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ABSTRACT 

Computer hardware with native support for large-bitwidth operations can be used for the concurrent 

calculation of multiple independent linear image processing operations when these operations map integers 

to integers. This is achieved by packing multiple input samples in one large-bitwidth number, performing a 

single operation with that number and unpacking the results. We propose an operational framework for 

tight packing, i.e. achieve the maximum packing possible by a certain implementation. We validate our 

framework on floating-point units natively supported in mainstream programmable processors. For image 

processing tasks where operational tight packing leads to increased packing in comparison to 

previously-known operational packing, the processing throughput is increased by up to 25%.  

Index Terms–Accelerated image processing, programmable processors, computation,          EDICS: DSP-FAST 

I. INTRODUCTION 

Packed linear image processing hinges on the idea that the dynamic range of a 32-bit or 64-bit numerical 

representation can be used for the concurrent calculation of multiple small-dynamic-range integer 

operations if the operands are positioned (or “packed”) in such numerical representation with appropriate 

spacing from each other [1][2]. This has been proposed for a variety of image processing operations such as 

bound estimation, image cross-correlation and orientation correlation [1], incremental image convolution 

and motion estimation [2], integer block-transform decomposition [3] and integer wavelet transforms [4].  

Consider a linear operation op  that can be applied to M  image blocks mB  concurrently
1
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 The M  blocks can be parts of different images that are processed concurrently, or parts of the same image. 
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( { }0, , 1m M∈ −… , 2M ≥ ), using integer operator matrix K :  

 ( )  m m op=U B K .  (1) 

This can be a block transform decomposition or reconstruction, or a convolution or cross-correlation 

operation using an integer processing kernelK [1][2]. Operational
2
 packing first forms a single block D  by:  

 
1

0

M m
mm
ε

−

=
= ∑D B ,  (2) 

with 0ε >  an appropriate packing coefficient. Then, the concurrent processing takes place by  

 ( )  op=R D K .  (3) 

Considering the use of an operational real-number representation, such as floating-point, the results can be 

unpacked sequentially [1]. First, all packed results are shifted to the non-negative region of zero by:  

 minL+ = − ⋅R R J   (4) 

with: 
1

min min 0

M m

m
L A ε

−

=
= ∑  , minA  the minimum possible value of the results

3
 of (1) and J  the unit 

matrix (matrix of ones). Each result is subsequently unpacked from +
R  by: 

 {0} 0 {0}0 :                  ,   m + + + + = ≡ =   
R R U R  (5) 

 { } { 1} 1 { }

1
{1, , 1} : ( ),  m m m m mm M

ε

+ + + + +
− −

 ∀ ∈ − = − =   
R R U U R… . (6) 

where { }m
+
R  indicates the contents of +

R  during the m th unpacking and a 
   the largest integer smaller or 

equal to a . Finally, the results are derived from 0 1, , M
+ +

−U U…  by offsetting to their original range:  

 min{0, , 1} :  m mm M A+∀ ∈ − = +U U… . (7) 

The higher the value of M , the higher the execution time reduction offered by operational packing, since 

more results are calculated concurrently [1][2].  

 In this paper we focus on the case of operational packing with real number representations (0 1ε< < ) 

and in particular with floating-point since: (i) the parameters for the best-possible packing and unpacking 

with integer representations are trivial [1]-[4]; (ii) unlike integer representations, floating-point 

representations preserve the sign information for each packed number [1][2]; (iii) programmable processors 

can offer better native support for floating-point representations in comparison to integer representations 

thereby enabling higher speed [2]. Hence, the problem we address is: Given the linear processing algorithm 

 
2
 The term operational refers to an algorithm or representation realizable by a computer.  

3
 The minimum and maximum possible values of the output can be calculated a-priori for given op  and K , under 

the known dynamic range of the input. An example is given in the following section.  
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of (1), define tight upper bounds for ε (0 < ε < 1) and M  that can be used in the operational framework of 

(2)-(7).  

