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Abstract

The cellular energy produced by mitochondria is a fundamental currency of life. However, the extent to which mitochondrial

(mt) performance (power and endurance) is adapted to habitats and life strategies of vertebrates is not well understood. A

global analysis of mt genomes revealed that hydrophobicity (HYD) of mt membrane proteins (MMPs) is much lower in
terrestrial vertebrates than in fishes and shows a strong negative correlation with serine/threonine composition (STC). Here,

we present evidence that this systematic feature of MMPs was crucial for the evolution of large terrestrial vertebrates with

high aerobic capacity. An Arrhenius-type equation gave positive correlations between STC and maximum life span (MLS) in

terrestrial vertebrates (with a few exceptions relating to the lifestyle of small animals with a high resting metabolic rate

[RMR]) and negative correlations in secondary marine vertebrates, such as cetaceans and alligators (which returned from land

to water, utilizing buoyancy with increased body size). In particular, marked STC increases in primates (especially hominoids)

among placentals were associated with very high MLS values. We connected these STC increases in MMPs with greater

stability of respiratory complexes by estimating the degradation of the Arrhenius plot given by accelerating mtRMR up to mt
maximum metabolic rate. Both mtRMR and HYD in terrestrial vertebrates decreased with increasing body mass. Decreases in

mtRMR raise MMP stability when high mobility is not required, whereas decreased HYD may weaken this stability under the

hydrophobic environment of lipid bilayer. High maximal metabolic rates (5–10 RMR), which we postulate require high MMP

mobility, presumably render MMPs more unstable. A marked rise in STC may therefore be essential to stabilize MMPs,

perhaps as dynamic supercomplexes, via hydrogen bonds associated with serine/threonine motifs.

Key words: vertebrate evolution, mitochondrial membrane protein stability, hydrophobicity, serine/threonine composition,
aerobic capacity, longevity.

Introduction

One of themost dramaticmacroevolutionary events in verte-

brate history was the water-to-land transition. Extant am-

phibians highlight the adaptive challenges facing this

transition. Terrestrial vertebrates needed large increases in

cellular energy budget anddeveloped apowerful lung-based

respiratory and cardiovascular system. However, the mecha-

nism by which their metabolic rates vary so substantially re-

mains poorly understood at both the physiological and

the mitochondrial (mt) levels (Lane 2006; Pontzera et al.

2010). Each group of vertebrates has its own characteristic

history of evolutionary adaptation to new habitats and life
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strategies. If thishistory ispreservedinmtgenomes,acompar-
ative study across various vertebrate groups may detect new

aspects of mt functions and answer the long-standing ques-

tion ofwhether large variations inmtDNA sequences are due

to adaptive evolution of amino acid sequences (Grossman

et al. 2001; Goldberg et al. 2003; Kitazoe et al. 2008; Min

and Hickey 2008; Moosmann and Behl 2008) or nucleotide

mutation pressure (Reyes et al. 1998; Schmitz et al. 2002;

Gibson et al. 2005; Jobson et al. 2010).
Previous studies have attempted to connect the evolu-

tionary rate of mtDNA to macroscopic traits such as resting

metabolic rate (RMR), body weight (W), and maximum life

span (MLS) of vertebrates. The evolutionary rate is inversely

related toW (Bromham et al. 1996; Gillooly et al. 2007) and

quite variable across species in short-lived mammals but

constrained to low values in long-lived mammals (Welch

et al. 2008). Long-lived mammals and birds may have in-
creased their MLS in part by evolving macromolecular com-

ponents that are more resistant to oxidative damage

(Pamplona and Barja 2007; Min and Hickey 2008). The evo-

lution of mtDNA shows a large variation in substitution rates

between various lineages (Spradling et al. 2001; Kitazoe

et al. 2008; Nabholz et al. 2009). For example, mtDNA

sequences in higher primates evolved twice as fast as other

placental mammals (Kitazoe et al. 2008) and birds evolved
at a quarter the speed of placentals (Nabholz et al. 2009).

From this standpoint, Galtier et al. (2000) recently argued

that a direct mechanical effect of RMR onmtDNA evolution-

ary rate is unlikely and that natural selection could act to

reduce the mtDNA mutation rate in long-lived species.

Other studies have focused on a compositional analysis of

the mt constituents. A correlation between cysteine compo-

sition andMLS has been proposed as cysteine depletionmay
render mt proteins more resistant to oxidative attack and

loss of mt membrane protein (MMP) mobility through pro-

tein cross-linking (Moosmann and Behl 2008). Mammals

and birds show a strong negative correlation between

MLS and the proportion of n� 3 polyunsaturated fatty acids

in lipids, the side chains of which are sensitive to peroxida-

tion (Pamplona et al. 2002; Hulbert et al. 2007). Mammals

also show significant correlations between GC content and
MLS (Lehmann et al. 2008). A detailed tree analysis along

the primate lineage demonstrated that a predominant

T/Cflowat secondcodonsites in thehigherprimate lineage

induced amarked Thr increase, which is positively correlated

withMLS (Kitazoe et al. 2008). These compositional analyses

strongly suggest adaptation of the mt protein constituents.

In the present study, our global analysis of vertebrates

suggests that the HYD decreases and serine/threonine com-
position (STC) increases in MMPs might have played a fun-

damental role in increasing the aerobic capacity of terrestrial

vertebrates after the water-to-land transition. Higher STC

values in terrestrial vertebrates were closely associated with

longer life spans. An extreme enhancement of this trend

appeared in the primate lineage. Conversely, secondary ma-
rine vertebrates such as cetaceans and alligators, which uti-

lize buoyancy without the constraints of gravity, contrasted

sharply with the trend in terrestrial vertebrates. We show

that rodents and insectivores display no STC–MLS correla-

tion because STC content saturates at high RMR but instead

show a strong negative correlation between MLS and cys-

teine composition sensitive to oxidative damage and free

radical leak (Moosmann and Behl 2008). To explain the
STC–MLS correlation, we tested the stability of MMPs to

the marked HYD decrease and STC increase in primates

by using the Arrhenius plot analysis (Lachman and DeLuca

1976; Ertel and Carstensen 1990; Carstensen 2000). By ac-

celerating the mt metabolic rate from the resting rate to the

maximum rate in the Arrhenius equation, we predict that

stabilizing MMPs by the additional STC increases results

in further longevity prolongation of primates (hominoids).
Finally, we demonstrate that a short-range hydrogen bond-

ing potential to stabilize MMPs can be effectively trans-

formed into a long-range dynamic anchoring of MMPs,

which we postulate may assist the formation of respirasome

supercomplexes at high metabolic rates (Acı́n-Pérez et al.

2008; Genova et al. 2008; Lenaz and Genova 2009).

Materials and Methods

Data Retrieval

MLS, RMR, andW data were obtained from the AnAge data-

base (http://genomics.senescence.info/species/; de Magalhaes

and Costa 2009; Secor 2003), the Max Planck Institute data-
base (http://www.demogr.mpg.de/longevityrecords/; Garey

and Judge 2002), and Moosmann and Behl (2008). Seven

hundred and seventy-one complete mtDNA sequences of

vertebrates were obtained from the NCBI genome database

(http://www.ncbi.nlm.nih.gov/genomes/). The 228 species

with the same scientific names in the AnAge and NCBI ge-

nome databases were collected for the present longevity

analysis. Although W data are normally available for these
species, RMR data are frequently lacking. Fortunately, be-

cause the correlations between these two values are excel-

lent (the correlation coefficient for placentals is 0.983 and

that for birds is 0.999), approximate RMR values were ob-

tained by using the regression line as a function of W if the

data are not available.

