
Learning additive models online with fast
evaluating kernels?

Mark Herbster

Department of Computer Science
University College London

Gower Street
London WC1E 6BT, UK
M.Herbster@cs.ucl.ac.uk

Abstract. We develop three new techniques to build on the recent ad-
vances in online learning with kernels. First, we show that an exponential
speed-up in prediction time per trial is possible for such algorithms as
the Kernel-Adatron, the Kernel-Perceptron, and ROMMA for specific
additive models. Second, we show that the techniques of the recent al-
gorithms developed for online linear prediction when the best predictor
changes over time may be implemented for kernel-based learners at no
additional asymptotic cost. Finally, we introduce a new online kernel-
based learning algorithm for which we give worst-case loss bounds for
the ε-insensitive square loss.

Introduction

The aim of this research is to make online learning with kernels more practical.
We do this in three ways. Initially, in Part 1 we present an algorithmic inno-
vation which speeds computation time for certain kernels designed for additive
modeling. This works with a broad class of algorithms such as those in [14, 13,
25, 15] and the algorithms presented in Part 2. Specifically, with an additive
spline kernel, on trial t we may predict and then update our hypothesis with
O(log t) computations as opposed to the usual O(t) computation time. In Part 2
we present a unified analysis of two algorithms, one for classification and one
for regression. The classification algorithm is a simple variant of the well-known
Perceptron [34] algorithm. We then present a novel algorithm for regression with
the useful property that it updates conservatively. We give a simple total loss
bound for this algorithm with the ε-insensitive square loss. Finally, in Part 2 we
show that the recent results of [21] may be applied and implemented efficiently
for online learning with kernels; this allows us to prove local loss bounds. These
bounds differ from total loss bounds in that they hold for any segment of the
sequence. Thus they are particularly relevant to online learning.

As discussed above the paper is divided into two parts. Each part is wholly
self-contained. However, the techniques presented in both parts are easily com-
bined.
? Mark Herbster was supported by ESPRC grant GR/M15972.

2

1 Fast kernel evaluation for additive models

Reproducing kernels were initially introduced in the machine literature for use
with the perceptron algorithm in [1]. The current popularity of kernel-based
methods is due to the successful integration of the “optimal separating hyper-
plane” method [41] with a kernel transformation to create the support vector
machine [7]. Recently there has a been a renewed interest in online kernel-based
algorithms both as a proxy for batch learning and in their own right. The use
of online kernel algorithms for batch learning [13, 14, 25, 33] has been proposed
for two essential reasons: first, their simplicity of implementation; and second,
whereas typical batch methods require memory quadratic in the dataset size,
typical online algorithms require memory linear in the dataset size. Thus for
the largest of datasets online algorithms may be the best option. A key obstacle
facing online kernel-based learners is the fact that on trial t prediction typically
requires O(t) time. In this part of the paper we tread a middle ground, in that we
restrict the hypothesis class of kernel-based learners to a class of additive mod-
els, but in compensation on trial t we may predict in O(log t) time, a per-trial
exponential speed-up. Another major problem with online kernel-based learners
is that the internal hypothesis representation on trial t is potentially of O(t)
size; thus an important goal of online kernel-based learners is to restrict the
representation to a finite size. In this paper we do not address this problem, but
in preliminary research [38] a broad framework was presented for online kernel-
based learners motivated by a regularized stochastic gradient descent update; it
was also pointed out that the online regularization led to weight decay and thus
potentially to bounds for an algorithm with finite memory size.

Additive modeling is a well-known technique from statistics [17] (also see
[16]) where we suppose the underlying hypothesis class is essentially additive,
i.e.,

f(x) =
d∑

i=1

fi(xi)

for d-dimensional data. In effect we attempt to learn a different smooth function
for each dimension. If we expect lower order correlations among the components,
it may be reasonable to explicitly expand the coordinate vectors by multiplica-
tion. However, the technique presented in this section is inappropriate for highly
correlated data, as in the classic postal digit recognition task [24].

The kernels and data structures presented in this part are compatible with
a number of online kernel-based learners such as presented in [13, 14, 25]1. The
key features that are required to make use of techniques of this part is an online
algorithm that changes its dual representation a single term at a time, and that
the computations lead to a single term being changed are not “too complex”. In
Part 2 we give two sample algorithms which are compatible with the speed-up
technique presented in this part.

1 For both the Kernel-Perceptron and ROMMA, we refer to their non-voted versions.

3

For simplicity we illustrate the idea in the batch setting. The well-known
dual representation of a kernel learner’s hypothesis is

f(x) =
m∑

i=1

αiK(xi, x), (1)

a regression prediction is simply f(x), whereas for classification the prediction
is sign(f(x)). In either case the straightforward method of evaluating f(x) re-
quires m steps. In this paper we show that for certain kernels only O(log m)
steps are needed after a preprocessing step. For example, consider the single
coordinate radial basis kernel K(p, q) = e−σ|p−q|. Now consider that a batch
learning procedure has determined the 2m parameters α1, . . . , αm, x1, . . . , xm of
the hypothesis f . In Figure 1 we show that f(x) as represented in Equation (1)
may be repeatedly evaluated for any x in O(log m) steps after a O(m log m)
preprocessing step. Thus rapid evaluation of the dual form (Equation (1)) with

Preprocessing:

1. Sort in ascending order x1, . . . , xm then relabel as x′1 < . . . < x′m and set x′0 = −∞.
2. Set α′j = αi when x′j = xi for i = 1, . . . , m.