In their work on tight packing [1], Kadyrov and Petrou propose rules for tight packing, which, under the 

operational scenario of (2)-(7), are expressed by [(20), [1]]:  

 
max min

1

1A A
ε ≤

− +
 and 1 2M pε − >     (8) 

with p  the maximum numerical error during the packing and processing of (2) and (3), and minA , maxA  

the minimum and maximum possible value of the results of (1), respectively. Parameter p  is expressed as 

[p. 1883, [1]]: max minmax{ , }p A A µ= , i.e. the maximum absolute value produced during the 

processing, multiplied by parameter µ  that represents the relative precision of the computer arithmetic 

hardware. Since µ  stems from the finite precision of the implementation, it can be calculated offline by a 

simple numerical experiment with the target implementation platform [1]. Even though the proof of [1] 

shows (by induction) that such rules suffice for mathematically-correct unpacking, it is not shown they are 

bounds for the operational scenario of (2)-(7). Furthermore, beyond the calculation of µ , no procedure or 

experiments linking the rules of (8) to a certain operational framework are given in [1]. To the best of our 

knowledge, only examples of operational loose packing have been presented for  1ε <  [1][2]. Hence, the 

problem stated previously remains open.   

In this paper, we first derive upper bounds on ε and M  (Section II). These bounds turn out to be 

similar, but not identical, to the rules of (8). Importantly, we demonstrate their tightness via experiments 

with floating-point representations and derive a procedure for setting the operational parameters for correct 

execution (Section III). Finally, experimental results comparing tight packing with previously-known loose 

packing are presented (Section IV), demonstrating for the first time the increase in processing throughput 

offered by tight packing when higher values for M  are obtained.  

II. THEORY OF OPERATIONAL TIGHT PACKING REVISITED 

 We demonstrate that bounds for ε  and M  can be derived from the dynamic range of the output, 

range max minA A A= − , that the image processing operation can produce, and from the precision of the 

operational framework. This range can be calculated if op  and K  are known. For example, for M  blocks 

of Q Q×  8-bit unsigned samples (image pixels), mB , convolved with the Q Q×  kernel K  by 

m m= ∗U B K , we derive maxA  and minA  by:  
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limit 1 1

(2 1) [ , ] [ , ]
Q Q

si j
A B i j K i j

= =
= − ∑ ∑  (9) 

with 
1,  if (-1) [ , ] 0

[ , ]
0,  if (-1) [ , ] 0

s

s s

K i j
B i j

K i j

 >= 
 ≤

 for {0,1}s ∈ , 1 ,i j Q≤ ≤ , (10) 

where max limitA A=  when 0s =  and min limitA A=  when 1s = .    

 Proposition 1: Packing M  integers via (2) for linear integer-to-integer processing with output range 

range max minA A A= − , followed by unpacking by (4)-(7), requires: 

 

range

1

A
ε

δ∗
<

+
    (11) 

and  ( )rangelog 0.5 1M Aε µ   ≤ + +       (12) 

with ( ) ( ){ }1

range rangearg min 1
M

A A
δ

δ δ δ
+

−∗

∀ ∈
= + − −

ℝ

 (13) 

and µ  the relative precision of the computer used for the implementation. 

Proof of (11): Expanding any element ( , )i j  of +
R  we have: 

 ( ) ( ) ( )1
0 min 1 min 1 min[ , ] [ , ] [ , ] [ , ]M

MR i j U i j A U i j A U i j Aε ε −
−= − + − + + −…  (14) 

with [ , ]mU i j , { }0, , 1m M∈ −… , the ( , )i j th result for the m th packed block. In order to recover 

0[ , ]U i j  correctly via (5): 

 ( )
1

min1
0 [ , ] 1

M m
mm
U i j Aε

−

=
≤ − <∑ . (15) 

The upper bound is approached when the linear processing derives max{1, , -1} : [ , ]mm M U i j A∀ ∈ =… , 

i.e. the maximum value for each packed result: 

