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Presence of Multiple Independent Effects in Risk
Loci of Common Complex Human Diseases

Xiayi Ke1,*

Many genetic loci and SNPs associated with many common complex human diseases and traits are now identified. The total genetic

variance explained by these loci for a trait or disease, however, has often been very small. Much of the ‘‘missing heritability’’ has

been revealed to be hidden in the genome among the large number of variants with small effects. Several recent studies have reported

the presence of multiple independent SNPs and genetic heterogeneity in trait-associated loci. It is therefore reasonable to speculate that

such a phenomenon could be common among loci known to be associated with a complex trait or disease. For testing this hypothesis,

a total of 117 loci known to be associated with rheumatoid arthritis (RA), Crohn disease (CD), type 1 diabetes (T1D), or type 2 diabetes

(T2D) were selected. The presence of multiple independent effects was assessed in the case-control samples genotyped by the Wellcome

Trust Case Control Consortium study and imputed with SNP genotype information from the HapMap Project and the 1000 Genomes

Project. Eleven loci with evidence of multiple independent effects were identified in the study, and the number was expected to increase

at larger sample sizes and improved statistical power. The variance explained by themultiple effects in a locus was much higher than the

variance explained by the single reported SNP effect. The results thus significantly improve our understanding of the allelic structure of

these individual disease-associated loci, as well as our knowledge of the general genetic mechanisms of common complex traits and

diseases.
Over the past few years, genome-wide association studies

(GWASs) have been used for identifying a large number

of common genetic loci for many common complex traits

and diseases. These loci, however, contribute only a small

proportion of the disease variability, leaving a large

amount of disease heritability unexplained.1 This so-called

‘‘missing heritability’’ issue has been partly demystified

through methods that take into account genetic informa-

tion of common variants accumulated across biological

pathways2 or across the entire genome among the large

numbers of variants of small effects,3,4 rather than just

the individual confirmed disease-susceptibility loci. For

example, with human height, a complex trait with an

estimated heritability of 80%, it was shown that genome-

wide information of common variants could explain

45% of heritability, whereas only 5% could be explained

by the 50 confirmed associated loci at the time3 and about

10% could be explained by the hundreds of variants clus-

tered in genomic loci and biological pathways affecting

the trait.5

This improved knowledge of ‘‘missing heritability,’’

however, is far from sufficient in our understanding of

the underlying biological mechanisms of a trait or disease.

Knowledge of local allelic structure of individual associated

loci is very important but is still lacking at the moment. It

has been noticed that for the majority of individual associ-

ated loci, there is usually only a single common SNP or

allele to be identified and reported. It is highly possible,

however, that multiple independent effects could be

present in a gene or locus that is associated with a trait.

The major histocompatibility complex (MHC) region is

well known to harbor multiple independent effects for
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autoimmune diseases, such as type 1 diabetes (T1D [MIM

222100])6 and rheumatoid arthritis (RA [MIM 180300]).7

Similar observations have also been reported for non-

MHC regions, such as the OLIG3 (MIM 609323)-TNFAIP3

(MIM 191163) region, where multiple independent alleles

were found to be associated with RA.8,9 More recently,

multiple independent effects were observed in 19 loci

associated with human height5 and in six loci associated

with Crohn disease (CD [MIM 266600]).10 Similar observa-

tion was also reported for expression quantitative trait loci

(eQTLs).11 It is highly possible that such phenomena

are more prevalent among disease-associated genes and

genetic loci than what has been reported in the literature.

The lack of reports might be due to several limitations.

First, the priority of past GWASs was often to identify the

most significantly associated SNP for an individual locus

at the GWAS stage and to confirm the association through

replication. Second, the study samples might also have

insufficient statistical power for confidently detecting

independent associations of smaller effects. Third, the

SNP coverage for many individual loci in early GWAS

SNP arrays was very limited, thus reducing the chance of

detecting independent effects.

