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Abstract 
 
 This thesis describes the development of new methods to infer the nature of nervous 

control of the human heart using recordings of its electrical behaviour.  Malfunctions of this 

control system are a leading cause of death, and can be triggered by a diverse range of influences 

including basic physiological factors and one‘s emotional state.  However, the mechanisms of 

failure remain poorly understood, partly due to a lack of relevant human data.  The principal 

purpose of the work described in this thesis is to improve the availability of such data.   

A literature review was conducted, covering the current understanding of electrical activity 

in the heart and its control by the nervous system, as well as the techniques available to observe 

that behaviour.  A variety of novel techniques were developed and implemented experimentally to 

demonstrate their utility.  Specialised methods for the filtering and subsequent spectral analysis of 

electrocardiograph (ECG) signals were used to expose differences between psychologically distinct 

groups in terms of their response to emotional stimuli.  Algorithms were developed to 

automatically process unipolar electrogram recordings with minimal human intervention, enabling 

the analysis of heterogeneous electrophysiological dynamics, which requires datasets of a size that 

would otherwise make in-depth analyses intractable.  New indices were developed for measuring 

the timing of localised electrical activation and recovery from unipolar electrograms, in order to 

overcome the fact that conventional indices are not well suited to dynamic analyses.  Experiments 

using these tools demonstrated that respiration induces heart-rate independent modulation of the 

ventricles‘ electrophysiological behaviour via the autonomic nervous system.  

By improving the accessibility of human in situ data, the developed tools enable new 

research methodologies to study interactions between the heart and the nervous system, which may 

ultimately contribute to the development of new treatments to prevent thousands of deaths in the 

UK alone each year. 
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Nomenclature 
 

Symbols 

SA  The stabilised activation-time index.  An alternative to minV  in UEG analysis. 

Sd  Outward normal vector to an infinitesimal surface element, with magnitude equal to the 

element‘s area. 

dtdV /  The slope (first time-derivative) of the UEG.  

eI  Extracellular current. 

iI  Intracellular current. 

mI  Transmembrane current per-unit-length of myocyte. 

L  The local component of a UEG. 

 pxr ,  Distance from x to p. 

eR  In the core-conductor model, resistance per-unit-length for the extracellular domain. 

iR  In the core-conductor model, resistance per-unit-length for the intracellular domain. 

SR  The stabilised recovery-time index.  An alternative to Tup in UEG analysis. 

Rt  The steepest downward slope during phase 3 of an action potential, used as an index of 

the timing of repolarisation. 

STt  In recovery-time detection, the beginning of the window in which Tup can be found. 

Tend In recovery-time detection, the end limit of the window in which Tup can be found. 

Tup The steepest up-stroke of the UEG T-wave, used as an index of the timing of local 

repolarisation. 

Tdown The steepest downward slope of a positive T-wave in the UEG, sometimes used as an 

alternative index of the timing of local repolarisation. 

Td2 The timing of the first local-minimum of the UEG‘s second derivative after Tup. 

mv  Transmembrane electrical potential. 

minV  The steepest downward slope of an activation wave in the UEG, used as an index of the 

timing of local depolarisation. 

x  Distance along the length of a cell. 

 

  The remote component of a UEG. 

e  Extracellular conductivity. 

i   Intracellular conductivity. 

  The outer boundary surface of the heart. 

e  Extracellular electrical potential. 

i  Intracellular electrical potential. 

Z  Lead field. 
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Abbreviations 

ABP Arterial Blood Pressure. 

ANOVA Analysis of Variance. 

ANS Autonomic Nervous System. 

AOI Area of Influence of a pacing artefact after processing. 

APD Action Potential Duration. 

AR Auto-regressive (model). 

ARI Activation-Recovery Interval; taken from UEGs as a surrogate measure of APD. 

AV node Atrioventricular node 

BEG Bipolar Electrogram; a recording of electrical potential difference between two 

electrodes positioned within a few millimetres of each other, inside the myocardium or 

on its surface. 

BHL Brain-Heart Laterality; the hypothesis that left-right asymmetric processing in the brain 

may lead to laterally unbalance autonomic drive to the heart, leading to unstable cardiac 

electrical activity. 

BP Blood Pressure. 

BrPM Breaths Per Minute. 

CL Cycle length.  The inverse of heart rate. 

CNS Central Nervous System. 

CSN Cardiac Sympathetic Nerve. 

CSA Central Sleep Apnea. 

DI Diastolic Interval. 

ECG Electrocardiograph. 

ERP Effective Refractory Period; determined experimentally as the shortest period after 

depolarisation at which it is possible to induce another depolarisation using an artificial 

stimulus at the site. 

FFT Fast Fourier Transform. 

FIR FIR filter; Finite Impulse Response. 

fMRI Functional Magnetic Resonance Imaging. 

GUI Graphical User Interface. 

HDIG History Dependent Inverse Gaussian (model). 

HF The high-frequency (0.15 Hz – 0.4 Hz) band of the HRV spectrum. 

HF The power in the high-frequency (0.15 Hz – 0.4 Hz) band of the HRV spectrum.  

HFn The normalised version of HF.  See equation (15), page 73. 

HRV Heart Rate Variability. 

IAP Intracellular Action Potential; a recording of a single cell‘s electrical behaviour, using an 

electrode positioned inside the cell body and another just outside the membrane.  
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IAPS International Affective Picture System. 

IFT Inverse Fourier Transform. 

LF The low-frequency (0.04 Hz – 0.15 Hz) band of the HRV spectrum. 

LF The power in the low-frequency (0.04 Hz – 0.15 Hz) band of the HRV spectrum.  

LFn The normalised version of LF.  See equation (15), page 73. 

LV Left ventricle. 

MAP Monophasic Action Potential; a recording of electrical behaviour in a local area of 

myocardium, serving as an approximation of the action potential of a single cell in that 

region. 

MAP90 The time, during repolarisation, at which the MAP recovers 90 percent of the difference 

between the resting value and the peak (depolarised) value. 

MRI Magnetic Resonance Imaging. 

NS Nervous System.  

HRmin A measure of the ‗orienting‘ response; the minimum heart rate in the first 2 seconds 

after stimulus onset.  

HRmax A measure of the ‗orienting‘ response; the maximum heart rate occurring 2-4 seconds 

after stimulus onset. 

PSD Power Spectral Density. 

QT QT interval; the time between the Q-wave and T-wave in a single beat of the ECG. 

QTC QT corrected; the QT interval, normalised to account for heart-rate. 

RR RR interval; the time between two consecutive R-waves in the ECG. 

RSA Respiratory Sinus Arrhythmia; oscillations in heart-rate at the respiratory frequency. 

RV Right ventricle. 

SA node Sino-atrial node. 

SCD Sudden Cardiac Death. 

SSRI Selective Serotonin Reuptake Inhibitor; a class of antidepressant. 

UEG Unipolar Electrogram; a recording of electrical potential difference between two 

electrodes, one of which is positioned inside the myocardium or on its surface, while 

the other is positioned more remotely but within the conductive medium. 

VF Ventricular Fibrillation.  

VLF The very-low-frequency (0 Hz – 0.04 Hz) band of the HRV spectrum. 

VLF The power in the very-low-frequency (0 Hz – 0.04 Hz) band of the HRV spectrum. 
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I. Introduction 

I.A. Background 

Each contraction of the heart occurs in response to an electrical signal that is passed 

between adjacent cardiac muscle cells.  The orchestrated progression of this signal through the 

heart is essential to efficient propulsion of blood around the body, and disruptions to the signal can 

lead to fatal heart malfunctions.  In fact, the proximal cause of most cardiac-related deaths is some 

form of disruption in electrical activity.  In the UK alone, around 100,000 such cases – known as 

Sudden Cardiac Deaths – occur annually[NHS Choices, 2011].  Currently, no causal mechanism can be 

identified in approximately 1 in 20 of these cases[Bowker et al, 2003].  Consequently, research and clinical 

attention is directed towards the cardiac control mechanisms that exist to regulate the spread of 

electrical activity.  The human heart incorporates several such mechanisms to ensure a sufficient 

and reliable supply of blood to the body‘s organs.  High-level mechanisms, driven by nervous input 

and hormonal influences, adapt the heart‘s behaviour to fluctuating demands.   Meanwhile, low-

level mechanical, electrical, and chemical interactions maintain the beat-to-beat stability of cardiac 

activity. 

 The engineer‘s role in researching these control mechanisms is rapidly expanding.  

Computer technology has become an integral part of modern medicine, to the extent that such 

applications now make up a substantial branch of the computing industry.  These advances allow 

physiological data to be gathered and processed in far greater quantities and detail than were 

previously possible, and to be interpreted through manipulations that were previously prohibited by 

their computational expense. 

 This thesis focuses on the development of novel signal processing methods to elucidate the 

control mechanisms of the heart.  Cardiac electrical activity can be recorded using electrodes 

positioned on the skin or, for greater spatial specificity, inside the heart.  Such recordings have been 

used for over a century to gain insight into the distribution of electrical activity during each cardiac 

cycle.  Analysis of this behaviour and the time-course of any changes or fluctuations in response to 

experimental stimuli can expose the nature of the underlying control mechanisms, as is the aim of 

the work described in this report.  New techniques and modifications of existing techniques were 

developed to investigate the nature of the autonomic nervous system‘s control of the heart.  These 

techniques were implemented in several different experiments, yielding novel physiological 

observations that expand the current understanding of nervous interactions with the heart. 

 The overarching purpose of this work was to improve the accessibility of human in vivo data 

relating to the interactions between the nervous system and the heart.  It is hoped that the 

developed tools will enable the expansion of a ‗systems identification‘ approach to exploring these 

physiological mechanisms, employing established engineering approaches to the characterisation of 

unknown systems. 
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I.B. Structure of the report 
 This report begins with an overview of the workings of the heart, the means by which its 

behaviour is controlled by the nervous system, and the techniques used to monitor its electrical 

activity, focussing on those techniques that are suitable for assessing nervous input.  This overview 

is provided in the form of a literature review in section II.   

Sections III and IV describe the signal processing tools and techniques developed during 

this project.  Section III focuses on techniques for the analysis of non-invasive electrocardiograph 

(ECG) signals, with special relevance to experiments investigating modulation of cardiac behaviour 

by the central nervous system.  Section IV describes techniques for analysing the invasive recordings 

known as unipolar electrograms (UEGs).  New measures of localised electrical behaviour are 

defined.  These new measures enable the use of UEGs to characterise dynamic variations in cardiac 

electrophysiology, thus providing insights into the nature of the underlying control mechanisms.  In 

contrast, pre-existing measures are only suitable for quasi-static analyses.   

In section V, experimental implementations of the developed methods are discussed.  Their 

performance is assessed and several new physiological insights are described.   

Section VI offers a summary of the work carried out.  Plans and recommendations for 

future work are also described.  Further details on various aspects of this project can be found in the 

appendices and in the publications listed on page 18. 
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II. Literature Review 

 This chapter explains the present understanding of nervous control of the heart and existing 

techniques for measuring and characterising cardiac electrical activity.  The various topics covered in 

each section and their relevance to this project are outlined below.  Sections II.A-II.C cover the 

basic workings of the heart and cardiac electrophysiology to orient readers from a conventional 

engineering background to the subject.  They include descriptions of common mechanisms by 

which normal cardiac function breaks down.  An awareness of these pathologies is necessary to 

appreciate the relevance of the novel analytical tools described later in this thesis; the main incentive 

for developing these tools was to enable research to improve our present understanding of the 

heart‘s mechanisms of failure.  Furthermore, the reasoning on which the developed methods are 

based relies on an understanding of the behaviours that they are designed to elucidate.  

Nevertheless, readers who are already familiar with cardiac electrophysiology may choose to begin at 

section II.D, page 34. 

 

Sections included in the Literature Review: 

 

- II.A. Mechanical structure and function of the heart 

- II.B. Electrical activity in the heart 

- II.C. The cellular basis of normal cardiac behaviour 

- II.D. Recording the heart‟s electrical activity:  This section outlines the various 

approaches that exist to record cardiac electrical activity, including invasive and non-

invasive methods.  By clarifying the limitations of the available methods, it justifies the 

development of novel methods to overcome those limitations, described in later 

chapters.  

- II.E. Unipolar electrograms:  This particular recording technique is explored in greater 

detail because some of the most important novel contributions described later in the 

thesis are signal processing techniques designed specifically for these recordings. 

- II.F. Control of the Heart by the Autonomic Nervous System:  The novel signal 

processing techniques developed later in this thesis are designed specifically to enable 

research into autonomic cardiac control.  This section outlines those control 

mechanisms to the extent that is necessary in order to appreciate how they informed the 

design process. 

- II.F. Heart rate variability as a window on autonomic activity:  This section 

acknowledges the substantial work that has been carried out previously in this particular 

field of cardiac signal processing.  In doing so, it contextualises the novel contributions 

to that field, described in section III. 
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II.A. The mechanical structure and function of the heart 

 To properly understand the control mechanisms of the heart, they must be considered in 

the context of the healthy cardiac cycle, which they exist to maintain.  To that end, this section 

briefly outlines the structure and function of the heart. 

 The role of the heart is to provide the pressure gradient that drives blood around the body‘s 

circulatory system.  Therefore its continual operation is crucial to ensuring that all regions of the 

body are supplied with the necessary oxygen, nutrients, and warmth.  The mammalian heart can be 

seen as two separate pumps beating simultaneously; the right side propels deoxygenated blood 

through the pulmonary system to be oxygenated, and the left side pumps the oxygenated blood 

around the body.  As shown in Figure 1, each of these pumps is further divided into two chambers:  

a ventricle, which provides the majority of the pressure increase, and an atrium, which pre-loads the 

ventricle to improve its efficiency. 

The relative complexity and capacity of the systemic circulation compared to the 

pulmonary circulation results in a greater drop in pressure as the blood passes through.  As blood 

exits through the aorta, it varies in pressure between 80 and 120 mmHg (10.7-16.0 kPa), and returns 

to the right atrium at less than 5 mmHg (0.7 kPa).  In the pulmonary circulation, blood typically 

leaves the right ventricle at roughly 10-23 mmHg (1.3-3.1 kPa) and enters the left atrium at around 

7 mmHg (0.9 kPa)[Noble et al, 2005].  To overcome this obstacle, the left ventricle has considerably 

greater muscle mass than the right ventricle; its walls are around three times as thick[Levick, 2003]. 

The wall dividing the two ventricles is known as the septum.  Contraction of the right 

ventricle manifests itself as a movement of the right ventricle‘s outer wall towards the septum.  In 

contrast, the left ventricle reduces in both diameter and length upon contraction.  The asymmetry in 

the structure and contraction of the heart cause it to twist forwards with each beat.  A fine degree of 

coordination between all cardiac cells is required to ensure that the contractions are mechanically 

efficient.  That coordination is dependent on the specific manner in which the wave of activity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  a) The chambers and blood-flow pathways of the heart:  RA, LA – left and right atria; RV, 
LV – left and right ventricles; S – septum; SVC, IVC – superior and inferior vena cavae; T, M – 

tricuspid and mitral valves; A, PA – aorta and pulmonary artery; PV – pulmonary veins.  The aortic 
valve and pulmonary valve are not labelled, but can be seen at the entrance to the aorta and 

pulmonary artery, respectively.  The arrows indicate direction of blood flow.  b)  A schematic 
diagram of the circulatory system.  The dashed line indicates the boundaries of the heart. 
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progresses through the heart, as well as the speed of each cell‘s response to that stimulus.  Both of 

these facets of coordination are subject to various modulating influences, presenting a complex 

network of control mechanisms that contribute to cardiac stability and efficiency. 

When considering the timing of control signals, it is important to recognise that the atria 

and ventricles do not contract in synchrony.  The atria contract first to fill the ventricles, then the 

ventricles contract to drive blood around the body.  The state of contraction in each chamber is 

referred to as systole, and relaxation is referred to as diastole.  The elastic properties of the collagen 

in the cardiac muscle cells encourage the ventricles to expand to their resting volume after systole. 

Once ventricular pressure drops below atrial pressure, the atrioventricular valves open and blood 

flows freely from the veins through the atria to the ventricles even before atrial systole occurs.  In 

fact, in a patient at rest, atrial systole provides only the last 15-20% of the blood volume that fills the 

ventricle.  It is only at times of increased cardiac output that the atrial boost becomes 

important[Levick, 2003]. 

 

 

II.B. Electrical activity in the heart 

As described in the introduction, cardiac contractions are initiated by the spread of electrical 

activity through specialised fibre-like muscle cells, which are called myocytes.  Maintaining normal, 

efficient heart function requires careful control of the progression of this wave of activity through 

the heart. This section describes the healthy spread of electrical excitation through the myocardium, 

the collective name for the muscular tissue of the heart.  Some common, related pathologies are also 

introduced to illustrate the vulnerabilities of the system. 

Like nerve cells, myocytes maintain an electrical potential difference across their 

membranes such that they are more negatively charged inside than outside while ‗at rest‘.  A slight 

deflection of this potential difference in the positive sense, beyond a certain threshold, causes the 

cell to depolarise; the potential difference becomes slightly positive for a short time before the cell 

 

Figure 2:  Timing of the action potential and the resultant mechanical contraction in cardiac 
myocytes.  Adapted from [Levy & Pappano, 2006]. 
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repolarises.  The depolarisation-repolarisation pattern is referred to as the action potential.  

Contraction of the cell occurs in response to depolarisation. 

The currents drawn by a depolarising myocyte are sufficient to trip the threshold potential 

of the adjacent myocytes, and in this manner the signal is passed from one cell to the next.  In 

healthy hearts, the signal does not get passed back to a myocyte that has just fired because it will be 

briefly refractory (unresponsive).  This trait causes the signal to progress only in the forward 

direction[Noble et al, 2005].  Action potential duration (APD) is therefore a key feature in determining 

cardiac stability.  Much of this thesis focuses on the measurement and analysis of APDs, their 

spatiotemporal variations, and the controlling mechanisms. 

The signal is initiated in the sino-atrial (SA) node, which is located on the posterior wall of 

the right atrium.  From here it spreads through the right and left atria, provoking atrial systole.  The 

atria are electrically insulated from the ventricles by a ring of tissue known as the annulus fibrosus.  

The only electrical pathway through this insulating barrier is the atrioventricular (AV) node.  The 

AV node imposes a slight delay on the transmission of the signal to ensure that the atria contract 

fully before the ventricles contract, as described in the previous section.  This delay is caused by the 

slow conduction velocity and complex arrangement of the fibres in the AV node.  From there, the 

signal is passed on to the bundle of His, which divides into two branches (one for each ventricle) 

running down the septum.  The cells that make up these branches are known as Purkinje fibres and 

have high conduction velocities.  They carry the signal quickly to the heart‘s apex, the lower tip of 

the ventricles.  From there, the fibres spread up through the ventricles.   Contraction begins in the 

septum and spreads up the ventricles from the apex and from the inner ventricular walls 

(endocardium) to the outer walls (epicardium), squeezing blood up and out of the arterial 

valves[Levick, 2003], [Noble et al, 2005].  In the thick wall of the left ventricle, the fibre orientation varies 

gradually between the endocardium and epicardium, as shown in Figure 4[Greenbaum et al, 1981], [Nielsen et al, 

 

Figure 3:  Progression of the electrical signal through a healthy heart.  Adapted from [Levy & 
Pappano, 2006]. 
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1991], [LeGrice et al, 1995], [Scollan et al, 2000].  Endocardial fibres run roughly in the longitudinal (apex-base) 

direction while spiralling around the longitudinal axis.  In the mid-myocardium, the fibres are 

roughly oriented in the plane transverse to that axis.  The epicardial orientation is similar to that of 

the endocardium, except that the spiralling around the heart occurs in the opposite sense.  This 

overall arrangement causes the left-ventricle to contract with a twisting, wringing motion, which is 

believed to be desirable for efficiently pumping blood[Wei, 1997].  An understanding of the subtleties 

of cardiac fibre orientation is important for the interpretation of invasive electrical recordings; the 

orientation of the fibres relative to the direction in which excitation spreads significantly influences 

the morphology of the signal recorded from a nearby electrode, as will be explained in section II.E. 

The conduction velocity of the activation wave varies between different types of myocyte.  

In humans, the fastest conduction occurs in the Purkinje fibres at around 130-170 cm/s[Kupersmith et al, 

1973].  In ventricular myocytes, the conduction velocity is typically around 60-70 cm/s in the 

longitudinal direction of the fibres[Taggart et al, 2000], [Conrath & Opthof, 2006] and roughly 20 cm/s in the 

transverse direction[Taccardi et al, 1998], [Conrath & Opthof, 2006].  Much slower conduction occurs in regions 

such as the AV node.   

 

Arrhythmias 

The correct spatiotemporal propagation of electrical activity is crucial to the effective 

mechanical operation of the heart and, as mentioned previously, disruptions to the normal 

progression of the electrical signal can be fatal.  Such disruptions are known as arrhythmias or, more 

 

 

Figure 4:  Ventricular myocyte fibre orientation, as it varies through the myocardial wall.  The main 
picture shows the ventricles from a left-posterior view, with the upper half of the heart removed for 

clarity.  The inset (bottom-left) shows the plane through which this cross-section was taken.  A piece 
has been removed from the outer wall of the left ventricle, and arrows are drawn to shown the 

approximate fibre orientation at the endocardium, mid-myocardium, and epicardium.  Based on 
data from [Scollan et al, 2000]. 
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accurately but less commonly, as dysrhythmias[Bennett, 2002].  Due to the chain-reaction nature of the 

signal transmission, spurious activity in a localised region of the heart can lead to recurring 

unwanted activity of a more global nature.  The following summary of the mechanisms of failure 

outlines the boundaries within which cardiac behaviour must be maintained, by nervous control or 

other influences, to ensure survival.  There are several types of arrhythmia, each distinguished by the 

region of the heart that is affected and by the mechanisms involved: 

 

Respiratory sinus arrhythmia: 

 A common and benign condition, sinus arrhythmia is the regular fluctuation of 

heart rate with breathing.  It is caused by the influence of the autonomic nervous system on 

the heart.  A more detailed description is provided in section II.F.2, and previously 

unobserved effects on ventricular behaviour were exposed in the experiments described in 

section V.C 

 

Ectopic beats and escape beats: 

As described previously, the heartbeat is normally initiated in the SA node.  Other 

regions of the heart are also capable of initiating beats, but they fire at a slower rate so they 

are normally pre-empted by the SA node.  If the SA node fails to fire in time, another part 

of the heart will initiate an escape beat.    This spontaneous activity, known as automaticity, 

ensures that such problems with the SA node are survivable.  The intrinsic frequency of 

automaticity is normally lower for cells further along the natural conduction path.  Hence, if 

the SA node fails, the escape beat is more likely to be triggered in the AV node than, say, 

the ventricles.  This hierarchal chain of command is referred to as dominance[Mangoni & Nargeot, 

2008].  It maximises the likelihood that the escape beat will follow the natural conduction 

path through the ventricles, so that the crucial contraction is well coordinated.   

Although it normally contributes to cardiac stability, automaticity may pose a threat 

in some situations, because any maladjustment of automaticity may give rise to ectopic (out 

of place) beats.  Ectopic beats are essentially escape beats that occur in the absence of any 

failure of the SA node[Bennett, 2002].   An ectopic is likely to replace the next normal beat 

because the affected myocytes will be in their refractory (unresponsive) period when the 

signal initiated by the SA node arrives.  If this refractoriness is not absolute, the subsequent 

activation wave may be disrupted but not eliminated, leading to more chaotic activity with 

potentially fatal consequences.   

 

Heart block: 

 Heart block is the partial or total blockage of the electrical conduction path 

between the atria and the ventricles, and is further classified by three degrees of severity.  

First-degree heart block is a slowing of this conduction path, and causes an increased 

interval between atrial and ventricular systole.  Second-degree heart block is the occasional 
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failure of the signal to reach the ventricles.  Third-degree heart block is the consistent failure 

of the signal to reach the ventricles.  In this case, automaticity ensures that the ventricles 

continue to beat of their own accord at a low frequency, but the atria beat at the normal 

frequency regulated by the SA node.  Cardiac output is severely limited, but can be restored 

by an artificial pacemaker[Noble et al, 2005].  The ‗bottle-necking‘ of the activation wave at the AV 

node makes any conduction problems in this region more survivable and easier to diagnose.  

Similar abnormalities occurring in a small area of the ventricles, for example, would disrupt 

an activation wave without eliminating it.  The undesirable consequences of an abnormally 

progressing activation wave have been explained in previous scenarios. 

 

Circus: 

 If a wave of activity somehow returns to part of the myocardium that has already 

fired but has emerged from its refractory period, the cells will fire again.  This phenomenon 

is known as re-entry, and can lead to a circular pattern of excitation that pre-empts the 

signal from the SA node.  Circus arrhythmias can be treated using drugs that globally 

prolong the refractory period, such as quinidine and procainamide[Bennett, 2002].  This simple 

treatment illustrates the importance of APD and the refractory period in maintaining 

cardiac stability.  While global adjustment of APD can be effective in cases such as this, 

cases involving abnormal spatial heterogeneities are more complex.  Hence it is important 

to understand the mechanisms that influence APD on a local basis.  Novel methods to 

enable investigations into the nature of such mechanisms are described in section IV, and 

experimental implementations of these methods have yielded new physiological insights, as 

described in section V.C 

 

Fibrillation: 

 Instances of re-entry can cause the heart to enter a state known as fibrillation, in 

which it repeatedly beats in an uncoordinated manner.  Atrial fibrillation is typically 

survived, albeit with reduced cardiac output.  Ventricular fibrillation, however, is fatal unless 

interrupted within a few minutes.  Proneness to sustained ventricular fibrillation is largely 

dependent on the relative durations of the action potential and diastolic interval (DI, 

measured from the time of repolarisation to subsequent activation) in each myocyte.  This 

fact illustrates the need for researchers to identify any mechanisms that might destabilise or 

inappropriately modulate the APD-DI relationship.  A mechanism particularly deserving of 

scrutiny is the autonomic nervous system, which will be introduced in section II.F. 

 

 All instances of fibrillation begin with an occurrence of re-entry and can be seen as 

repeating occurrences of re-entry.  Hence, it is also important to understand the specific 

mechanisms of re-entry.  A conceptual outline of the necessary conditions for re-entry to occur is 

presented in Figure 5.  



II. Literature Review 

 

29 

A bundle of fibres, S, splits into two branches, L and R, which are later connected by C.  

Panel A shows a ‗healthy‘ progression of electrical activity; the signal spreads down branches L and 

R simultaneously and enters C from each side.  Where the two signal-fronts meet, they are both 

blocked because they reach myocytes that have just entered their refractory period.  The signal 

progresses only in the intended direction, further down L and R.  Panel B shows a case in which 

regions of L and R have, for some reason, not emerged from their refractory period.  The 

consequence is heart block, as discussed previously.  In panel C, only one of the two branches is 

refractory.  The signal from the other branch spreads across C and is blocked by the refractory 

region from the other side.  However, because the signal arriving via branch L takes longer to reach 

this region, there is a chance that it will no longer be refractory, as illustrated in panel D.  In this 

case, the signal from branch L crosses C and travels up R in the reverse direction.  If S has also 

emerged from its refractory period, the signal will continue in the reverse direction.  This qualifies as 

re-entry and may lead to continuous fibrillation.  By this reasoning, Levy & Pappano deduce the 

following two necessary conditions for re-entry, which were first laid out in [Schmitt & Erlanger, 

1928]: 

 

1. ―At some point in the loop the impulse can pass in one direction but not in the other.‖ 

2. ―The effective refractory period of the re-entered region must also be less than the 

propagation time around the loop.‖ 

 

The situations described in Figure 5 are useful for understanding the mechanisms for re-

entry, but it is important to note that re-entry can also occur when the signal is spreading in three 

dimensions through the myocardium, not only in a network of one-dimensional fibres. 

 
Figure 5:  A mechanism leading to re-entry.  Adapted from [Levy & Pappano, 2006]. 
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 A common cause of fibrillation is a myocardial infarction, also known as a heart attack.  

This term refers to the death of an area of myocardium due to ischaemia, an interruption in blood 

supply.  The affected region, the infarct, will no longer transmit the electrical signal, so it disrupts 

the normal conduction path[Jalife, 2000].  This obstruction can create a scenario similar to that shown in 

Figure 5 above, in which the signal can arrive at a certain region by more than one path, increasing 

the chances of re-entry. 

Such an obstruction is not necessary for re-entry to occur, however.  Clayton & Taggart 

demonstrate, using a computational model, how re-entry can occur in a two-dimensional sheet of 

myocardium in which one region has a longer refractory period than an adjacent region.  Regional 

differences in APD and the APD-DI relationship exist in healthy cardiac tissue[Clayton & Taggart, 2005].  

Unhealthy differences might arise from any phenomenon that heterogeneously modulates APD, 

such as localised ischaemia due to a blocked coronary artery, but even healthy differences can lead 

to re-entry if a sudden rate change occurs.  In Figure 6, region R1 has a longer refractory period 

than R2.  Wave-front S2 passes through the region, but S3 is initially blocked because R1 is still 

refractory.  When S3 passes R1, the electrical activity spreads into the region from the other side, so 

re-entry has occurred.  Note that the conditions described by Schmitt and Erlanger are met, 

although the ―loop‖ is dissimilar to that described in Figure 5. 

As demonstrated, spatial variations in electrical properties are of crucial importance to 

cardiac stability.  Hence it is important to be able to measure the properties of myocardium locally.  

Available techniques for doing so are described in section II.D.  The implementation and 

 

Figure 6:  Reproduced from [Clayton & Taggart, 2005].  Permission not required.  Computer 
modelling of re-entry due to regional differences in refractory period, which is longer for R1. 
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advancement of such techniques, especially to infer nervous control of the heart, form the central 

topic of this thesis.  The work to be described has provided new insights into the control regimes 

from which undesirable heterogeneities in cardiac properties might arise, and has suggested new 

methods of investigation to further expose the underlying mechanisms. 

Various hypotheses and partially-understood mechanisms exist to be explored.  Any local 

ischemia, or restriction of blood supply, is known to influence myocytes‘ electrical behaviour in a 

number of ways[Shaw & Rudy, 1997].  Furthermore, if the ischemia (or any other insult) causes cell death, 

the unexcitable dead cells will alter the progression of the activation significantly.  The resultant 

abnormal distribution of repolarisation may interfere with subsequent beats in a manner that has 

been described previously.  It has also been suggested that an individual‘s emotional state might 

induce heterogeneous changes in cardiac behaviour via a lateral imbalance of input from the 

autonomic nervous system[Lane & Jennings, 1996].  Furthermore, it is known that nervous input to the heart 

is modulated by respiratory behaviour, as in the benign sinus arrhythmia introduced on page 27.  It 

may be assumed that this influence has manifestations throughout the heart, rather than being 

confined to the easily observable effect on the SA node, but a detailed understanding of the 

widespread cardiac effects of respiration has yet to be obtained.  The experiments carried out in this 

project focus on the effects of emotion and respiration on cardiac behaviour.  Both of these sources 

of nervous activity input may have important implications for cardiac stability, particularly when 

considering that any of the described mechanisms may coexist and form complex interactions.  

Achieving a more thorough understanding of these interactions could expose previously unknown 

risk factors related to the 100,000 Sudden Cardiac Deaths in the UK each year[NHS choices, 2011].  

 

II.C. The Cellular Basis of Cardiac Behaviour 

 In the previous section, the problem of re-entry was explained in terms of the 

spatiotemporal relationship between excitation and refractoriness, hence this section describes the 

cellular behaviour associated with these states. 

As mentioned previously, myocytes are the muscle cells of the heart.  This section will focus 

on the ion flows that initiate mechanical contraction, and how these are related to the changes in 

electrical potential.  The variations in electrical properties of myocytes are evident in Figure 7, which 

denotes the four phases of the action potential for the most important contractile cells, ventricular 

myocytes.  The profiles of the action potential for two non-contractile myocytes are also shown. 

 The electrical currents in the myocyte are caused by the flow of ions across the cell 

membrane.  The ions in question are, primarily, Sodium (Na+), Potassium (K+), and Calcium (Ca++).  

The movement of these ions is the result of two influences, chemical potential and electrical 

potential.  The electrical potential is the voltage difference measured across the cell membrane, as 

featured in Figure 7.  The positively charged ions are attracted towards areas of more negative 

electrical potential.  Chemical potential refers to the concentration gradient for a particular ion.  The 

random movement of particles tends to result in them spreading into areas that have a lower 
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concentration of those particles.  When ions of a single type are allowed to move freely, they will 

tend towards an equilibrium state in which the electrical potential opposes the chemical potential so 

that there is no net flow.  This equilibrium potential is known as the Nernst potential.  The Nernst 

potentials for the three ions that dominate the action potential are shown in Figure 7.  These do not 

vary significantly because changes in the relative concentrations of ions during the action potential 

are negligible. 

Because ion flows are not solely dictated by electrical potential gradients, theoretical 

analyses of the electrical fields generated by the myocardium typically model the membrane‘s 

behaviour as a current source, rather than a voltage source.  The behaviour of the current source can 

be inferred from the familiar action potential morphology in order to predict the resultant electric 

field.  Such analyses are important in relating recordings of cardiac electrical activity to the 

underlying electrophysiological activity, as will be demonstrated in section II.E. 

Ions are not always free to move across the myocyte membrane because they must pass 

through ion-specific gates that open and close in response to the membrane potential.  When a 

channel opens, the resultant ion flow causes the membrane potential to shift towards the Nernst 

potential for that ion.  There are also exchangers that work to keep K+ in the cell and Na+ and Ca++ 

out.  The exchangers ensure that myocytes always have a relatively high concentration of K+ inside 

with respect to outside and a relatively low concentration of Na+ and Ca++[Philipson, 1997]. 

Figure 8 indicates the main ion flows at each phase of the action potential.  To infer the 

behaviour of cardiac control mechanisms from electrophysiological behaviour, it is important to 

understand the separate contributions of the various ion flows to action potential morphology; 

different controlling influences affect different ion channels selectively.  Hence the probable 

mechanism responsible for any change in cardiac behaviour can often be identified by observing the 

change in the action potential. 

 

 
Figure 7:  Action potential morphologies for a ventricular myocyte (a), a myocyte in the sinoatrial 

node (b), and a purkinje fibre (c).  The non-contractile myocytes (b and c) exhibit an upward drift in 
the resting action potential.  The values of E marked on the vertical axis are the Nernst potentials for 

the principal ions involved in the action potential.  Representative data from [Levick, 2003]. 
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If some outside influence, such as electrical activity in an adjacent myocyte, depolarises the 

resting myocyte beyond its threshold potential, roughly -60 mV to -65mV, Na+ channels open to 

allow a sudden influx of Na+.  As a result, the cell quickly depolarises further to a membrane 

potential of +20 mV to +30 mV.  This is phase 0 of the action potential, as labelled in Figure 7.  

The fast sodium channels are said to be time-dependent as well as voltage dependent; they close 

soon after opening, regardless of membrane potential.  They cannot be re-opened until the myocyte 

has repolarised beyond about -70mV, and the myocyte is refractory as long as the Na+ channels are 

unable to be opened[Weiss, 1997].  An understanding of this relationship between the action potential 

and the refractory period is essential to the development of appropriate experimental measures of 

refractory period, since the change in extracellular potential caused by the action potential offers a 

convenient window on cardiac electrical activity.  Section II.D will elaborate on this point. 

The change in membrane potential during phase 0 leads to a transient outward flow of K+, 

ito, which brings the potential quickly back towards negative values (phase 1) when the fast Na+ 

channels close.  An additional class of K+ channels briefly opens to accelerate this flow.  In fact, 

there are at least ten different categories of K+ channel that open and close at different times in 

response to different stimuli[Weiss, 1997].  These channels will not be described in detail, but their 

variety is relevant to this thesis in that it illustrates the complexity of mechanisms available to be 

modulated to adjust a myocyte‘s behaviour. 

The action potential of a cardiac myocyte differs from that of nerve cells in that it has a 

plateau phase (phase 2).  This is caused by a sustained influx of Ca++ that counterbalances the efflux 

of K+.  During the plateau phase, the number of open Ca++ channels gradually decreases, and a sub-

class of K+ channel, the ‗delayed rectifier‘ channel, correspondingly reopens.  These effects produce 

the downward curvature of the plateau phase.  The action potential ultimately terminates when the 

inward rectifier K+ channels suddenly open (phase 3), allowing full repolarisation.  Sympathetic 

nerve stimulation is known to increase K+ flow, thereby shortening the action potential in order to 

allow an increased heart rate[Levy & Martin, 1979].  The opposite effect can be used to provide added 

security against spurious activity during slower heart rates.  Nervous input can also modulate APD 

independent of heart rate, with serious implications for cardiac stability.   

  
Figure 8:  The ion currents primarily responsible for each phase of the action potential.  
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 It was noted earlier that for the Na+ channels to open and initiate an action potential, 

something must cause the myocyte to depolarise beyond its threshold potential.  For contractile 

myocytes, this stimulation is normally provided by an adjacent myocyte.  Non-contractile myocytes, 

which are found in the SA node, AV node, bundle of His, and Purkinje fibres, do not necessarily 

need to be triggered by an outside influence, as explained in the description of automaticity on page 

27.  They have a special class of Na+ channel that opens in response to very negative membrane 

potentials, allowing a small inward current.  They also allow a slow influx of Ca++ and a reduction in 

K+ conductance during the resting phase[Weiss, 1997].  The resting potential of the myocyte is therefore 

unstable.  It steadily becomes more positive until it reaches its threshold potential, at which point 

Na+ channels open, firing an action potential.  It was noted previously that this automaticity 

prevents upstream blockages of electrical activity from causing total heart failure.  The upward drift 

of the resting potential can be observed in Figure 7.b for a Purkinje fibre and an SA node myocyte.  

It is the rate of this upward drift that determines the hierarchy of dominance described on page 27.  

The opening and closing of the ion channels that control this drift rate are subject to modulation 

from the nervous system.  In the SA node for example, such modulation is responsible for any 

changes in heart rate.  Maladjustment of the drift rates throughout the heart, relative to each other, 

may threaten cardiac stability by increasing the likelihood of ectopics and escape beats (see page 27). 

The wide variety of ion transfers across the myocyte membrane form an array of low-level 

control mechanisms that combine to help regulate the timing and force of cardiac contractions.  

This control is manifested within single cells as well as in the coordination between cells to maintain 

stable cardiac activity.  Furthermore, these mechanisms can be influenced by nervous and hormonal 

input to manifest high-level control of the heart.  Hence cardiac electrophysiological behaviour can 

be taken as an indicator of activity in the nervous system.  The timings of the ion transfers can be 

measured in terms of the effects on the electrical field in and around the heart, as explained in the 

following sections.  Numerous existing methods exploit this principle to monitor the behaviour of 

cardiac cells and their controlling influences, with various levels of detail ranging from that of the 

non-invasive electrocardiogram to that of delicate in vitro studies using glass microneedles. 

 

 

II.D. Recording the Heart‘s Electrical Activity 

II.D.1. The Electrocardiogram 

II.D.1.a. The genesis of the electrocardiogram 

 When a large collection of myocytes is activated at roughly the same time, as normally 

occurs in the atria and ventricles, the potential difference across the heart is significant enough to be 

measured simply by placing electrodes on the skin.  This recording is known as the 

electrocardiogram (ECG), and is extremely useful in diagnosing various cardiac abnormalities.  As a 

non-invasive measure of cardiac electrophysiology, it also offers a convenient window on nervous 

input to the heart.  This section explains how the signal arises from the collective behaviour of 
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cardiac cells.  Section III describes the design of signal processing techniques to analyse the ECG.  

An understanding of the signal‘s genesis is crucial to ensure that any newly developed measurements 

offer meaningful descriptions of the signal‘s source. 

 ECGs are normally produced using the standard electrode placements shown in Figure 9.  

Although the electrodes are placed at the wrists and ankle of the patient, the limbs can be seen as a 

direct, passive electrical connection to the torso.  These electrodes can therefore be taken as an 

indicator of the potential at the nearest corner of the torso, and the lines between those points make 

up Einthoven‘s triangle[Levick, 2003].  The polarity of the leads is chosen so that the main ECG events 

will produce positive deflections in each lead of Einthoven‘s triangle for a healthy patient. 

Geselowitz[Geselowitz, 1989],[Geselowitz, 1967] shows theoretically that the ion flows around a 

depolarising/repolarising cardiac myocyte amount to an electrical current source.  This current is 

conducted through the body and thus gives rise to a small difference in the electrical potential at the 

skin surface on opposite sides of the heart.  When large numbers of myocytes act approximately in 

unison, the change in this potential difference is large enough to be measured in a lead connected 

across the two points.  Various researchers have invested significant effort in computational models 

to show that these mechanisms give rise to the commonly observed ECG[Wei, 1997],[Geselowitz, 1989].  The 

nature of the ECG interpretation involved in this thesis does not necessitate such detailed 

theoretical analysis.  However, the theory will be introduced in section II.E in the context of 

unipolar electrograms, another form of cardiac electrical recording employed in this project. 

 For a less rigorous but more intuitive understanding of how the ECG signal arises, one can 

consider a single cardiac dipole, which acts across the boundary between polarised and depolarised 

regions.  This dipole can be represented by a vector that changes in magnitude and direction as the 

 

Figure 9:  The electrode configuration used for the three main leads of a standard ECG.  The dashed 
lines show Einthoven‟s triangle, which indicates the effective direction of each lead‟s polarity. 
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wave of excitation progresses through the heart.  Figure 10 shows how the dipole vector changes 

during depolarisation of the ventricles, which account for the main bulk of the myocardium.  The 

overall change in the cardiac dipole during ventricular depolarisation is a rotation in the anti-

clockwise direction (when facing the patient) and a gradual increase then decrease in magnitude. 

Figure 10 also shows the influence of the perspective of different leads on the ECG 

recordings of those leads.  The magnitude of the potential difference recorded in a particular lead 

depends not only on the magnitude of the cardiac dipole, but also on the alignment of that dipole 

with respect to that lead.  A lead is most responsive when the dipole runs parallel to its line of 

perspective.  When the two are perpendicular, the lead will not detect any potential differences.  As 

a result the shape, magnitude, and timing of the observed QRS complex, which represents 

ventricular depolarisation, depends on the lead being monitored.  Comparing the manifestations of 

an event in each of the leads allows a spatial awareness of the progression of electrical activity 

through the heart at that time.  For example, Frank proposes a mathematical transform that may be 

applied to a configuration of seven electrodes to yield an approximation of the dipole vector in three 

orthogonal dimensions[Frank, 1956].  This approach is known as Vector Cardiography. 

Repolarisation of the ventricles is also detectable in the ECG recording, and is represented 

by the T-wave.  It may seem strange, however, that the T-wave and the QRS complex both produce 

upward deflections, as seen in Figure 11, considering they represent opposite effects.  The generally 

accepted explanation for this is that repolarisation occurs in the reverse direction to depolarisation, 

so the resultant dipole is of a similar sense;  the areas of ventricular myocardium that tend to be 

excited latest also tend to have the shortest action potentials, so the later they depolarise, the sooner 

they repolarise[Levick, 2003].  Although the latter statement is true, recent studies challenge the accuracy 

 

Figure 10:  Left - The variation in the cardiac dipole vector during ventricular depolarisation.  
Diagrams of the ventricles show the spread of the depolarised region (grey, negative) at three 

different stages of the process, the timings of which are indicated relative to the start of ventricular 
depolarisation.  Right – The morphology of the QRS complex in the three main ECG leads can be 
inferred based on the magnitude of the cardiac dipole vector and its alignment with the lead vector 

at each point in time.  Data on progression of activation from [Levick, 2003]. 
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of the interpretation that the differences in action potential duration cause repolarisation to spread 

in the opposite direction to depolarisation[Franz et al, 1987], [Conrath & Opthof, 2006], [Hanson et al, 2009]. When 

electrodes are positioned in direct contact with the myocardium to achieve greater spatial specificity, 

it is typically found that repolarisation spreads roughly in the same sense as depolarisation for the 

transmural direction but in the opposite sense for the apico-basal (longitudinal) direction.  The 

importance of invasive recordings to overcome the limited spatial specificity of the ECG will be 

revisited at the end of this section. 

 As a non-invasive measure of the spatiotemporal distribution of electrical activity in the 

heart, the ECG has proven to be useful in various applications.  In the clinical setting, it is already a 

well-established diagnostic tool, and can be used to identify a broad range of maladies.  These 

include physical injury to the heart, changes in gross shape or size, defects in the conduction of 

electrical activity, abnormal rates or rhythms, and changes in the ionic activity that generates the 

action potential or in the concentrations of the chemicals that influence those ion flows[Geselowitz, 1989].  

Short-term variations in ECG features can be taken as evidence of changes in nervous activity or 

other controlling influences, making the ECG useful in broader physiological studies, beyond 

cardiology.  From this project, the experiments discussed in sections V.A and V.B fall into this 

category.   

 

II.D.1.b. Typical ECG features 

An important aspect of modern ECG analysis is the automatic identification of the various 

features that typically appear in the signal.  Algorithms to perform this task are a crucial component 

of the tools developed in section III.  The development of such algorithms requires an awareness of 

not just the standard ECG features, but also the variability in those features, so that any algorithms 

implemented are applicable to a wide range of signal morphologies.  The following paragraphs will 

identify the most important features of the healthy ECG and give some examples of common 

deviations from the norm and their causes, although this is certainly not to be taken as an exhaustive 

description of the range of abnormalities to be found.   

Figure 11 shows a typical ECG recording acquired from an experiment that will be 

discussed later in this report.  The principle features of a single beat are listed below: 

 

Figure 11:  One beat of a healthy ECG trace. 
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P-wave: 

The P-wave represents atrial depolarisation.  The ECG does not normally show evidence of 

the atria repolarising because this activity is more asynchronous than the repolarisation of the 

ventricles[Debbas et al, 1999]. 

 

PR interval: 

A healthy ECG trace should show an isoelectric segment between the P wave and the QRS 

complex.  Known as the PR interval, this feature corresponds to the conduction delay imposed by 

the AV node.  In healthy subjects, it should last no longer than 0.22 seconds, although longer 

intervals will occur in cases of first degree heart block[Fleming, 1980].  In ECG processing tasks, it is 

important to be aware of the full range of morphologies that the P wave and PR segment might 

take, because the voltage measured during the PR interval is often taken as an isoelectric 

reference[Martinez & Olmos, 2005].  Although this method has often proved useful, it is important to note 

that the implicit assumption that no transmembrane or extracellular currents flow at this time is 

false;  the notion that transmembrane voltage is constant and spatially homogeneous during the 

plateau phase of an action potential is only an approximation. 

 

QRS complex: 

Some aspects of the QRS complex have already been discussed, and Figure 10 

demonstrates how the shape of the complex varies between leads.  The normal magnitude of the 

complex varies from patient to patient, but if the relative magnitudes and durations of the Q, R and 

S waves are not as expected for a particular lead, the cause may be a myocardial infarction.  The 

damaged region alters the normal direction in which the wave of excitation progresses through the 

ventricles, so the direction and perhaps also the magnitude of the cardiac dipole changes[Fleming, 1980].   

 

ST segment: 

The ST segment occurs during the plateau phase of the ventricular action potentials.  It is 

normally isoelectric, but in some cases it may be shifted upwards or downwards from the baseline.  

This effect is often attributed to ‗injury currents‘.  Myocytes in a damaged or ischemic region do not 

generate the same membrane potentials as healthy myocytes, and the local differences in electrical 

potential cause anomalous currents to flow, which influence the ECG readings[Samson & Scher, 1960].  The 

abnormal electrical behaviour disrupts the normal progression of activation in and around the 

ischemic region, posing a threat to cardiac stability. 

 

T-wave: 

The manner in which the ventricles repolarise is evidenced in the T-wave and is dependent 

on a variety of influences.  In fact, it is not uncommon to see day-to-day variations in the T-wave 

shape for a healthy patient.  Changes in the overall timing of the T-wave with respect to the 

preceding QRS complex indicate global modulation of ventricular repolarisation characteristics.  
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Typically, a healthy T-wave is a deflection in the same direction as the QRS complex, and is 

asymmetrical in that the slope is steeper on the right side than the left.  Subtle changes in T-wave 

shape indicate heterogeneous modulation of repolarisation properties.  Changes in T-wave timing or 

shape occurring over a time-scale of seconds or minutes can serve as measureable evidence of 

nervous input and hormonal influences on cardiac repolarisation.  Inverted or abnormally shaped T-

waves may be caused by infarcts or localised ischaemia altering the progression of the cardiac dipole.  

Also, T-wave inversion and depression of the ST segment are both commonly observed in patients 

in an anxious state[Fleming, 1980].  This observation offers a basic example of how nervous activity 

generated by psychological behaviour can induce measurable changes in cardiac electrophysiology. 

 

II.D.1.c. Limitations of the ECG 

As outlined in the preceding paragraphs, the ECG can be used to identify a wide range of 

pathologies and to characterise normal cardiac electrical activity.  It is particularly useful as an 

investigative tool because the technique is non-invasive.  However, the approach is clearly limited in 

that it cannot give a detailed impression of the extent to which specific regions of myocardium 

contribute to an observed deflection.  To gain this level of insight, electrodes must be placed in 

close proximity or direct contact with the myocardium.  It was mentioned earlier that studies of this 

nature reveal subtle aspects of cardiac conduction and repolarisation patterns that are not discernible 

in the ECG[Franz et al, 1987], [Taccardi et al, 2005], [Hanson et al, 2009].  A further limitation of ECGs, more pertinent 

to this thesis, is rooted in the fact that nervous control of the heart is anatomically and functionally 

heterogeneous[Pauza et al, 2000].  This heterogeneous control is necessary to maintain the overall stability 

and efficiency of cardiac behaviour in the face of varying physiological scenarios.  It follows that a 

more complete impression of the nature of nervous control of the heart would be achieved from 

recordings that enable the analyst to distinguish between activity from different regions of 

myocardium with greater spatial specificity than is available from the ECG. 

Magnetocardiography[Koch, 2004] and Body Surface Potential Mapping[Messinger-Rapport & Rudy, 1990] 

are two non-invasive techniques that provide greater spatial detail than the ECG by using a large 

number of electrodes or, in the case of magnetocardiography, magnetic field sensors positioned 

around the body.  However, both techniques require accurate models of the impedance properties 

of the tissue throughout the torso.  Uncertainties in these models limit the reliability of those more 

advanced non-invasive methods.  Hence invasive measurements are invaluable tools for accurate 

observations of localised cardiac electrical behaviour.  The following section summarises the 

invasive techniques available. 

 

II.D.2. Invasive recording techniques 

 Several techniques are available to measure localised cardiac electrical activity.  The 

following sections characterise the most common methods.  Each method is considered with 

respect to the following three criteria, which characterise an ideal method of recording cardiac 
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electrical activity to infer nervous control of the human heart: (1) suitability for human in vivo 

studies, (2) ability to characterise local repolarisation as well as depolarisation, and (3) spatial 

specificity.  Through this reasoning, it will be shown that the recordings known as unipolar 

electrograms have the potential for much wider use in exploring nervous control of the heart in 

humans.  The development of novel signal processing techniques to exploit this potential is 

described in section IV. 

