 + T̃ ∗

2 ]

is positive (semi-)definite then the equations T̃ ∗
1 θ̂+ T̃ ∗

2 = 0 are called a set of best linear

estimating equations.

This means that given any p× p matrix λ, the variance of the product λ(T̃ ∗
1 θ0 + T̃ ∗

2 ) is

never larger than that of the corresponding product λ(T̃1θ0 + T̃2). Note that

Var[λ(T̃1θ0 + T̃2)]−Var[λ(T̃ ∗
1 θ0 + T̃ ∗

2 )] = λ(Var[T̃1θ0 + T̃2]−Var[T̃ ∗
1 θ0 + T̃ ∗

2 ])λ
T

is also positive (semi-)definite, which means that Var[λ(T̃ ∗
1 θ0+ T̃

∗
2 )] is never greater than

Var[λ(T̃1θ0 + T̃2)], in the matrix sense.
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At this point we provide a simple example of how the variance of a linear estimating

function can be related to the variance of the resulting estimator. Let µ = E[Y ] and

σ2 = Var[Y ] be the parameters of interest, given a sample of size n of realizations of Y ,

we can define the following linear estimating function

g(θ;Y) =

[

1 0

0 1

] [

µ

σ2

]

−





Y
∑n

t=1 (Yt−Y )
2

n−1



 (2.8)

where Y =
∑n

t=1 Yt
n which gives the estimate,

[

µ̂

σ̂2

]

=

[
∑n

t=1 yt
n∑n

t=1 (yt−y)
2

n−1

]

In this case the variance of the estimator is the same as the variance of the estimating

function, this idea will be pursued later in more general cases.

2.2 Non-linear case

The theory of estimating equations described above can be extended to the case where

g(θ;y) is non-linear in θ. Consider a vector-valued regular estimating function, having

k = p. In this case the definition of covariance matrix of an estimating function (2.7)

applies in the same way. Furthermore define

Dg(θ) = E

[

∂g(θ;Y)

∂θ

]

(2.9)

so that we can define the class of standardized estimating functions in the non-linear

case as

gs(θ;y) = Dg
−1(θ)g(θ;y) (2.10)
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The idea of comparing covariance matrices is also valid for non-linear estimating func-

tions, and as in the linear case it is possible to define a class of standardized estimating

functions. The next section develops the idea of optimal covariance matrices within a

given class of EFs further.

2.3 Optimality and lower bound

Based on the idea of ranking covariance matrices to compare estimators, it follows

naturally given the principle shown in the example of the previous section, (2.8), to

ask if there is an optimal covariance matrix for estimating functions. The first step in

this direction is to establish lower bound for the covariance matrix (Godambe, 1960,

1976; Chandrasekar and Kale, 1984; Mukhopadhyay, 2007). We will look at the lower

bound for a class of estimating functions, G
(s)
p , which consists of all the p-dimensional

standardized estimating functions gs(θ;y) with covariance matrix (2.7) that is finite

and positive definite. Another assumption needed for this result is that the information

matrix J(θ),

J(θ) = E

[

∂ log f(Y;θ)

∂θ

T ∂ log f(Y;θ)

∂θ

]

where f(y;θ) is the density of Y, exists and is positive definite for all θ. To simplify

notation, let

S(θ) =
∂ log f(Y;θ)

∂θ

N(θ) = E
[

g(θ;Y)S(θ)T
]

= E

[

g(θ;Y)
∂ log f(Y;θ)

∂θT

]

. (2.11)

Starting from (2.1),

E[g(θ;Y)] =

∫

g(θ;y)f(y;θ)dy
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This is only true at the true parameter value, elsewhere denoted θ0, but in this abstract

setting we have to consider that true parameter value can be any value in Θ, this is

dealt by considering that the θ in g(θ;y) is the same as in f(y;θ) and that is the case

considered here. Using assumption (2.5), and differentiating with respect to θ,

∫

∂g(θ;y)

∂θ
f(y;θ)dy +

∫

g(θ;y)
∂f(y;θ)

∂θ
dy = 0 .

If we rewrite the second term using
∂f(y;θ)
∂θ

= f(y;θ)
∂ log f(y;θ)

∂θ
, and simplify by using

(2.9) and (2.11), we find

Dg(θ) +N(θ) = 0 ⇒ Dg(θ) = −N(θ) (2.12)

Now let u = (u1, . . . , uk) and v = (v1, . . . , vk) be two arbitrary real vectors. Applying

the Cauchy-Schwarz inequality to, uTS(θ) and vTg(θ;Y) we obtain (Chandrasekar and

Kale, 1984),

(

uTN(θ)Tv
)2

≤
(

uTJ(θ)u
) (

vTV(g(θ;Y))v
)

where J(θ) is the information matrix and V(g(θ;y)) is the covariance matrix, defined

in (2.7).

By taking the particular vector u = J−1(θ)NT (θ)v

(

vTN(θ)J−1(θ)N(θ)Tv
)2

≤
(

vTN(θ)J−1(θ)N(θ)Tv
) (

vTV(g(θ;Y))v
)

Since J(θ) is positive definite the term
(

vTN(θ)J−1(θ)N(θ)Tv
)

is either positive or

zero. In the first case we can divide both sides of the inequality by this term yielding

vTN(θ)J−1(θ)N(θ)Tv ≤ vTV(g(θ;Y))v. (2.13)
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Although we cannot perform the same step if
(

vTN(θ)J−1(θ)N(θ)T v
)

is zero, (2.13)

still holds because V [g(θ;Y)] is positive definite by definition of G
(s)
p . Therefore (2.13)

is true for all v ∈ Rk and θ ∈ Θ, which means that the matrix

V(g(θ;Y))−N(θ)J−1(θ)N(θ)T (2.14)

is positive definite or semi-definite. In fact by plugging (2.12) in (2.14) we obtain

V(g(θ;Y))−DgJ
−1(θ)Dg

T

which is also positive definite or semi-definite. Furthermore if we consider the class

of all standardized estimating functions as defined in (2.10), meaning that Dgs
= I

and V(gs(θ;Y)) − J−1(θ) is positive definite or semi-definite, we can state that the

inverse of the information matrix, J−1(θ), is a minimal variance matrix for the class of

standardized regular estimating functions. This result is equivalent to the Cramér-Rao

lower bound for unbiased estimators but applied to unbiased estimating functions.

2.4 Consistency and asymptotic distribution

In this section we will present some sufficient conditions for consistency of the EF estima-

tor, and use the result on consistency to present some results on its limiting distribution.

In order to show that the estimators θ̂ defined as the solution of an estimating equation

are consistent estimators, we need to impose further assumptions. Let

g∗
n(θ;yn) = ηng(θ;yn)

be a sequence of estimating function resulting from considering the increasing sequence

. . .yn−1 ⊆ yn ⊆ yn+1 . . . where ηn is a matrix that does not depend on θ and converges

as n → ∞ to a matrix of constants. In this case g∗
n(θ;yn) is called a normalised

estimating function. The first of these assumptions is existence of a normalizing matrix
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ηn such that g∗
n(θ;yn) converges uniformly in probability to a limiting deterministic

function that has a unique root at θ0 This is formalized as

sup
θ∈Θ

|g∗
n(θ;Yn)− gℓ(θ)|

p
→ 0 ,

lim
n→∞

P [ sup
θ∈Θ

|g∗
n(θ;Yn)− gℓ(θ)| < ǫ] = 1 , for any θ ∈ Θ, ǫ > 0

which means that the difference between g∗
n(θ;yn) and gℓ(θ) disappears as n → ∞.

Note that for θ̂n, defined as the unique solution in Θ of the equation g∗
n(θ̂n;Yn) = 0,

we have

|g∗
n(θ̂n;Yn)− gℓ(θ̂n)| ≤ sup

θ∈Θ
|g∗
n(θ;Yn)− gℓ(θ)| .

So

lim
n→∞

P [|gℓ(θ̂n)| < ǫ] = 1 , ǫ > 0 .

lim
n→∞

P [−ǫ < gℓ(θ̂n) < ǫ] = 1 , ǫ > 0 (2.15)

For the remaining of the proof we make the assumption that the parameter space Θ

is compact. This follows Hall (2005). However alternative proofs replace this by some

conditions on gℓ(θ), see Jesus and Chandler (2011).

Define N as any open subset of Θ containing θ0, and N
c the complement of N relative

to Θ. This implies that N c is a closed subset of a compact set, therefore compact; since

gℓ(θ) is continuous and nonzero except at θ = θ0, it must be that infθ∈Nc
|gℓ(θ)| > 0.

Using this quantity to replace ǫ in (2.15)

lim
n→∞

P [− inf
θ∈Nc

|gℓ(θ)| < gℓ(θ̂n) < inf
θ∈Nc

|gℓ(θ)|] = 1 .

This means that as n→ ∞ , θ̂n cannot belong to N c:
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lim
n→∞

P [θ̂n /∈ N c] = 1 , and hence

lim
n→∞

P [θ̂n ∈ N ] = 1 .

We can set N to be any neighbourhood of θ0 obtaining:

lim
n→∞

P [|θ̂n − θ0| < ǫ] = 1 , for any ǫ > 0 .

Therefore θ̂n, defined as the estimator resulting from the estimating function gn(θ;y),

is a consistent estimator of θ, under all the assumptions added in this section.

The remainder of this section is used to discuss the asymptotic distribution of the esti-

mator. Define,

g̃n(θ;y) = γngn(θ;y)

and assume the existence of (γn), a sequence of p x p normalizing matrices that do not

depend on θ that are such that,

lim
n→∞

V(g̃n(θ;Y)) = Σ(θ) , (2.16)

and

g̃n(θ;y))
d
→ g∞

where g∞ is a random variable with mean zero and covariance matrix Σ(θ). Note

that g̃n(θ;y) retains all the relevant properties of gn(θ;y) as an estimating function,

including the solution for the estimating equation. From (2.4) we can write, using the

mean value theorem,
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g̃n(θ̂n;y) = g̃n(θ0;y) +

[

∂g̃n(θ;y)

∂θ

]

θ†

n

(θ̂n − θ0) (2.17)

for some θ†n : |θ†n − θ0| < |θ̂n − θ0|. The left-hand side of (2.17) is zero by definition,

and re-arranging we obtain

(θ̂n − θ0) = −

[

∂g̃n(θ;y)

∂θ

]−1

θ
†

n

g̃n(θ0;y) . (2.18)

Assume there is a sequence, δn of p x p invertible matrices such that

[

∂g̃n(θ;y)

∂θ

]

δn
p
→ M(θ) (2.19)

for any θ : |θ− θ0| < c where c is a positive constant and M(θ) is an invertible positive

definite matrix. Assume also that for any sequence ψn with limn→∞ψn = θ0,

(

[

∂g̃n(θ;y)

∂θ

]

ψn

−

[

∂g̃n(θ;y)

∂θ

]

θ0

)

δn
p
→ 0 . (2.20)

If we pre-multiply both sides of (2.18) by δ−1
n

δ−1
n (θ̂n − θ0) = −δ−1

n

[

∂g̃n(θ;y)

∂θ

]−1

θ
†

n

g̃n(θ0;y)

= −

(

[

∂g̃n(θ;y)

∂θ

]

θ
†

n

δn

)−1

g̃n(θ0;y)

= −

[

[

∂g̃n(θ;y)

∂θ

]

θ0

δn +

(

[

∂g̃n(θ;y)

∂θ

]

θ†

n

−

[

∂g̃n(θ;y)

∂θ

]

θ0

)

δn

]−1

g̃n(θ0;y)

= −

[

[

∂g̃n(θ;y)

∂θ

]

θ0

δn + op(1)

]−1

g̃n(θ0;y)

where this last step is due to (2.20) coupled with consistency of θ̂n. Therefore, we have
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δ−1
n (θ̂n − θ0)

d
→ −M−1

0 g∞ (2.21)

where M0 = M(θ0). A common situation is the case where the estimating function

converges in distribution to the multivariate normal distribution,

g̃n(θ0;y)
d
→MVN(0,Σ) (2.22)

giving,

δ−1
n (θ̂n − θ0)

d
→MVN(0,M−1

0 ΣM−T
0 ) . (2.23)

In some of the examples in the next section, the properties (2.19) and (2.22) can be

directly deduced from the way the estimating functions gn(θ;y) are built. For example

(2.22) is usually shown by invoking the central limit theorem.

Having an approximate distribution for the estimator allows us to calculate confidence

intervals or confidence regions. The simple approach is to treat each element of the esti-

mator vector as having a marginal normal distribution, in this case confidence intervals

for the individual parameters can be constructed by selecting the appropriate percentile

of the normal distribution. Another possibility is described in some detail in Jesus and

Chandler (2011), and it can be used when the estimating function is a gradient vector,

gn(θ;y) =
∂Qn(θ;y)

∂θ

where Qn(θ;y) is a differentiable function that is minimized to obtain the estimator θ̂.

The result in Jesus and Chandler (2011) states that a simultaneous confidence region at

the level (1− α)% consists of the θ such that,

a−1
[

2
(

Qn(θ;y)−Qn(θ̂;y)
)

− c
]

(2.24)
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is less than the (1− α)th percentile of the χ2
b distribution where

a =
|κ3|

4κ4
, b =

8κ32
κ23
, c = κ1 − ab,

and

κr = 2r−1(r − 1)!tr
[

(

M−1
0 Σ

)r
]

.

2.5 Examples - Likelihood as estimating function

2.5.1 Maximum Likelihood Estimator

The maximum likelihood method for parametric estimation provides a way of building

the function g(θ;y). Define the likelihood function for θ given y as

L(θ|y) = f(y;θ)

where, as before, y is the vector of observations, with density f(y;θ) and θ = (θ1, . . . , θp)

is the parameter of interest. The likelihood function becomes the objective function, and

our optimum is the maximum, which is attained for the same θ as the log-likelihood

ℓ(θ|y) = log L(θ|y) .

The vector-valued function g(θ;y) is formed by differentiating l(θ|y) with respect to θ,

this function is called the score function and is denoted as

g(θ;y) =
∂ℓ(θ|y)

∂θ
.

To determine whether the score function satisfies condition (2.1), we can take expecta-

tions. Consider Eθ0
[g(θ0;Y)] which has ith component

∫

1

f(y;θ0)

∂f(y;θ)

∂θi

∣

∣

∣

∣

θ=θ0

f(y;θ0)dy =

∫

∂f(y;θ)

∂θi

∣

∣

∣

∣

θ=θ0

dy



2. Theory of Estimating Functions 25

Provided that the order of the integration and differentiation can be changed, we have

∂

∂θi

∫

f(y;θ)dy

∣

∣

∣

∣

θ=θ0

= 0 (2.25)

so that (2.1) does indeed hold.

The maximum likelihood estimator (MLE) is a particular case where the covariance

matrix of the estimating function can be computed at the true parameter value using

the expected value of its partial derivatives. The result is shown in two steps as follows,

first we write the general form of the partial derivative of the ith component of the score

in order of the jth component of the parameter vector, in terms of the partial derivatives

of f(y;θ),

∂gi(θ|y)

∂θj
=
∂2 log f(y;θ)

∂θi∂θj
=

1

f(y;θ)

∂2f(y;θ)

∂θi∂θj
−

1

f(y;θ)2
∂f(y;θ)

∂θi

∂f(y;θ)

∂θj

Secondly we take expectations,

E

[

∂gi(θ;y)

∂θj

∣

∣

∣

∣

θ=θ0

]

=

∫

1

f(y;θ0)

∂2f(y;θ)

∂θi∂θj

∣

∣

∣

∣

θ=θ0

f(y;θ0)dy

−

∫

1

f(y;θ0)2
∂f(y;θ)

∂θi

∣

∣

∣

∣

θ=θ0

∂f(y;θ)

∂θj

∣

∣

∣

∣

θ=θ0

f(y;θ0)dy

=
∂2

∂θi∂θj

∣

∣

∣

∣

θ=θ0

∫

f(y;θ0)dy

−

∫

∂ log f(y;θ)

∂θi

∣

∣

∣

∣

θ=θ0

∂ log f(y;θ)

∂θj

∣

∣

∣

∣

θ=θ0

f(y;θ0)dy

= 0− E [gi(θ0;y)gj(θ0;y)] (2.26)

where the last step is similar to (2.25).

Using this result the covariance matrix of the score vector can be written in terms of its

partial derivatives,

V [g(θ0;Y)] = E[g(θ0;Y)g(θ0;Y)T ] = −E

[

∂g(θ;Y)

∂θ

∣

∣

∣

∣

θ=θ0

]

= −E[Hθ0
]

where Hθ is the Hessian matrix of second derivatives of the log-likelihood. If all the

diagonal elements of Hθ have non-zero expectation then conditions (2.3) and (2.4)

are satisfied. Furthermore by noting that the standardized version of this particular
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estimating equation at the true parameter value is, from (2.10),

gs(θ0|Y) = E[Hθ0
]−1g(θ0|Y)

V [gs(θ0|Y)] = E[Hθ0
]−1V [g(θ0|Y)](E[Hθ0

]−1)T = −E[Hθ0
]−1

= E

[

∂ log f

∂θ

∣

∣

∣

∣

θ=θ0

∂ log f

∂θT

∣

∣

∣

∣

θ=θ0

]−1

, from (2.26)

it is shown that the score function is an estimating function that achieves the minimal

asymptotic covariance matrix J−1.

In the likelihood case, the multivariate normality of the estimator can be justified by

application of the central limit theorem when observations are independent. Even if the

observations are not independent multivariate normality can hold under mild regularity

conditions (Sweeting, 1990). This means that for large samples

g(θ0;Y) ∼MVN(0,−E[Hθ0
])

From the distribution of the score we can obtain the distribution of the estimator itself.