Maximum Life Span Analysis Using an Arrhenius-
Type Equation

This paper presents a procedure of how to relate mt func-
tions to the MLS of an organism. The mitochondrion is

a semiautonomous organelle with its own genome and life

span (Lmt). The life span Lmt is confounded by the flux rate

throughmt fission and fusion andmitophagy quality control

(Twig and Shirihai 2011). We assume that greater MMP
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stability delays the turnover of MMP complexes and so pro-
longs the abstract quantity Lmt. Therefore, we primarily have

to formulate a relationship between mt functions and this

life span. Electron transport and oxidative phosphorylation

are critical activities of the MMP complexes. Electrons are

transported along the mt respiratory chain, via quantum

tunneling between redox centres, to generate a proton gra-

dient. Although the exact distance between redox centers is

critical to electron flux (Moser et al. 2006), the overall kinet-
ics of oxidative phosphorylation are consistent with the dy-

namic assembly and disassembly of respirasome

supercomplexes (Acı́n-Pérez et al. 2008; Genova et al.

2008); hence, both the stability and the mobility of MMPs

are required for respiratory function, especially at high max-

imal metabolic rate. Electrochemical energy of electron

transfer is utilized for ATP production and thermogenesis,

but some of the leaked electrons react with oxygen to gen-
erate reactive oxygen species, which are mutagenic signal-

ing molecules. In this way, the MMP complexes act like

a battery in a thermal equilibrium of temperature Tmt. Then,

Lmt is given by Arrhenius equation for chemical reactions,

Lmt 5 C0 exp{C1/(kTmt)} with constants C0, C1 and Boltz-

mann constant k (Arrhenius equation is generally applied

to estimate the shelf life and stability of drugs: Lachman

and DeLuca 1976; Ertel and Carstensen 1990; Carstensen
2000). As an extension of this equation, we here apply

a temperature–humidity model, Lel 5 C0 exp(C1/Tel þ C2/

Hel), to test electronic devices at different temperature

(Tel) and humidity (Hel) conditions (Accelerated Life Testing

AnalysisTheory&Principles)becausewemayreplacethedevice

property Hel by STC and HYD of MMPs assuming that Lmt and

kTmt are proportional to MLS of an organism and mtRMR in

the resting metabolic state, respectively. Then, we obtain

Y 5 lnðMLSÞ5A1=mtRMR þ A2=STC þ A3=HYD þ A0

5A1X1 þA2X2 þA3X3 þA0;

ð1Þ

with constants An (n5 0–3).

When the total numberof cells in an organism is proportional

toW, we can write mtRMR5 RMR/Wq. Here, a constant q less

than 1 takes into account the property that the mt density

within cells may fall with increasing W (Porter and Brand

1995; Porter 2001) and is determined so as to maximize the

correlation R1Y between X1 and Y. Equation (1) is useful when

the life span (Lcell) of cells is sufficiently long compared with Lmt

(stem cells fulfill this condition). Using the variables X1, X2, and
X3 in place of mtRMR, STC, and HYD, respectively, we can fol-

lowa standardmultiple regression analysis. The theoretical value

Y to estimate MLS is sensitive to small mtRMR values because it

is expressed in terms of 1/mtRMR. We here note that the ex-

pression (1) is comprehensive and can include any other varia-

blesXn (n. 3), if necessary. The importance of this inclusionwill

be automatically evaluated by the multiple regression analysis.

Selection of Hydrophobic Domains in MMPs

To select hydrophobic domains in MMPs, we applied the pri-

mary structure analysis (ExPASy Proteomics Server; http://

www.expasy.ch/; Gasteiger et al. 2005), using a standard

model for the hydrophobic score (S) (Cowan and Whittaker

1990). We calculated the moving average, Sav, of local hy-
drophobic scores S (with a window of five amino acid sites)

around each amino acid site. HYD of each vertebrate is de-

fined as the average value of Sav values, which are restricted

to a hydrophobic domain of MMPs. The primary structure

analysis has an accuracy of 80% to discriminate between

the helix domain and the nonhelix domain of MMPs.

HYD values depend on a model of a hydrophobic score being

applied. However, our approach was sufficient to propose
quite a fundamental theory as to how MMP functions re-

sponded to the transition of vertebrates from water to land

and in different groups on land.

Results

Global Relationship between STC and HYD in
MMPs of Vertebrates

The water-to-land transition of vertebrates was one of the

most dramatic events in vertebrate evolutionary history. We

therefore began our analysis by extracting amino acid com-
positions in MMPs, which most changed in tandemwith this

development. For this purpose, simply dividing the 771 ver-

tebrate mt sequences (obtained from the NCBI genome da-

tabase) into two groups of fishes (382) and nonfishes (389)

(‘‘Materials and Methods’’), we made the t-test for differ-
ence of means of amino acid composition values between

these two groups. As a result, we found that HYD provides

a very good separation (t 5 16.32 and P , 10�21) of HYD
distribution into the two groups without any constraints on

MMPs. Selecting seven proteins (ND3, ND4, CO1, CO2,

ATP6, ATP8, and CYTB) within MMPs furthermore improved

the separation rate with t 5 42.52 and P , 10�80 (fig. 1A),
although the original separation without this constraint is in

itself excellent.

Wenextselectedaminoacidsthatarenegativelycorrelated

withHYD.Here,HYDstandsfortheaveragevalueofSavvalues
in ahydrophobic domain,which includes the amino acid sites

(withSav.c,andc isa constant)ofMMPs tobespecified inan

animal group, and Sav denotes the moving average of local

hydrophobic scores S around an amino acid site (Materials

andMethods.Table1showsthatthecorrelationsof threonine

and serinewith HYD aremuch better than other amino acids

ashigherhydrophobicdomainsareselectedbytheSavvalueof
each amino acid site. This trend became clearer in the helix
domain roughly estimated by the primary structure analysis,

especially when the estimated helix region with very low Sav
values (Sav, 0.1) is further excluded and the nonhelix region

with very high Sav values (Sav.0.7) is included (the red letters
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of table 1). As a result, a strong negative correlation between

HYD and STC (fig. 1B) appeared in a hydrophobic domain of

MMPs with Sav . 0.1. We here note that the separation

method into the two groups provided mutually contrasting

HYD and STC distributions characteristic of three terrestrial

vertebrate groups comprising reptiles, birds, and placental

mammals; STC values were small in fishes, intermediate in

amphibians, and large in the terrestrial vertebrate groups
(fig. 1C).

Introduction ofmtRMRHaving a Close Relationship
with MLS as mt Trait

The Arrhenius-type equation (1) connected three variables

(mtRMR, STC, and HYD) of mt functions to the ln(MLS)

of an organism. First of all, we examined the first variable

in equation (1), mtRMR 5 RMR/Wq. Here, if the number

of cells is proportional to W and the mt density within cells

is constant (independent ofW), we can put q5 1. However,

when we note that this density falls with increasing W
(Porter and Brand 1995; Porter 2001), the q value must

be less than 1. We determined the q value so as to maximize

the correlation between X1 5 1/mtRMR and Y 5 ln(MLS)

and obtained q5 0.84 for placentals and q5 0.87 for birds

(the q values were estimated by using a number of verte-

brates (875 placentals and 983 birds in the AnAge data)

without requiring the mt DNA data). These values improved
the correlation coefficients between X1 and Y, 0.514 for pla-

centals and 0.663 for birds (table 2), because putting q 5 1

gave the coefficients of 0.493 for placentals and 0.635 for

birds. In this way, the mtRMR–MLS correlation is better than

the RMR–MLS correlation (Rottenberg 2007). We assumed

that the number of cells is proportional to W, and in fact,

with the exception of the brain, organ size does indeed scale

nearly isometrically with size (Peters 1986). In this way,
mtRMR was identified as an important mt trait that can

be related to MLS.