 

- Suitability for human in vivo studies:  In animal studies, artificial stimulation may be 

supplied to nerves leading to the heart in order to broadly characterise their influence.  

However, studies of this kind have limited potential to improve our understanding of 

nervous control of the human heart in a way that acknowledges the link between 

psychological factors and the development of fatal arrhythmia[Taggart et al, 2011].  To probe these 

mechanisms, one must take into account the nature of normal, physiologically generated 

nervous inputs.  Such experimentation requires the entire central and autonomic nervous 

system to be intact, which implies that in vivo experimentation is essential.  Human in vivo 

experiments are particularly desirable not only because they are more clinically significant 

than animal studies, but also because the high level of communication and cooperation 

between the experimenter and the subject (if conscious) makes it possible to induce nervous 

inputs to the heart through natural pathways using psychological stimuli. 

 

- Ability to characterise local repolarisation as well as depolarisation:  The majority of 

recent studies that invasively explore cardiac electrical activity and the genesis of 

arrhythmias in vivo give greater attention to the spatiotemporal distribution of depolarisation 

than that of repolarisation.  It generates a more distinct artefact in the recording, and any 

blockage of the spread of depolarisation by a refractory region can be observed without 

directly measuring repolarisation behaviour.  However, the dynamic interaction between 

repolarisation and depolarisation is the most fundamental aspect of arrhythmia 

development; to properly understand how nervous modulation of these behaviours might 

influence the risk of arrhythmias developing, one must be able to characterise the 

modulation of repolarisation properties even when the spread of depolarisation has not yet 

been disrupted.  Therefore any investigation of this nature requires a system of recording 

and measurement that directly characterises local repolarisation properties.  

An additional advantage of studying repolarisation properties is that they are more 

directly attributable to the local region of myocardium, whereas the timing of depolarisation 

is dependent on varying conduction velocities along the entire path that the activation wave 

has travelled.  The three-dimensional complexity of this path hinders accurate 

determination of local conduction properties from a sparse set of depolarisation times, 
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hence repolarisation is a more appropriate indicator of any heterogeneous modulation of 

cardiac electrophysiology. 

 

- Spatial specificity:  It has been explained previously that the nervous system innervates 

the heart heterogeneously.  Not only is it essential for experiments to involve 

physiologically natural nervous activity, the investigator must consider the coordination of 

nervous input and its effects across the vast network of cardiac nerve endings.  When 

considering the arrhythmic potential of a nervous stimulus, one must be able to consider 

the spatiotemporal distribution of depolarisation and repolarisation with spatial resolution 

that is considerably finer than the size of a single chamber of the heart, since various 

experiments and modelling studies have shown that arrhythmias that eventually spread 

across the whole heart can originate from relatively small areas of myocardium.   

 

Naturally, the insight that might be gained from a set of recordings improves as the spatial 

resolution becomes finer and the number of electrodes simultaneously deployed increases, but the 

practicality of the experiment correspondingly decreases.  Selecting a recording method to use in an 

invasive study requires the experimenter to find the appropriate compromise between spatial 

resolution and the practicality of implementation.  The following sections describe various 

techniques for recording localised cardiac electrical activity, arranged approximately in ascending 

order of practicality and descending order of spatial specificity. 

 

II.D.2.a. Transmembrane Action Potentials 

 It is possible to directly record the electrical activity of a single cardiac myocyte by 

penetrating the cell with a glass microelectrode[Draper & Weidmann, 1951], [Ogden, 1994].  However, this 

approach is not suitable for in vivo experiments because of the delicate placement required and the 

susceptibility of the electrodes to breaking.  Even when this risk is minimised by careful design of 

the electrode, it is difficult to maintain stable recordings[Steinhaus, 1989].  These recordings are therefore 

not useful for studying nervous input to the heart because the tissue to be experimented on must be 

excised.  However, the availability of this accurate but awkward technique is crucial for the 

validation of more practical methods. 

 

II.D.2.b. Optical Action Potentials 

 Various chemical compounds have been discovered that bind to the membranes of cardiac 

myocytes and exhibit changing fluorescent properties that are voltage-sensitive[Cohen et al, 1974], [Salama et al, 

1987].  These dyes effectively reproduce the time-course of the membrane voltage for the cells they 

bind to, and can be used in combination with image processing techniques to achieve a useful 

measure of cardiac electrical activity.  Because it allows the behaviour of a large area of tissue to be 

captured with high spatial resolution, this approach is particularly useful when studying the pattern 
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by which depolarisation and repolarisation spread across the heart.  However, despite efforts to 

extend the method‘s usefulness, it remains limited to observing activity near the surface of the 

myocardium[Efimov et al, 2004].  Furthermore, irreversible aspects of the procedure prohibit its 

application to human in situ studies. 

 

II.D.2.c. Monophasic Action Potentials 

 Because bioelectric signals in general are relatively weak, in vivo recordings require that a 

reference electrode be positioned inside or in contact with the subject‘s body; using an external 

‗ground‘ reference yields signals that are unusable due to low signal-to-noise ratios[Plonsey & Barr, 2007].  

Unfortunately, locating the reference electrode on the subject complicates the nature of the 

measurement.  As explained in section II.D.1, the ECG signal is measurable throughout the body.  

Hence, no stable reference electrode is available.  It is not possible to acquire an in vivo electrical 

recording that purely reflects activity at a single site, and this makes it difficult to achieve fine spatial 

specificity. 

The recordings known as Monophasic Action Potentials (MAPs) offer the finest level of 

spatial specificity that is currently practically achievable for in vivo measurements[Franz, 1991], [Franz, 1999].  

In its modern form, the MAP technique involves pressing an electrode against the myocardium 

while a reference electrode rests on or near the surface (see Figure 12).  The pressure exerted via the 

first electrode causes the underlying myocytes to partially depolarise and become inactive.  Myocytes 

under the reference electrode continue to function as normal, and each action potential drives 

extracellular ionic currents between the active and inactive regions.  The potential difference 

measured between the two electrodes closely follows the shape of the action potentials in the region, 

as validated in vitro by comparison with transmembrane microelectrode recordings (see Figure 

13)[Franz et al, 1986], [Ino et al, 1988].  The term ‗monophasic‘ refers to the fact that these signals resemble the 

single up-then-down deflection of the action potentials themselves.  It distinguishes MAPs from the 

more complex morphologies discussed in the next section. 

As labelled in Figure 12, the electrode at the deactivated region is normally referred to as 

the ―different‖ or ―exploring‖ electrode, while the other is referred to as the ―indifferent‖ or 

―reference‖ electrode.  This nomenclature may be inappropriate in light of some recent debate;[Kadish, 

2004] a point of contention exists as to whether an MAP recording should be taken as a 

representation of the behaviour below the ―reference‖ electrode or the ―exploring‖ electrode.  After 

the introduction and widespread adoption of the Franz configuration for MAP recording,[Franz, 1983] 

the predominant view was that the MAP was generated by the currents flowing between the 

inactivated region and the active cells at the circumference of that region, implying that the observed 

change in potential occurs at the ―exploring‖ electrode.  It should be noted that although this view 

has been predominant, it does not necessarily amount to a consensus because the literature on the 

subject is dominated by Franz‘s own research group.  Kondo and colleagues recently challenged 

Franz‘s interpretation; they argued that the MAP is dominated by activity at the ―reference‖ 
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electrode[Kondo et al, 2004].  This claim was supported by in vitro experiments using a configuration like 

that in the left panel of Figure 12.  Interventions to change the action potential duration (APD) near 

the ―reference‖ electrode caused matching changes in the MAP, whereas similar interventions in the 

region below the ―exploring‖ electrode caused no significant changes in the MAP.  Franz argued 

that a number of methodological flaws corrupted the experiments by Kondo and colleagues[Franz, 

2005].  Many of these claims were refuted in [Nesterenko et al, 2005].  The remainder were 

unquantifiable in terms of their effect on the observed MAP.  Subsequent contributions in the form 

of analytic[Vigmond, 2005] and computational[Colli-Franzone et al, 2007a] modelling suggest that, when the Franz 

configuration is not used, the activity at the ―reference‖ electrode dominates the MAP.  As Franz 

asserts[Franz, 1999], some extracellular ‗injury current‘ undoubtedly flows between the active and 

inactive regions of myocardium.  However, the contribution of this current to the MAP via the 

―exploring‖ electrode is relatively small because an opposing current can be assumed to arise in the 

intracellular domain at the same site.    
Conveniently, this re-interpretation of the origins of the MAP does not invalidate previous 

studies that have used the Franz electrode configuration because the region of active myocardium 

closest to the ―reference‖ electrode is the same as that which surrounds the inactive region.  Hence 

MAPs recorded by this method can be taken as an accurate representation of the surrounding active 

 
Figure 12:  Left)  A schematic of the fundamental arrangement for contact MAP recording.  Right)  

The Franz configuration for MAP recordings.   

 
Figure 13:  Adapted from [Franz et al, 1986] by permission of Oxford University Press.  A 

comparison of MAP and transmembrane action potential (TAP) recorded simultaneously from 
adjacent sites.  Their magnitudes were scaled to match at the point marked by the open arrow.  The 

scaled MAP gives a close approximation of the time-course of the IAP. 
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tissue.  However, the need to apply delicate pressure limits the number of simultaneous recordings 

that can be practically acquired. 

 

II.D.2.d. Electrograms 

  It is not actually necessary to inactivate a region of tissue to obtain useful in vivo recordings 

from the heart with spatial specificity.  Any configuration of electrodes in or around the beating 

heart will present some change in potential difference corresponding to the depolarisation-

repolarisation sequence.  These signals do not resemble action potentials in the way that the MAP 

does (see Figure 14 for an example).  However, by incorporating a priori knowledge of the electrode 

configuration and some basic assumptions regarding the spatio-temporal distribution of electrical 

activity, one can infer the activity of a region of myocardium with reasonable spatial specificity.  

Recordings of this general nature are referred to as electrograms in order to distinguish them from 

the ECG.  They have been used for almost as long as ECGs, originally through in vitro studies of 

isolated animal hearts and more recently as a tool for guiding surgical procedures[Kimber et al, 1996], 

[Kusumoto, 1999].  Electrogram recordings typically take one of two forms: unipolar or bipolar.   

 

Unipolar electrograms: 

Unipolar electrograms (UEGs) are measured as the difference in electrical potential 

between an exploring electrode, positioned adjacent to or even embedded in the area of 

myocardium in question,  and a reference electrode positioned away from the myocardium, usually 

outside the heart.  The name is used to distinguish UEGs from bipolar electrograms (BEGs), which 

are obtained by placing the second electrode in close proximity to the first.  The main deflections 

commonly observed in a UEG strongly resemble those in ECGs, so they are often referred to by 

the same lettering system; a QRS complex relects depolarisation and a T-wave reflects 

repolarisation.  There are important differences, however, in the way that these features are 

interpreted and the nature of the conclusions that can be drawn from them. 

During phase 0 of the myocyte action potential (Figure 14), the flow of Na+ ions into the 

cell results in a decrease in the electrical potential outside the cell.  When a group of myocytes in 

close proximity to the exploring electrode depolarise at approximately the same time, a substantial 

negative deflection appears in the UEG.  Hence, the nominal time of local activation at a particular 

electrode is taken as the point in the activation wave with the greatest downward slope[Durrer et al, 1961].  

This point will be referred to in this thesis as minV .  Similarly, the rapid change in transmembrane 

voltage during phase 3 of the action potential leads to an increase in extracellular potential at a 

nearby exploring electrode.  Hence, the nominal time of local repolarisation is commonly taken as 

the point in the T-wave with the maximum upward slope (Tup), a convention referred to as the 

Wyatt method[Wyatt, 1980].  By this method, Tup shows good correlation with tR, the point of maximum 

downward slope in the action potential[Haws & Lux, 1990].  Due to key physiological differences between 
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the mechanisms of activation and repolarisation, the interpretation of local recovery time measured 

by the Wyatt method is much less straightforward than that of the local activation time.  The 

transmembrane voltage of any myocyte changes far more slowly during repolarisation, and the 

junctions between neighbouring cells introduce have a synchronising effect during this process, so 

the surrounding gradients in electrical potential are smaller than during depolarisation.  

Consequently, the rates-of-change in voltage measured by a nearby electrode are less predictable and 

harder to detect, making repolarisation measurements vulnerable to distortion of the UEG trace by 

artefacts of activity in remote regions. 

 

Bipolar electrograms: 

An alternative to the UEG is the bipolar electrogram (BEG), measured as the potential 

difference between two electrodes positioned a few millimetres apart on the myocardium.  The 

primary advantage offered by the BEG over the UEG is that it is far less sensitive to remote activity; 

the close proximity of the two electrodes implies that any electric field generated by a distant source 

will be similar at both sites and will therefore be approximately cancelled out when the difference is 

measured.  For this reason, BEGs are widely used for mapping the progression of activation 

wavefronts.  However, deflections in the BEG show unpredictable morphology.  They are also small 

in magnitude when compared with the UEG, especially during repolarisation, hence BEGs are only 

useful in studies confined to the activation phase.  The unpredictability of BEG morphology stems 

from its dependence on the orientation of the local dipole with respect to the line between the two 

electrodes; a wavefront progressing perpendicular to this line may produce no discernible 

deflection[Kimber et al, 1996].  The largest BEG deflections tend to occur when the local action potentials 

 

Figure 14:   The relationship between the Monophasic Action Potential (MAP) and typical 
unipolar electrograms (UEGs) taken from the same region of myocardium.  Commonly used 

repolarisation indices, explained in the text, are marked on the MAP and on the UEG for positive 
(solid) and negative (dashed) T-waves.   

 

minV  
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are changing rapidly, as during phase 0 and phase 3;  a large potential difference between two close 

points on the myocardium can only occur if the slopes of the local action potentials are large relative 

to the speed at which the wavefront progresses.  One might therefore expect two large deflections 

in the BEG, although either may be polyphasic.  The local activation and repolarisation (tR) times are 

taken as the points with the largest absolute magnitude on each of these deflections, regardless of 

polarity.  Where such a priori knowledge is available, electrode pairs should be oriented in the 

direction along which activation is expected to progress, to maximise the likelihood of recording 

substantial deflections. 

 

  

 

Figure 15:  Two unipolar electrograms (UEGs), recorded simultaneously from adjacent sites, 
and a bipolar electrogram (BEG), which was calculated as the difference between the two 

unipolar electrograms.  The deflection produced in the BEG by local activation is distinct and 
coincides with the downslope of the UEGs, as expected.  The deflection produced by 

repolarisation is not distinct in the BEG, making these recordings unsuitable for repolarisation 
studies. 
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II.E. Unipolar electrograms 

The UEG has proven to be a useful tool in characterising cardiac repolarisation properties, 

and modulations in those properties provide insight into the mechanisms controlling the heart‘s 

behaviour[Millar et al, 1985], [Haws & Lux, 1990], [Coronel et al, 2006], [Colli Franzone et al, 2007b], [Scacchi et al, 2009].  Section V.C 

describes human in vivo experiments conducted to explore the nature of nervous control of the 

heart.  Due to the advantages offered in repolarisation measurements, UEGs were chosen in favour 

of BEGs for these experiments.  Novel signal processing techniques were developed to enable the 

analysis of dynamic changes in repolarisation behaviour, as described in section IV.  To assess the 

validity of these new methods, a thorough understanding of the genesis of the UEG is required.  To 

that end, this section offers a more detailed interpretation of UEG signals and how they relate to 

local cardiac electrical behaviour. 

 

II.E.1. Debate concerning the reliability of UEG indices of local 
repolarisation 

 A confounding factor in the identification of local recovery times from UEGs is that the 

point tR on the action potential (see Figure 13, page 43) does not coincide with any discrete event at 

the cellular level.  Its appeal as a measurement of cellular behaviour is that it produces a distinct 

artefact that broadly coincides with phase 3 of the action potential.  In assessing the suitability of 

UEG measurements as a representation of cardiac behaviour, one must specify which aspect of 

cardiac behaviour is of interest.  In some studies, the UEG is used to monitor the 

electrophysiological properties of the underlying region.  In other cases, it is used to measure the 

overall behaviour of that region and its impact on the global behaviour of the heart. 

When considering a heart‘s arrhythmic potential, the predominant motivation for 

identifying a local recovery time is to mark out the transition of the local myocardium from the 

refractory state to the excitable state.  In actual fact, this transition is not instantaneous.  By the time 

the action potential has repolarised to around -50 mV, some of the fast Na+ channels responsible 

for depolarisation have already returned to an excitable state[Weiss, 1997].  The cell as a whole is thus 

partially excitable.  This state is referred to as the relative refractory period to distinguish it from the 

preceding absolute refractory period.  The rate at which Na+ channels return to excitability is 

voltage- and time-dependent,[Goldman, 1995], [Roden et al, 2002] so the degree of refractoriness in a cell at a 

given instant is dependent on the preceding time-course of repolarisation rather than on the timing 

of an instantaneous event.  The ambiguity of the relative refractory period seems to defy the use of a 

single point to represent the end of the refractory period.  However, phase 3 of the action potential 

is sufficiently sudden for such a simplification to be viable, especially in ventricular myocytes.  In 

dogs, activation-recovery intervals (ARIs) calculated as the time between minV  and Tup (Figure 14, 

page 45) have shown good correlation with the effective refractory period (ERP), determined 

experimentally as the shortest period after which it is possible to induce another depolarisation using 

an artificial stimulus at the site[Millar et al, 1985].  It should be emphasised, however, that the study did not 
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show ARI to be a direct approximation of ERP; instead, there was a distinct tendency for ARI to 

underestimate ERP, particularly in positive T-waves, with differences typically in the range of 0-

15ms. 

 This observation gave rise to the argument that a later point in the UEG might give a better 

estimate of the refractory period.  For example, some studies have compared ARIs with the interval 

between activation and MAP90 (Figure 14, page 45), the time at which the action potential has 

achieved 90% repolarisation from plateau potential (phase 2) to resting potential[Chen et al, 1991], [Gepstein et 

al, 1997], [Yue et al, 2004].  These studies suggested that, to achieve a good agreement between ARI and 

MAP90, the ARI should be measured differently for positive T-waves compared with negative and 

biphasic T-waves; the authors advocated the use of Tdown, the point of most negative downslope 

(Figure 14), in place of Tup for calculations involving positive T-waves. 

 Although this alternative method for measuring ARIs may statistically give a more reliable 

approximation of when MAP90 occurs, it lacks the theoretical foundation of the Wyatt method, 

which in any case is designed to indicate tR, not MAP90.  It has been shown that the downstroke of 

a positive T-wave does not consistently correspond with local repolarisation[Coronel et al, 2006].  

Furthermore, T-waves are known to present themselves on a continuous spectrum from positive to 

negative, via biphasic morphologies.  Coronel and colleagues showed that, when a small area of 

myocardium is cooled to lengthen local ARIs, the T-waves of UEGs from that area can be found to 

move through the spectrum from positive to negative, while the shape of T-waves observed in a 

more remote region changes very little[Coronel et al, 2006].  The alternative method is not compatible with 

this impression of continuously varying T-waves because, at whatever point the distinction between 

biphasic and positive T-waves is made, the measured ARI will undergo a sudden and dramatic 

change in value without physiological explanation.  The Wyatt method is therefore preferable in any 

study into modulations of action potential duration (APD).  If a measure of MAP90 is needed, 

recent simulation studies[Colli Franzone et al, 2007b], [Potse et al, 2009] have indicated that a good indicator is Td2, 

the time after Tup at which the downward curvature of the T-wave is at a maximum (Figure 14).  

However, the use of the second time-derivative in this method makes it somewhat impractical 

outside of computational modelling, because each successive differentiation reduces the signal-to-

noise ratio of a real signal. 

 

II.E.2. Predicting unipolar electrogram morphology from the 
transmembrane potential 

II.E.2.a. An intuitive model 

To better understand the reliability and limitations of UEG-based repolarisation measures, 

one must consider in greater detail the relationship between the UEG and the familiar 

transmembrane potential.  Potse and colleagues recently proposed a simple model that offers an 

intuitive explanation for how typical UEG morphologies arise from cardiac action potentials[Potse et al, 

2009].  The model calculates the UEG as the difference between a ―local component‖, arising from 
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the point on the myocardium closest to the exploring electrode, and a ―remote component‖ that 

accounts for the electrode configuration and the conductivity of the surrounding volume.   

Figure 16 shows that the model proposed by [Potse et al, 2009] can explain the full 

spectrum of typical basic UEG waveforms (second row) – from positive T-waves (column A) to 

negative T-waves (column C), via biphasic T-waves (column B).  Similar variations appear in the 

polarity of the activation waves.  The figure also shows that the steep slopes in the local action 

potential upon depolarisation and repolarisation dominate the slope of the UEG at these times, 

supporting the use of minV  and Tup as temporal markers of local behaviour.  

Before this model can be accepted as a useful representation of the genesis of the UEG, the 

origins of the local and remote components must be explained theoretically. 

The local component can be estimated as the extracellular potential e  immediately outside 

a myocyte using the well-known core-conductor model,[Plonsey & Barr, 2007] the discrete form of which is 

shown in Figure 17.  Note that the model assumes a restricted extracellular space, which is not a 

valid assumption for many UEG measurements.  The implications of this discrepancy are discussed 

in a later section. 

 

 

Figure 16:  Adapted from [Potse et al, 2009].  Permission not required.  The morphology of the UEG 
can be explained as the difference between a local action potential (solid lines in top row) and a 

smoother remote contribution (dashed lines in top row).  In the second row, the local AP is 
subtracted from the remote contribution to give the simulated UEG, S.  The third and fourth rows 
give the temporal derivatives of the traces in the first and second rows, respectively.  Vertical lines 
mark the steepest downslope of the local action potential (solid red line) and the steepest upstroke 

of the UEG (dashed black line).  TR is found to coincide with Tup.  Early-repolarising sites (column 
A) present positive T-waves, while late-repolarising sites (column  C) give negative T-waves.   
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From the core-conductor model, the extracellular potential can be related to the 

transmembrane potential mv  as shown in (1).  The full derivation for this expression is given in 

Appendix I.
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where iR  and eR are the resistance per-unit-length for the intracellular and extracellular domains.  

Since iR  and eR  are taken as constants, (1) shows that the time-course of the potential 

immediately outside a myocyte is morphologically similar to the time-course of the transmembrane 

potential, inverted and scaled by a constant factor.  The morphology of the transmembrane 

potential is well known, hence we have an expression that yields e  as the ―local component‖ in the 

model proposed by [Potse et al, 2009]. 

 To characterise the ―remote component‖ of their model of the UEG, Potse and colleagues 

refer to an expression achieved by Geselowitz[Geselowitz, 1992].  Seen in (2), this expression describes the 

UEG using the bidomain model, which is the most realistic model of cardiac electrophysiology for 

which whole-heart simulations are currently computationally tractable[Miller & Geselowitz, 1978], [Geselowitz & 

Miller, 1983], [Geselowitz, 1989], [Vigmond et al, 2008], [Plank et al, 2008].  This model treats the intracellular and extracellular 

domains as continuous media that both occupy the whole of the myocardium, with their effective 

properties scaled by a factor to account for the actual geometric relationship between the two 

 

Figure 17:  The discrete, linear core-conductor model for a single fibre.  iR  and eR  are the 

resistance per unit length for the intracellular and extracellular domains.  x  is the incremental 

distance along the length of the cell.  mI  is the membrane current per-unit-length.  iI  and eI  are 

the intracellular and extracellular currents.  i  and e  are the respective potentials.  The black 

squares represent membrane elements.  These elements can be described in greater detail using a 

Hodgkin-Huxley type model,[Hodgkin & Huxley, 1952], [Plonsey & Barr, 2007] which is not necessary for the present 

explanation. 

(1) 

xRe  xRe  

xRi  xRi  

x  

xxI m )(  

)(xIe  

)(xI i  

)(xe  

)(xi  

xxI m )(  

extracellular space 

intracellular space 



II. Literature Review 

 

51 

domains.  The two domains interact by the exchange of membrane current.  From the bidomain 

model, it can be shown that the voltage between an electrode in the myocardium at point p  and 

another elsewhere in the body is 

 

   


 SdZvpvUEG mim

ei

i 



. 

 

Here, i  and e  are the effective intracellular and extracellular conductivities.    is the outer 

boundary surface of the heart.  The full derivation for this equation is given in Appendix II.  Note 

that the first term is equivalent to the right-hand side of (1).  This is the local component L  of the 

UEG. 

 

 pvL m

ei

i






  

 

Before the remaining undefined variables in (2) are introduced, note that the second term gives the 

desired remote component   because [Potse et al, 2009] define their model as 

 

 LUEG  
 

Hence we have an expression for   that can be examined to achieve a more thorough 

understanding of UEG morphology: 

 

  SdZvmi . 

 

Sd  is the outward normal vector to each infinitesimal surface element of the heart‘s outer 

boundary,  .  Its magnitude is equal to the area of that element.  Z  is known as the lead field for 

the electrode configuration.  It describes the overall distribution of conductivity within the torso, 

relative to the positioning of the electrodes, including any anisotropy and heterogeneity.  In doing 

so, it yields an understanding of the relationship between a source and a voltage measurement in this 

complicated environment.  The lead field can be defined more precisely as follows.  Consider 

passing a unit current between two electrodes, A1 and A2, in an arbitrary volume conductor while 

measuring the resultant potential difference between another pair of electrodes, B1 and B2.  The 

principle of reciprocity, a fundamental of electromagnetic theory, states that if a unit current is 

instead applied between B1 and B2, the same potential difference will be observed between A1 and 

A2
[Malmivuo & Plonsey, 1995], [Jackson, 1998].  This principle can also be applied to describe the medium 

surrounding a distribution of current sources, such as the myocardium[McFee & Johnston, 1953], [Geselowitz, 1989].  

If Z  is the negative of the electric field induced by passing a unit current between the UEG 

electrodes, then the voltage measured between those electrodes by a particular distribution of 

current source density J


 can be written as a volume integral throughout the heart‘s volume, H , 

 

(2) 

(3) 

(4) 

(5) 
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dVZJUEG
H 


. 

 

It is shown in Appendix II that these two different expressions for the UEG – (2) and (6) – are in 

agreement with each other.   

In (6), Z  is seen to act as a transfer impedance;  its value at each point in space expresses 

the sensitivity of the lead voltage to a source element at that point.  The direction and magnitude of 

the source element at each point is described by J


.  The concepts of the lead field and reciprocity 

facilitate an intuitive understanding of the gross effect of the surrounding tissues and their various 

properties.  The relative sensitivity of a lead to different points within a source distribution can be 

roughly assessed by considering the electric field lines that a current applied to the lead would 

follow.  The separation between these field lines indicates the strength of the lead field.  Figure 18 

illustrates the usefulness of this approach, using the Brody effect as an example.  The Brody effect 

refers to a bias in the sensitivity of ECG recordings towards transmural currents compared with 

currents travelling tangential to the cardiac wall[Malmivuo & Plonsey, 1995].  This bias results from the 

approximately spherical shape of the heart and the relative conductivities of the myocardium, 

intracardiac blood, and the surrounding tissue.  The intracardiac blood is more conductive than 

myocardium, and the heart is mostly surrounded by the lungs, which have a very low effective 

conductivity.  As a result of this arrangement, the lead field is stronger through the centre of the 

heart, where the field lines cross the heart in the transmural direction.   

The ECG has been used here to illustrate the lead field concept because the subtleties of 

the ECG, such as the Brody effect, have been well researched.  However, the concept is equally 

applicable in analysing the subtleties of UEG recordings, including manifestations of the Brody 

effect, as will be discussed in later sections of this thesis.  For now, the most important implication 

to note is that the dot product SdZ   in (5) can be generally be expected to be negative.  A unit 

current applied between the exploring electrode inside the heart and the reference electrode outside 

would flow across the heart boundary in the outward direction.  Z  was said to be defined as the 

(6) 

 
Figure 18:  Left:  The approximate lead field for ECG lead I across the human torso, ignoring the 

effects of variations in conductivity.  Right:  The Brody effect, used here as a demonstration of how 
the lead field concept facilitates intuitive predictions of the effects of variations in conductivity on 
bioelectric measurements.  As proposed in [Malmivuo & Plonsey, 1995], the heart is modelled as a 

spherical blood volume enclosed by myocardium, with a uniform lead field imposed.  Given that the 
intracardiac blood and myocardium are more conductive than the surrounding tissue, it can be 

predicted that an ECG lead is more sensitive to transmural (radial) currents than tangential currents, 
because the lead field lines are diverted towards the more conductive pathway.  

+ - 

myocardium intracardiac blood 
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negative of this electric field, so it is directed inwards and its dot product with the outward vector 

Sd  will be negative. 

Now that the factors contributing to the remote component,  , of the UEG model have 

been identified and explained, the typical morphology of   can be assessed.  The remarkable fact 

that mv , in the integrand of (5), is evaluated only at the surface of the heart allows an intuitive 

interpretation of how   will vary as each wave of activity spreads across the surface of the 

myocardium.  During the activation phase, as an increasing proportion of the heart‘s surface area 

depolarises to a more positive transmembrane potential,   will generally decrease and cause an 

upward trend in the UEG.  Taccardi and colleagues noticed a component of this nature in UEG 

activation waves and referred to it as ―drift of the reference potential‖[Taccardi et al, 1998].  During the 

recovery phase, an opposite trend can be expected.  Potse et al confirmed this in their validation of 

the model by computing   for five different electrode configurations using a realistic bidomain 

model of the heart, as seen inverted in Figure 19[Potse et al, 2009].  On average (dashed line)   resembles 

a smoothed action potential, as predicted in the preceding analysis.  In a few cases, however, the 

upward slope is interrupted and/or preceded by a downward notch.  These deflections may be 

caused by phase 1 of the action potential (as seen in Figure 14, page 45) or by the possibility of the 

lead field crossing the heart surface in the outward direction at some points and changing the sign of 

SdZ   in (5).  The likelihood of the latter explanation is increased by the fact that Potse et al 

always positioned their reference electrode very close to the myocardium, making it conceivable that 

a single field line would cross the surface multiple times.  

 To summarise, (5) expresses the UEG as the difference between a local component, which 

tracks the negative of the transmembrane potential at the site of the exploring electrode, and a 

remote component that tracks the spread of activity around the surface of the heart.  The sensitivity 

of the UEG lead to this surface activity differs for each point on the surface according to the 

 
Figure 19:  Adapted from [Potse et al, 2009].  Permission not required.  The negative of the remote 

component of the simple UEG model, calculated for five different electrode configurations using (5).  
The lead field was calculated using a realistic model of the distribution of conductivity throughout 

the heart.  The dashed line shows the average of the five solid lines.  
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electrode configuration and the surrounding tissue properties.  Figure 16 (page 49) shows, by this 

interpretation, that the polarity of the activation and recovery waves in UEG traces is dependent on 

the timing of local activity relative to global activity.  For example, positive T-waves are recorded at 

sites that repolarise early and negative T-waves are recorded at the sites that repolarise later. 

 Potse and colleagues use this model to support the use of Tup in the UEG as a marker of tR 

in the local action potential[Potse et al, 2009].  However, the model also clarifies a limitation of this 

measure.  Previously, it was noted that ARIs measured using Tup from positive T-waves tend to 

underestimate the effective refractory period by up to 15 ms[Millar et al, 1985].  Note in Figure 16 that the 

upstroke of a positive T-wave occurs at a time when the remote component imposes a slight 

downward curvature on the UEG.  This imposed curvature can be expected to cause the inflection 

point Tup to occur at a slightly earlier time than the inflection point in the local action potential.  An 

opposite effect occurs for negative T-waves because the remote component imposes an upward 

curvature on the upstroke.  The resultant delay in Tup would tend to cancel out the physiological 

difference between action potential duration (APD) and effective refractory period (ERP), whereas 

in positive T-waves this difference would be exaggerated by the artificial shortening of the ARI.  

The exaggerated difference explains the observation by Millar et al that the discrepancy between ARI 

and ERP is greater in positive T-waves than in negative T-waves.  Further evidence for this effect 

appears in [Scacchi et al, 2009].  In the results of this simulation study, it can be seen that at sites 

with relatively short APDs (and, presumably, relatively early repolarisation times), the ARI tended to 

underestimate APD slightly.  At sites with long APDs, the ARI tended to overestimate APD.  The 

curvature of the remote component does not cause a significant difference between Tup and tR in 

Figure 16, but here Potse et al have used a particularly rectangular action potential morphology, 

which makes tR temporally distinct.  In other models or in experimental measurements, the 

transitions between phase 2, phase 3, and the resting phase of the action potential may be less 

distinct so that the timing of Tup is more susceptible to the effect of curvature in the UEG‘s remote 

component. 

To conclude this section, it should be noted that (2) describes the effective conductivities 

of the intracellular and extracellular domains using scalar quantities.  It would be more accurate to 

account for the anisotropy of the myocardium by treating conductivity as a vector with separate 

components for the longitudinal and transverse directions, with respect to the fibre orientation.  

However, this treatment would not allow such a succinct expression for the UEG as that seen in 

(2).  [Geselowitz & Miller, 1983] show that (2) holds (where the scalar conductivities are replaced by 

the magnitudes of the conductivity tensors) as long as the ratio between the longitudinal and 

transverse conductivities is the same for the two domains.  The implications of deviations from this 

condition are discussed in the next section. 
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II.E.2.b. Local effects of anisotropy 

Equation (2) grants useful insight into the broad morphology of UEGs, in which activation 

and repolarisation waves typically appear within the spectrum of positive, negative, and biphasic 

forms presented in Figure 16; the part of this spectrum into which a particular UEG falls is 

dependent on the timing of local activity relative to the surface activity.  However, this 

interpretation does not explain the full range of features that are observed in practice. 

For example, Figure 20 shows several activation waves measured from early-depolarising 

sites in an excised slab of canine myocardium.  Many of these activation waves show substantial 

positive deflections and/or gradual negative deflections preceding the sharp down-stroke of local 

activation.  The model of Potse et al[Potse et al, 2009] predicts only a sharp down-stroke followed by a 

gradual upward slope for these sites.  Figure 20 includes ―computed‖ UEGs, determined by 

implementing the bidomain model as a set of differential equations, which successfully predict all 

features of the recorded UEGs. The bidomain model is capable of predicting these additional 

features, but they are not apparent from the form of (2). 

For the purposes of understanding the genesis of typical UEG features, perhaps the most 

useful formulation of the bidomain model is that achieved by Colli Franzone and colleagues[Colli 

Franzone et al, 1998].  They decompose the right hand side of (6) (page 52) into four components, each of 

which has a visually identifiable contribution to the typical UEG waveform.  This is accomplished 

by first decomposing the source term J


 into an axial component , aJ


, and a ‗conormal‘ 

component, cJ


, such that ca JJJ


 .  The axial component acts parallel to the fibre direction.  

The conormal component acts in the direction of mvM , where M  is the conductivity tensor, a 

3x3 array describing the summed intracellular and extracellular conductivities in all three 

dimensions.  Following similar manipulations to those used in reaching (2) (Green‘s Theorem and 

other vector identities; see Appendix II), the resulting expression is 

 

      
 H

a
H

mmmm ZdVJZdVMvqvpvSdZMvUEG


  

 

 The four components of this expression of the UEG are discussed individually below. 

 

Surface component, SUEG : 

  SdZMvUEG mS


  

 

 Colli Franzone and colleagues[Colli Franzone et al, 1998] derive the conormal source term as 

mc vMJ  


.  The constant   relates the conductivities of the intracellular (i) and extracellular 

(e) domains in the direction transverse (t) to the fibre orientation:  etitit ,,,   .  SUEG  is 

equivalent to the remote component   (see (5)) in the simplified model described by Potse and 

colleagues[Potse et al, 2009]. 

 

(7) 

(8) 



II. Literature Review 

 

56 

 

Local component, LUEG : 

    qvpvUEG mmL    

 

 When the position q of the reference electrode is outside the heart,   0qvm .  Hence 

LUEG  is ordinarily a scaled, inverted version of the action potential at the location of the 

 
Figure 20:  Reproduced from [Spach et al, 1979] with permission.  Unipolar electrograms (UEGs) 

measured from various sites near the centre of a 30 mm x 20 mm slab of canine ventricular 
myocardium.  Also shown are corresponding computed UEGs, determined using a bidomain model.  

Note that only the UEG segments corresponding to activation are shown; repolarisation is not 
shown.  The 2-dimensional sequence of activation is shown by isochrones (dashed lines) with a 

spacing of 2 ms.  Activation was initiated by a pacemaker stimulus at the centre of the region, near 
electrode-site 1.  The slab has been divided into four regions defined by the typical UEG 

morphology they presented.  Region A, near the site of activation, is characterised by an immediate 
downward deflection (UEG 1).  Region B (UEGs 2 and 3) is an area of fast conduction along the 

axial direction of the myocytes.  Activation in this region presents a sharp downstroke in the UEG, 
preceded by a more gradual upward deflection.  Region C is an area of slower conduction in the 
transverse direction.  In UEGs from this region (4-6), a gradual negative deflection precedes the 
sharp downstroke associated with local activation.  Between regions B and C lies the transitional 
region D, in which the direction of activation propagation cannot be comfortably categorised as 

either axial or transverse.  Correspondingly, the UEGs from this region (7 and 8) bear ambiguous 
resemblance to those from both region B and region C. 

(9) 

general direction 
of fibre 

orientation 
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exploring electrode, p .  It is equivalent to the local term in the Potse model.  It should be noted 

that Colli Franzone and colleagues refer to LUEG  as the ‗jump component‘ because its 

morphology resembles a Heaviside step function when studying activation only.  However, their 

model is also valid during repolarisation, when LUEG  can be expected to vary more smoothly over 

time. 

 

Tissue component, TUEG : 

 
H

mT ZdVMvUEG   

 

 Note that the term   refers to a spatial variation in tissue conductivity.  Colli Franzone 

and colleagues remark that   can be expected to vary smoothly in healthy 

myocardium[Colli Franzone et al, 1998].  Hence the contribution of TUEG  to UEG  will be small in most 

cases.  However, if the exploring electrode is positioned close to an area of pathological 

myocardium, TUEG  is likely to become non-negligible. 

 

Axial component, aUEG : 

 
H

aa ZdVJUEG


 

 

 Colli Franzone and colleagues derive the axial source term as   avJ ma
ˆ 


.  â  is a 

unit vector in the direction of the myocardial fibres.  


 acts in the same direction with a magnitude 

that, similar to  , relates the conductivities of the intracellular (i) and extracellular (e) domains in 

the axial (a) and transverse (t) directions:      etiteaiaitia ,,,,,,  


. 

 The morphology of aUEG  can be more easily inferred by converting (11), which is 

standard form for a dipole source distribution, to its equivalent monopole formulation[Plonsey & Barr, 

2007]: 

 

 





H

m
a ZdV

dx

vd
UEG




 

 

Assume 


 to be constant throughout H and consider the case in which mv  is parallel to the 

fiber direction i.e.  dxdvav mm
ˆ .   We then have 

 


H

m
a ZdV

dx

vd
UEG

2

2




 

 

(10) 

(11) 

(12) 

(13) 
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Here we see that that the axial component is proportional to the second derivative, in the axial 

direction, of the membrane potential.  Consider the spatial variation in that term.  The top panel of 

Figure 21 shows a ventricular action potential simulated using the Luo-Rudy model of membrane 

behaviour,[Luo & Rudy, 1991] as implemented by Benjamin Battacharya-Ghosh from the Department of 

Mechanical Engineering, University College London.  Because the depolarisation of a myocyte 

occurs quickly and the wave of activation spreads quickly, the spatial distribution of the membrane 

potential, )(xvm , during this phase can be approximated by stretching the time scale of )(tvm  

according to an assumed conduction velocity (around 65 cm/s) [Plonsey, 1969], [Plonsey & Barr, 2007].  Clearly 

the resultant morphology of the second spatial derivative, 
22 dxvd m , will follow that of 

22 dtvd m , which is seen in the lower-right panel of Figure 21.  Note that the activation sequence 

can be simplistically modelled as two closely positioned monopole current sources of opposite sign.  

As the action potential propagates down a fibre towards an extracellular electrode (from right to left 

 
Figure 21:  Top – The time-course of a typical mammalian ventricular action potential, as 

predicted by the Luo-Rudy model[Luo & Rudy, 1991].  Lower left – A close-up of the depolarisation 
phase of the action potential, as demarcated by the dashed box in the top panel.  Lower right – 

The second temporal derivative of the membrane potential during this phase.  As described in the 
text, during depolarisation this morphology can be assumed to be the same as that of the second 
spatial derivative.  Hence it indicates the distribution of membrane current along the myocyte, as 

indicated by the added „position‟ axis. 
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in Figure 21), the electrode will first record an upward deflection from the positive monopole, 

followed shortly by a downward deflection produced by the negative monopole. When its 

appearance is well defined, this biphasic feature is typically referred to in the literature as the 

―intrinsic deflection‖ of local activation. 

The emergence of the positive (outward) current leading the wavefront may seem 

counterintuitive, given that depolarisation was said to be characterised by an influx of Na+ ions.  

The physical explanation is that the current associated with this influx dissipates down the inside of 

the fibre towards the inactive region ahead of the wavefront, where the intracellular potential is 

lower.  As this intracellular potential is thus raised, current is driven outwards and through the 

extracellular medium to feed the depolarising current.  These currents are depicted by the yellow 

arrows in Figure 22, which also gives the associated extracellular potentials determined 

experimentally by [Spach et al, 1973]. 

The derivation of (13) assumed mv  to be parallel to the fibre orientation.  As the angle 

between the two increases to 90˚, the magnitude of the local contribution to aUEG  decreases to 0.  

This component is responsible for the overall UEG morphology‘s dependence on the direction of 

propagation relative to the fibre orientation, as seen in Figure 20.   

The reason given for introducing (7) as an expression for the UEG was that the simplified 

model proposed by Potse and colleagues, though useful as an intuitive explanation of gross UEG 

morphologies, could not explain the full range of features presented in Figure 20.  (7) is easily 

related to the Potse model, because the local and surface components are common to both.  

 
Figure 22:  Reproduced from [de Bakker & Wittkampf, 2010] with permission.  A schematic of the 

transmembrane and intracellular currents (yellow arrows) surrounding a depolarisation wavefront in 
a cardiac myocyte.  Also depicted are the associated extracellular potentials. 
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However, (7) includes two additional terms: the tissue component, which can usually be neglected, 

and the axial component, which accounts for the more complex features seen in Figure 20.   For 

example, note that the axial component induces a large positive deflection before the down-stroke 

of local activation at site 3, towards which activation spread in the direction of fibres.  At other sites 

the effect is small either because the myocytes have depolarised before the outward currents have 

developed (e.g. sites 1 and 2) or because activation has propagated transverse to the fibres, such that 

intracellular currents could not be driven ahead of the depolarising influx (e.g. site 4).  At these sites, 

the sharp down-stroke of local depolarisation is pre-empted by a more gradual down-slope due to 

the potential field induced by inward currents nearby.  Sites 5-8 exhibit a blending of these two 

effects.  The preceding analysis demonstrates the importance of tissue anisotropy in determining the 

morphology of the activation wave in the UEG. 

 

II.E.2.c. Spatial specificity 

For a monopole current source in an infinite, homogeneous, isotropic conductive medium, 

the transfer function relating the source to the potential field is inversely proportional to the 

distance between the source and the observation point, as shown in Appendix III.  For a dipole 

source, the transfer function is inversely proportional to the square of that distance.  Figure 23 plots 

the transfer function for the monopole-source case, in order to given an impression of the field of 

view of the UEG and its dependence on electrode positioning.  When the exploring electrode is 

closer to the myocardial surface, the relative influence of neighbouring surface regions is reduced 

compared to that of the region immediately under the electrode.  As mentioned above, the transfer 

function H is the inverse of the distance between the source (x‘, y‘, z‘) and the observation point (x, 

y, z).  In Figure 23, the coordinate system has been defined such that 0z  across the myocardial 

surface and 0y  in the plane of view.  The transfer function relating the current source to the 

observed potential is then (ignoring a constant factor) 

 

 
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As mentioned previously, the true electrocardiographic transfer function Z  (or Z  when 

a monopole-source formulation is used) is dependent on the heterogeneity and anisotropy of the 

extracellular conductivity of the myocardium and surrounding volume.  The lead field‘s dependence 

on the overall anatomy of the body makes it difficult to achieve a generalised description of the 

spatial specificity of the UEG.  Various studies have employed computational modelling to explore 

the susceptibility of the UEG to artefacts of remote activity[Steinhaus, 1989], [Taccardi et al, 1998], [Colli Franzone et al, 

2007b], [Scacchi et al, 2009].  Such studies have made invaluable contributions to our understanding of the 

field of vision of the UEG, but they are necessarily prescriptive in terms of electrode configurations 

and the spatiotemporal distribution of activity that they consider.  The infinite, homogeneous 

conductor scenario described in the previous paragraph can be used for a more general impression 

of the UEG‘s spatial specificity, as in Figure 23.  However, this interpretation is subject to the 

 

(14) 
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caveat that the body‘s confined nature and variations in conductivity will cause the true transfer 

function to deviate from this form.  The nature of this deviation can be explored analytically by 

treating the heart as existing in an infinite medium of homogeneous conductivity and replacing the 

major discontinuities of conductivity (e.g. the skin and the surface of the lungs) with equivalent 

dipole-source layers[Wilson & Bayley, 1950].  Such analysis cannot produce useful, generalised results 

regarding the spatial specificity of the UEG.  However, the interested reader should note that this 

concept is a useful complement to the lead field concept as a means of qualitatively assessing a 

UEG measurement‘s dependence on movement in the surrounding tissues. 

 

II.E.2.d. Repolarisation in the UEG 

The preceding interpretation of the genesis of UEG morphology focuses on depolarisation 

because the chain-reaction nature of activation propagation makes for a relatively predictable 

spatiotemporal distribution of activity, hence a predictable UEG morphology.  Prediction of the 

repolarisation portion of the UEG requires additional considerations. 

The spatiotemporal distribution of repolarisation is more dependent on the behaviour of 

individual cells and, in particular, on the gating behaviour of the different ion channels.  Some 

degree of synchronisation is provided by electrotonic effects[Conrath & Opthof, 2006]; the gap junctions 

that join myocytes at their ends allows some continuity of the intracellular fluids, such that the drop 

in intracellular potential of a repolarising myocyte draws current from its neighbour.  Thus, the 

intracellular potential of the neighbour also drops slightly, and the voltage-sensitive ion channels 

respond by initiating full repolarisation (phase 3 of the action potential).  Experimental evidence of 

this synchronisation comes from the observation that myocytes in the intact myocardium are found 

to repolarise earlier than when the individual cell is isolated[Clayton & Holden, 2004].   

Although some direct synchronisation exists, there is substantial variation between the 

intrinsic APDs of myocytes from different regions of the heart.  In normal circumstances this 

variation actually yields closer synchronisation of repolarisation times, because sites that depolarise 

later under the normal activation sequence tend to exhibit shorter action potentials than early-

activating sites: APD is generally shorter at the base of the ventricles than at the 

 
Figure 23:  The transfer function H for a monopole current source (see equation (88) in Appendix 

III) calculated along one dimension of the myocardial surface, using an electrode positioned above 
the point x = 0 at a distance of z = 2mm (thick dashed line) and z = 0.2mm (thick solid line).  
Vertical lines mark the point at which H becomes half that at the point directly beneath the 

electrode (x = 0).  Intuitively, an electrode closer to the area of interest will provide a narrower focus. 
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apex,[de Bakker & Opthof, 2002] and is shorter at the epicardium than at the endocardium[Yan & Antzelevitch, 1998].  

The fact that the spatial gradient of APD tends to be opposite to the spread of activation yields 

closer synchronisation of the timing of repolarisation across the ventricles as long as activation 

propagates by the normal sequence.  An exception to this tendency occurs in the form of a recently 

discovered class of myocytes known as M-cells[Sicouri & Antzelevitch, 1991].  These cells are found in the 

middle layer of the ventricular wall and exhibit much longer APDs, as well as increased dependence 

on heart rate, as shown in Figure 24.  

In practice, ventricular repolarisation is found to behave as a progressing wave, with 

similarities to the depolarisation wave.  However, the direction and speed of the repolarisation wave 

are much more variable, owing to the heterogeneity of APDs.  Also, phase 3 of the action potential 

typically lasts much longer than phase 0 (tens of milliseconds, compared with 2-4 ms) so the 

repolarisation wavefront could not be treated as a thin layer of activity unless the wave progressed 

very slowly.  As a result, the second spatial derivative of membrane potential is very small, so 

repolarisation does not present additional UEG features akin to the early positive deflections seen 

in the activation waves of Figure 20. 

 

II.E.3. Sources of error in measurements from unipolar electrograms 

 Although modelling studies and analytic work have shown that the UEG provides useful 

indicators of the timing of local depolarisation and repolarisation, practical implementation of these 

 

Figure 24:  Reproduced from [Sicouri & Antzelevitch, 1991] with permission. 
The action potential duration (APD) determined from intracellular recordings in canine 

ventricular myocardium.  Substantial transmural heterogeneity of APD exists.  M-cells exhibit 
markedly longer APDs than endocardial and epicardial myocytes, and vary more steeply with 

changes in heart rate. 
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techniques is subject to several confounding factors, particularly when conditions do not match the 

‗ideal‘ conditions assumed in the preceding analysis.  These factors are briefly detailed in two 

separate categories below. 

 

Deviation from the assumed action potential morphology:  It was noted in section II.C that the 

precise morphology of cardiac action potentials varies throughout the heart and is subject to varying 

physiological conditions.  Those drawn in the top row of Figure 16 are particularly rectangular in 

shape; the steep slope during phase 3 (repolarisation) ensures a distinct artefact in the UEG.  Certain 

conditions such as ischemia and rapid pacing (artificial control of heart rate) can cause the action 

potentials to become more triangular (i.e. with a more gradual downslope from phase 1 to full 

repolarisation) [Steinhaus, 1989].  In such cases, the upward UEG deflection associated with local 

repolarisation would be less sharp.  In this situation the measurement of repolarisation time as Tup 

becomes less meaningful or more easily corrupted by the behaviour of the remote component of the 

UEG, as discussed on page 54. 

Deviation from the idealised pattern of propagation:  In justifying the use of minV  and Tup to 

indicate local membrane behaviour, it was assumed that activation and repolarisation behave as 

single, steadily propagating waves passing close to the exploring electrode.  It has been 

demonstrated through the modelling and experimental studies that, when the spread of activity does 

not match that assumption, minV  and Tup can differ substantially from the membrane events they are 

said to represent[Steinhaus, 1989], [Scacchi et al, 2009], [de Bakker & Wittkampf, 2010].  Such exceptions can occur in the 

following scenarios: 

 

- During fibrillation. 

- At locations where propagation is initiated or terminated. 

- Where two regions of myocardium, separated by an insulating layer, are both within the 

exploring electrode‘s field of view.  For example, the Purkinje fibres are separated from the 

 

Figure 25:  Recordings from guinea pig ventricular myocytes show that ischemia causes the action 
potential to decrease in amplitude and become more triangular in shape.  Data from [Louch et al, 

2002]. 