Comparison with (2.19) shows that we need to assume the existence of a sequence (δn)

such that as n→ ∞

[

∂g(θ;Y)

∂θ

]

θ0

δn
p
→ M(θ0)

where M is a matrix of constants. We can use the results in (2.19-2.23) to obtain the

approximation for large n,

δ−1
n (θ̂ − θ0) ∼MVN(0,−E[Hθ0

]−1)
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2.5.2 Marginal and Conditional Likelihood

It is not uncommon for situations where it is difficult to write down a full likelihood func-

tion, or even where its expression is known the existence of many nuisance parameters

make it difficult to maximize. In some of these cases it is possible to find a transformation

of the data such that its likelihood does not depend on nuisance parameters. Suppose

that the parameter vector can be partitioned as θ = (ψ, λ), such that the likelihood can

be factorized in the following way (Northrop, 2006)

L(ψ, λ|y) = fy(y;θ) = fz(z(y);ψ)fx(x(y)|z;ψ, λ) (2.27)

From (2.27), and as long as there is a transformation z(y) that does not depend on the

parameters, we can use z(y) to perform likelihood-based inference for the parameter

vector ψ without having to estimate parameters in λ. Thus the marginal log-likelihood

becomes,

ℓz(ψ|z) = log(fz(z(y);ψ))

The score function resulting from the likelihood ℓz(ψ|z), is a regular unbiased estimat-

ing function for ψ with covariance matrix achieving the lower bound for the class of

estimating functions based on z. This lower bound is Jz(ψ)
−1, where

Jz(ψ) = −E

[

∂2 log fz(Z;ψ)

∂ψ∂ψ

]

with Z = z(Y). Intuitively, the information matrix Jz(ψ) should be smaller (meaning

less information) than the one based on fy. The difference between the two depends on

∂ log(fx)/∂ψ as we see next

Jy(ψ) = −E

[

∂2 log fy(Y;ψ, λ)

∂ψ2

]

= −E

[

∂2 log fz(Z;ψ)

∂ψ2
+
∂2 log fx(X;ψ, λ)

∂ψ2

]

and therefore we obtain for a fixed value of λ,

Jy(ψ) = Jz(ψ) + Jx(ψ) (2.28)
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where

X = z(X)

which shows that if E
[

∂2 log fx(x;ψ)
∂ψ2

]

= 0, then Jy(ψ) = Jz(ψ). Note that the density

of X may depend on ψ and therefore we are not making full use of the information

available about the parameter. The main problem of this method is that by ignoring

the data x, we may be losing information about the parameter of interest. Because in

general, E
[

∂2 log fx(x;ψ)
∂ψ2

]

= 0 is only zero if the density of X does not depend on ψ; thus

if fx(x;ψ, λ) does depend on ψ we get Jy(ψ) > Jz(ψ) and inference based on z(y) is not

fully efficient.

A similar situation may arise when the factorization, instead of (2.27), has the form,

L(ψ, λ|y) = fy(y;θ) = fx(x(y);ψ, λ)fz(z(y)|x;ψ)

and in this case

ℓz(ψ|z) = log(fz(z(y)|x;ψ))

is called the conditional log-likelihood. The analogue of (2.28) also applies to the condi-

tional likelihood, so that in general the conditional likelihood is not fully efficient. Both

the marginal and conditional likelihood approaches provide a way of building estimating

functions, in fact they can be treated in exactly the same way as the full likelihood

although based on a partition of the data.

2.6 Summary

In this chapter we described the theory of estimating functions focusing on their asymp-

totic properties and how these are related to the properties of the estimator. We have

shown that under mild conditions the estimating function estimator is consistent and is

asymptotically normally distributed. We also explored the concept of optimal estimating

function within a certain class. In the description of the estimator several assumptions

were introduced, which may leave the impression that these assumptions restrict the

class of problems to which this theory can be applied. However most of the assumptions

are standard in the inference literature and may even be relaxed or replaced in specific

inference problems. Hence, the results from this chapter are applicable to a wide class of
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estimation problems including the particular field of moment based inference, this will

be pursued in the following chapter. In a later chapter we will apply this theory to an

estimator based on the frequency domain of the data. We have also shown two exam-

ples of how the estimating function may arise based on likelihood theory. We conclude

that given a set of estimating functions, and potentially regardless of how they were

derived, it is possible to use the results in this section to comment on consistency and

even approximate on the asymptotic distribution of the estimator resulting from such

estimating functions. These results are useful to obtain some measure of uncertainty

about the estimator in the form of confidence intervals or regions.



Chapter 3

Generalized Method of Moments

In this chapter we explore the relationships between the estimating functions framework

described in the previous chapter and the Generalized Method of Moments widely used

in econometrics. In the first part of this chapter we describe the GMM method and

show that it can be seen as a way of building estimating functions. We translate the

sufficient conditions for consistency and asymptotic distribution of the estimator from

the previous chapter into the GMM framework. In section 3.2 we revisit the optimality

concepts of section 2.3, and by exploring some of the specific properties of the estimating

functions built from the GMM method, we present a lower bound for the variance of

this particular class of estimating function.

3.1 Generalized method of moments as estimating func-

tions

In the econometrics literature the application of estimating functions is often referred to

as the Generalized Method of Moments (Hansen, 1982; Bera and Bilias, 2002; Hall, 2005).

This comes from the fact that one possible way of building the estimating function g(θ;y)

is by minimizing the distance between some theoretical properties of the distribution of

y and their sample/observed counterparts. These properties are usually formalized in

terms of moments of the distribution, and are called population moment conditions. For

example, we might have a model which specifies

E[hn(θ;y)] = 0 (3.1)

30
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where hn(θ;y) is a k-vector valued function depending on the data, y, and the parameter

of interest, θ. Here we allow k > p, which was not the case in the previous chapter. This

situation often arises when considering a vector y of k summary statistics considered

as the realization of a k × 1 random vector T (Y). If we denote by τ(θ) its expectation

Eθ[T (Y)] as a function of θ, then (3.1) can be obtained by putting hn(θ;y) = T (y)−

τ(θ).

We now state some assumptions on the asymptotic behaviour of hn(θ;y) which will

be shown equivalent to the assumptions made on the previous section on a generic

estimating function. Define,

h̃n(θ;y) = γnhn(θ;y)

where γn is a k x k normalizing matrix that does not depend on θ and is such that,

lim
n→∞

Var(h̃n(θ;y)) = S(θ) (3.2)

lim
n→∞

E(h̃n(θ0;y)) = 0

h̃n(θ;y)
d
→ h̃∞(θ) (3.3)

where S(θ) is the limiting covariance matrix of h̃∞(θ) and is finite positive definite

matrix for θ = θ0. This condition is equivalent to 2.16.

Assume also that there is a sequence of p× p invertible matrices, δn, such that for some

c > 0,

lim
n→∞

δn = 0 (3.4)

∂h̃n(θ;y)

∂θ
δn

p
→ H(θ) (3.5)



3. Generalized Method of Moments 32

for θ : |θ − θ0| < c, where H(θ) is an invertible positive definite matrix. Condition 3.4

is more restrictive than 2.19. Define

Ω(r)
n (θ) =

∂2h̃r(θ;y)

∂θ∂θT

where h̃r(θ;y) denotes the rth element of h̃n(θ;y); we omit the n for convenience of

notation. We will assume that

sup
θ:|θ−θ0|<c

∣

∣

∣
Ω(r)
n (θ)δn − Ω(r)

n (θ0)
∣

∣

∣
→ 0 . (3.6)

The final assumption stated here is that for any sequence ψn with ψn → θ0





[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn
p
→ 0 . (3.7)

The next step in the method consists of building a p-dimensional estimating function

from the k-dimensional moment condition, that can be used in estimation. This is done

by minimizing a quadratic form with respect to the parameter θ (Hall, 2005):

Q(θ) = h̃n(θ;y)
T Wn h̃n(θ;y) , (3.8)

where Wn is a positive semi-definite k × k matrix which may depend on the data but

converges in probability to a positive definite matrix of constants W, say. In many

applications (Wheater et al., 2005) Wn is chosen to be a diagonal matrix, so that

(3.8) is a weighted sum of squares of elements of h̃n(θ;y); in this case the minimiser

of (3.8) can be called a weighted least squares estimator. Strictly speaking weighted

least squares estimation refers to the case where the moment conditions are defined as

hi(θ) = h(θ, yi) and the hi are uncorrelated and have different variances, the diagonal

elements of Wn are inversely proportional to these variances. It is clear that Q(θ) ≥ 0
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and if h̃n(θ;y) = 0 then Q(θ) = 0. The first order condition to solve for the minimum

becomes,

[

∂h̃n(θ;y)

∂θ

]T

|
ˆθ

Wn h̃n(θ̂;y) = 0 ,

so that the estimating function is

gn(θ;y;Wn) =

[

∂h̃n(θ;y)

∂θ

]T

Wn h̃n(θ;y) .

The theory of Chapter 2 can now be applied to the regular estimating functions gn(θ;y;Wn),

including the limiting distribution of the resulting estimator under suitable normaliza-

tion. We now show that the assumptions required by that theory are satisfied under the

previous conditions on h̃n(θ;y).

If we define

g̃n(θ;y;Wn) = δ
T
ngn(θ;y;Wn) =

[

∂h̃n(θ;y)

∂θ
δn

]T

Wnh̃n(θ;y) (3.9)

then, from (3.2) and (3.5)

lim
n→∞

Var(g̃n(θ;y;Wn)) = Σ(θ) = HT (θ)WS(θ)WTH(θ)

which means that (2.16) holds. To establish (2.19) and (2.20) is more difficult. We start

by establishing (2.19). Note that

∂g̃n(θ;y;Wn)

∂θ
= δTn



Λn +

[

∂h̃n(θ;y)

∂θ

]T

Wn

[

∂h̃n(θ;y)

∂θ

]




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where Λn is a p× p matrix with (i, j)th element

Λ(i,j) =
k
∑

r=1

k
∑

s=1

Wrs
∂2h̃r(θ;y)

∂θi∂θj
h̃s(θ;y)

=
k
∑

r=1

k
∑

s=1

WrsΩ
(r)
i,j (θ)h̃s(θ;y)

Next, consider the matrix

∂g̃n(θ;y;Wn)

∂θ
δn =



δTnΛnδn +

[

∂h̃n(θ;y)

∂θ
δn

]T

Wn

[

∂h̃n(θ;y)

∂θ

]

δn



 (3.10)

where δTnΛnδn has (u, v)th element

p
∑

i=1

p
∑

j=1

δiuδvjΛi,j =

k
∑

r=1

k
∑

s=1

Wrsh̃s(y;θ)

p
∑

i=1

p
∑

j=1

δiuδvjΩ
(r)
i,j (θ)

Note that
∑p

i=1

∑p
j=1 δiuδvjΩ

(r)
i,j (θ) is the (u, v)th element of δTnΩ

(r)
n (θ)δn, which tends

to zero in a neighbourhood of θ0 from (3.4) and (3.6). From (3.3) we have that
∑k

r=1

∑k
s=1Wrsh̃s(θ;y) converges to a random variable with expectation zero and finite

variance and we can state that δTnΛnδn
p
→ 0. The second part of the right hand side of

(3.10) converges in probability to H(θ)TWH(θ), from (3.5) and because the sequence

Wn converges to a matrix of constants W, and we can write,

∂g̃n(θ;y;Wn)

∂θ
δn

p
→ H(θ)TWH(θ) (3.11)

which means that (2.19) holds with M(θ) = H(θ)TWH(θ).

We turn now to the condition on continuity (2.20), therefore we are interested in studying

the behaviour of
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(

[

∂g̃n(θ;y)

∂θ

]

ψn

−

[

∂g̃n(θ;y)

∂θ

]

θ0

)

δn

where ψn is any sequence ψn with ψn → θ0, as n→ ∞. From 3.10 the expression above

can be written as,

δTn [Λn(ψn)−Λn(θ0)] δn

+





[

∂h̃n(θ;y)

∂θ

]

ψn

δn





T

Wn

[

∂h̃n(θ;y)

∂θ

]

ψn

δn

−

([

∂h̃n(θ;y)

∂θ

]

θ0

δn

)T

Wn

[

∂h̃n(θ;y)

∂θ

]

θ0

δn

The (u, v)th element of δTn [Λn(ψn)−Λn(θ0)] δn is

k
∑

r=1

k
∑

s=1



Wrsh̃s(y;ψn)

p
∑

i=1

p
∑

j=1

δiuδvjΩ
(r)
i,j (ψn)−Wrsh̃s(y;θ0)

p
∑

i=1

p
∑

j=1

δiuδvjΩ
(r)
i,j (θ0)





since

∣

∣

∣
Ω(r)
n (ψn)δn − Ω(r)

n (θ0)
∣

∣

∣
< sup
θ:|θ−θ0|<c

∣

∣

∣
Ω(r)
n (θ)δn − Ω(r)

n (θ0)
∣

∣

∣

the uniform convergence assumption stated in (3.6) is suficient to show that

δTn [Λn(ψn)−Λn(θ0)] δn
p
→ 0 (3.12)

We now proceed with the evaluation of the remaining terms in (3.12), performing some

simple algebraic manipulations we obtain,
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







[

∂h̃n(θ;y)

∂θ

]

θ0

+

[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn





T

Wn









[

∂h̃n(θ;y)

∂θ

]

θ0

+

[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn





−

([

∂h̃n(θ;y)

∂θ

]

θ0

δn

)T

Wn

[

∂h̃n(θ;y)

∂θ

]

θ0

δn

=

[[

∂h̃n(θ;y)

∂θ

]

θ0

δn

]T

Wn





[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn

+









[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn





T

Wn

[

∂h̃n(θ;y)

∂θ

]

θ0

δn

+









[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn





T

Wn





[

∂h̃n(θ;y)

∂θ

]

ψn

−

[

∂h̃n(θ;y)

∂θ

]

θ0



 δn

This expression also converges in probability to 0, form (3.7). This means that (2.20)

holds.

The results from this section allow us the use of (2.18). For the class of EFs constructed

using the above procedure, i.e. minimizing (3.8), (2.18) takes the specific form,

δ−1
n (θn − θ0) = H(θ0)

TWH(θ0)g̃n(θ;y) (3.13)

3.2 Lower bound - Optimal weighting

Up to now we only required that the weighting matrix (Wn) in (3.8) is positive semi-

definite and, in case it depends on the data, that the sequence (Wn) converges in proba-

bility to a positive definite matrix of constants, W. However it is clear that the choice of

Wn will have an important impact on the covariance matrix of the estimating function

and estimator. From Section 2.3 we know that there is an optimal covariance matrix

for regular estimating functions. In the present context therefore, it seems reasonable

to try to find an optimal weighting matrix.
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A discussion of the optimal choice of weights can be found in Hansen (1982) and Hall

(2005). The weighting matrix that gives a lower bound for the variance matrix of the

estimator is S−1, where S is the covariance matrix of the limiting distribution of h̃n(θ;y)

as defined in (3.2). Some steps of the proof in Hall (2005, Section 3.6) will be shown

next. Define θ̂n(W) as the GMM estimator based on the weighting matrix W, and

V(W) as the variance of the limiting distribution of δ−1
n (θ̂n(W)− θ0),

V(W) = M0(W)−1HT (θ0)WS(θ0)W
TH(θ0)M0(W)−1.

where M0(W) = M(θ0) = H(θ0)
TWH(θ0), the change of notation here aims at em-

phasizing the dependency on the weighting matrix.

Using the fact that g̃n(θ;y;W) is a regular estimating function, from (3.13) we have,

δ−1
n

[

θ̂n(W)− θ0

]

= −M0(W)−1g̃n(θ0;y;W) + op(1)

δ−1
n

[

θ̂n(S
−1)− θ0

]

= −M0(S
−1)−1g̃n(θ0;y;S

−1) + op(1)

Note that although g̃n(θ0;y;W) is different from g̃n(θ0;y;S
−1), the matrix δ−1

n is the

same since it is based on the choice of h̃n(θ;y); see (3.4) and (3.5).

Notice next that we can write δ−1
n

[

θ̂n(W)− θ0

]

as

δ−1
n

[

θ̂n(W)− θ0

]

= δ−1
n

[

θ̂n(S
−1)− θ0

]

+ δ−1
n

[

θ̂n(W)− θ̂n(S
−1)
]

(3.14)

Calculating the limiting variance of each side of (3.14) we obtain

V(W) = V(S−1) +V1 −C (3.15)

where
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V1 = lim
n→∞

Var
[

M0(W)−1g̃n(θ0;y;W)−M0(S
−1)−1g̃n(θ0;y;S

−1)
]

C = lim
n→∞

Cov
[

M0(W)−1g̃n(θ0;y;W)−M0(S
−1)−1g̃n(θ0;y;S

−1),M0(S
−1)−1g̃n(θ0;y;S

−1)
]

= lim
n→∞

E
[

M0(W)−1g̃n(θ0;y;W)−M0(S
−1)−1g̃n(θ0;y;S

−1)[M0(S
−1)−1g̃n(θ0;y;S

−1)]T
]

= lim
n→∞

M0(W)−1E[g̃n(θ0;y;W)g̃n(θ0;y;S
−1)T ]

[

M0(S
−1)−1

]T

−M0(S
−1)−1E[g̃n(θ0;y;S

−1)g̃n(θ0;y;S
−1)T ]

[

M0(S
−1)−1

]T

Now we use (3.10), together with the fact that both S and [H(θ0)
TS−1H(θ0)] are

symmetric to obtain,

C = [H(θ0)
TS−1H(θ0)]

−1 − [H(θ0)
TS−1H(θ0)]

−1

= 0

and (3.15) becomes,

V(W)−V(S−1) = V1

Since V1 is a covariance matrix it must be positive semi-definite. Therefore V(S−1)

provides an achievable lower bound for the covariance matrix of δ−1
n (θ̂n(W)− θ0), and

S−1 is the optimal weighting matrix.

In practice S is unknown and it should be replaced by a consistent estimator of S.

Usually this requires at least a further step in the estimation procedure. Starting with

a sub-optimal weighting matrix, an estimator θ̂ is obtained, this original estimator is

plugged into an analytical representation of S as a function of θ, this way we have a

consistent estimator for S. The second step is to obtain a new GMM estimator for

θ using W = Ŝ−1. Clearly this iterative procedure can be performed several times

to obtain an estimator with better finite sample properties. If one proceeds with the

algorithm until suitable convergence is achieved the estimator is called iterative GMM

estimator.
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3.3 Summary

In this chapter we used the estimation function framework set out in the previous chap-

ter to discuss consistency and asymptotic distribution of the GMM estimator, this is an

alternative approach to the one in Hansen (1982). The GMM approach to building esti-

mating functions is particularly useful when the set of moment conditions is larger than

the set of unknown parameters, and the concept of optimal weighting matrix provides

an answer to the practical problem of which moment condition to use or how to weight

them when combining them in an objective function. Once the estimating function is

defined as the gradient vector of the quadratic form (3.8), we are in the setting from the

previous section. Moreover we can make use of the result regarding the construction of

confidence regions based on the objective function itself (2.24), which we will apply in

the next chapter. In the statistical science literature there have been some extensions to

the GMM methodology, namely the generalized empirical likelihood which allows also

for semi-parametric inference (Owen, 2000; Imbens et al., 1998; Lindsay and Qu, 2003).



Chapter 4

Simulation Study - Application of

GMM to rainfall models

This work on estimating functions has been largely motivated by work with a class of

stochastic models for rainfall time series. These models date back to Rodriguez-Iturbe

et al. (1984) and are widely used in the hydrological community to generate artificial

rainfall time series, for purposes such as the assessment of flood risk and the impacts

of climate change. A model of this type is used in the “weather generator” provided as

part of the latest suite of UK national climate change projections (Burton et al., 2008).