 ( )
1

range range1
range

1
0 1 1 0

M m M

m
A A

A
ε ε ε

−

=
− < ⇔ − + + − <∑ .  (16) 

Furthermore, min{1, , 1} : [ , ]mm M U i j A∀ ∈ − =… , the lower bound of (15) is achieved, regardless of 

ε . Hence, the allowed values of ε  can be bounded solely based on (16) by: 

 

range

1
0,
A

ε
δ∗

  ∈    + 
  (17) 

with 0δ∗ >  derived by the solution of (16) under the marginal condition of equality to zero. The analytic 

expression deriving the exact value for δ∗  from (16) under this marginal condition can be simplified to:  

 ( ) ( )
1

range range1 0
M

A Aδ δ
−

∗ ∗+ − − = .  (18) 
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Since the last equation has no closed-form solution for δ∗  when 4M > , we can express δ∗  as the 

argument minimizing the magnitude of (18), i.e. (13), and use numerical methods (e.g. bisection) to find 

δ∗ . When unpacking any [ , ]mU i j , { }2, , 1m M∈ −… , all admissible solutions for ε  have upper bounds 

that are larger than the one of (17). This is because 
1M m

m k
ε

−

=∑  in (16) ( 1k ≥ , 0 1ε< < ) is maximized 

when 1k = . As a result, the tightest upper bound for ε , which ensures all unpackings are mathematically 

correct, is controlled by the first unpacking.                                                     ■ 

Proof of (12): Assuming (14) under the worst case, i.e. with the maximum value for each element of +
R  

( max{0, , 1} : [ , ]mm M U i j A∀ ∈ − =… ) and relative machine precision µ , we have
4
: 

 ( )1

range 0
[ , ] 0.5

M m

m
R i j A ε µ µ

−

=
= + +∑ . (19) 

In order to recover all [ , ]mU i j  correctly via (5)-(7), 0 1m M≤ ≤ − , unpacking via (6) imposes: 

 
( )1

range 1
0.5

1

M n

n m

m

A ε µ µ

ε

−

= +
+ +

<
∑

. (20) 

For the last unpacking, i.e. 1m M= − , we have 
1

0
M n

n M
ε

−

=
≡∑  and, hence, we reach (12) after 

rounding down to the nearest integer. When any other unpacking m M k= − , { }2, ,k M∈ …  is 

considered, we have 
1

1
0

M n

n M k
ε

−

= − +
>∑  and hence we reach bounds for M  that are larger or equal to the 

one of (12). As a result, the tightest upper bound for M  is derived by the last unpacking.              ■ 

 Remark 1 (Effect of machine precision on (11)): The upper bound of (11) did not consider the machine 

precision. Unlike (12), where the finite precision of the machine (represented by µ ) is the reason that 

makes M  a finite number, the upper bound of (11) is imposed by the unpacking process itself and it is valid 

even under infinite precision. Finite-precision effects will decrease the practical value of ε  slightly in some 

cases, as it will be shown experimentally in Section III.                                           □ 

 Remark 2 (Practical usage): The practical calculation of the bounds is done as follows.  

Step 0 (Initialization): Set 1L = . Set {0} {0} {0}1, ,M δ ε∗≡ ≡ ∅ ≡ ∅ (the default is no packing capability).  

Step 1 (Increment of packing): Set { } 1LM L= + .  

Step 2 (Parameters calculation): Calculate { }Lδ
∗  from (13) and set { }Lε  equal to the bound of (11).  