3. Set lhs{eσp}[i] =
∑i

j=1
α′je

σx′j for i = 0, . . . , m.

4. Set rhs{e−σp}[i] =
∑m

j=i+1
α′je

−σx′j for i = 0, . . . , m.

Evaluation:
We may evaluate f on an arbitrary x as follows:

1. With a binary search let j∗ = max{j : x′j ≤ x}.
2. Let f(x) = lhs{eσp}[j

∗]e−σx + rhs{e−σp}[j
∗]eσx.

Fig. 1. Evaluating f(x) =
∑m

i=1
αie

σ|xi−x| in O(log m) time

K(p, q) = e−σ|p−q| requires O(m) space but only O(log m) time. For the sake of
comparison this kernel may be viewed as intermediate between the the kernels
e−σ(−p−q) and e−σ(p−q)2 . The first kernel is a special case of kernels in the form
Kk(p, q) = k(p)k(q), which after preprocessing may be evaluated in O(1) time
and represented in O(1) space, since

f(x) =
m∑

i=1

αiKk(xi, x) =
[∑

αik(xi)
]
k(x).

Whereas for the kernel e−σ(p−q)2 it is an open problem if Equation (1) can be
evaluated for any x in less than O(m) steps with a polynomial preprocessing
step2.
2 All three kernels are reproducing kernels, however the Hilbert space induced by the

kernel e−σ(−p−q) is 1-dimensional. While the other two induced Hilbert spaces are
infinite-dimensional.

4

A spline kernel K : (0,∞)× (0,∞)→< of order z with an infinite number of
knots [39, 22] is defined by

Kd(p, q) =
z∑

r=0

(
z
r

)
2z − r + 1

min(p, q)2z−r+1|q − p|r +
z∑

r=0

prqr. (2)

In the short version of the paper we will only consider linear splines (z = 1)
which fit the data with a piecewise cubic polynomial between knots. The linear
spline kernel is then

K1(p, q) = 1 + pq +
1
2
|q − p|min(p, q)2 +

1
3

min(p, q)3 (3)

= 1 + pq +
{

1
2p2q − 5

6p3 p ≤ q
1
2pq2 − 5

6q3 p > q.
(4)

Following the schema of Figure 1, we may perform evaluations of the dual repre-
sentation (see Equation (1)) in O(log m) time after an O(m log m) preprocessing
step by creating 4 cached values for each data point and two globally cached
values. Thus assuming the notation of steps 1 and 2 of Figure 1, we define for
i = 0, . . . ,m,

lhs{ 1
2 p2}[i] = 1

2

∑i
j=1 α′j(x

′
j)

2 ; lhs{− 5
6 p3}[i] = − 5

6

∑i
j=1 α′j(x

′
j)

3

rhs{ 1
2 p}[i] = 1

2

∑m
j=i+1 α′jx

′
j ; rhs{− 5

6}
[i] = − 5

6

∑m
j=i+1 α′j

gs{1} =
∑m

j=1 α′j ; gs{p} =
∑m

j=1 α′jx
′
j .

We can then evaluate Equation (1) with linear splines in O(log m) time by finding
j∗ (see Figure 1), then computing

f(x) = gs{1}+gs{p}x+lhs{ 1
2 p2}[j

∗]x+lhs{− 5
6 p3}[j

∗]+rhs{ 1
2 p}[j

∗]x2+rhs{− 5
6}

[j∗]x3.

The key to our method, very loosely, is that the kernel must be separable
into left-hand sides and right-hand sides such that a linear combination of either

side is quick to evaluate; a technical discussion follows. Let χp(q) =
{

1 q ≤ p
0 q > p

,

denote a heavyside function. Then given a kernel3 K(p, q) : <×<→< we split it
into “left” and “right” functions, kL

p = K(p, ·)χp(·) and kR
p = K(p, ·)(1−χp(·));

thus K(a, b) = kL
a (b) + kR

a (b). Define the vector space FL
x = span {kL

y χx : y ∈
[x,∞) ∈ <}. Suppose there exists a vector space FL with basis φL

1 , . . . , φL
d

such that FL
x ⊂ span {φL

i χx : i = 1, . . ., d} for all x ∈ < (further suppose FL

is of the least dimension such that the former holds). Then we say that the
Hilbert space HK induced by K has left dimension d; the right dimension is
defined analogously. Without loss of generality assume that both the left and
right dimension are d; then K(p, ·) may be expanded in terms of the left and
right bases, i.e.,

K(p, ·) = [
d∑

i=1

βL
i φL

i (·)]χp(·) + [
d∑

j=1

βR
j φR

j (·)](1− χp(·))

3 The domain may be any ordered set for concreteness we choose <.

5

and if the constants (implicitly dependent on p) βL
1 , . . . , βL

d , βR
1 , . . . , βR

d are easily
computed then the techniques described below may be applied to compute (1)
on trial m in O(d log m) steps.

The extension of this method to additive multicoordinate kernels is straight-
forward. Given a 1-coordinate kernel K(p, q) the additive c-coordinate kernel is
simply

K(p, q) =
c∑

i=1

K(pi, qi).