In the initial part of this chapter we describe their structure, and highlight some of the

difficulties that they pose for inference. In section 4 we present a simulation based finite

sample study where we apply the GMM methods to the Poisson Rectangular Pulses

Model and Neyman-Scott Rectangular Pulses Model. The description of the study is

made in section 4.2.1, and is followed by the results and their discussion in the subsequent

sections.

4.1 Model description

These models are based on a simplified conceptual representation of the physical strucure

of the rainfall proces, in which rainfall is considered to be generated from “cells” of

activity in the atmosphere. This conceptual representation is illustrated in Figure 4.1.

The core of such models is a point process, each event of which marks the arrival time

of a cell. Many arrival processes can be included in this class of models, from the

Poisson and Poisson cluster processes of Rodriguez-Iturbe et al. (1987) to the more

40
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recent development of Markov modulated Poisson processes of Ramesh (1998). Each

cell has a random duration, during which it deposits rain with a constant intensity (also

random) so that its temporal profile is rectangular. At any point in time, the rainfall

intensity at a particular location is the sum of the intensities of all cells that are currently

active, rainfall is thus represented in continuous time. However, rainfall data are usually

recorded discretely using a raingauge with an automated recording system attached to

it (nowadays usually a digital data logger) and data from such devices are routinely

archived at an hourly resolution. Because of the aggregated nature of the data, and also

because of the complex dependencies induced by the model structures, it is not feasible

to write down a likelihood for the data. Therefore these models are traditionally fitted

by matching theoretical moments with the observed counterparts. There are however

alternatives, namely the marginal likelihood approach of Northrop (2006) where by

building a likelihood based on only certain aspects of the data it is possible to estimate

a subset of the parameters defining these models. A different approach has been taken by

Chandler (1997) where by transforming the data into the frequency domain it is possible

to build an approximate likelihood for the parameters of these models, we pursue this

idea further in chapter 5.

Time

Rainfall intensity

Rain cells

Point process

Figure 4.1: Schematic diagram of a generic point-process rainfall model. Vertical
dashed and dotted lines mark the start and end times of rain cells respectively.
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4.1.1 Poisson Rectangular Pulses Model - PRPM

One of the simplest models of this type is the Poisson Rectangular Pulses model, for

which the driving point process, say N(t), is Poisson. Formally the model can be

described using the following random variables:� Ti is the arrival time of the ith cell, with cells occurring in a Poisson process of

rate λ� Li is the duration of the ith cell, exponentially distributed with parameter η. We

will refer to the mean cell duration as µL = η−1.� Xi is the cell intensity that remains constant over the duration of the cell. At this

stage we assume no distribution and simply define its moments, Xi are i.i.d. as

random variables X with,

µXk = E
[

Xk
]

These three random variables (arrival time, duration and intensity) are assumed to be

independent of each other and of the corresponding variables for other cells. The model

allows for cell overlapping, i.e. Ti < Tj ≤ Ti + Li for some j 6= i.

The rainfall intensity at time t, denoted Y (t), is then the sum of the contributions from

all cells active at time t, and can be formally defined as

Y (t) =

∫ ∞

u=0
Xt−u(u)dN(t− u)

where Xu(τ) is the random intensity of the cell that arrived at time u, observed τ units

of time later. As the intensity of a cell is constant over its lifetime, the random variable

Xt−u(u) can be written as,

Xt−u(u) =

{

X(t− u) with probability FL(u).

0 with probability 1−FL(u),

where FL(l) = P [L > l] is the survivor function of the cell duration L and X(t − u) is

the initial intensity of a cell born at time t − u. From this formulation of the process
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Y (t) it is possible to derive some of its moments (Rodriguez-Iturbe et al., 1987), we

show the steps for the mean only as the technique is similar for higher order moments.

E[Y (t)] = E

[∫ ∞

u=0
Xt−u(u)dN(t − u)

]

=

∫ ∞

u=0
E [Xt−u(u)]E [dN(t− u)]. (4.1)

The last step is justified by independence between the cell arrival process and the inten-

sity process. Now, treating each expectation separately

E[dN(t − u)] = λdu

and

E[Xt−u(u)] = Eχ(t,u)

[

E[Xt−u(u)|χ(t,u)]
]

where

χ(t,u) =

{

1 if L(t− u) > u

0 otherwise

and L(t− u) is the duration of a cell born at (t− u). Now clearly we have

P (χ(t,u) = 1) = P (L(t− u) > u) = P (L > u) = FL(u) = 1− P (χ(t,u) = 0) .

Moreover,

E[Xt−u(u)|χ(t,u) = 0] = 0

E[Xt−u(u)|χ(t,u) = 1] = µX .

It follows that

E[Xt−u(u)] = µXFL(u)
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and (4.1) becomes

E[Y (t)] = λµX

∫ ∞

u=0
FL(u)du

= λµXµL . (4.2)

The variance and autocovariance can be derived similarly to obtain

Var[Y (t)] = λµX2

∫ ∞

0
FL(v)dv = λµX2µL (4.3)

cy(τ) = Cov[Y (t), Y (t+ τ)] = λµX2

∫ ∞

τ
FL(v)dv (4.4)

An exponential distribution is often assumed for the cell duration (Yoo et al., 2008;

Northrop, 2006), in such case the expressions for the moments can be further simpli-

fied. Denote the parameter of the exponentially distributed cell duration as η, then

expressions (4.2 - 4.4) can be written as,

E[Y (t)] = λµXη
−1

Var[Y (t)] = λµX2η−1

cy(τ) = λµX2η−1e−ητ

This can be further simplified in the case where X is also exponentially distributed,

using µX2 = 2µ2X .

The model described above is for rainfall in continuous time, however we can only

observe the aggregated totals over disjoint time intervals of fixed length h, hence define

the random variable

Y
(h)
i =

∫ ih

(i−1)h
Y (v)dv (4.5)

It is very difficult to write down a joint distribution for these aggregated totals, meaning

that traditional likelihood inference is not feasible. A well established alternative is

to perform parametric estimation through a generalised method of moments using a

set of model properties that can be derived from (4.5) together with the properties

derived earlier for Y (t) (Rodriguez-Iturbe et al., 1987). As before we will only show

how the first moment is derived, and note that we are only interested the particular

case of exponentially distributed cell duration. The first moment is obtained by taking

expectations on both sides of (4.5),.
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Properties

Mean µY (h;θ) hλµXη
−1

Variance σ2Y (h;θ) 2λµX2η−3(hη − 1 + e−hη)
Lag k autocovariance cY (h;θ; k) λµX2η−3

(

ehη + e−hη − 2
)

e−khη

Probability of dry pY (h;θ) e−λη
−1
e−λh

Parameters

θ λ, µX , µX2 , η
λ Parameter for the Poisson process of cell arrivals
µX Mean cell intensity
µX2 Second moment of cell intensity process
η Parameter of exponential cell duration

Table 4.1: Properties and parameters for the PRPM with exponential cell duration
aggregated over time intervals of length h (Rodriguez-Iturbe et al., 1987)

E
[

Y
(h)
i

]

=

∫ ih

(i−1)h
E[Y (v)]dv = hλµXη

−1.

Similarly the autocovariance function can be derived as

cY (h;θ; k) = Cov[Y
(h)
i , Y

(h)
i+k] = λµX2η−3

(

ehη + e−hη − 2
)

e−khη , k ≥ 1.

Another property of interest for the aggregated process is the probability pY (h;θ) that an

interval of length h is dry (i.e. experiences zero rainfall). For this to occur it is required

that there are no cells active at the beginning of the interval (i.e. Y ((i− 1)h) = 0) and

no cells arrive during the interval. Thus

pY (h;θ) = P [Y
(h)
i = 0] = e−λη

−1
e−λh

Where e−λη
−1

is the probability that no cells are active at any given time.

Table 4.1. summarizes the results of this section.

4.1.2 Poisson-Cluster Rectangular Pulses Models

The PRPM described above is a simple way to describe rainfall at a particular level of

aggregation. However one of the main criticisms is that it fails to replicate the observed

properties of rainfall when other levels of aggregation are considered. Extensive reported

experience suggests, for example, that if the PRPM is calibrated to reproduce the hourly
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rainfall variance at some location then it will tend not to reproduce the daily variance at

the same location (Rodriguez-Iturbe et al., 1987). In fact, it is known that rain events

do not occur with constant intensities, but with randomly varying intensities within the

same rain event. A suggestion in the literature is to improve the modelling of rainfall by

considering clusters of cells instead of a single cell. Several models have been developed

that are defined in terms of clusters of cells, introducing the notion of a storm. Instead

of using a Poisson process for the arrival of cells, these models use a clustered point

process. This type of model in general shows better consistency across timescales when

compared to the PRPM (Cowpertwait et al., 2007).

We now extend the notation of the previous section to accommodate the extra complexity

of these models� λ - Storm(Cluster) arrival rate� β - Parameter of the distribution of the displacement of cells within a storm� C - Number of cells per storm

There are several clustering mechanisms however we will focus on two of these that

deserve particular attention due to their extensive use in hydrology (Cowpertwait, 1991;

Onof et al., 2000; Wheater et al., 2005; Burton et al., 2008). These are the Bartlett-

Lewis and the Neyman-Scott mechanisms. A common feature of these models is that

the storms arrive following a Poisson process with rate λ. What distinguishes these two

point processes is the way the cell arrival times relate to storm origins.

4.1.2.1 Neyman-Scott Rectangular Pulses Model - NSRPM

The cell origin times under the NSRPM are defined by a set of independent and iden-

tically distributed random variables, representing displacements from the storm origin.

To each storm origin there is a random number C of cells associated to it. Some authors

assume the existence of a cell associated with the storm origin, however in our treat-

ment of the NSRPM we assume no cell starts at the storm origin. A common choice for

the distribution defining the displacement of the cell arrival times relative to the storm

origins is the exponential distribution. In this text we will assume this distribution, and

denote its parameter by β. Different discrete distributions can be used for the number

of cells per storm, the Poisson and Geometric being the most common.
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The expressions for the first and second order moments of the aggregated process are

given here without assuming a specific distribution for C (Rodriguez-Iturbe et al., 1987):

E[Y
(h)
i ] = hλµXµCη

−1

Var[Y
(h)
i ] = λη−3(ηh− 1 + e−ηh)

[

2µCµx2 + E[C2 − C]µ2Xβ
2/(β2 − η2)

]

−λ(βh− 1 + eβh)E[C2 − C]µ2X/[β(β
2 − η2)]

Cov[Y
(h)
i , Y

(h)
i+k] = λη−3(1− e−ηh)2eη(k−1)h

[

µCµX2 +
1

2
E[C2 − C]µ2Xβ

2/(β2 − η2)

]

−λ(1− e−βh)2e−β(k−1)h 1

2
E(C2 − C)µ2X/[β(β

2 − η2)], k ≥ 1.

The expression for the probability that an interval of length h is dry is (Cowpertwait,

1991)

py(h;θ) = exp

{

−λh+
λ

βµC

[

1− exp(−µC + µCe
−βh)

]

− λ

∫ ∞

0
[1− pt(h)]dt

}

where pt(h) is the probability of a dry period of length h assuming no overlapping of

storms within the interval of interest, and is given by

pt(h) =
(

1− e−βt + e−β(t+h)
)

(

1−
β(e−βt − e−ηt)

η − β

)

exp

{

−
µCβ

(

e−βt − e−ηt
)

η − β
− µe−βt + µe−β(t+h)

}

4.1.2.2 Bartlett-Lewis Rectangular Pulses Model - BLRPM

One possible alternative to the NSRPM is the model where cells arrive following a

Bartlett-Lewis process. In the BLRPM the cells arrive following a Poisson process of

rate β starting with one cell at the storm origin, this process of cell origins is terminated

after an exponentially distributed time from the storm origin. Given the similarities

between the BLRPM and the NSRPM, however we will not include this model in our

finite sample performance study.

4.1.3 Final remark on point process rainfall models

There is extensive literature regarding the use of these models in hydrology, Onof and

Wheater (1994); Wheater et al. (2005); Cowpertwait et al. (2007) use the BLRPM to

model rainfall. Modelling of rainfall using the NSRPM can be found in Cowpertwait
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(1991), and more recently in Burton et al. (2008) which set out the basis for the use of

NSRPM to model rainfall within the weather generator in the UK Climate Projections,

namely the UKCP09. We will focus our finite sample study on the PRPM and the

NSRPM; although the main objective of the study is to verify the asymptotic theory in

practice the application of such theory to a model that is known to be used in practical

applications can introduce an extra level of contribution.

4.2 Simulation study

In chapter 3 we saw that given a set of m moment conditions and a parameter vector,

θ, of length p ≤ n we can consistently estimate θ by combining these moment condition

in a quadratic form (3.8) to be minimized. Suppressing n we have,

Q(θ) = h̃(θ;y)T W h̃(θ;y) (4.6)

We now illustrate the application of this method to the four-parameter Poisson and

to the six-parameter Neyman-Scott models described in section 4.1. Such models are

often fitted by minimizing an expression of the form (4.6), where often Wn is assumed

diagonal by design. This simulation study will provide an opportunity to determine

whether the asymptotic results provide a reasonable approximation for a modest sized

sample, which can be useful to evaluate the scope for asymptotic theory to be used

in practice. As well as examining the validity of asymptotics, we compare different

choices of weighting matrix W, one of the choices is clearly the theoretical optimum,

but this weighting matrix will be compared with simpler and current practice weighting

schemes. The main objectives in this study are: validity of approximations derived from

asymptotic theory in finite samples, and performance of different weighting schemes.

The results will be looked at from the perspective of the two desirable properties of

the estimator: bias and minimal variance. It’s not our aim for example to evaluate

the choice of moment conditions, the properties from the model chosen to match with

sample counterparts are based on current practice and are assumed as given for the

purpose of this study.
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4.2.1 Study setup

4.2.1.1 Data

Given that we will be using simulations we should try to ensure that the simulated time

series is as similar as possible to real data, given the model chosen. In this study we will

try to respect and replicate some features of rainfall data:� Seasonality - It is a known fact that rainfall behaves differently depending on the

time of the year. For the class of models considered here this can be handled by

estimating different parameter values for each calendar month (Rodriguez-Iturbe

et al., 1988; Wheater et al., 2005). To mimic this, each of our simulations will

consist of independent sets of 30 days worth of rainfall, representing data for the

same calendar month in each of the years.� Frequency/Resolution - These models assume that the data available consists of

aggregate rainfall over disjoint h-hourly periods. We need to decide on the fre-

quency of our simulated time-series. We assume that hourly totals are available,

which is usually the case in the applications where this type of model is used.� Length of time series - Wheater et al. (2005) suggest on the basis of empirical

experience that 20 years of data may be required for reliable calibration of this

type of model; this guideline was also based on the extent of data availability in

the UK. Accordingly we adopt n = 20 years as the basic simulation period.

So each simulation consists of 20 sets of 30 days worth of hourly rainfall totals. The

number of simulations in this experiment is 1000.

Minimization of the objective function must be carried out numerically: our experi-

ence is that this can be challenging, and that working with the logarithm of the model

parameters can stabilise the procedure. Therefore the parameter vector of interest is

θ = (log(λ), log(µX), log(σX/µX), log(µL)). The values used to generate the simulation

data were based on real data. In particular hourly data for January from Birming-

ham airport covering the period from 1950 to 1996; to obtain the parameter values we

rounded the estimates obtained using the moment estimator obtained from (3.8) with

equal weights W = I. The resulting values were θ = (−3.5, 0, 0, 1.1), where the pa-

rameter log(σX/µX) was fixed at zero prior to estimating the remaining parameters

meaning we are assuming that cell intensity is exponentially distributed. This is an as-

sumption frequently made in applications (Rodriguez-Iturbe et al., 1987; Cowpertwait,
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1991). These estimates are consistent with values found in the literature for this model

(Northrop, 2006).

4.2.1.2 Moment Conditions

In order to estimate the parameters using the results in section 3.1 we need to find

a set of moment conditions. In section 4.1.1 we have shown the expressions for some

properties in terms of the parameters of interest. We will now present a vector of

statistics T(y) whose expectations can be expressed using the properties from Table 4.1.

These will allow us to define the moment conditions as E[T(y)− τ (θ)] = 0. Although

the intuition behind the use of GMM is that the moment conditions are exactly unbiased,

the asymptotic results from section 3.1 show that the method is still justified provided

that the moment conditions are asymptotically unbiased after suitable normalization.

In the present context of finite samples we should try to choose moment conditions that

minimize the finite sample bias. In fact one may expect that finite sample performance

could be improved by using moment conditions that are exactly unbiased; however as

previously stated the aim of this work is not to discuss the optimal choice of moment

conditions, but rather the relevance of the asymptotic theory regarding the choice of

weights. The choice of the properties is therefore based on common practice according

to the literature (Rodriguez-Iturbe et al., 1988; Wheater et al., 2005). The properties are

mean; variance, lag 1 autocorrelation and proportion of dry intervals at hourly resolution;

variance at 6-hourly resolution; variance, lag 1 autocorrelation and proportion of dry

intervals at 24-hourly resolution. The sample mean, variances, autocorrelation and

proportion of dry periods are formally defined as for a contiguous time series,

y(h) =
1

N (h)

N(h)
∑

i=1

y
(h)
i

s2(h;y) =
1

N (h) − 1

N(h)
∑

i=1

(

y
(h)
i − y(h)

)2
, h = 1, 6, 24.

z(h;y; l;u) =

∑u
i=l+1

(

y
(h)
i − y(h)

)(

y
(h)
i−1 − y(h)

)

∑u
i=l

(

y
(h)
i − y(h)

)2

pdry =
1

N (h)

N(h)
∑

i=1

χ
(h)
i
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where N (h) is the total number of h-hourly periods in the series, and χi is an indicator

function that takes the value one if yi = 0 and zero otherwise.