As is well known, body mass has been the best pheno-

typic predictor of MLS in placentals (Speakman 2005). Here,

ln(MLS) gave a better correlation coefficient (0.493) with

A

B

C

FIG. 1.—(A) Frequency distribution of HYD over vertebrates. (B)

Correlation between STC and HYD. (C ) Frequency distribution of STC.

The correlation became very strong in a hydrophobic domain of

Sav , 0.05 (R 5 �0.8722 and P , 10�220). Here, Sav is the moving

average of local hydrophobic scores S around each amino acid site

(Materials and Methods).

Table 1

Threonine and Serine Strongly Correlated with HYD in Hydrophobic

Domains of MMPs

Inclusive Sav . 0 Sav . 0.2 Helix Helix cut

1) Ala 0.655 0.658 0.356 0.377 0.389 (P , 10�28)

2) Arg 0.606 0.575 0.380 0.254 0.252 (P , 10�11)

3) Asn �0.639 �0.675 �0.339 �0.490 �0.467 (P ,10�42)

4) Asp 0.383 0.536 0.474 0.021 0.024 (P ,0.6)

5) Cys 0.020 0.068 �0.092 0.036 0.019 (P , 0.5)

6) Gln �0.090 �0.119 �0.137 �0.540 �0.454 (P , 10�39)

7) Glu 0.500 0.574 0.408 0.318 0.532 (P , 10�56)

8) Gly 0.727 0.771 0.614 0.633 0.642 (P , 10�90)

9) His 0.022 0.026 �0.224 �0.300 �0.253 (P , 10�11)

10) Ile �0.403 �0.380 �0.136 �0.210 �0.233 (P , 10�10)

11) Leu 0.237 0.091 �0.122 �0.050 �0.070 (P , 0.1)

12) Lys �0.750 �0.654 �0.305 0.027 0.045 (P , 0.3)

13) Met �0.620 �0.566 �0.337 �0.470 �0.484 (P , 10�45)

14) Phe 0.421 0.417 0.351 0.527 0.495 (P , 10�48)

15) Pro 0.382 0.244 0.091 0.392 0.467 (P , 10�42)

16) Ser �0.580 �0.612 �0.610 �0.600 �0.632 (P , 10�86)

17) Thr �0.730 �0.792 �0.794 �0.750 �0.765 (P , 10�148)

18) Trp 0.722 0.723 0.573 0.653 0.661 (P , 10�97)

19) Tyr �0.250 �0.186 �0.035 �0.330 �0.362 (P , 10�24)

20) Val 0.633 0.721 0.603 0.637 0.686 (P , 10�107)

NOTE.—‘‘Inclusive’’ gives the regression analysis including all amino acid sites of

MMPs. ‘‘Sav . d’’ shows the analysis of amino acids with larger Sav than d. Sav is the

moving average of local hydrophobic scores S around each amino acid site of MMPs

(Materials and Methods). The helix domain was estimated by the primary structure

analysis (ExPASy Proteomics Server; http://www.expasy.ch/; Gasteiger et al. 2005),

using a standard model for the hydrophobic score (S) (Cowan and Whittaker 1990).

‘‘Helix cut’’ means that the estimated helix region with very low Sav values (Sav , 0.1) is

excluded and the estimated nonhelix region with very high Sav values (Sav . 0.7) is

included (supplementary fig. S2, Supplementary Material online). The numerical data

show the correlation coefficient between each amino acid composition (AAC) and

HYD. A main part of HYD variations was linked to three amino acids of glycine, valine,

and tyrosine.
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ln(W) than that (0.392) withW. This can be easily explained

by the present approach in terms of 1/mtRMR: Using the

excellent relationship between RMR andW, that is, ln(RMR)

5 a ln(W) þ ln(b), we have approximately X1 5 Wq/RMR ’
ßWq�a. Here we derived q� a5 0.145 for placentals (with
a 5 0.695 and b 5 2.57). The quantity ßWq�a with such

a small q value shows a similar behavior to ln(W) in large

W values (.50 kg) (supplementary fig. S1, Supplementary

Material online). Interestingly, the correlation coefficient

(0.493) between ln(MLS) and ßWq�a in the case of q 5 1

became equal to that between ln(MLS) and ln(W). We here

note that mtRMR of placentals decreases with an increase in

W, proportional to W�0.14, whereas the mt maximum met-
abolic rate (mtMMR 5 MMR/Wq) rather increases with an

increase in W; it is proportional to W0.04 when we assume

that MMR is proportional to W0.88 (Bishop 1999).

Longevity Correlations with STC and HYD,
Providing Sharp Contrast between Terrestrial
Vertebrates and Marine Vertebrates (Cetaceans
and Alligators)

Once mtRMR is identified as a variable of mt functions in the

Arrhenius-type equation (1), other mt variables such as STC

and HYD may be related to MLS. Table 2 lists the correlation

coefficients (Ri,j) for all pairs of the variables X1 5 1/mtRMR,

X2 5 1/STC, X3 5 1/HYD, and Y 5 ln(MLS) in various ver-

tebrate groups. Table 3 lists the correlation coefficients in

the multiple regression analysis, showing that the coeffi-
cients give much better values than those in the single

regression analysis and that MLS can be substantially de-

scribed in terms of mtRMR and STC because of strong neg-

ative correlations between STC and HYD (table 2). In this

regression analysis, we additionally included three proteins

of ND1, ND3, and ND5 and determined the hydrophobic do-

mains and proteins in each vertebrate group so as to max-

imize the correlation between X2 and Y (supplementary
table S1, Supplementary Material online) because these pro-

teins were sometimes concerned to STC–MLS correlations,

and the theoretical estimation of helix domain is not neces-

sarily accurate (Materials and Methods). The regression

analysis provided three distinct correlation patterns: (1) Ter-

restrial placentals (excluding cetaceans, sirenians, rodents,

and insectivores), as well as birds and reptiles (excluding

crocodilians), showed positive STC–MLS and negative

HYD–MLS correlations; (2) secondarily aquatic vertebrates

(those that returned to water from land such as cetaceans
and crocodilians) and amphibians showed, on the contrary,

negative STC–MLS and positive HYD–MLS correlations; and

3) primary aquatic vertebrates, that is, fishes, showed aweak

STC–MLS correlation and no HYD–MLS correlation. The

STC–MLS scatter diagrams of figure. 2A and B represent

the mutually exclusive relationships in the two patterns of

terrestrial placentals and cetaceans. The crocodilian lineage

presents a similar behavior to the cetacean lineage, with low
STC and longMLS for alligators and crocodiles andwith high

STC and short MLS for caimans (supplementary fig. S3, Sup-

plementary Material online). We did not perform a regres-

sion analysis taking into account the tree structure

(Felsenstein 1985; Harvey and Pagel 1991) because it is dif-

ficult to estimate reliable branch lengths in placental and

bird trees, with problems such as simultaneous divergences,

large evolutionary variations, and long-branch attractions
(Kitazoe et al. 2007), although this analysis was useful for a

local tree of the primate lineage (Kitazoe et al. 2008). How-

ever, the marked correlations between STC and MLS are so

robust that they may be model independent of the analysis.