Step 3 (Packing bound check): If { }LM  satisfies (12), increment L  by 1 and go to Step 1. Otherwise, the 

tight packing parameters are settled to: { 1}LM − , { 1}Lδ
∗

− , { 1}Lε − .                                     □ 

 
4
 This includes the term range( 0.5)A µ+  to account for the maximum possible numerical error, which is upper 

bounded by the maximum value of the calculation, range( 0.5)A + , scaled by the relative precision µ .  
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 Remark 3 (Link to Prior Work): The results of Proposition 1 are similar to the previously-proposed rules 

[1] given by (8), but not identical. For example, under non-negative input and kernel values, we have 

min 0A = , which leads to ( )maxlog 0.5 1M Aε µ   ≤ + +     under Proposition 1, instead of  

maxlog 2 1M Aε µ   ≤ +     of (8). In general, (8) will approximate the bounds of Proposition 1 only under 

symmetric dynamic range, i.e. when max minA A= − . Finally, even though it is proposed in [1] to utilize the 

remaining space beyond the last packing (i.e. beyond { 1}LM −  from Remark 2) by reducing the range of the 

last packing, or by the introduction of error in the results of the last block ( 1M−U ), this is not applicable for 

this work as all packed numbers are under the same dynamic range, { }min max, ,A A… , since the same 

operation is performed in all input blocks, and we are only considering error-free operation.            □ 

 Next, we validate the derived bounds for practical tight packing in double-precision floating-point 

representations by presenting the experimental values for ε  and M  in comparison to the theoretical bounds.   

III. FLOATING-POINT ASPECTS IN TIGHT PACKING 

 It is well known that the mapping of the floating-point representation (with single or double precision) in 

the IEEE standard is not linear [5]. Floating-point units (FPUs) are designed to have increasingly-finer 

sampling around zero. Consequently, in an operational environment with an FPU, the experimental value 

for δ∗ , denoted by δ
ɵ

, may be larger than the theoretical estimate of (13) and, hence, the practical value of 

ε  may need to be decreased for correct packing and unpacking in floating-point. This is due to the fact that, 

under the packing of (2), the working region of each packed sample ( , )i j  becomes 

0 0( [ , ] 0.5, [ , ] 0.5)U i j U i j− + , i.e. centers around 0[ , ]U i j  instead of the high-precision region around zero. 

In the following, we perform a related experiment to demonstrate the practical relevance of the derived 

bounds and the impact of the precision of FPUs.  

 We examine the popular case of convolution operations ( )  m m op=U B K , { }0, , 1m M∈ −… , 

with unsigned 8-bit input samples and non-negative convolution kernels K  ( min 0A = ) deriving 

increasing values for maxA , which can be calculated by (9) with 0s = . We used 25 convolution kernels 

representing various realistic examples such as: 2D Gaussian smoothing filters converted to fixed-point 

(integer) representation [2], image processing kernels (e.g. kernels simulating camera motion effects or 

smoothing from Matlab’s fspecial() function), kernels derived from image templates (for template 

matching via cross-correlation [1][2]), etc. Our experiments cover: 8
max {10, ,1000} (2 1)A ∈ × −… . For 
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each kernel, we calculate δ∗  by solving (13) with numerical methods (bisection) for each M  admissible 

by (12) and selected the δ∗ corresponding to the maximum admissible M . The calculated relative machine 

precision in the implementation hardware (double-precision floating point realization using an Intel Core 

Duo 2 processor under Microsoft Visual C++ 9.0) was found to be 161.3417592 10µ −= ×  using the test 

of [[1],(28)]. Per kernel (i.e. per maxA  value), the experimental value for δ∗  was found by iteratively 

increasing δ∗ : 0.01iδ δ∗= +ɵ
, 0,1,i = … , until the packed convolution results can be unpacked without 

error under the operational tight packing framework of (2)-(7). This process has negligible complexity and 

can be performed at an initialization phase. Furthermore, it is completely realizable in software without 

requiring access to hardware specifications of a particular system. 

 Figure 1 presents the experimental points ( δ
ɵ

) vs. theoretical prediction ( δ∗ ). The floating-point 

precision causes slight deviations of δ
ɵ

 from the theoretically-predicted value. Importantly, the solution of 

(13) predicts the transition point for δ
ɵ

 accurately. Hence, Proposition 1 offers a more precise 

characterization of the experimental results than the packing rules of (8), which suggest that 

max : 1A δ∗∀ = .   