To apply the methods described in chapter 3 we also need to estimate the covariance

matrix of the moment conditions. For this we follow a suggestion by Rodriguez-Iturbe

et al. (1988), also used in Wheater et al. (2005) where treating data from different years

as independent allows us to calculated a separate set of moment conditions for each

year and to use the resulting sample of moment conditions to calculate both a mean set

of moments and an estimate of the covariance matrix of its mean; call this covariance

estimate Ŝ. Thus we change the moment conditions slightly, i.e., we first calculate Ti(y)

for each set of 30 days (year), say T li (y). In our simulations we have 20 years, and the

sample moments become,

T i(y) =
1

20

20
∑

l=1

T li (y) . (4.7)

Strictly speaking these new moment conditions do not satisfy (3.1) because the finite

sample bias of s2(h;y) and z(h;y; l;u) from using 30 days is not reduced when increasing

the number of years. However for practical purposes it may be that this bias is small

compared to sampling variation. In particular, for the autocorrelation we attempt to

minimize such effect by using Quenouille’s bias-reduced estimator (Kendall and Ord,

1990), defined as

r(h;y;N (h)) = 2z(h;y; 1;N (h))−
z(h;y; 1;

⌈

N (h)/2
⌉

) + z(h;y;
⌊

N (h)/2
⌋

;N (h))

2
, h = 1, 24

The collection
(

Y
(1)
, s2(1;Y), s2(6;Y), s2(24;Y), r(1;Y), r(24;Y), pdry(1;Y), pdry(24;Y)

)

is used to obtain the moment conditions h̃(θ;y) = E[T(y) − τ (θ)] in the notation of

section 3.1, and according to the theory the asymptotically unbiased moment condition

requires that for consistent estimators you need
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E
[

Y
(h)
]

= µY (h;θ)

E
[

s2(h;Y)
]

→ σ2Y (h;θ)

E [r(h;Y)] →
cY (h;θ; 1)

σ2Y (h;θ)

E [pdry(h;Y)] = pY (h;θ) (4.8)

In this case the normalizing matrix is the identity matrix. The matrix Ŝ, the covariance

matrix of the new sample moments has (i, j)th element

1

20

1

19

20
∑

l=1

(

T li (y)− T i(y)
)(

T lj(y)− T j(y)
)

(4.9)

Here the subscript n, corresponding to the sample size has been suppressed for simplicity

of notation.

4.2.1.3 Estimation of Estimator Variance

We are interested in comparing the performance of different weights in terms of the

variance of the resulting estimator. To assess the variability of each estimator we will

use two different measures. One is the empirical covariance matrix obtained by treating

the set of simulated estimates as a sample from the distribution of the estimator. In this

section we denote by Θ̂ the matrix of estimates obtained, clearly there will be K = 1000

estimates, as many as the number of simulations in the study. Therefore Θ̂ is the p×K

matrix where each row includes the estimates for each component of the parameter

vector. Denote

θi =
1

K

K
∑

k=1

θ̂ik , i = 1, ..., p .

where θ̂ik is the (i, k)th element of Θ̂.

The empirical covariance matrix will be denoted by Var(θ̂) and it has (i, j)th element
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1

K − 1

K
∑

k=1

(

θ̂ik − θi

)(

θ̂jk − θj

)

, i, j = 1, ..., p , (4.10)

In practical applications, however, it is necessary to estimate the covariance matrix of

the estimator using data from a single realization. The asymptotic results from section

3.1 provide a means of achieving this as

Var(θ̂) = M(θ0)
−1Σ(θ0)M(θ0).

For each simulation therefore, we compute this quantity, with M(θ0) and Σ(θ0) re-

placed by estimates. We refer to the resulting estimate as the “theoretical covariance

matrix”, and denote it V̂ar(θ̂) = M̂
−1

Σ̂M̂
−T

. To investigate the accuracy of the asymp-

totic results we can compare the average of the theoretical covariance matrices with the

empirical covariance matrix Var(θ̂).

4.2.1.4 Weighting schemes considered

In order to perform inference using (4.6) we need to have a vector h̃n(θ;y) which was fully

defined in the previous section, and a matrix W whose choice we discuss in this section.

The main focus of this study will be then to compare different weighting schemes, W.

From section 3.1 we know that the matrix which gives the minimal asymptotic variance

is WOpt = S−1, where S is the limiting variance of the sample moments. Since S is

unknown we will use W0 = Ŝ
−1

.

We will compare the performance of this theoretical best with some alternatives:� Equal weights(W1) - W is a matrix with 1’s on the diagonal and 0’s everywhere

else, i.e. the identity matrix, meaning all properties will have the same contribution

to the objective function.� Unequal weights(W2) - W is a diagonal matrix with diagonal elements such that

the properties 1-h mean, variance and proportion of dry have weights 100 times

higher than the rest. This is an example where the weights are set by the investi-

gator, based on the idea of having higher weights associated with properties that

are considered more important (Wheater et al., 2005).
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of the estimated variance of the corresponding moment condition. This represents

an approximation to the principle of giving higher weight to more stable properties.

We will use the notation θ̂(Wi) , i = 0, 1, 2, 3 to refer to the estimator obtained using

the specified weighting matrix.

4.2.1.5 Performance Measurement Criteria

We will use several measures to evaluate the performance of estimators obtained using

the four different weighting schemes. Boxplots will be used for the initial analysis of the

distribution of the estimator, including bias, which will also be assessed by looking at

its standard deviation.

The comparison of covariance matrices is not straightforward and there are different ways

that such comparison can be performed. In section 2.3 we used a rigorous definition to

derive the weighting matrix WOpt. For purposes of comparing different estimators (i.e.

weighting schemes) in a finite sample simulation study, it is unlikely that such a strict

criterion can be achieved in general; therefore it is necessary to consider alternative

comparison methods.

However in practical applications this is a very strict criterion, and its application can

lead most of the time to inconclusive results.

Another possible way of measuring the relative “size” of a covariance matrix is by using

their determinants. This makes use of a generalization of the result in Draper and

Guttman (1995). An approximate 100(1−α)% confidence region can be defined by the

points θ that satisfy

(θ − θ̂)T (V̂ar(θ̂))−1(θ − θ̂) < C(α, n, p) (4.11)

where C(α, n, p) is a constant depending on the confidence level, the number of obser-

vations n, the number of parameters p and the distribution of the estimator, which is

assumed to be multivariate normal. The volume of the ellipsoid defined by (4.11) is

C(α, n, p)D(p)
[

det(V̂ar(θ̂))
]1/2
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where D(p) is a constant that depends only on the number of parameters p. This

means that the volume of the confidence region defined by the covariance matrix of

the estimator is proportional to the square root of its determinant. Moreover, the best

estimator is the one that for the same α, n and p has the smaller volume. Since we

are not interested in quantifying the difference in volume, but just comparing relative

volumes, we can use any monotonic transformation of the quantity det(V̂ar(θ̂))1/2. In

this case we have four parameters and correspondingly a four by four matrix, by using

the fourth root of det(V̂ar(θ̂))1/2 we have a quantity on the standard error scale.

A third and possibly simpler way is to look at the individual components of the param-

eter vector, and compare the standard deviations. If on the one hand this seems too

simplistic, on the other hand we know that practitioners tend to use these together with

a normality assumption to build confidence intervals. Therefore we will also analyse the

normality of the estimators.

We will check the accuracy of the asymptotic theory from section 2.4 by comparing

V̂ar(θ̂) and Var(θ̂); and by looking at the coverage of confidence intervals built using

V̂ar(θ̂), as well as confidence regions built from the objective function itself, as defined

in Chapter 2.

4.2.2 Poisson Rectangular Pulses Model - Results and discussion

4.2.2.1 Boxplot

The simplest and most straightforward approach to start the analysis of the results is

to look at a boxplot of the deviations from the true parameter value, θ0. This is shown

in Figure 4.2.

From Figure 4.2, is clear that the estimates corresponding to the weighting scheme

W1 are very variable, except for log(λ). Moreover for the parameter log(σx/µx) the

distribution of the estimates seems strongly skewed, which indicates that inference based

on asymptotic normality of the estimator is not suitable for this weighting scheme.

The estimates using the weighting scheme labeled W2 show a large variation for the

components log(λ) and log(µL), but they behave reasonably well for the two remaining

components, at least under this simple graphical analysis. The variance based weights,

W3 and W0, seem to lead to estimators that perform much better than the other two

especially for log(µL), however it is not clear which of these has the best finite sample

performance.
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Figure 4.2: Distribution of estimation errors for each PRPM parameter, obtained
using different weighting matrices in the GMM estimator. All distributions are ob-
tained from 1000 simulated data sets, each containing 20 independent 30-day sequences
and generated using parameter values log(λ) = −3.5, log(µX) = 0, log(σX/µX) =

0, log(µL) = 1.1

4.2.2.2 Bias

In Table 4.2 we can see the estimated biases for each parameter from the 1000 simula-

tions, together with their standard errors. From the study setting we can identify two

potential sources of bias. One is that the moment conditions themselves are not exactly

unbiased, in particular the sample variances and autocorrelations. The other is the finite

sample bias, since the estimator defined by (3.8) is only asymptotically unbiased even

when exactly unbiased moment conditions are used. In this particular case we have

strong evidence to reject the hypothesis of the estimator being unbiased; however from

Figure 4.2 we can see that for all weighting matrices, any bias is negligible compared

with sampling variability.
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Parameters
log(λ) log(µX) log(σX/µX) log(µL)

Weighting
Scheme

W1 0.000(0.00007) 0.008(0.0003) -0.362(0.001) -0.044(0.0003)
W2 0.012(0.0001) 0.009(0.00008) -0.031(0.0002) -0.028(0.0002)
W3 0.010(0.00006) 0.016(0.00006) -0.041(0.0001) -0.033(0.00009)
W0 0.007(0.00007) -0.017(0.00008) -0.062(0.00008) -0.028(0.00009)

Table 4.2: Estimated bias for each parameter under different weighting schemes,
together with their standard errors.

B
W1 W2 W3 W0

A

W1 — -0.028 0.000 -0.001
W2 -1.443 — 0.000 -0.002
W3 -1.465 -0.057 — -0.002
W0 -1.468 -0.056 -0.004 —

Table 4.3: Minimum of the eigenvalues of the matrix resulting from the difference

(Var(θ̂A)−Var(θ̂B)), for each combination of weighting schemes

4.2.2.3 Efficiency

In Table 4.2, the standard errors are obtained as the square roots of the diagonal elements

of Var(θ̂)/1000 so as to provide standard errors for the mean of the simulated estimates.

Clearly however, their relative magnitudes are unaffected by this scaling and therefore

the standard errors in Table 4.2 also provide a means of comparing the variability of the

estimates themselves (rather than their means).

At a first glance we can see that the naive estimator, θ̂(W1), has generally larger

standard errors, particularly when compared to θ̂(W3) and θ̂(W0). However for, log(λ),

the standard error of the estimator θ̂(W1) is lower than of the estimator θ̂(W2). A

similar analysis can be made between θ̂(W3) and θ̂(W0), where θ̂(W0) is only better

for two of the parameters. The most useful conclusion is perhaps that either of W3

and W0 perform better than both W1 and W2, and that these figures agree with the

boxplot in Figure 4.2.

A first comparison of the full empirical covariance matrices, Var(θ̂), under different

weighting schemes is done by calculating the difference between each pair and checking

if the resulting matrix is positive definite by calculating the eigenvalues: if all eigenvalues

are positive we have a positive definite matrix, while if some are positive and some are

zero then we have a positive semi-definite matrix. Table 4.3 shows the minimum of the

eigenvalues for each pair of matrices (A,B).
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log(λ) log(µX) log(σX/µX) log(µL)

W1 0.070 0.175 306.439 0.211

W2 0.129 0.075 16.128 0.175

W3 0.063 0.064 0.083 0.085

W0 0.054 0.052 0.057 0.060

Table 4.4: Standard errors obtained by averaging the theoretical covariance matrices
obtained in each simulation, for each parameter and weighting scheme

There are only two non-negative elements in Table 4.3, corresponding to the matrices

Var(θ̂W1
)−Var(θ̂W3

) and Var(θ̂W2
)−Var(θ̂W3

). Nevertheless the positive definite

ordering is a very strong requirement, although the optimal choice should satisfy it

asymptotically as shown in section 3.2.

4.2.2.4 Variance estimation

As previously mentioned the empirical covariance matrices used in Tables 4.2 and 4.3

cannot be obtained in practical applications where a single realization is available.

Therefore we now examine the theoretical covariance matrices estimated for each simu-

lation, as these are the ones used for inference in practice. A first step is to obtain the

average of the covariance matrix estimates, and compare the resulting standard errors

across weighting schemes with the ones obtained from the empirical covariance matrix.

Table 4.4 shows that on average the estimated standard deviation of the estimator is

smaller when optimal weights are used, followed closely by θ̂(W3); the values corre-

sponding to the equal weights and the unequal fixed weights are significantly larger

which is not surprising and agrees with our initial analysis using Figure 4.2. If we com-

pare these theoretical standard errors with the empirical ones, we can see that the use of

asymptotics to build a covariance matrix of the estimator leads to underestimation of es-

timator variability in the cases θ̂(W1) and θ̂(W2) for all parameters except log(σX/µX).

For this parameter the theoretical standard errors are much higher than their empirical

counterparts. This high value is explained by the presence of outlying estimates that

do not appear in the other weighting schemes, showing that these weights may carry

some instability in the algorithm meaning that inference based on fixed weights can lead

to estimates that are very far from the true value. The theoretical standard errors for

θ̂(W3) are very similar to the empirical ones. For θ̂(W0) the theoretical standard errors

are lower than their empirical counterparts: thus for this weighting scheme the theory

seems to underestimate estimator variability, making the estimator looking more precise

than it actually is.



4. Simulation Study - Application of GMM to rainfall models 59

To analyse the behaviour of the estimated standard errors obtained across simulations

we plot estimates of their densities in Figure 4.3. We can see that the standard errors

for θ̂(W3) and θ̂(W0) (bottom two rows of Figure 4.3) are not just smaller overall:

they are also more consistent from simulation to simulation. The standard error for

the estimator of log(σX/µX) is less variable when using W0 instead of W3. For W1

and W2 (top two rows of Figure 4.3) the densities are substantially skewed, and have a

dispersion not comparable with W3 or W0.

0.00 0.10 0.20

0
20

40

log(λ)

W
1

0.00 0.15 0.30

0
20

40

log(µX)

0 100 250

0
10

20

log(σX µX)

0.0 0.2 0.4

0
20

40

log(µL)

0.00 0.10 0.20

0
20

40
W

2

0.00 0.15 0.30

0
20

40

0 5 10 20

0
20

50

0.0 0.2 0.4

0
20

40

0.00 0.10 0.20

0
20

40
W

3

0.00 0.15 0.30

0
20

40

0.0 0.2 0.4

0
15

30

0.0 0.2 0.4

0
20

40

0.00 0.10 0.20

0
20

40
W

0

0.00 0.15 0.30

0
20

40

0.0 0.2 0.4

0
15

30

0.0 0.2 0.4

0
20

40

Figure 4.3: Estimated densities of theoretical standard errors from 1000 simulations
together with the “average” standard errors (vertical lines). For each parameter except

log(σX/µX), the axis scales are the same for each weighting scheme.

In Table 4.5, overall estimator variability is compared in terms of the volume of the

confidence region defined by the covariance matrix of the estimator. Since we have two

different estimators for this matrix we also compare these. The figures in this table agree

with our previous analysis that the weighting schemes, W3 and W0, obtained from the
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det
(

Var(θ̂)
)1/8

det
(

V̂ar(θ̂)
)1/8

W1 0.23 0.77

W2 0.11 0.33

W3 0.072 0.07

W0 0.075 0.054

Table 4.5: det
(

Var(θ̂)
)1/8

and det
(

V̂ar(θ̂)
)1/8

for different weighting schemes
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Figure 4.4: Estimated densities for the determinants of the theoretical covariances

from 1000 simulations, together with det
(

Var(θ̂)
)1/8

(solid line) and det
(

V̂ar(θ̂)
)1/8

(dashed line) for different weighting schemes

variance of the estimating functions have a better performance. However comparison

between the determinants of the empirical and theoretical covariance matrices shows

that the theoretical covariance matrix overestimates estimator variability for θ̂(W1)

and θ̂(W2), and clearly underestimates this variability for θ̂(W0).

Figure 4.4 shows the estimated densities of the 8throot of the determinant of the theo-

retical covariance matrix together with vertical lines at the values from Table 4.5. These

lines are included for reference only: their interpretation cannot be associated with the

mean of the distribution of determinants. We can see from Figure 4.4 that the deter-

minants of the covariance matrices are more concentrated for θ̂(W0) than for θ̂(W3),

however Table 4.5 shows that the 8throot of the determinant of the theoretical covari-

ance is a biased estimator of the 8throot of the determinant of the empirical covariance

matrix in the W0 case, this suggests underestimation of estimator variability and we

will pursue this further later in this chapter.

4.2.2.5 Confidence Intervals and Regions

One way to check the quality and accuracy of the inference, namely under/over es-

timation of estimator variability, is to analyse the coverage of confidence regions built
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Weights Conf. Level log(λ) log(µx) log(σx/µx) log(µd)

W1
95% 0.93 0.68 0.55 0.86
99% 0.98 0.80 0.65 0.94

W2
95% 0.87 0.92 0.84 0.84
99% 0.95 0.97 0.93 0.93

W3
95% 0.94 0.92 0.83 0.92
99% 0.98 0.97 0.92 0.98

W0
95% 0.84 0.81 0.68 0.82
99% 0.93 0.90 0.80 0.90

Table 4.6: Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels.

according to the theory. Table 4.6 shows the proportion of simulations for which the con-

fidence intervals built using the normality assumption and asymptotic standard errors

included the true parameter value.

The results from Table 4.6 show that in general the coverage is well below its expecta-

tion. This may be due either to a failure of the normal approximation, and/or to poorly

estimated standard errors. The first possibility is straightforward to investigate infor-

mally using normal probability plots; these are shown in Figure 4.5. From these plots

it is clear that for this sample size neither of the estimators for log(σx/µx) using W1

and W2 are normally distributed. This is not a surprise considering that the boxplots

in Figure 4.2 showed some skewness for these estimators. For θ̂(W3) and θ̂(W0) the

estimates do indeed appear to be close to normally distributed with the exception of

log(µX) using θ̂(W0). These results suggest that the poor coverages for θ̂(W1) and

θ̂(W2) in Table 4.6 may be partially due to lack of normality; but those for θ̂(W3) and

θ̂(W0), which are closer to the nominal levels, are primarily due to poor estimation of

the standard errors. In fact we have already seen from Table 4.4 that the theoretical

covariance matrix used in computing these confidence intervals, tends to underestimate

the real variability of the estimator.

Table 4.7 shows coverages for the confidence regions built using a quadratic approxima-

tion to the objective function (3.8). The results for θ̂(W1),θ̂(W2) and θ̂(W3) are simi-

lar, although the coverages are too low; the results for θ̂(W0) are much worse, however.

This reinforces the idea that the variability of θ̂(W0) is significantly underestimated,

using asymptotic theory, at least as implemented here.
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Figure 4.5: Normal probability plot of the estimates for each parameter under differ-
ent weights.