Relationship between Additional STC Increases
and Very Large MLS Values in Primates

In placentals, STC showed a significant positive correlation

with MLS (table 2 and fig. 2A). However, when STC is ex-

pressed in terms of 1/mtRMR, it represents markedly large

values in hominoids and some other simians, which deviate

strongly from the regression line of other placentals as out-

liers (the red circles in fig. 3A). A similar deviation was ob-

served for MLS in terms of 1/mtRMR (the red circles in

fig. 3B) and also in terms of ln(W) (supplementary fig. S4,
Supplementary Material online). We here note that primates

keep a middle position in the order of placentals as a func-

tion of 1/mtRMR (the red circles of fig. 3), whereas they oc-

cupy the highest side in the order of placentals as a function

of STC (the red circles of fig. 2A).

Table 2

Correlation Coefficients for Pairs of the Variables X1(1/mtRMR), X2(1/STC), X3(1/Sav) and Y{ln(MLS)} in Equation (1)

R1,Y R2,Y R3,Y R1,2 R1,3 R2,3

1) Placentals (80 species) 0.5141, P , 10�5 �0.6893, P , 10�11 0.4730, P , 10�5 �0.1678, P , 0.1 �0.1772, P , 0.4 �0.7019, P , 10�12

2) Cetaceans (18 species) 0.9163, P , 10�7 0.7637, P , 10�4 �0.6750, P , 10�3 0.7350, P , 10�3 �0.7861, P , 10�4 �0.6982, P , 10�3

3) Birds (32 species) 0.6628, P , 10�4 �0.6259, P , 10�4 0.4427, P , 10�2 �0.4827, P , 10�2 0.3345, P , 10�1 �0.6325, P , 10�3

4) Crocodilians (9 species) — 0.7259, P , 0.03 �0.7148, P , 0.03 — — �0.6698, P , 0.05

5) Reptiles (15 species) — �0.7786, P , 10�4 0.5537, P , 0.03 — — �0.7327, P , 10�3

6) Amphibians (25 species) — 0.5878, P , 10�3 �0.4652, P , 0.02 — — �0.6444, P , 10�4

7) Fishes (49 species) — 0.4159, P , 0.003 �0.0689, P , 0.65 — — �0.3437, P , 0.02

NOTE.—Placentals exclude cetaceans, sirenians, rodents, and insectivores. Reptiles exclude crocodilians and turtles.
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We have previously observed a large evolutionary change

from hydrophobic amino acids to threonine in the primate

lineage (Kitazoe et al. 2008). We adjusted the STC values of

the primates so as to lie on the regression line for other pla-
centals in figure 3A and also the MLS values of them so as to

lie on the regression line for other placentals in figure 3B. As
a result, we found that the location of the primates in pla-

centals became consistent in both terms of 1/mtRMR and

STC comparing figure 4 with figure 2A. This consistency

strongly supports a close relationship between STC increase

andMLS prolongation and provides the key to the biological
meaning of STC.

Cysteine/Methionine–MLS Correlation of Rodents
Induced by Oxidative Damages and Short
Longevity in Early Mammalians

Rodents and insectivores were excluded from the STC–MLS

analysis as they were outliers of the regression line for other

Table 3

Multiple Correlation Coefficients for the Variables X1(1/mtRMR), X2(1/STC), X3(1/Sav) and Y{ln(MLS)} in Equation (1)

R1 þ 2,Y R1 þ 3,Y R2 þ 3,Y R1 þ 2 þ 3,Y

Placentals 0.7991, P , 10�11 0.7488, P , 10�8 0.6896, P , 10�7 0.8106, P , 10�15

Cetaceans 0.9259, P , 10�4 0.9193, P , 10�4 0.7889, P , 10�3 0.9333, P , 10�5

Birds 0.7492, P , 10�3 0.7010, P , 10�3 0.6288, P , 10�3 0.7505, P , 10�4

Crocodilians — — 0.7913, P , 0.05 —

Reptiles — — 0.7790, P , 0.05 —

Amphibians — — 0.5985, P , 0.05 —

Fishes — — 0.4233, P , 0.05 —

NOTE.—Placentals exclude cetaceans, sirenians, rodents, and insectivores. Reptiles exclude crocodilians and turtles. Ri þ j,Y denotes the correlation coefficient for the variables Xi,

Xj, and Y{ln(MLS)}.

A

B

FIG. 2.—(A) Correlations between STC and ln(MLS) for placentals.

(B): Correlations between STC and ln(MLS) for aquatic animals

(cetaceans and sirenians). The placentals of (A) exclude cetaceans,

sirenians, rodents, and insectivores. The regression line of (B) was given

by only cetaceans. The hippopotamus is the sister group of cetaceans

(supplementary fig. S7, Supplementary Material online). It is noteworthy

that sirenians, with the same aquatic habitat, lie on the regression line,

although they belong to Afrotheria, which is much far from

Cetartiodactyla in the phylogenetic tree (Kitazoe et al. 2007).

FIG. 3.—(A) Relationship between 1/mtRMR and STC in placentals.

(B) Relationship between 1/mtRMR and ln(MLS). The placentals of (A)

exclude cetaceans, sirenians, rodents, and insectivores.
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placentals (excluding rodents, insectivores, and cetaceans)

because there is no STC–MLS correlationwith their very short

MLS values (fig. 5) and very high mtRMR (fig. 6). Given their
known high rates of free radical leak, we considered the pos-

sibility that the content of easily oxidized amino acids such as

cysteine could be linked with their shorter life span, accord-

ing to the proposal of Moosmann and Behl (2008). We ex-

amined amino acid residues, the compositions ofwhich have

negative correlations with MLS, and estimated the correla-

tion coefficient R and P value between X4 5 1/AAC and Y
5 ln(MLS) (here, AAC denotes an amino acid composition
to be changed one after another by an iteration method).

As a result, cysteine and methionine with sulfur atoms in

their side chains showed significant correlations with Y in ro-

dents (fig. 7A). Supplementary table S2 (Supplementary

Material online) gives a criterion for selection of these two

amino acids. Here, the selection of methionine may be

consistent with a recent proposal that short-lived animals

subjected to higher oxidative stress selectively accumulate
methionine in their mitochondrially encoded proteins, which

supports the role of oxidative damage in aging (Aledo et al.

2011). In an individual analysis of respiratory chain complex

subunits, complex I cysteine depletion is the almost exclusive

carrier of the cysteine–life span correlation, whereas com-

plex IV cysteine depletion is uniform in all aerobic animals,

unrelated to longevity (Schindeldecker et al. 2011). The cys-

teine–MLS correlation in insectivores also seems significant
(fig. 7A), but the number of sequences (five species) is insuf-

ficient for the statistical analysis. Here, insectivores include

both Laurasiatherians and Afrotherians.