40 

0 

-40 

-80 

vo
lt

ag
e 

(m
s)

 

control ischemia 



II. Literature Review 

 

64 

surrounding myocardium by a sheath of collagen[de Bakker & Wittkampf, 2010].  The two regions will 

depolarise and repolarise at different times, so that the UEG appears as the superposition 

of two ―normal‖ UEGs whose features will not necessarily be easily distinguished from 

each other.  Such electrograms are often referred to as being ―fractionated‖.  As a second 

example, the base of the ventricles is very close to parts of the atria, but is separated by the 

annulus fibrosus and the AV node. 

- At sites of discontinuous tissue properties.  These might include the boundaries of 

diseased/damaged tissue regions or regions where contractile myocytes meet specialised 

conductive cells.  At these sites the effective intracellular conductivity or membrane 

behaviour may change sharply, selectively altering the action potential morphology of some 

cells and their manifestation in the UEG.  Natural variations in action potential duration, 

such as those occurring in through the ventricular wall, may also cause a sudden change in 

the speed at which the repolarisation wave propagates, corrupting the measurement of 

Tup
[Scacchi et al, 2009]. 

 

 

II.F. Control of the Heart by the Autonomic Nervous System 

II.F.1. Overall structure and function 

 The heart is innervated at various points by the autonomic nervous system (ANS) (Figure 

29).  The heart rate and contractility (strength of contraction) at any given time are largely dependent 

on the balance between sympathetic and parasympathetic nervous activity.  Sympathetic activity can 

loosely be interpreted as encouragement; in the heart, it generally contributes to an increase in rate 

and contractility.  Conversely, parasympathetic nervous activity has an inhibitive effect. 

 Activity in the ANS varies in response to physiological factors such as blood pressure and 

muscle work rate[Spyer, 1994].  Sensory measurements of these factors are processed by the brain, which 

 
Figure 26:  Hierarchy of the nervous system. 
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adjusts sympathetic and parasympathetic (a.k.a. vagal) activity appropriately.  ANS activity is also 

known to vary according to the emotional state of the subject, and this has a measurable effect on 

cardiac parameters[Napadow et al, 2008], [Critchley et al, 2005].  The resultant change in cardiovascular behaviour 

alters the blood flow and hence influences the physiological state of the body.  In that sense, the 

ANS is a control system whose purpose is to ensure that cardiac output constantly adapts to 

changing demands.  Its response time is short enough to address sudden changes, such as the 

change in blood pressure induced when a person stands up.  The feedback control loop for the 

ANS is illustrated in Figure 27 and Figure 28.  

 

Figure 27:  A simplified block-diagram representation of the feedback control loop in Figure 28. 

 

Figure 28:  Cardiovascular branches of the autonomic nervous system as a feedback control loop.  
Physiological interactions as described by [Levick, 2003]. 

heart 
rate stroke 

volume 

parasympathetic 

sympathetic 

venous 
tone 

resistance 
vessel tone 

cardiac 
output 

cardiac filling 
pressure 

total peripheral 
resistance 

blood 
pressure 

cardiopulmonary 
stretch receptors 

arterial 
baroreceptors 

arterial 
chemoreceptors 

muscle work 
receptors 

inhibitory feedback 

excitatory feedback 

parasympathetic 
activity 

cardiovascular 
behaviour 

sympathetic nerve 
feedback 

parasympathetic 
nerve feedback 

central 
integration 

sympathetic 
activity 



II. Literature Review 

 

66 

 As mentioned previously, the ANS controls both heart rate and contractility.  As illustrated 

in Figure 29, the parasympathetic NS innervates the sino-atrial node via the right vagus nerve.  

Increased activity in this nerve causes a reduced heart rate.  This effect is achieved by the release of 

the neurotransmitter acetylcholine, which opens certain K+ channels in sino-atrial myocytes and 

closes some Na+ and Ca++ channels.  The balance of electrochemical potentials therefore changes, 

hyperpolarising the cell and decreasing the slope of the resting potential‘s upward drift, as illustrated 

in Figure 30.  The membrane potential takes longer to reach its threshold value, so the time between 

heart beats increases[Bolter et al, 2001]. 

 The atrio-ventricular node is innervated by the parasympathetic nervous system via the left 

vagus nerve, which induces a response similar to that induced in the SA node by right vagus nerve.  

The likelihood of the AV node‘s automaticity (see p. 27) pre-empting that of the SA node is 

therefore reduced. 

 Activity in sympathetic fibres leads to the release of noradrenaline (also known as 

norepinephrine), rather than acetylcholine[Zipes & Jalife, 1999].  Increased levels of noradrenaline influence 

cardiac myocytes in various ways.  Sympathetic fibres on the right side of the body innervate both 

the SA node and the AV node.  Increased activity in these fibres causes an increased heart rate by 

mechanisms that are essentially opposite to those by which parasympathetic activity lowers heart 

rate[Hutter & Trautwein, 1956], [Levy & Martin, 1979].  On the left side, sympathetic fibres innervate the atria and 

ventricles.  Increased noradrenaline levels indirectly lead to an increased probability and duration of 

Ca++ channels opening.  The increased presence of Ca++ in the myocyte increases the force of 

contraction, as explained in appendix 2.  Although the increased influx of Ca++ has a 

correspondingly increased depolarising effect, this is overcompensated by an increased outward K+ 

current, so the action potentials of contractile myocytes are in fact shortened, allowing more 

frequent excitations.  To the same end, sympathetic nerve activity on the right side leads to an 

 
Figure 29:  Adapted from [Levick, 2003].  Routes of sympathetic and parasympathetic innervation of 

the heart.  It should be noted that this representation is simplified; the ventricles are also sparsely 
innervated by parasympathetic fibres, and all connections are subject to anatomic variation. 
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increase in conduction velocity through the AV node, reducing the delay between atrial and 

ventricular contraction[Levy & Martin, 1979].   

Furthermore, various genetic channelopathies (diseases of the ion channels) exist which 

increase a patient‘s likelihood of developing a fatal arrhythmia.  Each channelopathy affects a 

particular ion channel‘s sensitivity to either sympathetic or parasympathetic input.  For example, in 

the channelopathies known as Long QT Syndrome (types 1 and 2), increased sympathetic activity 

modulates the behaviour of certain Ca++ channels to prolong APD, which is opposite to the normal 

effect of increased sympathetic tone and incompatible with the concommitant increase in heart 

rate[Taggart et al, 2011].  In Brugada Syndrome, which affects a class of Na+ channel, Nakazawa and 

colleagues found that patients with increased parasympathetic tone were more susceptible to 

arrhythmia[Nakazawa et al, 2003].  Patients with such channelopathies as these have selectively increased 

vulnerability to different environmental/behavioural stimuli.  This observation leads to two 

important points:  1) in isolated cases, the task of inferring autonomic activity from cardiac 

electrophysiology can be complicated by the emergence of effects opposite to the expectations on 

which the inference depends, and 2) ANS behaviour that would be considered normal in most 

 
Figure 30:  The effects of parasympathetic stimulation of the guinea pig SA node (adapted from 
[Bolter et al, 2001] with permission), and effects of sympathetic stimulation of the frog SA node 
(Adapted from [Hutter & Trautwein, 1956]; permission not required).  Both types of autonomic 

input affect the rate of upward drift in the resting potential.  Parasympathetic stimulation also affects 
the magnitude of the resting potential (hyperpolarisation). 
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subjects can have disastrous effects when acting on an abnormal heart.  This second point 

emphasises the importance of gaining an understanding of even subtle aspects of autonomic 

interactions with the heart, as ordinary physiological mechanisms may in some cases give rise to 

catastrophic behaviour.  With this motivation, the experiments discussed in sections V.A and V.C 

were designed to further the general understanding of physiological mechanisms that have not 

previously been linked by evidence to the emergence of arrhythmia. 

 

II.F.2. Respiratory sinus arrhythmia 

It is commonly observed that heart-rate fluctuates with breathing; this phenomenon has 

been introduced previously as ‗respiratory sinus arrhythmia‘ (RSA).  Blood pressure is also known to 

oscillate at the respiratory frequency[Zhang et al, 2002].  Numerous candidate mechanisms have been 

proposed to explain these oscillations, including mechanical and autonomic effects. One might then 

hypothesise that cardiac electrophysiological properties beyond the sinus node also oscillate with 

respiration; myocyte behaviour around the heart is known to be influenced by ANS activity, as 

discussed in the previous section, and by mechanical inputs[Kohl et al, 2006], [Taggart & Sutton, 2011].  Such 

manifestations of RSA and their significance with regard to the stability of cardiac behaviour have 

not been thoroughly explored in the literature, but novel observations of this nature were produced 

in the experiments described in section V.C.  To contextualise those results, this section briefly 

introduces the mechanisms by which RSA is thought to occur. 

Respiration is known to act as a mechanical input to blood pressure[Cohen & Taylor, 2002].  The 

expansion of the chest during inspiration reduces pressure within the chest‘s thoracic cavity.  This 

pressure-drop acts on all four chambers of the heart, as well as the veins and arteries within the 

thoracic cavity, to varying degrees.  One important result is that the left-ventricular stroke volume is 

reduced[Innes et al, 1993].  The reduction in stroke-volume can be assumed to contribute to a reduction in 

arterial blood pressure.  Also, the influence of intrathoracic pressure on the stretching of the SA 

node is thought to cause small accelerations in heart rate during inspiration[Larsen et al, 2010].  However, it 

is found that the magnitude of RSA in heart-transplant recipients is just 2-8% of normal levels, 

suggesting that autonomic nervous input is responsible for the major part of normal RSA[Bernardi et al, 

1989]. 

Debate persists regarding the role of the ANS in generating RSA[Eckberg, 2009], [Karemaker, 2009], 

[Larsen et al, 2010].  The key point of contention is whether the dominant mechanism is the baroreflex 

effect or a separate oscillatory input from the central nervous system.  The baroreflex argument 

states that the decrease in arterial blood pressure due to the mechanical effects of inspiration triggers 

an increase in heart rate so that cardiac output increases, counteracting the pressure-drop.   The 

competing argument is that sympathetic and parasympathetic outflow to the heart, including 

baroreflex signals, are modulated in the central nervous system by breathing.  This phenomenon is 

known as respiratory gating, and yields increased sympathetic outflow and decreased 
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parasympathetic outflow during inspiration[Eckberg, 2003].  Changes of this nature in the ANS outflow 

to the heart are expected to influence the behaviour of myocytes throughout the heart.  The specific 

effects of ANS activity on the various membrane channels has been studied extensively.  One can 

therefore expect numerous RSA-related electrophysiological effects in addition to the change in 

heart rate, such as modulation of action potential durations. 

 

II.F.3. Psychological Effects 

II.F.3.a. The pathway from emotional stimuli to cardiac effects 

As well as maintaining stable physiological behaviour in response to the varying demands of 

the body‘s organs, the ANS also responds to commands from higher processing centres.  Such 

responses are required to prepare the body for forecast requirements, as in the fight-or-flight 

response.  The potential for this reaction to destabilise cardiac behaviour is colloquially familiar 

(―Calm down before you give yourself a heart-attack!‖), but only recently has it been possible to 

investigate such mechanisms in detail.  The possibility that the autonomic response to a stressor 

could have fatal consequences are not exaggerated.  Taggart and colleagues summarise a range of 

evidence linking psychological influences to the occurrence of sudden cardiac death[Taggart et al, 2011].  

Thayer & Brosschot also list recent studies that have found evidence for an ANS-mediated link 

between negative emotional states and various forms of ill-health[Thayer & Brosschot, 2005].  Figure 31 

outlines the pathway by which emotional stimuli might evoke a fatal cardiac response. 

 

II.F.3.b. The brain-heart laterality hypothesis 

 As described previously (see Figure 29, page 66), the ANS breaks out from the spinal cord 

in separate branches for the left and right sides of the body, and these branches do not innervate 

the heart symmetrically in terms of either functionality or spatial distribution of nerve endings.  

Furthermore, it is known that cerebral hemispheric asymmetries exist in the processing of 

emotions[Critchley et al, 2005].  These observations led to the Brain-Heart Laterality (BHL) Hypothesis, 

that ―the minority of people who are more lateralised to the left hemisphere during emotion 

channel this activation ipsilaterally to induce a lateralised imbalance in sympathetic input to the 

heart, increasing the likelihood of ventricular fibrillation and sudden death.‖[Lane & Jennings, 1996]  In 

simpler terms, asymmetric processing of emotions in the brain may generate asymmetric 

sympathetic outflow to the heart.  The left sympathetic branch predominantly controls the 

behaviour of contractile myocytes while the right branch controls heart rate and the AV node‘s 

behaviour.  Asymmetric input might therefore result in a scenario where ventricular action potential 

duration is not appropriately matched to heart-rate, increasing the risk of arrhythmia developing. 
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To summarise, the ANS innervates the heart at various sites to modulate heart rate and 

contractility.  The localised effects of this innervation vary between sites, adjusting the behaviour of 

different ion channels to maintain beat-to-beat stability.  An awareness of these mechanisms is 

essential in any investigation concerned with how interactions with the nervous system influence 

cardiac electrical stability.  Previous sections described how experimental observations of electrical 

fields produced by the heart can be related to the morphology and spatiotemporal distribution of 

action potentials.  It was also noted that an understanding of the key ion transfers that contribute to 

the action potential allows insight into the physiological mechanisms behind any observed changes 

in action potential.  This section has briefly outlined how changes in ANS input to the heart can 

 

Figure 31:  Reproduced from [Taggart et al, 2011] with permission.  Emotional stimuli are processed 
in various brain centres (the individual roles of which are beyond the scope of this report), leading to 
a response of the autonomic nervous system.  Effects on the heart include altered tone in the blood 

vessels that supply the myocardium and alterations to mycocyte action potentials.  Autonomic 
effects on the various membrane ion channels may lengthen or shorten action potentials 

heterogeneously, or they may increase the occurrence of early and delayed after-depolarisations 
(EADs and DADs).  All of these effects can lead to the development of ventricular fibrillation (VF). 
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induce changes in these cellular mechanisms.  By combining these concepts, recordings of cardiac 

electrical behaviour can be used to infer the ANS input to the heart.  This approach underlies all of 

the experimental work carried out in this project. 

 

 

II.G. Heart Rate Variability as an Indicator of Autonomic Activity 

 As has been explained previously, heart rate continuously varies as the different control 

mechanisms that influence it are fine-tuned to the body‘s physiological state.  The patterns of 

variation in heart rate, rather than just the rate itself, can therefore give insight into variations in the 

controlling influences both within and outside of the heart.  For short term responses, the most 

significant of these influences is the ANS, although the endocrine (hormonal) system also plays a 

significant role that is beyond the scope of this thesis.  Heart rate variability (HRV) is often taken as 

a useful, non-invasive measure of ANS activity.  Various methods of quantifying HRV have been 

implemented in the past[TFESCNASPE, 1996] and recent developments continue to improve upon these 

measurements[Barbieri et al, 2005], [Barbieri & Brown, 2006], [Chen et al, 2009].  In general these methods are applied to 

time-series formed from the intervals between heart beats.  These intervals are most commonly 

measured from ECG signals as the time between consecutive R waves, and in this case they are 

referred to as ‗RR intervals‘. 

 
II.G.1. Interpretation of HRV measurements 

 The most widely accepted measures of HRV are based on frequency-domain 

measurements.  They are popular because two distinct peaks tend to occur in the power spectrum 

of RR intervals.  One of these peaks usually occurs in the range 0.04 Hz – 0.15 Hz (low frequency, 

or LF, band), and the other occurs in the range 0.15 Hz – 0.4 Hz (high frequency, or HF, band), as 

seen in Figure 32.  Note that the HF band roughly matches the normal range of human respiratory 

frequencies; these oscillations are caused by respiratory sinus arrhythmia, as explained on page 68.  

Much like for RSA, some uncertainty persists regarding the origins of the oscillations manifested in 

the LF peak[Julien, 2010].  In particular, it is unclear whether they arise from a resonance effect in the 

baroreflex mechanism or from a centrally mediated oscillation in sympathetic activity. 

 The magnitudes of the LF and HF peaks are often cited as indicators of sympathetic and 

parasympathetic activity, although caution must be exercised in such interpretations.  The HF peak 

has been taken as a measure of baseline parasympathetic activity because the respiratory gating 

effect is more substantial in this branch of the ANS[Katona, 1970].  However, more recent studies[Eckberg 

et al, 1985], [Taylor et al, 2001] have shown that sympathetic activity also operates at the respiratory frequency 

and has a lesser, modulating influence on RSA.  The nature of the LF peak is more ambiguous.  

Many take its power (area) to be an indicator of fluctuations in sympathetic activity,[Malliani et al, 1991], 

[Kamath & Fallen, 1993], [Rimoldi et al, 1990], [Montano et al, 1994] while others believe that sympathetic and 

parasympathetic activity both contribute[Akselrod et al, 1981], [Appel et al, 1989].  Hence, in some studies, the 
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powers of the HF and LF peaks are taken as separate indicators of parasympathetic and 

sympathetic oscillations, while others use the ratio of the two peak powers, LF/HF, as an indicator 

of sympathovagal (sympathetic vs. parasympathetic) balance.   

Levels of sympathetic and parasympathetic activity are known to vary in response to each 

other[Katona & Jih, 1975].  Upon collective consideration of this and the preceding observations, it seems 

reasonable to conclude that, rather than attributing a particular branch of the ANS to either the LF 

or the HF peak, one can assume that both branches exhibit a continuous frequency response to 

their respective inputs, with the sympathetic response predominant at lower frequencies (< 0.15 

Hz) and the parasympathetic response predominant at higher frequencies (> 0.15 Hz).  This 

paradigm is consistent with the observation that parasympathetic activity tends to respond more 

quickly than sympathetic activity to a step-change in stimulus.  For example, the parasympathetic 

response to a sudden change in blood pressure occurs within 1 second, whereas the accompanying 

sympathetic response takes 2-3 seconds[Borst & Karemaker, 1983].  The LF peaks in RR interval spectra 

emerge as a resonant behaviour when this baroregulation system is modelled with parasympathetic 

components acting on shorter time-scales than sympathetic components[deBoer et al, 1987], [Deutsch & Deutsch, 

1993]. 

 Another important consideration when interpreting these spectra, is that the powers of the 

peaks do not necessarily correlate directly with the level of autonomic activity.  They represent only 

the extent to which variation in heart rate can be attributed to ANS variations about a nominal 

baseline level[Malik & Camm, 1993].  That said, the LF/HF ratio is commonly found to agree with the 

presumed changes in sympathovagal balance according to changing physiological states in humans 

 
Figure 32:  Adapted from [TFESCNASPE, 1996] with permission.  Two RR interval power 

spectra, with clear LF and HF peaks, along with pie charts illustrating the LF/HF ratio.  The 
change in the peak magnitudes reflects the ANS response induced by moving from a horizontal 

resting position to a 90 degree head-up tilt. 
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and animals[Malliani et al, 1991].  Also, in dogs the mean level of parasympathetic control has been found 

to correlate linearly with the amplitude of heart-rate variations at the respiratory frequency[Katona & Jih, 

1975].  However, some cases have been found to defy this correlation, with large HF oscillations 

observed while mean parasympathetic activity was assumed to be low[Larsen et al, 2010]. 

A final consideration to note with regard to the interpretation of heart rate variability 

measures is that the variations in the LF and HF peaks are sometimes exposed only when 

normalised units (nu) are used to describe the power of each spectral component[TFESCNASPE, 1996].    

Without normalisation, the power is expressed in units of milliseconds-squared.  When the same 

variable is expressed in nu, it represents the power of the spectral component relative to the total 

power of the spectrum, excluding VLF power (very low frequency, <0.04 Hz), as described in (15). 
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II.G.2. Existing methods for the measurement of HRV 

 There are various ways of calculating the spectra from which these measurements are 

taken.  The choice of method is dependent on the specific nature of the RR interval series to be 

examined.  Hence several popular techniques are outlined in this section.  The most commonly 

used are the Fast Fourier Transform (FFT), Auto-regressive models, and wavelet transforms.   

 

Fast Fourier Transform: 

 The familiar Fast Fourier Transform (FFT) is popular because it is computationally 

efficient and easy to implement.  For a signal  nx , the Fourier transform is defined as[Lyons, 2004] 
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where N  is the total number of samples in x , and m  has integer values 0  to 1N . 

The time-frequency uncertainty principle states that as the length of a signal decreases 

accuracy with which its frequency content can be defined also decreases.  This principle can be 

illustrated by taking the Fourier Transform as an example.  For a signal with sampling frequency 

Sf , the centre frequency of the m th frequency bin can be written as Nmf S .  When a signal 

component has a frequency NkfS , where k  is not an integer, the component cannot be 

contained by a single frequency bin.  Instead, its energy distributed across all bins with a weighting 

w  that is approximated by the sinc function, given in (17) [Lyons, 2004].  This phenomenon is known 

as ‗leakage‘. 
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As can be seen in Figure 33, the magnitude of this leakage tends to decrease for frequency 

bins further from k , although substantial variations can occur between neighbouring bins.  By 

increasing the signal length N  increases, these frequency bins draw closer together, such that the 

leakage is concentrated into a narrower range of frequencies.  This is a manifestation of the time-

frequency uncertainty principle.  Capturing more cycles at each frequency yields a better-defined 

spectrum. 

 

Auto-regressive (AR) spectral analysis: 

A significant drawback of the FFT is that the amount of leakage into each frequency bin 

can vary substantially for small changes in the source frequency.  As a result, the spectrum can 

contain peaks whose appearance is not easily interpreted. 

An attractive alternative is auto-regressive (AR) spectral analysis.  An AR model 

approximates a signal‘s behaviour, predicting each successive point based on the values of a few 

preceding points.  The general formulation for an autoregressive model representing a series  nx  

is as follows: 
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… where M  is the model order (the number of points used to predict the next) and the 

coefficients ia  are the weightings by which each previous point is multiplied to predict the next.  

The series (n) is the model‘s error in predicting each nth point.  Strictly speaking, (n) has no values 

 
Figure 33:  A plot of the sinc function (equation (17)), which determines the amplitude of leakage in 
the mth frequency bin for a sinusoidal signal component with a non-integer number of cycles, k, in 
the signal.  Black dots indicate the amplitude of the function at the frequencies corresponding to 
integer values of m.  When k is an integer these points align with the zero-crossings of the sinc 

function except at k=m. 
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for 1  n  M.  The coefficients ia  are chosen to minimise (n)2, then the model‘s power 

spectrum P() can be calculated as 
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where   is the standard deviation of the prediction error , and  is any frequency expressed as a 

fraction of 2sf , sf  being the sample frequency in Hertz. 

Unlike the FFT, this method does not constrain the spectrum to pre-selected frequency 

bins.  Instead, a continuous spectrum is automatically calculated from the transfer function of the 

AR model, leading to ―smoother‖ and more easily interpretable spectra.  AR spectra and FFTs are 

similarly sensitive to signal length in the sense that using shorter signals broadens the peaks in the 

AR spectrum, much like it stretches the sinc function associated with FFT leakage (shown in Figure 

33).  Unlike the FFT however, the AR spectrum‘s magnitude does not vary erratically between 

neighbouring frequencies due to leakage (assuming an appropriate selection of model order, 

discussed in the next paragraph). 

The validity of the AR spectrum is of course dependent on the validity of the AR model 

chosen.  Of particular importance is the choice made for the ‗order‘ of the model, the number of 

points used to predict the next point.  Various methods are available to simplify and standardise the 

process of selecting the model‘s order, the most commonly used being the Akaike information 

criterion[Takalo et al, 2005].  AR spectra are generally said to be preferable to FFT spectra for identifying 

central (dominant) frequencies when only a small number of data points is available,  because the 

frequency resolution of the AR spectrum is not dependent on signal length[Parati et al, 1995].  Hence they 

are slightly preferable in situations for which the quasi-stationarity of the signal is a tenuous 

assumption; using a shorter signal strengthens that assumption.  Still, as signal length decreases the 

sensitivity of the spectrum to the choice of model order becomes increasingly important; if the 

order is too high spurious peaks may be produced, and if it is too low the spectrum will be over-

smoothed, with separate peaks losing their distinction.  [Kay, 1999] recommends that, for a signal 

of length N, all model orders in the range N/3 to N/2 should be tested.  To ensure the model 

captures the signal‘s frequency content without bias, the prediction error (n) should be required to 

pass a whiteness test.  This test is implemented by examining the autocorrelation of the prediction 

errors.  According to [Box et al, 2008], we expect this series to have zero mean and variance 1/n, 

where n = N-m.  We would then expect 95% of the autocorrelation series to lie within the bounds 

±1.96/sqrt(n). 

AR spectra are often used in HRV studies because they tend to yield clear peaks, allowing 

easier interpretation than spectra produced by the FFT.  Figure 34 compares the results produced 

by both of these techniques when applied to two different RR interval series. 

 

(19) 
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Wavelet Transform: 

The effectiveness and applicability of both the FFT and AR models are heavily dependent 

on the assumption that the signal is ‗stationary‘.  According to Malik and colleagues, this 

assumption is secure only ―if mechanisms responsible for heart period modulations of a certain 

frequency remain unchanged during the whole period of recording‖[TFESCNASPE, 1996].  This condition 

implies that AR models and the FFT are not appropriate for measuring varying autonomic activity, 

which is one of the main justifications for using the wavelet transform instead of these other 

methods.  The wavelet transform has no theoretical limit to its resolution in either the time- or 

frequency-domain.  The basic method is to compare each section of the signal with a ‗mother 

 
Figure 34:  Reproduced from [Parati et al, 1995] with permission.  AR and FFT spectra for two 

different RR interval series (left and right).  An AR model with order selected by Akaike‟s Infor-
mation criterion (order = 13 for both cases in row B) produces similar spectra to an FFT that has 

been smoothed with a Gaussian window (row C).  When a higher model order is deliberately chosen 
(order = 30 for both cases in row D), the AR spectrum resembles the unsmoothed FFT (row A). 
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wavelet‘ such as the Morlet wavelet or the Mexican-hat wavelet[Mallat, 1999].  As shown in Figure 35, 

the wavelet can be stretched or compressed in time, allowing different frequencies to be examined.   

The continuous wavelet transform of a function  tx  is mathematically defined as 

 

      dtttxsW s

*

,,   

 

where * denotes complex conjugation.  The basis function  ts  ,  is calculated from the mother 

wavelet as 
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 It can be seen from (21) that   imposes a translation of the mother wavelet along the time 

axis, while s  stretches or compresses it along that axis.  The factor of s-2 is used to normalise the 

(20) 

(21) 

 
Figure 35:  Reproduced from [Pichot et al, 1999].  Permission not required.  A discrete wavelet 
transform of a hypothetical signal composed of combined low and high frequency components 

followed by the separated components.  The horizontal  axis is equivalent to time in the signal, 
while the vertical s axis is equivalent to period, with high-frequencies represented at low values of s.  

It can be seen that this representation of the signal‟s frequency content deals well with the non-
stationarity of the signal.  The mother wavelet used was the Daubechies 4 wavelet, which is shown 

on the right, compressed according to the different values of s. 
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energy of the basis function[Valens, 2004].  Figure 35 presents an example of the discrete wavelet 

transform applied to a hypothetical signal.  The discrete wavelet transform differs from the 

continuous transform in that only a finite number of values for s  and   are tested. 

The implementation of the FFT, AR spectra, and wavelet transforms all require some prior 

manipulation of the RR interval time-series to overcome the fact that it is irregularly sampled (see 

Figure 36).  Typically, this step simply involves interpolating between the available data, with cubic-

splines perhaps, then resampling this continuous function.  For AR modelling, resampling is done 

at around 1 Hz or higher,[Takalo et al, 2005] approximating the slow point-process nature of the original 

RR interval signal.  For FFT and the wavelet transform, higher resampling frequencies are used to 

approximate a continuous signal.  An additional benefit of the interpolation process is that it helps 

minimise the disruption caused by ectopic beats (introduced on page 27).  These phenomena 

corrupt HRV measurements by appearing as large, short-lived changes in heart rate while not 

directly representing autonomic control of heart rate.  Ideally, a signal used for HRV measurements 

should be free of ectopic beats, but rejecting all signals with ectopics from a study can often reduce 

the data set substantially and may introduce a population bias.  Removing each ectopic beat and its 

immediate successor then interpolating across the resultant gap in the data series is a simple and 

effective way of minimising their distortion of the HRV measurement[Parati et al, 1995]. 

 

Point-Process Modelling: 

Despite its practical advantages, the use of interpolation to infer a continuous-time 

measure from the RR interval series is not physiologically meaningful.  [Barbieri et al, 2005] suggest 

that a more meaningful continuous function can be achieved by recognising the point-process 

nature of the original series, the fact that it is a one-dimensional sequence of binary events rather 

than a two-dimensional series.  Their approach treats the occurrence of heart-beats as a stochastic 

process.  This treatment is justified because, according to their references, the drift of sino-atrial 

membrane potential towards its threshold value has previously been modelled as a Gaussian 

 
Figure 36:  A short example of a discrete event series representation of RR intervals, showing that it 

is irregularly sampled. 
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random walk with drift.  The probability density function of the time at which the next beat is 

expected to occur is modelled as a Gaussian distribution.  At each point in time, the mean and 

standard deviation of this distribution are calculated from a set of continuously varying parameters, 

θ, which are estimated from the recent RR intervals, hence it is ―history dependent‖.  θ is 

continuously varying because it takes into account the influence of the time elapsed since the last R-

wave, even though the actual duration of the current interval is not yet known.  Spectral 

components can be calculated from θ in the same way as they are calculated from an AR model‘s 

parameters, but because θ varies continuously, this method does not assume stationarity.  

Furthermore, the ―history dependent inverse Gaussian (HDIG) model‖ has a theoretical advantage 

over the wavelet transform in that it does not violate causality[Napadow et al, 2008]; it‘s value at any given 

time is dependent only on previous events.  The method has been cross-validated against 

conventional HRV measurements[Barbieri et al, 2005], [Barbieri & Brown, 2006] .  

Spectral analysis using an HDIG model therefore seems to be a promising technique for 

observing short-term changes in autonomic activity in a way that is well-suited to the nature of the 

signal.  However, in spite of its theoretical appropriateness this method has not yet been widely 

adopted, presumably due to its recent introduction and its mathematical complexity.  To overcome 

these obstacles, it must be shown that the method offers distinct advantages over more widely used 

alternatives in terms of its accuracy as a reflection of direct measurements of ANS activity. 
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III. Methods for Correlating Psychological Processes and 
ECG Measurements 

Sections III and IV of this thesis cover the methods developed over the course of the 

project to infer the nature of autonomic cardiac control from bioelectric signals.   

As described in section II.F.3, a growing body of evidence implicates psychological and 

emotional factors in cases of Sudden Cardiac Death and various forms of ill health[Taggart et al, 2011], but 

the mechanisms responsible for these psychosomatic effects are not well understood.  The main 

objective of the work described in the present section was to develop analytic tools that would 

permit simultaneous measurement of electrocardiographic and cerebral responses to stimuli, thereby 

enabling novel research into the interactions between these two physiological systems.  A more 

detailed set of objectives, targeting specific obstacles to progress in this field, is listed below. 

 

 

- To develop novel signal processing methods to allow the use of ECG recordings in 

combination with continuous fMRI (functional magnetic resonance imaging): 

Such studies are normally inhibited by the electrical artefact that fMRI induces in 

the ECG.  The availability of such methods to overcome this problem would enable the use 

of ECG to record cardiac behaviour while fMRI is used to simultaneously assess brain 

activity, based on the level of blood flow to different areas of the brain.  These efforts are 

discussed in section III.A. 

 

- To determine whether it is possible to use spectral measurements of heart rate variability 

(HRV) to assess a subject‘s autonomic response to a psychological stimulus: 

Psychological responses to any stimulus fade quickly, whereas HRV measurements 

require relatively long ECG signals.   Efforts to overcome this apparent incompatibility are 

described in section III.B.1. 

 

- To determine whether T-wave measurements can be used to assess autonomic input to the 

ventricles: 

In essence, conventional HRV measurement techniques use the firing rate of the 

sino-atrial node as an indication of overall autonomic input to the heart.  However, 

autonomic input to the heart may be heterogeneous, which has important implications for 

cardiac stability.  This concept is central to the Brain-Heart Laterality hypothesis described 

in section II.F.3.b.  Hence it would be useful to have a non-invasive measure of nervous 

input to other parts of the heart.  The possibility of using measurements based on the T-

wave to perform this role is explored in section III.B.2. 
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III.A. Simultaneous use of MRI and ECG recording 

 It is possible to noninvasively measure the spatial distribution of activity throughout the 

brain using positron electron tomography (PET) or functional magnetic resonance imaging (fMRI).  

These techniques can be used in combination with ECG recording as a means of investigating 

interactions between the heart and the brain based on their correlated response to various stimuli.  

fMRI is typically preferred over PET for several reasons, including superior spatial resolution.  

However, the concurrent use of ECG and MRI is hampered by the fact that the varying magnetic 

field of the MRI device produces an artefact in the ECG.  This artefact may distort the ECG to the 

extent that automatic detection of features such as QRS complexes becomes much less reliable.  

Although the artefact can be attenuated by the use of conventional linear filters[Critchley et al, 2003], its 

frequency content typically overlaps that of the normal ECG features.  Hence it is not possible to 

remove the artefact by linear filtering without distorting the ECG substantially.  Alternative methods 

were developed for the removal of the MRI artefact, exploiting the available a priori knowledge of 

the nature of the artefact. 

 In psychological experiments discussed in section V.B.3, an MRI machine was programmed 

to perform a full scan of the subject‘s brain every 3 seconds.  Each full scan divided the brain into 

45 adjacent slices, which were imaged consecutively.  The frequency spectrum of the ECG artefact 

therefore contained significant components at frequencies of 15 Hz and higher.  The important 

characteristics of an ECG signal are generally considered to exist within the 0.05-100 Hz band[Irnich, 

1985], [Nearing et al, 1996].  These data confirm that there is significant overlap between the desired signal 

and the artefact in terms of frequency composition, ruling out the sole use of conventional linear 

filters.  Two alternative approaches were developed.  These are referred to as ‗spectral subtraction‘ 

and ‗the segment-mean technique‘, and are discussed in the following sections.  

 It should be noted that an additional artefact is produced by the flow of blood in the 

magnetic field; it can be shown from Faraday‘s Law that the flow of a conducting fluid in a magnetic 

field will produce an electrical potential[Dimick et al, 1987].  This potential becomes superimposed on the 

ECG recording, distorting features such as T-waves.  The form of this blood-flow artefact is less 

predictable, and therefore less easily removed, than the artefact caused by variations in the magnetic 

field alone.  Nevertheless, useful measurements of QRS complexes can still be attained from these 

signals. 

 

III.A.1. Spectral subtraction 

 This method requires a separate recording of the unwanted artefact only, without ECG 

features.  The frequency spectrum (FFT) of this artefact signal is multiplied by a constant so that the 

dominant frequency component matches the magnitude of its counterpart in the spectrum of the 

original signal.  The scaled artefact spectrum is then subtracted from the spectrum of the original 

signal, ideally leaving a spectrum that represents only the ECG components and random noise.  The 

inverse Fourier transform (IFT) of this spectrum gives the ECG signal with the fMRI artefact 

removed.  Figure 37 illustrates the implementation and results of this method.  In this case, the 

―artefact-only‖ recording was obtained by positioning the ECG electrodes on the subject‘s leg and 
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carrying out an MRI scan of the leg.  A quantitative analysis of the performance of the spectral 

subtraction technique is provided in Table 1 and Table 2 (page 86) for comparison with the 

performance of the segment-mean technique.  It should be noted that there are several ways in 

which different implementations of the spectral subtraction technique could be improved or altered 

for other applications.  These are discussed below, and the specific choices made for the present 

application are explained: 

 

The artefact recording: 

 It is impossible to obtain an artefact-only recording that perfectly matches the 

artefact in the ECG recording, because the nature of the artefact is dependent on the 

positioning of the electrodes and the leads themselves with respect to the magnetic fields.  

The artefact is also dependent on the conductive properties of the subject‘s tissues.  In this 

case, the artefact-only signals were collected by placing the electrodes on the subject‘s leg in 

a similar arrangement to that used on the chest, and running a separate MRI scan.  The 

conductive properties of the leg are thus taken as an approximation of the chest. 

 

 
Figure 37:  The application of the spectral subtraction technique to an ECG recording corrupted by 

MRI artefact.  In the top-left panel, the presence of the artefact makes it difficult to distinguish 
crucial ECG features.  As expected, the artefact is characterised by large components at 15 Hz and 

multiples thereof (harmonics).   The artefact spectrum was scaled by k, the ratio between its 
dominant component (black arrow) and the same component in the original recording, then the 

scaled spectrum was subtracted from the original.  The inverse Fourier transform was then used to 
generate a filtered signal.  In the bottom-left panel, the artefact has been attenuated to the extent 

that sharp, downward QRS complexes can be identified.  These are followed by a large blood-flow 
artefact, which cannot be removed. 
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Scaling:  

 The artefact signal was scaled so that the magnitude of the 15 Hz peak of the 

spectrum matched that of the 15 Hz peak in the spectrum of the raw signal, thus ensuring 

that these peaks cancel out completely.  Unfortunately, the relative heights of the harmonic 

peaks are not the same in the artefact-only recording as in the raw signal, so other peaks are 

not completely removed, particularly the higher frequency harmonics. 

 

Phase preservation: 

 The phases of the various frequency components of the artefact-only spectrum will 

differ the corresponding phases of the original spectrum.  Hence one must subtract the 

magnitudes of the complex spectra, rather than the complex spectra themselves, to ensure 

that the artefact is attenuated.  However, this step removes the phase information from the 

spectra.  To obtain a meaningful signal from the inverse transform however, we must 

restore the lost phase information by assigning a suitable phase to each frequency 

component.  The ‗cleaned‘ signal in Figure 37 was produced by assigning the phase of each 

component of the raw signal‘s spectrum to the corresponding component of the ‗cleaned‘ 

spectrum.  It should be noted, however, that these phase values are influenced by the MRI 

artefact in the original signal.  The method still works reasonably well because the scaling 

mentioned above ensures that at most frequencies the artefact-only spectrum is much lower 

in magnitude than the original spectrum. 

 An alternative approach, which has not been explored, would be to use a cross-

correlation to align the artefact-only signal in time with the artefact of the raw signal.  Their 

spectral phases should then approximately match, so that the influence of the artefact on 

the phase of the original signal could be accounted for. 

 

Averaging the artefact-only spectrum: 

A more reliable impression of the artefact-only spectrum might be obtained by 

averaging it over several smaller time windows[Vaseghi, 2000].  The potential benefits of this 

approach as a part of the spectral subtraction technique were not tested.  However, the 

segment-mean technique exploits the same basic principle as Vaseghi‘s suggestion but is 

confined to the time-domain. 

 

III.A.2. The segment-mean technique 

 This method does not require a separate artefact-only recording.  Instead, it takes advantage 

of the fact that the artefact has a known periodicity to identify it and then subtract it from the signal.   

Figure 38 helps to illustrate this concept.  The top panel shows a signal that is composed of 

two sine waves: one has a magnitude of 5 and a frequency of 1.3 Hz, and the other has a magnitude 

of 1 and a frequency of 15 Hz.  Suppose that one wishes to remove any components with a 

frequency of HzFA 5  or some multiple thereof, including the 15 Hz sine wave.  To begin, the 

signal is divided into windows with a length of sFA 2.01  .  When these windows are averaged 

together, only the components that repeat identically in each window are preserved.  All other 
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components cancel each other out if enough windows are used in the average.  In this example, only 

the 15 Hz wave repeats identically in every window, so it is the only component preserved in the 

average, as seen in the second panel. 

This component can then be removed from the original signal by simply subtracting the 

averaged window from each of the original windows.  This is equivalent to subtracting a signal that 

is constructed by concatenating the window average onto itself multiple times, as illustrated in the 

third panel.  The final panel shows the result of this subtraction.  The 15 Hz component is no 

longer perceptible, and the signal appears as a pure 1.3 Hz sine wave. 

As described, the only prerequisite information for this method is the period of the artefact 

to be removed.  For the contaminated ECG signals seen earlier, choosing this period is not as 

straightforward as it might seem.  If the artefact from each slice taken in a full scan can be assumed 

to be the same, then the period of the MRI artefact can be taken as 1/15 s.  Otherwise, assuming 

that each full scan produces an identical artefact, the period of the artefact is 3 s.  The artefact was 

taken as having a period of 1/15 s.  This decision is justified by the observation that the signal 

spectra do not show any significant components at 1/3 Hz, implying that there is not a significant 

variation between the 45 spikes in a full scan. 

Figure 39 presents an example of the segment-mean technique applied to the same MRI-

corrupted ECG signal as used to illustrate spectral subtraction in Figure 37.  For both methods, it is 

impossible to ascertain the extent to which the processing has distorted the desired signal, 

particularly when considering the unpredictable nature of the remaining blood-flow artefact, since 

 
Figure 38:  Periodic components of a signal can be removed by dividing the signal into windows of 

an appropriate length, averaging those windows to identify the periodic component, then 
subtracting that component from the original windows. 
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no comparable uncontaminated signal exists.  Hence, in order to compare the performance of the 

two approaches, artificial signals were constructed by adding uncontaminated ECGs together with 

the ―artefact-only‖ recordings from a patient‘s leg, as used for spectral subtraction.  Although these 

test-signals do not include any blood-flow artefact, they allow the methods‘ performance to be 

assessed objectively because the processed signals can be compared with the original 

uncontaminated signal to ascertain the extent to which the MRI artefact has been removed and the 

extent to which the ECG features have been distorted.   

 

III.A.3. Validation of the developed filtering techniques 

Two variables were defined to quantify the methods‘ performance:  the residual variance 

(RV) and the harmonic peak reduction (HPR).  The RV is the squared standard-deviation of the 

residual signal formed by subtracting the original ECG from the processed test-signal.  RV is 

expressed as a percentage of the variance of the original ECG in order to normalise for differences 

in signal magnitude.  HPR is the change in the summed power of the first five harmonics of the 

MRI artefact (i.e. 15 Hz, 30 Hz, 45 Hz, 60 Hz, 75 Hz), calculated from the FFT of the test-signal 

and the processed signal.  It is expressed as a percentage of the summed power of those peaks in the 

test-signal.  HPR is intended specifically to measure the attenuation of the MRI artefact, while 

ignoring any concomitant distortion of the signal‘s other frequency components.  RV provides a 

more general measure of the difference between the uncontaminated ECG and the processed signal.   

 
Figure 39:  Results of the segment-mean method. 
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The variables were calculated for a catalogue of artificial test signals.  These were formed 

from uncontaminated 12-channel ECG recordings from 12 different patients, combined with 2 

―artefact-only‖ leg recordings.  For each of the 288 possible combinations of these signals (12 x 12 x 

2 = 288), 3 different versions were constructed using different signal-to-noise ratios (SNRs).  SNR 

was defined as the ratio of the standard deviations of the uncontaminated ECG and the ―artefact-

only‖ recording.  The amplitude of the ―artefact-only‖ recording was scaled linearly to achieve the 

desired SNR.  Care was taken to ensure that the ―artefact-only‖ recording used during the spectral 

subtraction method was not the same recording as used to construct the test-signal, as this could be 

expected to unfairly exaggerate the effectiveness of the technique.   

Table 1 and Table 2 provide statistical comparisons of the performance of the two 

techniques across the full catalogue of test signals.  These data confirms that both techniques are 

effective; the RV is consistently low, even for extreme noise-levels (SNR = 1), and the HPR is 

consistently high except when the noise level is low to begin with (SNR = 10).  Figure 40 provides a 

visual impression of these values by presenting an example of the test-signal for each noise level and 

the corresponding results of each processing technique.  Table 2 indicates that the performance of 

the two methods is almost identical in terms of HPR.  However, Table 1 shows that in terms of RV 

the segment-mean technique provides a more faithful reproduction of the uncontaminated ECG in 

high-noise scenarios (SNR = 1), while spectral subtraction performs more favourably in low-noise 

scenarios (SNR = 10). 

Residual variance (RV) 

SNR Technique Mean Median 
Standard 
deviation 

Min Max 

1 
Segment-mean 1.67 % 1.66 % 0.21 % 1.15 % 2.30 % 

Spectral subtraction 4.30 % 3.88 % 1.67 % 1.68 % 9.10 % 

3 
Segment-mean 0.65 % 0.67 % 0.19 % 0.23 % 1.19 % 

Spectral subtraction 0.68 % 0.61 % 0.27 % 0.28 % 2.06 % 

10 
Segment-mean 0.56 % 0.57 % 0.19 % 0.14 % 1.09 % 

Spectral subtraction 0.19 % 0.17 % 0.09 % 0.07 % 0.77 % 
Table 1:  A quantified comparison of the performances of the segment-mean and spectral 

subtraction techniques, using the “residual variance” variable.  Each of the statistical values is 
calculated from a set of 288 test-signals.  SNR = signal-to-noise ratio, the ratio of the standard 

deviations of the uncontaminated ECG and “artefact-only” recording used to construct each test 
signal. 

Harmonic Peak Reduction (HPR) 

SNR Technique Mean Median 
Standard 
deviation 

Min Max 

1 
Segment-mean 99.56 % 99.57 % 0.20 % 99.07 % 99.95 % 

Spectral subtraction 99.62 % 99.63 % 0.18 % 99.10 % 99.96 % 

3 
Segment-mean 95.28 % 95.38 % 2.22 % 89.05 % 99.45 % 

Spectral subtraction 95.54 % 95.76 % 2.18 % 89.41 % 99.54 % 

10 
Segment-mean 34.76 % 2.53 % 37.60 % -5.60 % 95.23 % 

Spectral subtraction 36.12 % 4.49 % 37.23 % 0.14 % 95.52 % 
Table 2:  A quantified comparison of the performances of the segment-mean and spectral 

subtraction techniques, using the “harmonic peak reduction” variable. 
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For the experimental application described in section V.B.3, the aim was to allow QRS 

complexes to be reliably identified even in the presence of large MRI artefacts.  Custom software 

was developed for automated detection of QRS complexes in ECG recordings, as described in 

Appendix IV.  For low-artefact signals, it was found that the complexes can typically be identified 

without any processing.  Hence the segment-mean technique was deemed more useful for this 

project.  If the aim was to characterise less distinct ECG features such as T-waves in the presence of 

small amounts of noise, the spectral subtraction technique would be preferable.  Note, though, that 

the feasibility of such studies is doubtful, because neither processing technique would prevent the 

blood-flow artefact from obscuring the ECG‘s smaller features. 

 
Figure 40:  Examples of the segment-mean technique and spectral subtraction, used to remove MRI 

artefact from test signals with different signal-to-noise ratios (SNRs). 
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III.B. Cardiac correlates of psychological activity 

III.B.1. Heart Rate Variability (HRV) 

 This section introduces the obstacles and caveats related to the use of HRV measures in 

psychological experiments.  Taking these considerations into account, adaptations of conventional 

HRV methods are developed to allow wider use of HRV measures in experiments of this nature. 

 

III.B.1.a. Habituation – A non-stationary process 

 It was mentioned previously that the most widely implemented HRV methods, namely the 

FFT and AR spectra, assume the RR interval series to be a stationary signal (i.e. frequency content 

does not change).  This assumption is invariably false, but serves as an acceptable approximation as 

long as the physiological state does not alter substantially within the time-frame of the recording.  

When measuring the effects of physical stimuli (e.g. exercise, changes in body orientation) or states 

of consciousness (e.g. sleep vs. wakefulness) this condition can be satisfied.  Appelhans & 

Luecken[Appelhans & Luecken, 2006] summarise numerous studies investigating the HRV response to long-

term psychological conditions.  In experiments involving emotions, however, a sustained and 

consistent response is not easily generated due to a process known as ‗habituation‘[Bradley et al, 1993], 

[Rankin et al, 2009].  The psychological reaction to a stimulus is subject to continuous re-evaluation 

through interactions between different areas of the brain, making the response highly time-

dependent.  Repetitive stimuli may be used in an attempt to prolong the response, but it is generally 

found that any response to a repetitive stimulus attenuates over time.   

The rate of attenuation cannot be formally predicted because it is highly dependent on the 

nature of the stimulus and of the response[Rankin et al, 2009].  However, an approximate impression of 

the rate at which habituation occurs for a particular stimulus is reflected in the experimental 

procedures employed by experienced psychology researchers.  For example, the experiments 

discussed in section V.B follow a procedure introduced by Phan and colleagues to study neural and 

psychological responses to graphic images[Phan et al, 2005].  Phan et al present their subjects with images 

in blocks of 20 seconds duration, with the expectation that using longer blocks would cause the 

intensity of the measured response to be diluted by habituation.  The experiments discussed in 

section V.B incorporate HRV measurements into the procedure used by Phan et al in order to assess 

autonomic activity.  Ordinarily it is recommended that spectral HRV analysis be conducted on an 

RR interval series with a duration of two minutes or longer[TFESCNASPE, 1996].  Clearly this guideline 

must be violated in the context of psychological experiments of this kind, and any such violation 

must be justified with consideration for the variables of interest and for the reasoning behind the 

guideline itself. 

 The reason for establishing a guideline minimum signal length is that capturing multiple 

cycles of a signal component attenuates the leakage between neighbouring frequencies (see page 74) 

and thereby achieves a more precise identification of the dominant frequencies.  Close examination 

of the wording provided by TFESCNASPE (The Task Force of the European Society of Cardiology 

and the North American Society of Pacing Electrophysiology) in their justification for the 2-minute 

recommendation indicates that it is not a precisely defined limit:  
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―The recording should last for at least 10 times the wavelength of the lower frequency bound of the 

investigated component…  Thus, recording of approximately 1 minute is needed to assess the HF 

components of HRV, while approximately 2 minutes are needed to address the LF 

component.‖[TFESCNASPE, 1996]   

 

When HRV is used as an indication of ANS activity, TFESCNASPE themselves confirm that the 

frequencies of interest are the LF range (0.04 Hz – 0.15 Hz) and the HF range (0.15 Hz – 0.4 Hz).  

A signal component for which 2 minutes is ―10 times the wavelength‖ would have a frequency of 

0.083 Hz, more than double the ―lower frequency bound‖ of the LF range.  Similarly, 10 

wavelengths in 1 minute would imply a frequency of 0.167 Hz, rather than 0.15 Hz.  The imprecise 

nature of these guidelines suggests that it would be acceptable to breach them, provided that the 

likely consequences (leakage between neighbouring frequencies and unstable spectral peaks) are 

taken into account. 

 

III.B.1.b. ‗Spectral Averaging‘ to stabilise spectra from short-time recordings 

Proposed technique: 

 In that same article, TFESCNASPE point out that ―Averaging of spectral components 

obtained from sequential periods of time is able to minimise the error imposed by the analysis of 

very short segments‖[TFESCNASPE, 1996].  This technique is well known in the field of signal processing 

as the Bartlett Method[Vaseghi, 2000].  It is subject to the caveat that the physiological scenario may 

change from one segment to the next, so that they do not each represent the same state.   