The last limitation can be substantially improved

through imputation with SNP genotype information pro-

vided by the HapMap Project12 and the 1000 Genomes

Project.13 The second limitation can also be partially allevi-

ated if a locus under investigation is already confirmed to

be associated with a disease or trait. In this study, the pres-

ence of multiple independent effects was investigated in

more than 100 known disease-associated loci with the

use of the Wellcome Trust Case Control Consortium
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(WTCCC) samples for RA, T1D, T2D (type 2 diabetes [MIM

125853]), and CD.14

Approximately 2,000 RA, CD, T1D, and T2D disease

samples (genotyped with Affymetrix Genechip 500 SNP

chip in the phase I WTCCC study) and 6,000 control

samples (genotyped by the WTCCC in its phase II study

with Affymetrix v.6.0 chip) from the 1958 Birth Cohort

study and British National Blood Service were downloaded

from the European Genome-phenotype Archive. Samples

and SNPs with low genotyping quality were removed as

described by the WTCCC.14 The final sample sets con-

tained 1,860 RA patients, 1,748 CD patients, 1,963 T1D

patients, and 1,924 T2D patients, as well as a total of

5,380 controls.

A list of approximately 30 disease-associated loci was ob-

tained from the literature (mainly from published genome-

wide meta-analyses) for RA,15–17 CD,18,19 T1D,20–22 and

T2D23–26 (Table S1, available online). For CD, 23 loci

were selected from the Barrett et al. meta-analysis,18 in

which specific genes of interest were assigned. A further

six loci (SCAMP3 [MIM 606913]-MUC1 [MIM 158340],

THADA [MIM 611800], PRDM1 [MIM 603423], ZFP36L1

[MIM 601264], GALC [MIM 606890]-GPR65 [MIM

604620], and TYK2 [MIM 176941]-ICMA1 [MIM 147840]-

ICAM3 [MIM 146631]) with evidence of multiple indepen-

dent associations from the more recent meta-analysis

report by Franke et al.10 were also selected. This resulted

in a total of 117 loci. Next, the genotype data for the indi-

vidual loci were extracted from the genome-wide data of

the above samples on the basis of their National Center

for Biotechnology Information build 36 coordinates as

downloaded from Ensembl. If a reported disease-associated

SNP was located outside the boundary of a locus (e.g., in-

tergenic or downstream or upstream of a gene) as defined

by Ensembl, the boundary of the locus was extended to

include that SNP for the current study.

For each locus, imputation was carried out with software

program IMPUTE2.27 Reference data of samples of Euro-

pean descent were downloaded from the website of the

authors of the software.27 The reference data used con-

tained 120 phased CEU (Utah residents with ancestry

from northern and western Europe from the CEPH collec-

tion) haplotypes from the pilot 1000 Genomes Project and

1,910 phased haplotypes from the HapMap 3 CEU data. An

effective size of 11,418 was used for imputation as recom-

mended for the population of European descent. So that

high quality could be ensured, all imputed genotypes

with an information score below 0.90 and/or aminor allele

frequency (MAF) < 5% (except for SNPs whose association

was confirmed in the literature) were excluded. After

quality control (QC), there were a total of 22,173 SNPs

from the 117 loci associated with RA, CD, T1D, and T2D.

For each locus or gene, a frequentist test of additive effect

for each SNP was carried out (after being adjusted for sex)

with software program SNPTEST on the imputed dosage

data. There were a total of 621 SNPs found to have an addi-

tive p value % 5 3 10�8, resulting in a subset of SNPs with
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unequivocal evidence of association with the correspond-

ing diseases (Table S1). SNPs whose associations were

confirmed in the literature were also added to this subset,

resulting in a total of 721 SNPs unevenly distributed across

the 117 loci (Table S1). Twenty-three of these loci (three

RA-associated loci, seven CD-associated loci, seven T1D-

associated loci, and six T2D-associated loci) were found

to contain more than one SNP from the subset. After

correction for multiple testing of all the 22,173 SNPs after

QC, a p value threshold of 2.33 10�6 was used for filtering

the rest of the SNPs. A further 19 loci also had more than

one SNP that either was confirmed in the literature or

met this threshold. This included seven CD-associated

loci, four RA-associated loci, five T1D-associated loci, and

three T2D-associated loci (Table S1). These 42 loci were

examined for the presence of multiple effects.

