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a b s t r a c t

This paper studies single equation instrumental variable models of ordered choice in which explanatory
variables may be endogenous. The models are weakly restrictive, leaving unspecified the mechanism
that generates endogenous variables. These incomplete models are set, not point, identifying for
parametrically (e.g. ordered probit) or nonparametrically specified structural functions. The paper gives
results on the properties of the identified set for the case in which potentially endogenous explanatory
variables are discrete. The results are used as the basis for calculations showing the rate of shrinkage of
identified sets as the number of classes in which the outcome is categorised increases.
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1. Introduction

This paper studies single equation instrumental variable
models for ordered outcomes in which explanatory variables may
be endogenous. These models arise in structural econometric
analysis of individuals’ choices amongst ordered alternatives, or of
individuals’ attitudes arranged on an ordinal scale and they arise in
manyother settings inwhichdata are interval censored continuous
outcomes.

A common ploy when dealing with endogenous variation in a
discrete response situation is to presume that the discrete response
is generated in a recursive, triangular system along with the
endogenous variable. Then, calling on some further restrictions,
a control function method is used as the basis for identification
and estimation. See for example Smith and Blundell (1986), Rivers
and Vuong (1988), Blundell and Powell (2003, 2004) and Chesher
(2003).1

Unfortunately this control function strategy does not generally
work when endogenous variables are discrete.2 And, as explained
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1 The control function approach is used quite widely in applied econometric
practice. STATA, Statacorp (2007) and LIMDEP, Greene (2007), are examples of
widely used proprietary software suites armed with commands to conduct control
function estimation of models of binary responses.
2 Chesher (2005) gives partial identification results for a control function model

with discrete endogenous variables.
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in Chesher (2009), the triangularmodel imposes strong restrictions
on the process generating the endogenous variables, restrictions
which may not be found plausible in many econometric settings.
By contrast here we work with a limited information, single
equation model which is far less restrictive in this regard.

The model requires that a scalar ordered outcome Y , withM ≥

2 points of support, is determined by a structural function h(X,U)
which is weakly monotone in scalar unobserved continuously
distributed U . The observed vector of explanatory variables, X ,
and U may not be independently distributed. However, the model
requires that U is distributed independently of instruments, Z . We
call themodel a Single Equation Instrumental Variable (SEIV) model.
The SEIV model requires that the support of X does not depend
on the value of U but places no other restrictions on the process
generating the endogenous variables, X , and in this respect it is
incomplete.

Thinking about Manski’s ‘‘Law of Decreasing Credibility’’,
Manski (2003), encourages us to take this approach. It allows one to
see what is lost by relaxing the strong restrictions of the triangular
control function model. It turns out that what is lost is point
identification because the SEIV model is generally set not point
identifying.

This paper focusses on models with discrete endogenous
variables, having K points of support, {x1, . . . , xK }, and explores
the identified sets the SEIV model delivers. The main results are
now summarised.

Since the structural functions of an SEIVmodel aremonotone in
scalar U , there is a threshold crossing representation in which U is
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normalised marginally uniformly distributed on the unit interval.

h(X,U) ≡


1 , 0 ≤ U ≤ h1(X)
2 , h1(X) < U ≤ h2(X)
...

...
...

M , hM−1(X) < U ≤ 1.

In the discrete endogenous variable case a nonparametrically
specified structural function, h, is characterised byN = K×(M−1)
parameters, denoted γ , which are the values of theM−1 threshold
functions at the K values of X .

Let H0(Z) denote the set of values of γ identified by the SEIV
model given F 0

YX |Z , a probability distribution for Y andX conditional
on Z , when Z takes values in a set Z. Each structural function is
characterised by a point in the unit N-cube and H0(Z) is a subset
of that space.