The proposed technique extends the Bartlett Method to non-sequential periods of time, 

with the assumption that, in well-controlled experimental conditions, the spectral content withing 

those periods does not vary significantly.  For example, in psychological experiments where 

significant habituation is expected to occur in less than 1 minute, spectra from multiple 30 second 

blocks of stimulation can be combined by taking the average value of each frequency bin.  Thus an 

‗average spectrum‘ is formed, providing a stabilised impression of the average response to the 

stimulus.  This approach, referred to henceforth as ‗spectral averaging‘, was implemented in several 

experiments described in section V.B and in a published journal paper[Di Simplicio et al, 2011].  The 

inclusion of resting periods between stimulus blocks allows for some recovery of the response, as 

illustrated in Figure 41, so that the averaged response is higher when compared with that of a 

continuous stimulation period. 

Given that spectra calculated from short-time signals provide a less reliable representation 

of a signal‘s low-frequency content, one can expect that measurements of this low-frequency 

content will be less repeatable (more variable) across several similar measurements.  This low-

frequency variability, or instability, was observed in the experiments described in section V.B  Visual 

inspection of the spectra revealed that large peaks centred in the VLF range (<0.04 Hz) would 

occasionally appear.  The power associated with these peaks would often overlap into the LF range, 

and sometimes into the HF range.  An example is presented in Figure 42. 
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Figure 41:  A conventional model of habituation in the biological response to a stimulus.  Top Panel 
- The response decreases gradually as the stimulus is sustained.  Bottom Panel – When the stimulus 

is applied intermittently, some recovery occurs.  A longer rest period enables greater recovery, so 
that the magnitude of the response approaches that seen for the initial stimulus. 

 
Figure 42:  The solid line is the mean Power Spectral Density (PSD) calculated from four 30-second 

blocks for a single subject.  The dashed lines indicate the maximum and minimum values of the 
PSD found at each frequency.  To reduce the effects of habituation, the 30-second blocks were non-
continuous (separated by intervals of 38 seconds) but coincided with similar experimental stimuli.  

The vertical dashed lines indicate the boundaries of the VLF, LF, and HF frequency ranges.  In this 
example, it can be seen that large peaks centred in the VLF range contribute significantly to the LF 

range, and may also make small contributions to the HF range. 
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Validation: 

 Table 3 serves as validation of the spectral averaging method by showing that it yields 

clearer distinctions between HRV measurements associated with different experiment conditions.  

The low-frequency spectral instability caused by the use of short-time recordings can be seen as 

noise corrupting the HRV parameters.  Spectral averaging provides a more stable measurement, 

counteracting the added noise and thereby allowing subtle stochastic phenomena to be discerned 

more clearly.   

The experiment from which these data were produced is explained in detail in section 

V.B.3.  In short, ECGs were recorded from 25 subjects while they were presented with slideshows 

of unpleasant images for periods of 30 seconds, interleaved with periods in which they rested for 30 

seconds while staring at a stationary crosshair.  The various standard HRV measurements explained 

in section II.G were calculated in two different ways: 1) using the HRV spectra calculated from only 

the first 30-second stimulation period and the first 30-second rest period, and 2) using the spectral 

averaging across four instances of the stimulation period and across four instances of the rest 

period.   

Welch‘s t-test[Bain & Engelhardt, 2000] was used to evaluate the statistical significance of the 

differences between the ‗stimulation‘ and ‗rest‘ conditions, in terms of the HRV measurements.  The 

output of a t-test is a p-value, which represents the probability that two distributions of 

measurements have the same mean.  A p-value of less than 0.05 is conventionally considered to be 

statistically significant, since it suggests a 95 percent chance that the two distributions are different.   

In Table 3, the p-values produced using the spectral averaging method are notably lower 

than those produced by using only the first instances of the ‗resting‘ and ‗stimulation‘ periods.  

These results indicate that spectral averaging improves the ability of these HRV measurements to 

discriminate between the ANS responses generated by the two experiment conditions.  Hence 

spectral averaging is a more useful method for experiments of this nature. 

 

III.B.1.c. Novel interpretations of HRV parameters 

As described in section II.G.2, the normalised HRV parameters LFn and HFn are often used 

in place of LF and HF to account for the effects of broadband contributions to the spectrum.  In 

the literature, the normalised variables are granted the same physiological interpretation as their non-

Statistical significance of differences in HRV measurements between 

experiment tasks 

Method 

VLF 
(0-0.04 

Hz) 

LF 
(0.04-

0.15 Hz) 

HF 
(0.15-
0.4 Hz) 

LFn HFn LF/HF 

First instance only 0.84 0.098 0.88 0.020 0.041 0.11 

Spectral averaging 0.45 0.001 0.075 <0.001 0.001 0.025 

Table 3:  p-values calculated using Welch‟s t-test[Bain & Engelhardt, 2000] to show the statistical 
significance of differences in the various HRV measurements between the „stimulation‟ and „rest‟ 
conditions.  Cases deemed to be statistically significant (p<0.05) are marked in bold.  Overall, the 
statistical significances yielded by the spectral averaging method were stronger than those yielded 

by the use of only the first instances of the stimulation and rest periods. 
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normalised counterparts;  HFn, like HF, is taken as a reflection of parasympathetic activity, while 

LFn, like LF, is seen as either a reflection of sympathetic activity or the combined effects of 

sympathetic and parasympathetic activity.  The following analysis employs a mathematical 

approximation to expose the analytic relationship between the normalised variables and their non-

normalised counterparts.  Through this manipulation, it will be shown that the normalised HRV 

parameters can more meaningfully be interpreted as a reflection of sympathetic-parasympathetic 

balance with mathematical properties that are distinct from those of LF/HF (the conventional 

measure of sympathetic-parasympathetic balance).   

 The spectral power above the HF range is typically negligible; see, for example, Figure 32 

(page 72) and Figure 42 (page 90).  If the power above the HF band is taken to be zero then, from 

the original definition in (15) (page 73), LFn and HFn can each be approximated as 

 

 

HFLF

LF
LFn


      and     

HFLF

HF
HFn


  

 

 

Both measurements are clearly sensitive to changes in each of the frequency ranges related to ANS 

activity, but relating them to the sympathetic-parasympathetic balance is less intuitive than for 

LF/HF.  The normalised variables‘ behaviour can be better understood by examining the partial 

derivatives of the approximations in (22) and (23).  These are given below. 
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 For comparison, the partial derivatives of LF/HF are:  
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(28) and (29) 

 

 These last four relationships are plotted in Figure 43 and Figure 44.  The nature of 

LFLFn   and HFLFn   can be inferred from the plots of HFHFn   and LFHFn  , 

respectively, given the similarity of the equations. 

(22) and (23) 
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To achieve an impression of where physiological values of LF and HF typically fall on these 

graphs, consider that Bigger et al[Bigger et al, 1995] found, in a study of 274 healthy subjects, that the mean 

± standard deviation of LF/HF values was 4.61±2.33.  In other words, LF is typically greater than 

HF, so most physiological cases can be expected to occupy the regions marked ―LF>HF‖ in Figure 

43.  This figure supports the proposal that LFn and HFn should be interpreted as measures of 

sympathetic-parasympathetic balance, rather than as separate indicators of the LF band and HF 

band, respectively; note that, for each pairing of LF and HF values within the typical physiological 

range, the sensitivities of HFn to the two bands can be seen to be similar (roughly within an order of 

magnitude).  The same holds for LFn.  In recognition of this relationship, neither of the normalised 

 
Figure 43:  Partial derivatives (sensitivities) of HFn with respect to LF (upper panel) and HF (lower 
panel), when spectral content above the HF band is neglected.  In both panels, the line LF=HF is 
superimposed on the surface as a thick black line.  In the upper panel, this line marks the peak in 

the partial derivative for each value of LF.  In the lower panel, the line marks the peak partial 
derivative for each value of HF.  LF is typically greater than HF, so most physiological cases can be 

expected to occupy the side of the line marked “LF>HF”.  See equations (26) and (27). 
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variables can be said to be a focussed measure of their nominal frequency bands, especially when 

observing subtle changes evoked by stimuli. 

Figure 43 and Figure 44 also demonstrate that the sensitivities of LFn, HFn, and LF/HF all 

vary substantially across the physiological range of LF and HF values, and the morphologies of the 

plots in Figure 43 are very different from the morphologies in Figure 44.  Hence, while all three of 

these HRV parameters are indicators of sympathetic-parasympathetic balance, they are likely to 

provide different results in studies examining changes evoked by stimuli, because the parameters will 

have different sensitivities to those changes.  The general profile of these the parameters‘ sensitivies 

should therefored be considered when analysing results from any such experiments.  This principle 

is invoked in section V.B.6 in the context of an experimental application of the ‗spectral averaging‘ 

approach. 

 
Figure 44:  Partial derivatives (sensitivities) of LF/HF with respect to LF (upper panel) and HF 

(lower panel).  See equations (28) and (29). 
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III.B.1.d. The orienting response 

Another important consideration when using HRV analysis in psychological experiments is 

the effect of the ‗orienting response‘, a subject‘s initial physiological reaction to a new stimulus[Sanchez-

Navarro et al, 2006], [Adenauer et al, 2010].  For example, the presentation of unpleasant pictures is known to cause 

a deceleration of mean heart rate, but this is preceded by a small deceleration then a sharp 

acceleration[Lang et al, 1997], [Sanchez-Navarro et al, 2006].  Hence the signal within the first 4-10s of a new stimulus 

is highly non-stationary.  The first few seconds after the onset of a new stimulus should therefore be 

excluded from the signal to which spectral HRV analysis is applied.  Although methods such as the 

wavelet transform and point-process modelling are not as heavily dependent on the quasi-

stationarity assumption as other methods, such as FFT and AR modelling, (see section II.G) no 

method can be reliably interpreted during step changes in ANS activity because such changes are 

not oscillatory in nature. 

 The orienting response can itself be used as an indicator of autonomic cardiovascular 

regulation. [Hodes et al, 1985] proposed that the response be quantified in terms of two simple 

indices, the minimum heart rate in the first 2 seconds after stimulus onset and the maximum heart 

rate in the next 2 seconds.  These or similar indices have been shown to distinguish between control 

subjects and sufferers of panic disorders, including post-traumatic stress disorder[Adenauer et al, 2010] and 

Generalised Anxiety Disorder[Thayer & Lane, 2000]. 

 Provided a suitably quasi-stationary segment of the signal can be extracted, AR modelling is 

a useful method when using HRV as a measure of psychological effects on ANS activity.  As 

described in section II.G.2, AR spectral analysis yields spectra that are smoother, and thus more 

easily interpretable, than spectra produced by the FFT.  Although smoothness itself is not a 

scientific goal, interpretability is an important consideration when results are to be presented to an 

audience outside cardiology and engineering, because many researchers will to be unfamiliar with 

HRV measures or spectral methods in general.  Hence AR modelling is the method of choice for 

the experiments presented later in this thesis, except where indicated otherwise. 

 
 

III.B.2. T-wave measurements 

 Measurements of the ECG‘s T-wave can be useful as an additional indication of ANS input 

to the heart, because they reflect the behaviour of the ventricles, rather than just the SA node.  This 

level of information is crucial when assessing the arrhythmic potential of any input to the heart.  

Furthermore, it has been hypothesised that T-wave measurements might offer a means of testing 

the brain-heart laterality hypothesis (page 69), since sympathetic control of the ventricles is 

dominated by the left sympathetic branch, whereas sympathetic input to the SA and AV nodes 

comes from the right branch[Lane & Schwarz, 1987].  This section considers the most widely used category 

of T-wave measurements, the QT interval, and assesses its appropriateness as a measure of ANS 

input to the ventricles. 
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III.B.2.a. QT intervals 

 It has been explained previously that, when analysing unipolar electrograms, ARI is 

measured to approximate local action-potential duration.  When analysing the ECG, the QT interval 

is used to approximate global action-potential duration.  It is well known that the heart exhibits 

spatial heterogeneity of action-potential duration[Weissenburger et al, 2000], [Okin et al, 2000].  Nonetheless, the QT 

interval has been proven to be a useful diagnostic tool for identifying global abnormalities in 

repolarisation properties, whether their origins are genetic, hormonal, damage-related, or 

electrophysiological[Kautzner, 2002]. The specific techniques used to define it vary but, in general, the QT 

interval refers to the timing between the QRS complex and the T-wave of the ECG.  The technique 

that was ultimately chosen to measure QT intervals in the experiments described in section V was 

the Berger method[Berger et al, 1997].   

The Berger method characterises small changes in QT intervals by segmenting the ECG 

into individual beats and stretching/compressing the time axis for each beat to fit it to a template 

beat, as shown in Figure 95, page 227.  The factor by which the time axis was multiplied for a fitted 

beat can then be multiplied by the template QT interval to give a representative QT interval for that 

beat.  Other techniques are more widely used for diagnostic purposes, but are not well suited to 

measuring small, dynamic variations in action potential duration, for reasons explained in Appendix 

V.  The Berger method was designed as a more accurate representation of repolarisation dynamics, 

taking into account the shape of the whole T-wave, and is therefore more appropriate for measuring 

the subtle changes associated with fluctuating input from the ANS.  For completeness, Appendix V 

provides a more detailed description of the Berger method. 

 

III.B.2.b. Correcting for heart rate 

 Action potential duration (APD) is known to be highly dependent on heart rate, with QT 

intervals shortening as heart rate increases (see section II.B).  This relationship prevents healthy 

activation wavefronts from being broken by refractory zones when the cardiac cycle length is short, 

while allowing sufficiently long refractory periods to block arrhythmic wavefronts at longer cycle 

lengths.  APD may also be modulated independently of heart rate, and many anti-arrhythmic drugs 

achieve their effect by adjusting the relationship between the two.  The expected clinical 

convenience of being able to compare QT intervals measured at different heart rates inspired 

attempts to develop a variable QTC, in which the QT interval is ―corrected‖ to offset its heart rate 

dependence.  For the present project, measurements of this nature were explored as a potential 

means of exposing the components of ventricular ANS control that are independent of ANS 

control of heart rate.  Unfortunately, the implementation of QTC measurements is confounded by a 

lack of consensus as to what model should be used to describe the QT-RR relationship.  To resolve 

this issue a comparison of previously proposed models was carried out. 

The most commonly used formulae for QTC are the following: 

 

  Bazett‘s formula[Bazett, 1920]:  
RR

QT
QTC   

 (30) 
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  Fridericia‘s formula[Fridericia, 1921]:  b
RR

QT
QTC 

3
1

 

 

In all of the above formulae, QT and RR (cycle length) are to be given in seconds.  RR is 

typically taken as an average of about ten RR intervals preceding the T-wave measured, because 

repolarisation properties do not adapt instantaneously to changes in heart rate.  However, recent 

studies[Pueyo et al, 2004], [Malik et al, 2008] have shown that the time-scale of this hysteresis varies substantially 

between individuals.  Furthermore, Malik and colleagues found that where parametric models are 

fitted to individual QT-RR relationships, the parameter values differ substantially between 

subjects[Malik et al, 2002].  Figure 45 illustrates the inter-individual variability of the QT-RR relationship. 

 Based on this recent evidence, it was decided that reliable assessment of any heart-rate-

independent repolarisation changes would require subject-specific models of the QT-RR 

relationship.  For each subject, on the advice of [Malik et al, 2008] the hysteresis in the relationship 

was accounted for by using RR  in place of RR, where RR  is a weighted average of recent RR 

intervals: 
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At each i th beat, iN  is chosen as the number of beats in the trailing window of 200s.    is a 

subject-specific parameter chosen to optimise the QT-RR relationship.  For illustrative purposes, 

Figure 46 shows the weighting profile produced using 251iN  and three different values of  . 

(31) 

 

 
Figure 45:  Reproduced with permission from [Malik et al, 2002].  QT-RR relationships for six 

different healthy human subjects, demonstrating substantial differences between subjects. 

(32) 

(33) 

(34) and (35) 
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A code to fit QT-RR models to experimental data was constructed using Matlab® (2007a, 

The MathWorks, Natick, MA, USA).  This code contains the following steps, incorporating the 

above-mentioned hysteresis modelling and the optimisation scheme proposed by [Pueyo et al, 2004]: 

 

I. QT intervals were determined using the Berger method. 

II. RR  was determined using an initial assumption of 10 . 

III. The parameters of a chosen QT-RR model were determined by using Matlab‘s fminsearch 

function to minimise the residual mean-squared-error in the model‘s prediction of QT 

values from RR  values.  The termination criterion for this optimisation was that the residual 

should converge to within a tolerance of 1 ms2. 

IV. The hysteresis variable   was then optimised for the new QT- RR  model in the same way. 

V. The QT-RR parameters were optimised once more, using the new value of  . 

VI. QTC was then calculated by subtracting from each QT interval the value predicted by the 

optimised model.  Note that this gives a series with a mean of approximately zero.  For ease 

of interpretation, it is conventional to calculate QTC in such a way as to give values in the 

range of expected values for QT at a resting heart rate.  Hence a constant value, equal to the 

QT interval of the template used in the Berger method, was added to the series. 

 

Note that steps III and IV could be repeated many more times to improve the accuracy of 

the relationship, but [Pueyo et al, 2004] found that the improvement from further iterations is not 

substantial. 

 Various parametric models were considered in order to describe the QT- RR  relationship.  

Two prior studies[Malik et al, 2002], [Batchvarov et al, 2002] compared a large number of models (6 and 10, 

 
Figure 46:  Typical weighting profiles for the recent history of RR intervals, used to account for QT-

RR hysteresis.  Refer to equation (32). 
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respectively), each having two parameters, and found no single model that provided the optimal fit 

for all subjects.  Testing multiple models on every subject improves the likelihood of finding a close 

fit, but substantially increases the computational expense of the procedure.  Furthermore, this 

approach prevents meaningful comparisons of parameter values across subjects and encumbers the 

communication of results.   

To ascertain whether the use of multiple models was worthwhile for the purposes of the 

present project, the following test was carried out.  A total of 16 models were fitted to the QT- RR  

data from 27 ECG recordings.  These recordings were gathered during the psychological 

experiments discussed in section V.A.  The quality-of-fit for each model was measured as the 

residual squared error after optimisation.  The models tested are listed in Table 4.  These include all 

of the models tested by Malik et al and Batchvarov et al, the more widely used Bazett and Fridericia 

models ((30) and (31)), the exponential parametric model proposed by Sarma et al, and three tri-

parametric models that have not been previously proposed.  The tri-parametric models were added 

to test the hypothesis that bi-parametric models are prone to over-constraining the QT- RR  

relationship.  In particular, the cubic spline model was designed to avoid any unnecessary 

assumptions about the form of the QT- RR  relationship.  Such assumptions, implicit in the other 

Model name Description 

Bazett[Bazett, 1920] 
2/1

 RRaQT  

Fridericia[Fridericia, 1921] 
3/1

 RRaQT  

Sarma[Sarma et al, 1984] RRcbeaQT   

Linear[Malik et al, 2002] RRbaQT   

Hyperbolic[Malik et al, 2002] 
1

 RRbaQT  

Parabolic [Malik et al, 2002] 
b

RRaQT   

Logarithmic[Malik et al, 2002]  RRbaQT ln  

Shifted logarithmic[Malik et al, 2002]  RRbaQT  ln  

Exponential[Malik et al, 2002] RRbeaQT   

Arctan[Batchvarov et al, 2002]  RRbaQT arctan  

Hyperbolic tan[Batchvarov et al, 2002]  RRbaQT tanh  

Inverse hyperbolic sine[Batchvarov et al, 2002] QT = a + barcsinh( RR ) 

Inverse hyperbolic cosine[Batchvarov et al, 2002] QT = a + barccosh( RR +1) 

Parabolic with QT offset cRRaQT
b

  

Parabolic with RR offset  bcRRaQT   

Three-point cubic spline Defined by three points with x-values ( RR  

axis) set to   ,  , and   , where   is 

the mean RR  and   is the standard deviation.  

The y-values (QT axis) are the parameters to be 

optimised.  For each set of three points, the full 

curve can be described using Matlab’s 

interp1 function. 
Table 4:  A list of models that were tested for their ability to describe the QT-RR relationship. 
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models, reflect empirical observations but overstretch the present understanding of the 

physiological mechanisms that govern the true relationship.  

For the purpose of comparison, each model‘s performance on each ECG recordings was 

quantified in terms of the percent difference in residual, r% : 

 

%100% 



opt

opt

r

rr
r  

 

r  is the residual (least mean-squared-error) of the model in question, and optr  is the lowest 

residual out of all the models for the signal in question.  The results of this comparison are 

summarised in Figure 47.  This graph shows that the majority of the models perform similarly to 

one another.  Understandably, the mono-parametric Bazett and Fridericia models showed the 

poorest ability to describe the various QT- RR relationships.   

  (36) 

 
Figure 47:  A comparison of the performances of the 16 models listed in Table 4.  The results are 
expressed in terms of the percent difference in residual, as explained in (36.  Each column of the 

graph represents a distribution of 27 points, one for each signal.  The red line is the median of the 
distribution, the blue box is bound by the 25th and 75th percentiles, and the whiskers give the 

maximum and minimum values. 
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The three-point cubic spline stands out as the most appropriate model; it presented the 

lowest residual in all but seven cases, where it differed from the optimal choice by less than 1 

percent.  This result suggests that the reasoning given for the spline model‘s proposal – that it would 

be more widely accurate because it avoids unnecessary assumptions about the overall form of the 

data – was sound.  The three-point cubic spline might therefore offer an improvement on existing 

models to account for the heart-rate dependence of a QT interval series.   

However, this test relied on a data-set that was limited in terms of the number of patients 

involved (27) and the range of the QT and RR data from each recording (patients were sedentary 

throughout).  Hence a more extensive study will be required to confirm the advantage of the 3-point 

cubic spline model.  Although the present test was useful in suggesting a direction for further work, 

it was decided that the spline model should not be used for the experiments described in section 

V.A due to the need for more extensive validation.  In particular, the fact that no approximate 

physiological meaning can be attributed to the model‘s individual parameters makes it an unwieldy 

basis for discussions of individual patient characteristics. 

To more closely compare the performances of the other models, the analysis of Figure 47 

was repeated with the spline model excluded.  These results are presented in Figure 48.  The 

maximum values of r%  are below 2 percent for 11 of the 15 models in this analysis.  The fact 

none of these 11 models differed substantially from the others for any of the 27 recordings indicates 

that they are largely redundant with one another.  Although no single model provides the optimal 

residual in every case, any of these 11 models is consistently adequate.  Hence it was decided that 

the use of multiple models was not necessary to characterise the QT- RR relationship; a single model 

could be applied in all cases, and any of these 11 would suffice.  The Sarma model offered the 

lowest mean r% .  However, the Sarma model is not widely used and accepted compared with the 

Bazett and Fridericia models.  Hence the model chosen for use in the experiments of section V.A 

was the second strongest performer, the parabolic model with QT offset, which is essentially a more 

flexible version of the Bazett and Fridericia models, which are already widely accepted. 

 
 

III.C. Summary of achievements for chapter III 

This chapter described several achievements relating to the stated objective, which was to 

develop analytic tools enabling non-invasive research into the interactions between cerebral 

processes and cardiac electrophysiology.  These achievements are summarised below. 

 

Removing MRI artefact from the ECG: 

 Two novel signal processing techniques (spectral subtraction and the segment-mean 

technique) were devised to extract the MRI artefact from a simultaneously recorded ECG signal.  

These methods were compared using a set of artificial test signals, and the segment-mean technique 

was deemed to be the more useful of the two, based on its performance in high-noise scenarios.  
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Applied to experimental data, both techniques were found to attenuate the MRI artefact sufficiently 

to allow the use of automatic detection of QRS complexes.  Hence they enable observations of 

heart rate and HRV, as surrogate measures of autonomic input to the heart, while fMRI is used 

simultaneously to record the brain activity associated with that autonomic state.  An experiment of 

this kind is described in section V.B.3. 

A major limitation of the developed techniques is that neither is capable of removing the 

distortion caused by the blood-flow artefact.  Consequentially, they cannot be used with confidence 

to assess those ECG features that are less distinct than the QRS complex, such as T-waves, which 

would otherwise grant more detailed insight into electrophysiological behaviour than just the 

intervals between heart beats.  Furthermore, it should be noted that measurement of these intervals 

concurrent with MRI might also be achievable using alternatives to the ECG, such as pulse oximetry 

or plethysmography, which essentially measure the blood flow associated with each heart beat rather 

than the bioelectric signal.  Nevertheless, the wide availability of ECG recording devices constitutes 

a significant advantage of the proposed approach over such alternatives.  Also, blood-flow-based 

 
Figure 48:  A repeat of the analysis in Figure 47, with the spline model excluded.  Among the 11 most 

accurate of these 15 models, r%  never differed by more than 2 percent. 
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measurements are likely to become unreliable during arrhythmic episodes, when blood is not always 

being pumped effectively.  The developed signal processing techniques therefore offer relatively 

convenient and reliable means of measuring heart rate and HRV during simultaneous MRI 

recording. 

 

Overcoming the obstacle of habituation: 

 The technique referred to as ‗spectral averaging‘ was developed as a means of enabling the 

use of HRV to assess cardiac autonomic input during psychological experiments.  The habituation 

phenomenon typically attenuates psychological responses too quickly for reliable spectral 

measurements to be taken at the HRV frequencies.  The spectral averaging approach overcomes this 

difficulty by combining spectra from several non-consecutive stimulation blocks in a way that 

counteracts the side-effects of using short RR interval series.  Experimental applications of the 

method will be described in greater detail in section V.B.   Results from these experiments were 

presented in the present chapter to demonstrate that, by reducing the random variations in the HRV 

measurements, the proposed technique increases the statistical significance of an observed 

difference in HRV response between two experimental cohorts.  This result indicates that the 

method provides a more stable measure of HRV, as intended, and demonstrates the utility of the 

method for research purposes. 

 

Novel interpretations of HRV variables: 

 Theoretical analysis was used to provide novel insight into the relationships between the 

primary HRV variables (LF, HF) and the secondary variables (LFn, HFn, LF/HF).  It was shown 

that HFn has significant sensitivity to LF (likewise, LFn to HF).  This observation warns against the 

conventional interpretation of the normalised variables as alternatives to LF and HF.  They are 

more meaningfully interpreted as measures of sympathetic-parasympathetic balance since they 

reflect changes in both of the main HRV frequency bands.  In that sense, they can be viewed as 

alternatives to LF/HF.  When interpreting experimental values of LFn, HFn, and LF/HF, one must 

consider the varying sensitivities of the indices (as depicted in Figure 43 and Figure 44) and how 

they might effect the conclusions drawn.  This caveat has special relevance to the experiments 

described in section V.B, as will be discussed. 

 

Insights into model selection for QT-RR relationships: 

 Existing models of the relationships between RR intervals and QT intervals (i.e. between 

heart rate and ventricular action potential durations) were reviewed, with the aim of identifying a 

heart-rate independent measure of repolarisation behaviour that could be used to monitor 

autonomic input to the ventricles.  The novel three-point spline model was found to consistently 

outperform the numerous previously proposed models in its ability to accurately describe the overall 
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relationship between QT and RR intervals.  However, the spline model was noted as having a 

special limitation in terms of its utility in clinical and research implementations; the model is not 

conducive to discussions of individual patient characteristics because its individual parameters (the 

positioning of the points used to construct the spline) do not carry intuitive physiological meaning.  

It was found that the ‗hyperbolic model with QT offset‘ could be used instead with little sacrifice in 

terms of the accuracy of the QT- RR  relationships produced.  This model could be readily received 

by the cardiology community as a ‗modified Bazett formula‘.  The resemblance to the widely used 

Bazett formula is an important consideration given that the tests presented in this chapter involved a 

relatively small number of subjects and a small range of heart rates; the superior performance of the 

spline model cannot be assumed to extend to other physiological scenarios without more extensive 

testing. 
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IV. Using Unipolar Electrograms to Measure Dynamics of 

Electrophysiology 

 The previous chapter covered methods developed for the use of the ECG as a non-invasive 

indicator of the effects of autonomic activity on the heart.  The practical convenience of the ECG 

makes it easily applicable to most psychological experiments.  However, as discussed in section II.D, 

invasive measurements offer much more detailed information regarding the heart‘s local behaviour 

and the spatiotemporal distribution of activity.  Invasive animal studies have granted valuable 

insights into the general nature of autonomic control of the heart, but these findings are inevitably 

subject to some uncertainty in the manner in which they translate to human physiology.  Direct 

measurements from humans are therefore essential in exploring ANS input to the heart and the 

arrhythmic potential associated with that input.  The scarcity of in situ human data has been cited as 

a major reason why pharmacological interventions have achieved only limited success in curing 

arrhythmia[Nash et al, 2006].  The availability of such data is of course heavily limited by ethical 

considerations, but opportunities exist where data collection can be incorporated into surgical 

procedures without exposing the patient to any additional risk. 

 Unipolar electrograms (UEGs) are routinely used during a procedure known as ‗ablation 

therapy‘ to target electrophysiological abnormalities and assess the effectiveness of the intervention.  

As described in section II.E, page 47, UEGs have been proven as a useful measure of the timing of 

activation and repolarisation of the myocytes in the vicinity of the exploring electrode.  The 

following sections describe software-based tools developed to enable the practical use of UEGs for 

assessing dynamic changes in the underlying electrophysiological properties.  These dynamics grant 

insight into autonomic input and other behaviours with relevance to the genesis of arrhythmia.  The 

novel algorithms thus grant access to an abundant source of human in vivo data on localised effects 

of cardiac autonomic input, unlocking new methods of research into arrhythmogenesis and the 

causes of Sudden Cardiac Death. 

 The task of developing these analytic tools was broken down into the following objectives.  

Efforts to achieve these objectives are discussed individually in sections IV.A to IV.E.  Section IV.F 

summarises the new abilities afforded by the algorithms and section IV.G describes the scope for 

future improvements. 

 

Objectives: 

1. Identify the obstacles that have thus far prevented widespread use of UEGs to infer 

autonomic input from cardiac electrophysiological dynamics. 

2. Outline the design requirements for analytic tools to overcome these obstacles. 

3. Develop a graphical user interface (GUI) to support the development of those tools. 

4. Develop signal-processing algorithms to satisfy the established design requirements. 

5. Demonstrate that the algorithms satisfy the requirements. 



IV. Using Unipolar Electrograms to Measure Dynamics of Electrophysiology 

 

106 

IV.A. Obstacles for the use of UEGs to measure dynamic 
behaviour 

Any unknown system can be characterised by studying the dynamics of its response to a 

varying input[Bendat & Piersol, 1993].  This is the principle underlying the use of heart-rate variability to 

assess autonomic input to the SA node, and the same principle can be invoked when investigating 

the role of ANS input to other parts of the heart, particularly the ventricles.  Currently, the most 

common use of UEGs is for mapping the overall spatiotemporal distribution of steady-state 

behaviour and identifying the sites at which normal activity breaks down in pathological cases[Kimber et 

al, 1996], [Kusumoto, 1999], [de Bakker & Wittkampf, 2010].  By extending the use of these electrograms to identify the 

dynamic mechanisms that are active in healthy subjects, it may be possible to illuminate the 

mechanisms behind otherwise unexplained cases of Sudden Cardiac Death (SCD).  It must be 

noted, however, that the use of UEGs to study the dynamics of electrophysiological behaviour 

(rather than treating the properties as quasi-static) is subject to several additional considerations, as 

described in the following sections. 

 
IV.A.1.     The need for automation 

 As is the case for HRV analysis, the study of electrophysiological dynamics requires that 

recordings be sufficiently long with respect to the timescale of the dynamics of interest.  Multiple 

electrodes must be used in order to differentiate between the behaviour at different sites.  As a 

result, the datasets to be considered in these studies is inevitably large.  For example, a relatively 

short recording of one minute using 20 electrodes, at an average heart rate of 75 beats-per-minute, 

will involve around 1 x 75 x 20 = 1500 beats to be examined.  Clearly the datasets involved in these 

studies will generally be so large as to be intractable without automated identification of activation 

and repolarisation times.  However, the wide range of UEG morphologies typically encountered 

(see section II.E) makes automation a difficult feature-recognition task.  The algorithms described in 

section IV.D overcome these difficulties to identify local activation and recovery times in UEG 

recordings, thereby enabling observations of the dynamics of local electrophysiological behaviour. 

 

IV.A.2.     The expected covariance between ARI and APD 

 The electrophysiological property that is most readily described as being a ―local‖ property 

is the action potential duration (APD), since its value is largely independent of behaviour in 

neighbouring regions (although some interdependence does occur through the electrotonic effects 

described on page 61).  The activation-recovery interval (ARI) was introduced on page 47 as a 

convenient reflection of APD that can be measured from UEGs.  Hence the dynamics of ARI 

measurements are a potentially useful window on regionally-specific autonomic input to the 

myocardium. 

 Across large datasets, ARI (using the Wyatt method) and APD have been shown to be well-

correlated, but errors for individual beats typically fall in the range ±10ms with much larger values 

occurring occasionally (see Figure 49)[Haws & Lux, 1990].  After controlling for heart-rate, the subtle 

variations in APD caused by fluctuating autonomic input are expected to be similar in magnitude to 
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these errors.  When the object is to characterise the dynamic changes in APD rather than APD 

itself, these errors are acceptable as long as they present a consistent bias for consecutive beats in a 

particular recording.  That is, ARI and APD must be strongly correlated at each individual site for 

small changes in their values (roughly ±10ms).  If that is the case, the inconsistency of the errors 

seen in the relationship for broader datasets can be explained either by differences between 

individuals, between recording sites or between gross physiological states (e.g. changes in baseline 

ANS activity that are large compared to the small oscillations around the baseline).  So one must 

ask: can we expect ARI and APD to be well correlated for short-term variations in APD in a single 

UEG recording? 

 Comparisons of ARIs and APDs across many consecutive beats at a single site are not 

available in the literature.  Funding and time constraints prohibited the acquisition of such data in 

this project.  However, the nature of the single-recording ARI-APD correlation can be inferred to 

some extent from the present understanding of the genesis of UEG morphology. 

The strength of this correlation and its susceptibility to corruption will be dependent on the 

morphology of the electrogram itself.  The UEG‘s ‗remote component‘, as identified through the 

model of Potse et al[Potse et al, 2009], can be assumed to cause some deviation from a linear correlation.  

As explained on page 54, this influence causes ARI to slightly underestimate APD for positive T-

waves and overestimate APD for negative T-waves.  However, it was shown that the polarity of the 

UEG T-wave is determined by the timing of local activity relative to global activity, which can be 

assumed to not change substantially during small variations in autonomic input.  Hence the induced 

non-linearity can be assumed to be small. 

 In general, the ARI-APD correlation will be most easily corrupted when the UEG 

morphology yields an unstable measurement of activation time or repolarisation time, as illustrated 

in Figure 50.  According to the Wyatt method (page 44), these times are identified in the UEG as 

the steepest downstroke or upstroke, respectively, in the deflection of interest.  These times are local 

 
Figure 49:  Reproduced from [Haws & Lux, 1990] with permission.  ARI measurements from UEGs 
plotted against APDs measured from transmembrane potential recordings.  The two are shown to be 
strongly correlated for measurements from 7 sites in 5 pigs during two different conditions (ischemia 

and normal myocardial perfusion). 
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extrema in the signal‘s time derivative, dV/dt.  If dV/dt does not change sharply in the vicinity of 

these extrema, their timing will be more easily altered by the addition of noise, remote effects, or 

other artefacts. 

 If Tup or the activation time minV  are unstable in the sense shown in Figure 50, the dynamics 

of the measured ARI (Tup minus minV ) could contain noise of an amplitude large enough to obscure 

physiological dynamics of APD.  An algorithm was developed to stabilise these measurements by 

taking into account the signal morphology surrounding the steepest point, as described in section 

IV.C. 

 

IV.A.3.     Dynamic artefacts 

 Given that, in certain cases, the dynamics of ARI measurements are easily corrupted by 

artefacts unrelated to changes in local APD, one must consider the expected nature of such artefacts 

and their manifestation in the ARI measurement.  In particular, one must consider the risk that the 

dynamics associated with these artefacts will be mistaken for electrophysiological dynamics.  

Equation (6) (page 52) shows that the UEG is a summation of the dot product between the lead 

field and a dipole current-source distribution.  Changes in the source term (or just the local 

component of it) can generally be treated as the dynamics of interest, while variations in the lead 

 
Figure 50:  Assessing the stability of the point Tup as an indicator of local repolarisation time in the 
T-wave of the UEG.  The signal on the right yields a less stable measurement because the slope of 

the T-wave does not change sharply in the vicinity of Tup.  When a small artefact is added the timing 

of Tup changes substantially (Tup) for the „unstable‟ T-wave, whereas the change in the 
measurement for the „stable‟ T-wave is negligible. 
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field can be seen as a distortion of those dynamics.  The lead field is dependent on the positioning 

of the electrodes relative to the myocardium and on the surrounding conductive properties, so 

variations in the lead field can be caused by variations in either of these factors.  The importance of 

each of these two sources of artefact will be highly dependent on the experimental setup and on the 

nature of the dynamics of interest, so they should each be considered with specific regard for the 

experiment at hand. 

  

 

IV.B. Summary of design requirements 

IV.B.1. Fundamental requirements 

 To formalise the problem of developing tools to enable UEG-based investigation of cardiac 

electrophysiological dynamics, the following design requirements were identified: 

 

IV.B.1.a. Robustness to unwanted artefacts 

 The task of automated UEG analysis is, in essence, a feature-recognition task.  The 

electrophysiological artefacts of interest can be recognised based on empirical and theoretical 

understanding.  However, the recordings also contain non-physiological artefacts, such as the 

deflections caused by a pacing stimulus used to artificially excite the heart during experiments.  The 

presence of such artefacts complicates the task or identifying the features of interest, and it is 

essential that any automated analysis software should take such complications into account. 

 

IV.B.1.b. Reliable identification of activation waves 

All automated ECG analysis begins with the identification of QRS complexes, because 

these are the most distinct electrophysiological features.  Once they have been located, other ECG 

features can be identified based on physiological expectations of their morphology and timing 

relative to the QRS.  The activation wave can play a similar role in automated UEG analysis.  Hence 

reliable identification of activation waves can be seen as essential to all other UEG processing tasks. 

 100 percent reliability is not a realistic goal, but a more reasonable minimum requirement 

can be established.  As described in section IV.A.1, the principal objective of automated UEG 

processing is to make tractable the analysis of the large datasets required to study heterogeneous 

electrophysiological dynamics.  Hence, an algorithm for automated identification of activation waves 

would be useful as long as the time taken to locate errors and apply manual corrections is 

significantly less than the time that would be taken to perform a fully manual analysis.  Errors in 

activation wave detection can easily be identified by examining the time-series of intervals between 

activation waves.  In these series, detection errors manifest as sharp discontinuities.  As long as the 

majority of the waves are detected accurately, these discontinuities will be easily identified by brief 

visual inspection.  By this reasoning, a minimum reliability criterion for the identification of 
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activation waves was established.  Any such algorithm should regularly achieve 90 percent accuracy, 

using the following definition: 

 

 
%100




N

fmN
accuracy  

 

where N  is the total number of beats recorded, m  is the number of missed activation waves, and 

f  is the number of false-positive detections. 

 

IV.B.1.c. Reliable identification of repolarisation times 

 As mentioned in section IV.A.2., ARI is a useful surrogate measure of APD, which can be 

seen as a localised electrophysiological property that is subject to autonomic modulation.  UEG-

based assessment of such modulation requires reliable identification of a repolarisation time 

corresponding to each activation time, so that ARI can be calculated as the interval between the 

two.  No single, numerical criterion can be established for the reliability of repolarisation-time 

detection because the requirement will depend on the dynamics of interest and their sensitivity to 

detection errors.  For example, in section IV.E the adequacy of the developed repolarisation-time 

detection algorithm is assessed in terms of how faithfully the spectral content of an ARI series can 

be reproduced, because spectral analysis is central to the experimental applications described in 

section V.C. 

 

IV.B.2. Secondary requirements 

 In addition to the need for an accurate reflection of electrophysiological dynamics, the 

following requirements were considered during the design of the algorithm.  A key concern 

throughout is the need for minimal human intervention, for two reasons.  Firstly, any such 

interventions reduce the tractability of studies involving large datasets.  Secondly, any need for 

intervention implies that the user should be trained to some extent in the use of this tool.  Hence 

minimisation of the need for human intervention is essential to maximise the algorithm‘s potential 

as a more widely implemented investigative tool. 

 

IV.B.2.a. Automatic adaptation to different signal magnitudes and morphologies 

 The QRS detection algorithm described in Appendix IV employed two user-defined 

parameters that were specific to each ECG signal to account for variations in signal amplitude and 

morphology.  The magnitude of UEGs also varies between signals, depending on electrode size and 

positioning as well as on pre-processing parameters such as gain.  To minimise human intervention 

and allow the algorithm to be implemented on a variety of hardware configurations (amplifiers, pre-

processing filters, etc.), it was necessary that the algorithm adapt automatically to the magnitude and 

morphology of the signal, preferably in a time-varying manner to allow for any changes in electrode 

positioning or pre-processing parameters. 

(37) 
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IV.B.2.b. Automatic vetting of measurement reliability 

 As described in section II.E, some UEG recordings do not allow reliable or meaningful 

identification of local activation and recovery times, even by expert inspection.  Erroneous 

measurements from these cases would corrupt subsequent calculations of dynamic behaviour unless 

identified and excluded.  It was therefore important that the algorithm incorporate criteria for the 

automatic exclusion of any beats with morphologies not conducive to reliable identification of local 

events.  A conservative approach was preferred, in the sense that the unnecessary rejection of a few 

beats would be far less detrimental than the inclusion of erroneous measurements that may corrupt 

subsequent dynamic analyses.  By implementing this vetting on a beat-by-beat basis, occasional 

suspicious morphologies could be excluded while still allowing useful measurements from the rest 

of the signal. 

 

IV.B.2.c. Suitability for real-time implementation 

 The nature of the experiments involved in this project allowed all calculations to be 

performed offline.  However, it was envisioned that novel therapeutic and investigative procedures 

would be enabled by the availability of real-time estimates of ARI and the associated dynamics (see 

Figure 51).  For example, consider the use of biopsies (tissue sampling) to study the chemical 

substrate of arrhythmias for diagnostic and research purposes.  Such studies are often inhibited by 

the fact that many arrhythmia are short-lived and emerge from a relatively small region of abnormal 

tissue, making the region difficult to locate.  Real-time characterisation of electrophysiological 

dynamics across a mesh of electrodes could be used to pinpoint the arrhythmia during probing 

surgery, allowing a biopsy to be collected immediately.  This biopsy would then contain the chemical 

‗signature‘ of the arrhythmia, which could be used to direct further treatments or therapeutic 

innovation.  The algorithm was designed to be easily adaptable for such use by assessing each beat 

without relying on information recorded more than three seconds after the beat in question.  Real-

time implementation also necessitated that the time taken to process a signal section should be 

shorter than the duration of that recording. 

 
Figure 51:  A schematic diagram of the proposed use of real-time UEG-based measurements for 

novel experimental or therapeutic procedures.  Adapted from [Western et al, 2010] with permission. 
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IV.C. Development environment 

 To facilitate the development process, a graphical user-interface named Wave_Inspector 

was designed using Matlab.  Wave_Inspector, shown in Figure 52, incorporates the following key 

features to accelerate the process of testing and debugging new algorithms for electrogram analysis: 

 

- Easy loading of new signals based on the patient identifier and electrode name. 

- Selection of measurements to implement from a drop-down list. 

- Display of electrograms and the measurement series (‗Waveform‘ and ‗Measurement, 

respectively, in F).  A selection of buttons allows navigation within these windows (zoom in, 

zoom out, forwards, backwards, fast forwards (larger increments), and fast backwards).  A 

specific time in the signal can be reached by entering a value (in seconds) into the ‗Jump to‘ 

box.  Red lines on the ‗Measurement‘ window indicate the field of view of the ‗Waveform‘ 

window.  A green line indicates the timing of the measurement closest to the centre of the 

‗Waveform‘ window. 

- Construction lines can optionally be drawn on the ‗Waveform‘ window to validate 

measurements.  In Figure 52, red lines indicate activation times and black lines indicate 

recovery times. 

- Various filters can be quickly applied to the electrogram to examine their effects.  The signal 

can also be differentiated or integrated any number of times. 

 

Figure 52:  A screenshot of Wave_Inspector, the interface designed to facilitate testing of 
prototype algorithms for UEG processing. 
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- Individual measurements of activation time or repolarisation time can be manually added or 

deleted if necessary. 

- Measured values can be exported to Excel or to Matlab‘s main workspace for separate 

manipulation or for permanent storage. 

 

 

IV.D. Description of developed algorithms 

 Automated mapping of activation times from UEGs has been achieved with reasonable 

success and is widely implemented[Gepstein et al, 1997], [He et al, 1999], [Shenasa et al, 2009].  At least one prior attempt 

has been made to automate the measurement of repolarisation times from UEGs,[Witkowski & Penkoske, 

1988] but such methods are not in frequent use today.  The likely reason for this is that, while the 

Wyatt method is theoretically well-founded and works well in idealised scenarios, it is prone to large 

errors in non-ideal scenarios such as those described in section IV.A and in section II.E.  Hence 

extensive manual corrections would typically be required.  The following sections describe newly 

developed algorithms that minimise this problem and allow automated tracking of activation and 

repolarisation dynamics in the region surrounding an electrode.  In doing so, the algorithms serve as 

a novel tool for the investigation of physiological mechanisms governing cardiac electrophysiology.  

The previously described requirements are satisfied by the combination of three separate algorithms 

that perform the following functions: removal of pacing spikes, identification of local activation 

times, and identification of local recovery times.   

 
IV.D.1. Removal of pacing artefacts 

 The large artefacts produced by the pacing stimulus posed a problem with regard to the 

automated detection of activation times.  The artefacts typically appear in the vicinity of the 

activation wave, and contain sharp deflections that are likely to be mistaken for the local activation 

time, minV , when automated detection is used.  Conventional filtering could not be used to attenuate 

the pacing artefact due to the overlap in frequency content between the artefact and the activation 

wave.  Furthermore, the low-pass filtering used to reduce noise in the signal often broadened the 

artefact, causing overlap with the activation wave, as shown in Figure 53.  Note that in this case a 

Butterworth filter has been used with a conservatively low order of 3 to minimise the spreading 

effect.  The spread to the left can be easily discerned in the initial flat portion of trace B.  It can be 

assumed that the affected area extends by roughly the same amount to the right of the artefact, but 

is less easily distinguished due to its overlap with the activation wave.  This region is marked on the 

trace as the Area Of Influence (AOI)  The use of Finite Impulse Response (FIR) filters was 

explored as a means of constraining the AOI, but it was found that a relatively high-order FIR was 

needed to achieve effective filtering, so the AOI could not be reduced.  It was therefore deemed 

necessary to identify and remove the artefact before any further processing.  Replacing it with a 
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segment of little high-frequency content minimises the effect of any subsequent filtering on the 

surrounding signal. 

 The task of identifying pacing artefacts can be simplified if the recording system is 

configured to also record from the pacing electrode.  For each of the UEGs, the signal portion 

during which the stimulus is applied, plus a trailing segment to account for capacitance effects, can 

then be identified and replaced with low-frequency content.  However, many of the signals used in 

this project were recorded before the need to remove pacing artefacts was appreciated.  

Furthermore, the requirement of specialised hardware configurations would limit the simplicity with 

which the developed algorithms could be adopted by other research groups.  It was therefore 

 
 

Figure 53:  Top – A 3.5 s segment of a UEG recording.  The dashed box indicates the region shown 
in detail in traces A-D.  Trace A – A pacing artefact and activation wave, with no processing applied.  

Trace B – Application of a low-pass Butterworth filter (3rd order, zero-phase, 100 Hz cut-off) does 
not effectively eliminate the pacing artefact and causes it to broaden and overlap with the activation 

time, potentially disrupting the detection of this event.  The area in which the influence of the 
filtered artefact is perceptible is marked with a dashed line, which leads up to the original trace for 

reference.  Trace C – An unfiltered version of the signal, with the pacing artefact removed by a 
custom algorithm.  The area influence by the artefact (marked out by dotted lines) is noticeably 

smaller than in the filtered version, leaving a greater portion of the activation down-stroke 
unaffected.  Trace D – The filter used to form trace B was applied to trace C.  Because the pacing 
artefact was replaced with low-frequency content, the filtering does not noticeably influence the 

surrounding signal morphology. 

A.  unfiltered pacing artefact 
and activation wave 

B.  150 Hz low-pass filter 

C.  unfiltered, pacing 
spike removed 

D.  150 Hz low-pass filter after 
pacing spike was removed 

area of influence 
(AOI) of pacing 
artefact 
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local activation 
time 

A 

B 

C 
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deemed necessary to develop an algorithm that would detect a pacing artefact from a single UEG, 

without additional information.  This is achieved in the steps described below. 

This algorithm and others described later in this chaper are presented as a sequence of data-

manipulations and automated decisions.  These processes make use of various numerical 

parameters, and the reasoning used to select their values is given where possible.  However, it 

should be noted that in other cases the values were chosen by an iterative process of 

experimentation and refinement until they converged towards values that consistently performed 

the desired function without adverse side effects.  In cases where no such converged parameter-

value could be found, the associated decision-criterion was removed and alternative approaches 

were developed.  This approach is referred to as heuristic development. 

 

I. Filtering:  Create a heavily low-pass filtered version of the signal (3rd order zero-phase 

Butterworth filter, 12 Hz cut-off), segments of which will be used to replace pacing 

artefacts. 

II. Differentiation:  Differentiate the original signal 8 times.  The number 8 was chosen 

heuristically to give reliable discrimination between pacing artefacts and other deflections.  

The key point is that the pacing artefact is distinct from the rest of the signal in that it 

contains very sharp deflections.  Each successive differentiation increases the amplitude of 

the pacing artefact relative to the rest of the signal.  This approach was found to limit the 

spread of the artefact more effectively and more predictably than high-pass filtering. 

III. Threshold:  A magnitude threshold is established as 2.5 times the 99th percentile of the 

differentiated signal.  Again, these values were determined heuristically.   

IV. Windowing:  When a point in the differentiated signal is found to have an absolute value 

greater than the threshold, the point with the maximum absolute value in the subsequent 

0.01 s is located.  A window of 0.012 s either side of this point is scanned and the first and 

last points to exceed 1/15 times the maximum are taken as the start and end of the pacing 

artefact.  These boundaries are extended by 0.002 s and 0.004 s, respectively, to ensure that 

the artefact is well encapsulated. 

V. Exclusion criterion:  To ensure that a sharp ‗intrinsic deflection‘ associated with local 

activation is not mistaken for a pacing artefact, this window is dismissed if the overall 

change in the original signal (difference between values at the start and end of the window) 

is greater than 75% of the range in that window.  In other words, the contained signal must 

not have a substantial net slope. 

VI. Transplant:  If the window is not dismissed, the corresponding section of the low-pass 

filtered signal is ‗transplanted‘ into the original signal.  A linear component is added to the 

transplanted section to ensure that no discontinuities occur at the boundaries. 
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The full Matlab code for this algorithm is provided in Appendix IV.  Figure 53 

demonstrates the effectiveness of the algorithm in replacing the pacing spike while having minimal 

influence on the surrounding signal.  An alternative approach was explored previously, using 

pattern-matching with an a priori assumption of the artefact‘s essential biphasic morphology.  This 

approach was found to be less reliable because capacitive effects unpredictably reshaped the tail-end 

of the artefact.  Capacitive effects of body tissues are typically neglected in electrogram analysis, 

because it has been shown that they are not large for the frequencies associated with the 

electrophysiological sources[Plonsey, 1969].  However, the pacing artefact contains substantial energy at 

higher frequencies, for which capacitive effects are no longer negligible.   