The absence of an STC–MLS correlation in rodents and

insectivores suggested that mammals can be divided into

two groups, the first with small MLS values and the second

with largeMLS values. We analyzed a number of MLS values

of mammals using the AnAge database without the mtDNA
data. The t-test for difference of means of ln(MLS) values be-

tween the two groups gave the best separation with t 5 33

andP,10�150.Here,thefirstgroupincludedbasalspeciessuch

as Soricomorpha/Ernacemorpha (Laurasiatheria),Afrosoricida/

Macroscelidea (Afrotheria), Rodentia/Lagomorpha (Suprapri-

mates), Didelphimorphia (Ameridelphia), and Dasyuromor-

phia/Peramelemorpha (Australidelphia) (fig. 7B). Interestingly,
only the placentals without STC–MLS correlation were auto-
matically included in the first group. Because the lifestyles of

thefirst group vertebrates are close to thoseof earlymammals,

it is possible that they retain mt functions reflecting an early

stage of endothermic mammalian evolution.

Discussion

The present analysis uncovered a systematic correlation be-

tween HYD and STC throughout vertebrates. Terrestrial ver-
tebrates showed decreases in HYD, increases in STC, and

a positive correlation between STC, MLS, and increasing

W. In stark contrast, marine vertebrates (cetaceans and

alligators) showed an increase in HYD, a decrease in STC,

and a negative correlation between STC and MLS. These

FIG. 4.—Relationship between STC and Y in placentals. Y stands

for the theoretical value of ln(MLS) in equation (1). The circles are given

by using the adjusted STC and HYD in equation (1).

Insectivores

FIG. 5.—Relationship between 1/mtRMR and ln(MLS) in rodents

and insectivores. These animals became outliers of the regression line

for other placentals (except for cetaceans and sirenians). This is the

reason for why rodents and insectivores were excluded from STC–MLS

analysis.

FIG. 6.—The mtRMR values in several animals, relative to that of

blue whales.
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opposing evolutionary trajectories of the two animal groups

provide a strong possibility that they are based on mt adap-

tation to the habitats and life strategies of vertebrates and

not to nucleotide mutation pressure in the mt genomes. We

discuss this possibility in more detail below, considering the

stability and mobility of MMPs in the light of evolutionary

demands.

Contrasting STC/HYD Behaviors Between Primates
and Rodents in the Supraprimates

Although rodents and primates represented mutually quite
different behaviors in STC and HYD, they are included in one

of four major groups of placentals as the Supraprimates.

Rodents do not show both the STC increase and the STC

MLS correlation (fig. 5) but have high mtRMR (fig. 6) and

high rates of free radical leak. Oxidative damage may be
a critical factor in their life span. Indeed, they showed

a strong negative correlation between cysteine composition

and MLS in place of the STC–MLS correlation (fig. 7A), and
their MLS values became very short in a sharp contrast to

extremely long longevity in primates (hominoids), despite

being within the same major group (figs. 3B and 5). One

possible explanation is the central role of free radical signal-

ing in selection for mitonuclear coadaptation, which in turn
may enhance the fertility and adaptability of rodents, at the

cost of shorter life span (Lane 2011a, 2011b).

Evolutionary Change of STC and HYD in Cetaceans,
Describing Reversal over Time of Those in Terrestrial
Vertebrates

The cetacean lineage represented a typical adaptive evolu-

tion, which contrasts with that of the terrestrial vertebrates,
because STC and HYD values reverted toward those of

fishes. We analyzed this evolutionary behavior in detail by

further including sirenians and hippopotamus (fig. 2B). Ce-
taceans have a sister-group relationship with hippopotamus

of artiodactyls (Nikaido et al. 1999) and form the lineage of

Cetardiodactyla. They include toothed whales and baleen

whales and the latter lineage being derived from the former

lineage (supplementary fig. S5, Supplementary Material
online) and evolved into animals with huge body masses.

Toothedwhales swimwith fast maximum speeds, and water

resistance increases in proportion to the square of velocity.

Therefore, their STC values are high (fig. 2B), and mtRMR

values are not low compared with their weights as seen

in harbor porpoise (fig. 6). On the other hand, the baleen

whales feed on plankton and krill by using giant filters

and due to their huge body masses move underwater uti-
lizing buoyancy to a large extent. This habitat allows for very

low values of both mtRMR and aerobic capacity and also

allows for a decrease in STC due to very low MMP mobility.

As a result, MMP stabilization by an increase in HYD predo-

minated and resulted in prolongation of the MLS of the ba-

leen whales. Interestingly, sperm whales, which have a long

MLS, deviated strongly from the regression line of cetaceans

in figure 2B. This toothed whale also moves slowly with
a huge body mass but nonetheless retains a high STC.

One relevant feature of the sperm whale is that it dives

deeply into the sea for food. Before diving, cold water enters

the spermaceti organ. This solidifies the wax, and the in-

crease in density generates a downward force that allows

the whale to dive with less effort. The spermaceti is melted

by a sudden rise in blood temperature, which increases its

buoyancy, enabling easy surfacing (Clark 1970). The mt
engine has to be quickly powered up to produce this rise

of the blood temperature, that is, the sperm whale has a re-

quirement for a rapid switch to high aerobic demand. This in

turn requires a high STC for MMP stability.

A

B

FIG. 7.—(A) Correlations between cysteine composition and

ln(MLS) in rodents and insectivores. (B) Frequency distribution of ln(MLS)

in eight mammalian groups with basal traits and the others (black

circles). Rodents had significant correlations between cysteine compo-

sition and MLS for the sake of high rates of free radical leak and short

MLS (supplementary table S2, Supplementary Material online). Bats

(blue circles) with low STC values lie on the regression line (blue square

denotes the average value and standard deviation of all 82 species

included in the database (Allen 2003) but having no sequence data).

The triangles of (B) denote marsupials. The distributions are largely

separated into the two groups of the primitive species (Soricomorpha/

Ernacemorpha, Afrosoricida/Macroscelidea, Rodentia/Lagomorpha, Di-

delphimorphia, and Dasyuromorphia/Peramelemorpha) and the others.
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A recent study reports that the basal swim speed of ma-
rine vertebrates increases with an increase in body mass

(Watanabe et al. 2011). However, our interest is the differ-

ence between RMR and MMR. Indeed, the maximum swim

speeds of dolphins are much higher than those in baleen

whales. Unfortunately, both the RMR and the MLS data

of marine vertebrates are poor at present. It would be inter-

esting to investigate the adaptive evolution of these verte-

brates in more detail. For example, the behavior of seals
seems to be different from that of cetaceans (supplementary

fig. S6A, Supplementary Material online) and rather similar

to that of other placentals (supplementary fig. S6B, Supple-
mentary Material online). They have a small variation of

W values, and their divergence time (15 million years ago)

is much later than that of cetaceans (50 million years ago).

They belong to the carnivore lineage far from the

cetartiodactyl lineage (including artiodactyls and cetaceans)
and spend most of their time at sea, although they return to

landor pack ice to breedandgive birth andproduce thick fat-

rich milk that allows them to provide their pups with large

amounts of energy in a short period. In fishes, STCs of tunas

that swim fastwithW510–30 (kg) andMLS510–20 (years)

are locatedaround thepeakvalueof thedistribution (fig. 1C),
whereas those of eels withW5 1–4 (kg) and MLS5 20–80

(years) are locatedon theextremeright tail of thedistribution.

Large STC/HYD Variations in Reptiles

The STC values of reptiles are divided into two regions, in-

cluding relatively low values for lizards and very high values

for some snakes (the second peak of reptiles in fig. 1C ).
Snakes have large STC values and small HYD values for their

MMPs because of the negative correlation between these

two values (table 2). Small HYD values enable MMPmotility,

which may be important for powering up the mt engine

quickly. Interestingly, the true snakes such as boas, cobras,

and pythons have among the highest STC values known.