Since each coordinate is additively independent we can apply the above technique
in each coordinate independently, which leads to a cost of O(cd log m) to evaluate
a point after preprocessing.

In an online setting it is possible to use a balanced binary tree (e.g., a red-
black tree) as the base data structure, to evaluate Equation (1) for the above
kernels in O(d log m) steps; then if the sum consists of m terms a new term
may be added to the structure in O(d log m) steps. The following is a sketch
of how this may be done. In the balanced binary tree each node i = 1, . . ., m
will contain a key xi, and 2d values αiβ

L
i,j , αiβ

R
i,j for each (j = 1, . . ., d, {L,R}).

For each of the values there is also an augmented value which is the sum of the
values αi′βi′,j in the subtree rooted at i (in [9, Theorem 15.1] it is demonstrated
that these augmented values may be implemented at no additional asymptotic
cost for operations on the balanced tree). Given the existence of these augmented
value sums, the 2d derived sums

∑
i:xi≤x αiβ

L
i,j and

∑
i:xi>x αiβ

R
i,j may each then

be computed O(d log m) steps. Thus evaluation of (1) and the addition of a new
term may be accomplished in O(d log m) steps. We provide further details in the
full paper.

2 Online algorithms

2.1 Preliminaries

A Hilbert space, in this paper, denotes a complete inner product space, which
may be finite or infinite dimensional; thus <n is a Hilbert space. The notation
〈v,w〉 indicates the inner product between v and w. The set H always denotes
an arbitrary Hilbert space.

2.2 Introduction

We consider the following on-line learning model based on a model introduced
by Littlestone [27, 26, 28]. Learning proceeds in trials t = 1, 2, . . ., `. The algo-
rithm maintains a parameter vector (hypothesis), denoted by wt. In each trial
the algorithm receives a pattern xt. It then produces some action or a predic-
tion denoted ŷt, a function of current pattern xt and hypothesis wt. Finally,
the algorithm receives an outcome yt, and incurs a loss L(yt, ŷt) measuring the
discrepancy between yt and ŷt.

6

In this part we give algorithms for classification and regression. For classifi-
cation we predict with ŷt = sign(〈wt,xt〉), while for regression ŷt = 〈wt,xt〉 and
we assign loss with

Lm(yt, ŷt) =
{

0 yt = ŷt

1 yt 6= ŷt
(5)

Lsq,ε(yt, ŷt) =
{

0 |yt − ŷt| ≤ ε
(|yt − ŷt| − ε)2 |yt − ŷt| > ε

(6)

for the mistake counting loss and the ε-insensitive square loss for classification
and regression, respectively. The mistake counting loss is a natural measure of
discrepancy. The ε-insensitive square loss may appear less natural, but consider
the following example. Suppose that a robot arm must place a peg into a hole
slightly larger than the peg. If the peg is placed in the hole there is no loss;
otherwise it is necessary to pay the squared distance from the boundary of
the hole to reorient the arm. Thus the ε-insensitive square loss is potentially
appropriate for situations where there is a natural tolerance for the “correct”
response. The ε-insensitive linear or quadratic loss is often used in batch learning
for support vector regression [40].

In the usual methodology of worst-case loss bounds the total loss of the
algorithm is expressed as a function of the total loss of any member in a com-
parison class of predictors [27]. Surprisingly, such bounds are achievable even
when there are no probabilistic assumptions made on the sequence of examples;
some prominent results are found in [26, 42, 8, 18, 23, 19, 44]. In this paper we
consider a simplification of the above goal, i.e., we give bounds on the loss of
algorithm in terms of any member of the realizable set of predictors, rather than
the whole comparison class. The realizable set are those predictors that “per-
fectly” fit the data. For classification the realizable set are those predictors that
separate the data with a given minimum margin. For regression, it is the set of
predictors for which the ε-insensitive square loss is zero over the data sequence.
The realizabilty condition is certainly a limitation on the bounds, particularly in
the classification case. However, it is less of a limitation in the regression case, as
there necessarily exists an ε such that the data will be realizable. In both cases,
however, the realizability restriction is less onerous with the kernel transforma-
tion, since the hypotheses’ classes are then much richer and there is the recent
technique in [37] to incorporate noise tolerance into a kernel by mixing it with
a delta function.

The key tool which we use to repeatedly construct updates for our algorithms
is projection as is defined below.

Definition 1. Given a Hilbert space H, the projection of a point w ∈ H onto a
closed convex nonempty set Γ ⊂ H is defined by:

PΓ (w) = arg min
u∈Γ

‖u−w‖. (7)

The existence and uniqueness of projection is well-known (e.g. [35, Theorem
4.1]); in this paper the needed projections are always simple to compute. In the

7

full version we give proofs for the methods of computation given for various pro-
jections. Given the definition of the projection above, we may give the following
well-known version of the Pythagorean Theorem.

Theorem 1. Given a Hilbert space H, a point w ∈ H, a closed convex set
Γ ⊂ H, and u ∈ Γ , then

‖u−w‖2 ≥ ‖u− PΓ (w)‖2 + ‖PΓ (w)−w)‖2
. (8)

In the special case where Γ is an affine set the above becomes an equality.