95% 99%

W1 0.85 0.92

W2 0.85 0.92

W3 0.89 0.95

W0 0.40 0.53

Table 4.7: Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels
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4.2.2.6 Some conclusions

From the analysis in this section we can conclude that θ̂(W3) and θ̂(W0) lead to a

smaller estimator variance, however the use of the theory from section 3.2 does not lead

to accurate confidence regions for the parameters using this estimators. Moreover there

is clear underestimation of variability when using the theoretical results for θ̂(W0).

With the elements at hand in this section, and for this particular model and simulation

setup θ̂(W3) seems to be the wise choice. The theoretical optimum seems to perform

in terms of obtaining the estimates themselves but it fails in the estimation of sampling

error, i.e. a poor estimation of the covariance matrix of the estimator, therefore later

in this chapter we will try to improve the estimation of such matrix focusing on the

weighting schemes θ̂(W3) and θ̂(W0). In the next section we investigate different ways

of improving inference for this model, this includes analysing the effect of the bias in

the EFs and looking into estimation of the covariance of the EFs.

4.2.2.7 Improved performance

One of the reasons for the poor coverage performance could be that 20 years of data are

not enough to apply the asymptotic approximations, or the bias in the EFs due to the

30 days per year method, in this section we investigate these potential issues.

We first looked at increasing the sample size by simulating more years, keeping the

method the same but using 100 yrs instead of 20 yrs; the results improved as one would

expect from applying asymptotic approximations to a larger dataset. The coverage of

the confidence regions at 99% based on the objective function reached 0.98 and 0.92

for θ̂(W3) and θ̂(W0) cases respectively, an improvement from the values of 0.95 and

0.53 in the original setting. In particular the coverage corresponding to θ̂(W0) improves

significantly, however it is still lower than that obtained using θ̂(W3). For the confidence

intervals at 99% for the individual parameters the highest coverage was approximately

0.98 for both weighting schemes, for the parameter log(λ). These results may be more

useful as a reference for the remainder of this section than for practical application, as

100 yrs of hourly rainfall data may be difficult to find in practice.

Among the potential causes for the low coverage shown in the previous section is the fact

that we are using slightly biased estimating functions. We have seen that the resulting

bias in the estimator is not significant, however the bias in the estimating functions

may have an effect on the coverage of confidence intervals or regions. One possible

way of investigating this is to perform a similar study as the one above but increase
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100 yrs × 30 days 30 yrs × 100 days

95% 99% 95% 99%

W3 0.92 0.98 0.92 0.97

W0 0.83 0.92 0.70 0.81

Table 4.8: Coverage of confidence region based on objective function threshold under
two different settings of sample size, for two weighting schemes and two confidence

levels

the number of days in the month, i.e., using the same amount of data but re-arranged

in a different way, instead of 100 yrs x 30 days, we calculated the moment conditions

and their covariance matrix using 30 yrs x 100 days. This way we can have an idea

of how the inference improves by reducing the bias in the EFs. The results improved

slightly compared with those from the previous section, but were actually worse than

those obtained by simply increasing the number of years. For example, the coverage

for the confidence region obtained from the objective function at 95% level, was 0.69

compared with 0.83 in the “100 years × 30 days ” setting.

This suggests that the bias present in the EFs that were defined in this study is not

the main cause for the poor coverages, however we look at a different way of evaluating

that using bootsrapping. The methods described in section 3.1 can be applied using

the original moment conditions (4.8), in which case we have to obtain the covariance

matrix of the moment conditions using a different technique. One possible way to do

that is through bootstrapping. The application of bootstrapping in order to avoid the

“30 days” bias will allow us to keep the original moment conditions but will add extra

computational burden. The method consists of sampling with replacement 20 elements

from the set of 20 independent years, i.e. each period of 30 days is an element; a certain

number of times, B. For each resampled sequence we calculate the moment conditions,

h̃
(b)
i (θ;y) b = 1, ..., B

The matrix Ŝ
b
, the covariance matrix of the original sample moments estimated using

bootstrapping has (i, j)th element

1

B − 1

B
∑

b=1

(

h̃
(b)
i (θ;y)− h(θ;y)

)(

h̃
(b)
j (θ;y)− h(θ;y)

)
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log(λ) log(µx) log(σx/µx) log(µd)

W3(95%) 0.90 0.92 0.82 0.86

W3(99%) 0.96 0.98 0.91 0.93

W0(95%) 0.84 0.81 0.68 0.76

W0(99%) 0.91 0.90 0.82 0.86

Table 4.9: Coverage of confidence intervals built using normality assumption for each
parameter and weighting scheme, for two different confidence levels, when bootstrapping

is used

95% 99%

W3 0.88 0.94

W0 0.36 0.49

Table 4.10: Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels, when bootstrapping is used

The coverages resulting from the simulation study with bootstrapping (B = 1000) are

shown in Tables 4.9 and 4.10. When comparing these with the original study in the

previous section (Tables 4.6 and 4.7), we cannot see any clear improvement. Moreover

for θ̂(W0) the objective function based confidence region has clearly lower coverage.

The results in this section suggest that the reduction of bias in the estimating functions

does not lead to improved coverage performance, and hence that the presence of bias is

not the main cause of low coverages.

4.2.2.8 Improved estimation of S

In section 4.2.2.4 it was noted that for the weighting matrix W0, the theoretical co-

variance matrix underestimates the real estimator variance. Therefore we look in more

detail into estimation of Var(θ̂) we focus on the estimation of S the covariance matrix

of the moment conditions. Since this matrix is used in a slightly different way in de-

pending on the weighting scheme considered, in particular for the weighting scheme W0

it defines the whole weighting matrix. An initial approach was to calculate Ŝ from a

long simulation (1000 years) using the true parameter value and then use it as a fixed

value weighting matrix in the simulation routine. This in fact led to much improved

coverages; however this approach would not be feasible in practical application where

less than 1000 years of data is available. As described in section 3.2, the application of

optimal GMM weights in econometrics is usually done by an iterative procedure, where

the estimation of θ by a consistent (but sub-optimal) estimator in a first step will provide

an initial estimate of S(θ) if an analytical expression for it is available. In the present

context this is not feasible since an expression for S(θ) is not available. For example,
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log(λ) log(µx) log(σx/µx) log(µd)

Emp Theo Emp Theo Emp Theo Emp Theo

W∗
3 0.064 0.065 0.063 0.063 0.096 0.084 0.086 0.088

W∗
0 0.063 0.062 0.060 0.059 0.071 0.066 0.069 0.068

Table 4.11: Standard errors obtained from the empirical and average theoretical
covariance matrices calculated using a two step procedure, for each parameter and for

two different weighting schemes

the variance of the h-hour sample variance requires knowledge of the fourth order prop-

erties of the aggregated rainfall process; even for the relatively simple models considered

here the results for the first and second order moments in section 4.1. suggest that the

amount of work involved would be prohibitive. We therefore propose an alternative that

can be used for any model where analytical evaluation of S(θ) is impractical but where

simulation is possible.

From the analysis in the previous section, where we used 100 years of data and the

asymptotic approximations seemed to be more accurate, we concluded that one potential

reason for the inaccuracy in estimating S(θ) was the fact that we were using only 20 years

of data, meaning 20 independent observation vectors to estimate an 8 by 8 symmetrical

matrix. A possible solution is to use the 20 years of data to obtain an initial estimate

of θ and then use this estimate to simulate a longer series (1000 years, say), from which

an improved estimate of S(θ) can be obtained using (4.9). Denote by S̃ the estimator

for S(θ) using the simulated series. This is in fact equivalent to parameterizing the

covariance matrix as a function of θ. The initial estimate of θ in our case is obtained by

using θ̂(W3), which was shown in the previous section to be a reasonable estimator. We

then estimate θ using a new set of weights W∗
3 similar to W3 but calculated from the

simulated series, and using the optimal weights based on S̃; the empirical and theoretical

standard errors are shown in Table 4.11. This two step estimator has much better finite

sample properties than the original setting for the weighting scheme W0; whereas for

the weighting scheme W3 there are no significant improvements. Moreover, the values

in Table 4.11 show that under this setting W∗
0 gives smaller standard errors than W3,

for all the parameters. The agreement between theoretical and empirical standard errors

seem to be much better.

As before we use the coverages of confidence intervals/regions obtained using asymptotic

theory to validate the inference, in particular the accuracy in estimating the estimator

variability. The results in Tables 4.12 and 4.13 show an improvement in the W0 estima-

tor, where the W3 estimator shows similar coverages to the original study. Although the

coverage can be improved by estimating S(θ) in this way they are still below expected.
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log(λ) log(µx) log(σx/µx) log(µd)

W∗
3(95%) 0.93 0.92 0.85 0.92

W∗
3(99%) 0.98 0.97 0.91 0.98

W∗
0(95%) 0.93 0.92 0.87 0.93

W∗
0(99%) 0.98 0.98 0.94 0.98

Table 4.12: Coverage of confidence intervals built using normality assumption for
each parameter and weighting scheme, for two different confidence levels, when a two

step procedure is used

95% 99%

W∗
3 0.91 0.97

W∗
0 0.91 0.97

Table 4.13: Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels, when a two step procedure is used

The other point to notice is that θ̂(W∗
0) shows better coverages than θ̂(W

∗
3), which to-

gether with the finding already mentioned that θ̂(W∗
0) has lower variance than θ(W∗

3)

makes this two step procedure an important improvement for inference using this model

with relatively modest sample sizes. The main drawback is the computing time which

can be several times more than a simpler one step estimation using, say W3.

4.2.3 Extension to Neyman-Scott Rectangular Pulses Model

We also performed a similar study using a Neyman-Scott Rectangular Pulses Model,

this model is one of the existing extensions to the PRPM in the previous section and

the particular choice of this model is due to its use in practical applications, namely

the UK Climate Impact Programme. The study of finite sample performance applied to

this model tries to show that the use of asymptotic results like the ones in chapter 3.

can improve inference in practical application and contribute to improve current prac-

tice. We used the same eight moment conditions (mean, variance, lag 1 autocorrelation

and proportion of dry intervals at hourly resolution; variance at 6-hourly resolution;

variance, lag 1 autocorrelation and proportion of dry intervals at 24-hourly resolution),

and generated the data in the same way ,i.e., 20 sets of 30 days. The parameter vector

of interest is θ = (log(λ), log(µx), log(σx/µx), log(µC), log(β), log(η)), and the specific

values used for simulation were θ = (−4,−0.44, 0, 2.46,−1.8, 0.37), which were obtained

from hourly rainfall data for January from Birmingham airport, as in the PRPM study

of the previous section. In this section we skipped the use of W0 since we have seen

that even for the simpler PRPM the calculation of the optimal weights without the two

step procedure led to poor inference on estimator uncertainty. We also omitted the



4. Simulation Study - Application of GMM to rainfall models 68

results from W3 as this is used only for the first step of the two step procedure. We

now apply the two step procedure to the estimation of the Neyman-Scott Rectangular

Pulses Model.
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Figure 4.6: Boxplot of estimation errors for different weighting matrices

The analysis of Figure 4.6 leads to similar conclusions to the PRPM case in the sense

that the estimates using W∗
3 and W∗

0 show less variation than the estimates obtained

using the two data-independent weighting schemes. The reduction in variability from

W1 to W∗
0 can also be seen in Table 4.14, by noticing that the standard errors in brack-

ets become smaller when looking down each individual parameter. In Table 4.15 we can

see the reduction in volume of the confidence regions: for W1 we had some simulations

returning a theoretical covariance matrix with non-finite elements which is in fact a

typical problem in this type of models, for W2 the numbers in Table 4.15 show that

the theory overestimates estimator uncertainty; and finally we can see in Tables 4.16.

and 4.17.that both W∗
3 and W∗

0 lead to the smallest confidence regions and that the

agreement between theoretical and empirical standard errors mean that the two step

procedure works for this model in the same way it worked for the simpler model in the

previous section. The performance of the different weights evaluated in terms of cov-

erages of confidence intervals/regions has similar results to the PRPM case, although
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Parameters
log(λ) log(µx) log(σx/µx) log(µC) log(β) log(η)

W1 0 0.068 -0.224 0.043 0.013 0.103
(0.000205) (0.000401) (0.000719) (0.000214) (0.000357) (0.000507)

W2 0.001 0.005 -0.019 0.049 0.025 0.055
(0.000136) (0.000266) (0.000128) (0.000208) (0.000216) (0.000331)

W∗
3 0.006 -0.024 0.001 0.062 0.046 0.046

(0.000146) (0.000098) (0.000076) (0.000175) (0.0003) (0.000166)
W∗

0 0.002 -0.004 -0.011 0.027 0.015 0.025
(0.000122) (0.000072) (0.000064) (0.000137) (0.000211) (0.000135)

Table 4.14: Estimated bias for each parameter under different weighting schemes,
together with their standard errors.

Empirical Theoretical

W1 0.097 —

W2 0.045 0.162

W∗
3 0.026 0.028

W∗
0 0.022 0.022

Table 4.15: det
(

Var(θ̂)
)1/8

and det
(

V̂ar(θ̂)
)1/8

for different weighting schemes

Weights Conf. Level log(λ) log(µx) log(σx/µx) log(µC) log(β) log(η)

W1
95% 0.937 0.973 0.988 0.993 0.976 0.971
99% 0.975 0.985 0.994 0.994 0.995 0.979

W2
95% 0.924 0.903 0.902 0.952 0.926 0.977
99% 0.977 0.966 0.964 0.988 0.972 0.992

W∗
3

95% 0.921 0.945 0.931 0.96 0.937 0.96
99% 0.977 0.982 0.978 0.989 0.978 0.988

W∗
0

95% 0.938 0.942 0.919 0.941 0.92 0.942
99% 0.985 0.98 0.971 0.985 0.97 0.985

Table 4.16: Coverage of confidence intervals built using normality assumption for
each parameter and weighting scheme, for two different confidence levels

the coverage rates for the confidence intervals built for individual parameters have sim-

ilar values for all the weighting schemes the confidence regions based on the objective

functions show a better coverage for the data-dependent weights when compared with

the data-independent weights, in particular the theoretical optimum is also the best

performing scheme for this set of simulations.
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95% 99%

W1 0.892 0.955

W2 0.893 0.956

W∗
3 0.915 0.969

W∗
0 0.938 0.984

Table 4.17: Coverage of confidence region based on objective function threshold for
each weighting scheme and two confidence levels

4.3 Summary

In this chapter we looked at finite sample performance of the asymptotic theory de-

scribed in Chapter 3, and compared the performance of different weighting matrices

within the GMM framework. We compared estimators by measuring their variability

via standard errors and volume of confidence region, and assessed the performance of the

asymptotic theory regarding confidence region estimation by looking at the coverages

of those confidence regions. We concluded that the asymptotic approximations can be

used even for modest sample sizes, although in the case of data-dependent weights a two

step procedure may be needed to obtain acceptable results. Moreover we can conclude

that by using weights that are related to the variability of the moment condition we

can perform better inference in terms of estimator variability. Here we considered that

W2 is an example of current practice, and it was shown that even without a two step

procedure the data-dependent weighting scheme W3 is an improvement for the PRPM

case. The other objective of this study was to check the finite sample performance of

the asymptotically optimal weights. The initial setting showed that the finite sample

properties of the theoretical optimum can be quite poor, especially if moderate sample

size are used. We can also conclude that the main reason for that poor performance

is the difficulty in estimating S, the covariance matrix of the moment conditions. We

presented one possible way of improving the finite sample performance of the theoret-

ical optimum by improving the estimation of S. Furthermore we have shown that the

theoretical optimum can be the finite sample optimum if we use a two step procedure to

improve the estimation of S. For the particular models studied here the fact that some

of the moment conditions suffer from a finite sample bias does not seem to affect the

inference outcome, this can be justified as bias being small compared to the variability

of the moment conditions. It may be argued that, even with the use of the two step

procedure, the coverages from W∗
0 still tend to be less than their nominal values. How-

ever the difficulty of the inference task on the basis of a relatively small sample of data

should not be underestimated, and for this particular area of application even ball-park

figures are useful for current practice.



Chapter 5

Spectral Likelihood

In section 2.5.1 it was shown that maximum likelihood estimation is optimal for well

behaved problems. The estimating equations framework applied to GMM presented in

Chapter 2 shows that unbiased and consistent point estimation can be performed simply

by finding a suitable moment matching condition. The main problem with this approach

is that in general the estimates are strongly dependent on the properties chosen to build

the estimating functions.

In this section, a spectral likelihood method known as the Whittle likelihood (Whittle,

1953) is presented. The motivation here is that the Fourier coefficients of a stationary

stochastic process are approximately normally distributed and independent, therefore

apparently solving the problem of specifying the joint density of the data; and since the

Fourier transform is a one-to-one transformation of the data no information is lost, which

seems to overcome the subjective choice of moments in the GMM framework. Neverthe-

less the use of the Fourier coefficients and their distribution also involves approximations

resulting in some loss of efficiency.

Parametric estimation in the frequency domain has been widely studied, the main mo-

tivation being that for numerous stochastic processes it is difficult to write down an

exact likelihood, where the spectral density may be straightforward to derive (Chandler,

1997; Fuentes, 2002). The Whittle likelihood is not the only possible frequency-domain

estimation method: once the Fourier coefficients are seen as data, other inference meth-

ods can also be used. Rice (1979) compared the asymptotic properties of the Whittle

estimator with two other estimators based on the sum of squared differences between

the periodogram and spectral density. His findings argue in favour of the use of the

Whittle likelihood approach, one of the reasons being that estimators based on the sum

71
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of squares approach have an asymptotic bias. More recent work on spectral estimation

by least squares has been done by Chiu (1988), who suggests that the parameters of

time series can be estimated in the frequency domain using a weighted sum of squares

instead of a likelihood. The advantages of this procedure are mainly computational,

although by choosing the “right” weighting scheme one can obtain an estimator with

the same efficiency as the Whittle likelihood estimator.

Although the original work of Whittle (1953) was based on the assumption that the

original data were Gaussian, there has been extensive work on generalizing his results to

cases where some of the assumptions are relaxed; Hannan (1973) proved the consistency

and asymptotic normality of the Whittle estimator for the class of linear processes. Fox

and Taqqu (1986) and Giraitis and Taqqu (1999) studied the effect of relaxing the no

long-range dependency assumption, and showed that both for long-memory Gaussian

processes and non-linear processes the estimator is consistent but that multivariate nor-

mality does not necessarily hold. Chandler (1997) presents an alternative way of deriving

the Whittle likelihood, and shows that even if the multivariate normality does not hold

for the whole set of Fourier frequencies considered in the Whittle likelihood, it may hold

for a subset of these. Some authors argue that parametric estimation of non-linear pro-

cesses in the frequency domain can be improved by using higher-order spectral densities

together with the second-order spectral density used in the Whittle method, namely

Anh et al. (2004) and Anh et al. (2007). In recent years there has been substantial

work in applying the Whittle likelihood principles to particular classes of non-stationary

series such as ARCH (Giraitis and Robinson, 2001); the work of Dahlhaus (2000) and

Dahlhaus (2009) look at extending the Whittle likelihood to locally stationary processes,

both for the univariate and multi-variate cases.

