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Abstract. This paper proposes a new tractography algorithm utilising
measures of fiber dispersion derived from diffusion weighted magnetic
resonance (DW-MR) imaging. Tractography estimates connectivity by
integrating a pathway from a seed point following directional information
derived from DW-MR images. Current tractography techniques follow a
discrete set of directions given in each voxel of a DW-MR image and
probabilistic techniques account for noise induced uncertainty on those
discrete directions. Histological evidence suggests that fiber orientation
dispersion exists in areas of white matter such as the centrum semiovale,
representing a continuum of potential fiber orientations which cannot
be accurately summarised by a limited set of discrete directions. Recent
studies have shown that measures of fiber dispersion in brain white mat-
ter can be directly measured from DW-MR imaging data and explicitly
represented in the orientation distribution function (ODF) of a voxel, but
such measures have yet to be used in guiding tractography algorithms.
We present a tracking algorithm which makes use of ODFs which ac-
count for underlying fiber dispersion to trace potential fiber pathways,
we compare this method with traditional tracking methods on simulated
data and in vivo human data, showing that measures of fiber dispersion
can aid tractography in finding connectivity commonly missed by current
tractography methods.

1 Introduction

Tractography is a powerful tool to probe the geometric structure of white matter
non-invasively in vivo from diffusion weighted magnetic resonance images. Trac-
tography algorithms estimate connectivity between different functional brain
regions, giving us insight into brain function of great importance to neurological
knowledge and understanding [1]. Tractography can also provide us with infor-
mation on white matter structure which is difficult or impossible to define using
anatomical images alone, aiding in surgical planning [2].

Tractography algorithms estimate connectivity by integrating pathways through
a DW-MR image volume to estimate potential connections between different
regions of the brain. Current deterministic and probabilistic tractography tech-
niques follow a discrete set of directions given by diffusion tensor imaging [3]



or more sophisticated multifiber techniques such as Qball [4] and PASMRI [5],
which account for multiple fiber populations per voxel. Probabilistic tractogra-
phy accounts for noise-induced uncertainty in the dominant direction.

A significant flaw of current tractography approaches is the assumption of a
discrete set of fiber directions per voxel. Post mortem dissection confirms that in
addition to crossing fiber configurations, regions of fanning fibers exist in brain
regions such as the centrum semiovale [6]. Current tractography techniques do
not explicitly address the continuum of potential directions available in such
regions due to underlying fiber dispersion.

Global tractography [7–9] provides an elegant solution to resolving con-
tentious voxel fiber configurations such as crossing and fanning by solving for
the entire projectome simultaneously. The drawback of a global approach is
however the practicality of obtaining solutions. Many global tractography im-
plementations require extensive computing resources or have long running times
of several weeks on standard hardware. Combined with the fact that reaching the
global minimum of such an astronomical optimisation is a practical impossibility,
global tractography is not necessarily an ideal solution.

Recent studies [10–12] have demonstrated that intra-voxel fiber dispersion
can be estimated using DW-MRI. These estimates of fiber dispersion within a
voxel can provide tractography algorithms the appropriate basis to fully explore
potential fiber pathways in regions of dispersing fiber structure such as the cen-
trum semiovale, avoiding the potential for false negative connections due to the
lack of coverage of the potential trajectories in fanning regions based on the as-
sumption of discrete voxel fiber directions. Although Kaden et al [11] estimates
fiber dispersion in each voxel this information is only used to sample the possi-
ble orientation at the initial tracking location, subsequent tracking is limited to
following the principle direction in each incident voxel.

In this paper we present the first tracking algorithm utilising estimates of
intra-voxel fiber dispersion to explore the connectome thoroughly. The algorithm
makes use of distributions derived from fitting models intrinsically incorporating
fiber dispersion to the diffusion weighted MR data using NODDI (neurite ori-
entation dispersion and density imaging) [13]. Section 2.1 describes the method
of obtaining the ODFs based on underlying fiber dispersion and in section 2.2
we outline the details of the tracking algorithm. In section 3.1 we present a
comparison with traditional tracking methods on simulation data, showing the
advantages of utilising dispersive ODFs. In section 3.4 we apply the algorithm
to in vivo data and compare with results from traditional tracking.

2 Methods

2.1 DispersionODF

To obtain the dispersive ODFs from in vivo data we use NODDI [13], which
produces estimates of the orientation distribution function (ODF). In [13] the
ODFs are estimated by fitting a Watson distribution to the data. Here we ex-
tend the technique to account for cylindrically assymetrical dispersion by fitting



a Bingham distribution, the details of which will be reported elsewhere. The
models are fitted to the data with the routine described in [14]. We find κ1
and κ2 for the Bingham model in every voxel where the Bingham distribution
f : S2 7→ R+ is described as:
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exp [κ1(µ1 · n)2 + κ2(µ2 · n)2] (1)

κ1 and κ2 are parameters defining the degree of dispersion along the axes µ1

and µ2 respectively. F1(1/2, 3/2, κ1, κ2) is the hypergeometric function. A cho-
sen fiber signal model is used to estimate the MR signal from a fiber orientation
distribution described by the above Bingham distribution and κ1, κ2, µ1 and µ2

are optimised to find the best description for the data. An isotropic compartment
is also added to the signal model. This provides us with a distribution repre-
senting fiber dispersion derived directly from a model fitted to the data in each
voxel, representing an accurate estimate of the potential orientation dispersion
of the underlying tissue.