A hyperplane is an example of an affine set. The Pythagorean Theorem is the
main tool used to prove bounds for the algorithms given in this part.

2.3 Online algorithms for regression and classification

In this section we give two online algorithms (see Figure 2) for classification and
regression, and prove worst-case loss bounds. These algorithms are based on the
Prototypical projection algorithm (see Figure 3) which is a relatively well-known
technique from the convex optimization community. An early reference for a
version of this algorithm is found in the work of Von Neumann [31]. Bauschke
and Borwein [5] present a broadly generalized version of this algorithm and a
review of its many applications. The first application of this algorithm in the
machine learning literature was by Faber and Mycielski [11] to proving worst-case
square loss bounds for regression in the noise-free case; Cesa-Bianchi et. al. [8]
generalized this work to noisy data with the GD algorithm. In this section we will
discuss the application of the prototypical projection algorithm to classification
and regression, producing a simple variant of the Perceptron algorithm [34] and
a new online algorithm for regression with noisy data.

The following lemma regarding the convergence of the prototypical projection
algorithm is well-known.

Lemma 1. Given a sequence of convex set {U1, . . . ,U`} and a start vector w1

as input to the prototypical projection algorithm (see Figure 3) the following
inequality holds ∑̀

t=1

‖wt −wt+1‖2 ≤ ‖u−w1‖2 (13)

for all u ∈
⋂`

t=1Ut.

Proof. On any trial t the Pythagorean Theorem 1 implies the inequality

‖wt+1 −wt‖2 ≤ ‖u−wt‖2 − ‖u−wt+1‖2

for all u such that u ∈ Ut. Summing the previous inequality over all trials
t = 1, . . . , ` we have

∑̀
t=1

‖wt+1 −wt‖2 ≤ ‖u−w1‖2 − ‖u−w`+1‖2

8

Algorithms for arbitrary Hilbert Space H
Classification ε-insensitive Regression

Input: {(x1,y1), . . ., (x`,y`)}∈(H, {−1,1})` {(x1, y1), . . . , (x`, y`)} ∈ (H,<)`

Initialization: w1 = 0 w1 = 0, choose ε > 0

Prediction: Upon receiving the tth instance xt,
set yt = 〈wt, xt〉 then give the prediction:
ŷt = sign(yt) ŷt = yt

Update: Project wt onto the tth feasible set Ut, wt+1 = PUt(wt)

Feasible set: Ut = {v : 〈v,xt〉yt ≥ 1} Ut = {v : 〈v,xt〉 ∈ [yt − ε, yt + ε]}

Update Eq:

if ytyt ≥ 1 then
wt+1 = wt

else

wt+1 = wt +
yt−yt

‖xt‖2
xt

(9)

if yt ∈ [yt − ε, yt + ε] then
wt+1 = wt

else
s = sign(yt − (yt − ε))

wt+1 = wt +
yt+sε−yt

‖xt‖2
xt

(10)
Algorithms for data mapped to RKHS HK via kernel K : E × E→<

Input: {(x1,y1),. . ., (x`,y)̀}∈(E ,{−1,1})` {(x1, y1),. . ., (x`, y`)}∈(E ,<)`

Initialization: w1 = 0 (α1 = 0) w1 = 0 (α1 = 0), choose ε > 0

Prediction: Upon receiving the tth instance xt,

set yt = wt(xt) =
∑t−1

i=1
αiK(xi, xt) then give the prediction:

ŷt = sign(yt) ŷt = yt

Update: Project wt onto the tth feasible set Ut, wt+1 = PUt(wt)

Feasible set: Ut = {v : v(xt)yt ≥ 1} Ut = {v : v(xt) ∈ [yt − ε, yt + ε]}

Update Eq:

if ytyt ≥ 1 then
αt = 0

else

αt =
yt−yt

K(xt,xt)

(11)

if yt ∈ [yt − ε, yt + ε] then
αt = 0

else
s = sign(yt − (yt − ε))

αt =
yt+sε−yt
K(xt,xt)

(12)

wt+1 = wt + αtK(xt, ·)

Fig. 2. Projection algorithms for classification and regression

for all u ∈
⋂`

t=1Ut. Dropping the final term of the above inequality proves the
lemma.

An implication of the above lemma is that if
⋂`

t=1Ut is nonempty, and if we
repeatedly cycle through the input {U1, . . . ,U`}, then the Cauchy sequence
{w1,w2, . . .} generated by the prototypical projection algorithm necessarily con-
verges to a point in the above intersection.

We use the prototypical projection algorithm to produce online learning
algorithms by associating the feasible set sequence {U1, . . . ,U`} with the ex-
ample sequence {(x1, y1), . . . , (x`, y`)}. Each feasible set Ut consists of those
hypothesis vectors which are “compatible” with the last example. In the pro-
jection algorithm for classification, the feasible set is the halfspace of vectors

9

Input: A sequence of closed convex sets {U1, . . . ,U`} ⊂ H` and a point w1 ∈ H where
H is a Hilbert space.
Update: wt+1 = PUt(wt)

Fig. 3. Prototypical projection algorithm

Ut = {v : 〈v,xt〉yt ≥ 1} which classify the last example correctly with a margin4

greater than 1. For regression with the ε-insensitive square loss the feasible set
is the “hyper-rectangle” of vectors Ut = {v : 〈v,xt〉 ∈ [yt − ε, yt + ε]}. These
are the vectors which classify the last example correct up to an absolute error
of most epsilon. In order to prove bounds for these algorithms, we lower bound
each term of the sum in Equation (13) with a term that is the ratio of the loss
of the algorithm on that example with the squared norm of the instance. Thus
applying the lower bounds which are given in the Lemmas 2 and 3 in combi-
nation with Lemma 1 proves the worst-case loss bounds for classification and
ε-insensitive regression in Theorems 2 and 3 respectively.