The identified set delivered by a nonparametric SEIV model
is shown to be a union of convex sets each defined by a system
of linear equalities and inequalities. The number of sets involved
can be enormous in what seem to be small scale problems. For
example, when M = K = 5 there may be over 300 billion
component sets. The result is generally not a convex set unless
instruments are strong. We give examples in which the identified
set is not convex and, indeed, not connected. Shape restrictions
(e.g. monotonicity) or parametric restrictions can bring substantial
simplification.

A system of inequalities given in Chesher (2010) defines an
outer set, C0(Z), within which the SEIV model’s identified set lies.
We develop expressions for these inequalities for the M outcome,
discrete endogenous variable case. We propose a second system of
inequalities defining a set of values of γ , D0(Z), and show that the
identified set resides in the intersection C̃0(Z) ≡ C0(Z)∩ D0(Z).

When the outcome Y is binary C0(Z) is a subset of D0(Z) and,
as shown in Chesher (2010), in that case C0(Z) is the identified set
H0(Z). Herewe show thatwhen the endogenous variable is binary
C̃0(Z) is the identified set, however many categories there are for
Y . The nonparametric SEIV model is falsifiable as the example in
Appendix C demonstrates.

We examine the impact of response discreteness on the
identified sets. The discrete response model studied here is a non-
additive errormodel and the results for suchmodels for continuous
outcomes given in Chernozhukov and Hansen (2005) show that
there can be point identification in SEIV models when observed
responses are continuous. So it is to be expected that as the
number of categories indicated by Y increases there is reduction
in ambiguity and an approach to point identification.

We investigate this in the context of a model with parametri-
cally specified structural functions such as arise in ordered probit
models. We find that in the cases considered identified sets for a
parameter which is a coefficient in a linear index shrink at a rate
approximately equal to the inverse of the square of the number of
classes in which the outcome is categorised. In the example, when
Y is categorised into 10 or more classes, the SEIV model delivers
identified sets which are very small indeed.

The paper is organised as follows. Section 2 gives a formal
definition of the SEIV model and defines its identified set of
structural functions.

Section 3 develops the main results for nonparametrically
specified structural functions with discrete endogenous variables.
In Section 3.1, a piecewise uniform system of conditional
distributions ofU given X and Z is introduced and conditions under
which a structural function lies in the identified set are stated.
The geometry of the identified set for nonparametrically specified
structural functions is discussed in Section 3.2, the impact of shape
restrictions on the complexity of the identified set is considered in
Section 3.3, and systems of inequalities obeyed by values of these
functions that lie in the identified set are set out in Section 3.4.
Section 4 illustrates the results using a parametrically specified
model which, in the absence of endogeneity, would be a
conventional ordered probit model. This section gives results on
the rate of shrinkage of identified sets as the number of categories
of the discrete outcome increases. It also demonstrates the impact
of instrument support on the identified set. Section 5 concludes.

2. An IV model for ordered outcomes

In the SEIV model a scalar ordered outcome Y is determined
by observable X , which may be a vector, and unobserved scalar U .
Restriction 1 defines admissible structural functions.

Restriction 1. Y is determined by a structural function as follows:

Y = h(X,U) ≡


1 , h0(X) ≤ U ≤ h1(X)
2 , h1(X) < U ≤ h2(X)
...

...
...

M , hM−1(X) < U ≤ hM(X)

with, for all x, h0(x) = 0 and hM(x) = 1 and for all x and m,
hm(x) > hm−1(x). U is continuously distributed and normalised to
have a marginal uniform distribution on [0, 1]. The support of X con-
ditional on U is independent of U.

Specifying the values of Y to be the first M integers is an
innocuous normalisation because Y is an ordered outcome.

U and X are not required to be independently distributed so
the model allows elements of X to be endogenous. However, U is
required to be distributed independently of instrumental variables,
Z , as set out in Restriction 2.

Restriction 2. There are instrumental variables Z which take values
in some set Z. U and Z are independently distributed in the sense
that the conditional distribution function of U given Z = z satisfies
FU|Z (u|z) = u for all u ∈ [0, 1] and z ∈ Z.

Restriction 1 excludes the instrumental variables from the
structural function. Now consider the identifying power of this
model.