A limitation of the multiple-differentiation approach described above is that it is less reliable 

than the pattern-matching technique for identifying very small pacing artefacts.  However, this is not 

a functional limitation, because any artefacts small enough to avoid detection were found not to be 

problematic for activation detection.  When it is absolutely necessary to locate artefacts (e.g. in order 

to assess the interval between pacing and local activation), the timing of the artefact can be taken 

from the electrode in which it is most prominent. 

 

IV.D.2. Identification of activation waves 

 As mentioned previously, the point minV  (the steepest downward slope in the UEG‘s 

activation wave) is widely recognised as an index of the timing of local depolarisation.  Several 

authors[Witkowski & Penkoske, 1988], [Anderson et al, 1991], [Ndrepepa et al, 1995], [He et al, 1999], [Klemm et al, 2007] have described the 

automated detection of local activation times from UEGs, but all of these approaches use simple 

detection criteria (usually, the comparison of the signal‘s derivative with a threshold) and depend on 

manual exclusion of unreliable signals or basic automatic criteria such as ―rejecting signals that 

appeared as flat lines or that fluctuated between minimum and maximum saturation values‖[Ndrepepa et 

al, 1995].  Bhakta & Miller[Bhakta & Miller, 2008] summarise commercially available activation mapping 

systems, including the widely used Carto® (Biosense Webster Inc., Diamond View, CA, USA) and 

EnSite® (St. Jude Medical Inc., St. Paul, MN, USA) systems but, again, all of these rely on the 

operator to exclude signals and signal portions that are not well suited to analysis.  Furthermore, 

they are intended for spatial mapping of activation times rather than close inspection of beat-to-beat 

variations, which they neglect or smooth out. 

An algorithm was designed to identify local activation times without the need for extensive 

manual reduction of the dataset or automatic rejection of signals with only brief corrupt sections.  

This was achieved by incorporating novel criteria to automatically distinguish between activation 

waves and other large, steep deflections, as explained in the algorithm‘s outline below.  These 

characteristics enable the algorithm to quickly produce long sequences of activation time 

measurements without human intervention.  A 500-second UEG recording could typically be 

processed in less than 15 seconds on a desktop PC (Windows XP, 2.8 GHz CPU, 2.98 GB RAM), 

thus satisfying the speed criterion established in section IV.B.2.c (page 111).  Modification of the 
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minV  definition of local activation time, in order to adapt the measurement to time-varying 

properties, is explained in section IV.D.4.  The full Matlab code for this algorithm is provided in 

Appendix V.  

 
 

I. Filtering:  The pacing artefacts are removed from the signal, as described in section 

IV.D.1, then a bandpass filter (4th order zero-phase Butterworth) is applied.  The lower cut-

off frequency was chosen as 0.5 Hz, as has previously been used by experienced researchers 

and clinicians[He et al, 1999], [Stevenson & Soejima, 2005].  Several researchers[Witkowski & Penkoske, 1988], [Anderson et 

al, 1991], [Ndrepepa et al, 1995] have advocated smaller values for the lower cut-off frequency, but for 

dynamic analyses it is essential to attenuate the respiratory motion artefact (typically 

0.15-0.4 Hz).  The upper cut-off was chosen as 150 Hz, which was found to achieve an 

acceptable compromise between the two goals of attenuating high-frequency noise and 

avoiding excessive distortion of the intrinsic deflection in the activation wave; the intrinsic 

deflection typically has the highest frequency content of all the UEG features with 

electrophysiological origins.  A second copy of the signal is produced with bandpass cut-off 

frequencies of 0.5 Hz and 30 Hz.  This copy is used to assess the broad morphology of the 

signal while strongly attenuating any high-frequency artefacts.  For clarity, the 0.5-150 Hz 

signal will be referred to as the main signal and the 0.5-30 Hz signal will be referred to as 

the low-passed signal.  It should be noted that, once the algorithm for removal of pacing 

artefacts was fully developed, it was found that the main signal could also be used in place 

of the low-passed signal for most cases with no noticeable effect on the reliability of 

activation detection. 

II. Scanning:  The main signal is scanned in overlapping ‗scanning windows‘ of 0.15 s width at 

intervals of 0.01 s.  This window size was chosen to be as small as possible while reliably 

encompassing the full duration of ventricular activation (see Figure 54), even when the use 

of artificial pacing slowed the wave of activity by not immediately employing the specialised 

conduction cells.  To identify activation waves, these scanning windows are compared 

against a ‗broad window‘ in the low-passed signal (see Figure 54 and Figure 55 (page 119)).  

Under the assumption that activation waves are the largest features in the local signal, the 

voltage range of the broad window provides an order-of-magnitude approximation of the 

peak-to-peak magnitude of an activation wave (including those slightly smaller than their 

neighbours). 

III. Detection criteria:  Hence the first criterion for activation detection is that the voltage 

range of the downward sloping portions of the scanning window must exceed 0.3 times the 

range of the broad window.    This broad-window index is only recalculated once every 
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0.2 s to avoid excessive computational expense.  Ideally, the broad window would contain 

only the next single activation wave, so that the algorithm would not be at all affected by 

beat-to-beat changes in signal magnitude.  The fact that activation times have not yet been 

detected makes this impossible.  To ensure that the index adapts quickly to changes in signal 

magnitude, the boundaries of the broad window are defined as follows: 

o The start point of the broad window is usually chosen as 0.09 s after the last 

activation time, at which point that activation wave should have almost completely 

subsided.  Excluding the last activation wave improves the algorithm‘s speed of 

adaptation.  If no activation time has been detected in the last 1 s, the broad-

window start point is chosen as 0.3 s prior to the current point in the scan. 

o The end point of the broad window is set as 0.6 s ahead of the current point in the 

scan.   

  

The scan restarts 0.15 s after each detected activation time, so the minimum possible width 

of the broad window can be calculated as 0.6 s + [0.15 s – 0.09 s] = 0.66 s.  Because some 

of the experiments involved in this project used high (paced) heart rates, this minimum was 

sufficient to ensure that the broad window usually contained at least one activation wave.  

However, the algorithm was also reliable for longer beat-to-beat intervals; additional criteria 

(described below) successfully eliminated false detections that would otherwise have been 

caused by an erroneous assessment of the local signal magnitude.  In implementations 

where heart rate is expected to regularly drop below ~55 beats-per-minute, it might become 

necessary to change the minimum broad-window length to approximately 2 s for extra 

 
Figure 54:  A UEG with vertical lines superimposed to mark activation times.  The seven activation 

waves in view were all detected successfully, despite the fact that arrhythmia and intermittent pacing 
have caused substantial variations in signal morphology.  Dashed outlines and grey-filled boxes 

show two typical examples of the scanning window and broad window, the contents of which are 
compared during activation detection.  The heights of the windows indicate the range of the data 

contained within them. 
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insurance against false-positive detections.  However, this adjustment would worsen the 

algorithm‘s adaptation speed, possibly resulting in missed activation waves just before a 

sharp increase in signal amplitude. 

IV. Window refinement:  If the previous criterion is satisfied (range of downward portions of 

scanning window exceeds 0.3 times the range of the broad window), then the scanning 

window is refined; the start and end boundaries are pulled in to exclude signal segments 

whose deflections are negligible compared to the rest of the window (range<5%).  As well 

as being important in identifying activation waves themselves, well-defined boundaries of 

the activation are useful when searching for other electrogram features such as recovery 

times, as described in the next section. 

V. Further detection criteria:  After refinement of the scanning window, the range of its 

downward portions must still exceed 0.3 times the broad-window range.  Also, the 

difference in voltage between the first and last points in the window must be less than half 

the range covered in between.  In other words the signal must return to a very rough 

approximation of its initial value.  Finally, the minimum slope in the window must be more 

negative than 1st percentile of the slopes in the broad window. 

VI. Further window refinement:  If all criteria have been satisfied, this window is deemed to 

contain an activation wave.  To ensure that the most appropriate choice of scanning 

window for this beat is found, the scan continues until the window has moved on by 1.5 

window lengths, using a finer time-increment (~0.004s).  All candidate windows fulfilling 

the selection criteria are noted so that the one that best encapsulates the activation wave can 

be chosen.  All candidate windows with a range less than 95% of the maximum range are 

 
Figure 55:  Qualitative descriptions of the various criteria applied in the scanning window to 

identify activation waves.  Note that the criteria are all applicable to the full range known 
activation wave morphologies (positive, negative, biphasic, fractionated, etc.).  Hence the 

algorithm is robust to dynamic changes in morphology. 

signal range is large 
compared to surrounding 
signal (see step III) 
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all other criteria are satisfied within a 
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immediately rejected.  Of the remaining windows, the ones with the largest range in the 

downward sloping segments are selected.  If more than one candidate remains, the final 

choice is the window with the smallest difference between the first and last points. 

VII. Activation time selection:  Within this chosen window, the local activation time can be 

selected as minV .  However, an improvement upon this index is discussed in section IV.D.4. 

 

IV.D.3. Identification of local recovery times 

 As described in section II.E, the steepest upward slope on a T-wave (Tup) is widely used to 

indicate the timing of local repolarisation in UEGs.  As for activation times, computers are often 

used with human guidance to locate the steepest slope without introducing operator bias.  

[Witkowski & Penkoske, 1988] describe an algorithm that incorporates morphological analysis of 

the surrounding signal to locate T-waves.  However, the algorithm implicitly assumes that a clear T-

wave will be present in each beat, without substantial corrupting artefacts, which is not always the 

case. 

This section describes the key components of an algorithm to identify local repolarisation 

times while automatically excluding beats that are unlikely to yield reliable measurements.  An earlier 

version of the algorithm was described in [Western et al, 2010].  The full Matlab code for this 

algorithm is provided in Appendix VIII. 

 

I. Filtering:  The pacing artefacts are removed from the signal and activation times are 

identified using the previously described algorithms before the recovery-time detection 

algorithm is implemented.  A bandpass filter (3rd order zero-phase Butterworth) is applied 

with cut-off frequencies of 0.5 Hz and 35 Hz.  This upper limit was chosen to reduce noise 

and the 50 Hz mains artefact as much as possible without being so low as to smooth out 

key physiological deflections in the T-wave.  It was originally set at 30 Hz, but was raised 

when a single case was found in which excessive smoothing caused erroneous identification 

of Tup. 

II. Scanning:  As in the activation wave detection algorithm, a ‗broad window‘ is established 

as a representation of the local signal magnitude, against which individual features can be 

compared.  For each beat-to-beat interval, the start point of the broad window is defined as 

0.1 seconds before the first activation time.  The end point is chosen as either 1 second 

after the first activation time or the end of the next activation wave, whichever is earlier. 

III. T-wave windowing; end limit:  Next, the algorithm establishes boundaries within which 

the recovery wave (T-wave) is expected to occur.  The start boundary is taken as the end of 

the preceding activation wave.  The end boundary, endT , is taken as the earliest of four 

candidates.  The first candidate is the start of the subsequent activation wave.  The other 

three candidates are heuristic formulae based on the cycle length of the preceding beat, 
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 iCL .  Where  iA  is the ith activation time,  iCL  is measured in seconds from  1iA  

to  iA . 

 

     iCLiAiTend  8.0  

 

     iCLiAiTend  5.0
 

 

    siAiTend 6.0  

 

These formulae, plotted in Figure 56, ensure that the T-wave is only sought in the period in 

which its appearance is physiologically appropriate.  Note that (39) can be loosely 

interpreted as a limiting value of 0.5 s for the QTC variable, calculated using Bazett‘s 

formula[Bazett, 1920] ((30), page 96).  (38) and (40) serve to correct this relationship for extreme 

values of CL. 

IV. T-wave windowing; start limit:  As an approximate representation of the ST segment, a 

single point, tST, is identified.  Within a window of 60 ms from the end of the activation-

wave, tST is defined as the last point at which the difference between the actual slope and 

the mean slope is less than one hundredth of a standard deviation.  This definition ensures 

that tST occurs after any trailing features of the activation wave but before any substantial 

components of the T-wave.  tST is then incrementally shifted later in time until the absolute 

value of the signal‘s 1st derivative reaches a local minimum (i.e. the signal appears to be 

roughly isoelectric). 

 

 

(38) 

(39) 

(40) 

 
Figure 56:  Heuristic formulae used to establish Tend(i), the end of the window in which the T-wave 
should be located.  Each line is labelled with the number of the equation used to construct it.  The 

shaded area represents the time after A(i) in which the T-wave can occur. 
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V. Identification of Tup:  The search-window for the time of local repolarisation extends 

from tST to Tend.  The point Tup is identified as the time of the maximum slope within this 

window.   

VI. Rejection criteria:  Several criteria are applied to assess the reliability of the measurement 

of Tup: 

a. The slope at Tup must be positive. 

b. The range of voltages covered by the signal within 30 ms either side of Tup must be 

at least 0.2 times the range between tST and Tend. 

c. The range between tST and Tend must be at least 0.015 times the range in the broad 

window.  

d. Tup must not occur immediately at the start of the search-window, since this might 

not be a true local maximum in the slope.  

If any of these criteria are not met, the recovery time for this beat is designated as ‗not 

found‘. 

VII. Secondary rejection criteria:  If the above criteria are all met, a second set of criteria is 

applied: 

a. Tup must not occur at the very end of the search-window, since this might not be a 

true local maximum in the slope (similar to condition d. above). 

b. At some point between Tup and Tend, the slope must return to below a threshold 

equal to the range in the broad window divided by 0.5 s. 

Failure to meet either of these criteria suggests that the point Tend may not have been 

suitably defined, hence an attempt is made to shift Tend earlier, to the next point at which 

the slope criterion described in condition b, above, is satisfied.  This action sometimes 

excludes a non-repolarisation/non-local feature with a steep upslope from the search-

window so that it is not mistakenly identified as the local-repolarisation deflection.  If the 

newly defined Tend does not allow all of the above criteria to be met, the recovery time for 

this beat is designated as ‗not found‘.  Otherwise, Tup can be taken as the local recovery 

time.  Modification of the Tup definition of local recovery time, in order to adapt the 

measurement to time-varying properties, is explained in section IV.D.4 

 

 

IV.D.4. Stabilisation of local event times 

 As explained in Figure 50 (page 108), certain UEG morphologies can yield unstable 

measurements of activation and recovery times.  This instability can obscure subtle repolarisation 

dynamics when ARIs are used as a surrogate measure of APD.  An example of such disruption can 

be seen in Figure 57.  The top panel shows a series of ARI measurements switching sporadically 

between two very different profiles.  In the middle and bottom panels, it can be seen that the UEG 

morphology is not altering substantially from-beat-to-beat.   
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Instead, the timing of Tup is switching between two local maxima in dV/dt.  Hence, it 

appears that the dynamics of the ARI measurement are not an accurate reflection of the underlying 

dynamics in APD.  In cases of manual measurement, a reviewer might choose only the later of 

these peaks as the nominal recovery time to impose consistency in the measurement.  However, 

 

Figure 57:  Top panel – In this example of rate adaptation, ARI switches sporadically between two 

extremes, obscuring the typical pattern of adaptation.  Middle panel – Two consecutive beats in the 

UEG signal.  minV  and Tup are marked as, respectively, dashed and solid vertical lines.  The timing 

of Tup switches between two ends of the T-wave upstroke, suggesting the kind of instability 

described in Figure 50.  Bottom panel – Inspection of the signal‟s derivative confirms that Tup is 

switching between two ends of a broad peak in dV/dt. 
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this approach can be problematic if the chosen peak then disappears due to more gradual 

morphological changes.  Hence it is not easily implemented in an automated system. 

 In section II.E it was shown that UEG T-wave morphology is the combination of an 

upward stroke produced by local repolarisation behaviour and a downward stroke from more 

distant behaviour.  By that interpretation, the whole of the T-wave‘s broad positive peak in dV/dt 

represents the time during which repolarisation in the UEG‘s local component contributes more 

strongly than the remote component described in the model of Potse et al[Potse et al, 2009].  A more 

meaningful reflection of repolarisation dynamics would therefore take into account the whole of 

the peak in dV/dt, rather than picking one of several smaller maxima as the instantaneous index of 

local recovery.  The same principle can be extended to activation time measurements, although in 

most cases the negative peak in dV/dt during activation is more sharply defined than the T-wave 

peak. 

 Modified definitions of the nominal activation and recovery times assigned to a UEG were 

developed to achieve such a measurement.  The resulting indices, named AS (stabilised activation 

time) and RS (stabilised recovery time), are calculated as follows: 

 

I. The conventional indices, minV  and Tup, are calculated using the previously described 

algorithms. 

II. For each beat, a window containing the peak of interest is identified.  For activation, this 

window is the refined search-window established for this beat during activation detection.  

For recovery, the start boundary is either the point tST or 60 ms before Tup, whichever is 

later.  The end boundary is Tend or 100 ms after Tup, whichever is earlier.  These definitions 

minimise the chances of non-repolarisation artefacts being included in the window. 

III. A slope threshold is defined, so that the measurement only incorporates signal segments 

where dV/dt exceeds this threshold.  For activation, this threshold is set as 0.7 times the 

slope at minV .  For recovery, the threshold is set as 0.5 times the slope at Tup.  These factors 

were chosen heuristically to eliminate incidences of spurious dynamics, such as those shown 

in Figure 57.  For activation, a stricter threshold is used to ensure that only the intrinsic 

deflection (when one is visible) would be incorporated into the measurements.  For 

recovery, a lower threshold was used to provide extra stability, since the destabilising ripples 

across the broad peak in dV/dt could be large compared to the peak itself. 

IV. RS is then calculated from the following formula. 
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where P is the set of samples that exceed the slope threshold Z, dV/dt (k) is the kth point in 

the signal‘s derivative, and t(k) is the time corresponding to that point.  By this formula, RS 

is mathematically equivalent to the centroid of the area enclosed by the slope threshold and 

the peak of the signal dV/dt.  This area is shaded in the bottom panel of Figure 64 (page 

133).  AS can be calculated using the same fomula, with P and Z altered appropriately. 

 

 

IV.E. Evaluation of developed algorithms 

IV.E.1. Pacing artefact removal and activation wave detection 

An example of the benefits of pacing artefact removal has been presented in Figure 53 

(page 114), although more extensive evaluation is required.  Because the principal purpose of the 

pacing spike removal algorithm is to improve the reliability of the activation-wave detection 

algorithm, the evaluation of the latter can also serve as the evaluation of the former. 

The performance of the activation-wave detection algorithm was found to be more than 

sufficient for the purposes of the experiments described later in this thesis. A comprehensive 

assessment of the algorithm‘s performance could be achieved during this project, due to the time 

that would be required to manually annotate an extensive set of electrograms for comparison.  One 

professionally annotated library of unipolar electrograms is known to be commercially available (the 

Ann Arbor Electrogram Library, www.electrogram.com) but the licensing expenses were beyond the 

budget of this project.  Hence the electrograms recorded in the course of this project were the only 

ones available for validation of the algorithm.  During constant-pacing sections, detection errors 

were extremely rare.  To test the algorithm in a more challenging situation, activation waves were 

identified manually for a series of 100 beats in an unpaced recording from a subject experiencing 

persistent arrhythmia (atrial fibrillation), such that the magnitude and morphology of the waves 

varied substantially between ventricular activations.  Additional morphological variations were 

caused by the fact that catheter positions were still being adjusted before the start of an experiment.  

The accuracy of detection in each of 20 electrodes was measured according to the definition given 

by (37) (page 110).  The results are summarised in Table 5. 

100 percent accuracy was achieved in 14 out of 20 electrodes.  Figure 58 presents 

representative examples of cases in which the algorithm failed.  Substantially reduced accuracy 

occurred at the electrodes closest to the apex of the left ventricle.  The apparent cause was that 

algorithm validation - accuracy percentages 
 1 2 3 4 5 6 7 8 9 10 

RV 100 100 100 100 100 100 100 100 100 100 

LV 86 94 97 99 100 100 100 100 98 98 
Table 5:  Accuracy percentages, as defined in (37), for the activation wave detection algorithm 

applied to 10 electrodes in each ventricle.  The recordings consisted of 100 beats, during persistent 
arrhythmic behaviour.  Electrodes 1-10 are distributed across 35mm from the apex to the base of the 

ventricles.  The electrode configuration is depicted in Figure 80, page 168. 
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Figure 58:  Examples of cases in which the activation detection algorithm fails, taken from the 

electrograms used in the accuracy assessment that is summarised in Table 5.  Top trace – A small 
activation wave is not detected due to the influence of the large subsequent wave in the broad 

window.  2nd trace – Forces between the electrode and the myocardium at the catheter tip cause 
MAP like morphologies.  The downward spikes associated with local activation are smaller than 
usual and are superimposed onto upward deflections, but can still be detected in some cases (for 

example, in the second beat here, but not the first).  3rd trace – At other times, these forces and 
the resultant artefact appear only during ventricular contraction.  The artefacts‟ effect on the 

broad window cause the algorithm to overlook small, fractionated activation waves, and 
occasionally they are mistaken for activation waves themselves.  Comparison with a simultaneous 

recording from a nearby electrode (bottom trace) reveals which deflections are true activation 
waves and which are artefact. 
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these electrodes were occasionally forced against the myocardial wall.  In some beats (e.g. 2nd trace) 

this caused MAP-like morphology (explained in section II.D.2.c), suggesting consistent forcing.  In 

other beats, a large artefact emerged around the time at which ventricular contraction would be 

expected to occur (e.g. 3rd trace), suggesting that the contraction itself provided the force.  Signal 

corruption of this kind was only observed in the distal electrodes, where the force between 

myocardium and electrode could act in the catheter‘s axial direction; the catheter can be assumed to 

be stiffer in the axial direction than in the transverse direction, preventing the electrodes from 

moving freely with the myocardial wall. 

Because the algorithm does not perfectly match a human‘s ability to identify activation 

waves, it should not be used without supervision to characterise complex arrhythmias.  Its advantage 

lies in providing activation times from long recordings because the user is not required to manually 

identify the time envelope within which activation occurs.  Rapid adaptation to changes in overall 

electrogram morphology allow the algorithm to be applied to signals involving a combination of 

paced and unpaced beats, while ensuring that the algorithm is readily adaptable to a real-time 

implementation in future. 

 
 

IV.E.2. Recovery-time detection 

Figure 59 demonstrates the recovery-time detection algorithm‘s ability to reject unreliable 

measurements on a beat-by-beat basis, referred to henceforth as auto-vetting.  The task of 

meaningfully quantifying the accuracy of auto-vetting is a difficult one.  The difference between 

reliable and unreliable recovery time measurements is more ambiguous than the difference between 

activation waves and other deflections.  Cases can be found in which the decision made by the 

algorithm does not match that of a human reviewer, but ambiguous cases can also trigger 

 

Figure 59:  A demonstration of the recovery time detection algorithm‟s ability to exclude unreliable 
measurements.  This electrogram is from the same recording as the 3rd trace in Figure 58.  Dashed 
lines indicate activation times and solid lines indicate recovery times.  Beat A – Recovery time „not 

found‟ because the signal immediately surrounding Tup was too small compared to the rest of the T-
wave window.  Beats B and C – „found‟.  Beat D – „not found‟ because local recovery did not produce 
a positive slope.  Beat E – „not found‟.  Two substantial up-strokes appear, but both are too late to be 

considered local recovery.  A small earlier up-stroke appears, but is too small compared to the 
surrounding signal to be considered reliable.  Beat F – „found‟.  Beat G – „not found‟ because the 

only substantial up-stroke occurs too late.  Beat H – „found‟. 
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disagreement among human reviewers.  It would therefore be inappropriate to quantify the auto-

vetting accuracy rate using a beat-by-beat comparison against a manually annotated dataset (the 

approach used for the activation wave detection algorithm and summarized in Table 5).  In tuning 

the algorithm‘s behaviour for ambiguous cases, it was deemed that unnecessary rejection of a few 

beats would be preferable to the inclusion of occasional erroneous measurements, in order to better 

serve the aim of exposing the dynamics of a variable.  Erroneous measurements can substantially 

obscure the dynamics of a variable because their values are likely to differ widely from the 

surrounding values, whereas omitted measurements can be interpolated across with only a small 

effect on the apparent dynamics.  This principle is illustrated in Figure 61. 

To provide a more general impression of the effectiveness and importance of auto-vetting 

in preventing erroneous distortion of measurement dynamics, the following analysis was carried 

out.  The comparison seen in Figure 61 was implemented for all twenty of the endocardial 

ventricular electrograms that were simultaneously recorded from this subject during the 

experiments described in section V.C.  The outcomes of these comparisons were divided into four 

categories, as shown in Table 6.  Note that the nature of the first category highlights a previously 

unmentioned benefit of auto-vetting: signals with consistently ambiguous morphologies can be 

automatically rejected by imposing a threshold on the percentage of beats rejected through auto-

vetting.  In multi-electrode recordings, it is typically not possible to achieve useful recordings from 

every electrode, so poor quality recordings must be excluded before post-processing.  Automating 

this task further reduces the time-cost of human intervention during analysis. 

Outcome 
Number of electrodes (out 

of 20) 

Signal section rejected (>10% of beats rejected) 5 

No corrections necessary 7 

Some manual corrections made.  No automatic rejections made. 3 (see Table 7) 

Automatic rejections made. 5 (see Table 7) 
Table 6:  Summary of outcomes when the analysis of Figure 61 was extended across all 20 

simultaneous electrogram recordings from the same subject. 
 

 
Figure 60:  A sample of the electrogram used to produce the ARI measurements in Figure 61.  

Measured activation and recovery times are marked with dashed and solid vertical lines, 
respectively.  Auto-vetting was switched off.  In the first of the two beats shown, the boundary 

between the activation wave and T-wave upstroke is unclear.  This ambiguous morphology 
ultimately leads to an erroneous identification of the recovery time. 
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Figure 61:  Top panel – Three versions of the same ARI series, taken from electrogram signal of 

which an example is shown in Figure 60.  The first was achieved by switching off the algorithm‟s 
auto-vetting features.  The second was achieved by reinstating auto-vetting, so that ambiguous 

morphologies such as that seen in Figure 60 would not substantially distort the overall dynamics in 
ARI.  Beats that were unnecessarily rejected are marked “X”.  The third series was produced by 

manually correcting the first series.  Bottom Panel – Power spectra calculated from these 80-second 
ARI series using the autoregressive method.  The errors associated with ambiguous morphologies 

lead to substantial distortion of the series‟ measured frequency content.  In contrast, rejecting 
ambiguous beats and interpolating across the resultant gaps in the ARI series preserves the key 

features of the frequency spectrum, even though more beats than necessary were rejected. 
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 For the eight cases in which corrections were necessary, the accuracy of the spectral 

calculations could be compared with and without auto-vetting.  Two quantitative measures of 

accuracy were established for this purpose: 
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 fPSDa  and  fPSDm  are the power spectral densities of the automatic and manually 

corrected ARI series, respectively, at frequency f .  f  ranges across N=500 values from 01 f  

to Hzf N 1 , the Nyquist Frequency of the series.  Table 7 compares values of these performance 

indicators with and without the use of auto-vetting to find aPSD . 

 The first three rows of Table 7 show that, although the auto-vetting algorithm failed to 

reject beats for which manual corrections were necessary in these signals, the resultant distortion of 

the spectral content was relatively small.  The ‗percent total error‘ values may seem large until one 

considers that in Figure 61 the key features are well-preserved by the use of auto-vetting, and the 

percent total error measured in this case was 24 %.  This index is prone to large values when the 

denominator is small, i.e. when the total power of the manually-corrected spectrum is low.  The low 

‗mean error‘ values confirm that the absolute distortion of spectral content resulting from 

uncorrected errors was low in all three of these cases. 

(42) 

(43) 

 Electrode 
name 

Mean error (ms2/Hz) Percent total error 

No correction Auto-vetting No correction Auto-vetting 

N
o
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RV4 4.0 4.0 53 % 53 % 

RV6 2.8 2.8 36 % 36 % 

RV10 3.0 3.0 31 % 31 % 
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RV2 219.2 3.5 1459 % 24 % 

RV3 17.4 0.3 116 % 2 % 

RV5 4.3 0.9 15 % 3 % 

RV7 783.8 2.0 11419 % 29 % 

RV8 850.0 1.1 16023 % 21 % 

Table 7:  Quantitative comparison (see equations (42) and (43)) of the distortion of ARI dynamics 
(spectral content) with and without auto-vetting switched on.  Electrode RV2 is the signal used in 

Figure 60 and Figure 61. 



IV. Using Unipolar Electrograms to Measure Dynamics of Electrophysiology 

 

131 

The remaining five rows of Table 7 show that, where the auto-vetting process did reject 

beats, it yielded a more accurate representation of the series‘ spectral content in every case.  The 

mean error in the auto-vetted spectrum never exceeded that presented in Figure 61 (electrode 

RV2).  In contrast, for two cases the uncorrected spectrum yielded mean errors and percent total 

errors that were substantially greater than for the case in Figure 61. 

This study confirms that auto-vetting can be used to substantially reduce the extent to 

which occasional ambiguous T-wave morphologies distort calculations of repolarisation dynamics.  

The approach thus enables the time- and labour-savings of automated recovery time detection 

while minimising the extent to which the dataset needs to be reduced to ensure that subsequent 

dynamic analyses are meaningful. 

 To illustrate a useful application of automated detection of recovery times from UEGs, a 

simple example of repolarisation dynamics is considered.  [Franz et al, 1988] manually analysed 

MAP recordings to show that a step change in the cardiac cycle length causes a step change in APD 

followed by roughly 2-minutes of gradual convergence towards a steady-state value of APD.  This 

behaviour is shown in Figure 62.  Figure 63 illustrates that this ‗rate adaptation‘ behaviour can be 

exposed in measurements of ARIs (activation-recovery intervals) from unipolar electrograms 

(UEGs).  Characterising this behaviour at a single site requires roughly 100 measurements or more 

to be taken.  Hence manual analysis can be very laborious, limiting the size of the data-sets taken on.  

Automatic calculation of ARIs with automatic rejection of unreliable measurements allows this rate 

adaptation to be characterised across multiple sites simultaneously, with only minimal corrections 

from a human reviewer.  The developed algorithm was recently employed by Dr. Alfonso Bueno-

Orovio, Dr. Blanca Rodriguez and colleagues (University of Oxford, Department of Computer 

 

 

Figure 62:  Adapted from [Franz et al, 1988] with permission (by payment).  APD changes in 
response to step changes in the cycle length during artificial pacing of an in vivo human heart.  

APD (measured from MAP recordings) responds with a step change followed by a more gradual 
convergence.  Black arrows indicate the times at which the step change in pacing rate occurs. 
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Science) to expose regional differences in rate adaptation using 20 intracardiac UEGs from 18 

patients.  Such differences are expected to have important implications for the genesis of arrhythmia 

during sudden changes in heart rate.  This study is the first to expose these heterogeneities in in vivo 

human ventricles, which illustrates the importance of enabling the analysis of extensive datasets 

from UEGs.  The work is summarised in a paper accepted for presentation at the The 7th International 

Workshop on Biosignal Interpretation[Bueno-Orovio et al, 2012] and a related paper soon to be submitted to The 

Journal of Physiology. 

 

IV.E.3. Stabilisation of local event times 

 The stabilised measurements of activation and repolarisation time – AS and RS – will 

sometimes differ by a few milliseconds from the conventional indices, which have been verified 

against more accurate measurements of event timings.  However, the dynamics of the stabilised 

measurements can be expected to more faithfully reflect the dynamics in the underlying action 

potential morphologies.  The bottom panel of Figure 64 shows that, when ARIs are calculated using 

these new definitions of activation and recovery time for the same signal as in Figure 57 (page 123), 

the spurious dynamics are attenuated to reveal a clear rate-adaptation profile.  Respiratory 

 
Figure 63:  The behaviour described by in Figure 62 is evoked at the onset of pacing and exposed using 
automated detection of activation-recovery intervals from unipolar electrograms.  The top trace shows 

that the cycle length changes suddenly from its natural value of roughly 1230 ms to the paced cycle 
length (500 ms).  The bottom trace shows that the activation-recovery interval responds with a sudden 

initial change, followed by a more gradual convergence towards a settled value. 
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oscillations in ARI are also revealed.  The nature of these respiratory oscillations is discussed 

extensively in section V.C. 

Another demonstration of the importance of stabilised measurements of activation and 

repolarisation times is presented in Figure 65.  ARIs calculated using the conventional indices show 

bursts of oscillations at a rate faster than the respiratory frequency.  This appears to be an 

 

Figure 64:  Compare with Figure 57.  Top panel – When ARI is calculated from the stabilised 
indices AS and RS, the switching behaviour is eradicated, leaving a clearer impression of the rate 
adaptation profile.  Middle panel – Two consecutive beats in the UEG signal.  The shaded box 

indicates the portion of the signal used to calculate RS, which sits stably near the centre of the T-
wave upstroke.  Bottom panel – Inspection of the signal‟s derivative confirms that the timing of RS 

is stable relative to the broad peak in dV/dt.  RS is the centroid of the shaded region between 
dV/dt and a threshold of 0.5 times the maximum in dV/dt. 
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intermittent manifestation of the phenomenon known as T-wave alternans.  Alternans is typically 

defined as a consistently alternating pattern in electrophysiological behaviour, with a period of twice 

the cycle length.  The presence of T-wave alternans has been shown to frequently precede 

ventricular arrhythmias, and is an effective indicator of increased risk of Sudden Cardiac 

Death[Rosenbaum et al, 1994], [Narayan & Smith, 1999], [Gehi et al, 2005].  Hence it is currently a subject of substantial 

research interest.  Studies in canine[Konta et al, 1990], [Gelzer et al, 2008] and guinea-pig[Pastore et al, 1999] hearts have 

shown that discordant alternans (where spatial heterogeneities exist with respect to the phase at 

which alternans is occurring at any instant) may be particularly potent in triggering arrhythmia.  

Hence the ability to use UEGs to investigate heterogeneous alternans with in situ human hearts 

constitutes an important new tool for researchers. 

Close inspection of the UEG used to produce Figure 65 indicated that the larger 

alternations in the dashed ARI trace arose as a ‗switching‘ behaviour, similar to that shown in Figure 

57.  The regularity of the alternation suggests that the switching is driven by some genuine form of 

alternans, but it is likely that the magnitude of the switching substantially exaggerates the changes in 

APD.  Furthermore, no dramatic change in UEG morphology could be found to coincide with the 

points at which the alternans suddenly emerges and disappears from the ARI measurement.  This 

observation confirms that the sensitivity of conventional ARI measurements to subtle 

electrophysiological dynamics is extremely variable, even within a single recording.  Hence these 

measurements are not appropriate for assessing the magnitude of alternans or the timing of its 

onset.  The solid line in Figure 65 shows that when the stabilised indices AS and RS are used, a 

smooth development of the onset of alternans can be observed.  A team at London‘s Heart Hospital 

(including Dr. Pier Lambiase, Dr. Xiao Jie, Dr. Malcolm Finlay, and Dr. Justine Bhar-Amato) is 

 

Figure 65:  When the conventional (unstabilised) indices of activation and recovery time ( minV  and 

Tup) are used, the sensitivity of the ARI measurement to alternans is extremely inconsistent.  Use of 

the stabilised indices on the same signal reveals that alternans is in fact present throughout this 

section. 
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currently extending the use of these stabilised ARI measurements to real-time investigation of 

alternans, enabling novel research protocols of the kind described in Figure 51, page 111. 

 The preceding examples illustrate the benefits of stabilising the recovery time index.  As 

stated previously, activation time measurements are typically more stable, but Figure 66 presents a 

case in which stabilisation of the activation time is also important.  The ill-defined down-stroke of 

the activation wave gives rise to switching in the index minV .  This behaviour would corrupt the 

dynamics of any ARI measurement calculated using these activation times.  Use of the stabilised 

 

Figure 66:  An example of switching behaviour in the conventional activation time index, minV , 

marked by solid arrows for each beat.  The extent to which this switching corrupts the dynamics of 
the index can be seen by plotting the intervals between the pacing artefact and the index (dashed 
line, bottom panel).  When the stabilised index AS is used (solid line, bottom panel), it is revealed 

that the changes in activation wave morphology are driven by consistent alternans. 
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index, AS, eliminates the erratic switching and reveals a consistent alternans influence on the 

activation wave. 

 

 

IV.F. Summary of acheivements for chapter IV 

 It has been demonstrated in the preceding sections that the developed algorithms enable 

the detection of activation and recovery times from large datasets with minimal human intervention.  

Furthermore, new definitions for the nominal activation and recovery times were shown to stabilise 

the measurements, allowing more meaningful characterisation of the dynamic changes in UEG 

morphology.  These analytic tools enable the use of the UEG as a means of observing 

heterogeneous autonomic input to the heart.  This approach has the potential to yield abundant 

human in situ data because UEGs are already used extensively in routine, minimally invasive 

therapeutic procedures such as ablation therapy.  Such data will be crucial in advancing the present 

understanding of the role played by the ANS in the genesis of fatal arrhythmias.  The individual 

accomplishments that combine to enable this approach can be summarised as follows. 

 

Automatic removal of pacing artefacts with minimal distortion: 

The use of pacing to control heart rate is an important tool in the study of nervous 

modulation of cardiac behaviour because many of the electrophysiological properties of interest are 

dependent on heart rate variations as well as direct ANS input.  Artificial electrical stimulation of the 

myocardium unavoidably imposes a distinct artefact on the UEG, and can corrupt subsequent signal 

processing if not properly accounted for.   

The algorithm described in IV.D.1 identifies pacing artefacts based on their substantial 

high-frequency content.  The method used to remove the artefact avoids conventional filtering 

techniques, instead replacing the artefact with only a short section of heavily low-pass filtered signal.  

Distortion of the surrounding signal is thus minimised to prevent the corruption of subsequent 

signal analyses. 

 

Activation wave recognition: 

 Any beat-by-beat analysis of a cardiac electrical signal requires accurate identification of 

separate beats.  For UEG analysis, this is most easily achieved by recognising activation waves, the 

most distinct regular feature of the signal.  An algorithm was developed to automate this process.  

The decision criteria employed in the algorithm use only general assumptions about the morphology 

of the activation waves, thereby accounting for the wide range of individual morphologies that can 

occur (i.e. positive, negative, and polyphasic activation waves).  The algorithm was tested using a 

challenging set of test recordings, in which persistent arrhythmia gave rise to a variety of abnormal 

activation patterns and, hence, a variety of activation wave morphologies.  The algorithm was found 
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to identify activation waves with at least 98 percent accuracy, except in electrodes that showed 

evidence of inappropriate positioning. 

 

Recovery time recognition: 

 Another algorithm was developed to implement automated recognition of recovery times in 

UEG signals.  Again, this algorithm used only generalised assumptions about signal morphology to 

account for the full spectrum of T-waves configurations that can occur.  Included are criteria to 

identify and exclude cases in which the estimated recovery time is unreliable.  Such occurences are 

inevitable in UEG recordings, so this ‗auto-vetting‘ ability is essential for immediate implementation 

of subsequent calculations.  It was demonstrated that, the frequency content of ARI time-series 

calculated by this algorithm closely match those taken manually, which is not the case when ‗auto-

vetting‘ is not implemented.  Hence this feature is crucial in extending the use of UEG signals to 

real-time measurement of electrophysiological dynamics.  Additionally, the algorithms have been 

formulated to be suitable for real-time implementations, which would enable novel experimental 

procedures based on feedback of dynamic properties, as described in Figure 51 (page 111). 

 

Stabilised indices of activation time and recovery time: 

It was demonstrated that the conventional indices used to identify activation and recovery 

times in UEGs ( minV  and Tup ) are not well suited to the characterisation of electrophysiological 

dynamics; the small errors to which the indices are prone are of similar magnitude to the dynamic 

fluctuations of interest.  For that reason, new stabilised indices of activation and recovery time were 

proposed (AS and RS).  These new indices do not improve the accuracy of the measurement but, by 

construction, they ensure that the errors are consistent from beat to beat, assuming no drastic 

changes in signal morphology occur.  This characteristic prevents distortion of any dynamic 

calculations that are based on the indices. 

 

 

IV.G. Scope for improvement 

 Although the developed tools have been shown to be effective for their intended purpose, 

there are several ways in which they might be improved in future efforts. 

 

Multi-electrode decision making: 

Cases of ambiguous UEG morphology can sometimes be resolved by comparing 

simultaneous deflections across multiple electrodes, as demonstrated in the lowest two panels of 

Figure 58.  Furthermore, the use of bipolar electrograms (constructed as the difference between two 

UEGs) can often be used distinguish local activity from more remote behaviour, at least for 

activation waves.  These approaches are often used during manual identification of activation and 

recovery times, and could conceivably be incorporated into an automated detection algorithm. 
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Fractionated electrograms: 

 As described in section II.E.3, certain situations produce electrograms for which it could be 

misleading to assign only one activation and recovery time to each beat, because the timing of these 

events is temporally distinct for two or more clusters of cells within the field-of-view of the 

exploring electrode.  The developed algorithms do not contain special provisions for dealing with 

fractionated electrograms.  It would be relatively easy to develop a criterion to automatically exclude 

such morphologies – for example, by identifying T-waves containing two or more substantial 

upstrokes separated by a region of reduced dV/dt.  This approach was not adopted in this project 

because, as stated in the justification for the stabilised measurements, the dynamics of changes in 

these event timings were of greater interest than the timings themselves; the stabilised 

measurements typically incorporate all major deflections in fractionated electrograms, so that 

dynamics in the timing of any of those deflections will be captured to some extent, even though the 

nominal event times will not accurately represent any of the individual cell clusters.  

A caveat on this approach is that dynamic changes in the lead field may change the relative 

influence of the different clusters on the UEG morphology.  False dynamics would then be 

introduced to the stabilised measurements as the relative influence shifts between clusters.  In fact, 

this caveat is not specific to fractionated electrograms, nor is it specific to the newly developed, 

stabilised measurements. 

 

Variable specificity in measurements: 

 The preceding discussion of fractionated electrograms highlights the fact that any index of 

activation or recovery time is a simplification of a complex spatiotemporal distribution of activity.  

The steepest slopes in UEG deflections are used as the conventional indices of local behaviour 

because the underlying current sources are changing quickly enough for their influence on the local 

potential field to be distinct at these times.  However, these changes are not instantaneous, and are 

not perfectly synchronised among all cells in a region of myocardium.  As a result, their 

manifestation in the local potential field can sometimes be spread across a relatively long signal 

segment.  The stabilised measurements are designed to provide a more appropriate simplification of 

the spatiotemporal distribution of activity, in the form of a weighted-average of the event time, but 

the activity distribution is still reduced to an instantaneous event.  The confidence that can be 

attributed to this measurement as a meaningful index of underlying behaviour will be greater in 

some cases than in others.  Hence one might consider using the temporal spread of UEG features 

(e.g. the width of the shaded region in Figure 64, page 133) as a complementary measurement, 

indicating the specificity associated with the stabilised event times for each beat.  This additional 

index could then be used to decide whether to include particular signals in further dynamic 

calculations, or to estimate the confidence attributable to the results of those calculations. 
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Further validation needed: 

It should be noted that the described algorithms were developed by a process of gradual 

refinement to maximise performance when evaluated on the available patient data-sets.  These 

recordings contained some natural heart beats, but predominantly consisted of artificially paced 

beats, which can produce abnormal activation patterns.  The morphology of UEGs is dependent on 

electrode positioning and on the spatiotemporal spread of activity.  Hence it is possible that the 

performance of the algorithms will be altered when using different electrode configurations or 

different pacing scenarios.  As mentioned previously, the algorithms are currently in use by a team at 

The Heart Hospital in London; this group has informally reported successful implementation of the 

algorithms in ventricular epicardial electrograms and in atrial intracardiac electrograms.  However, a 

comprehensive and systematic assessment of the algorithms‘ performance across a wide range of 

scenarios has not yet been performed.  Furthermore, the stabilised measurements have yet to be 

validated against a more accurate measure of local electrophysiological behaviour, such as MAP 

recordings, to confirm whether they are more accurate than the conventional indices for measuring 

action potential durations.  Nevertheless, the superiority of the stabilised indices has already been 

demonstrated for cases where an accurate representation of dynamic changes is more important 

than the accuracy of individual measurements. 
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V. Experimental Applications 
Sections III and IV covered methodological considerations and novel methods developed 

for the purpose of inferring the nature of autonomic control of the heart based on ECG and UEG 

recordings.  This section will describe the implementation of these methods in several different 

experiments conducted over the course of this project.  These experiments were all designed to 

explore questions of psychological, psychiatric, or physiological interest.  For this thesis, however, 

the primary concern is the efficacy of the methods and the extent to which they enable novel 

physiological insights to be gained.  The experiments can be divided into three categories, each 

described in a separate section: 

 

- V.A. Can the ECG reveal evidence of emotionally generated asymmetry in autonomic 

outflow to the heart? – A collaboration with psychologists at the University of 

Southampton. 

- V.B. Can HRV analysis be used to expose cardiac effects of transient emotional 

responses? – A collaboration with psychiatrists at the University of Oxford. 

- V.C. Can intracardiac UEG recordings expose autonomic modulation of ventricular 

electrophysiology, driven by respiratory behaviour? – A collaboration with 

cardiologists at St. Thomas‘ Hospital, London. 

 

A key collaborator in all of the experiments mentioned above was Peter Taggart, Professor 

of Cardiac Electrophysiology at The Heart Hospital, London. 

 

 

V.A. Can the ECG reveal evidence of emotionally generated 
asymmetry in autonomic outflow to the heart? 

V.A.1. Objectives 

 A recent study involving 10 cardiology patients[Critchley et al, 2005] found that those subjects who 

presented predominantly right-sided midbrain activity during mental and physical stress challenges 

also presented changes in ECG features that were significantly different from those in other 

subjects.  This observation gives support to the Brain-Heart Laterality (BHL) hypothesis.  However, 

the number of subjects studied was small, as necessitated by the expense and time-requirements of 

brain-scanning studies used to identify subjects with right-sided midbrain activity.  This section 

describes an experiment to test a more practical means of investigating the BHL hypothesis in large 

cohorts.   

As described on page 69, it has been suggested that it may be possible to prove the Brain-

Heart Laterality hypothesis by providing an asymmetric stimulus to the brain.  This stimulus may 

yield a measurable change in ECG parameters that can be explained by the asymmetry of ANS 
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innervation of the heart (Figure 29, page 66).  If so, this approach would provide a useful technique 

for researching the clinical significance of the BHL hypothesis, including the true implications for 

cardiac electrical stability, in large cohorts.  Separate modulation of heart rate and ventricular 

repolarisation properties, dependent on which side the stimulus is presented to, would be one 

example of such a measurable change in ECG parameters.  An objective of particular relevance to 

this thesis was to explore whether the variable QTC, calculated by the methods described in section 

III.B.2, could be used to heart-rate-independent autonomic control of ventricular repolarisation. 

 

V.A.2. Methods 

V.A.2.a. Stimulus 

At the University of Southampton‘s Department of Psychology, Dr. Richard Gramzow 

conducted an experiment to investigate lateralised emotional processing induced by presenting 

images from the International Affective Picture System (IAPS).  IAPS is an image library that has 

been validated as a standardised tool for researchers to induce certain emotional responses[Lang et al, 

1997].   Images were presented in pairs with a neutral image on one side and a distressing (―negative‖) 

image on the other, so that the optic nerves would transmit the images to different sides of the 

visual cortex (see Figure 67).  Each pair of images was displayed for only 170 milliseconds, with 

intervals of 2.3 seconds, so that the subjects did not have time to redirect their gaze.  If the 

asymmetry of the stimulus was retained throughout cerebral processing, and substantially preserved 

in the subsequent ANS activity, one would expect to observe differences in the ECG according to 

which side of the peripheral vision the distressing images were presented on.   

 

Left visual 
field 

Right 
visual field 

Figure 67:  The „wiring‟ of the optic nerve causes visual information from different sides of the 
visual field to be transmitted to different sides of the brain.  Early processing in the lateral 

geniculate nuclei is also carried out separately for the two visual fields.  Anatomy from 
[Deutsch & Deutsch, 1993]. 
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81 pairs of images were presented with random order in two epochs, with a break of 

approximately one minute between them, as shown in V.A.3.a.  The negative image was always 

presented on one side during the first epoch and on the other side during the second epoch.  The 

ordering of the left- and right-sided epochs was determined pseudo-randomly for each of the 54 

subjects tested.  Half the subjects were tested with the negative image on the left for the first epoch, 

while the other half were tested with the negative image on the right first.  This balance ensures that 

in statistical analyses the effects of laterality and of the order in which the two sides were tested 

could be separated. 

 

V.A.2.b. ECG Measurements 

Heart rate and QT interval measurements were probed for statistically significant effects of 

the stimuli.  The length of the recordings (roughly 1000 beats/subject  54 subjects) necessitated 

the use of the automated QRS and QT measurement systems described in Appendix IV and section 

III, respectively.  QTC was also calculated, using the entire recorded ECG to establish the QT-RR 

relationship for each subject.  This proved to be a poor choice of training data, as will be described 

in the discussion section.  However, the time and expense associated with more rigorous 

characterisation of the QT-RR relationship would have defied the purpose of developing a 

convenient means of testing the BHL hypothesis in large cohorts. 

It was hypothesized that QTC intervals might be more sensitive than standard QT intervals 

as an indicator of asymmetric ANS activity.  This hypothesis is based on the observation that heart 

rate is predominantly controlled by the right branch of the ANS and ventricular repolarisation is 

predominantly controlled by the left branch (Figure 29, page 66).  QTC intervals could therefore be 

interpreted as reflecting left-sided ANS activity while controlling for the effects of right-sided 

activity. 

To ensure that QTC calculations are based on an accurate model of the QT-RR relationship, 

a QT-RR training set should be acquired for each subject.  These training data should be 

independent from the experiment recordings, and should cover a large range of values.  Thus in this 

case, the training set should be established over an extended period of changes in body-position 

between supine and standing[Malik et al, 2008]; the resultant changes in blood pressure induce a change in 

heart rate, with little influence from emotional state or, if a tilt-table is used, exertion.  Because the 

potential use of QTC calculations was not considered when the experiments were conducted, no 

 
Figure 68:  Timeline illustrating the protocol used for half the subjects in the Brain-Heart Laterality 

experiments.  For the other half, the left-right order was reversed.  The start time for each image 
series was controlled by the patient and recording automatically by the computer program used to 

present the images. Half of the subjects were tested with the negative (distressing) image on the left 
side for the first series, and half were tested with the negative image on the right side for the first 

series. 
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separate training dataset was acquired.  Instead, the full recordings taken during the experiments and 

the preceding few minutes rest were used for the training set.  The resting period before the start of 

the first image series was considered as an alternative training-set, but this approach was found to 

yield poor correlation between QT and RR, due to the low variability of the RR intervals in this 

period.  