The Bingham distribution is an antipodially symmetric distribution, which,
in contrast to the Watson distribution, is not cylindrically symmetric, giving a
measure of the degree of orientation dispersion separately for two orthogonal axes
which are perpendicular to the principle direction. The Bingham distribution
therefore nicely summarises the degree of fiber dispersion in each voxel along
two seperate, orthogonal axes. Figure 1 shows Bingham distributions fitted in a
voxel in the corpus callosum 1(a) and another voxel in the centrum semiovale 1(b)
showing how the Bingham distribution captures the higher degree of dispersion
in the centrum semiovale where histology confirms the presence of fanning fiber
structures.

(a) (b)

Fig. 1. Example Bingham distributions fitted in single voxels in the mid-saggital corpus
callosum 1(a) and deep within the centrum semiovale 1(b). The red interior structure
shows the form of the distribution with probability density plotted with respect to polar
radius. The probability density is also projected onto the translucent outer sphere in
colour. The colour key depicts proportion of maximum probability density.



2.2 Tracking Algorithm

Our tracking algorithm adapts the strategy used by Friman in [15]. This ap-
proach allows us to employ a fully probabilistic framework exploring distribu-
tions based on fiber dispersion while applying suitable priors to limit curvature.
Friman’s approach accommodates only the uncertainty in the principle diffusion
direction induced by noise, image artifacts and partial volume effects; we instead
incorporate underlying fiber dispersion directly in the ODF used to guide the
tracking.

Specifically, to propagate the track through the image, starting from a seed,
we choose a propagation direction vi from a distribution formed from the prod-
uct of the local ODF and a prior on the allowable deviation from the previous
direction vi−1:

P (v̂i|v̂i−1, κ1, κ2) =
P (v̂i|κ1, κ2)P (v̂i|v̂i−1)

P (v̂i)
, (2)

where P (v̂i|κ1, κ2) is the Bingham distribution described above.
For the angular Prior P (v̂i|v̂i−1), we use a distribution given by:

P (v̂i|v̂i−1) =

{
(v̂Ti v̂i−1)γ , if v̂Ti v̂i−1 ≥ 0.

0, if v̂Ti v̂i−1 < 0.
(3)

Sampling from this joint distribution allows exploration of the potential path
directions in dispersive fiber regions while regularizing the curvature of the path.
γ defines the strength of the curvature prior. Low values accommodate large
degrees of deviation per track step, exploring more of the dispersion in each
voxel, however, this also produces highly irregular tracts. Higher values promote
smooth, slowly curving pathways which correspond to known tract geometries.
Experiments on synthetic data suggest that a good choice for gamma is 24 (see
section 3.2).

Due to the complexities and potential computational costs of various methods
of sampling the continuous PDF given in equation 2 we choose, like Friman, to
approximate the continuous PDF with a discrete PDF. By using a sufficiently
large number of points spread evenly across the unit sphere and evaluating the
PDF on the unit vector defined by each point and the origin, it is trivial to then
draw a sample from this discrete PDF. As Friman, we use 2562 directions derived
from the vertices on the unit sphere of a fourfold tesellation of an icosahedron.

3 Experiments and results

3.1 Synthetic experiments

For the experiments on synthetic data, we created a numerical phantom structure
mimicking a region of dispersing fibers shown in Figure 2. The blue lines show
a subset of the strands which form the structure to illustrate the geometry of
the phantom. The region is 8 voxels wide by 6 voxels tall, with the voxel grid



shown behind the phantom. Each of the blue strands was subdivided into line
segments of length much smaller than the voxel scale.

Fig. 2. Structure of synthetic dispersing phantom. The blue lines show a subset of the
strands forming the structure, for illustration.

3.2 Determination of γ

We use the phantom described in section 3.1 to obtain the most appropriate
value of γ. ODFs were derived by fitting Bingham distributions directly to the
phantom structure in each voxel. We then tracked from a region of the base of the
phantom using the algorithm described in section 2.2 with a range of values of γ
(Figure 2). Figure 3(a) shows that at low values of γ such as 1, irregular tracks
result, however, at a significantly higher value of γ = 50 (Figure 3(f)), such a
strong prior on curvature can limit the potential trajectories of the tracks, hence
limiting exploitation of the dispersive ODFs. Satisfactory results can be achieved
for a range of intermediate values. For this demonstration of the algorithm we
choose γ = 24 (Figure 3(e)), however, γ may reasonably be tuned within a range
of values for other applications if necessary.