Let F 0
YX |Z denote some distribution function of Y and X

conditional on Z . Imagine a situation in which data are informative
about this distribution for values of Z that lie in a set Z. If this
distribution function is compatiblewith the SEIVmodel, then there
exists (i) a structural function h0 with threshold functions {h0

m}
M
m=1

and (ii) a distribution function F 0
UX |Z , both admitted by the SEIV

model and such that the following condition holds when h = h0

and FUX |Z = F 0
UX |Z .

F 0
YX |Z (m, x|z) = FUX |Z (hm(x), x|z),

for all: z ∈ Z, m and x. (1)

This relationship must hold because the threshold crossing
Restriction 1 requires that Y is less than or equal tomwhen X = x
if and only if U is less than or equal to the mth threshold function
hm(x).

There may be more than one admissible structure (h, FUX |Z )
satisfying (1) because it may be possible to compensate for
variations in the x-sensitivity of the threshold functions {hm}

M
m=1 by

adjusting the u- and x-sensitivity of FUX |Z leaving the left-hand side
of (1) unchanged while respecting the independence Restriction 2.
So the model is partially identifying.

For a distribution F 0
YX |Z let S0(Z) denote the set of structures

identified by themodel comprising Restrictions 1 and 2. This is the
set of structures admitted by the SEIVmodel and satisfying (1). The
set of structural functions identified by themodel, denotedH0(Z),
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is the set of structural functions hwhich are elements of structures
lying in the identified set.

H0(Z) ≡ {h : ∃ admissible FUX |Z s.t. (h, FUX |Z ) ∈ S0(Z)}.

The set H0(Z) is a projection of the set S0(Z).
This set is difficult to characterise and compute when X

is continuously distributed because determining whether there
exists a distribution function FUX |Z that can accommodate a
particular structural function may require searching across an
infinite-dimensional space of functions.

However, Chesher (2010) shows that when Y is binary the
identified set is determined by a system of inequalities in which
the distribution function FUX |Z does not appear. One of the
contributions of this paper is a similar result for the case in which
a scalar endogenous explanatory variable X is binary and Y takes
any number of values.

When X is discrete, say with K points of support, the
distribution function FUX |Z can be characterised by a finite number
of parameters for each value of Z and the identified set can be
computed when M and K are not too large. The remainder of the
paper studies the case in which the explanatory variable, X , is
discrete.

3. Identified sets with discrete endogenous variables

3.1. Identification

When X is discrete and K -valuedwith X ∈ {xi}Ki=1, the threshold
functions are characterised by the parameters

γmi ≡ hm(xi), m ∈ {0, . . . ,M}, i ∈ {1, . . . , K} (2)

of which N ≡ (M − 1)K are free, that is not restricted to be
zero or one. Define γ i ≡ {γmi}

M
m=0 and γ ≡ {γi}

K
i=1 with, for all

i ∈ {1, . . . , K}, γ0i ≡ 0, γMi ≡ 1.
In the discrete X case considered here an identified set of

structural functions is a set of values of γ , comprising a subset of
the unit N-cube.

When determining whether a structural function characterised
by a value of γ lies in the identified set it is sufficient to
search across distribution functions which, at each value z of
the instrumental variables are characterised by the following
parameters.

βmij(z) ≡ FU|XZ (γmi|xj, z),
m ∈ {0, 1, . . . ,M}, (i, j) ∈ {1, . . . , K}.

Let β(z) denote the list of values βmij(z), m ∈ {0, . . . ,M}, (i, j) ∈

{1, . . . , K} for some value z. For all (i, j) ∈ {1, . . . , K} define
β0ij(z) ≡ 0 and βMij(z) ≡ 1. Let β(Z) denote the list of values
of β(z) generated as z varies across Z.