Even though there is extensive work in the area of parametric estimation in the fre-

quency domain, this work has been focused mainly on relaxing the original Whittle

(1953) assumptions, and not much progress has been made in the area of assessing es-

timator uncertainty. The work of Robinson (1978) provides an approximation for the

asymptotic distribution of the Whittle estimator, however the result relies on the avail-

ability of an expression for the 4th order spectral density. This is a major weakness in

practical application as for numerous processes of interest such expression is not avail-

able Chandler (1997); Giraitis and Robinson (2001). Another important step in the

direction of deriving an asymptotic distribution for the Whittle estimator was taken by

Heyde (1997), this author makes use of the concept of estimating functions to obtain an

asymptotic distribution for zero mean stationary processes. We concentrate our devel-

opment of the Whittle estimator in the ability to calculating confidence intervals and
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regions for the parameters. An important difference between the present approach and

the methods in Heyde (1997) is that we allow our class of processes to have non-zero

mean.

In this chapter we start with an outline of the general spectral theory and definitions,

which will allow us to show some of the steps in the construction of the Whittle likelihood.

We then present a set of results regarding convergence of functions of the periodogram

to the spectral density. These will be used in the last section to show how the Whittle

likelihood can be used in conjunction with the estimating functions framework to obtain

an approximate asymptotic distribution for the Whittle estimator.

5.1 Definition of spectral likelihood

Spectral analysis has numerous applications in diverse fields. The focus in the present

context is upon stationary stochastic processes with mean µ. Let (Yt) be the process of

interest, for which we have equally spaced observations. A single realization of a station-

ary process sampled at a finite number of equally spaced intervals can be represented as

(Priestley, 1981, p.247)

yt =

⌊n
2 ⌋
∑

p=0

Gpe
iwpt , (5.1)

where

Gp =
n
∑

t=1

yte
−iwpt (5.2)

and

wp =
2πp

n
p = 0, ...,

⌊n

2

⌋

. (5.3)

Gp is called the discrete Fourier transform of the sequence y1, . . . , yn. Denote the sample

Fourier coefficients as
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Ap =

n
∑

t=1

yt cos(wpt) Bp =

n
∑

t=1

−yt sin(wpt) , (5.4)

which are respectively the real and imaginary parts of Gp as defined in (5.2). The Fourier

coefficients contain all the information present in the original series yt, as the series can

be reconstructed using (5.1).

5.1.1 Cumulants and spectral densities

For reasons that will become clear later in this chapter we need to assume that, besides

Yt being stationary, it must not have long-range dependence. The long-range dependence

assumption can be formulated in terms of cumulants. The cumulants of a random vector

Y are defined by the cumulant generating function,

K(z) = logE[ez
TY]

where z is a vector the same length as Y. In the case of stationary processes the cumu-

lants can be defined as functions of the lags. The κth order cumulant, cκ(r1, . . . , rκ−1),

of Y′ = (Yt, Yt+r1 , . . . , Yt+rκ−1) is

cκ(r1, . . . , rκ−1) =
∂κK(z)

∂z1 . . . ∂zκ

∣

∣

∣

∣

z=0

where the r’s are integers, representing lags. For κ = 2 we obtain c2(r) = Cov(Yt, Yt+r)

which is the autocovariance at lag r.

The formulation of the assumption of no long-range dependence of (Yt), is defined, as in

Assumption I of Brillinger and Rosenblatt (1967)

∞
∑

r1=−∞

· · ·

∞
∑

rκ−1=−∞

|cκ(r1, ..., rκ−1)| <∞ (5.5)
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for κ ≥ 2, where cκ(r1, ..., rκ−1) is the κ − th order cumulant function of Yt as defined

above.

The stationarity assumption and (5.5) imply that the κth-order cumulant spectral den-

sity exists and is bounded. For all k Brillinger and Rosenblatt (1967), define the κth

order spectral density as,

h(κ)(w) =
∞
∑

r1=−∞

. . .
∞
∑

rκ−1=−∞

cκ(r1, . . . , rκ−1)e
−i

∑κ−1
j=1 wjrj

where w = (w1, ..., wκ−1)
T ∈ (−π, π)κ−1. In particular let us write the second-order

spectral density, defined as the Fourier transform of the autocovariance function, as it

will be used frequently in this chapter

h(w) =
∞
∑

r=−∞

c2(r)e
−iwr (5.6)

where w is any frequency in (−π, π).

Estimation of the spectral density is usually based on the periodogram which represents

the contribution of each of the frequencies wp to the process Yt, and is defined here as

I(wp) =
1

n

(

A2
p +B2

p

)

where Ap and Bp are the sample Fourier coefficients defined at (5.4). This definition

corresponds to that in Hauser (1998). The estimation of the spectral density based on

the periodogram can be justified by the properties of the sample Fourier coefficients.

5.1.2 Properties of the sample Fourier coefficients

The expected values, variances and asymptotic distribution of the random quantities

Ap and Bp may be derived from the assumptions of stationarity of Yt and (5.5). The

derivations are standard and are included here to give a sense of the role of the various
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assumptions. In this section we will use c(r) rather than c2(r) to denote the autocovari-

ance at lag r. For these derivations the following result is needed:

n
∑

t=1

eiwpt =

{

n p = 0 (mod n)

0 otherwise.
(5.7)

from which the implications on the real and imaginary parts of Gp follow. A straight-

forward application of (5.7) allows us to obtain the expected values of Ap and Bp as

E[Ap] =

{

nµ p = 0

0 otherwise.
(5.8)

and

E[Bp] = 0 for any p . (5.9)

We turn now to the variances of the Fourier coefficients. Consider first the expected

value of A2
p

E[A2
p] = E

[

n
∑

t=1

n
∑

s=1

ytys cos(wpt) cos(wps)

]

=
1

2

n
∑

t=1

n
∑

s=1

[c(|t− s|) + µ2] [cos(wp(t− s)) + cos(wp(t+ s))]

=
1

2

n
∑

t=1

n
∑

s=1

c(|t− s|) [cos(wp(t− s)) + cos(wp(t+ s))]

+
µ2

2

n
∑

t=1

n
∑

s=1

[cos(wp(t− s)) + cos(wp(t+ s))]

=
1

2

n
∑

t=1

n
∑

s=1

c(|t− s|)Re
[

eiwp(t−s) + eiwp(t+s)
]

(5.10)

+
µ2

2
Re

[

n
∑

t=1

eiwpt

(

n
∑

s=1

e−iwps +

n
∑

s=1

eiwps

)]

. (5.11)
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For p 6= 0 the second term becomes zero as a consequence of (5.7); when p = 0 it yields

(nµ)2. The first term can be evaluated by performing a change of variable (v = t, r =

t− s), to obtain

1

2

n
∑

v=1

v−1
∑

r=v−n

c(|r|) [cos(wpr) + cos(wp(2v − r))]

=
1

2

0
∑

r=1−n

r+n
∑

v=1

c(|r|) cos(wpr) +
1

2

n−1
∑

r=1

n
∑

v=r+1

c(|r|) cos(wpr)

+
1

2

0
∑

r=1−n

r+n
∑

v=1

c(|r|) cos(wp(2v − r)) +
1

2

n−1
∑

r=1

n
∑

v=r+1

c(|r| cos(wp(2v − r))

=
1

2

0
∑

r=1−n

(n− |r|)c(|r|) cos(wpr) +
1

2

n−1
∑

r=1

(n− |r|)c(|r|) cos(wpr)

+
1

2

0
∑

r=1−n

r+n
∑

v=1

c(|r|)Re
[

eiwp(2v−r)
]

+
1

2

n−1
∑

r=1

n
∑

v=r+1

c(|r|)Re
[

eiwp(2v−r)
]

=
1

2

n−1
∑

r=1−n

n(1−
∣

∣

∣

r

n

∣

∣

∣
)c(|r|) cos(wpr) (5.12)

+
1

2

0
∑

r=1−n

r+n
∑

v=1

c(|r|)Re
[

eiwp(2v−r)
]

+
1

2

n−1
∑

r=1

n
∑

v=r+1

c(|r|)Re
[

eiwp(2v−r)
]

(5.13)

This expression is valid for any n and cannot be simplified in general. However, it seems

reasonable to try to find some asymptotic results that we can use to approximate this

expression for large n. We consider (5.12) and (5.13) separately. First we will analyse

the asymptotic behaviour of (5.12) multiplied by 2n−1 (the reason for this normalization

will soon become clear). This yelds

lim
n→∞

n−1
∑

r=1−n

(1−
∣

∣

∣

r

n

∣

∣

∣
)c(|r|) cos(wpr) . (5.14)

If we can show that

lim
n→∞

n−1
∑

r=1−n

∣

∣

∣

r

n

∣

∣

∣
c(|r|) cos(wpr) = 0 , (5.15)
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then we can state that (5.14) is in fact equal to

lim
n→∞

n−1
∑

r=1−n

c(|r|) cos(wpr) = lim
n→∞

n−1
∑

r=1−n

c(r) cos(wpr) (5.16)

since c(r) is an even function (Priestley, 1981, p 214). Comparison with (5.6) shows that

this limit is equal to h(wp), the spectral density at frequency wp. Thus (5.14) tends to

h(wp) as n→ ∞.

We now show a proof for (5.15). From the short-range dependence assumption (5.5) we

have,

∞
∑

r=−∞

c(|r|) ≤ ∞ ⇒ lim
r→∞

|r|c(|r|) = 0

which means that for any ǫ > 0 we can find Rǫ such that ∀ |r| > Rǫ, |r|c(|r|) < ǫ. For

any n > Rǫ, we have

n−1
∑

r=1−n

∣

∣

∣

r

n

∣

∣

∣
c(|r|) =

Rǫ
∑

r=−Rǫ

∣

∣

∣

r

n

∣

∣

∣
c(|r|) +

∑

Rǫ<|r|≤n−1

∣

∣

∣

r

n

∣

∣

∣
c(|r|)

<
Rǫ
n

Rǫ
∑

r=−Rǫ

c(|r|) + (n− 1−Rǫ)
ǫ

n

which tends to ǫ as n→ ∞. Since ǫ can be made as small as we like, we must have

lim
n→∞

n−1
∑

r=1−n

∣

∣

∣

r

n

∣

∣

∣
c(|r|) = 0

which together with the fact that cos(wpr) is bounded gives the required result, (5.15).

Now we turn to (5.13), which can be written as
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1

2
c(0)

n
∑

v=1

Re
[

eiwp(2v)
]

+
1

2

n−1
∑

r=1

n−r
∑

v=1

c(|r|)Re
[

eiwp(2v+r)
]

+
1

2

n−1
∑

r=1

n
∑

v=r+1

c(|r|)Re
[

eiwp(2v−r)
]

.

The first term is zero due to (5.7). Changing the range of the last summation in v to

start at 1 instead of r + 1, and combining the two terms, yields

Re

[

n−1
∑

r=1

c(|r|)

n−r
∑

v=1

eiwp(2v+r)

]

(wp 6= 0, π) = Re

[

n−1
∑

r=1

c(|r|)eiwpr 1− e2iwp(n−r)

1− e2iwp

]

= Re

[

n−1
∑

r=1

c(|r|)
eiwpr − e−iwpr

1− e2iwp

]

= 2Re

[

n−1
∑

r=1

c(|r|) sin(wpr)
1− e−2iwp

2 + 2 cos(2wp)

]

=
2

2 + 2 cos(2wp)

n−1
∑

r=1

c(|r|) sin(wpr)(1− cos(2wp)) .

If we multiply by 2n−1 as in (5.14) we obtain an expression that goes to zero as n→ ∞.

Therefore, for fixed w and defining qn = wn
2π

lim
n→∞

2

n
V [Aq] = h(w) , w ∈ (0, π).

Now we analyse the case wq = π (strictly speaking this requires us to consider that n is

even). (5.13) is equal to

1

2
Re

[

0
∑

r=1−n

c(|r|)e−iπr
n+r
∑

v=1

e2iπv

]

+
1

2
Re

[

n−1
∑

r=1

c(|r|)e−iπr
n
∑

v=r+1

e2iπv

]

(5.17)

and the term including v in (5.17), e2iπv is always one. Therefore the expression for the

variance simplifies to



5. Spectral Likelihood 80

1

2

n−1
∑

r=1−n

n(1−
∣

∣

∣

r

n

∣

∣

∣)c(|r|) cos(wpr)

+
1

2

0
∑

r=1−n

n(1−
∣

∣

∣

r

n

∣

∣

∣)c(|r|) cos(wpr)

+
1

2

n−1
∑

r=1

n(1−
∣

∣

∣

r

n

∣

∣

∣
)c(|r|) cos(wpr) .

Using the results (5.15) and (5.16) we can state that

lim
n→∞

2

n
V
[

An/2
]

= h(π)

The variance of A0 can be derived using similar steps,

V [A0] = E[A2
0]− E[A0]

2

Noting that the evaluation of E[A2
p] leading to (5.10) and (5.11) is valid for any p and

using (5.8), we have

V [A0] =
1

2

n
∑

t=1

n
∑

s=1

c(|t− s|)Re
[

eiwp(t−s) + eiwp(t+s)
]

(5.18)

Using the fact that for p = 0 the terms in the complex exponentials in (5.18) are always

1, together with the manipulation done to (5.10) yelding (5.12) and (5.13) we obtain

V [A0] =
1

2

n−1
∑

r=1−n

n(1−
∣

∣

∣

r

n

∣

∣

∣
)c(|r|)

+
1

2

0
∑

r=1−n

(n− |r|)c(|r|) +
1

2

n−1
∑

r=1

(n− |r|)c(|r|)

Using (5.15) and (5.16) we can state,
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lim
n→∞

1

n
V [A0] = h(0)

The derivation of the asymptotic variance of Bp is done using essentially the same steps,

except that for wp = 0, π, B0 is identically zero. Thus for p 6= 0, n/2

V [Bp] = E[B2
p ] = E

[

n
∑

t=1

n
∑

s=1

ytys sin(wpt) sin(wps)

]

=
1

2

n
∑

v=1

v−1
∑

r=v−n

c(|r|) [cos(wpr)− cos(wp(2v − r))] .

The only difference from the case Ap, p 6= 0, is the sign affecting the terms that tend to

zero.

If the Yts are Gaussian, then Ap and Bp being linear combinations of these will be

Gaussian as well. If other or no distributional assumption on the Yts is made we can

still argue in favour of asymptotic normality and pairwise independence of the Fourier

coefficients, the proof of this is rather technical and relies on the properties of the complex

multivariate normal distribution; see Brillinger (1975, p.404). Putting all these results

together yields the following large-sample distributions for the Fourier coefficients:

A0 ∼ MVN (nµ, nh(0)) (5.19)

Ap ∼ MVN
(

0,
n

2
h(wp)

)

p 6= 0

Bp ∼ MVN
(

0,
n

2
h(wp)

)

wp 6= 0, π

Bp ≡ 0 wp = 0, π (5.20)
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where µ is the mean of the original process.

Having transformed the data in this way, and noting that each of these new observa-

tions has a specified distribution it is desirable that a joint distribution for the sampled

coefficients can be specified as well. Due to the approximation done in the derivations

of the variances and also the application of CLT (in case the original data are not Gaus-

sian), it is not true that the joint distribution of the Fourier coefficients is necessarily

multivariate Normal. Despite this it can be shown that even if the MVN approximation

is bad for the set of all Fourier coefficients it may be appropriate for a smaller collection

of them. From this point onwards any reference made to the frequencies wp is implicit

that these belong to a collection (Ω) of Fourier frequencies for which the MVN approx-

imation is adequate. For further discussion on the adequacy of the MVN distribution

for collections of Fourier coefficients see Chandler (1997).

Now write h(wp;θ), where θ is the vector of parameters of interest. From (5.19)-(5.20)

a likelihood for θ can be formulated in the following way,

L(θ) =
∏

p∈Ω

L(θ|Ap)L(θ|Bp)

Then the log-likelihood is given by (Chandler, 1997),

logL(θ) = −
∑

p

[

1−
1

2
δp(n/2)

] [

I(wp)

h(wp;θ)
+ log(h(wp;θ))

]

−χΩ(0)

[

1

2
log(h(0;θ)) +

(A0 − nµ(θ))2

2h(0;θ)

]

+ constant , (5.21)

where χΩ(p) is an indicator set function that takes the value 1 if wp ∈ Ω and 0 otherwise,

and δij is the Kronecker delta. The most common application of this method consists

of using the spectral likelihood including all Fourier frequencies different from zero and

π. In this context (5.21) is called the Whittle log-likelihood (Hauser, 1998)
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5.2 Some useful convergence results

In this section we present some results that will be used in the remainder of the chapter,

to show how the estimating function theory can be applied to the Whittle likelihood. The

results are given without proof because the technical details are lengthy and irrelevant

in this context. Consider in this whole section that Yt is a zero mean process with

h(w;θ) <∞ and φ(w) ∈ Lip ξ, ξ > 1/2.

The first two results ((5.22) and (5.23)) are a consequence of Theorem 2 in Robinson

(1978) and its proof. They state the convergence of a weighted sum of periodogram

ordinates to an asymptotically equivalent integral form.

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

1

n

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

φ(wp)I(wp)−

∫ π

−π
φ(w)I(w)dw

∣

∣

∣

∣

∣

∣

∣

= 0 a.s. (5.22)

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

1

n

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

φ(wp)I(wp)−

∫ π

−π
φ(w)h(w;θ)dw

∣

∣

∣

∣

∣

∣

∣

= 0 a.s. (5.23)

Another useful result can be obtained from the Newton-Cotes formula for integral ap-

proximation (Abramowitz and Stegun, 1964)

∫ b

a
f(x)dx =

1

n

n
∑

p=0

f(xp) +O

(

n−3∂
2f(x)

∂x2

)

. (5.24)

where xp = a + p ∗ (b − a)/n, and O (g(x;n)) represents a quantity that is smaller in

absolute value than g(x;n) times a constant when n → ∞ for x fixed. Applied to the

integral
∫ π
−π φ(w,θ)h(w;θ)dw, this result enables us to claim that

lim
n→∞

1

n

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

φ(wp,θ)h(wp;θ)−

∫ π

−π
φ(w,θ)h(w;θ)dw = O

(

n−3∂
2φ(w,θ)h(w;θ)

∂w2

)

(5.25)
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We will also make use of a result from Brillinger and Rosenblatt (1967), which states

that the κ-order cumulant of the discrete Fourier transform of a stationary process can

be approximated by a function of the κ-order spectral density.

cκ(Gp1 , ..., Gpκ) = (2π)κ−1 ∆(n)





κ
∑

j=1

wpj



h(κ)(wp1 , ..., wpκ−1) +O(1) (5.26)

where Gp is the discrete Fourier transform defined in (5.2), and

∆(n)(wp) =
n
∑

t=1

e−iwp =

{

n p = 0

0 otherwise.