SNPs in a locus were first screened under a penalized

logistic regression model with the R package ‘‘penal-

ized.’’28 The following types of shrinkage were imple-

mented in the package: an L1 absolute value (‘‘lasso’’ [least

absolute shrinkage and selection operator]) penalty,29 an

L2 quadratic (‘‘ridge’’) penalty,30 or a combination of the

two (the ‘‘naive elastic net’’ of Zou and Hastie31). Analysis

in this study was conducted with the L1 option because

the lasso tends to produce fewer independent modes

of the data and thus provides a more conserved estimate

of the number of independent signals for a locus through

shrinkage. The number of independent modes depends

on the value of parameter l. For loci with only a small

number of SNPs, a l value of 5 was chosen for the penal-

ized regressionmodel, whereas for loci with a large number

of SNPs, a l value of 10 or higher was used so that the

number of candidate independent SNPs could be reduced.

SNPs with non-zero coefficients in the penalized regression

model were then passed onto a conditional logistic regres-

sion model for further examination. Under this model,

SNPs were conditioned on each other iteratively so that

a minimum set of independent SNPs could be obtained.

Within this set, each SNP was required to have a minimum

p value of 0.05 after being conditioned on other SNPs indi-

vidually as well as collectively (i.e., the combined effects of

all other SNPs if there were more than one). Conditional

analysis was also carried out with SNPTEST, and condi-

tional p values are listed in Tables 1 and 2.

First, the penalized and conditional regression-analysis

procedures were applied to several disease-associated loci

known to have multiple independent associations. This

included the RA-associated locus OLIG3-TNFAIP3.8,9 The

independent effects of rs6920220 and rs10499194 were

first reported by Plenge et al.8 and later confirmed by Or-

ozco et al.9 in a different population sample of 3,962 RA

patients and 3,531 healthy controls (in this latter study,

rs13207033 was used as a surrogate for rs104991949). In

the present study, the independence between rs6920220

and rs10499194/rs13207033 was not significant under

the regression analysis, indicating that the current sample

set was not sufficiently powerful for detecting such
012



Table 1. Evidence of Multiple Independent Effects in Disease-Associated Loci under Penalized and Conditional Regression Analyses

Chr Locus Reported Associations

Independent SNPs (and
p Values Conditioned
on All Other SNPs)

Genomic Context
of Independent SNPs

CD

1 IL23R (MIM 607562) rs11465804 (intron 7) rs7517847 (3.7 3 10�15),
rs11465804 (3.7 3 10�15)

rs7517847 (intron 5),
rs11465804 (intron 7)

5 PTGER4 (MIM 601586) rs4613763 (intergenic) rs4613763 (8.7 3 10�5),
rs6888952 (1.1 3 10�9),
rs9283753 (0.0016)

rs4613763 (intergenic),
rs6888952 (intergenic),
rs9283753 (intergenic)

16 NOD2 (MIM 605956) rs2076756 (intron 8) rs2076756 (3.1 3 10�13),
rs8056611 (0.00013)

rs2076756 (intron 8),
rs8056611 (downstream)

T1D

10 IL2RA (MIM 147730) rs12251307 (intergenic) rs12722495 (5.2 3 10�5),
rs7096384 (9.1 3 10�8)

rs12722495 (intergenic),
rs7096384 (upstream)

16 CLEC16A (MIM 611303) rs12708716 (intron 20) rs7205474 (1.1 3 10�5),
rs2867880 (3.6 3 10�7)

rs7205474 (intron 1),
rs2867880 (intron 23)

T2D

12 TSPAN8 (MIM 600769)-
LGR5 (MIM 6066670

rs4760790 (intergenic) rs1705232 (1.8 3 10�11),
rs6581998 (0.0051)

rs1705232 (intergenic),
rs6581998 (intergenic)

Only common SNPs with p % 5 3 10�8 in the current WTCCC data and those SNPs whose associations were confirmed in the literature were analyzed.
The following abbreviations are used: chr, chromosome; CD, Crohn disease; T1D, type 1 diabetes; and T2D, type 2 diabetes.
a relationship. This suggests that similar independent

effects in other disease-associated regions could also be

missed as a result of insufficient power in the present

samples, although it is also possible that this difference

was due to allelic heterogeneity between study samples.

In the present study, however, other independent SNP

alleles were identified. At p % 2.3 3 10�6, the effect of

rs5029926 (p ¼ 7.9 3 10�7), which had a much stronger

association than rs10499194 (p ¼ 0.0032), was found to

be significantly independent from that of rs6920220. In

the Orozco et al. study,9 an uncommon SNP (rs5029937;

MAF < 5%) was reported to have an independent effect

in the region. The effect of this SNP (MAF ¼ 3.6% in the

control samples) was indeed found to be independent

from that of rs6920220 and rs5029926.