Lemma 2. On any trial t the mistake-counting loss of the projection algorithm
for classification may be bounded by

Lm(yt, ŷt)
‖xt‖2 ≤ ‖wt+1 −wt‖2 (14)

Proof. Consider two cases. First, if Lm(yt, ŷt) = 0 the lemma is trivial, otherwise
we have

|yt − yt|2

‖xt‖2 = ‖wt+1 −wt‖2

by Update (9). Since Lm(yt, ŷt) ≤ |yt − yt|2 when yt 6= ŷt, the lemma is proven.

Lemma 3. On any trial t the ε-insensitive square loss of the projection algo-
rithm for regression may be bounded by

Lsq,ε(yt, ŷt)

‖xt‖2 ≤ ‖wt+1 −wt‖2 (15)

Theorem 2. Given a sequence of examples {(x1, y1), . . . , (x`, y`)}∈(H, {−1, 1})`

and a start vector w1∈H, let R=maxt=1,...,` ‖xt‖ then the cumulative mistakes
of the projection algorithm for classification is bounded by

∑̀
t=1

Lm(yt, ŷt) ≤ R2‖u−w1‖2 (16)

4 Margin here has a different meaning than typically used in discussion of the Percep-
tron algorithm or the Maximal margin algorithm. Generally the margin is allowed
to vary while the norm of the classifier is fixed to less than 1. In our discussion the
margin is fixed to be larger than 1 while the norm of the classifier is allowed to
vary. We choose these semantics to indicate the parallels between classification and
regression.

10

for all u such that 〈u,xt〉yt ≥ 1 for t = 1, . . . , `.

This algorithm for classification is a simple variant of Rosenblatt’s perceptron
algorithm [34], and the bound proven, though differing in form, is the same as
that proven by Novikoff [32]. This algorithm is equivalent to the perceptron if
the data is always normalized and we also update when correct but ytyt < 1. As
given in the conditions of theorem the algorithm only provides a bound when
the data is linearly separable; recently, however, Freund and Schapire [13] have
proven a bound for the perceptron algorithm (in <n) when the data is linearly
inseparable; this technique is further extended in [37] for inseparable data in
more general kernel spaces.

Theorem 3. Given a sequence of examples {(x1, y1), . . . , (x`, y`)} ∈ (H,<)`

and a start vector w1 ∈ H, let R = maxt=1,...,` ‖xt‖. Then the cumulative ε-
insensitive square loss of the projection algorithm for regression is bounded by

∑̀
t=1

Lsq,ε(yt, ŷt) ≤ R2‖u−w1‖2 (17)

for all u such that 〈u,xt〉 ∈ [yt − ε, yt + ε] for t = 1, . . . , `.

For the special case when ε = 0 this theorem was first proven in [11]. The GD
algorithm [8] is also designed for online regression on noisy data, a salient feature
of the GD algorithm is that given an upper bound on R (as defined above) the
algorithm may be tuned so that a worst-case bound on the usual square loss
is given for any data sequence, whereas the projection algorithm for regression
requires for its bound the assumption that

∑`
t=1Ut is non-empty.

Two useful properties of the projection algorithm for regression are that it is
convergent (see the discussion following Lemma 1), and that like the perceptron
algorithm it is conservative, i.e., for a given example we only update if |yt −
ŷt| ≥ ε. This feature is particularly important when applying the algorithm in
conjunction with a kernel transformation, since on any given example when there
is a nonvacuous update (see Equation (12) in Figure 2) the representation of the
hypothesis grows, and this increases the computation time for future predictions.

2.4 Methods for local loss bounds

In the traditional methodology of total loss bounds the performance over the
whole sequence is bounded; but nothing is known about the performance over
any particular contiguous subsequence of trials except in a very weak average
sense. However, for many online learning applications what is needed is a local
guarantee, i.e., a statement of this form: given an unbounded sequence of trials
the loss over trials s to s′ is bounded by X. Local bounds are thus appropriate
when the best predictor for the example sequence is changing over time. There
have been a number of papers [28, 20, 3, 43, 6, 21] which prove loss bounds in
terms of a measure of the amount of change of the best predictor over time. These
bounds have been called shifting or switching bounds. The local bounds of this

11

section are direct simplifications of the shifting bounds in [21]. Here we give local
bounds rather than shifting bounds, however, since less introductory machinery
is required, the bounds are easier to interpret, and weaker assumptions on the
example sequence are possible in the theorem statements.