  

δ

maxA
0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
One packing in the operand

 

 

Proposition 1

Floating point (64-bit)

Figure 1; Graph of δ
ɵ

 (under double-precision floating-point representation) vs. δ∗  (derived by Proposition 

1).  

 Figure 2 shows the experimentally-derived 
�
M  versus the theoretical bound of Proposition 1 and the 

rule of (8) from [1]. We have also produced the corresponding graph for ε
ɵ

 versus ε  from Proposition 1. 

For that we measured: 82.15 10
ε
ε ε −

∀
− = ×∑ ɵ

ɵ
, while for  the rule of (8): 

83.97 10
ε
ε ε −

∀
− = ×∑ ɵ

ɵ
, i.e. both theoretical estimates are very close to the measured values. Finally, 
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the bound of (12) predicts the experimentally observed number of packings, 
�
M , for all cases. Notice that 

the rule of (8) from [1] does not match the transition points from 4M =  to 3M =  and from 3M =  to 

2M = , since it does not provide the upper bound for the packing capability. 

maxA
0 0.5 1 1.5 2 2.5 3

x 10
5

2

3

4

 

 

Maximum packing possible

 

 

Proposition 1

Rule of [1]

Floating point (64-bit)

0 5000 10000 15000
3

4

M

 

Figure 2; Experimentally derived 
�
M  versus its theoretical bound from Proposition 1 and the packing rule 

of (8) from [1]. 

IV. EXPERIMENTAL RESULTS 

 In order to demonstrate the impact of the proposed tight packing framework in applications, we present 

example results with two convolution kernels, a 12 12×  Gaussian kernel converted to fixed-point 

assuming 9 fractional bits, and a  5 9×  integer kernel simulating camera-motion effects derived from 

fspecial('motion') in Matlab. Both kernels derive maxA  within 5{1.55, ,1.90} 10×… , which allows 

for 
� 3M =  in the proposed packing, while tight packing via (8) (denoted as “Tight packing [1]”) and the 

operational loose packing environment of [2] (using the entire 8-bit input images), denoted as “Loose 

packing [2]”, achieve 
� 2M = . All programs where executed via a modification of the ORIP framework 

[2][6] to operate using (1)-(7) and, also, using all 8 input bitplanes directly, in order to operate without the 

incremental-computation features. All programs where compiled with Microsoft Visual C++ 9.0 and utilize 

the same source code, apart from the packing and unpacking functions that are tailored for each case. They 

were executed in an Intel Core Duo 2 processor under highest-priority to ensure stable execution time 

measurements. All I/O time was excluded since it caused the same overhead for all cases. The input content 

consisted of the luminance frames of several 704x576 YUV progressive video sequences (at 30 
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frames-per-second). We report the average processing throughput in frames-per-second for all cases in 

Table 1. Similar results were obtained for several convolution or cross-correlation experiments where an 

increase of the packing capability was obtained, i.e. in the regions of Figure 2 that the proposed method 

offers increased 
�
M  in comparison to operational tight packing of [1]. The utilized source codes are 

available online [6].  

Kernel Type 
Conventional  

(no packing) 
Packing via [1] [2] Proposed packing 

5 9×  11.7 47.5 58.8 

12 12×   9.2 30.3 36.9 

Table 1. Throughput expressed in frames-per-second for two convolution examples. The proposed 

framework increases the operational packing from 
� 2M =  to 

� 3M = . 

V. CONCLUSION 

 We derive theoretical bounds for the spacing between two consecutive operands and the maximum 

number of operands that can be packed together in a real number representation with certain numerical 

precision. The experimental validation with linear image processing operations implemented in 

floating-point hardware indicates the derived bounds are tight. Particular adjustment for the limited cases 

where the floating-point hardware provides inaccurate results can be done with a very low-complex 

procedure. As an example of the practical benefits of the theory, a software realization of tight packing 

demonstrates more than 20% increase in processing throughput for standard-definition progressive video 

signals in comparison to previously-known tight packing.  
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