 

V.A.2.c. Collective analysis and statistical comparisons 

 Once the sequences of RR intervals, QT intervals, and QTC intervals had been calculated 

for all subjects, it was necessary to distinguish between changes that occurred in response to the 

stimuli and those that were unrelated.  It was assumed that each subject‘s overall response was a 

superposition of these two components, and that the response-to-stimuli component was similar in 

each subject.  This component was therefore identified by finding the mean time-series across 

subjects for the measurement in question, as follows: 

I. The time-series (RR intervals, QT intervals, or QTC intervals) for each of the 54 subjects 

was normalised to have a mean value of 1 second, then interpolated with cubic splines and 

resampled at 1Hz. 

II. The time axis for each resampled series was aligned so that equivalent events would occur at 

the same time for each subject. 

III. The mean of these new series was then found as the ‗average response‘ for a particular type 

of epoch. 

 

 The averaged-response plots from the brain-heart laterality experiments are shown in 

Figure 69, Figure 70, Figure 71, and Figure 72, comparing the effects of left- and right-side 

presentation of images, and comparing the effects of the first and second epochs, regardless of 

which side images were presented on.  To test the statistical significance of any observed differences 

in these comparisons, Welch‘s t-test was applied to each point in time.  For example, to compare the 

effects of the first and second epochs on QT intervals 10 seconds after the start of the epoch, the 

two datasets used in the t-test were (a) the QT intervals at 10 seconds from the start of the first 

epoch (one value for each subject), and (b) the QT intervals at 10 seconds from the start of the 

second epoch.  Examples of the p-values produced by these tests can be seen plotted against time in 

the lower panels of Figure 69 and Figure 70.  

 

V.A.3. Results 

V.A.3.a. QT intervals 

Figure 69 and Figure 70 show the averaged response to the IAPS image epochs of the 

brain-laterality experiments in terms of QT intervals (found by Berger‘s method), with an 

identifiable response to the protocol.  QT intervals increase by approximately 1.5 percent when the 

images are first displayed, and then gradually return to their previous levels over the next two 

minutes, presumably due to habituation.  The most substantial common response is produced at the 
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end of the epoch, where RR intervals shorten by approximately 2 percent.  Also, QT intervals 

shorten by approximately 1 percent before the start of the images.  These observations suggest that 

the observed fluctuations are more strongly controlled by the change in activity between resting and 

focussing than by the images themselves. 

 The lower panel of Figure 69 reveals that at no point did the differences between left- and 

right-sided presentation of images become statistically significant.  However, the lower panel of 

Figure 70 shows that a significant difference (p<0.05) exists between the first and second epochs 

during much of the first two minutes. 

 

V.A.3.b. RR intervals 

 Figure 71 presents the ‗average response‘ in terms of RR intervals, which follows a similar 

time-course to that of QT intervals.  RR intervals increased by approximately 10 percent when the 

 
Figure 69:  Upper panel – Average response of QT intervals to the IAPS images.  The plot was 

formed by averaging all the epochs in which the negative image was displayed on the left in one 
series (blue), and all the epochs in which the negative image was displayed on the right in the other 
(red).  Lower panel – P-values calculated using Welch‟s t-test, indicating the statistical significance 
of any difference between the „left‟ and „right‟ groups of measurements at each point in time.  The 

dashed line marks the conventional significance threshold, p = 0.05.  At no time does the 
measurement cross fall below this threshold to achieve statistical significance. 
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images are first displayed, then gradually return to their previous levels over the next two minutes 

seconds.  At the end of the epoch, RR intervals shorten by approximately 15 percent.  A 10 percent 

shortening of RR intervals occurs in anticipation of the start of the images.  t-tests were applied in 

the same manner as for QT intervals, but revealed no statistically significant differences associated 

with these plots. 

 

V.A.3.c. QTC intervals 

 Figure 72 shows the averaged time-course of the QTC intervals.  The heart-rate correction 

has eliminated the most prominent deflections seen in Figure 69 and Figure 70.  A period of 

increased variability in QTC appears approximately 60s from the start of the IAPS epoch, 

corresponding approximately with the time at which the RR interval response has returned to its 

baseline.  Again, t-tests revealed no significant differences associated with these plots. 

 
Figure 70:  Same as Figure 69, with the exception that these plots compare the 1st and 2nd IAPS 

epochs for each subject, regardless which side images were presented on.  P-values notably decrease 
for the first two minutes of images, achieving statistical significance (p<0.05) for much of this 

period. 
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V.A.4. Discussion 

V.A.4.a. Summary of observations 

Neither RR intervals nor QT intervals presented any clear differences attributable to the 

presentation-side of the negative images.  The use of an ‗average response‘ to separate the effects of 

the stimuli from unrelated fluctuations was successful in that RR and QT intervals presented clear 

deflections related to experiment events.  The sudden decrease in heart-rate observed at the start of 

each IAPS epoch agrees with the results of previous studies[Winton et al, 1984], [Palomba et al, 1997], [Palomba et al, 

2000].  The observation of a habituation effect in QT intervals, with marginal statistical significance 

(Figure 70), indicates that the psychological effects of the stimuli are indeed manifested in the ECG 

parameters, even though no left-right differences were observed.  Based on the averaged QTC 

response depicted in Figure 72, there appears to be very little heart-rate-independent modulation of 

repolarisation properties during these experiments. 

 

V.A.4.b. Methodological Critique 

Implementation of the heart-rate correction algorithm to calculate QTc demonstrated the 

importance of the choice of training dataset to fully characterise the QT-RR relationship.  The range 

 
Figure 71:  Average response of RR intervals to the IAPS images.  The plot in the top panel was 
formed by averaging all the epochs in which the negative image was displayed on the left in one 
series (blue), and all the epochs in which the negative image was displayed on the right in the 

other (red).  The plot in the lower panel was formed by averaging the first (blue) and second (red) 
IAPS epochs, regardless of which sides the images were presented. 
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of the training sets used in these experiments was limited; heart rate does not vary substantially 

during the resting period, so the most extreme values in each subject‘s training set are determined 

predominantly by the changes that occur in response to the experiment.  Any heart-rate-

independent modulation of repolarisation, simultaneous with the direct influence of heart rate, 

would therefore be incorporated into the QT-RR relationship and eliminated from QTC.  Hence, the 

relatively flat response seen in Figure 72 does not decisively rule out the presence of heart-rate-

independent changes in repolarisation properties.  Nevertheless, the inconvenience that would be 

associated with acquiring a satisfactory, independent QT-RR training set for each subject represents 

a substantial limitation of QTC measurements in general. 

 The lack of a separate training set to establish the QT-RR relationship is not the only 

possible explanation for the fact that no left-right distinction was found in this experiment.  It may 

be that, although asymmetry is preserved in early visual processing, the subsequent emotional 

response involves enough cross-communication between hemispheres of the brain to eliminate that 

asymmetry.  Another possibility is that the duration for which each pair of pictures was displayed 

(170 ms) was too short to induce a substantial emotional response, with clear differentiation 

 
Figure 72:  Average heart-rate corrected repolarisation response to IAPS images, measured as 

QTC. 
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between the negative and neutral images.  Furthermore, it is unlikely that presenting two images 

simultaneously will produce emotional effects similar to when the images are presented singly, 

considering that the subject‘s gaze is not allowed to settle on either picture.   As described in section 

V.B, IAPS images were used again in subsequent experiments, with each image displayed alone for 

five seconds to allow its psychological effect to take hold. 

 

 

V.A.5. Conclusions 

The absence of a statistically significant effect, combined with the uncertainty regarding the 

effectiveness of the stimulus, made it impossible to conclude whether lateralised emotional stimuli 

could reliably give rise to asymmetric ANS activity and associated changes in ECG parameters.  In 

any future exploration of the proposed method, the specific stimulus to be used should first be 

tested for its ability to reliably evoke a lateralised cerebral response using fMRI or PET scans of 

brain activity in a small set of subjects. 

The variable QTC is unlikely to be useful as part of a practical approach to investigating the 

BHL hypothesis using the general population; the need to acquire an extensive training dataset of 

RR and QT intervals for each subject would largely cancel out the benefits of not having to use 

brain-scanning techniques to identify the minority of subjects who naturally lateralise emotional 

processing. 
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V.B. Can HRV analysis with spectral averaging be used to expose 

cardiac effects of transient emotional responses? – ‗The 

Oxford Experiments‘ 

V.B.1. Objectives 

 This section covers a series of experiments conducted in collaboration with researchers 

from the Department of Psychiatry at the University of Oxford.  These experiments all followed a 

similar procedure based on a previous experiment[Phan et al, 2005] that was successful in inducing 

measurable differences in brain activity according to whether the subject voluntarily suppressed or 

‗maintained‘ their natural response to an emotional stimulus.  That stimulus came in the form of 

images from the IAPS collection selected for being highly ―aversive‖.  Examples of the content of 

these images include burn victims, dead animals, and funeral scenes.  For the ‗maintain‘ condition, 

subjects were instructed to attend to and experience naturally (without trying to alter) the emotional 

state elicited by the pictures.  For the ‗suppress‘ condition, they were asked to reduce the negative 

affect from the images using the cognitive strategy of reappraisal.  Each subject was instructed in the 

use of this technique, which involves reinterpreting the images in the context of an imagined 

scenario in which the negative implications are less severe. 

Two of the experiments at Oxford (covered in sections V.B.3 and V.B.4) sought to 

determine whether the procedure used by [Phan et al, 2005] evokes different responses from 

‗normal‘ subjects and from those with psychiatric disorders (in particular, panic disorders and 

neuroticism).  A third experiment (covered in section V.B.5) examined whether treatment with an 

antidepressant drug altered the behaviour of neurotic subjects during this experiment.  ECG 

recordings were gathered in each experiment to examine whether the procedure also induced 

measurable changes in ANS activity, as indicated by heart rate variability (HRV).  Substantial 

habituation to the stimuli was expected to occur in less than a minute, so the stimulus periods were 

limited to 45 seconds or less, shorter than the conventionally recommended minimum for HRV 

analyses.  Hence the question of principal interest for the purposes of this thesis was whether the 

spectral averaging method proposed in III.B.1 could provide a useful indication of the short-lived 

autonomic response to the emotional stimuli.   

Although measurements of cardiac autonomic effects are the primary concern, the results 

presented in the following sections include measurements of other effects (brain activity and self-

reported emotion) because they help to characterise the overall physiological response to the stimuli.  

HRV results can be more richly interpreted and assessed when the broader physiological context is 

taken into account. 

 

V.B.2.  Methods 

 The general protocol followed in all of these experiments is illustrated in Figure 73.  

Variations specific to each experiment are presented separately in the sections that follow, as are the 

results.  Section V.B.6 then covers the discussion of all the results collectively.   



V. Experimental Applications 

 

150 

V.B.2.a. Experiment protocol 

The experimental procedure was: 

- 30 seconds of fixation on a crosshair on-screen to establish a baseline physiological state. 

- 4 seconds of on-screen instructions, telling the subject whether they are to suppress or 

maintain their emotional reaction to the subsequent picture block. 

- 30 seconds of pictures (5 pictures displayed for 5 seconds each, with 1 second between). 

- 4 seconds in which the subject is to indicate their self-assessment of their emotional 

response on a scale from 1 to 4 (neutral to most negative). 

- Repeat the above procedure until it has been carried out eight times, alternating between 

‗suppress‘ and ‗maintain‘ for the picture block.  Successive patients alternated as to whether 

the first instruction was to maintain or suppress, in order to avoid inducing a bias related to 

the order in which the tasks were executed. 

 

V.B.2.b. ECG analysis 

The automated QRS-detection procedure described in Appendix IV was implemented to 

examine the experiments‘ effects on heart rate and heart rate variability (HRV).  These 

measurements were analysed separately for each of the crosshair-fixation and image-display blocks.  

 
Figure 73:  A graphical presentation of the IAPS protocol used in the emotion 

regulation experiments, with time running from top-left to bottom-right. 
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After differentiating as to whether each of these blocks corresponded to a ‗suppress‘ or ‗maintain‘ 

instruction, the blocks fell into four categories: ‗suppress‘, ‗maintain‘, ‗fixation before suppress‘, and 

‗fixation before maintain‘.  Each recording contained 4 instances from each category.   

Because the length of these blocks is shorter than the recommended 2-minute minimum 

for HRV analysis[TFESCNASPE, 1996],  the ‗spectral averaging‘ technique was used, as justified in section 

III.B.1;  the mean of the spectra from the 4 instances within a particular category was calculated to 

provide HRV measurements.  The spectra were calculated from auto-regressive (AR) models, as per 

section II.G.2.  The AR models themselves were fitted after resampling the signal in each block to a 

length of L=128 points using cubic-spline interpolation, to reduce quantisation errors.   

Statistical analyses of these measurements were performed using ANOVAs (Analyses of 

Variance) and Welch‘s t-test[Bain & Engelhardt, 2000] to examine whether any changes in a measurement – 

for example, the difference between HF power during ‗suppress‘ and ‗maintain‘ blocks – were 

statistically significant across the cohort or within a particular cohort.  

 

 

V.B.3.  First experiment – comparing panic sufferers with a control group 

V.B.3.a. Methods 

 19 panic sufferers and 18 subjects from the general population were recruited for this 

experiment, conducted by Dr. Andrea Reinecke at the University of Oxford.  The protocol in Figure 

73 was used while subjects lay supine in an MRI scanner, so that fMRI could be used to monitor the 

experiment‘s effects in terms of localised brain activity.  The distortion of the ECG signal by the 

MRI scanner necessitated the use of the segment-mean signal processing technique, described in 

section III.A.  One of the panic sufferers was excluded from the experiment when the MRI scan 

revealed a brain tumour.  Also, 6 subjects were excluded from ECG analysis because the electrodes 

did not remain attached throughout the procedure, and another 5 were excluded because QRS 

complexes could not be reliably identified.  The remaining cohort subjected to full analysis consisted 

of 13 panic patients and 12 controls. 

  

V.B.3.b. Results 

Psychiatric questionnaires and subjective affect ratings: 

 A series of questionnaire-based psychiatric tests confirmed that the two groups were 

psychologically distinct from one another.  As shown in Figure 74, the subjective affect ratings given 

by the subjects after each image block show a significant difference according to whether they were 

asked to ‗suppress‘ or ‗maintain‘ their response, in that more negative emotions were evoked during 

the maintain blocks.  No clear difference was found between the panic and control groups.  The 

subjectivity of these ratings must be acknowledged as a caveat on their interpretation. 
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Brain activity: 

 A more objective measure of the brain‘s response comes in the form of the fMRI data.  

These were processed by Dr. Andrea Reinecke, but are summarised here to allow comparison with 

HRV results.  These showed a significant difference between the ‗suppress‘ and ‗maintain‘ blocks in 

line with what one might expect, given the nature of the task.  Suppressing, compared with 

maintaining, was found to be associated with increased activity in brain areas associated with 

strategic processes, self-awareness, and conscious modulation of attention and emotions 

(Brodmann area 10, p<0.05; superior frontal gyrus, p<0.01).  Suppression also presented reduced 

activity in areas associated with subconscious emotional processing (thalamus/hippocampus, 

p=0.001; insular cortex, p<0.001; precuneus, p<0.001).   

A significant distinction between the two groups in terms of the difference between the 

‗suppress‘ and ‗maintain‘ responses was found in the right amygdala (p<0.05).  This region is 

associated with emotional processing and activation of the sympathetic nervous system.  In the 

panic group, the right amygdala was much more active while maintaining than while suppressing, 

whereas in the control group the activity in this region was similar for both tasks.  

 

HRV analysis: 

For the purposes of this thesis, the results of greatest interest from this experiment are the 

incidences in which the HRV variables were successful in exposing a statistically significant 

difference between two experiment conditions.  To explore the specific nature of HRV parameters 

calculated with the use of spectral averaging, section V.C.4 compares the different variables in 

terms of their ability to expose experiment effects.  The significant differences exposed in this 

particular experiment can be summarised as follows: 

 

 
Figure 74:  Average subjective affect ratings after each of the image blocks, with error bars 

representing the standard errors.  A significant difference exists between the „maintain‟ and 
„suppress‟ conditions, but not between the two groups.  Subjective affect ratings collected and 

compiled by Dr. Andrea Reinecke. 
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- LF, HFn, LFn, and LF/HF showed that the subjects‘ HRV response to the image blocks 

was distinct from their response to the crosshair-fixation blocks. 

- HFn and LFn exposed a difference between the ‗maintain‘ and ‗suppress‘ conditions in 

panic sufferers. 

- HFn, LFn, and LF/HF exposed a distinction between the panic and control groups in 

terms of how their response to the ‗maintain‘ condition differed from their response to the 

‗suppress‘ condition. 

 

Table 8 summarises the results of the HRV analysis in terms of the p-values associated 

with any differences between experiment conditions.  Statistically significant differences (p≤0.05) 

are shown in bold.  These and any near-significant differences (p≤0.12) are accompanied by a ‗+‘ or 

‗–‘ indicating the sense of the difference.  For example, it can be seen from the first cell of the LF 

column that, across all subjects, the average LF power was significantly lower while images were 

displayed than during crosshair-fixation.  The normalised indices, LFn and HFn, were also found to 

discriminate between the image and fixation blocks with strong statistical significance, as was the 

ratio LF/HF, albeit to a lesser extent.  HF power discriminated with only marginal significance.  

Considering all of the results in the first row together, it appears that spectral power tends to 

decrease across the frequency range of interest (LF and HF) when the images are presented, but 

normalisation exposes a relative increase in the HF band (HFn).  This shift in relative magnitude 

between the LF and HF peaks is also manifested in the decrease in the LF/HF ratio during the 

image blocks. 

p-values for the VLF power are also presented in Table 8.  Although this frequency range 

is not indicative of autonomic activity, it is an important consideration in this case since the spectra 

Statistical significance of differences in HRV parameters 

Comparison 

VLF 
(0-0.04 

Hz) 

LF 
(0.04-

0.15 Hz) 

HF 
(0.15-
0.4 Hz) 

LFn HFn LF/HF 

Fixation vs. Images, full 
cohort: 

0.45 0.001 - 0.075 - <0.001 - 0.001 + 0.025 - 

M
ai

n
ta

in
 

vs
. 

Su
p

p
re

ss
 

Panic group: 0.99 0.65 0.31 0.039 - 0.044 + 0.091 - 

Control group: 0.52 0.31 0.63 0.099 + 0.11 - 0.22 

P
an

ic
 v

s.
 

C
o

n
tr

o
l 

(Maintain) minus 
(Suppress): 

0.62 0.31 0.28 0.008 - 0.011 + 0.036 - 

(Fix. before Maint.)  
Minus 
(Fix. before Supp.): 

0.08 - 0.24 0.19 0.12 - 0.09 + 0.32 

Table 8:  A summary of p-values found using Welch‟s t-test to describe the distinction between 
various experiment conditions in terms of six HRV based measurements. Statistically significant 
differences (p≤0.05) are shown in bold.  These and any near-significant differences (p≤0.12) are 

accompanied by a „+‟ or „-‟ indicating the sense of the difference.  For example, a „+‟ indicates that 
the mean measurement was greater for the condition named after “vs.” 
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were calculated from very short signals.  The spectra can be expected to be less stable at lower 

frequencies, for which fewer cycles were captured.  More leakage between frequencies can occur at 

this end of the spectrum, and a measured variation in LF power might in fact be explained by VLF 

oscillations that have leaked into the LF range.  Such behaviour can be ruled out when there is no 

significant variation in the VLF power itself, as is the case for all but one of the VLF comparisons 

in Table 8. 

When comparing the effects of maintaining and suppressing, only the normalised variables 

capture a statistically significant difference, and only for the panic group (second row in Table 8), 

although a near significant difference in the opposite sense is found for the control group. 

A group effect can be found by subtracting the measurement for the ‗suppress‘ blocks 

from that for the ‗maintain‘ blocks.  As shown in the penultimate row of Table 8, this approach 

exposes a significant difference between the two groups in the variables LFn, HFn, and LF/HF.  All 

of these variables indicate that, for panic sufferers compared with controls, the difference between 

‗suppress‘ and ‗maintain‘ is more of a shift towards sympathetic dominance over parasympathetic 

activity in the ‗maintain‘ blocks.  As shown in Figure 75, the balance shifts in the opposite sense for 

 
Figure 75:  Mean values of LF/HF, with error bars representing the standard error of 

the samples.  The two groups show opposite tendencies in the difference between 
maintaining and suppressing.  Taken individually, this tendency is only significant 

for the panic group (p=0.044), but the difference between the two groups‟ tendencies 
is more significant (p=0.036).  Graph compiled by Dr. Andrea Reinecke. 
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the control group.  Curiously, applying a similar approach to the crosshair-fixation blocks (last row 

in Table 8) reveals a near significant group difference in LFn and HFn that is of the same sense as 

the effect in the image blocks.  If this effect is genuine it must be caused either by anticipation of 

the coming block or by a residual/recovery from the preceding image block. 

 A caveat to be noted when interpreting these p-values is that, when many separate t-tests 

are applied, it becomes likely that in some cases the null hypothesis will be wrongly rejected.  For 

example, out of 100 independent t-tests that all yield p=0.05, one can expect the null hypothesis to 

be true in roughly 5 of these comparisons, even though their p-values suggest statistical 

significance. 

The results presented in this section are discussed fully in section V.B.6 in combination 

with the results of two related experiments, which are presented in the intervening sections. 

 

 

V.B.4.  Second experiment – comparing subjects with different levels of 
neuroticism 

V.B.4.a. Methods 

Neuroticism is a personality trait associated with ―a maladaptive emotion regulation and… 

alterations in ANS function‖[Di Simplicio et al, 2011].  This experiment, conducted in collaboration with Dr. 

Martina Di Simplicio at the University of Oxford, involved 30 subjects from the general population, 

selected for having particularly low or high neuroticism (scores of ≤6 or ≥16) according to the 

Eysenck Personality Questionnaire[Eysenck & Eysenck, 1975]; 10 subjects fell into the high neuroticism 

group.  The protocol was as described in Figure 73, this time without concurrent MRI scanning.  An 

additional 1-minute ‗resting‘ ECG recording was gathered while the subjects sat still in front of the 

computer before the start of the task. 

 

V.B.4.b. Results 

Subjective affect ratings: 

 As in the previous experiments, the subjective affective ratings were consistently higher 

during the ‗maintain‘ blocks than during the ‗suppress‘ blocks (p<0.001), while no significant 

distinction existed between the groups when comparing the ‗maintain‘ and ‗suppress‘ affect ratings 

(p=0.5). 

 

HRV analysis: 

 After HRV parameters were calculated for all subjects, these values were provided to Dr. Di 

Simplicio, who carried out statistical analyses using repeated-measures ANOVAs.  A summary of 

the most salient results is presented in the following paragraph, allowing the ‗spectral averaging‘ 

technique to be assessed in terms of the HRV variables‘ abilities to discern effects of the stimulus. 
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No differences between the two groups were found in the ‗resting‘ portion of the ECG.  

However, these ‗resting‘ measurements proved useful in controlling for the effect of individual 

differences in HRV.  Table 9 summarises the p-values produced from an ANOVA applied to 

various HRV parameters to expose any significant differences between the two groups of subjects, 

with ‗resting‘ values of each parameter entered as covariates.  The first row examines the statistical 

significance of any group effect (difference between high- and low-neurotic subjects) across all 

image blocks.  The second row examines the distinction between the groups in terms of how each 

subject‘s response to the ‗Maintain‘ task differs from their response to the ‗Suppress‘ task.  Such 

effects are referred to as a ‗task x group interaction‘.  Note that the only statistically significant effect 

revealed by this ANOVA is the task x group interaction found using the variable HF.  When the 

same analysis was run without using ‗resting‘ HRV parameters as covariates, the HF task x group 

interaction was only marginally significant (p=0.05), which demonstrates the effectiveness of 

controlling for individual differences.   

 As a supplement to the above-mentioned analyses carried out by Dr. Di Simplicio, 

individual t-tests were applied to explore the HF task x group interaction in greater detail.  The HF 

variable revealed a significant effect among low neurotics, with higher values for the ‗Suppress‘ task 

than ‗Maintain‘ (p=0.027).  An opposite tendency was indicated in high neurotics, but without 

statistical significance (p=0.155) (see Figure 76).  It should be noted that the normalised HRV 

variables have not revealed any significant differences between subjects with high neuroticism and 

Statistical significance of differences in HRV parameters 

Comparison LF HF LFn HFn LF/HF 

Group 0.99 0.67 0.20 0.35 0.20 

Task x Group 0.14 0.016 0.62 0.54 0.48 
Table 9:  p-values from a repeated measures ANOVA to expose group effects and interactions 

between group and task („Maintain‟ vs. „Suppress‟).  Resting values of each HRV variable were used 
as covariates in the ANOVA to control for their effect. 

 
Figure 76:  In low-neurotics, the power in the HF band of the HRV spectrum was found to be higher 

when suppressing one‟s emotional response to an aversive stimulus.  In high-neurotics, a non-
significant tendency of the opposite sign was found. 

p = 0.027 
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those with low neuroticism, whereas in the previous experiment these were the most discriminative 

of the variables tested. 

 

 

V.B.5.  Third experiment – comparing  the effects of an antidepressant and a 
placebo in subjects with high neuroticism 

V.B.5.a. Methods 

 After the previous experiment revealed a significant difference between subjects with high 

levels of neuroticism and those with low levels, a follow-up experiment was designed to examine 

whether this characteristic was responsive to pharmaceutical intervention.  Forty-two subjects with 

high levels of neuroticism (scores of ≥16 on the Eysenck Personality Questionnaire) were recruited 

from the general population.  At the screening session, a five minute ‗resting‘ ECG was recorded 

while the subjects lay supine in a quiet environment.  Over seven days, each subject took a course of 

either a placebo or citalopram, which is one of a class of antidepressants known as selective 

serotonin reuptake inhibitors (SSRIs).  At the end of the seven days, each subject underwent the 

emotion regulation procedure used in the previous experiments, with the modifications described 

below: 

 

- The previous experiments exposed no significant difference between groups in terms of 

subjective affect ratings, even though objective measures (fMRI and HRV) did expose 

group differences.  It was hypothesised that a difference in subjective affect ratings might 

be achieved with a stronger stimulus.  Hence the IAPS pictures used for this experiment 

were selected for having more intense content, as measured by the rating system that is 

incorporated into the IAPS database. 

- As in the second experiment, a 1-minute ‗resting‘ ECG was recorded immediately before 

the start of the experiment to expose individual differences in HRV and to allow these 

differences to be accounted for in the statistical analyses. 

- To prevent the orienting response described in section III.B.1 from corrupting HRV 

analysis, the length of the image and crosshair-fixation blocks was extended to 45 seconds, 

so that a signal of at least 30 seconds could be extracted after the orienting response 

subsided.  Upon later inspection of the signals, it was determined that it would be sufficient 

to exclude the first 10 seconds of each leaving a 35-second section for HRV analysis. 

- As mentioned in section III.B.1, the orienting response itself can be treated as an additional 

measurable ECG parameter.  The indices used to describe the orienting response in this 

experiment were the minimum heart rate in the first 2 seconds after stimulus onset (HRmin) 

and the maximum heart rate in the next 2 seconds (HRmax), as proposed by [Hodes et al, 

1985].  The mean heart rate from the 15 seconds preceding the stimulus onset was 

subtracted from these values to control for long-term fluctuations in heart rate. 

 

7 subjects were excluded from HRV analysis on the basis of the quality of their ECG 

recordings.  Another 3 were excluded as outliers in terms of the primary variable of interest, HF, 
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because they were found to have resting values that differed by more than three standard deviations 

from the group mean.  The remaining cohort consisted of 33 subjects.  Of these 17 were given 

placebo and 16 were given SSRI.  Each group contained of 9 male subjects. 

 

V.B.5.b. Results 

As in the previous experiment, statistical analyses of the HRV parameters and other 

variables were carried out by Dr. Di Simplicio using repeated-measures ANOVAs, and a summary 

of the most relevant results is presented in the following paragraphs to enable a comparison of the 

performances of the HRV variables. 

No significant difference was found between the subjects given placebo and those given the 

antidepressant in terms of the subjective affect ratings or resting HRV parameters.   

Table 10 presents the p-values produced by an ANOVA used to expose any differences in 

resting HRV between the initial screening session and the 1-minute recording that immediately 

preceded the emotion-regulation protocol to see if the drugs affected baseline HRV.  HF, HFn, and 

LF/HF exposed significant differences between the two recordings (across all subjects).  These 

effects should be interpreted with caution, because the subjects‘ posture changed from supine in the 

screening session to sitting upright in the pre-task recording.  This change can be expected to 

produce an increase in LF power and a decrease in HF power[TFESCNASPE, 1996].  The HFn and LF/HF 

changes described in the first row of Table 10 are in agreement with these expectations, but the 

increase in HF cannot be explained by the change in posture.  No significant time x group 

interaction was found for any of the variables, so the increase in HF is presumably caused by other 

environmental factors, perhaps related to anticipation of the imminent task. 

Significance of differences between screening and pre-task recording 

Comparison LF HF LFn HFn LF/HF 

Time (screening vs. 

pre-task recording) 
0.20 0.009 + 0.12 < 0.001 - 0.001 + 

Time x Group 0.82 0.69 0.67 0.50 0.85 
Table 10:  p-values from a repeated measures ANOVA examining the differences in „resting‟ HRV 

between the initial screening and the pre-task ECG recording (after the seven day course of SSRI or 
placebo).  In the first row, a „+‟ or „-‟ indicates the sign of the difference.  For example, a „+‟ 

indicates that the mean measurement was greater for the condition to the right of “vs.”. 

Significance of differences between ‘maintain’ and ‘suppress’ conditions 

Comparison LF HF LFn HFn LF/HF 

Task 

(Maintain vs. Suppress) 
0.52 0.72 0.059 + 0.018 - 0.091 + 

Task × Group 0.18 0.043 0.85 0.96 0.44 
Table 11:  p-values from a repeated measures ANOVA examining the differences in HRV between 
the „maintain‟ and „suppress‟ image blocks.  Pre-task „resting‟ values of the HRV parameters were 

entered as covariates to control for individual differences. 
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 Table 11 presents the p-values from another ANOVA, examining the differences between 

responses to the ‗maintain‘ and ‗suppress‘ image blocks.  The variable HFn was found to be 

significantly lower during suppression blocks than during maintain blocks, while LFn and LF/HF 

showed a near significant tendency to be higher during suppression.  A statistically significant group 

× task interaction was found for the HF variable.  This effect is presented in Figure 77.  Subjects 

given a placebo showed a tendency to have higher values of HF in suppress than maintain, while 

drug takers presented an opposite tendency.  Although neither tendency itself is statistically 

significant, the difference between them is. 

 The significance of this group × task interaction was found to improve when controlling 

for gender differences; entering gender as a covariate in the ANOVA yielded p=0.03 for the HF 

group × task interaction.  The role of gender is explored in greater detail in Figure 78, which shows 

that this effect is rooted in the fact that females given placebo present significantly higher HF when 

 
Figure 77:  A significant group × task interaction was found in HF.  Although neither within-group 

difference is statistically significant (p-values shown from t-tests), the difference between these 
tendencies is significant (p=0.043). 

 

 
Figure 78:  Gender differences in HF during the image blocks.  The drug SSRI appears to reduce 
HF when suppressing, relative to when maintaining (p=0.043).  This effect is most significant in 

women. 
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suppressing.  Men in this group present no such difference.  The antidepressant appears to reduce 

the HF power when suppressing compared to when maintaining, as seen in Figure 77.  In Figure 78, 

this effect can be seen in both men and women, but it is much more significant in women.  The 

gender differences in the drug‘s effects might be attributable to overall gender differences; a 

significant gender x task interaction was found (p=0.028), in that women presented significantly 

higher HF when suppressing than when maintaining, but men did not.  Furthermore, one of the 

questionnaire-based psychiatric tests (the Emotion Regulation Questionnaire[Gross & John, 2003]) revealed 

that the women were more disposed towards the use of reappraisal strategies to regulate their 

emotional responses in daily life (p=0.045). 

 Table 12 presents the results of a statistical analysis of the subjects orienting responses to 

the image blocks.  HRmin, the minimum heart-rate in the window 0-2 seconds after the start of the 

picture block, did not expose any significant effects.  HRmax, the maximum heart rate from the 

subsequent 2-second window, exposed a task x group interaction; in the placebo group, HRmax was 

significantly higher when maintaining than when suppressing.  No such distinction emerged in the 

antidepressant group.  This result might be seen as being in agreement with those presented in the 

previous paragraph, in the sense that the antidepressant appears to abolish the difference in 

autonomic response between suppressing and maintaining emotions. 

 

 

V.B.6.  Discussion 

V.B.6.a. Methodological evaluation 

 A question of primary concern for this thesis is ‗Did the HRV parameters, calculated using 

the spectral averaging method outlined in section III.B.1, provide meaningful indices of the 

autonomic response to the experiment?‘  Statistically significant differences in HRV parameters were 

found between psychologically distinct groups, and as an effect of pharmaceutical intervention.  

However, one cannot immediately assume that these results represent effects on the autonomic 

response. 

 

Can the observed effects in LF and HF be explained as artefacts of VLF effects?: 

As illustrated in Figure 42 (page 90), occasional large peaks centred in the VLF band 

appeared, and the power from these peaks leaked into the LF band and, to a lesser extent, the HF 

band.  This contribution to the LF and HF bands can be assumed to be unrelated to the ANS 

mechanisms ordinarily associated with these frequencies.  It was therefore necessary to ascertain 

whether this ‗leakage‘ from the VLF band might account for the statistically significant responses in 

other HRV parameters. 

p-values, orienting response 

Comparison HRmin HRmax 

Task (Maintain vs. Suppress) 0.67 0.718 

Task x Group 0.31 0.018 
Table 12:  p-values from ANOVAs used to expose statistically significant effects in the orienting 

response. 
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Figure 79 explores this question using as an example the results of the second neuroticism 

experiment, in which a significant Group × Task interaction was found for HF.  Figure 79.A. shows 

that, during the experiment (all image and fixation blocks), LF and HF both presented a positive 

correlation with VLF.  One might expect such a relationship to be induced by leakage from large 

VLF peaks, which would be exacerbated by the use of excessively short recordings.  However, a 

 
Figure 79:  Correlations between VLF and the two basic indices of autonomic activity, LF and 
HF.  Although positive correlations exist, they cannot be wholly explained by low-frequency 

leakage due to the use of short signals; the correlations still exist when longer recordings are used. 
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similar correlation was observed in the 5-minute recordings from the screening session, as shown in 

Figure 79.B.  Hence the relationship cannot be wholly explained as an artefact from the use of short 

signals.  Still, the fact that a much more positive correlation appears in the LF-VLF relationship 

than in the HF-VLF relationship when short signals are used (Figure 79.A) suggests that leakage 

does indeed play a significant role, since leakage from VLF into the adjacent LF bandwidth will be 

more substantial than leakage into the HF bandwidth.  As suspected, the meaningfulness of the 

variable LF declines more substantially than that of HF when spectra are calculated from signals 

shorter than the recommended 2 minutes, due to VLF oscillations contributing more significantly to 

the LF values. 

Taken alone, this insight does not answer the question of whether the statistically significant 

results from the Oxford experiments are meaningful.  The veracity of individual results presented in 

the preceding sections must be explored on an individual basis.   

In the experiments with neurotic subjects, the most important results came from the 

variable HF (see Table 9, Table 10, Table 11; pages 156 and 158), which has been shown to be less 

susceptible than the variable LF to VLF leakage.  The notion that these HF results might in fact be 

driven by leakage from VLF changes is contested by the fact that they were not accompanied by 

statistically significant results in the intervening LF band.  If VLF leakage was responsible for the 

effect, one would expect its influence to be more pronounced in the LF band. 

In the experiment comparing panic-attack sufferers with control subjects, differences 

between the two groups were found in the variables LFn, HFn, and LF/HF.  These variables are all 

sensitive to changes across both LF and HF frequencies.  The absence of any significant effect in 

the VLF band implies that these results cannot be attributed to leakage from outside the LF-HF 

frequency range.  The fact that these variables presented significant results where LF and HF did 

not suggests that the salient difference in HF between groups was accompanied by an opposite 

change in LF. 

 

Did the non-stationary orienting response corrupt LF and HF results? 

An important limitation in the first two Oxford experiments is that the signals used for 

HRV analysis did not exclude the orienting response.  In the third experiment, changes in the 

variable HRmax indicated that neurotic subjects (on placebo) experience a more substantial short-

lived acceleration in heart rate when maintaining than when suppressing their emotional response.   

If a similar tendency occurred in the first two experiments, it is likely to have induced a bias 

towards increased measurements in the LF and/or HF band for the ‗maintain‘ condition, since the 

time-scale on which the orienting response occurs is roughly matched to these frequency ranges.  As 

explained in the previous section, the results of the experiment with panic sufferers indicate 

opposite changes in the LF and HF bands, so these changes are unlikely to be caused purely by a 

bias induced by the orienting response.  In the experiment comparing subjects with high and low 

neuroticism, high neurotics did present a non-significant tendency towards increased HF while 

maintaining, but low neurotics presented a significant tendency in the opposite sense.  This result 

could only be explained as a bias from the orienting response if the task dependency of HRmax is 
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opposite in low-neurotics to that in high-neurotics, a possibility which may be explored in future 

analysis.   

In the experiment examining the effects of SSRI antidepressants, longer task blocks were 

used so that the first 10 seconds of each block could be excluded from HRV analysis, thereby 

avoiding the introduction of bias from the orienting response.  In this case, HF still proved to be 

sensitive to changes in heart rate variability related to emotional processing.  However, the change in 

HF between suppressing and maintaining for high-neurotics was very different in the third 

experiment (Figure 78) compared with the second (Figure 76).  This discrepancy may be caused by 

corruption from the orienting response or by a genuine change in the HF spectral content, perhaps 

due to the use of a more intense set of images in the third experiment. 

 

Comparing the performances of different HRV parameters: 

The first of the Oxford experiments revealed significant differences between panic-attack 

sufferers and controls in three variables:  LFn, HFn, and LF/HF.  Of these, LF/HF has arguably the 

most straightforward interpretation.  As described in section II.G.2, it can be interpreted as a 

reflection of the balance between sympathetic and parasympathetic outflow to the heart.  In section 

III.B.1.c, it was shown that LFn and HFn can also be interpreted as measures of sympathetic-

parasympathetic balance, with mathematical properties that differ substantially from those of 

LF/HF.   

The variable that most often exposed a statistically significant effect was HFn.  This might 

be explained by the fact that HFn is more sensitive to changes that occur when LF is small.  It was 

noted in section III.B.1.b that the application of HRV analysis to ECG recordings shorter than one 

minute can be expected to yield highly variable estimations of power at low frequencies.  Figure 43 

(page 93) shows that the magnitude of LFHFn   is much greater for smaller values of LF, and 

HFHFn   is greater for smaller values of LF as long as LF>HF, which is usually the case[Bigger et 

al, 1995].  As explained in the previous section, LF measurements in these experiments were often 

corrupted by ‗leakage‘ from large peaks in the VLF range.  The normalised variables may have given 

better statistical significance than LF/HF by being less sensitive to cases with spuriously large LF 

values, where VLF leakage will act as a source of noise.  In contrast, the sensitivity of LF/HF to 

changes in the HF band increases monotonically as LF increases (Figure 44, lower panel), so that 

the measure is more sensitive to the cases with greater low-frequency corruption.  the sensitivity of 

LF/HF to changes in the LF band does not vary with LF (upper panel). 

To summarise, the apparent effectiveness of HFn in distinguishing experiment effects is 

likely to be caused by its selectivity; during statistical calculations, this variable effectively gives 

greater weighting to cases where LF is small (and where, implicitly, the corrupting effect of using 

short-time recordings is lower).  In these experiments, that characteristic was useful in that it 

exposed statistically significant effects on sympathetic-parasympathetic balance that were not 

detected by LF/HF.  However, because HFn introduces uneven weighting to the statistical 

calculations, it is possible that the effect is confined to a subset of patients (those who were given 

greater weighting). 
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V.B.6.b. Physiological insights  

Comparing panic sufferers and control subjects: 

The results in LFn, HFn, and LF/HF from the first Oxford experiment indicate that the 

autonomic balance in panic sufferers, when suppressing one‘s emotional response, is similar to that 

of ‗normal‘ subjects.  When maintaining their response, however, panic sufferers present a 

significant shift towards sympathetic dominance, whereas controls do not (Figure 75).  This 

phenomenon might be expected from the general nature of panic disorders, in that the swing 

towards sympathetic dominance could be interpreted as an exaggerated defence response.   

This result has three important implications.  Firstly, it demonstrates that HRV can serve as 

a useful objective measure of a subject‘s response to psychological stimuli of this nature, revealing 

significant differences between groups while self-reported subjective measures (affect ratings) did 

not.  Secondly, it provides evidence of psychosomatic consequences of panic disorders.  As 

summarised by [Hemingway et al, 2001], numerous studies have found a link between panic disorder 

and the occurrence of sudden cardiac death (SCD).  This new evidence suggests a mechanism by 

which such deaths occur.  Increased sympathetic dominance in response to a threat allows increased 

cardiac output at the expense of electrophysiological stability.  When such a response is generated 

more frequently than necessary, there are more chances for a fatal arrhythmia to develop.  A third 

important implication of the findings is that they point to a treatment method; the fact that group 

differences in autonomic behaviour were abolished during strategic suppression of the emotional 

response suggests that psychiatric coaching would be useful in attenuating the cardiac risks 

associated with panic disorders. 

Substantial overlap occurs between the HRV parameters of the panic and control groups, 

so psychiatric tests alone would not be useful in any hypothetical screening for vulnerability to SCD.  

However, it may be that the statistical differences are driven by a few ‗extreme responders‘ who are 

also particularly vulnerable to SCD.  That possibility might be explored in future by running tests 

similar to this experiment in combination with long-term tracking of patient outcomes, in order to 

expose any correlation between the subjects‘ response to the experiment and the incidence of SCD.  

If these ‗extreme responders‘ do present increased vulnerability, a similar procedure might be used 

to screen for this risk among panic patients to improve the assessment of treatment priorities.   

 

Neuroticism and pharmaceutical intervention: 

In the second Oxford experiment, a distinction between subjects with high and low 

neuroticism was found in that low neurotics showed a more distinct difference in HF according to 

whether they suppressed or maintained their emotional response to the images, with higher HF 

during suppression.  The physiological insights from this experiment are described in a recently 

published paper[Di Simplicio et al, 2011].  As described in the previous section, it cannot be confirmed 

whether the HRV results of this experiment were corrupted by changes in the orienting response.  

However, the third Oxford experiment used an improved measurement to exclude the effects of the 

orienting response.  In this experiment, it was found that the administration of SSRI 

(antidepressant) reduced HF power when neurotic subjects attempt to suppress their emotional 

response.  If HF is taken as a measure of the mean level of parasympathetic outflow to the heart, 
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the effect of the drug can be interpreted as a reduction of the subject‘s ability to consciously 

suppress the defence response and the associated decline in cardiac stability. 

 

V.B.7.  Conclusions 

The fact that statistically significant results were discovered in all three of the Oxford 

experiments indicates that spectral averaging, the modified approach to HRV analysis proposed in 

section III.B.1, does indeed yield useful, objective measures of cardiac regulation related to 

psychological activity.  In particular, the method has revealed psychosomatic differences between 

psychologically distinct groups, as well as changes in psychosomatic behaviour caused by 

pharmaceutical intervention.  In general, this approach extends the applicability of HRV analysis by 

allowing the characterisation of responses that are attenuated by habituation on a time-scale shorter 

than the normal recommended 2-minute minimum signal length.  The spectra produced showed 

instability and leakage among low frequencies, which may explain why statistically significant group 

differences were not discovered in the variable LF.  However the unique properties of the 

normalised measurements, LFn and HFn, exposed significant changes in autonomic balance that 

were not captured by the other HRV parameters.  These benefits can be expected in any experiment 

employing short-time recordings. 
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V.C. Exploring respiratory effects on ventricular repolarisation  

V.C.1. Introduction 

V.C.1.a. Objectives 

Breathing is known to play a role in cardiac autonomic regulation; the most familiar 

manifestation is respiratory sinus arrhythmia (RSA, described on page 68), which arises from 

autonomic innervation of the SA node.  These heart rate oscillations and the associated oscillations 

in blood pressure and other physiological measurements are widely observed and are often used as 

surrogate measures of autonomic behaviour[TFESCNASPE, 1996].  However, the underlying mechanisms 

remain the subject of substantial research interest and debate[Eckberg, 2009], [Karemaker, 2009], [Larsen et al, 2010].  

The autonomic nerves are known to be present in myocardial regions other than the SA node[Kowallik 

& Meesmann, 1995], but the nature and implications of respiratory involvement in myocardial 

electrophysiology have not been studied extensively.   

As explained in section II.B, action potential duration is known to vary with heart rate due 

to the rate sensitivity of the myocytes.  It is not clear to what extent direct input from autonomic 

nerves might have a complementary or antagonistic effect on this behaviour.  Such effects may 

have arrhythmic potential, especially if they emerge heterogeneously (varying across the 

myocardium).  Their exposition could give rise to new diagnostic and therapeutic approaches for 

the known link between respiratory disorders and sudden cardiac death[Hanly & Zuberi-Khokhar, 1996], 

[Lanfranchi et al, 1999], [Javaheri et al, 2007].  This section covers a series of experiments designed to explore the 

effects of respiration on ventricular repolarisation properties.   

The UEG analysis algorithms described in section IV facilitate the use of human in situ 

recordings for this investigation, providing unique data on the behavior of the intact human 

nervous system.  Hence the experiments were also used to explore the effectiveness and utility of 

these novel algorithms, as will be discussed in section V.C.4. 

 

V.C.1.b. Overview 

Conducted in collaboration with Dr. Jaswinder Gill at St. Thomas‘ Hospital, London, the 

experiments all involved the use of unipolar electrogram (UEG) recordings inside the left and right 

ventricles of human patients, immediately before they underwent ablation therapy to treat atrial 

arrhythmia.  The patients‘ hearts were paced at a constant rate using an electrical stimulus to control 

for the effects of heart rate, thereby exposing rate-independent effects of respiration on local 

electrophysiology. 

Initially, these experiments focused on the hypothesis that changing the frequency of 

respiration causes heart-rate-independent changes in action potential duration (measured as 

activation-recovery intervals, ARIs).  During preliminary investigations, it was noted that ARI 

oscillated at the respiratory frequency.  Further investigations explored the characteristics of this 

phenomenon in greater detail – specifically, the magnitude and distribution of the oscillations 
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across the ventricles, their persistence during breath-holds, the effects of drug-induced autonomic 

blockade, and the phase relationships between respiration, blood pressure, and ARI.  These 

analyses demonstrate for the first time that respiration drives oscillatory dynamics of repolarisation 

properties via direct autonomic input to the ventricles.   

Furthermore, it is shown that, in the context of the abnormal autonomic behavior 

associated with Central Sleep Apnea (CSA), this mechanism could generate arrhythmias.  During 

recording, five subjects spontaneously exhibited breathing patterns indicative of Central Sleep 

Apnea (CSA).  This syndrome is characterised by a regular waxing and waning of respiratory 

volume, as seen in Figure 87 (page 179).  As the name suggests, the symptoms usually arise in sleep, 

but are occasionally observed in conscious subjects.  CSA often appears in patients with congestive 

heart failure, and several studies have found it to be linked with increased mortality in this 

cohort[Hanly & Zuberi-Khokhar, 1996], [Lanfranchi et al, 1999], [Javaheri et al, 2007].  The syndrome is associated with various 

autonomic abnormalities, including a shift towards sympathetic dominance of the autonomic 

balance[Lanfranchi et al, 1999].  Furthermore, patients with CSA have been found to experience more 

arrhythmic events during sleep than patients without CSA[Javaheri, 2006].  This evidence suggests that 

autonomic control of the heart may predispose CSA patients to unstable cardiac behaviour.  The 

results presented in section V.C.3 and discussed in section V.C.4 indicate that CSA alters the normal 

cardiovascular rhythms associated with respiration, providing a candidate mechanism for the known 

link between CSA and arrhythmia.   These results are published in [Western et al, 2011]. 

 

V.C.2. Methods 

V.C.2.a. General method 

Although various stimulus protocols were used for the experiments described in this 

section, the electrode configuration was the same for each patient.  Two catheters, each with 10 

electrodes distributed from the tip along a 35 mm length, were inserted in the femoral vein and fed 

through the inferior cava to reach the heart‘s right atrium.  One catheter was then fed through the 

tricuspid valve and positioned in the right ventricle, against the septal wall.  The other catheter was 

pierced through the atrial wall to the left atrium, then fed through the mitral valve and positioned 

against the posterior wall of the left ventricle.  A third catheter was inserted in the right ventricle 

and used to pace the ventricles (to control the timing of activation by delivering a brief electrical 

stimulus) near the apex.  The final positions of the catheters is shown in Figure 80.  The pacing 

period varied between subjects, but was chosen in the range 350 ms – 500 ms as the longest period 

at which the pacing stimulus was found to consistently pre-empt the heart‘s natural rhythm.  The 

reference electrode was a 100 mm x 150 mm rectangular patch positioned on the patient‘s skin at 

the navel.  Activation and recovery times (AS and RS) were determined for each beat in each 

electrode using the algorithms described in section IV.D.4. 

Patients were asked to control their breathing by following an on-screen animation 

developed by Dr. Ben Hanson, allowing the respiratory frequency to be controlled.  For 

confirmation, breathing behaviour was continuously recorded using a tension sensor attached to an 
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elasticated band around the patient‘s abdomen.  The tension measured in this band was assumed to 

be approximately proportional to the circumference of the band, and thus gave an un-calibrated 

representation of lung volume.  Arterial blood pressure (ABP) was recorded from the femoral 

artery since blood pressure has a feedback role in autonomic cardiovascular regulation.  ABP, 

abdominal circumference, and electrograms were recorded in synchrony at a sample rate of 1200 

Hz. 

Ethical approval for the studies was granted by the Guy‘s and St. Thomas‘ Hospitals Ethics 

Committee and conformed to the standards set by the Declaration of Helsinki (latest revision: 59th 

WMA General Assembly).  Informed consent was obtained in writing from all the subjects.  

Subjects were not sedated, and the use of any anti-arrhythmic drugs was discontinued from 5 days 

prior to the study. 

 

V.C.2.b. Testing for effects of breathing rate on steady-state ARI 

 As explained in section V.C.1.b, the first question explored in the St. Thomas‘ experiments 

was whether respiratory rate caused any increase or decrease in the action potential duration of 

ventricular myocytes. A relationship of this kind could potentially arise through various 

mechanisms, such as a hypothetical change in mean autonomic outflow when the respiratory gating 

effect (page 68) is driven at different frequencies. 

16 subjects were asked to breathe at a rate of 6 BrPM (breaths-per-minute), 9 BrPM, 15 

BrPM, and 30 BrPM for 2 minutes at each frequency.  The respiration signal recorded from the 

chest-band was used to identify the interval within which the patient successfully followed the 

intended breathing pattern, which was typically longer than 90 seconds.  For each electrode in the 

recording, the median value of the ARIs in this interval was taken as the representative ‗steady-

 
Figure 80:  Left – Diagram showing the positioning of the electrode catheters within the heart.  