Five (PRDM1, SCAMP3-MUC1, THADA, ZFP36L1, and

TYK2-ICMA1-ICAM3) of the six CD-associated loci with

evidence of multiple independent effects10 were initially

excluded from the regression analyses as a result of the

lack of SNPs meeting the p value thresholds (Table S1).

The reported SNP rs8005161 in the GALC-GPR65 locus

had a p value of 2.18 3 10�5 for its association with the

disease in the present samples. There were multiple other

SNPs strongly associated (p < 5 3 10�8) with the disease.

These SNPs were in linkage disequilibrium (LD) with

each other, but their effects (as shown by that of SNP

14-87522091) were independent of the effect of

rs8005161. Multiple effects were also observed in the

PRDM1 locus at a reduced p value threshold of 1 3 10�5.

The reported SNP rs6568421 was associated with the

disease at p ¼ 7.09 3 10�5, whereas SNP rs7746082

in the same locus was associated with the disease at

p ¼ 8.14 3 10�6. The effects of these two SNPs were found
The Am
to be independent of each other, thus confirming the pres-

ence of multiple effects in the locus. For the other four loci,

there was still a lack of SNPs in each locus even when the

p value threshold was reduced to 1 3 10�3. Therefore, no

further tests were carried out.

There were two SNPs reported to be associated with T2D

in the CDKN2A (MIM 600160)-CDKN2B (MIM 600431)

locus; these were rs10965252 and rs7020996.26 In the

present study, associations of both SNPs were confirmed

with p values at 6.78 3 10�8 (rs10965252) and 0.00029

(rs7020996). The independence of their effects was also

confirmed in the regression analysis. These results from

the present study were thus largely consistent with and

render strong support to what had been reported in the

literature.

Our primary concern was to examine whether addi-

tional loci with multiple independent effects could be

identified. For the three RA-associated loci (MMEL1-

TNFRSF14 [MIM 602746], PTPN22 [MIM 600716], and

KIF5A [MIM 602821]) whose SNP associations met the

p value threshold of 5 3 10�8 (Table S1), no independent

effects were observed. Several CD-associated loci, however,

were shown to have evidence of multiple effects. These

included IL23R (MIM 607562), PTGER4 (MIM 601586),

and NOD2 (MIM 605956) (Table 1). The reported associ-

ated SNPs for these loci were usually among the top associ-

ated SNPs (e.g., rs11465804 of the IL23R locus with

p ¼ 5.94 3 10�22 and rs4613763 of the PTGER4 locus

with p ¼ 1.08 3 10�15) in the present study samples, and

they were often found to represent one of the independent

effects at the corresponding locus.

For T1D-associated loci, multiple independent effects

were observed in the IL2RA and CLEC16A loci (Table 1).
erican Journal of Human Genetics 91, 185–192, July 13, 2012 187



Table 2. Evidence of Multiple Independent Effects in Disease-Associated Loci under Penalized and Conditional Regression Analyses

Chr Locus

Reported Associations
(p Value in Current
Samples)

Independent SNPs
(and p Values Conditioned
on All Other SNPs)

Genomic Context
of Independent SNPs

CD

6 CDKAL1(MIM 611259) rs6908425 (intron 3) rs6908425 (2.9 3 10�5),
rs898165 (4.6 3 10�7)

rs6908425 (intron 3),
rs898165 (intron 13)

12 LRRK2 (MIM 609007)–
MUC19 (MIM 612170)

rs11175593 (intergenic) rs7962370 (9.2 3 10�7),
rs11175593 (0.0025)

rs7962370 (intergenic),
rs11175593 (intergenic)

T1D

2 AFF3 (MIM 601464) rs9653442 (intergenic) rs11685258 (3.0 3 10�5),
rs2309837 (2.1 3 10�5)

rs11685258 (intron 1),
rs2309837 (intergenic)

4 IL2 (MIM 147680) rs4505848 (intron 18 of
KIAA1109 [MIM 611565])

rs4505848 (0.0059),
rs13152362 (0.00029)

rs4505848, rs13152362
(intron 59 of KIAA1109)