This may relate to their unusual eating habits. Such snakes

often eat only every few months and have very low RMR
values between meals to the point of dormancy. On eating

a large meal (often 40% of body weight), their metabolic

rates rise by 5- to 44-fold over several days, whereas their

intestinal mass doubles and liver and kidney volumes in-

crease by 50% (Secor and Diamond 1995; Secor 2003).

Thus again, MMP mobility and stability depend not only

on RMR but also on the kinetics: Abrupt changes in aerobic

function apparently demand high MMP mobility, which is
offset by interhelical STC stabilization. The reason of these

speculations is discussed in the remaining paragraphs.

Why Do MMPs of Terrestrial Vertebrates Decrease
HYD and Increase STC?

Onthebasisof therecent tertiarystructuralelucidationofcom-

plex I, the dynamic assembly of respirasome supercomplexes,

andthespeedofmtfusionandfission(TwigandShirihai2011),

weassume thatMMPs undergo largemovements during their
function and that theirmobility and stability generally stand in

a trade-off relationship (Hildebrand et al. 2008). The mtRMR

and HYD in terrestrial vertebrates decrease with increasing

W.Theformerdecreaseraises thestabilityofMMPsduetotheir

lowermobility, whereas the latter decreaseweakens their sta-

bility as theyare embedded into thehydrophobic environment

of lipid bilayer. By this compensation, they can retain their sta-

bilitydespiteanincrease inW.However,asevereproblemtakes
place when the metabolic rate of an organism is accelerated

from the RMR to the MMR around 5- to 10-fold greater than

RMR (in fact,MMRofmammals scaleswith the 0.88power of

W, which is significantly different from 3/4 power scaling of

RMR). It is determined by the energy needs of the cells active

during ‘‘maximal work,’’ and the aerobic capacity is higher in

athletic than in nonathletic species (Bishop1999; Porter 2001;

Weibel et al.2004;WeibelandHoppeler2005). In thisway, the
ratiomtMMR/mtRMR5MMR/RMR (5W0.18) inmammals in-

creaseswithanincrease inW. Theweakeningof thehydropho-

bic effect permits greater mobility of MMPs, which in turn

enables theelevationofmt functional activities. Thecost is that

MMPs become increasingly unstable.

Membrane proteins are stabilized by classical hydrogen

bonds (Adamian and Liang 2002; Gimpelev et al. 2004),

most of which are found in motifs involving medium polar
residues such as serine or threonine. Indeed, it has been

shown that such serine/threonine motifs can also drive

the association of model transmembrane helices (Dawson

et al. 2002). Thus, we propose that the STC increase in ter-

restrial vertebrates could compensate for the lack of the hy-

drophobic effect and provide the driving force for

membrane protein folding (Eilers et al. 2000). In particular,

we argue that the stabilization of transmembrane helices
byhydrogenbondingcouldcontribute to thedynamicassem-

bly of respirasome supercomplexes at high rates of ATP syn-

thesis, which in turn could speed electron flux via quantum

tunnelingwithin the solid-state respirasomemodel originally

proposed by Chance and Williams (1955).

Relationship between MMP Stability and Longevity
Derived From Arrhenius Plot Analysis

The Arrhenius plot analysis is commonly applied to predict-

ing the stability of drugs (Lachman and DeLuca 1976; Ertel

and Carstensen 1990; Carstensen 2000). The stability test is

made under the stress condition of accelerated tempera-

tures and therefore called temperature-accelerated stability

study. The stability is given by the degradation rate of the

plot. In analogy to this study, we transform equation (1) into
its original form, F(mtMR)5 exp(A1/MRþA2/STCþA3/HYD

þ A0)5 F0�exp(A1/mtMR), and follow the F value as a func-
tion of mtMR, which goes from mtRMR to mtMMR. Here,

the constantsAn (n5 0–3) are determined in advance by the

regression analysis of each vertebrate group. The Arrhenius

Stability of Mitochondrial Membrane Proteins GBE
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plot describes the fall in stability of MMPs with rising mtMR
values in an each animal. For example, the African elephant,

with a very low mtRMR (fig. 6), shows a rapidly decreasing

function of Fwith an increase in mtMR, whereas the red fox,

with a high mtRMR, shows a slowly decreasing function of

F with an increase in mtMR (supplementary fig. S7, Supple-

mentary Material online). Because mtMMR is generally

around 5- to 10-fold greater than mtRMR (Bishop 1999;

Porter 2001), the F value in this region is almost saturated
at its lowest level and insensitive to the precise value of

mtMMR in each animal. The maximum value of the fall in

stability is given by SF 5 F(mtRMR) � F(mtMMR), which

stands for the degradation of MMP stability induced by

accelerating the mt metabolic rate of an organism.

If this fall in stability is recovered by helix–helix interac-

tions of hydrogen bonding, STC should provide positive cor-

relations with SF because serine/threonine motifs are quite
important for stabilizing the tertiary structure of MMPs.

Such a correlation is demonstrated in placentals in which

extensive STC increases and HYD decreases were observed

in hominoids of the primate lineage (supplementary fig. S8,

Supplementary Material online). We adjusted the STC and

HYD values of primates so as to lie on the regression lines

(blue lines) for many other placentals. We estimated the

Y values of equation (1) by using these adjusted values
and compared them with the original Y values as functions

of STC (supplementary fig. S9, Supplementary Material on-

line). As a result, the position of primates became very sim-

ilar to that of figure 4 because the relationship between STC

and Y in primates returned to that between STC and Y in

other placentals. This result enables us to speculate that

the MMP stabilization attained by additional STC increases

in hominoids and some simians offset the fall in MMP sta-
bility at accelerated mt metabolic rates associated with

amarked prolongation of longevity. Amore rigorous estima-

tion of MMP stability will need to be made in the future on

the basis of a detailed tertiary structure analysis of MMPs,

for example, with help of the molecular dynamics.

Long-Range Helix–Helix Interactions Taking Into
Account Mobility of MMPs

Helix–helix (hydrogen bonding) interactions by serine/thre-

onine motifs have normally a short range around 2Å and

below 3Å. However, we note here that MMPs dynamically

move during functions (Hildebrand et al. 2008) as one MMP

complex (complex I) resembles a steam engine inwhich a pis-

ton drives a set of discontinuous helices (Efremov et al.

2010). As a result, even hydrogen-bonding pairs with larger
distances (R) than 3Å can enter the short range when they

oscillate with an amplitude (DR), which is enlarged with an

increase in mt metabolic rates (functional activities). In

addition, it is increasingly clear from blue-native gel electro-

phoresis (Dudkina et al. 2010) and flux-control analyses

(Acı́n-Pérez et al. 2008; Genova et al. 2008; Lenaz and
Genova 2009) that the random diffusion model of mt respi-

ratory chain function is not supported at higher metabolic

rates. Instead, dynamic respirasomes—comprising com-

plexes I and III or I, III, and IV and possibly the ATP synthase

(Acı́n-Pérez et al. 2008)—form stable supercomplexes dur-

ing active oxidative phosphorylation. The dissociation of

supercomplexes appears to depend on the electrical prop-

erties of the innermembrane, notably themembrane poten-
tial (Lenaz and Genova 2009), and we postulate that the

dynamic assembly and disassembly of these respiratory

supercomplexes could explain the high ST content of MMPs

in animals with high aerobic capacity. The high STcontent of

MMPs may also stabilize respirasomes during mt fusion and

fission, both highly dynamic processes associated with

changes in electron flux and membrane potential, taking

place in a matter of minutes (Twig and Shirihai 2011).
We therefore postulate that the ability of serine and threo-

nine residues to form both short-range and long-range hy-

drogen bonds assists in the formation of dynamic

supercomplexes in the context of cristae remodeling and

changes in respiratory flux.