RA and LA are the right and left atria.  RV and LV are the right and left ventricles.  Right – X-ray 
image of the catheters in place. 
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state‘ value at that breathing rate.  The median was preferred to the mean as a representative 

measure because the median is less sensitive to outlier measurements. 

The results of this analysis are illustrated in Figure 81 (page 172). 

 

V.C.2.c. Assessing the magnitude and distribution of oscillations in ARI 

Oscillations in ARI were observed at some ventricular measurement sites for every subject 

at every breathing frequency tested.  The following method was designed to quantify the magnitude 

and significance of these oscillations during respiration at 15 BrPM (0.25 Hz) across all electrodes.  

This breathing rate was chosen because it lies near the centre of the HF band (0.15-0.4 Hz), 

normally associated with spontaneous breathing. 

 

I. Any voids left in the ARI series by the auto-vetting of recovery time measurements were 

replaced using cubic-spline interpolation. 

II. An AR model was fitted to the each ARI series, and the power spectral density of the series 

was calculated, as per section II.G.2. 

III. The 0.25 Hz component of this power spectrum was compared with a reference ‗noise‘ 

bandwidth, which covered the natural range of respiratory frequencies, 0.15 Hz – 0.4 Hz, 

while excluding the range 0.2 Hz – 0.3 Hz to avoid overlapping the true respiratory 

frequency.  The test statistic Z  was defined as 

 

N

NR MM
Z




  

 

where RM  is the magnitude of the 0.25 Hz spectral component, NM  is the mean 

magnitude of the noise band, and N  is the standard deviation of the noise band.  

Respiratory ARI oscillations in a given electrode were said to be statistically significant 

when 96.1Z , equivalent to a 97.5% confidence limit if the noise band is assumed to 

have a Gaussian distribution.  This approach was inspired by a method advocated by 

[Martinez & Olmos, 2005] for the automatic detection of the phenomenon known as T-

wave alternans, typically identified as a beat-to-beat oscillation in T-wave magnitude. 

IV. Electrodes were excluded from analysis if more than 10% of beats were rejected by the 

recovery-time detection algorithm or if no AR model could be found to adequately 

describe the spectral content of the series, based on the prediction-error whiteness test 

described on page 75. 

 
 

V.C.2.d. Assessing phase relationships. 

The phase relationships between oscillatory signals are often used to grant insight into the 

causality between them.  As pointed out in the recent debate on the origins of respiratory sinus 

arrhythmia, respiratory oscillations in cardiovascular behaviour are non-sinusoidal and their 

(44) 
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morphology can vary.  Conventional mathematical definitions of phase (approximating the signal as 

a sinusoid) can therefore produce misleading results[Karemaker, 2009].  However, phase relationships can 

still be examined by comparing the timings of particular events in the signals.  As shown in Figure 

83, the timings of the onset of inspiration and exhalation for each breath were determined by visual 

inspection for each breath.  These events were chosen as timing indices because they were found to 

produce prominent, short-lived artefacts in the respiratory recordings for each patient, thereby 

producing a reliable, temporally well-defined marker to be compared against the extrema of the ARI 

and blood pressure waveforms. 

During cases of CSA, an interesting pattern was observed in the morphological relationship 

between respiration and respiratory oscillations in ABP.  It was noted that the latency between onset 

of inspiration and the subsequent peak in systolic ABP gradually lengthened during the development 

of each hyperpnea (crescendo in respiratory volume), then shortened (see Figure 88, page 180).  The 

following method was developed to quantify this effect: 

 

I. The timings of the onset of inspiration and the maximum systolic blood pressure were 

determined for each breath using a simple custom Matlab algorithm.  Any erroneous 

estimations of these timing indices were corrected manually. 

II. The delay between onset of inspiration and peak systolic blood pressure was calculated for 

each breath. 

III. The start, middle (peak), and end of each hyperpnea were identified from visual inspection 

of the respiratory trace.  A representative value of the delay at each of these events was 

calculated as the mean of the three values nearest the event. 

IV. For each subject, the mean of these representative values was calculated for start-, middle-, 

and end-hyperpnea across all CSA cycles. 

V. Welch‘s t-test was applied to assess the statistical significance of the difference between 

start- and middle-hyperpnea and between middle- and end-hyperpnea, as summarised in 

Figure 89 (page 181). 

 

V.C.2.e. Inducing autonomic blockade 

 To investigate the role of autonomic nerve activity in these oscillations, 6 subjects had drugs 

administered intravenously to alter sympathetic and parasympathetic input to the heart.  After 

performing the original protocol at four different breathing frequencies, metoprolol-tartrate (10-15 

mg) was administered to partially block sympathetic activity and the protocol was repeated.  

Atropine sulphate (≈ 1.2 mg) was then administered to partially block parasympathetic activity, and 

the protocol was repeated a third time.  Pacing was briefly halted while the drugs were administered 

so that the subject-specific dosage could be controlled to achieve a change in heart rate of 

approximately 10 BPM from each drug.   
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To provide a single statistic describing the change in the magnitude of ARI oscillations, the 

electrode with the clearest oscillations across all frequencies (before drugs) was identified for each 

subject.  The power spectrum of the ARI series across the full breathing protocol was calculated 

using the Fourier Transform, and the power spectral density was averaged across the frequency 

range 0.08 Hz – 0.6 Hz to give a single value representing the magnitude of ARI oscillations for that 

drug condition in that subject.   

To allow a more detailed portrayal of the drugs‘ effects on individual patients, a wavelet 

transform (see section II.G.2) was applied to the respiratory signals and ARI series to show their 

frequency content as it varies throughout the protocol.  The wavelet family chosen for this analysis 

was the Gaussian-5 wavelet, as defined in the Matlab Wavelet Toolbox™.  A Gaussian-type wavelet 

was chosen because its frequency spectrum (Fourier Transform) has a single smooth peak, thereby 

allowing a meaningful mean frequency to be assigned to each scale (s in equation (21), page 77).  The 

Gaussian-5 wavelet was chosen in particular because it was found to offer an appropriate 

compromise between temporal resolution and frequency resolution for these experiments, allowing 

experiment events to be clearly distinguished along both axes.  Example results are provided in 

Figure 86 (page 178).  

 
 

V.C.3. Results 

V.C.3.a. Respiratory rate does not affect steady-state ARI 

As shown in Figure 81, no substantial change in median ARI occurs as an effect of 

breathing rate.  However, the small differences in median ARI between 15 BrPM and 6 BrPM and 

between 30 BrPM and 6 BrPM appear to be statistically significant when Welch‘s t-test is applied to 

the data (p0.05 in both cases).  This effect might be related to the increased effort required to 

breathe at the more unnatural rates (6BrPM and 30 BrPM), as will be discussed in section V.C.4.  

However, the results should be interpreted with caution; the data used to construct each plot are 

not truly independent readings since each datum belongs to a set of up to 20 that correspond to 

simultaneous recordings from a particular patient. 

 

V.C.3.b. Respiratory oscillations in repolarisation properties 

 Although respiratory frequency was found to have no substantial effect on median values of 

ARI, ARI was observed to oscillate at the respiratory frequency (as exemplified in Figure 82, page 

173).  The phenomenon may have important consequences with regard to the development of 

arrhythmia, especially when considering that it may be modulated heterogeneously by a non-uniform 

distribution of autonomic connections to the myocardium.  This section describes further analysis 

of these respiratory oscillations in ARI, which have not been previously described in the literature. 
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Prevalence and magnitude: 

 In the cohort of 16 subjects, the mean number of electrodes (out of 20) excluded from 

analysis was 4.7 (max. 11, min. 0).  The mean number of electrodes in which statistically significant 

respiratory oscillations in ARI were detected was 11 (max. 20, min. 6).  These results are 

summarised in Table 13.  Statistically significant respiratory oscillations were also observed in 

systolic and diastolic arterial blood pressure (ABP), measured as the maximum and minimum values, 

respectively, of ABP in each beat.  The amplitude of oscillations in systolic ABP was greater than in 

 
Figure 82:  Examples of oscillations in ARI at three different respiratory frequencies, along with 
spectra calculated from the respiratory trace (abdomen circumference) and ARI series using the 

Fourier Transform.  The spectra confirm that the dominant frequency of the ARI oscillations 
matches the respiratory frequency precisely. 
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diastolic ABP in every case.  These blood pressure oscillations may be mechanistically related to the 

ARI oscillations via baroreflex feedback, as will be discussed in section V.C.4. 

 
Phase relationships: 

 In Figure 83, vertical lines have been added manually to mark the onset of inspiration 

(dashed line) and onset of exhalation (solid line), omitting any cases where no such point can be 

clearly identified.  

Where significant respiratory ARI oscillations were found, inspiration was found to 

coincide with a shortening in ARI.  The coarse time-resolution of the ARI measurement (one heart-

beat interval) makes it difficult to ascertain whether this shortening of ARI begins before, after, or in 

synchrony with the onset of inspiration.  However, in a few cases, such as the 12 BrPM pane in 

Figure 83, the shortening of ARI consistently began more than one full beat before the onset of 

inspiration.  The lengthening of ARI typically began before the onset of exhalation, often by several 

beats during slow breathing rates. 
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1 2 12 14 RV 2 21 10 

2 0 20 8 RV 1 and LV 6 7 2 

3 3 12 26 RV 1 10 8 

4 11 6 19 RV 2 16 15 

5 6 9 25 LV 9 18 7 

6 4 11 7 LV 8 8 4 

7 5 14 20 RV 5 16 6 

8 9 7 24 RV 8 10 8 

9 6 11 16 RV 10 15 7 

10 2 13 18 RV 6 24 8 

11 4 16 20 LV 5 22 11 

12 0 11 7 RV 6 10 5 

13 5 10 7 RV 1 9 4 

14 8 7 11 LV 10 20 17 

15 9 8 6 LV 2 11 6 

16 1 6 12 RV 10 12 6 
Table 13:  Summary of oscillations in activation-recovery intervals (ARI) and arterial blood 

pressure (ABP) across 16 subjects.  Measurements of the peak-to-peak amplitude of oscillations 
were conducted by visual inspection to avoid corruption by noise.  The locations found to present 
the largest ARI oscillations for a particular individual are labelled LV or RV (left or right ventricle) 

and numbered 1 to 10, indicating the sequential position of the electrode on the catheter.  
Electrode 1 is that closest to the apex of the ventricles (catheter tip), and electrode 10 is closest to 

the base of the ventricles. 
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The timing of the oscillations in systolic and diastolic ABP was such that the minimum 

pressures occurred at or just after (within 2 beats of) the onset of inspiration.  The timings of the 

maxima were more variable, but coincided with the beginning of exhalation to within one quarter 

of a breathing cycle. 

 

Oscillations during breath-holds: 

 14 subjects were also asked to perform breath-holds during the protocol.  ARI oscillations 

at frequencies in or near the respiratory range were observed in 5 of these 14 patients during the 

breath-hold.  The recording of respiratory movements confirmed that no corresponding abdomen 

motion occurred at this time.  The full range of frequencies observed was 0.27 Hz – 0.7 Hz.  The 

amplitude of the oscillations varied through the breath hold, but never exceeded that of the 

 
Figure 83:  Examining the phase relationships between respiration, ARI, and blood pressure at five 

different respiratory frequencies for a single subject.  All ARI series are calculated from the same 
electrode (RV 5).  Dashed lines mark the onset of inspiration, and solid vertical lines mark the 

onset of exhalation.  In the bottom-right pane, the electrograms corresponding to the two circled 
beats in the 12 BrPM pane are superimposed for comparison, temporally aligned so that the pacing 

artefacts (the first deflection seen) are coincident.  The measured activation times (AS) are also 
coincident, whereas the measured recovery time (RS, marked by vertical black arrows) occurs 

earlier on inspiration than on exhalation. 
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oscillations observed during regular breathing in the same electrode.  Blood pressure generally 

oscillated at the same frequency as ARI during breath-holds, but with reduced amplitude compared 

to during regular breathing, as shown in Figure 84. 

 

Effects of autonomic blockade: 

One of the patients was excluded from this analysis because the drugs caused an 

unexpectedly large change in mean systolic blood pressure, from 120 mmHg to 80 mmHg.  In the 

other five subjects to whom drugs were administered, the change in blood pressure was much 

smaller, from 127±7 / 80±3 mmHg (systolic/diastolic,  mean ± standard error of the mean) before 

drugs to 125±9 / 82±3 mmHg after sympathetic blockade, then 124±12 / 81±4 after 

parasympathetic blockade.  Note that the duration of the effects of metoprolol tartrate is sufficiently 

long that sympathetic blockade can be assumed to have persisted during parasympathetic blockade.  

Mean values of ARI were found to not change significantly after the administration of drugs, with 

one exception in that ARIs in the right ventricle lengthened from 181±5 ms to 185±6 ms in the 

right ventricle after sympathetic blockade (p<0.05 according to Welch‘s t-test). 

Sympathetic blockade was generally found to reduce the magnitude of respiratory 

oscillations in ARI.  In each subject, the effect was typically found to vary in magnitude between the 

different respiratory frequencies, but no clear pattern emerged across subjects in terms of a 

particular frequency being more sensitive to the intervention. As shown in Figure 85, the power 

spectral density of ARI decreased in all subjects after sympathetic blockade (p<0.01).  After 

subsequent parasympathetic blockade, the nominal magnitude of oscillations decreased or stayed the 

same for all but one subject, in whom the power spectral density increased substantially.  No 

statistically significant difference was found between the ‗sympathetic blockade‘ and ‗sympathetic 

and parasympathetic blockade‘ conditions, but the latter condition remained significantly different 

 
Figure 84:  Oscillations in ARI and ABP during a breath-hold. 
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from the control condition (p<0.05), despite the variable effects of parasympathetic blockade.  

Changes in the power spectral density of ABP generally resembled those of ARI, although the 

statistical significance of the difference between the control and ‗sympathetic blockade‘ conditions 

was reduced to p<0.05. 

Figure 86 presents the results of applying a wavelet transform to the respiratory signals and 

ARI series, as described in section V.C.2.e, page 171.  The wavelet coefficients, presented as the 

vertical and colour axes of the 3-dimensional plots, indicate the magnitude of ARI oscillations at 

each frequency.  At each point in time, the dominant components in ARI closely match those of the 

respiratory signal, but are attenuated with the administration of drugs.  The magnitude and 

morphology of the respiratory signal do not change noticeably as can be seen in the middle trace on 

the back wall of panels B-D. 

 

Oscillations during spontaneous cases of Central Sleep Apnea: 

Levels of consciousness varied significantly among the five subjects who presented CSA.  

In the most severe case, the subject had recently been awoken from deep but unsedated sleep, and 

in two other cases the subject was fully awake with no drugs administered. In one case, the subject 
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Figure 85:  Averaged power spectral density (PSD) in ARI (left) and ABP (right) in the range 0.08 
Hz – 0.6 Hz, at the site with the clearest oscillations, shown for five subjects and all three drug 
conditions.  The solid black squares indicate the mean value for each condition.  One subject 

(dashed line) differed from the others in that parasympathetic blockade led to an increase in PSD 
for ARI and BP.  This subject was excluded from the calculation of the mean, but not from 

statistical comparisons, which showed significant differences between the drugged and 
undrugged states, as indicated by the given p-values. 



V. Experimental Applications 

 

178 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

A. Respiration 

B.  ARI before drugs 

C. ARI after sympathetic 
blockade 

D. ARI after symp. + 
parasymp. blockade 

F
ig

u
re

 8
6
: 

 T
im

e
-f

re
q

u
e
n

c
y
 r

e
p

re
se

n
ta

ti
o

n
 o

f 
A

R
I 

o
sc

il
la

ti
o

n
s,

 u
si

n
g

 t
h

e
 w

a
ve

le
t 

tr
a
n

sf
o

rm
. 

 P
an

el
 A

 –
 W

a
ve

le
t 

tr
a
n

sf
o

rm
 a

p
p

li
e
d

 t
o

 t
h

e
 r

e
sp

ir
a
to

ry
 s

ig
n

a
l.

  
C

le
a
r 

ri
d

g
e
s 

c
o

in
c
id

e
 w

it
h

 t
h

e
 d

if
fe

re
n

t 
re

sp
ir

a
to

ry
 f

re
q

u
e
n

c
ie

s 
(1

5
 B

rP
M

 =
 0

.2
5
 H

z
, 

9
 B

rP
M

 =
 0

.1
5
 H

z
, 

3
0
 B

rP
M

 =
 0

.5
 H

z
, 

6
 B

rP
M

 =
 0

.1
 H

z
) 

 T
h

e
 r

e
sp

ir
a
to

ry
 t

o
 w

h
ic

h
 

th
e
 t

ra
n

sf
o

rm
 w

a
s 

a
p

p
li

e
d

 i
s 

p
re

se
n

te
d

 o
n

 t
h

e
 b

a
c
k

 w
a
ll

. 
 P

an
el

 B
 –

 W
a
ve

le
t 

tr
a
n

sf
o

rm
 a

p
p

li
e
d

 t
o

 a
n

 A
R

I 
se

ri
e
s,

 w
it

h
 c

le
a
r 

ri
d

g
e
s 

o
c
c
u

rr
in

g
 i

n
 t

h
e
 s

a
m

e
 p

la
c
e
s 

a
s 

in
 

p
a
n

e
l 

A
. 

 O
n

 t
h

e
 b

a
c
k

 w
a
ll

, 
F

D
 i

s 
th

e
 d

o
m

in
a
n

t 
fr

e
q

u
e
n

c
y
 i

n
 t

h
e
 A

R
I 

(b
la

c
k

) 
a
n

d
 R

E
S

P
 (

re
d

) 
si

g
n

a
ls

, 
c
a
lc

u
la

te
d

 a
s 

th
e
 f

re
q

u
e
n

c
y
 w

it
h

 t
h

e
 l

a
rg

e
st

 w
a
ve

le
t 

c
o

e
ff

ic
ie

n
t 

a
t 

e
a
c
h

 p
o

in
t 

in
 t

im
e
 (

F
D

 f
o

r 
th

e
 R

E
S

P
 s

ig
n

a
l 

is
 c

a
u

lc
u

la
te

d
 f

ro
m

 t
h

e
 w

a
ve

le
t 

tr
a
n

sf
o

rm
 i

n
 p

a
n

e
l 

A
.)

. 
 T

h
is

 t
ra

c
e
 c

o
n

fi
rm

s 
th

a
t 

th
e
 o

sc
il

la
ti

o
n

s 
in

 A
R

I 
 t

ra
c
k

 t
h

e
 

re
sp

ir
a
to

ry
 f

re
q

u
e
n

c
y
 c

lo
se

ly
. 

 T
h

e
 R

E
S

P
 s

ig
n

a
l 

is
 p

re
se

n
te

d
 a

g
a
in

 o
n

 t
h

e
 b

a
c
k

 w
a
ll

 f
o

r 
re

fe
re

n
c
e
, 

a
lo

n
g

 w
it

h
 t

h
e
 A

R
I 

se
ri

e
s 

to
 w

h
ic

h
 t

h
e
 w

a
ve

le
t 

tr
a
n

sf
o

rm
 w

a
s 

a
p

p
li

e
d

. 
 P

an
el

 C
 –

 S
a
m

e
 a

s 
p

a
n

e
l 

B
, 

e
x

c
e
p

t 
th

a
t 

th
e
 A

R
I 

a
n

d
 R

E
S

P
 s

ig
n

a
ls

 u
se

d
 a

re
 f

ro
m

 a
ft

e
r 

th
e
 a

d
m

in
is

tr
a
ti

o
n

 o
f 

m
e
to

p
ro

lo
l 

to
 b

lo
c
k

 s
y
m

p
a
th

e
ti

c
 a

c
ti

v
it

y
. 

 

F
ro

m
 t

h
e
 c

o
lo

u
r 

m
a
p

, 
it

 c
a
n

 b
e
 s

e
e
n

 t
h

a
t 

th
e
 r

id
g

e
s 

c
o

rr
es

p
o

n
d

in
g

 t
o

 A
R

I 
o

sc
il

la
ti

o
n

s 
a
re

, 
o

n
 a

ve
ra

g
e
, 

re
d

u
c
e
d

 i
n

 m
a
g

n
it

u
d

e
. 

 P
an

el
 D

 –
 S

a
m

e
 a

s 
p

a
n

e
ls

 B
 a

n
d

 C
, 

b
u

t 
u

si
n

g
 R

E
S

P
 a

n
d

 A
R

I 
si

g
n

a
ls

 f
ro

m
 a

ft
e
r 

p
a
ra

sy
m

p
a
th

e
ti

c
 b

lo
c
k

a
d

e
. 

 I
n

 t
h

is
 s

u
b

je
c
t,

 p
a
ra

sy
m

p
a
th

e
ti

c
 b

lo
c
k

a
d

e
 h

a
s 

c
a
u

se
d

 f
u

rt
h

e
r 

re
d

u
c
ti

o
n

 i
n

 t
h

e
 m

a
g

n
it

u
d

e
 o

f 

A
R

I 
o

sc
il

la
ti

o
n

s,
 t

o
 t

h
e
 e

x
te

n
t 

th
a
t 

th
e
 d

o
m

in
a
n

t 
fr

e
q

u
e
n

c
y
 F

D
 f

o
r 

A
R

I 
n

o
 l

o
n

g
e
r 

tr
a
c
k

s 
th

e
 r

e
sp

ir
a
to

ry
 f

re
q

u
e
n

c
y
 c

o
n

si
st

e
n

tl
y
. 

 

 



V. Experimental Applications 

 

179 

was conscious but drowsy due to the administration of drugs, and in one case the drugs rendered 

the subject unconscious. 

In most cases, the frequency of respiration increased with increasing volume of respiration.  

In all cases, ABP was found to oscillate at the respiratory frequency, as well as at the lower CSA 

frequency (approximately 0.3 Hz and 0.015 Hz, respectively, in Figure 87).  Clear oscillations in ARI 

were observed at the respiratory frequency in all 5 subjects and at the CSA frequency in 4 subjects. 

In each case there was substantial heterogeneity in the degree to which these oscillations were 

expressed, as exemplified in Figure 87.  At some sites, only one frequency could be detected. Some 

sites would express the superposition of both oscillations and others would show no clear pattern. 

The latency between onset of inspiration and the subsequent peak in systolic ABP 

gradually lengthened during the development of each hyperpnea and shortened after the peak of 

the hyperpnea, as seen in Figure 88.  This pattern differs widely from the changes in respiratory 

interval (dashed line), indicating that changes in respiratory cycle length alone are not sufficient to 

explain the phase shift in ABP.  This effect was observed in all subjects, as demonstrated in Figure 

89.  Welch‘s t-test confirmed statistical significance for the difference between stages of hyperpnea 

(middle vs. start: p<0.02; middle vs. end: p<0.01). 

 
Figure 87:  Oscillations in ARI and ABP observed during Cheyne-Stokes respiration, a form of CSA.  

The sites at which ARIs were recorded are labelled as “RV” or “LV” (left or right ventricle) and 
numbered 1-10 in reference to the sequential position of the electrode along the catheter, 1 being the 
electrode at the catheter tip, near the apex of the ventricle.  ARI and ABP oscillate at the respiratory 
frequency (~0.3 Hz here) and the slower CSA frequency (~0.015 Hz).  The degree to which each of 
the two frequencies is expressed in ARI differs substantially between electrodes.  Differences can 

also be observed in the phase of the slower CSA oscillation, e.g. between LV 10 and LV 1. 
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V.C.4. Discussion 

V.C.4.a. The effect of respiratory rate on steady-state ARI 

Given that the mean differences between steady-state ARI at 15 BrPM and at 6 and 30 

BrPM are small (see Figure 81, page 172), these results are not deemed to be clinically important.  

Nevertheless, one plausible explanation for such an effect exists, considering that 6 BrPM and 30 

BrPM are extremely slow and fast breathing rates, respectively.  The increased attention and mental 

effort required to consciously follow these less natural rates could conceivably evoke increased 

sympathetic drive – and, thus, shorter action potential durations – compared with the more natural 

rate of 15 BrPM.  Although the effect seen here is small, future studies of this kind should take into 

account the possibility that consciously following extreme breathing rates might alter ANS activity 

via a stress response. 

 

V.C.4.b. Are the respiratory oscillations in ARI real or artefact? 

 In Table 13 it was shown that significant oscillations in ARI arose in all subjects.  However, 

this does not necessarily prove the existence of oscillations in the underlying electrophysiological 

properties.  One must consider the possibility that they are solely attributable to the influence of 

respiratory motion on electrogram morphology.  Various mechanisms by which such effects might 

occur are considered in the following paragraphs. 

 
Figure 88:  During each hyperpnea, as respiratory volume increased an increase was also seen 
in the time delay between each onset of inspiration and the subsequent peak in systolic blood 
pressure.  The two events are marked for each beat with white dots in the top two panels.  In 

the bottom trace, the solid line shows the varying delay between the two events.  The 
relationship cannot be explained by changes in the duration of each breath, as indicated by the 
dashed line in the bottom panel.  On the left side of the figure, construction lines illustrate how 
the traces in the bottom panel are constructed from the timings of events in the respiration and 

ABP traces. 
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As described on page 108, any changes in electrogram morphology that are not caused by 

changes in the electrophysiological source distribution can be described as a change in the lead field 

within that source distribution.  The lead field can be altered by changing the geometric relationship 

between the electrodes and the surrounding anatomy, or by changing the effective conductivity of 

different regions within that anatomy.  Influences of both kinds undoubtedly occur, as listed below: 

 

- As the chest and abdomen expand during inspiration, the distance between the heart and 

the reference electrode (in this case, on the skin surface at the abdomen) is likely to increase 

slightly. 

- As the lungs fill with air, their effective conductivity decreases substantially[Malmivuo & Plonsey, 

1995], [Plonsey, 1965], which can be assumed to alter the lead field in the surrounding region, 

including the heart. 

- The stroke volume of the different chambers of the heart is known to vary with respiration 

(page 68) [Innes et al, 1993].  This can be assumed to yield a change in the magnitude of the Brody 

effect, described on page 52, another lead field alteration. 

 
Figure 89:  The shifting temporal relationship between ABP and respiration, as introduced in 

Figure 88, was observed in all instances of CSA.  From plots similar to Figure 88, representative 
values of the delay between onset of inspiration and peak systolic pressure were chosen for the 

beginning, middle, and end of each hyperpnea cycle.  These values were then averaged across all 
cycles observed in a particular subject (min. 2 clear cycles, max. 10) to produce the values 

presented in this figure.  T-tests indicated that the values for the start and end of each hyperpnea 
differed from the values in the middle with statistical significance (p-values shown on graph). 
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- The exploring electrodes may have moved with respect to the myocardial wall.  Movement 

perpendicular to the wall is unlikely to have been significant, since good contact was 

maintained during the more substantial wall movements that occur with each contraction.  

Movement in the axial direction (i.e. with the catheter sliding in and out of the ventricle) 

cannot be ruled out.  The positioning of the catheters was occasionally monitored using an 

X-ray video feed, and no such effect was noticed.  Small axial movements may have gone 

unnoticed, but they would not be expected to regularly cause ARI oscillations of the 

magnitude observed.  [Lessick et al, 2001] investigated the stability of a similar catheter 

design in the context of respiratory movements and cardiac contraction, although it should 

be noted that this work was funded by the catheter‘s manufacturers, presenting a possible 

conflict of interest.  Lessick et al used a modified catheter with a retractable needle that 

could be used to anchor the tip to the myocardium.  They tracked the movement of the 

catheter tip in porcine hearts, comparing trajectories in 3D-space throughout the cardiac 

cycle with and without anchoring.  They concluded that catheter trajectories ―taken several 

beats apart from one another are separated by not more than 2mm‖.   In our study, 

differences in ARI between adjacent electrodes (spaced 2 mm – 5 mm apart) were typically 

smaller than the amplitude of oscillations in ARI, so electrode movement parallel to the 

surface of the myocardium is unlikely to have contributed substantially to the observed 

oscillations.  The influence of any electrode movement perpendicular to the myocardial wall 

would be highly dependent on the transmural variation on repolarisation time, which could 

not be characterised with the cathether electrodes used. 

 

Respiratory changes in the lead field, such as those described above, cannot be ruled out 

completely from inducing some respiratory oscillation in ARI.  In fact clear evidence of their effects 

exists in the form of baseline wander, observable when comparing isoelectric segments of the 

unfiltered electrogram recordings.  However, two additional observations imply that these 

mechanisms cannot be wholly responsible for the ARI oscillations.  Firstly, in several cases 

oscillations at typical respiratory frequencies were found to persist during breath-holds, with no 

evidence of corresponding chest movement (see Figure 84, page 176).  Although the waistband 

sensor used to measure abdominal movements provides an incomplete representation of respiratory 

motion, it is unlikely that significant motion would have occurred without any detectable effect on 

abdominal circumference.  Secondly, autonomic blockade was found to have a substantial effect on 

the magnitude of ARI oscillations without noticeably changing respiratory movements.  This implies 

that the oscillations are related to autonomic input to the heart. 

A caveat on the interpretation of the autonomic blockade test results is that only five 

subjects could be included in this analysis.  Hence, although the differences between the blockade 

and control conditions were found to be statistically significant, the statistical test is not robust in 
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this case.  Furthermore, the observed effects do not constitute a thorough characterisation of the 

effects of autonomic blockade on respiratory oscillations in ARI, especially when considering that 

the effects of parasympathetic blockade were not consistent among all subjects. 

In summary, it is not possible to determine with confidence whether any particular instance 

of respiratory oscillations in ARI is caused by electrophysiological changes, lead field changes, or 

both.  However, it is highly likely that some oscillations in ARI are genuinely electrophysiological in 

origin.  The existence of such respiratory modulation of ventricular electrophysiology, independent 

of heart rate, is a novel observation.  This discovery is described in a paper recently submitted for 

publication in the journal Frontiers in Cardiac Electrophysiology. 

 

V.C.4.c. Can the oscillations in ARI be taken as an accurate representation of oscillations 

in APD? 

 The respiratory oscillations in ARI have been found to be at least partly electrophysiological 

in origin.  But can the underlying changes be truthfully interpreted as a change in action potential 

duration (APD), or is some other electrophysiological change responsible for the changes in 

electrogram morphology? 

 In many electrodes, the delay between the pacing stimulus and the time of local activation 

was found to vary with respiration.  An example of this behaviour is shown in Figure 90.  In this 

example, the morphology of the activation wave changes so that an extra positive deflection appears 

before the local activation down-stroke.  As discussed on page 59, this indicates that the activation 

travelled towards this electrode parallel to the myocyte fibres at ‗end exhalation‘ and across the 

fibres at ‗end inspiration‘.  It appears that the spatio-temporal distribution of activation is changing, 

so the change in activation time is not representative of behaviour local to this electrode.  These 

variations in activation time were more commonly found in the left ventricle, presumably because 

the hearts were always paced from the right ventricle, so any changes in conduction velocity had a 

longer distance across which to influence activation times in the left ventricle.   

In Figure 90, the variations in activation time are more substantial than the variations in 

recovery time, and the phase relationship between respiration and the measured ARI oscillations is 

opposite to the typical relationship described on page 173.  This observation calls into question 

 
Figure 90:  Two unipolar electrograms from the same electrode in the left ventricle (LV 6) at 

different stages of the breathing cycle, aligned according to the pacing artefact.  The measured 
times of local activation (AS) and recovery (RS) are marked on each trace with vertical lines.  The 

delay between pacing stimulus and activation time was often found to vary with respiration. 
 

pacing artefact 

ARI – end inspiration 

ARI – end exhalation 
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whether cases such as this can be considered a reliable representation of changes in APD.  As 

discussed in section II.E, the spatial gradients in membrane potential are typically smaller during 

repolarisation than during activation, yielding smaller membrane currents.  However, the relatively 

slow development of repolarisation means that these small currents occur across a broad region of 

tissue at the same time.  The morphology of the T-wave is therefore representative of a broader 

distribution of behaviour, and may be less sensitive than activation-wave morphology to localised 

changes in timing.   

However, as shown in Figure 24, page 62, electrotonic effects are substantial in inducing 

synchronisation of repolarisation between neighbouring myocytes.  In cases such as Figure 90 

where the timing of local activation has been altered relative to neighbouring regions, electrotonic 

synchronisation might be expected to prevent the repolarisation time from changing in the same 

way.  By this interpretation, the measured change in ARI is still representative of the local change in 

APD, but that change in APD is caused by electrotonus in combination with more remote changes 

in conduction velocity, rather than by direct autonomic modulation of local repolarisation 

behaviour.   

Hence, when relating measurements of local behaviour to local autonomic input, it is 

preferable to use measurements from early activating sites, thereby minimising the confounding 

influence of changes in conduction velocity.  It should be noted, however, that ARI measurements 

at these sites may also be influenced by changes in conduction velocity since these changes would 

be manifested to some extent in the remote component of the electrogram (as described on page 

49).  An additional caveat in relating measured changes in ARI to changes in local APD is that, 

even when the stabilised indices are used, the sensitivity of this relationship will be dependent on 

UEG morphology.  Although the magnitude of oscillations does not necessarily reflect the 

magnitude of changes in action potential duration, it should be remembered that APD is only a 

useful description of electrophysiological behavior, rather than a fundamental electrophysiological 

property.  Changes in ARI might occasionally reflect changes in action potential morphology that 

do not constitute a change in APD but do alter the cell‘s effective refractory period, such as when 

the action potential morphology becomes more triangular in shape.   

 

V.C.4.d. Underlying mechanisms 

Before the observed respiratory oscillations in ARI can be interpreted as evidence of 

autonomic input, one must considered whether other mechanisms may have induced respiratory 

oscillations in action potential morphology.  The mechanical effects of respiration might influence 

myocyte membrane behaviour by the mechanism known as mechanoelectric feedback[Taggart & Sutton, 

2011], [Kohl et al, 2011].  The respiratory changes in ventricular stroke volume described by Innes et al[Innes et 

al, 1993] imply varying levels of strain in the myocytes before contraction.  This ‗pre-load‘ is known to 

influence action potential morphology.  Although this mechanism may be involved in some cases of 
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ARI oscillations, it cannot fully account for the phenomenon; between the two ventricles, the 

changes in ARI were found to be approximately in phase with each other (excluding the 

confounding cases in which activation time varied significantly), whereas the respiratory changes in 

pre-load act oppositely on the two ventricles.  Furthermore, autonomic blockade using drugs was 

found to strongly influence the magnitude of the oscillations without a significant change in 

respiratory behaviour. 

 It is therefore likely that the observed respiratory modulation of action potential 

morphology is driven by autonomic input.  In determining the precise nature of that input, one is 

faced with the two candidate mechanisms considered in the recent debate on the nature of 

respiratory sinus arrhythmia[Eckberg, 2009], [Karemaker, 2009]:  the baroreflex (feedback control) versus 

centrally mediated respiratory gating (feedforward control).   

Baroreflex feedback does not offer a consistent explanation of the observed oscillations.  

The time required for a change in blood pressure to be transmitted from baroreceptors to the 

central nervous system, processed, and acted upon constitutes a delay of at least one heart beat and 

up to 2.5 seconds[Julien, 2006].  This constant delay would cause the phase of ARI oscillations (as a 

fraction of the cycle length) to lag behind respiration increasingly at higher frequencies.  No such 

frequency dependence could be discerned in the phase relationship (see, for example, Figure 83). 

The results presented are more consistent with the alternative candidate mechanism, 

central gating of autonomic activity by respiratory networks.  This gating may arise in any of three 

locations: the brainstem[Spyer & Gilbey, 1988], the cerebral cortex (specific to consciously controlled 

breathing)[Evans, 2010], and the cardiac plexus (a network of neurons around the outside of the heart) 

[Armour & Hopkins, 1990].  As described on page 68, respiratory gating manifests as an increase in 

sympathetic activity and a decrease in parasympathetic activity during inspiration.  Sympathetic 

stimulation increases the L-type Ca++ current and the slow delayed rectifier K+ current, resulting 

in an increase in contractility and a decrease in action potential duration[Trautwein & Hescheler, 1990], [Volders et 

al, 2003].  Parasympathetic activity is not generally thought to have a direct effect on the ventricles.  

Acetylcholine (the neurotransmitter associated with parasympathetic activity) has been shown to 

activate a particular class of K+ current which, contrary to our observations, would yield longer 

action potentials during inspiration, when parasympathetic activity is decreased[Yang et al, 1996].  

However, the indirect effects of parasympathetic stimulation may well be more important in the 

ventricles, inhibiting sympathetic input and its effects[Stramba-Badiale et al, 1991].  By this mechanism, the 

inspiratory decrease in parasympathetic activity would enhance the effects of the increase in 

sympathetic activity.  The observation that the effects of parasympathetic blockade varied between 

subjects might be explained by the existence of these two mechanisms that act in opposite senses.  

Furthermore, the observation that changes induced by parasympathetic blockade were smaller than 

those induced by sympathetic blockade (Figure 85, page 177) is consistent with the notion that 
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parasympathetic nerves impose a variable gain on the effects of sympathetic activity, which had 

already been reduced when parasympathetic blockade was induced. 

An important caveat for the physiological interpretation of the results presented is that the 

autonomic outflow generated by the central nervous system during consciously controlled 

breathing may differ substantially from that produced during spontaneous breathing[Pagani et al, 1986].  

This possibility is currently being explored in follow-up experiments in which the same 

measurements as used in the original experiments are recorded during spontaneous breathing, then 

the recorded breathing pattern is presented on-screen for patients to consciously reproduce. 

 

V.C.4.e. Implications for cardiac stability 

 Respiratory Sinus Arrhythmia causes heart rate to increase during inspiration and decrease 

during exhalation.  APD is known to change in direct response to changes in heart rate, as 

evidenced by the shortening of APD that occurs as soon as a heart is paced (Figure 63, page 132).  

However, this mechanism acting alone would cause changes in APD to lag behind heart rate, leaving 

the heart unstable during fast breathing or sharp breaths.  The observed heart-rate-independent 

respiratory oscillations in APD (ARI) are therefore likely to improve cardiac stability by ensuring 

that APD shortens in close synchrony with the shortening cardiac cycle, thereby reducing the 

chance that the next activation wave will be disrupted by refractory tissue. 

 While heart-rate-independent control may improve cardiac stability on the whole, it is worth 

noting that there were substantial heterogeneities in the magnitude of these oscillations.  

Heterogeneous patterns of repolarisation are believed to increase the likelihood of arrhythmic 

events[Noble & Rudy, 2001], [Hunter et al, 2001], [Clayton & Taggart, 2005].  Heterogeneous respiratory oscillations in APD 

might arise from a non-uniform distribution of nerve endings in the myocardium.  However, it is 

also possible that the regional differences in ARI oscillations were caused only by the fact that the 

sensitivity of the ARI measurement to changes in APD is highly dependent on the overall 

electrogram morphology, which varied between electrodes. 

 Heart-rate-independent modulation of APD may also detract from cardiac stability when 

considering occasional extreme autonomic fluctuations.  Evolution may have fine-tuned this control 

system to closely track heart rate variations at the magnitude and frequencies experienced in 

everyday life, but at the expense of being less well suited to occasional extreme inputs, such as those 

induced by an extreme threat/stressor.  The fact that APD and heart-rate can be controlled 

independent of one another provides a mechanism by which the two can become mismatched in 

unusual scenarios. 

 These unusual scenarios would not necessarily involve a sudden, extreme stimulus.  Cases 

of abnormal respiratory behaviour may also fall into this category.  In section V.C.3 it was shown 

that, in cases of Central Sleep Apnea (CSA) during cardiac pacing, an apparent desynchronisation 

occurs in the phase relationship between respiration and arterial blood pressure (ABP) oscillations.  



V. Experimental Applications 

 

187 

The observation of such changes during CSA demands attention when considering the association 

between CSA and sudden cardiac death.  A similar phenomenon, described as ‗bidirectional phase 

walk‘, was recently observed in another system of cardio-respiratory autonomic interactions, 

between heart-rate and cardiac sympathetic nerve (CSN) discharge during respiratory effort[Gebber et al, 

2005].  Unidirectional phase-walk is conventionally interpreted as evidence of weak coupling between 

two oscillators. In [Gebber et al, 2005], the bidirectional nature of the changes in phase relationship 

was taken as evidence of strong coupling of the CSN discharge to a central oscillator whose phase 

is modulated by respiratory inputs. While this explanation is plausible for our system, we also 

consider another interpretation: it may be that the apparent change in phase relationship is caused 

by a shift in influence between two or more follower oscillators, all strongly coupled to the same 

forcing oscillation but at different phases. This concept can be explained by considering a simple 

sinusoidal model in which multiple oscillators are driven at the same frequency but with different 

amplitudes and phases. The observed output y is taken as the superposition of these N oscillations.   
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The observed output can be expressed as a single sinusoid at the same frequency: 
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Note that the phase of the output,  , can be modulated by changing the amplitude of any of  the 

driven oscillators, rather than just their phase.  Respiratory oscillations in blood pressure are known 

to be driven by various mechanisms (cardiac, autonomic, mechanical), with different phase 

relationships between them.  Although the oscillations involved are non-sinusoidal and do not 

combine as a simple linear sum, this model is useful in illustrating a basic concept: that a shifting 

phase relationship between the input and output of a system involving multiple parallel branches 

can be explained by a simple change in the gain of any of those branches.  Each hyperpnea is 

defined by a crescendo in respiratory effort, and respiratory gating is known to modulate the gain of 

the baroreflex.  It is therefore plausible that the observed change in the phase relationship is caused 

by the fact that the level of respiratory gating varies during hyperpnea.   

(45) 

(46) 

(47) 

(48) 
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 The fact that this desynchronisation has not been previously described suggests that it may 

only be noticeable when pacing is used to control heart rate, since heart rate variability strongly 

influences ABP oscillations[Tan & Taylor, 2010].  However, the physiological insight yielded by this 

technique may still be an important one.  Given that the role of respiratory sinus arrhythmia – 

whether it be harmful, benevolent or neutral – is not currently well understood, it is difficult to 

judge the clinical implications of any shifting phase relationship.  However, given that ABP provides 

a feedback loop to multiple aspects of the cardiovascular control system (including ventricular APD, 

it seems), the desynchronisation between ABP and respiration complicates the range of input 

scenarios that may be presented to cardiac electrophysiology during CSA.  The resultant behaviour 

therefore becomes less predictable, possibly increasing the chances that multiple inputs will briefly 

combine to disrupt the normal progression of cardiac electrical excitation and give rise to a fatal 

arrhythmia. 

 

 

V.D. Summary of findings 

 This chapter has described experiments exploring several different approaches to the 

inference of autonomic cardiac control mechanisms from the analysis of electrical recordings.   

 

Attempts to measure asymmetric nervous input to the heart: 

Section V.A covered the use of beat-to-beat ECG measurements such as RR intervals and 

QTC intervals in an attempt to test the Brain-Heart Laterality hypothesis.  The results revealed no 

significant difference in cardiac function according to whether aversive images were presented in the 

left or right visual field, but close inspection of the results suggested that this could be due to the 

weakness of the stimulus rather than the absence of the hypothesised mechanisms.  Hence the 

experiment was inconclusive.   

Nevertheless, it provided useful insight as to whether the variable QTC can be used to 

discern heart-rate independent modulation of repolarisation properties.  This variable has long been 

used to normalise the influence of heart rate, allowing more reliable diagnosis of repolarisation 

abnormalities.  In our experiments, it did not prove useful in discerning subtle, emotionally driven 

changes in autonomic control.  This may be due to the absence of any such changes, but the results 

also point to an error in the choice of training data-set used to identify the QT-RR relationship.  The 

fact that the experiment section in which QTC showed the largest common response was the section 

after habituation took effect indicates that the most relevant variations in QT and RR dominated the 

fitted QT-RR relationship, and were thus eliminated from QTC.  A better approach would be to 

extract the training data-set ECG recording during various changes in posture and exertion.  The 

fitted QT-RR relationship would then reflect the range of values associated with maintaining 
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homeostasis during physical challenges, and the variable QTC might be more sensitive to 

psychological stimuli. 

 

Measuring the HRV response to habituation-prone stimuli: 

Section V.B discussed the use of heart-rate variability (HRV) to monitor autonomic cardiac 

control in psychological experiments that necessitated recordings shorter than the recommended 

duration in order to avoid habituation.  In particular, we explored whether averaging spectra 

calculated from short sections, recorded under similar conditions, would yield spectral 

measurements sufficiently stable to distinguish the effects of psychological differences or 

pharmaceutical interventions.  This approach was found to yield spectra with broad, ill-defined 

peaks at low frequencies, whose energy would leak into adjacent frequencies.  Hence the 

measurement LF was generally unstable.  It is therefore unsurprising that this particular measure of 

autonomic control did not yield a distinction between groups in any of the experiments.   

In contrast, HF exposed a difference between subjects with high and low levels of 

neuroticism, and also exposed an effect of the drug SSRI on autonomic control in high-neurotic 

subjects.  It was also shown that LF/HF, LFn, and especially HFn were sensitive to these 

experiments as indices of autonomic balance.  Based on the number of statistically significant effects 

exposed, HFn appeared to be particularly robust to the low-frequency corruption caused by 

averaging spectra from short signals.  This performance can be explained as a consequence of the 

variable‘s increased sensitivity to cases in which low-frequency leakage is small, hence it should be 

noted that the observed effects may have been concentrated within that subset of patients.  

Collectively, these results indicate that, with the ‗spectral averaging‘ technique, useful measurements 

of HRV can indeed be achieved in psychological experiments subject to rapid habituation. 

 

Novel insights into cardiac autonomic control, inferred from the dynamics of UEG 

measurements: 

Section V.C presented results from experiments in which the algorithms described in 

section IV were used for automatic measurement of activation-recovery intervals (ARIs) from 

unipolar electrograms.  In particular, these experiments focussed on the physiological mechanisms 

linking respiratory behaviour with cardiac electrophysiology.  It was shown that steady-state 

(median) values of ARI are not sensitive to respiratory rate, but the value of ARI often oscillates 

with respiration.  It was not usually possible to precisely characterise the local electrophysiological 

changes underlying observed ARI oscillations, due to the many forms of artefact associated with 

respiratory movements and the variable sensitivity of the ARI measurement to changes in APD.  

Still, the use of pharmaceutical interventions and breath-hold tests indicated that these oscillations 

could not be wholly attributed to movement artefact.  In general, our results suggest that ventricular 

APD is sensitive to the same respiratory gating of autonomic activity as is thought to contribute to 

respiratory sinus arrhythmia.  This mechanism may have important consequences for cardiac 

stability.  Although the precise nature of those consequences is currently unclear, it is hoped that 

dissemination of the discovery will provoke further investigation of the mechanisms involved.   
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An additional novel observation was the desynchronisation between blood pressure 

oscillations and respiration during episodes of Central Sleep Apnea (CSA).  Given that different 

frequencies of ARI oscillation were found to manifest heterogeneously across the ventricles during 

CSA, the desynchronisation of an important feedback parameter could give rise to chaotic patterns 

of electrophysiological behaviour.  A mechanism of this nature might help to explain the increased 

incidence of Sudden Cardiac Death among CSA patients. 
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VI. Conclusion 

VI.A. Summary of achievements 

This thesis presents various novel extensions to existing methods for inferring nervous 

input to the human heart using surface ECG recordings and invasive measurements of cardiac 

electrical activity.  These methods were implemented in various experiments, yielding new insights 

into physiological and psychosomatic phenomena. 

The identification of subject-specific relationships between QT intervals and RR intervals 

measured from ECG recordings was explored as a means of exposing any imbalance between the 

left and right branches of the autonomic nervous system due to psychological processes.  Such an 

imbalance, the existence of which is proposed in the Brain-Heart Laterality hypothesis, could be 

expected to impose separate modulation of heart rate and ventricular repolarisation properties.  

These changes would be revealed in the variable QTC, if calculated appropriately.  Our experiments 

did not confirm the Brain-Heart Laterality hypothesis.  However, the hypothesis could not be 

confidently refuted; the data cast doubts on the effectiveness of the psychological stimuli used, and 

it was noted that the performance of the QTC variable is highly dependent on the training data used 

to establish the subject-specific QT-RR relationship.  A separate contribution to the field of QTC 

measurements was made it section III.B.2, where it was shown that a three-point cubic spline 

consistently models the QT-RR relationship more accurately than the wide range of biparametric 

models employed by previous authors. 

Another group of experiments explored the possibility of using unusually short ECG 

recordings to characterise the autonomic response (in terms of heart-rate variability (HRV)) to 

psychological stimuli.  This approach was based on the hypothesis that any loss of spectral accuracy 

would be justified by the enabled reduction of the effects of habituation.  Habituation, being a 

relatively fast process, ordinarily prevents investigations of this kind.  In our modified approach, 

spectra calculated from multiple short recordings, under similar conditions, were averaged together 

to provide a representation of the subject‘s heart-rate variability response to those conditions.  The 

approach exposed a statistically significant distinction between psychological groups (panic sufferers 

versus control subjects, and high-neuroticism versus low-neuroticism) in terms of their response to 

an emotion-suppression task.  It was also found that an antidepressant (SSRI) had a statistically 

significant effect on the response of high-neuroticism subjects to the task.  Hence it seems that 

spectral averaging can indeed yield useful measurements of HRV, enabling further experiments into 

the cardiac autonomic effects of psychological stimuli.  The performances of the various HRV 

indices in this specialised application were compared.  In particular, it was noted that the normalised 

high-frequency index, HFN, can be interpreted as a measure of autonomic balance that is more 

sensitive than LF/HF to stochastic HRV responses when very short signals are used. 

A novel filtering technique was developed to reduce the artefact introduced to ECG 

recordings by the simultaneous use of fMRI brain-imaging.  In a subset of the experiments 

mentioned above, this filtering made it possible to compare autonomic outflow to the heart with the 
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brain activity involved in regulating that outflow, confirming a difference in activity in a brain region 

associated with emotional processing and autonomic activation (right amygdala).   

It is difficult to ascertain whether an observed task-dependent difference in autonomic 

activity would translate to detrimental or beneficial effects on an individual‘s general health.  

However, the confirmation of differences in psychosomatic response between psychologically 

distinct groups provides a mechanistic argument to support the numerous phenomenological studies 

that have linked psychological pathologies with poorer physical well-being. 

 Contributions to the field of invasive electrocardiographic recordings have also been 

explained.  Algorithms were developed to allow automated detection of activation and recovery 

times from unipolar electrograms (UEGs) with only minimal human intervention.  These algorithms 

enable the handling of large data-sets, such as those required to study heterogeneous 

electrophysiological dynamics.  Because the conventional indices used to measure activation and 

recovery times from UEGs were found to be unsuitable for dynamic analyses, new definitions of 

these indices were developed and shown to provide a more meaningful representation of changes in 

electrophysiological properties.  These stabilised measurements, combined with the automated 

detection algorithms, enable investigations into the mechanisms of cardiac control based on 

observed dynamics. 