T2D

3 PPARG (MIM 601487)-
SYN2 (MIM 600755)

rs13081389a (intergenic)
and rs17036101 (intergenic)

rs6775191 (5.3 3 10�6),
rs17036101 (0.017)

rs6775191 (intergenic),
rs17036101 (intergenic)

Only common SNPs with additive p % 2.3 3 10�6 in the WTCCC data and those SNPs whose associations were confirmed in the literature were analyzed. The
following abbreviations are used: chr, chromosome; CD, Crohn disease; T1D, type 1 diabetes; and T2D, type 2 diabetes.
ars13081389 is in perfect LD (r2 ¼ 1) with rs17036101.
For both loci, however, the original reported SNPs were not

represented as independent effects themselves but were

replaced with other SNPs with stronger effects in the

same directions. For example, rs12722495 in IL2RA was

in amoderate level of LD (r2¼ 0.65) with the reported asso-

ciated SNP rs12241307 but had a stronger effect in the

present samples (odds ratios [OR] ¼ 0.66 for rs12722495

versus 0.75 for rs12241307). A separate effect was identi-

fied with rs7096384, which was in low LD (r2 < 0.1) with

both rs12241307 and rs12722495 and whose minor allele

conferred risk to the disease (OR ¼ 1.23). For T2D-associ-

ated loci that met the 53 10�8 p value threshold, multiple

independent effects were observed only in TSPAN8-LGR5

(Table 1).

At the p value threshold of 2.3 3 10�6, several more

genetic loci with the presence ofmultiple effects were iden-

tified in the WTCCC samples (Table 2). These included

CDKAL1 and LRRK2-MUC19, both associated with CD;

AFF3 and IL2-IL21, both associated with T1D; and the

T2D-associated locus PPARG-SYN2. Out of the 42 loci

analyzed under the penalized and conditional regression

models (33%) and the 117 loci surveyed in the study

(12%), a total of 14 loci were observed to have evidence

of multiple effects; these include the three loci (OLIG3-

TNFAIP3, GALC-GPR65, and CDKN2A-CDKN2B) that

have known multiple effects and that also met the p value

thresholds.

Although the present study did not set out to identify

the locations of the causal alleles, information about the

physical locations and functional relevance of themultiple

independent effects can help improve our understanding

of the genetic mechanisms of the individual loci in relation

to a disease. For example, there were two independent

effects, represented by rs2076756 and rs8056611, identi-

fied in theNOD2 locus (Table 1). The former was previously
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reported10 and is located in intron 8, whereas the latter is

located downstream of the gene. Although this does not

mean that there were two separate causal variants located

in exactly these two areas, the diversity of locations

could indicate a multifaceted mechanism. Interestingly,

rs8056611 was found to be in moderate LD (r2 ~ 0.6)

with two eQTL SNPs in the eQTL browser,32 i.e.,

rs3135499, a putative cis-eQTL SNP for CARD15, and

rs10521209, an exon-QTL SNP for CYLD (cylindromatosis

[turban tumor syndrome]), which locates immediately

downstream of NOD2. Similarly, the reported T1D-associ-

ated SNP rs4505848 was near IL2 but located in intron

18 of KIAA1109 (MIM 611565). A separate effect (repre-

sented by rs13152362) for T1D was located in intron 59

of KIAA1109 in the present study (Table 2), adding more

evidence of the importance and complexity of the

KIAA1109-TENR-IL2-IL21 region to autoimmune diseases.

For the T1D-associated AFF3 locus, rs2309837 was located

in its intergenic region, whereas rs11685258 was located in

intron 1 and had a high conservation score of 766 as anno-

tated in the Openbioinformatics’s ANNOVAR Most

Conserved Elements database. A high conservation score

of 448 was also observed for rs9283753, one of the three

independent SNPs in the CD-associated PTGER4 locus; all

three of these SNPs were located in its intergenic region.

One limitation of the present study is themodest sample

size (approximately 2,000 cases versus 6,000 controls).