We simulated how much the short-range force of a two-

body potential can be effectively enlarged by the oscillation

effect by applying a ‘‘spring’’ model in which a relative dis-
tance of hydrogen bond oscillates with the average ampli-

tude DR around R. Obeying Hooke’s law, we have mtMR 5

K0 (DR/R)
2 with a constant K0 (mtMR goes from mtRMR to

mtMMR), and DR2 becomes proportional to mtMR. The ef-

fective two-body potential and interaction range are given

by E(R) 5 (2�p�DR2)�1�
R
exp{�(R � r)2/(2�DR2)}�H(r)�dr and

Reff 5
R
R�E(R)�dR/

R
E(R)�dR, respectively. Here, H(r) denotes

the original two-body potential of a short range. As a result,
we confirmed that the effective interaction range Reff can
easily become two to three times as large as the original

range (supplementary fig. S10, Supplementary Material on-

line; the caption describes a detailed procedure to calculate

Reff). Occurrence of such a long-range potential markedly

amplifies a probability of helix–helix interactions in the 3D

configuration space associated with an increase in STC.

Possibility of Other Types of Adaptive Evolution

There is an inverse relationship betweenMLS and the propor-

tion of n � 3 polyunsaturated fatty acids in lipids, which are

sensitive to peroxidation (Pamplona et al. 2002; Hulbert et al.

2007). Thebehavioroffattyacidcompositionseemssimilar to

thatof themtRMRbecause these twovariablesdecreasewith

increases in W and MLS. It is interesting to include this fatty

effect as an additional variable ofmt composition in equation
(1) for the multiple regression analysis when more data are

available in the future.Other factors, suchas theeffectofpro-

ton leak on mt membrane surface area (Porter 2001), could

also be examined by using equation (1).
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It is noteworthy that the hydrophobicity of MMPs is sub-
ject to reversible selection in terrestrial vertebrate groups.

One of the main hypotheses for the retention of mtDNA

at all relates to the physical intractability of hydrophobic

MMPs. On the basis of our study, MMP hydrophobicity is

indeed tractable to selection, so an inability to alter the

properties of MMPs does not seem to be sufficient reason

to retainmtDNA. Other factors, such as redox regulation—the

requirement for locally calibrated changes in expression of mt
genes in response to changes in supply and demand as re-

flected in redox state and membrane potential—presumably

play an important role. The findings presented here are con-

sistent with the colocation for redox regulation hypothesis

(Allen 2003).

Concluding Remarks

In examining how mitochondria have been adapted to the
habitats and life strategies of vertebrates, we analyzed the

behavior of HYD and STC in various vertebrate groups. As a re-

sult, we speculate that low HYD and high STC are linked to

increases in MMP mobility and stability in terrestrial verte-

brates, and these features are then related to energetic

requirements and longevity of them. These speculations were

derived almost entirely within the framework of Arrhenius

equation.

Supplementary Material

Supplementary tables S1 and S2 and figures S1–S9 are avail-

able at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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2011. Mitochondrially encoded methionine is inversely related to

longevity in mammals. Aging Cell 10(2):198–207.

Allen JF. 2003. The function of genomes in bioenergetic organelles. Phil

Trans R Soc Lond. B358:19–37.

Bishop CM. 1999. The maximum oxygen consumption and aerobic

scope of birds and mammals: getting to the heart of the matter.

Proc R Soc Lond B Biol Sci. 266:2275–2281.

Bromham L, Rambaut A, Harvey PH. 1996. Determinants of rate

variation in mammalian DNA sequence evolution. J Mol Evol.

43:610–621.

Carstensen JT. 2000. Solution kinetics. In: Carstensen JT, Rhodes CT,

editors. Drug stability: principles and practices (3rd ed.). New York:

Marcel Dekker. p. 19–55.

Chance B, Williams GR. 1955. A method for the localization of sites for

oxidative phosphorylation. Nature 176:250–254.

Clark M. 1970. Function of spermaceti organ of the sperm whale.

Nature 228:873–874.

Cowan R, Whittaker RG. 1990. Hydrophobicity indices for amino acid

residues as determined by high-performance liquid chromatogra-

phy. Pept Res. 3:75–80.

Dawson JP, Weinger JS, Engelman DM. 2002. Motifs of serine and

threonine can drive association of transmembrane helices. J Mol

Biol. 316:799–805.

de Magalhaes JP, Costa J. 2009. A database of vertebrate longevity

records and their relation to other life-history traits. J Evolution Biol.

22:1770–1774. Available from: http://genomics.senescence.info/

species/.

Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ. 2010. Structure

and function of mitochondrial supercomplexes. Biochim Biophys

Acta Bioenerg. 1797:664–670.

Efremov RG, Baradaran R, Sazanov LA. 2010. The architecture of

respiratory complex. Nature 466:441–445.

Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ. 2000. Internal

packing of helical membrane proteins. Proc Natl Acad Sci USA.

97:5796–5801.

Ertel KD, Carstensen JT. 1990. Examination of a modified Arrhenius

relationship for pharmaceutical stability prediction. Int J Pharm. 61:9–14.

Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat.

125:1–15.

Galtier N, Jobson RW, Nabholz B, Glemin S, Blier PU. 2009.

Mitochondrial whims: metabolic rate, longevity and the rate of

molecular evolution. Biol Lett. 5:413–416.

Garey JR, Judge DS. 2002. Longevity records: life spans of mammals,

birds, amphibians, reptiles, and fish. Odense (Denmark): Odense

University Press. Available from: http://www.demogr.mpg.de/

longevityrecords/.

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD,

Bairoch A. 2005. Protein identification and analysis tools on the

ExPASy server. In Walker JM, editor. The proteomics protocols

handbook. Totowa (NJ): Humana Press. p. 571–607. Available from:

http://www.expasy.ch/.

Genova ML, et al. 2008. Is supercomplex organization of the respiratory

chain required for optimal electron transfer activity? Biochim

Biophys Acta Bioenerg. 1777:740–746.

Gibson A, Gowri-Shankar V, Higgs PG, Rattray M. 2005. A comprehensive

analysis of mammalian mitochondrial genome base composition and

improved phylogenetic methods. Mol Biol Evol. 22:251–264.

Stability of Mitochondrial Membrane Proteins GBE

Genome Biol. Evol. 3:1233–1244. doi:10.1093/gbe/evr079 Advance Access publication August 7, 2011 1243

 at U
C

L
 L

ibrary Services on January 8, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/cgi/content/full/evr079/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr079/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr079/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr079/DC1
http://www.weibull.com/acceltestwebcontents.htm
http://www.weibull.com/acceltestwebcontents.htm
http://genomics.senescence.info/species/
http://genomics.senescence.info/species/
http://www.demogr.mpg.de/
http://www.demogr.mpg.de/
http://www.expasy.ch/
http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/


Gillooly JF, McCoy MW, Allen AP. 2007. Effects of metabolic rate on

protein evolution. Biol Lett. 3:655–659.