The stabilised activation and repolarisation indices were used to explore the involvement of 

respiratory behaviour in autonomic input to the heart.  Heart-rate independent oscillations in ARI 

indicated direct modulation of ventricular action potential morphology by the autonomic nervous 

system.  This novel observation extends the present understanding of respiratory involvement in 

autonomic control of the heart.  It also constitutes a contribution to the persistent debate on the 

nature of respiratory sinus arrhythmia; the phase relationships between respiration and ARI were 

not found to be frequency-dependent, which suggests that respiratory modulation of ANS input to 

the heart is dominated by central mechanisms such as ‗gating‘, rather than by the baroreflex 

response. 

It was noted that, for UEG recordings, separating respiratory motion artefacts from related 

electrophysiological effects is difficult.  Pharmaceutical manipulation of the ANS was used in this 

case to partially overcome the problem.  Nevertheless, the developed measurements are best suited 

to measuring electrophysiological dynamics that are not accompanied by motion artefacts (or other 

lead field changes) with similar dynamics. 

 In a subset of patients, spontaneous incidences of Central Sleep Apnea were found to 

produce heterogeneous oscillations in ARI across the ventricles.  Additionally, the phase 

relationship between respiration and blood pressure oscillations was found to shift during each 

episode of hyperpnea.  This combination of ventricular electrophysiological (ARI) effects and the 

desynchronisation of an important feedback mechanism (ABP) were hypothesised to be pro-

arrhythmic, potentially contributing to the previously observed link between CSA and Sudden 

Cardiac Death. 
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VI.B. Plans and suggestions for further work 

The work described in this thesis might be extended in terms of further validation of the 

developed methods of analysis, new applications for those methods, and further investigation of the 

novel physiological insights described.  The common purpose in all of the works described in this 

thesis was to improve the accessibility of in vivo human data on interactions between the heart and 

the autonomic nervous system.  The validation of several novel tools for this purpose enables a 

‗systems identification‘ approach to this field, and it is hoped that this will lead to increased 

contributions from engineers experienced in the characterisation of unknown systems.  An 

improved understanding of the mechanisms that lead to fatal arrhythmias could ultimately prevent 

thousands of unnecessary deaths in the UK alone each year.  More specific suggestions for further 

work are detailed in the paragraphs below. 

The benefits of the short-recording HRV technique, used to overcome the obstacle of 

habituation in psychological experiments, might be further confirmed by comparing measurements 

from spectra averaged from four 30-second stimulation periods with spectra from 2-minute 

continuous recordings.  The spectral content is likely to be different due to the effects of 

habituation, preventing direct comparison.  However, if the ‗spectral averaging‘ approach is found 

to provide better discrimination between, for example, different psychological groups, this would 

confirm that the sacrifice in terms of the spectral accuracy achieved from shorter recordings is 

justified by the benefits of reducing the overall effect of habituation.  The precise nature of this 

trade-off is expected to be highly dependent on the psychological task used. 

 The new method has already exposed differences between psychologically distinct groups in 

terms of their psychosomatic response to an emotion-suppression task.  Hence the approach is of 

use to groups investigating other psychopathologies and stimuli.  The clinical importance of the 

distinctions observed in this thesis are currently being further explored by our collaborators at the 

University of Oxford‘s Department of Psychiatry, who are designing follow-up experiments to 

elucidate the nature of the psychosomatic differences. 

As mentioned previously, the tools developed for UEG analysis have been employed by 

researchers at the University of Oxford, headed by Dr. Blanca Rodriguez, to investigate spatial 

heterogeneity of ARI rate-adaptation profiles.  A team at the Heart Hospital in London, headed by 

Dr. Pier Lambiase, is developing a real-time implementation of the algorithms to allow in situ 

assessment of tissue properties during heart surgery.  The observed behaviours will be compared 

with computational models of alternans in development at the University of Manchester, under Dr. 

Mark Boyett, to provide a better understanding of the mechanisms driving this phenomenon.   

The stabilised indices AS and RS have been shown to provide more meaningful 

representations of electrophysiological dynamics.  However, the sensitivity of the resulting ARI 

measurements to the underlying changes in action potential duration has not yet been thoroughly 

characterised.  As described in the recommendations at the end of section IV, this can be achieved 

in future by a direct comparison with measurements from MAP recordings. 
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Appendix I. Deriving an Expression for Extracellular 

Potential, in Terms of Transmembrane 

Potential, Using the Core-Conductor Model 

By definition, the transmembrane potential mv  is 

 

eimv    

 

where i  and e  are the intracellular and extracellular potential.  Examining the partial derivative 

with respect to x , position along the length of the myocyte, and applying Ohm‘s law, we achieve 
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v
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where iI  and eI  are the longitudinal currents and iR  and eR  are the resistance per unit length for 

the intracellular and extracellular domains.  Note that this is the continuous version of the discrete 

model shown in Figure 17 (page 50).  If we define the total axial current, I , as 

 

ei III   

 
then (50) can be written as 
 

  eeii
m RIRRI
x

v





. 

 

By invoking Ohm‘s law again to replace iI , this becomes 

 

 
The defining characteristic of the core-conductor model is that all extracellular currents are 

assumed to be in the longitudinal (axial) direction.  In the absence of any external current source, 

Kirchoff‘s law dictates that 

 

0 ei III . 

 
Rearranging (53) then gives 
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Integrating with respect to x  and ignoring the integration constants as an arbitrary offset voltage, 

we have 

 

(49) 

(50) 

(51) 

(52) 
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(53) 

(54) 

(55) 
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Using (49) we get 
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Appendix II. Deriving an Expression for the Unipolar 

Electrogram, Incorporating The Lead Field 

Concept 

For completeness, the full derivation for (2) (page 51), taken from [Geselowitz, 1989] and 

[Geselowitz, 1992], is as follows.  Green‘s theorem, also known as Green‘s second identity, can be 

written for any two scalar fields   and   as[Plonsey & Barr, 2007] 

 

    SddVV
SH


   22

 

 

Let S  be the surface of the body, so that V  is the volume contained by the body, then choose   

as the extracellular potential field, e , and let   be Z , where   is the effective conductivity at 

each point in the body.  If Z  is the lead field for a particular electrode configuration, then Z  is 

the potential field that results when a unit current is applied to that lead.  If the body is assumed to 

be perfectly insulated, then the right-hand side of (59) is zero because no current will flow across 

the boundary.  That is, 0 Sd


  and 0 SdZSd


 .  After rearranging, this leaves 

 

dVZdVZ ee   
 

 

Now, let iJ


 be the impressed current density that results from membrane activity and let J


 be the 

net current density.  Applying Ohm‘s law,  

 

ie JJ


  . 
 
In the absence of any sources or sinks, we have 
 

0 J


. 
 
Taking the gradient of (61), we can then write 
 

ie J


   
 

(63) can be substituted into the left side of (60).  Now let p  and q  be the positions of the 

exploring and reference electrode.  In the right side, Z  can be assumed to belong to the class of 

functions known as Green functions,[Jackson, 1998] in which case Z2  is 0 except for singularities at 

p  and q , where its volume integral is /1  and /1  respectively.  Hence… 

 

)()( qpdVJZ eei  


 

 

The right side of this equation is the negative of the UEG voltage.  For later convenience, the left 

side can be expressed using iJ


 instead of iJ

 .  This form is achieved as follows.  From the 

divergence theorem (also known as Gauss‘s theorem) and the chain rule…  

 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 
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    dVZJJZSdZJdVZJ iiii  


 

 

Because iJ


 is zero at the surface – that is, the surface wholly contains the myocardium – the 

middle expression is zero.  Hence the terms on the right are equal and opposite. 

 

dVZJdVJZ ii  


 

 

This is the expression that allows us to rewrite (64) as… 

 

dVZJUEG i 


 

 

Without changing the value of this expression, we can redefine that boundary as the outer surface 

of the heart, which still contains all non-zero values of iJ


.   

The interpretability of this expression can be improved if we replace iJ


 with a term involving the 

familiar transmembrane potential, mv
.  As mentioned previously, a fundamental principle of the 

bidomain model is that the membrane current per-unit-volume, mi , is the only exchange of current 

between the two domains.  This principle can be expressed by the following two equations, which 

state that the membrane current per-unit-volume is equal to the change in current within each 

domain[Miller & Geselowitz, 1978]. 

 

mii i 
 

mee i   

 

The impressed current density iJ


 
must be related to the source mi  by  

 

mi iJ 


 

 

Comparing (68) and (69) we see that iJ


 is also the intracellular current density, iiiJ  


. iJ


 

can alternatively be interpreted as a current dipole moment per-unit-volume (units: amp-

meters/meter3, rather than amps/meter2), an interpretation that is more readily reconciled with our 

model of the two domains as continuous volumes. 

Because the extracellular space is expansive, and therefore highly conductive, relative to the 

intracellular space, it can be assumed that spatial differences in transmembrane potential are 

dominated by changes in intracellular potential rather than extracellular potential.  That is,  

 

ieimv  
. 

 

The source can therefore be written in terms of the transmembrane potential as 

 

mii vJ  


. 
 
Substituting this expression into (67) yields 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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dVZvUEG mi   . 

 
By using a similar manipulation to that used in (65), this can be rewritten as 
 

dVZvSdZvUEG immi   


. 

 

The second term contains another volume integral of Z2 , but for the newly defined surface, 

only the exploring electrode is contained within the volume, so the function has just one singularity 

at p .  The integral of that singularity is B/1 , where eiB    is the bulk conductivity,  the 

combined effective conductivity of the intracellular and extracellular domains. 

 Hence we can write 

 

 pvSdZvUEG m

ei

i

mi






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
 

 

In the second term,  pvm  is the membrane potential at the electrode in the myocardium.  Note 

that this term matches the expression for local extracellular potential derived using the core-

conductor model, hence it is used as the UEG‘s ―local component‖ in the model of [Potse et al, 

2009].  The first term is the ―remote component‖. 

(72) 

(73) 

(74) 
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Appendix III. Deriving an Expression for the Extracellular 

Potential Induced by a Single Myocyte in an 

Infinite,  Homogeneously Conductive 

Medium 

 First, consider a point current source with magnitude Si .  Assuming uniform extracellular 

conductivity e , the current density J


 at some distance r  from the source will be evenly 

distributed about the surface of a hypothetical sphere with surface area 
24 r .  Hence the 

magnitude of J


 will be 

 

24 r

i
J S





. 

 
The extracellular potential gradient at a distance r  is then given by 

 

24 r

iJ

dr

d

e

S

e

e
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Relative to some infinitely distant reference potential, the induced potential at some arbitrary point 

p  can then be found by integrating with respect to r : 

 

pe

S
e

r

i




4
  

 

 The membrane-current-per-unit-length mi  of a roughly cylindrical myocyte can be 

modelled as a distribution of point sources along the axis of the cell.  Each infinitesimal section, dx , 

of the cell‘s length then makes a contribution ed  to the potential at p . 

 

dx
r
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d

e

m

e
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
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  

 

The total contribution of this cell to the potential at p  can then be found as a function of time by 

integrating along the cell‘s length L . 
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 As before, it is convenient to replace  txim ,  with the transmembrane voltage  txvm , , 

the time-course of which is more easily observable and thus more familiar.  An expression relating 

the two can be achieved by considering the intracellular current and potential, ii  and i .  From 

Ohm‘s law, these quantities are related by the intracellular resistance-per-unit-length, iR , as 

 

(75) 

(76) 

(77) 

(78) 

(79) 
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1
. 

 

Because the extracellular domain is expansive, ie RR  , which implies that xx ie   .  

Applying this relationship to the definition of transmembrane voltage ((49), page 212) gives 
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(80) then becomes 
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Consider that the only possible external contribution to the intracellular current is the membrane 

current-per-unit-length mi .  Kirchoff‘s law then yields 

 

x

i
i i

m



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Combining (82) and (83) we get 
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To widen the applicability of this expression, iR  can be written in terms of a measurable property 

that is not dependent on cell geometry, the intracellular conductivity i .  For a cell radius a , i  

is related to iR  by 

 

i

i
a

R
 2

1
  

 

Combining (84) and (85) into (79), we reach 
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(86) 

 The r1  term in the integrand of can be thought of as a transfer function H  that is 

convolved with local membrane behaviour to determine its influence at p .  If p  is defined by the 

coordinates 'x , 'y , and 'z , then the convolution form of  is  
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where k combines the constant factors and  'xxH   is 

 
     222

'''

1
'

zyxx
xxH


  

 

Note that the coordinate system has been defined such that 0 zy  along the axis of the 

myocyte.  This expression allows to examine the relationship between electrode positioning and the 

spatial specificity of the UEG.  Figure 23 (page 61) shows the transfer function  'xxH   for 

 mmp 2.0,0,0  and  mmp 2,0,0 . 

(88) 
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Appendix IV. Custom Software for Automated QRS 

Detection 

AppIV.A. Detection algorithm 

QRS complexes, produced by ventricular depolarisation, are typically the most prominent 

feature of a surface ECG, and are therefore the most reliable indicator of beat-to-beat timing.  It is 

for this reason that, as mentioned previously, most heart rate variability (HRV) measurements are 

calculated from a series of RR intervals, the intervals between consecutive R waves.  Because these 

measurements are typically taken from lengthy recordings, automated QRS detection algorithms 

substantially decrease the time-cost of the calculations.  Numerous detection algorithms have been 

developed, with widely varying degrees of complexity, but even very simple algorithms can achieve 

accuracies of better than 99.5 percent[Köhler et al, 2002]. 

The total length of signal to be tested for the experiments discussed in this thesis was 

relatively small when compared with the 24-hour recordings used for diagnostic purposes, which 

necessitate extremely high reliability.  Hence it was acceptable to implement a relatively simple QRS 

detection system incorporating a small amount of guidance from a human operator to avoid errors.  

Section AppIV.B describes a procedure developed to minimise the time-cost associated with this 

‗guidance‘. 

A more challenging requirement was that the algorithm needed to be robust to the large 

ECG distortions induced by the simultaneous use of MRI, as described in the previous section.  It 

was shown that the higher frequency content of the MRI artefact could be satisfactorily attenuated, 

leaving only the blood-flow artefact and small distortions caused by processing.  An algorithm was 

developed that successfully identified QRS complexes in the presence of these distortions using two 

key principles:  1)  By incorporating only the simplest assumptions about the morphology of the 

QRS complexes, the algorithm remains robust to artefacts that distort the signal in unpredictable 

ways.  2)  The use of the previously described segment-mean technique for MRI artefact attenuation 

ensures that the remaining artefacts can be distinguished from QRS complexes based on their 

frequency content.  The frequency content of blood-flow artefacts is typically much lower than that 

of the QRS except during ventricular contraction.  Ventricular contraction is unlikely to occur at the 

same time as the QRS; instead, it generally coincides with ventricular repolarisation (see Figure 2, 

page 24).  Hence the artefact that coincides with the QRS can be expected to occupy lower 

frequencies.   

It should be noted that, in the presence of certain arrhythmias or extremely high heart rates, 

some overlap may occur between the QRS and ventricular contraction.  In these cases, the blood 

flow artefact caused by the concurrent use of MRI and ECG may make it difficult to reliably 

identify QRS complexes.  This is an important limitation for experiments of this nature, rather than 

a limitation of the proposed QRS detection procedure. 
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The developed algorithm is described below and in Figure 91: 

 

I. Two criteria are chosen for identifying the R wave:  minimum magnitude, M, and maximum 

duration, T .  Because the R waves appear distinctly as short sharp spikes, when chosen 

carefully these two criteria are usually sufficient for identifying all R waves in a signal.   

II. The signal is scanned using a moving time-window of length T  that stretches ahead of the 

initial point, t . 

III. The difference between the signal at t  and Tt   is taken as a measure of the local overall 

trend in the data.  This trend is effectively subtracted out of the signal so that we deal only 

with the local spike, if there is one.  This step is effectively a high-pass filter to exploit the 

difference in frequency content between the QRS and the blood-flow artefact, as explained 

previously.  The key difference between this approach and conventional filtering is that the 

use of a finite window amounts to a precisely defined cut-off frequency, while the removal 

of a linear trend avoids unpredictable distortions of the QRS. 

IV. If the changes in the signal from t  to t+T/2 and from t+T/2 to Tt   are both greater 

than M and are of opposite sign, the deflection qualifies as an R wave (which can be 

assumed to be part of a QRS complex).  Although the implicit assumption that the peak of 

 
Figure 91:  An illustration of the R wave detection method described in steps II-IV above, applied 

to an ECG signal containing blood-flow artefacts caused by the concurrent use of MRI. 
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the R-wave will occur halfway through the time window is not strictly valid, if the parameter 

T  is chosen appropriately the method works well. 

V. The time at which the signal reaches its maximum absolute value within the window is 

taken as the R-wave time, the representative index of the timing of that heart beat. 

  

Two drawbacks of the proposed QRS detection algorithm should be noted at this point.  

Firstly, by using a single set of detection parameters for each signal, the algorithm assumes that the 

basic morphology of the ECG trace does not change significantly throughout the signal.  This 

assumption is valid only when the heart is allowed to follow its natural rhythm, with no extreme 

stimuli and no ectopic beats occurring.  Hence in many experimental settings the assumption does 

not hold, particularly when intermittent pacing is used.  The activation wavefront of a beat initiated 

naturally in the sinus node progresses very differently from one initiated by a pacing electrode at 

some other location, so the resultant ECG morphology is very different.  It is therefore unlikely that 

a single set of detection parameters will be well suited to the whole signal in those circumstances.  

Secondly, the use of user-defined signal-specific parameters slows the overall speed of data 

processing due to the additional time required to select those parameters.  Steps taken to ameliorate 

this problem are described in the following section. 

 

AppIV.B. An efficient procedure for choosing detection parameters 

Automatic detection of QRS complexes greatly increases the tractability of HRV 

measurements, which require long recordings for which manual annotation would be impractical.  

However, even the most advanced algorithms require manual verification and correction when 

novel results are being presented.  With this in mind, a graphical user interface (GUI) called 

RRvarGUI (RR interval variability GUI) was developed to minimise the time taken to perform 

manual verification of detected QRS complexes.  As seen in Figure 92, the GUI provides input 

boxes for adjustments to the detection parameters, and also displays the ECG itself and the time 

series of RR intervals.  Markers can optionally be superimposed onto these plots to indicate the 

timing of events in the experiment.   

As a tool to assist in the evaluation and optimisation of the QRS detection parameters, the 

interface also incorporates a Poincaré plot of the RR intervals.  A Poincaré plot presents a series 

with each value plotted against the preceding value.   Hence it offers a useful qualitative measure of 

beat-to-beat variability.  With a small amount of practice, it can be interpreted very quickly and is 

richly informative.  Poincaré plots of RR intervals have proven diagnostic value[Woo et al, 1992] but their 

implementation as a tool for parameter refinement is novel.   

The key reason for employing a Poincaré plot in the optimisation of QRS detection 

parameters is that they are only sensitive to RR-variability on a time-scale of one heart beat, and 

large variations on this scale are characteristic of erroneous QRS detection.  If the detection 
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algorithm has missed a beat or made a false-positive detection, an RR interval will be found that is 

abnormally long or short, respectively.  This incorrect measurement will produce two or three 

outliers on the Poincaré plot.  Smoother, physiological variations in RR intervals will not produce 

such outliers, even if they amount to a large deviation from the mean RR interval.  If only the time-

series window is used for verification then these natural variations may be confused with the brief 

variations associated with detection errors, especially when viewing on a coarse time-scale.  Hence 

the Poincaré plot offers a much faster means of determining whether any detection errors are 

present, while the RR interval time-series window can then be used to assist in locating those errors.   

The intended procedure for selecting QRS detection parameters using RRvarGUI is as 

follows:  

 

I. The user makes an initial estimate of an appropriate value for the minimum magnitude 

criterion, M , by viewing a small section of the signal in the ECG trace window.  In Figure 

92, 5.0M  is used.  The maximum duration criterion rarely needs to be changed from 

sT 07.0 . 

 
Figure 92:  RRvarGUI, developed for ECG processing.  Detected QRS complexes are marked by 

red vertical lines on the ECG trace.  On the RR interval plot, two red lines (too close to 
distinguish from each other in this screenshot) indicate the current viewing window for the ECG 
trace.  In the Poincaré plot, outliers highlight the presence of a detection error.  Three buttons in 

the bottom-right corner can be used to begin optional subsequent processing: “RR Spectral 
Analysis” (HRV), “T-Wave Measurements”, and “RR Entropy” (HRV). 
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II. The Poincaré plot is examined.  If the parameters have been chosen appropriately, one can 

expect to see a closely grouped cloud of points.   

III. If the Poincaré plot contains outliers, the user examines the RR interval plot to locate the 

anomaly.  In Figure 92, we can see that an abnormally short RR interval of less than 0.4s 

has been found roughly 1150 seconds from the start of recording. 

IV. The user adjusts the viewing window for the ECG trace to find the suspicious 

measurement, then assesses the cause of any error and adjusts the detection parameters 

accordingly.  The detection algorithm executes automatically when these parameters are 

adjusted. 

V. The user repeats steps II-IV until the detection parameters are chosen satisfactorily. 

 
 

 

AppIV.C. An interface for manual corrections 

For some signals, no single set of parameters exists that achieves error-free QRS detection 

with the developed algorithm.  Rejecting all such signals could substantially reduce the size of the 

data set, jeopardising the statistical significance of any results from the study.  Instead, it is 

preferable to use manual correction of the measurements to bridge the gap in reliability between 

human detection and automated detection.  Another custom GUI was developed to facilitate the 

correction process, as seen in Figure 93.  This GUI is executed after QRS detection parameters have 

been chosen and before subsequent analyses such as HRV measurements. 

 
Figure 93:  A GUI developed to allow quick and easy correction of detected QRS complexes.  By 

point-and-click interaction, R-waves can be added, deleted, or discounted as ectopics.  In this 
example of a heavily distorted signal, the ECG trace shows two complexes that have not been 

detected because they are slightly smaller than the others. 
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The GUI was designed to allow R-wave times to be added, deleted, or discounted by 

clicking within the ECG trace window.  When new R-waves are being added, the user has the 

option of inserting at the exact point where they click or at the peak nearest to the point where they 

click.  Thus the user can choose between full human control and increased speed for each 

correction made.  The ability to discount certain QRS complexes by labelling them as ‗ectopics‘ is 

important for HRV analysis because it allows them to be replaced by interpolation in the RR interval 

series, minimising their distortion of the HRV measurement as an indicator of ANS input to the 

sino-atrial node.  In other analyses, such as T-wave measurements, any beats that are expected to 

corrupt the measurement can be excluded by treating the preceding QRS as an ectopic. 
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Appendix V. The Berger Method for Calculating QT 

Intervals 
 The QT interval can broadly be interpreted as the time between a QRS complex and the 

subsequent T-wave in an ECG recording.  A more precise definition can be achieved by defining 

fiducial points, the points that mark the beginning and end of the interval.  Given the nature of the 

QT interval as a global approximation of the timing of cardiac behaviour, there is some degree of 

arbitrariness in the selection of instantaneous fiducial points.  When QT intervals are measured 

manually, they are typically taken from the onset of the QRS wave to the end of the T-wave.  There 

is scope for uncertainty in these reference points since either of them may be temporally indistinct.  

They are identified as the initial deviation from or return to the isoelectric baseline, but that baseline 

cannot be defined with certainty and any divergence from it may be gradual.  The isoelectric line is 

typically identified using a low-pass filter or by interpolating between PR intervals (the gaps between 

each P wave and the onset of the next QRS complex).  For the QRS fiducial point, alternatives that 

are more easily distinguished include the nadir of the Q-wave or the peak of the R-wave.  Similarly, 

the peak of the T-wave, rather than the end of it, is sometimes used to mark the end of the QT 

interval.  When the end of the T-wave is used, ambiguities are normally avoided by extrapolating 

along the steepest downslope of the T-wave to find the intersection between this construction line 

and the isoelectric baseline (Figure 94). 

 

 A common problem with all of the conventions described above is that each fiducial point 

is vulnerable to localised variations that are not representative of global behaviour.  They produce 

QT interval measurements that are useful for diagnostic purposes, where extreme deviations from 

the norm can be identified without the need for great precision; they are not sufficiently precise for 

tracking the time-course of repolarisation properties in response to subtle stimuli.  Berger and 

colleagues propose a method that provides a more stable measurement, at least on an intra-

individual basis, by taking into account the whole shape of the T-wave[Berger et al, 1997].  Their method is 

as follows (see also Figure 95): 

 

I. Let  nx  represent the n th sample of the ECG signal. 

II. R-wave peak for each i th beat is identified at iRn  , using any QRS detection method. 

 
Figure 94:  Where the end of a T-wave is indistinct the intersection of the steepest downslope with 

an isoelectric baseline may be used.  In this particular case the region of uncertainty is 
approximately 30 ms long. 
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III. The user defines the beginning and end of a QT interval for a single beat, which will serve 

as a template and is referred to as beat k .  These points are 0n  and 1n , respectively. 

IV. Each i th beat is stretched temporally about the R-wave peak, iR , by a factor  .  The 

squared error between the T-wave in question and the template T-wave is defined as... 

 

      





kRn

sj

iki jRxjRx
1

2
  

 

... where s  is a blanking period, normally equivalent to 50ms, used to exclude the tail-end 

of the QRS complex from the error calculation.  The value of  that minimises this error is 

i̂ .  Note that   is rounded to obtain an integer sample number. 

V. A nominal QT interval for any i th beat is taken as… 

 
 
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nn
QT 01ˆ


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… where sf  is the sampling frequency used. 

 

 This method does not improve on conventional QT interval measurements in terms of 

diagnostic value or the reliability of comparisons between individuals, since the definition of the 

onset and end of the template interval is still somewhat arbitrary.  However, the Berger method can 

be expected to offer reduced sensitivity to small noise deflections in critical areas of the ECG.  It is 

more appropriate than conventional measurements for tracking the time-course of repolarisation 

behaviour in a single subject because it takes the shape of the whole T-wave into account.  For this 

reason, it was implemented as an extension to RRvarGUI, along with the conventional means of 

measuring QT interval.  The ability to measure T-wave amplitude and area were also incorporated 

into the program.  

 

(89) 

(90) 

 
Figure 95:  Illustration of the Berger method.  Note that the template and fitted T-waves have 

been elevated slightly for clarity. 
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Appendix VI. Matlab Code to Find and Remove Pacing 
Artefacts 

 

 

% Locates pacing spikes in a unipolar electrogram. 

% Created by David Western, 

% Department of Mechanical Engineering, University College London. 

function [spikes,masterwave] = replace_pacing_spikes2(spiky,handles) 

  

h = waitbar(0,'Replacing pacing spikes...'); 

  

% Remove baseline wander: 

[b,a] = MYbutter(3,0.5/(handles.Fs/2),'high'); 

masterwave = MYfiltfilt(b,a,handles.rawwave); 

  

% Differentiate 'spiky' once for the sake of identifying a fiducial point 

% (later): 

spikydiff1 = diff(spiky); 

temp = spiky; 

% Differentiate 'spiky' 8 times!: 

spiky = diff(spiky,8); 

% Compensate for the reduction in vector length: 

spiky = [spiky(1); spiky(1); spiky(1); spiky(1); spiky]; 

spiky = [spiky; spiky(end); spiky(end); spiky(end); spiky(end)]; 

  

waitbar(0.1,h) 

  

% Create low-pass-filtered wave to replace spikes with 

[b,a] = MYbutter(3,[0.5 12]/(handles.Fs/2),'bandpass'); 

lpfwave = MYfiltfilt(b,a,handles.rawwave); 

  

% Find the spikes and blank them out 

thresh = 2.5*prctile(spiky,99); 

k = round(0.03*handles.Fs); 

c = 0; 

while k<length(spiky)-round(0.03*handles.Fs) 

    k = k+1; 

    if abs(spiky(k))>thresh/6    

      % Seek beginning and end of spiky activity: 

        [tip,tipind] = max(abs(spiky(k:k+round(0.01*handles.Fs)))); 

        if tip<thresh 

            continue 

        end 

        k = k+tipind-1; 

        ind = find(abs(spiky(k-round(0.012*handles.Fs): 

k+round(0.012*handles.Fs)))>tip/15); 

        if ~isempty(ind)    

            ind = ind+(k-round(0.012*handles.Fs)-1); 

            startspike = ind(1)-round(0.0017*handles.Fs); 

            endspike = ind(end)+round(0.004*handles.Fs); 

             

            if abs(masterwave(endspike)-masterwave(startspike))> 

0.5*range(masterwave(startspike:endspike)) 

                % Net-shift criterion 

                continue 

            end 

            halfsec = round(0.5*handles.Fs); % Number of samples in half a 

second (for convenience). 

            if k>2*halfsec & k<length(masterwave)-2*halfsec 

                if abs(mean(masterwave(startspike:endspike)))> 

0.3*range(masterwave(startspike-

halfsec:endspike+halfsec)) 

                    % The spike is big and roughly monophasic.  Ignore it. 

                    continue 

                end 

            end 

  

              

            % Choose a fiducial point for the spike - the first big 
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            % upstroke. 

            maxup = max(spikydiff1(startspike:endspike)); 

            ups = find(spikydiff1(startspike:endspike)>0.25*maxup); 

            if isempty(ups) 

                continue 

            end 

             

            c = c+1; 

            spikes(c) = ups(1)+startspike; 

            waitbar(k/length(spiky),h) 

  

          % Blank out that region: 

            implant = lpfwave(startspike:endspike); 

           % Retrend implant to avoid discontinuities: 

            % Shift implant so that first point meets masterwave: 

            implant = implant+(masterwave(startspike)-implant(1)); 

            % Add a trend to implant so that last point meets masterwave: 

            endlevel = masterwave(endspike); 

            for d = 2:length(implant) 

                implant(d) = implant(d)+(d-1)/(length(implant)-1)*(endlevel-

implant(end)); 

            end 

           % Insert implant: 

            masterwave(startspike:endspike) = implant; 

  

            k = k+round(0.03*handles.Fs); 

        end 

    end 

end 

close(h) 
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Appendix VII. Matlab Code to Find Stabilised Activation 
Times (AS) 

 

% Find STABILISED activation times in a unipolar electrogram. 

% Created by David Western, 21-7-2010 

% Department of Mechanical Engineering, University College London. 

function [A,Astart,Aend] = getAcent(handles) 

  

params.window = 0.15; % Window size (in s) in which an activation can occur. 

params.Fc = [0.5 150]; % Bandpass filter cut-off frequencies in Hz. 

params.R_to_broadRNG = 0.3; % Minimum value of DownRNG/broadRNG. 

params.shift_factor = 0.6; 

params.WinRNG_to_broadRNG = 0.00; % Minimum value of WinRNG/broadRNG. 

  

[b,a] = MYbutter(4,params.Fc/(handles.Fs/2),'bandpass'); % Filter coefficients. 

fwave = MYfiltfilt(b,a,handles.nswave); 

[b,a] = MYbutter(3,[48 52]/(handles.Fs/2),'stop'); % Filter coefficients. 

fwave = MYfiltfilt(b,a,handles.nswave); 

  

% Miscellaneous preliminaries 

N = length(fwave); 

broadRNG_ref_per = 0.2*handles.Fs; % Refresh period for broadRNG 

broadRNG = range(fwave(1:round(4*broadRNG_ref_per))); 

broadSlPtl = prctile(diff(fwave(1:round(4*broadRNG_ref_per))),1); 

[b,a] = MYbutter(3,[0.5 30]/(handles.Fs/2),'bandpass'); 

fwave2 = MYfiltfilt(b,a,handles.nswave); 

  

nsampwin = round(handles.Fs*params.window); % Number of samples in the size 

                                            % of window in which an  

                                            % activation spike can occur. 

p = 1; % Search position marker. 

c = 0;  % Count of activation times found. 

  

getAWait = waitbar(0,'Finding activation times...'); 

  

jump = round(0.01*handles.Fs); 

next_broadRNG_refresh = 4*broadRNG_ref_per; 

while p < N-2*nsampwin 

    

    if p>next_broadRNG_refresh && c>0 

         

        if p-A(c)<1*handles.Fs 

            ind = min(A(c)+round(0.09*handles.Fs),p-round( 

1.5*broadRNG_ref_per)):p+round(5*broadRNG_ref_p

er); 

        else 

            ind = p-round(1*handles.Fs):p+round(3*broadRNG_ref_per); 

        end 

        if ind(end)>length(fwave2) 

            ind = p-4*broadRNG_ref_per:p; 

        end 

        broadRNG = range(fwave2(ind)); 

        broadSlPtl = prctile(diff(fwave2(ind)),1); 

        next_broadRNG_refresh = next_broadRNG_refresh+broadRNG_ref_per; 

    end 

    p = p+jump; 

  

    if rem(p,500)==0 

        waitbar(p/N,getAWait) 

    end 

  

    SigInWin = fwave(p:p+nsampwin-1); 

    slopes = SigInWin(3:end)-SigInWin(1:end-2); 

    slopes = [NaN; slopes]; 
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    down = find(slopes<0); 

    if isempty(down) 

        continue 

    end 

     

    DownRNG = range(SigInWin(down)); 

     

    front_cliplim = round(0.35*nsampwin); 

    back_cliplim = round(0.65*nsampwin); 

    if DownRNG > params.R_to_broadRNG*broadRNG 

        % Narrow down window: 

        % If 1/20 of the window contains less than 1/100th of the range, 

        % clip it. 

        cutoff = 1; 

        sigsec = SigInWin(cutoff:cutoff+round(0.05*nsampwin)); 

        ssrange = max(sigsec)-min(sigsec); 

        while ssrange<0.02*DownRNG && cutoff<front_cliplim 

            cutoff = cutoff+round(0.05*nsampwin); 

            sigsec = SigInWin(cutoff:cutoff+round(0.05*nsampwin)); 

            ssrange = max(sigsec)-min(sigsec); 

        end 

        cutoff = cutoff-round(0.05*nsampwin); 

        cutoff = max(1,cutoff); 

        SigInWin = SigInWin(cutoff:end); 

        ptemp = p+cutoff-1; 

        front_cliplim = front_cliplim-cutoff+1; 

        back_cliplim = back_cliplim-cutoff+1; 

        % Same backwards. 

        cutoff = length(SigInWin); 

        sigsec = SigInWin(cutoff-round(0.05*nsampwin):cutoff); 

        ssrange = max(sigsec)-min(sigsec); 

        while ssrange<0.02*DownRNG && cutoff>back_cliplim+0.1*nsampwin 

            cutoff = cutoff-round(0.05*nsampwin); 

            sigsec = SigInWin(cutoff-round(0.05*nsampwin):cutoff); 

            ssrange = max(sigsec)-min(sigsec); 

        end 

        SigInWin = SigInWin(1:cutoff); 

        back_cliplim = min(back_cliplim,cutoff); 

        net_shift = abs(SigInWin(end)-SigInWin(1)); 

         

        slopes = SigInWin(3:end)-SigInWin(1:end-2); 

        down = find(slopes<0); 

        DownRNG = range(SigInWin(down)); 

        if isempty(net_shift) || isempty(DownRNG) 

%             disp('too much clipping?') 

            continue 

        end 

        if net_shift<params.shift_factor*DownRNG && DownRNG > 

params.R_to_broadRNG*broadRNG      

            WinRNG = range(SigInWin); 

            PreRNG = range(fwave(max(1,ptemp-

round(1*length(SigInWin))):ptemp+round(0.01*len

gth(SigInWin))));        

            if nanmin(slopes)<broadSlPtl && WinRNG>0.85*PreRNG % && 

WinRNG>params.WinRNG_to_broadRNG*broadRNG 

                % This last criterion (WinRNG>0.85*PreRNG) was only  

                % necessary before effective removal of pacing artefacts  

                % was developed. 

                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                % All criteria have been met -> we have an activation 

                % time. 

                c = c+1; 

  

                cand = 1; % Number of candidate windows that may be used to 
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                          % represent this activation. 

                 

                clear DownRNG net_shift WinRNG candwin candlpwin dropB dropE 

  

                % There will be a range of positions around here in 

                % which we could place the window and still meet the 

                % criteria.  Let's choose the best one. 

                 

                % Preserve these in case the window refinement fails. 

                origSigInWin = SigInWin; 

              try 

                p2 = p; 

                while p2 < min(p+round(1.5*nsampwin),length(fwave2)-nsampwin) 

                    SigInWin = fwave(p2:p2+nsampwin-1); 

                    slopes = SigInWin(3:end)-SigInWin(1:end-2); 

                    slopes = [NaN; slopes]; 

                     

                    down = find(slopes<0); 

                    if isempty(down) 

                        p2 = p2+ceil(0.004*handles.Fs); 

                        continue 

                    end 

                    DownRNG(cand) = range(SigInWin(down)); 

                     

                    front_cliplim = round(0.35*nsampwin); 

                    back_cliplim = round(0.65*nsampwin); 

                    if DownRNG(cand) > params.R_to_broadRNG*broadRNG 

                        % Narrow down window: 

                        % If 1/20 of the window contains less than 1/100th of the 

range, 

                        % clip it. 

                        cutoff = 1; 

                        sigsec = SigInWin(cutoff:cutoff+round(0.05*nsampwin)); 

                        ssrange = max(sigsec)-min(sigsec); 

                        while ssrange<0.02*DownRNG(cand) && cutoff<front_cliplim 

                            cutoff = cutoff+round(0.05*nsampwin); 

                            sigsec = 

SigInWin(cutoff:cutoff+round(0.05*nsampwin)); 

                            ssrange = max(sigsec)-min(sigsec); 

                        end 

                        cutoff = cutoff-round(0.05*nsampwin); 

                        cutoff = max([1 cutoff]); 

                        SigInWin = SigInWin(cutoff:end); 

                        p2 = p2+cutoff-1; 

                        front_cliplim = front_cliplim-cutoff+1; 

                        back_cliplim = back_cliplim-cutoff+1; 

                        % Same backwards. 

                        cutoff = length(SigInWin); 

                        sigsec = SigInWin(cutoff-round(0.05*nsampwin):cutoff); 

                        ssrange = max(sigsec)-min(sigsec); 

                        while ssrange<0.02*DownRNG(cand) && 

cutoff>back_cliplim+0.1*nsampwin 

                            cutoff = cutoff-round(0.05*nsampwin); 

                            sigsec = SigInWin(cutoff-

round(0.05*nsampwin):cutoff); 

                            ssrange = max(sigsec)-min(sigsec); 

                        end 

                        SigInWin = SigInWin(1:cutoff); 

                        back_cliplim = min(back_cliplim,cutoff); 

  

                        net_shift(cand) = abs(SigInWin(end)-SigInWin(1)); 

                         

                        slopes = SigInWin(3:end)-SigInWin(1:end-2); 

                        down = find(slopes<0); 

                        if isempty(down) 
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                            p2 = p2+ceil(0.005*handles.Fs); 

                            continue 

                        end 

                        DownRNG(cand) = range(SigInWin(down)); 

                         

                        if net_shift(cand)<params.shift_factor*DownRNG(cand) && 

DownRNG(cand) > params.R_to_broadRNG*broadRNG    

                            WinRNG(cand) = range(SigInWin); 

                            PreRNG = range(fwave(max(1,p2-

round(1*length(SigInWin))):p2+round(0.01*length

(SigInWin))));        

                            if WinRNG(cand)>0.85*PreRNG  %&& 

WinRNG(cand)>params.WinRNG_to_broadRNG*broadRNG 

                                % This is a valid candidate.  Don't 

                                % overwrite it. 

                                candp(cand) = p2; 

                                candwin{cand} = SigInWin; 

                                cand = cand+1; 

                            end 

                        end 

                   

                    end 

                    p2 = p2+ceil(0.004*handles.Fs); 

                end 

                 

                % The final value of cand never represents a valid 

                % candidate: 

                DownRNG = DownRNG(1:cand-1); 

                 

                net_shift = net_shift(1:cand-1); 

                WinRNG = WinRNG(1:cand-1); 

                cut1 = find(WinRNG > 0.95*max(WinRNG));  

                    % cut 1 may contain multiple values, hence cut 2. 

                cut2 = find(DownRNG(cut1) == max(DownRNG(cut1)));  

                net_shift = net_shift(cut1); 

                net_shift = net_shift(cut2); 

                    % cut 2 may also contain multiple values, hence cut 3. 

                [ignore,cut3] = min(net_shift);  

                 

                candp = candp(cut1); 

                candp = candp(cut2); 

                candp = candp(cut3); 

 

                for k = 1:numel(cut1) 

                    temp1{k} = candwin{cut1(k)}; 

                end 

                candwin = temp1; 

                clear temp1 

                for k = 1:numel(cut2) 

                    temp1{k} = candwin{cut2(k)}; 

                end 

                candwin = temp1{cut3}; 

                clear temp1 

                if isempty(candp) || isnan(candp) 

                    t = p/handles.Fs 

                end 

                p = candp; % That's the one!   

                SigInWin = candwin;  

                if strcmp(class(SigInWin),'cell') 

                    SigInWin = SigInWin{1}; 

                end 

                SigInWin = fwave(p:p+length(SigInWin)-1); 

              catch 

                disp('Activation window refinement failed.') 

                time_of_failure = (p-1)/handles.Fs 
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                SigInWin = origSigInWin; 

                p = ptemp; 

              end 

  

                % Now find nominal activation time: 

                slopes = SigInWin(3:end)-SigInWin(1:end-2); 

                slopes = [NaN; slopes]; % So that the indices of slopes 

                                        % match those of SigInWin. 

                slpThresh = 0.6*nanmin(slopes); % Slope threshold. 

                thresh = slpThresh; 

                Atrough = find(slopes<thresh); 

                 

                % The nominal activation time is taken as the centroid of 

                % the signal at the points it Atrough. 

                A(c) = sum(Atrough.*(slopes(Atrough)-

thresh))/sum(slopes(Atrough)-thresh); 

                A(c) = round(A(c))+(p-1);  % Translate A(c) to global indices. 

  

%                 [~,a] = nanmin(slopes); % Replace the previous two lines 

%                 A(c) = a+(p-1);         % with these two to use the  

                                          % conventional index i.e. no 

                                          % stabilisation. 

                                         

                Astart(c) = p; % Start of activation wave 

                Aend(c) = p+length(SigInWin)-1; % End of activation wave 

                 

                p = Aend(c)+round(0.1*handles.Fs); 

            end 

        end 

    end 

end 

   

close(getAWait)     
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Appendix VIII. Matlab Code to Find Stabilised Recovery 
Times (RS) 

 
% Find STABILISED recovery times in a unipolar electrogram, given  

% activation times.   

% Created by David Western, 21-7-2010 

% Department of Mechanical Engineering, University College London. 

function [R,ARI] = getRcent(handles) 

  

fwave = handles.nswave; 

  

[b,a] = MYbutter(4,[0.5 35]/(handles.Fs/2),'bandpass'); 

% [b,a] = cheby1(3,0.5,[0.5 35]/(handles.Fs/2),'bandpass'); 

fwave = MYfiltfilt(b,a,fwave); 

  

LocalMag = std(fwave);   

N = length(handles.A); 

Nfw = length(fwave); 

if strcmp(waitbar_opt,'on') 

    getRWait = waitbar(0,'Finding recovery times...'); 

end 

  

for j = 1:length(handles.A)-1 % For each beat... 

    ind = max(1,handles.A(j)-round(0.1*handles.Fs)):min([Nfw 

handles.Aend(j+1) 

handles.A(j)+ceil(1*handles.Fs)]); 

    LocalMag = range(fwave(ind));  % LocalMag (like "broadRNG" in getAcent) 

        % is frequently updated to give a rough estimate of the local 

        % magnitude of the signal.  This allows us to distinguish between 

        % significant and insignificant features. 

    

    if ~any(handles.IgnoreA == handles.A(j)) &... 

       ~isnan(handles.AAint(j+1)) 

       % Based on previous activation detection, this is assumed to be a 

       % legitimate beat. 

        

        % Update the waitbar. 

        if strcmp(waitbar_opt,'on') 

            if rem(j,200)==0 

                waitbar(j/N,getRWait) 

            end 

        end 

    

        % Establish window in which to search for recovery time. 

%         Tstart = handles.A(j)+round(0.09*handles.Fs); % Jump ahead of the 

activation time to avoid the rest of the 

activation complex. 

        Tstart = max(handles.A(j)+round(0.07*handles.Fs),handles.Aend(j)); 

        Tstop = handles.Astart(j+1)-round(0.02*handles.Fs);   

        Tstop = min(Tstop,handles.A(j)+round(sqrt(handles.AAint(j)/ 

1000)/2*handles.Fs)); % This empirical 

formula determines the upper limit of the 

length of the T-wave window. 

        Tstop = min(Tstop,handles.A(j)+round(handles.AAint(j)/ 

1000*handles.Fs*0.8)); % A second 

empirical formula, which does the same 

thing. 

        Tstop = min(Tstop,handles.A(j)+round(0.6*handles.Fs)); % ... and a 

third.  Tstop is now the index 

representing the latest time that 

satisfies all three limits. 

        Trange = Tstart:Tstop; % The indices of the points in the signal 

that contain the T-wave. 

        if length(Trange)<0.07*handles.Fs 

            Tup = NaN; 

        else 
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            slopes = fwave(Trange(3:end))-fwave(Trange(1:end-2)); 

            slopes = [NaN; slopes]; % Corrects the indices, so that 'slopes' 

has the same length as fwave(Trange) 

            d2 = slopes(3:end)-slopes(1:end-2); 

            d2 = [d2; NaN];  % Corrects the indices, as above. 

             

            % Find beginning of Twave (STpoint, an approximately flat point 

            % around the beginning of the T-wave): 

            STdomain = 1:min(Tstop-Tstart,ceil(0.06*handles.Fs));  % Region 

in which STpoint can occur (0-0.06 seconds 

after Tstart). 

            sdslope = nanstd(slopes(STdomain)); % How much variation is 

there in the slope here. 

            mnslope = nanmean(slopes(STdomain)); 

            STcand = find(slopes(STdomain)-mnslope<0.01*sdslope); % 

Candidates for STpoint. 

            if isempty(STcand) 

                [ignore,STpoint] = nanmin(abs(slopes(STdomain))); 

            else 

                STpoint = STcand(end); % Use the latest of the candidates. 

            end 

            while STpoint<length(slopes) && 

abs(slopes(STpoint+1))<abs(slopes(STpoint)

) && STpoint<round(0.45*handles.Fs) 

                    STpoint = STpoint+1; 

            end 

            Tstart = Tstart+STpoint-1; 

             

            % Chop off unnecessary front end of slopes and d2: 

            slopes = slopes(STpoint:end); 

            d2 = d2(STpoint:end); 

             

            % Recovery time (Tup) is where slope is at a maximum.  Cap it at 

0.45s 

            TupLim = round(0.45*handles.Fs)-(Tstart-handles.A(j))+1; % Upper 

limit for Tup. 

            TupLim = min(length(slopes),TupLim); 

            [maxslope,Tup] = nanmax(slopes(1:TupLim)); 

%             [maxslope,Tup] = nanmax(slopes);  % uncapped. 

  

            % Disqualification process: 

            vicinity = fwave(Tup+Tstart-

round(0.03*handles.Fs):Tup+Tstart+round(0.

03*handles.Fs)); % The signal immediately 

surrounding Tup. 

            rangelim = 0.2*range(fwave(Tstart:Tstop)); % The minimum 

acceptable range covered by a T-wave. 

            if maxslope<0 ||... 

               Tup<=2 ||... 

               range(vicinity)<rangelim ||... 

               rangelim < 0.003*LocalMag 

                

                Tup = NaN; % Disqualified! 

            elseif Tup>=length(slopes)-1 ||... 

                   Tup == TupLim ||... 

                   isempty(find(d2(Tup:end)<0)) ||... % This line is 

probably redundant with the above. 

                   isempty(find(slopes(Tup:end)<2*LocalMag/(1*handles.Fs))) 

                % Something's not quite right.  Let's try adjusting the 

                % window we examine to see if that helps. 

                     

                if ~isempty(slopes(1:end)<2*LocalMag/(1*handles.Fs)) 

                   % Rethink end of window 

                   newTstop = find(slopes(TupLim:-

1:1)<2*LocalMag/(1*handles.Fs),1); 

                   newTstop = TupLim-newTstop+1; 

                   if newTstop>0.02*handles.Fs 
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                       slopes = slopes(1:newTstop); 

                       [maxslope,Tup] = nanmax(slopes); 

                       d2 = slopes(3:newTstop)-slopes(1:newTstop-2); 

                       d2 = [NaN; d2]; 

                       vicinity = fwave(Tup+Tstart-

round(0.03*handles.Fs):Tup+Tstart+round(0.

02*handles.Fs)); 

                       rangelim = 0.2*range(fwave(Tstart:Tstart+Tup)); 

                       if Tup>=length(slopes)-1 ||... 

                          maxslope<0 ||... 

                          Tup==2 ||... 

                          Tup == newTstop ||... 

                          range(vicinity)<rangelim ||... 

                          rangelim < 0.01*LocalMag 

                          % 

                           Tup = NaN; 

                       else 

                           Tstop = newTstop+Tstart-1; 

                       end 

                   else 

                       Tup = NaN; 

                   end 

                else 

                    Tup = NaN; 

                end 

            end 

            clear rangelim 

             

        end 

         

        if ~isnan(Tup) 

            Tp = find(slopes(Tup:end)<0,1)-1+(Tup-1); 

            if isempty(Tp) 

                % No downward slope after T-wave.  Use first straight point 

                % instead. 

                [ignore,TpLim] = min(d2(Tup:min([Tup+round(0.1*handles.Fs) 

length(d2)-1]))); 

                TpLim = TpLim+Tup-1; % Earliest possible point for Tp. 

                d3 = d2(TpLim+1:end)-d2(TpLim:end-1); 

                Tp = find(d3<0.02*range(d3),1); 

                if isempty(Tp) 

                    [ignore,Tp] = min(abs(d3)); 

                end 

                Tp = Tp+TpLim-1; 

            end 

            [ignore,Td2] = nanmin(d2(Tup:min([Tp+round(0.03*handles.Fs) 

length(d2)]))); 

            Td2 = Td2+Tup-1+1; 

            if isempty(Td2) 

                R(j) = NaN; 

                disp('no d2') 

                A = (handles.A(j)-1)/handles.Fs; 

            else 

                R(j) = Tup+(Tstart-1); 

            end 

        else 

            R(j) = NaN; 

        end 

    else 

        R(j) = NaN; 

    end 

    if ~isnan(R(j)) 

         

        % This next bit reassigns R(j) as the hump in dV/dt around R(j). 

        candstart = max([R(j)-round(0.06*handles.Fs) Tstart]); 

        candstop = min([R(j)+round(0.1*handles.Fs) Tstop]); 

        cands = candstart:candstop; 

        slopes = fwave(cands(3:end))-fwave(cands(1:end-2)); 
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        slopes = [NaN; slopes]; 

        maxslope = nanmax(slopes); 

        thresh = 0.5*maxslope; 

        hump = find(slopes>thresh); 

        newRj = sum((hump-hump(1)+1).*(slopes(hump)-

thresh))/sum(slopes(hump)-thresh)+hump(1)-

1; 

        R(j) = round(newRj)+(cands(1)-1);  % Translate newRj to global 

indices. 

         

        ARI(j) = (R(j)-handles.A(j))/handles.Fs; 

         

    else 

        ARI(j) = NaN; 

        R(j) = handles.A(j); 

    end 

end 

 