This was exemplified by five of the six CD-associated loci

(PRDM1, SCAMP3-MUC1, THADA, ZFP36L1, and TYK2-

ICMA1-ICAM3), which had known evidence of multiple

effects but failed the assessment in the present study

simply as a result of the lack of associated SNPs meeting

the minimum p value threshold. Undoubtedly, loci with

multiple smaller effects could be identified at a reduced p

value threshold at the cost of increased type I error. Despite
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Table 3. Variance in Liability Explained by the Independent Effects as Identified in the Conditional Logistic Regression Analysis

Chr Locus
Independent SNPs and Disease Variance Explained
(in Liability Scale)1

Reported SNPs and Disease
Variance Explained

CD (Prevalence ¼ 0.1%)

1 IL23R (MIM 607562) rs11465804 (0.87%) rs7517847 (0.47%) total: 1.34% rs11465804 (1.12%)

5 PTGER4 (MIM 601586) rs4613763 (0.10%), rs6888952 (0.37%),
rs9283753 (0.09%)

total: 0.56% rs4613763 (0.35%)

6 CDKAL1 (MIM 611259) rs6908425 (0.13%), rs898165 (0.16%) total: 0.28% rs6908425 (0.14%)

12 LRRK2 (MIM 609007)-
MUC19)MIM 612170)

rs11175593 (0.04%), rs7962370 (0.14%) total: 0.18% rs11175593 (0.06%)

16 NOD2 (MIM 605956) rs2076756 (0.33%), rs8056611 (0.11%) total: 0.44% rs2067085 (0.25%)

total: 2.66% total: 1.92%

T1D (Prevalence ¼ 0.5%)

2 AFF3 (MIM 601464) rs11685258 (0.19%), rs2309837 (0.15%) total: 0.34% rs9653442 (0.15%)

4 IL2 (MIM 147680) rs4505848 (0.07%) rs13152362 (0.14%) total: 0.21% rs4505848 (0.16%)

10 IL2RA (MIM 147730) rs12722495 (0.32%), rs7096384 (0.14%) total: 0.46% rs12251307 (0.20%)

16 CLEC16A (MIM 611303) rs7205474 (0.25%), rs2867880 (0.26%) total: 0.51% rs12708716 (0.28%)

total: 1.48% total: 0.77%

T2D (Prevalence ¼ 5.0%)

3 PPARG (MIM 601487)-
SYN2 (MIM 600755)

rs17036101 (0.12%), rs6775191 (0.36%) total: 0.48% rs17036101 (0.20%)

12 TSPAN8 (MIM 600769)-
LGR5 (MIM 606667)

rs1705232 (0.98%), rs6581998 (0.14%) total: 1.12% rs4760790 (0.47%)

total: 1.54% total: 0.67%

The following abbreviations are used: chr, chromosome; CD, Crohn disease; T1D, type 1 diabetes; and T2D, type 2 diabetes.
1Adjusted ORs were obtained with multiple logistic regressions for individual independent SNPs either within or across loci. Genotype relative risks were estimated
according to a multiplicative model, and explained variance was estimated with the R software reported by So et al.34 Total explained variance was the sum of such
estimates from each of the individual SNPs either within or across loci.
such limitations, it was observed that a number of disease-

associated loci surveyed in this study were found to have

evidence of the presence of multiple independent effects.

Although independent replications are needed for indi-

vidual loci, the results demonstrate that the presence of

multiple effects could be common among genetic loci asso-

ciated with common complex diseases and traits.

The present study was focused on common SNPs (MAF

R 5%). Independent effects from uncommon or rare SNP

alleles (MAF < 5%), e.g., rs5029937 in the OLIG3-TNFAIP3

locus (associated with RA)9 and rs35667974, rs35337543,

rs35732034, and rs35744605 in the IFIH1 locus (associated

with T1D),33 were already established and reported in the

literature. rs5029937 (MAF ¼ 3.6%) in the OLIG3-TNFAIP3

locus was strongly associated (p ¼ 7.48 3 10�8) with RA in

the present study, and its effect was found to be indepen-

dent of other independent common SNPs in the locus, as

described above. For the IFIH1 locus, only a single indepen-

dent association with T1D, as represented by SNP

rs1990760 (p ¼ 1.16 3 10�5), was identified among the

common SNPs, consistent with the previous report.33

Two reported uncommon SNPs, rs35337543 (MAF ¼
2.4%) and rs35732034 (MAF¼ 1.3%), were strongly associ-