The last result presented in this subsection states the convergence of the expectation

and covariance matrix of integrals of linear functions of the periodogram. Define

ψ̂i(θ) =

∫ π

−π
φi(w,θ)I(w)dw

ψi(θ) =

∫ π

−π
φi(w,θ)h(w;θ)dw

(Priestley, 1981, p 427) shows that,

lim
n→∞

E
[

ψ̂i(θ)
]

= ψi(θ)

lim
n→∞

n Cov(ψ̂i(θ), ψ̂j(θ)) = e(4)ψi(θ)ψj(θ)+4π

∫ π

−π
φi(w,θ)φj(w,θ)h

2(w;θ)dw (5.27)

where e(4) = (E[ǫ4t ]− 3) and φj(w,θ) = 1/2[φj(w,θ) + φj(−w,θ)]. Here ǫ is the purely

random part of the process as defined in Wold’s decomposition theorem for covariance-

stationary processes (Kendall and Ord, 1990). From this point onwards we assume that

E[ǫ4t ] exists and is finite for the processes considered.

In the following section we derive the estimating functions defined by the Whittle like-

lihood and study their properties in the light of the results above.
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5.3 Spectral Likelihood and Estimating functions

5.3.1 Rewriting the spectral scores

As was shown in setion 2.5.1, the score functions obtained when maximizing a log-

likelihood are examples of estimating functions, and here it is exactly the same. We will

now derive the expression for the partial derivatives of the Whittle log-likelihood (5.21)

which we will call spectral scores. Differentiating with respect to θi yields

gi(θ;y) =
∂ logL

∂θi

= −
∑

p 6=0

[

1−
1

2
δp(n/2)

] [

−
I(wp)

h(wp;θ)2
∂h(wp;θ)

∂θi
+
∂h(wp;θ)

∂θi

1

h(wp;θ)

]

−χΩ(0)
1

2

[

∂h(0;θ)

∂θi

1

h(0;θ)

]

−χΩ(0)
1

2





2(A0 − nµ(θ))
(

−n∂µ(θ)∂θi

)

nh(0;θ)− (A0 − nµ(θ))2n∂h(0;θ)∂θi

n2h(0;θ)2





= −
∑

p 6=0

[

1−
1

2
δp(n/2)

] [

∂h(wp;θ)

∂θi

1

h(wp;θ)2
(h(wp;θ)− I(wp))

]

−χΩ(0)
1

2

[

∂h(0;θ)

∂θi

1

h(0;θ)
−
∂µ(θ)

∂θi

2(A0 − nµ(θ))

h(0;θ)

−
∂h(0;θ)

∂θi

(A0 − nµ(θ))2

nh(0;θ)2

]

(5.28)

This expression is useful as it allows to easily identify which components to use in case

the zero frequency is included. For the remainder of this chapter we will assume without

loss of generality that the zero frequency is included, for the situations where it is to be

excluded similar derivations can be done.

For reasons that will become clear later on we will perform some algebraic manipulation

of the spectral score. The spectral score can be written as a function of the periodogram

for the centred process

Y ∗
t = Yt − µ0 , (5.29)
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where µ0 = µ(θ0) (here, θ0 denotes the true value of θ). The periodogram for the

centered process can be written in terms of the variables in (5.28),

A∗
0 =

∑

Y ∗
t = A0 − nµ0

I∗(0) =
A∗2

0

n
= I(0) − 2A0µ0 + nµ20

I∗(wp) = I(wp) , p 6= 0 .

Equivalently,

A0 = A∗
0 + nµ0

I(0) = I∗(0) + 2A∗
0µ0 − nµ20

Note that only the Fourier coefficient at zero frequency is affected by the centring.

Plugging these in (5.28) we obtain,

−
∑

p 6=0

[

1−
1

2
δp(n/2)

]

[ai(wp;θ) (h(wp;θ)− I∗(wp))]

−
1

2

[

ai(0;θ)h(0;θ)−
∂µ(θ)

∂θi

2(A∗
0 + nµ0 − nµ(θ))

h(0;θ)

−ai(0;θ)
(A∗

0 + nµ0 − nµ(θ))2

n

]

(5.30)

where

ai(w;θ) =
∂h(w;θ)

∂θi

1

h(w;θ)2

is introduced to simplify the notation. We can now use the fact that all the components

in the sum are even functions of w and write (5.30) as,
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−
1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ) (h(wp;θ)− I∗(wp)) +
1

2
ai(0;θ) (h(0;θ)− I∗(0))

−
1

2

[

ai(0;θ)h(0;θ)−
∂µ(θ)

∂θi

2(A∗
0 + nµ0 − nµ(θ))

h(0;θ)
− ai(0;θ)

(A∗
0 + nµ0 − nµ(θ))2

n

]

= −
1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ) (h(wp;θ)− I∗(wp)) +
∂µ(θ)

∂θi

2(A∗
0 + nµ0 − nµ(θ))

h(0;θ)

+
1

2
ai(0;θ)

[

A∗2
0 + (nµ0 − nµ(θ))2 + 2A∗

0(nµ0 − nµ(θ))

n
−
A∗2

0

n

]

= −
1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ) (h(wp;θ)− I∗(wp)) +
∂µ(θ)

∂θi

2(A∗
0 + n(µ0 − µ(θ)))

h(0;θ)

+
ai(0;θ)

2

[

n(µ0 − µ(θ))2 + 2A∗
0(µ0 − µ(θ))

]

This expression is much more tractable than (5.28), as it allows a straightforward appli-

cation of the results from the previous section via the properties of the periodogram of a

zero mean process. We now want to check if this estimating function, the spectral score,

satisfies the conditions set in Chapter 2 in order to establish the consistency and asymp-

totic distribution of the estimator. The verification of these conditions on the asymptotic

behaviour of the estimating functions is in this case implied by the asymptotic behaviour

of the periodogram and properties of the spectral density. The asymptotic behaviour of

the periodogram can be analyzed for the general class of stationary processes with no

long range dependence for which we derived the spectral likelihood, in particular using

the convergence results stated earlier. Regarding the properties of the spectral density

that are sufficient for the result (2.22) to hold it is not possible to claim they are verified

for every stationary processes with no long range dependence, therefore we reduce the

class of processes for which this theory applies and assume that

0 < h(w;θ) < ∞

∂kh(w;θ)

∂θk
< ∞ and continuous, k = 1, 2 (5.31)

∂kh(w;θ)

∂wk
< ∞ , k = 1, 2 .
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Note that these regularity conditions still allow for a wide class of models, and they

partially correspond to the regularity conditions assumed in Chapter 2,

The only extra requirement for consistency is that the estimating function gi(θ;y),under

suitable normalization, converges to a deterministic function that has similar properties

to a regular estimating function. By choosing the normalizing matrix ηn = n−1I, where

I is the identity matrix, we can analyze each component of the estimating function

vector. By applying results (5.23) and (5.25) we obtain,

lim
n→∞

[ηng(θ;y)]i = −
1

2

∫ π

−π
ai(w;θ) (h(w;θ)− h(w;θ0))dw

+
∂µ(θ)

∂θi

(µ0 − µ(θ))

h(0;θ)
+
ai(0;θ)

2
(µ0 − µ(θ))2 .

This limiting function clearly attains the value zero for θ = θ0.

In order to obtain a limiting covariance matrix for the estimator we need further con-

ditions to be satisfied. We need that the covariance matrix of the estimating functions,

when suitably normalized, converges to a finite positive definite matrix (2.16). We now

show that the choice γn = n−1/2I does the trick by calculating the (i, j) element of the

matrix Σ. In the notation of Chapter 2

Cov(γngi(θ;y),γngj(θ;y)) =

1

n
Cov







1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)I
∗(wp) +

∂µ(θ)

∂θi

2A∗
0

h(0;θ)
+ ai(0;θ)A

∗
0(µ0 − µ(θ)),

1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

aj(wp;θ)I
∗(wp) +

∂µ(θ)

∂θi

2A∗
0

h(0;θ)
+ aj(0;θ)A

∗
0(µ0 − µ(θ))






(5.32)

and a simple manipulation gives this r.h.s. to be
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1

4n
Cov







⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)I
∗(wp),

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

aj(wp;θ)I
∗(wp)






(5.33)

+
bij(θ)

n
Var (A∗

0) (5.34)

+
dij(θ)

n
Cov







⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)I
∗(wp), A

∗
0






(5.35)

where bij(θ) and dij(θ) are quantities that do not depend on I∗(wp) or A∗
0, and can

easily be derived from (5.32). We will deal with each of the components (5.33),(5.34 and

(5.35) separately. First we use (5.22) to write (5.33) in the integral form, for large n

1

4n
Cov







⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)I
∗(wp),

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

aj(wp;θ)I
∗(wp)







≈
1

4n
Cov

(

n

∫ π

−π
ai(w;θ)I

∗(w), n

∫ π

−π
aj(w;θ)I

∗(w)

)

This allows us to apply (5.27) and obtain

lim
n→∞

1

4n
n2Cov

(
∫ π

−π
ai(w;θ)I

∗(w),

∫ π

−π
aj(w;θ)I

∗(w)

)

=
e(4)

4

∫ π

−π
ai(w,θ0)h(w;θ0)dw

∫ π

−π
aj(w,θ0)h(w;θ0)dw

+π

∫ π

−π
ai(w,θ0)aj(w,θ0)h

2(w;θ0)dw (5.36)

The evaluation of (5.34) can be done using (5.19)

lim
n→∞

1

n
bij(θ)Var (A

∗
0) = bij(θ)h(0;θ) (5.37)

The treatment of (5.35) is not so straightforward. We start by writing it in the form of

an expectation
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dij
n

Cov






A∗

0,

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)I
∗(wp)







=
dij
n
E






A∗

0

1

n

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)(A
∗
p
2 +B∗

p
2)







=
dij
n2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)E
[

A∗
0(A

∗
p
2 +B∗

p
2)
]

=
dij
n2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)E
[

G∗
0G

∗
pG

∗
−p

]

=
dij
n2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)c3
(

G∗
0, G

∗
p, G

∗
−p

)

since E[G∗
p] = 0 from (5.8) and (5.9) together with (5.29)

Now, by applying (5.26), we obtain

dij
n2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

ai(wp;θ)
[

(2π)2 nh(3)(0, wp, w−p) +O(1)
]

.

Taking limits and assuming ∂h(3)(0,w,−w)/∂w is bounded the application of (5.24)

yields, as n→ ∞ this converges to

dij (2π)
2
∫ π

−π
ai(w;θ)h

(3)(0, w,−w)dw (5.38)

Finally, by putting (5.36), (5.37) and (5.38) together we obtain the desired result
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lim
n→∞

Cov(γngi(θ;y),γngj(θ;y)) =

π

∫ π

−π
ai(w,θ)aj(w,θ)h

2(w;θ)dw

+ bij(θ)h(0;θ)

+ dij (2π)
2
∫ π

−π
ai(w;θ)h

(3)(0, w,−w)dw

+ dij (2π)
2
∫ π

−π
aj(w;θ)h

(3)(0, w,−w)dw (5.39)

Equation (5.39) shows that normalizing the covariance matrix of the estimating func-

tion by γn = n−1/2I leads to convergence to a finite matrix, however the positive (semi)

definite requirement needs to be verified for the particular processes considered in ap-

plications. Note it will be unusual for a limit of a sequence of positive (semi) definite

matrices not itself to be positive (semi) definite.

Another necessary condition on g̃(θ;y) = γng(θ;y) is that after suitable normalization

its partial derivatives with respect to θ converge in probability to a deterministic matrix

which may depend on θ, M(θ). This is formalized as follow

[

∂g̃(θ;y)

∂θ

]

δn
p
→ M(θ).

Using some of the convergence results above we will now show that the choice of δn =

n−1/2I satisfies this condition. Substituting for γn = n−1/2I and δn = n−1/2I we can

then write the (i, j)th element of the normalized Jacobian, ∂δng̃(θ;y)/∂θ as
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1

n






−
1

2

⌊n
2 ⌋
∑

p=−⌊n−1
2 ⌋

∂ai(wp;θ)

∂θj
(h(wp;θ)− I∗(wp)) + ai(wp;θ)

∂h(wp;θ)

∂θj

+ 2
∂2µ(θ)

∂θi∂θj

[A∗
0 + n(µ0 − µ(θ))]

h(0;θ)

+ 2
∂µ(θ)

∂θi

n∂µ(θ)∂θj
h(0;θ)− ∂µ(θ)

∂θj
[A∗

0 + n(µ0 − µ(θ))]

h2(0;θ)

+
1

2

∂ai(0;θ)

∂θj

[

n(µ0 − µ(θ))2 + 2A∗
0(µ0 − µ(θ))

]

+ ai(0;θ)

[

n(µ0 − µ(θ))
∂µ(θ)

∂θj
−A∗

0

∂µ(θ)

∂θj

]]

.

By taking limits and applying (5.23) and (5.25) we obtain

−
1

2

∫ π

−π
ai(w;θ)

∂h(w;θ)

∂θj
dw + 2

∂2µ(θ)

∂θi∂θj

n(µ0 − µ(θ))

h(0;θ)

+
∂µ(θ)

∂θi

[

∂µ(θ)

∂θj

2

h(0;θ)
−
∂µ(θ)

∂θj

(µ0 − µ(θ))

h2(0;θ)

]

+
∂ai(0;θ)

∂θj

(µ0 − µ(θ))2

2
+ ai(0;θ)

∂µ(θ)

∂θj
(µ0 − µ(θ))

The last requirement is the continuity with respect to θ of the normalized Jacobian

above, which is guaranteed by the continuity assumption stated in (5.32).

Combining all of these results, we have shown that the Whittle likelihood estimator has

all the properties of a regular estimating functions estimator. The theory of Chapter 2

can now be used directly to give a limiting distribution:

n1/2(θ̂n − θ0)
d
→MVN(0,M0ΣMT

0 )

where
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M0 =

[

∂g̃(θ;y)

∂θ

]

δn

∣

∣

∣

∣

θ0

Σ = Var(g(θ0;y))

This result can be used to build approximate confidence intervals and regions for the

parameter vector θ. In practice the matrices M0 are calculated using numerical differ-

entiation, and Σ is estimated from the data using an approach of the type defined in

(4.9). The application of the general framework of estimating functions to the Whittle

estimator allows us to obtain approximate confidence regions without having to calcu-

late spectral densities of higher order than two. This result is therefore very useful for

the scientific areas in which estimation is mainly done in the frequency domain.



Chapter 6

Simulation Study - Application of

spectral likelihood to rainfall

models

We now illustrate the theory from the previous chapter, using a simulation study similar

to that from Chapter 4. The models considered here are the same that were included in

Chapter 4, they are the Poisson rectangular pulses model and the Neyman-Scott rectan-

gular pulses model. We start by deriving the spectral likelihood for the point-processes

of interest, this essentially involves constructing the relevant spectral densities. We then

investigate if the spectral densities verify the conditions that allow the application of the

estimating functions as set out in the previous chapter. Sections 6.2 and 6.3 present the

results of the study for the Poisson and Neyman-Scott models respectively, and section

6.4 provides a short summary of this chapter.

As before this study will involve both the Poisson and the Neyman-Scott rectangular

pulses models, and each simulation represents 20 years worth of data for a single cal-

endar month. To be precise, 20 independent sets of 30 days worth of hourly values are

generated for each simulation, and 1000 simulations were generated in total. As in the

GMM study of Chapter 4 we will use the concept of empirical and theoretical covari-

ance matrices to evaluate the performance of the estimator itself and of the measures

of estimator uncertainty. Using bias and the empirical covariance matrix, from a sam-

ple of 1000 simulations, we can comment on the performance of the estimator; and by

comparing this matrix with the theoretical covariance matrix we can evaluate the finite

sample performance of the asymptotic theory from the previous chapter, namely the

94
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assessment of estimator uncertainty. In particular, assessment of estimator uncertainty

will be analysed by comparing empirical and theoretical matrices and also by looking at

the coverage rates of confidence intervals and regions built using the estimating func-

tions framework. In order to apply the theory of estimating functions regarding the

asymptotic distribution of the estimator we used the fact that for each simulation data

were generated in 20 independent sets. The procedure here is equivalent to (4.7), where

the estimating function becomes the average spectral score. This way we can estimate

the covariance matrix of the estimating functions.

6.1 Derivation of spectral likelihood

One of the motivations for the work on spectral likelihood is the fact that for the partic-

ular class of point process rainfall models it is relatively easy to write down their spectral

density, so we start by formulating the analytical expression for the spectral densities of

the processes included in this study. These are as before the Poisson rectangular pulses

model and the Neyman-Scott rectangular pulses model, and it was mentioned previously

that the only formal difference between the two is the cell arrival process, therefore it is

not surprising that the derivation of the spectral densities for either of these processes

have many similarities. From the definition of spectral density and the fact that we

observe accumulated totals over h-hourly periods we obtain (Chandler, 1997)

h(w) =
∞
∑

k=−∞

s

(

w +
2kπ

h

)(

sin([wh + 2kπ]/2)

[wh+ 2kπ]/2

)2

, |w| ≤ π/h (6.1)

where s(w) is the spectral density of the underlying continuous time process that gives

rise to Yt. For the general class of point-process rainfall models considered here, the

functional form of s(w) can be derived as a function of the parameters defined in Sec-

tion 4.1 and the incomplete spectral density of the cell arrival process denoted s∗. (w)

(Chandler, 1997). This is the incomplete spectral density for a point process, which is

derived from the conditional intensity, for more details see Cox and Isham (1980).

s(w) =
1

2πw2

[

2πs∗. (w)µ
2
X |1− φL(w)|

2 + 2ρ
(

µ2X + σ2X
)

(1−ℜ (φL(w)))
]

(6.2)
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where µX and σX are the mean and standard deviation of the distribution of cell inten-

sity, φL(w) is the characteristic function of the cell duration distribution and ρ is the

cell arrival rate. In section 4.1 we defined the cells as having exponentially distributed

durations. Noting that the characteristic function for the exponential distribution with

parameter α is,

φ(w) =
iα

w + iα

it follows that,

ℜ (φ(w)) =
α2

α2 + w2

|φ(w)|2 =
α2

α2 + w2
(6.3)

|1− φ(w)|2 =
w2

α2 + w2
.

We next look into the spectral densities of the arrival processes.