Values βmij(z) with i = j are relevant because observational
equivalence requires that if γ lies in the identified set then for each
z ∈ Z, m and i the equality

FU|XZ (γmi|xi, z) = F 0
Y |XZ (m|xi, z) (3)

must hold. This follows directly from (1) on replacing x by xi and
hm(xi) by γmi as in (2). The conditional distribution F 0

X |Z is identified
so (3) is effectively the observational equivalence condition (1).

Values of βmij(z) with i ≠ j are also relevant because the
independence Restriction 2 together with the uniform distribution
normalisation of the marginal distribution of U requires that for
eachm, i and z the following condition holds.

E0
X |Z=z[FU|XZ (γmi|X, z)]

≡

K−
j=1

FU|XZ (γmi|xj, z) Pr0[X = xj|Z = z] = γmi (4)
Here E0
X |Z=z indicates expectation taken with respect to the

distribution F 0
X |Z with the conditioning variable Z taking the value z.

So, for each point xj in the support of X the values of the
conditional distribution functions, FU|XZ (u|xj, z), at each value of
u ∈ γ are relevantwhen determiningwhether γ is in the identified
set. Other values of u are not relevant because they play no role in
the fulfilment of the observational equivalence condition (3) or the
independence condition (4).

If γmi and γm′ i′ are adjacent3 values of the threshold parameters
then the definition of FU|XZ for any values, xj and z of the condition-
ing variables can be completed by connecting FU|XZ (γmi|xj, z) and
FU|XZ (γm′ i′ |xj, z) with straight line segments delivering histogram-
like piecewise uniform conditional probability density functions.4

Let

δi(z) ≡ Pr[X = xi|Z = z] i ∈ {1, . . . , K}

be conditional probabilities of X given Z .
Let Pr0 denote probabilities calculated using a particular

distribution function F 0
YX |Z so that

δ0
i (z) ≡ Pr0[X = xi|Z = z] i ∈ {1, . . . , K}

and define δ0(z) ≡ {δ0
i (z)}

K
i=1.

Define conditional probabilities (α) and cumulative probabili-
ties (ᾱ) of the outcome:

α0
mi(z) ≡ Pr0[Y = m|X = xi, Z = z],
m ∈ {0, . . . ,M}, i ∈ {1, . . . , K}

ᾱ0
mi(z) ≡

m−
n=0

α0
ni(z), m ∈ {0, . . . ,M}, i ∈ {1, . . . , K}

with α0
0i(z) ≡ 0 for all i and z, and define lists of conditional

probabilities as follows.

α0
i (z) ≡ {α0

mi(z)}
M
m=0 α0(z) ≡ {α0

i (z)}
K
i=1

ᾱ0
i (z) ≡ {ᾱ0

mi(z)}
M
m=0 ᾱ0(z) ≡ {ᾱ0

i (z)}
K
i=1

Consider a structure characterised by

1. γ: a list of values of threshold functions,
2. β(Z): a list of values of conditional distribution functions of U

given X and Z obtained as Z takes values in Z, and,
3. δ(Z): a list of values of conditional probabilities of X given

Z = z, δ(z) = {δi(z)}Ki=1 where δi(z) ≡ Pr[X = xi|Z = z],
obtained as z varies across Z.

Proposition 1. A structure, {γ, β(Z), δ(Z)} lies in the set identified
by the SEIV model associated with probabilities α0(z) and δ0(z) and
a set of instrumental values Z if and only if the following three
conditions hold for all z ∈ Z.

I1. Observational equivalence. For m ∈ {1, . . . ,M} and i ∈

{1, . . . , K}

βmii(z) = ᾱ0
mi(z) δi(z) = δ0

i (z)

I2. Independence. For m ∈ {1, . . . ,M} and i ∈ {1, . . . , K}

K−
j=1

δj(z)βmij(z) = γmi. (5)

I3. Proper conditional distributions. For (m, n) ∈ {1, . . . ,M} and
(i, j, k) ∈ {1, . . . , K} if γmi ≤ γnj then βmik(z) ≤ βnjk(z).