ated with the disease in the study samples (p¼ 4.503 10�8
The Am
for rs35337543 and p ¼ 5.73 3 10�5 for rs35732034), and

their effects were indeed found to be independent of that

of rs1990760 (the p values after being conditional on

rs1990760 were 2.89 3 10�6 for rs35337543 and 0.00025

for rs35732034), as well as independent of each other’s

effects. One other such example is rs11175593 (MAF ¼
1.2% in the control samples of the present study), which

was found in the LRRK2-MUC19 locus associated with

CD.17 The strength of this association was moderate in

the current study samples (p ¼ 0.00046). Common SNP

rs7962370 (MAF¼ 12% in the control samples) was associ-

ated with the disease at p ¼ 2.84 3 10�7, and effects of the

two SNPs were found to be independent from each other

(Table 2). It is expected that more such findings are likely

to be made as sequencing data become available.

With the presence of multiple independent effects in

disease-associated loci, the proportion of heritability ex-

plained by the known disease-associated loci would prob-

ably increase. For the assessment of such increases, all

loci from Tables 1 and 2 were selected and heritability ex-

plained by individual effects was estimated with the algo-

rithm developed by So et al.34 under a disease-liability

model. As shown in Table 3, in many of the loci, the heri-

tability explained by the multiple independent SNPs was
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substantially higher than that explained by the SNPs

confirmed in the literature. As a result, there was also

a substantial increase in the combined variance explained

by all the loci with multiple effects for each disease

(Table 3).

Although the total variance explained by GWAS-identi-

fied SNPs associated with a trait or disease is usually very

small, it is now known that much of this so called ‘‘missing

heritability’’ is actually hidden in the genome.3,35 For traits

like human height, it has been found that the additive

genetic variance is spread across the genome and the vari-

ance explained by each chromosome is proportional to its

length.4 It has also been found that SNPs in or near genes

explained more variation than did SNPs between genes,

indicating a model of uniform distribution of trait variance

on the physical scale, but not on the biological scale. The

clustering of large numbers of variants in genetic loci and

relevant biological pathways and the detection of multiple

independent effects in 19 of these loci in association with

height (as reported in a recent meta-analysis5) provide

further evidence that genetic trait variance is clustered

rather than uniformly distributed on the biological scale.

For other traits, distribution of the genetic variance

might be different even on the physical scale. For example,

for T1D, the variance explained by the genome-wide SNP

genotype information in theWTCCC case-control samples

was about 30%.35 However, it was observed that for chro-

mosome 6 alone, where the MHC locus locates, the vari-

ance explained was about 19%, whereas the rest of the

genome together only explained about 13%.35 Results

from the present study further suggest that much of this

13% might be clustered around known associated loci in

the form of multiple independent effects.

The presence of multiple independent associated alleles

in a locus significantly increases its total contribution to

genetic variance, as well as the total variance explained

by all the known associated loci. It also highlights the

importance and complexity of the issue of genetic hetero-

geneity. On the one hand, an independent effect observed

in one study might fail to replicate in a different study as

a result of genetic heterogeneity between the two study

samples (e.g., as a result of a different composition of

disease subtypes). On the other hand, the presence of

multiple effects could be observed purely because of the

presence of different associated alleles between subsets of

disease samples in a study or between samples from

different studies. With the rapid growth of next-genera-

tion-sequencing data, the allelic structure of disease-associ-

ated loci will be more refined. Such knowledge will

undoubtedly significantly improve our understanding of

the genetic and molecular mechanisms of common

complex traits.
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Supplemental Data include one table and can be found with this

article online at http://www.cell.com/AJHG.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/

ANNOVAR, http://www.openbioinformatics.org/annovar/

Ensembl, http://www.ensembl.org/

eQTL browser, http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/

European Genome-phenotype Archive, http://www.ebi.ac.uk/ega/

Genome Variation Server, http://gvs.gs.washington.edu/GVS131/

index.jsp

Variance (or heritability) explained by genetic variants, http://

sites.google.com/site/honcheongso/software/varexp

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/

IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/

snptest.html

The R Project for Statistical Computing, http://www.r-project.org/

UCSC Genome Browser, http://genome.ucsc.edu

Wellcome Trust Case Control Consortium, http://www.wtccc.

org.uk/
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