Examining the Theorems 2 and 3 it is clear that statements of the form

s′∑
t=s

L(yt, ŷt) ≤ ‖ws − u‖2
R2, (18)

for all u ∈
⋂s′

t=sUt where R = maxt=s,...,s′ ‖xt‖ are provable. However, the weak-
ness of bounds of the above form is that ws is wholly unknown without reference
to the example sequence prior to trial s. We resolve this by introducing an ad-
ditional update step (first introduced in [21]) into the Prototypical projection
algorithm which constrains the hypotheses vectors w1, . . . to an origin centered
hypersphere Γγ with radius γ (see Figure 4) by projection. The projection cor-

Input: A constraint parameter γ > 0 , a sequence of closed convex sets {U1, . . .} ⊂ H∞

and a point w1 ∈ Γγ where Γγ = {v : ‖v‖ ≤ γ} ⊂ H and H is a Hilbert space.
Update 1: w′

t = PUt(wt)
Update 2: wt+1 = PΓγ (w′

t)

Fig. 4. Constrained prototypical projection algorithm

responding to the new update may be computed as follows:

PΓγ
(w) =

{
w w ∈ Γγ

γ w
‖w‖ w 6∈ Γγ .

(19)

We can now prove the analogue of Lemma 1.

Lemma 4. Given a constraint parameter γ > 0, a sequence of convex sets
{U1, . . .} and a start vector w1 ∈ Γγ where Γγ = {v : ‖v‖ ≤ γ} as input to
the constrained prototypical projection algorithm (see Figure 4); then for any
positive integers s and s′ the inequality

s′∑
t=s

‖wt −w′
t‖

2 ≤ (γ + ‖u‖)2 (20)

holds for all u ∈
⋂s′

t=sUt such that ‖u‖ ≤ γ.

Proof. On any trial t the Pythagorean Theorem 1 implies the following two
inequalities:

‖w′
t −wt‖

2 ≤ ‖u−wt‖2 − ‖u−w′
t‖

2

for all u such that u ∈ Ut, and

0 ≤ ‖u−w′
t‖

2 − ‖u−wt+1‖2

12

for all u such that u ∈ Γγ . Combining the above two inequalities gives

‖w′
t −wt‖

2 ≤ ‖u−wt‖2 − ‖u−wt+1‖2

for all u such that u ∈ Ut

⋂
Γγ . Summing the previous inequality over all trials

t = s, . . . , s′ we have

s′∑
t=s

‖w′
t −wt‖

2 ≤ ‖u−ws‖2 − ‖u−ws′+1‖2

for all u ∈ [
⋂s′

t=sUt]
⋂

Γγ . Maximizing the first term and dropping the second
term of the right hand side of the above inequality proves the lemma.

We designate the modification of projection algorithms in Figure 2 with the
additional constraint update (see Equation (19)) as constrained projection algo-
rithms for classification and regression. The following two theorems give local
loss bounds for these algorithms by combining the Lemma above with Lemmas 2
and 3.

Theorem 4. Given a sequence of examples {(x1, y1), . . .} ∈ (H, {−1, 1})∞, a
constraint parameter γ > 0, a start vector w1 ∈ Γγ ⊂ H, and two positive
integers s and s′, where Γγ = {v : ‖v‖ ≤ γ} and R = maxt=s,...,s′ ‖xt‖ then
the cumulative mistakes of the constrained projection algorithm for classification
between trials s and s′ is bounded by

s′∑
t=s

Lm(yt, ŷt) ≤ R2(γ + ‖u‖)2 (21)

for all u such that 〈u,xt〉yt ≥ 1 for t = s, . . . , s′ and ‖u‖ ≤ γ.

Theorem 5. Given a sequence of examples {(x1, y1), . . .} ∈ (H,<)∞, a con-
straint parameter γ > 0, a start vector w1 ∈ Γγ ⊂ H, two positive integers s and
s′, where Γγ = {v : ‖v‖ ≤ γ} and R = maxt=s,...,s′ ‖xt‖ then the cumulative
ε-insensitive square loss of the constrained projection algorithm for regression
between trials s and s′ is bounded by

s′∑
t=s

Lsq,ε(yt, ŷt) ≤ R2(γ + ‖u‖)2 (22)

for all u such that 〈u,xt〉 ∈ [yt − ε, yt + ε] for t = s, . . . , s′ and ‖u‖ ≤ γ.

2.5 Incorporating kernels

Reproducing kernel preliminaries We assume that the reader is already
familiar with kernel-based methods (for an overview see [10]). This section is
for notation and a cursory review of kernel concepts. For our purposes, given

13

an abstract set E a kernel is a function K : E × E→< where, for every finite
set {x1, . . . , xn} ⊂ En and every set of scalars {α1, . . . , αn} ⊂ <n the following
holds:

n∑
i=1

n∑
j=1

αiαjK(xi, xj) ≥ 0.

Such a kernel is known in the literature as a reproducing kernel [2], a pos-
itive definite kernel [29] and as a positive hermitian matrix [30]. An imme-
diate consequence of the above property is that the kernel is symmetric, i.e.,
K(x, y) = K(y, x). The associated Hilbert space HK is the completion of the
span of the set {K(x, ·) : x ∈ E} where the associated inner product between
elements with finite representations f =

∑n
i=1 αiK(xi, ·), f ′ =

∑n′

i=1 α′iK(x′i, ·)
is given by

〈f, f ′〉 =
n∑

i=1

n′∑
j=1

αiα
′
jK(xi, x

′
j). (23)

When the representations are not finite, the appropriate limits are taken. The
key property of HK which we will use repeatedly is the reproducing property,
which states that, given any f ∈ HK and any x ∈ E then

〈f(·),K(x, ·)〉 = f(x). (24)

The kernel may be viewed as a function that computes an inner product in a
feature space [10]. None of the results in this paper depend explicitly on the
existence of a feature space representation, thus it is not introduced.