3.3 Tracking on synthetic data

To evaluate the effectiveness of utilising measures of underlying fiber dispersion
in tractography, we created a simulated DW-MR dataset based on the phan-



(a) γ = 1 (b) γ = 5

(c) γ = 15 (d) γ = 24

(e) γ = 35 (f) γ = 50

Fig. 3. Tracking through a synthetic region of dispersion utilising different values of
the constant γ in equation 3. The blue lines represent the extremeties of the phantom
described in section 3.1.



(a)

(b)

Fig. 4. Tractography based on standard PICo tractography techniques (Figure 4(a))
and using the tracking algorithm described in section 2.2 (Figure 4(b)). The Blue lines
represent a sparse selection of the underlying fibers of the phantom described in section
3.1. The red lines represent the tracking result.



tom described above and tracked using traditional PICo tractography [16] for
comparison. We then tracked using the algorithm described in section 2.2, us-
ing ODFs derived directly from the phantom structure. The DW-MR signal
was simulated using a 30 direction gradient scheme [17] as the basis for a sig-
nal simulation using the diffusion tensor model. A diffusion tensor signal with
d⊥ = 3.5101x10−4mm2/s and d‖ = 2x10−3mm2/s was simulated with a b-value
of 1000 s/mm2 for each line segment of the phantom and signals for all line
segments residing in each voxel were summed and normalised. We then fit dif-
fusion tensors to the artificial data derived from the phantom using the open
source diffusion MRI toolkit Camino [18]. Bingham distributions were fit to the
phantom fiber structure and used to track from a seed point at the base using
the algorithm described in section 2.2 (Figure 4(b)). This is compared against
standard PICo tracking (Figure 4(a)) using Camino.

3.4 in vivo data

We also test our tracking algorithm on in vivo data of a subject. DW-MR images
of a healthy male were acquired on a clinical 3T Philips system with isotropic
voxels of 2mm, TE=78ms, TR=12.5, with one 30 direction shell and one 60
direction shell with b-values of 1000 s/mm2 and 2000 s/mm2 respectively. This
dataset is the same as that used in [13]. The Camino toolkit was then used to fit
the diffusion tensor to the data and perform standard PICo tractography from
a single voxel seed in the mid-saggital corpus callosum. Figure 3 demonstrates
the performance of both standard PICo tractography (Figure 5(a)) and the
algorithm presented in section 2.2 (Figure 5(b)) tracking from a seed voxel in
the mid saggital corpus callosum. For both tracking examples, 5000 streamlines
in total are propagated from a single seed voxel. Tracts are terminated upon entry
into a grey matter mask extracted from a T1 weighted image using Freesurfer
[19] which is then cooregistered to the diffusion weighted image.

3.5 Discussion

The experiments on simulated data detailed in section 3.1 show that tracking
with traditional methods which ignore underlying fiber dispersion risks a large
amount of false negative connections due to the limited exploration of the un-
derlying fiber structure in regions exhibiting fiber dispersion. Figure 4(a) shows
the algorithm presented in section 2.2 explores connectivity more thoroughly in
such regions in this simple synthetic phantom. Figure 4 shows that including
dispersion in tractography allows greater exploration of potential connectivity
throughout the peripheral cortex. From a single voxel seed in the mid-saggital
corpus callosum standard PICo tractography streamlines are directed vertically
and do not explore the continuum of potential routes through the centrum semio-
vale (Figure 5(a)), whereas tractography based on the algorithm described in
section 2.2 explores connectivity spread throughout the peripheral cortex (Fig-
ure 5(b)), the tract density is evenly spread through the intermediate region of



(a)

(b)

Fig. 5. Maximum intensity projection map of tractography based on standard pico
tractography techniques (Figure 5(a)) and using the tracking algorithm described in
section 2.2 (Figure 5(b)) overlayed on FA map.



the centrum semiovale, where histological study verifies there exists fanning fiber
structure.

A problem that the algorithm does not currently address is that of fanning
polarity. Local estimates of dispersion are symmetric, and hence don’t distinguish
the direction in which the fibers disperse. There is currently no known method
to determine fanning polarity on the voxel scale [20], however recent work by
Savadjiev [21] has made progress towards resolving the polarity of a fanning
configuration by leveraging local voxel information. In future work, we plan to
investigate the inclusion of such methods to further refine tractography including
dispersion.

4 Conclusion

In this article, we present the first tracking algorithm (to our knowledge) utilis-
ing measures of intra-voxel fiber dispersion to explore the connectome. Including
direct measures of intra-voxel fiber dispersion in tractography shows clear ad-
vantages in thoroughly exploring potential connections, exploring connectivity
commonly missed by current tractography implementations.
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