For the Poisson process of arrivals the incomplete spectral density is identically equal

to zero (Chandler, 1997), i.e.

s∗Po(w) = 0 (6.4)

and the cell arrival rate ρ is simply equal to λ, so that by plugging (6.3) and (6.4) in

(6.2) we obtain

sPo(w) =
λ(µ2X + σ2X)

π(η2 + w2)

where η is the parameter of the exponentially distributed cell duration. For the Neyman-

Scott point process of cell arrivals the incomplete spectral density is (Chandler, 1997),
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s∗NS(w) =
λ

2π
E [C(C − 1)] |φD(w)|

2

=
λ

2π
(µ2C − 1)|φD(w)|

2 (6.5)

where C is the number of cells per storm and φD(w) is the characteristic function of

the cell displacement from the storm origin which is assumed to be exponential with

parameter β. To evaluate E [C(C − 1)] we need to make some assumption about the

distribution of C. The assumption here is that C − 1 has a Poisson distribution, this is

the same as in Cowpertwait (1991), and it guarantees the existence of at least one cell

per storm. For this point-process the cell arrival rate is the product of the storm arrival

rate and the expected number of cells per storm, ρ = λµC so that when we plug both

(6.5) and (6.3) into (6.2) we obtain

sNS(w) =
λ

2π(η2 + w2)

(

µ2Xβ(µ
2
C − 1)

β2 + w2
+ 2µC(µ

2
X + σ2X)

)

where η is the parameter of the exponentially distributed cell duration.

We now look at the application of the theory in the previous section to these particular

processes. First we need to check if conditions (2.3) - (2.5) are satisfied by the spectral

densities defined above. Given the simple functional form of the spectral density it is

trivial to check that these conditions are verified.

Although these regularity conditions are verified, there is another condition that needs

to be met so that the results in the previous section can be applied in their entirety.

The condition

[

∂g̃(θ;w)

∂θ

]

δn
p
→ M(θ)

where M(θ) needs to be invertible, actually fails for the whole set of parameters for the

Poisson model. It is straightforward to see why M(θ) is singular if we notice that both

µX and σX contribute to the spectral density in the same way. M(θ) is effectively the

information matrix for the log-likelihood defined in (5.21) and since its rank is less than

the number of parameters to estimate we can conclude that this model is not identified.
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A possible way around which implies simplifying our model is to assume an exponen-

tial distribution for the cell intensity, this assumption is often considered in this class

of models (Rodriguez-Iturbe et al., 1987; Cowpertwait, 1991). In our implementation

this implies setting σX/µX = 1. For the Neyman-Scott model the matrix M is not

exactly singular but it is certainly ill-conditioned. Therefore we apply the exponential

distributed cell intensity assumption to both models in our study.

6.2 Results for the Poisson Rectangular Pulses model

The setting for this study is very similar to what was done in Chapter 4, data was

simulated in the same way: 1000 simulations, each consisting of 20 sets of 30 days worth

of hourly rainfall. The parameter values used in the simulations were the same as in

the GMM study, θ = (log(λ), log(µX), log(µL)) = (−3.5, 0, 1.1). In the implementation

of (6.1) the infinite sum needed to be approximated by a finite truncation. For the

processes we studied we found that K = 10 was sufficient. Also similarly to what was

done in the GMM study, we will use the concepts of empirical and theoretical covariance

matrix to compare the performance of the estimation uncertainty assessment.
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Figure 6.1: Distribution of estimation errors for each PRPM parameter. All distribu-
tions are obtained from 1000 simulated data sets, each containing 20 independent 30-day
sequences and generated using parameter values log(λ) = −3.5, log(µX) = 0, log(µL) =

1.1

Figure 6.1 shows the distribution of the 1000 estimates. From it we can see that there

is no significant bias, or alternatively that the variance of the estimator is high relative

to any existing bias. For λ and µL the resulting distribution has a negative and positive

skewness respectively, this is not surprising as the parameters appear in the spectral

density and consequently in the estimating function contributing in a similar way making
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it difficult for the model/algorithm to distinguish between them. Furthermore if we

calculate the correlation between the estimates for λ and µL we obtain a value of −92%

for this set of simulations. Table 6.1 shows the bias for each parameter together with

their standard errors. Although there is some evidence of bias, if we compare it with

the actual estimator variability and from a mean squared error perspective, the squared

bias is indeed smaller than the variance of the estimator, making it negligible for the

purposes of parameter estimation for this particular model.

log(λ) log(µX) log(µL)

0.016(0.005) -0.009(0.003) -0.014(0.004)

Table 6.1: Estimated bias for each parameter together with their standard errors.

We now proceed to evaluate the finite sample performance of the theory with respect

to the assessment of estimator uncertainty. We first use the standard errors obtained

from the empirical and the theoretical covariance matrix; from Table 6.2 we can see

that the mean theoretical standard errors tend to overestimate the variability of the

estimator, however if we consider the theoretical standard errors based on the median of

the variances calculated for each simulation we obtain a better assessment of estimator

variability. This means that for some particular simulations the theoretical standard

errors obtained are much higher than the empirical standard error. This asymmetry

can be confirmed in Figure 6.2 that shows estimates for the density of the theoretical

standard errors. Table 6.3 shows the determinants of the empirical and theoretical

covariance matrices, both based on the median and the mean of the theoretical covariance

matrices, we conclude that confidence regions based on the theoretical covariance matrix

will generally be larger compared to confidence regions based on the empirical covariance

matrix. As in the GMM case we are calculating the covariance matrix of the estimating

function using a relatively small amount of data, in this particular case we are estimating

a 5× 5 symmetrical matrix from only 20 observation, it is natural that this problem has

repercussions in the subsequent estimation of a covariance matrix for the estimator.

log(λ) log(µX) log(µL)

Empirical 0.159 0.097 0.129

Median Theoretical 0.145 0.084 0.119

Mean Theoretical 0.253 0.118 0.207

Table 6.2: Empirical standard errors together with the standard errors obtained from
the median and mean of the theoretical covariance matrices for each of the parameters.

Table 6.4 shows coverage rates for confidence intervals built using theoretical standard

errors and asymptotic normality approximations, and also the coverage rates for confi-

dence regions built based on the spectral likelihood itself, using (2.24). We can see that
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Figure 6.2: Estimated densities of theoretical standard errors from 1000 simulations
together with the empirical standard errors (vertical lines) and the average theoretical

standard errors (vertical dotted lines), for each parameter.

Empirical 0.171

Median Theoretical 0.163

Mean Theoretical 0.190

Table 6.3: Determinants of the empirical, median and mean theoretical covariance
matrices.

despite the theoretical covariance matrix overestimating true estimator variability on

average the coverage for the individual parameters is reasonable. The lower coverage of

the confidence intervals for λ and µL can be explained, at least partially by the skewness

seen in Figure 6.1.

log(λ) log(µX) log(µL) θ

95% 0.93 0.94 0.90 0.72

99% 0.97 0.98 0.95 0.93

Table 6.4: Coverage rates for confidence intervals based on normality assumption for
the individual parameters, and for the confidence region based on an objective function

threshold.
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Figure 6.3: Distribution of estimation errors for each NS parameter, obtained using
the spectral likelihood estimator. All distributions are obtained from 1000 simulated
data sets, each containing 20 independent 30-day sequences and generated using pa-
rameter values log(λ) = −4, log(µX) = −0.44, log(µC) = 2.46, log(β) = 1.8, log(µL) =

−0.37

6.3 Results for the Neyman-Scott Rectangular Pulses model

For the finite performance study with the Neyman-Scott model data was generated in a

similar way to what was done in the Poisson case. As mentioned in the end of section 6.1

the parameters µX and σX contribute in different ways to the spectral density, and can

in theory be identified using the Whittle likelihood approach. However, given the modest

results for the Poisson we keep the assumption of exponentially distributed cell inten-

sity for the Neyman-Scott simulations. The parameter values used here were the same

that were used for the GMM study, θ = (log(λ), log(µX), log(µC), log(β), log(µL)) =

(−4,−0.44, 2.46, 1.8,−0.37).

Figure 6.3 shows the distribution of the 1000 estimates for each parameter, and from the

analysis of the boxplots we cannot detect any signs of bias or skewness. In fact Table

6.5 suggests bias is absent for all the parameters apart from log(µL), and even in this

case bias is relatively smaller when compared to sample variability.
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log(λ) log(µX) log(µC) log(β) log(µL)

0.008(0.004) -0.003(0.002) 0.003(0.006) -0.006(0.006) 0.014(0.004)

Table 6.5: Estimated bias for each parameter together with their standard errors.

A comparison of the empirical and mean theoretical standard errors present in Table 6.6

indicates that the estimating functions framework when applied to the spectral likelihood

and for this particular models tends to overestimate the variance of the estimator quite

significantly on an average basis. The lower value for median theoretical standard errors

show that the high mean theoretical standard errors is due to a few high values for

the theoretical standard errors of particular simulations, this suggests the method can

be significantly unstable. This can be an effect from the small sample that is used to

calculate the covariance matrix of the estimating functions as discussed in the results of

the Poisson model.

log(λ) log(µX) log(µC) log(β) log(µL)

Empirical 0.124 0.059 0.188 0.186 0.115

Median Theoretical 0.143 0.064 0.215 0.216 0.134

Mean Theoretical 0.516 0.302 1.301 1.407 0.840

Table 6.6: Empirical and theoretical standard errors for each of the parameters.

Empirical 0.049

Median Theoretical 0.064

Mean Theoretical 0.200

Table 6.7: Determinants of the Empirical and theoretical matrices.

The performance in terms of confidence intervals for the individual parameters based

on normality approximation on its own is quite satisfactory as can be seen in Table

6.8. However given that there is an overestimation of estimator variability one could

expect the coverages to be higher than the target value, which has not happened. For

the coverage of the confidence regions based on objective function thresholds the results

are not so good, in particular the 95% confidence region in which for only 77% of the

simulations the true parameter value is inside the region.

log(λ) log(µX) log(µC) log(β) log(µL) θ

95% 0.96 0.96 0.92 0.93 0.92 0.77

99% 0.98 0.99 0.96 0.96 0.95 0.96

Table 6.8: Coverage rates for confidence interval based on normality assumption.
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6.4 Summary

In this chapter we studied the finite sample performance of the spectral likelihood es-

timator, when applied to the Poisson and Neyman-Scott rectangular pulses model. We

have seen that for these models it is relatively easy to write down a spectral likeli-

hood, however that does not meant that the application of estimating functions results

is straightforward. Some care is needed when verifying some of the conditions required

by the theory, namely the conditions involving matrix classification. We concluded that

for both models any potential bias was not significant when compared with estimator

variability. The spectral likelihood estimator variability was found to be higher than

the GMM estimators with data dependent weights from chapter 4, this can be seen by

comparing the empirical standard errors of the estimators. For the Poisson rectangular

pulses model when using the two step GMM the empirical standard error were between

0.06 and 0.071, when using a spectral likelihood approach the empirical standard errors

are in the range 0.097 to 0.159. For the Neyman-Scott rectangular pulses model the

difference is not so clear with standard errors in the interval 0.064 to 0.211 for the GMM

estimation and between 0.059 and 0.188 for the spectral likelihood method, however

when using the latter in were effectively estimating one less parameter. The finite sam-

ple performance of the estimating functions theory for the estimation of the variance

of the spectral likelihood estimator seem quite poor, as the mean theoretical standard

errors are significantly higher than the empirical standard errors. However, the reason-

able level of coverage in the confidence intervals built based on normality assumptions

suggest that when in the presence of a poor estimate the standard errors reflect that.



Chapter 7

Conclusion

In this thesis we presented work regarding inferential procedures that can be used in the

absence of a likelihood function, in particular the framework of estimating functions.

The theory of estimating functions permits to find a consistent estimator for θ as well

as characterizing its uncertainty. We described the theory of estimating functions with

increased focus on their asymptotic properties and the relationship between these and

the properties of the estimator itself. We have given sufficient conditions for the consis-

tency and asymptotic normality of the estimating functions estimator. These conditions

were formulated in a way that allows for the investigator to check them for the par-

ticular application of interest, moreover it was shown in some detail the role of these

conditions in obtaining the target asymptotic results. A consequence of this treatment

of the estimating functions theory is that for specific applications such conditions can

be relaxed or replaced by equivalent ones in the sense that they have the same impact

on the derivation of the asymptotic results. The theory of estimating functions can

accommodate some standard techniques such as maximum likelihood and least-squares

estimation. Hence, the asymptotic results for the estimating functions are applicable

to a wide class of estimation problems including the particular field of moment based

inference, which we investigated in some detail in Chapter 3. We also presented an im-

portant result regarding the calculation of confidence regions for the class of problems

where the estimating function can be seen as the gradient vector of some “objective

function”. This is clearly the case in the GMM setting.We were able to use the general

results for estimating functions to particular techniques of building estimating functions,

namely GMM and Whittle likelihood.

Application of the asymptotic results from the estimating functions theory to the GMM

estimator allowed to derive a set of particular sufficient conditions for consistency of the

104
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GMM estimator. These condition are set out in a different way to those usually included

in the econometrics literature and are more intuitive for a statistical science focused au-

dience, as well more straightforward to verify in practice. Also via the concept of optimal

estimating function within a certain class we verify the existence of an asymptotically

optimal weighting matrix for the case where the number of moment conditions is higher

than the number of parameters to be estimated.

A significant amount of work was done in the analysis of finite sample performance

of the asymptotic approximations derived in Chapter 3. The focus was on a class of

models that provided some motivation for this thesis. These models can be specified

in terms of a restricted set of constraints representing the relationship between the

parameters and the data. The parameters are usually fitted by matching summary

statistics (e.g. means, variances and autocorrelations) computed from the observations

y with their expectations under the model, in a quadratic form. In the simulation

based study of Chapter 4 we considered a relatively small sample and different ways of

combining the properties to be matched, i.e. different weighting schemes. We included

a scenario of current practice and compared it with 3 other scenarios. It was clear

that the theoretical optimum provided an estimator with better properties. However

the characterization of estimator uncertainty was not satisfactory for the case where

optimal weights were used. The investigation of this mismatch between true estimator

variance and the variance implied by the asymptotic theory led us to conclude that

the problem was in the estimation of the covariance matrix of the estimating functions.

This poor estimation of the covariance matrix of the estimating functions was due to the

small sample size considered. A suggestion found in the econometrics literature is that

if we have parametrization of this covariance matrix we can use an initial estimate of the

parameters obtained from a consistent estimator to consistently estimate the covariance

matrix. However in this case as in many others such explicit form for the covariance

matrix is not available. We propose a generic solution for cases where simulation of the

process being studied is possible; by simulating a big enough sample using an initial

estimate, obtained from a consistent estimator, one can estimate the covariance matrix

of the estimating functions accurately. This is in fact equivalent to the parametrization

approach; However it adds an extra computational burden to the algorithm. From the

study in Chapter 4 we concluded that using the asymptotic optimal weights based on

the results from Chapter 3 is optimal in relatively small samples, this is an improvement

over current practice; moreover the 2-step procedure suggested here is an important

contribution for the area of moment based inference, as having explicit expressions for

the covariance matrices of the estimating functions is only possible for relatively simple

problems.
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We also explored the possibility of transforming the data in order to obtain an approx-

imate likelihood, more precisely we derived an approximate likelihood from the Fourier

transform of the data. This method, known as the Whittle likelihood, has been widely

used, however there is limited literature addressing the problem of characterizing esti-

mator uncertainty. By considering the estimating function framework and the theory

set out in Chapter 2 it was possible to show not only the sufficient conditions for the

consistency of the spectral likelihood estimator, but more importantly to present an

approximate distribution for this estimator. Hence, an important contribution of the

present work to this field is to show that it is possible to derive a covariance matrix for

the estimator from which does not depend on the knowledge of the expression for the

4thorder spectral density. It also provides generalization of the result in Heyde (1997) in

the sense that under this setting it is not required that the process has zero mean. This

is even more important for inference in models where the mean of the process depends

on several parameters that also affect other properties of the data.

We also studied the finite sample properties of the spectral likelihood estimator using

a similar setting to what was done for the GMM estimator in Chapter 4. Through

simulations we studied the performance of the spectral likelihood estimator, namely bias

and characterization of estimator uncertainty. In this case, although the results were

satisfactory in terms of verifying that the theory holds even for modest size samples,

we also found out that the performance was not as good as the GMM estimator for the

two models considered. On the one hand we had to simplify our models by fixing one of

the parameters, and on the other hand the variance of the spectral likelihood estimator

turned out larger than for the GMM estimator with optimal weights. This provides

evidence that for the class of models considered the use of moment based inference, in

particular the 2-step GMM estimator, is more adequate than the data transformation

approach using a Fourier transform.

The aim of this work was to explore different methods of performing inference in cases

where a likelihood function is unavailable. The focus was on the estimating functions

theory, and the first achievement was to combine the estimating functions framework

which is significantly known in the field of statistics with the GMM methodology which is

widely used in econometrics but not so much used in the area of statistics. An example

of this lack of familiarity with the GMM methodology by part of the community of

practitioners is the class of models that provided some motivation for this work, the class

of point-process model for rainfall. Hence, another important outcome of this work was

to show that by putting together the estimating functions and GMM theories one was

able to suggest a straightforward improvement to the inference methods currently used
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for estimating parameters of the Poisson and Neyman-Scott rectangular pulses model.

One potential criticism to moment based inference is that the result of the inferential

procedure may depend on the choice of properties that are used in the estimation,

however as it was shown in this thesis this problem can be solved, if not entirely at least

partially by having data dependent weights under a GMM setting. This problem of the

estimator depending on the choice of moments was also one of the motivations to look

into a data transformation approach. It was already mentioned that this problem can be

solved within the framework of moment based inference. However it is also important to

emphasize a last result included in this thesis, this is the ability to calculate confidence

regions for the spectral likelihood estimator under mild conditions.

Some of the results in this thesis may raise some interesting research questions that

can be the basis of further work, namely in the field of estimation using the spectral

likelihood. One question regards the use of a 2-step approach in the estimation of the

covariance matrix of the spectral scores, using simulations as suggested in the GMM

optimal weights case. The other derives from the fact that to build our spectral scores

we used the average of the periodogram, which is equivalent to the spectral estimate

obtained when smoothing the raw periodogram using a Barlett’s window (Priestley,

1981). This suggests that investigating the performance of other smoothed spectral

estimators can be of interest, particularly in terms of finite sample performance.

The theory described here is general in nature, even if its development in this thesis has

some focus in the particular class of point-processes for rainfall. However, for numerous

models of complex systems it will often be optimal to develop specialised methods that

are in general more difficult to implement, but by having specifically designed methods

for the particular problem one can improve the inference.
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