The kernel transformation algorithmic details and bounds Given a data
set {(x1, y1), . . . , (x`, y`)}∈(E ,<)`, a reproducing kernel K : E×E→<, and an al-
gorithm A which accepts as input an example sequence {(x1, y1), . . . , (x`, y`)} ∈
(H,<)`, the new algorithm AK simply executes algorithm A on the data set
{(K(x1, ·), y1), . . . , (K(x`, ·), y`)}. The kernel algorithms in Figure 2 follow di-
rectly by syntactic substitution of K(x, ·) for x and application of the reproduc-
ing Property (24). The transformation of Theorems 2, 3, 4 and 5 follow from
similar substitutions. We give as an example the transformation of Theorem 3
below, but we omit the other transforms since they follow the same schema.

Theorem 6. Given a sequence of examples {(x1, y1), . . . , (x`, y`)} ∈ (E ,<)` and
a start vector w1 ∈ HK , let R = maxt=1,...,` K(xt, xt), then the cumulative ε-
insensitive square loss of the kernel projection algorithm for regression is bounded
by ∑̀

t=1

Lsq,ε(yt, ŷt) ≤ R2‖u−w1‖2 (25)

for all functions u ∈ HK such that u(xt) ∈ [yt − ε, yt + ε] for t = 1, . . . , `.

14

Recently strong total loss bounds have been proven for ridge regression [12, 44,
4], in [36] a method to perform kernel ridge regression is given. Unfortunately the
loss bounds for ridge regression with kernels do not transform since the proofs
rely on properties of <n. A transformation of those bounds is an interesting open
problem.

Computational issues When implementing the projection algorithms for re-
gression and classification, significant computational shortcuts can be taken
when the patterns of the example sequence are from <n. This is because when
summing two vectors x and y from <n, the resultant x+y has the same sized rep-
resentation as x or y under a simplified model of computation, i.e., size(x+y) =
size(x) = size(y). Whereas when the elements are drawn from an arbitrary
Hilbert space, as with kernel-based algorithms, size(x + y) = size(x) + size(y).
Thus for data from <n the projections algorithms take O(n) time per trial.
Whereas the kernel-based projection algorithms require for typical kernels and
typical implementations O(m) kernel computations on trial t (in order to pre-
dict), if there have been m ≤ t nonvacuous updates. In Part 1, there are presented
particular kernels for which we require only O(log m) computation time on trial
t after m nonvacuous updates.

The implementation of the constraint update, PΓγ
(w) (see Equation 19)

requires O(n) time when w ∈ <n. The naive implementation of the constraint
update for the kernel-based algorithms requires t2 kernel computations after t
nonvacuous updates since the function w has a representation of length t, i.e.,
wt+1 =

∑t
i=1 αiK(xi, ·) since the inner product (see Equation (23)) is

‖wt+1‖2 = 〈wt+1,wt+1〉 =
t∑

i=1

t∑
j=1

αiαjK(xi, xj).

However, we may use a simple recurrence to track the value of ‖wt+1‖, since
after an update we have only one new α value, i.e.,

‖wt+1‖2 = ‖wt‖2 +
t−1∑
i=1

αiαtK(xi, xt) +
t−1∑
j=1

αtαjK(xt, xj) + α2
t K(xt, xt)

= ‖wt‖2 + 2αtyt + α2
t K(xt, xt).

Since in order to predict we already compute yt, we may keep track of ‖wt+1‖
at no additional asymptotic cost. Implementing the constraint update then only
requires the additional step of shrinking wt by ρt ∈ (0, 1] (see Equation 19).
Rather than explicitly multiplying each term of wt by ρt, we maintain the scale
constant ρ(t) =

∏t
i=1 ρi (ρ0 = 1), all arithmetic is then done with the scale

constant implicitly. Thus it can be seen that the projection update leads to a
version of weight decay, since at the start of trial t we have

wt =
t−1∑
i=1

t−1∏
j=i

ρjαiK(xi, ·),

15

internally, however, we maintain the representation

wt = ρ(t−1)
t−1∑
i=1

1
ρ(i−1)

αiK(xi, ·)

so that the constraint update may be implemented in O(1) time rather than
O(t) time.
Acknowledgments: The author would like to thank Nello Cristianini for useful
discussions and Mary Dubberly for the proofreading of an early draft. A portion
of this research was undertaken while at the Computer Learning Research Centre
at Royal Holloway University.

References

1. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoér. Theoretical foundations
of the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

2. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–
404, 1950.

3. P. Auer and M. K. Warmuth. Tracking the best disjunction. Journal of Machine
Learning, 32(2):127–150, August 1998. Special issue on concept drift.

4. Katy S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density
estirnation with the exponential family of distributions. In Kathryn B. Laskey
and Henri Prade, editors, Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence (UAI-99), pages 31–40, S.F., Cal., July 30–August 1 1999.
Morgan Kaufmann Publishers.

5. Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for solving
convex feasibility problems. SIAM Review, 38(3):367–426, September 1996.

6. A. Blum and C. Burch. On-line learning and the metrical task system problem.
Machine Learning, 39(1):35–58, 2000.

7. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Proc. 5th Annu. Workshop on Comput. Learning Theory,
pages 144–152. ACM Press, New York, NY, 1992.

8. N. Cesa-Bianchi, P. Long, and M.K. Warmuth. Worst-case quadratic loss bounds
for on-line prediction of linear functions by gradient descent. IEEE Transactions
on Neural Networks, 7(2):604–619, May 1996.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

10. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

11. V. Faber and J. Mycielski. Applications of learning theorems. Fundamenta Infor-
maticae, 15(2):145–167, 1991.

12. D. P. Foster. Prediction in the worst case. The Annals of Statistics, 19(2):1084–
1090, 1991.

13. Yoav Freund and Robert E. Schapire. Large margin classification using the per-
ceptron algorithm. Machine Learning, 37(3):277–296, 1999.

14. Thilo-Thomas Frieß, Nello Cristianini, and Colin Campbell. The Kernel-Adatron
algorithm: a fast and simple learning procedure for Support Vector machines. In
Proc. 15th International Conf. on Machine Learning, pages 188–196. Morgan Kauf-
mann, San Francisco, CA, 1998.

16

15. C. Gentile. A new approximate maximal margin classification algorithm. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems, volume 13, 2001.

16. Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and
neural networks architectures. Neural Computation, 7(2):219–269, 1995.

17. T. Hastie and R. Tibshirani. Generalized additive models, 1990.
18. D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual

sequences under general loss functions. IEEE Transactions on Information Theory,
44(2):1906–1925, September 1998.

19. D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds for single
neurons. Journal of Machine Learning, 2001. To appear.

20. Mark Herbster and Manfred Warmuth. Tracking the best expert. In Proc. 12th
International Conference on Machine Learning, pages 286–294. Morgan Kaufmann,
1995.

21. Mark Herbster and Manfred K. Warmuth. Tracking the best regressor. In Proc.
11th Annu. Conf. on Comput. Learning Theory, pages 24–31. ACM Press, New
York, NY, 1998.

22. G. S. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions.
J. Math. Anal. Applications, 33(1):82–95, 1971.

23. J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates
for linear prediction. Information and Computation, 132(1):1–64, January 1997.

24. Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of
learning algorithms for handwritten digit recognition, 1995.

25. Y. Li. and P. Long. The relaxed online maximum margin algorithm. Machine
Learning, 2001.

26. N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1988.

27. N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algo-
rithms. PhD thesis, Technical Report UCSC-CRL-89-11, University of California
Santa Cruz, 1989.

28. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

29. J. Mercer. Functions of a positive and negative type and their connection with
the threory of integral equations. Philosophical Transactions Royal Society London
Ser. A., 209, 1909.

30. E. H. Moore. General Analysis. Part I. American Philosophical Society, Philadel-
phia, 1935.

31. J. Von Neumann. Functional Operators, Vol II. The Geometry of orthogonal spaces,
volume 22. Princeton University Press, 1950.

32. A. Novikoff. On convergence proofs for perceptrons. In Proc. Sympos. Math. Theory
of Automata (New York, 1962), pages 615–622. Polytechnic Press of Polytechnic
Inst. of Brooklyn, Brooklyn, N.Y., 1963.

33. J. Platt. Fast training of support vector machines using sequential minimal op-
timization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods — Support Vector Learning, pages 185–208, Cambridge, MA,
1999. MIT Press.

34. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psych. Rev., 65:386–407, 1958. (Reprinted in Neuro-
computing (MIT Press, 1988).).

17

35. Walter Rudin. Real and Complex Analysis. McGraw-Hill, New York, 3 edition,
1986.

36. G. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm
in dual variables. In Proc. 15th International Conf. on Machine Learning, pages
515–521. Morgan Kaufmann, San Francisco, CA, 1998.

37. John Shawe-Taylor and Nello Cristianini. Further results on the margin distri-
bution. In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages 278–285.
ACM Press, New York, NY, 1999.

38. A. Smola. Large scale and online learning with kernels. Talk given Dec 5, 2000
at Royal Holloway University, based on joint work with J. Kivinen, P. Wankadia,
and R. Williamson.

39. V. Vapnik. Statistical Learning Theory. John Wiley, 1998.
40. V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approx-

imation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages
281–287, Cambridge, MA, 1997. MIT Press.

41. V. N. Vapnik and A. Y. Chervonenkis. Teoriya raspoznavaniya obrazov. Statis-
ticheskie problemy obucheniya. [Theory of Pattern Recognition]. Izdat. “Nauka”,
Moscow, 1974.

42. V. Vovk. Aggregating strategies. In Proc. 3rd Annu. Workshop on Comput. Learn-
ing Theory, pages 371–383. Morgan Kaufmann, 1990.

43. V. Vovk. Derandomizing stochastic prediction strategies. In Proc. 10th Annu.
Workshop on Comput. Learning Theory. ACM Press, New York, NY, 1997.

44. Volodya Vovk. Competitive on-line linear regression. In Michael I. Jordan,
Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information
Processing Systems, volume 10. The MIT Press, 1998.