Gimpelev M, Forrest LR, Murray D, Honig B. 2004. Helical packing

patterns in membrane and soluble proteins. Biophys J. 87:4075–4086.

Goldberg A, et al. 2003. Adaptive evolution of cytochrome c oxidase

subunit VIII in anthropoid primates. Proc Natl Acad Sci. USA.

100:5873–5878.

Grossman LI, Schmidt TR, Wildman DE, Goodman M. 2001. Molecular

evolution of aerobic energy metabolism in primates. Mol Phylogenet

Evol. 18:26–36.

Harvey PH, Pagel MD. 1991. The comparative method in evolutionary

biology. Oxford: Oxford University Press.

Hildebrand PW, et al. 2008. Hydrogen-bonding and packing features of

membrane proteins: functional implications. Biophys J. 94:1945–1953.

Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. 2007. Life and

death: metabolic rate, membrane composition, and life span of

animals. Physiol Rev. 87:1175–1213.

Jobson RW, Dehne-Garcia A, Galtier N. 2010. Apparent longevity-

related adaptation of mitochondrial amino acid content is due to

nucleotide compositional shifts. Mitochondrion 10:540–547.

Kitazoe Y, et al. 2007. Robust time estimation reconciles views of the

antiquity of placental mammals. PLoS One. 2:e384.

Kitazoe Y, et al. 2008. Adaptive threonine increase in transmembrane

regions of mitochondrial proteins in higher primates. PLoS One.

3:e3343.

Lachman L, DeLuca P. 1976. Kinetic principles and stability testing. The

theory and practice of industrial pharmacy (2nd ed.). Philadelphia

(PA): Lea and Febiger. p. 32–69.

Lane N. 2006. Power, sex, suicide: mitochondria and the meaning of

life. New York: Oxford Univ Press.

Lane N. Forthcoming. 2011a. The evolutionary tradeoffs of breathing.

Science.

Lane N. Forthcoming. 2011b. Mitonuclear match: optimizing fitness and

fertility over generations drives ageing within generations. BioEssays.

Lehmann G, Segal E, Muradian KK, Fraifeld VE. 2008. Do mitochondrial

DNA and metabolic rate complement each other in determination of

the mammalian maximum longevity? Rejuvenation Res. 11:409–417.

Lenaz G, Genova ML. 2009. Structural and functional organization of

the mitochondrial respiratory chain: a dynamic super-assembly. Int J

Biochem Cell Biol. 41:1750–1772.

Min XJ, Hickey DA. 2008. An evolutionary footprint of age-related

natural selection in mitochondrial DNA. J Mol Evol. 67:412–417.

Moosmann B, Behl C. 2008. Mitochondrially encoded cysteine predicts

animal lifespan. Aging Cell 7:32–46.

Moser CC, Page CC, Dutton PL. 2006. Darwin at the molecular scale:

selection and variance in electron tunnelling proteins including

cytochrome c oxidase. Phil Trans Roy Soc B. 361:1295–1305.

Nabholz B, Glemin S, Galtier N. 2009. The erratic mitochondrial clock:

variations of mutation rate, not population size, affect mtDNA

diversity across birds and mammals. BMC Evol Biol. 9:54.

NCBI Genome Database [Internet]. Bethesda (MD): The National Center

for Biotechnology Information [cited 2011 Jun 25]. Available from:

http://www.ncbi.nlm.nih.gov/genomes/.

Nikaido M, Rooney AP, Okada N. 1999. Phylogenetic relationships

among cetartiodactyls based on insertions of short and long

interpersed elements: hippopotamuses are the closest extant

relatives of whales. Proc Natl Acad Sci USA. 96:10261–10266.

Pamplona R, Barja G. 2007. Highly resistant macromolecular compo-

nents and low rate of generation of endogenous damage: two key

traits of longevity. Ageing Res Rev. 6:189–210.

Pamplona R, Barja G, Portero-Otı́n M. 2002. Membrane fatty acid

unsaturation, protection against oxidative stress, and maximum life

span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci.

959:475–990.

Peters RH. 1986. The ecological implications of body size. Cambridge:

Cambridge University Press. p. 329. ISBN 0-521-2886-x.

Pontzera H, Raichlenb DA, Shumakerc RW, Ocobocka C, Wiche SA.

2010. Metabolic adaptation for low energy throughput in orang-

utans. Proc Natl Acad Sci USA. 107:14048–14052.

Porter RK. 2001. Allometry of mammalian cellular oxygen consumption.

Cell Mol Life. 58:815–822.

Porter RK, Brand MD. 1995. Causes of the difference in respiration rates

from mammals of different body mass. Am J Physiol.

269:R1213–R1224.

Reyes A, Gissi C, Pesole G, Saccone C. 1998. Asymmetrical directional

mutation pressure in the mitochondrial genome of mammals. Mol

Biol Evol. 15:957–966.

Rottenberg H. 2007. Coevolution of exceptional longevity, exceptionally

high metabolic rates, and mitochondrial DNA-coded proteins in

mammals. Exp Gerontol. 42(4):364–373.

Schindeldecker M, Stark M, Behl C, Moosmann B. 2011. Differential

cysteine depletion in respiratory chain complexes enables the

distinction of longevity from aerobicity. Mech Ageing Dev.

132(4):171–179.

Schmitz J, Ohme M, Zischler H. 2002. The complete mitochondrial

sequence of Tarsius bancanus: evidence for an extensive nucleotide

compositional plasticity of primate mitochondrial DNA. Mol Biol

Evol. 19:544–553.

Secor SM. 2003. Gastric function and its contribution to the post-

prandial metabolic response of the Burmese python Python

molurus. J Exp Biol. 206:1621–1630.

Secor SM, Diamond J. 1995. Adaptive responses to feeding in Burmese

pythons: pay before pumping. J Exp Biol. 198:1313–1325.

Speakman JR. 2005. Body size, energy metabolism and lifespan.

J Exp.Biol. 208:717–1730.

Spradling T, Hafner M, Demastes J. 2001. Differences in rate of

cytochrome-b evolution among species of rodents. J Mammal.

82:65–80.

Twig G, Shirihai OS. 2011. The interplay between mitochondrial

dynamics and mitophagy. Antioxid Redox Signal. 14:1939–1951.

Watanabe Y, et al. 2011. Scaling of swim speed in breath-hold divers.

J Anim Ecol. 80:57–68.

Weibel ER, Bacigalupe LD, Schmitt B, Hoppeler H. 2004. Allometric

scaling of maximal metabolic rate in mammals: muscle aerobic

capacity as determinant factor. Respir Physiol Neurobiol.

140(2):115–132.

Weibel ER, Hoppeler H. 2005. Exercise-induced maximal metabolic rate

scales with muscle aerobic capacity. J Exp Biol. 208(Pt 9):1635–1644.

Welch JJ, Bininda-Emonds OR, Bromham L. 2008. Correlates of

substitution rate variation in mammalian protein-coding sequences.

BMC Evol Biol. 8:53.

Associate editor: Bill Martin

Kitazoe et al. GBE

1244 Genome Biol. Evol. 3:1233–1244. doi:10.1093/gbe/evr079 Advance Access publication August 7, 2011

 at U
C

L
 L

ibrary Services on January 8, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://www.ncbi.nlm.nih.gov/genomes/
http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/