3 If there is no γst ∈ γ such that γmi < γst < γm′ i′ then γmi and γm′ i′ are adjacent.
4 Using straight line segments ensures that the independence condition:

E0
X |Z=z [FU|XZ (u|X, z)] = u

holds for all u ∈ (0, 1) and z ∈ Z.
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Proof of Proposition 1. The SEIV model only admits distributions
satisfying themonotonicity and independence conditions I3 and I2
so all structures in the set identified by the SEIVmodelmust satisfy
I2 and I3. Considering the set of structures that satisfy I2 and I3, it
is precisely those that deliver the probability distribution F 0

YX |Z for
all values of Z in Z that comprise the identified set.

Eq. (5) arises in I2 because on the left-hand side is the value of
Pr[U ≤ γmi|Z = z] associated with the distribution of U given X
and Z characterised by β(z) which the independence condition of
the SEIVmodel requires to be equal to Pr[U ≤ γmi]. This probability
is equal to γmi because themarginal distribution ofU is normalised
Unif (0, 1) in the SEIV model.

In the observational equivalence condition I1, βmii(z) is the
value of Pr[U ≤ γmi|X = xi, Z = z] associated with the
distribution ofU given X and Z characterised byβ(z). All structures
and only structures that have this value equal to Pr0[Y ≤ m|X =

xi, Z = zi] and δi(z) = Pr0[X = xi|Z = z] deliver the probability
distribution function F 0

YX |Z . �

In Section 3.4, the identified set of values of γ is characterised
as a set of values satisfying a system of inequalities. First, some
aspects of the geometry of the identified set are examined.

3.2. Geometry of the identified set

When determining whether a particular value of γ lies in
the identified set, the ordering of the elements of γ is crucial
in determining whether there exist distribution functions which
satisfy condition I3.

There are

L ≡ (K(M − 1))!/((M − 1)!)K (6)

admissible orderings of the N elements of γ which are not
restricted to be zero or one.5 For example, whenM = 3 and K = 2,
there are 6 of the possible 24 orderings that are admissible. The 18
inadmissible orderings have γ11 > γ21 or γ12 > γ22 or both.

Let l index the admissible orderings of γ . For each l ∈ {1, . . . , L}
define sets S0

l (z) and H0
l (z) as follows.

S0
l (z) ≡ {(γ, β(z), δ(z)) : γ is in order l and

(γ, β(z), δ(z)) respects I1–I3}

H0
l (z) ≡ {γ : γ is in order l and ∃ (β(z), δ(z)) s.t. (γ, β(z), δ(z))

∈ S0
l (z)}.

The set S0
l (z) is the set comprising those structures admitted by

the SEIV model that have γ in order l and deliver the distribution
F 0
YX |Z for Z = z. The set H0

l (z) is the projection of this set onto the
component γ , that is onto the structural function.

Since for any ordering, l, conditions I1–I3 comprise a system
of linear equalities and inequalities, each set S0

l (z) is convex,
or empty. It follows, from consideration of the Fourier–Motzkin
elimination algorithm6, that the set H0

l (z) is also defined by a
system of linear equalities and inequalities, so it is also convex or
empty.

The identified set of values of γ in order l obtained as z takes all
values in the set of instrumental values Z, denoted H0

l (Z), is the
following intersection of the sets H0

l (z):

H0
l (Z) ≡


z∈Z

H0
l (z)

5 There are (K(M − 1))! permutations of the free elements of γ . Amongst these
only 1 in each (M − 1)! have a sequence γ i in ascending order and there are K such
sequences to be considered so only 1 in each ((M − 1)!)K have all these sequences
in ascending order.
6 See Ziegler (2007).
which is convex or empty. The identified set of values of γ of all
orders is the union of the sets H0

l (Z), as follows.

H0(Z) =

L
l=1

H0
l (Z).

Thus the identified set of values of γ , that is the identified set of
structural functions, is a union of convex sets but that union may
not itself be convex, indeed it may not even be connected. In the
example in Section 4 there are a number of cases in which the
identified set is disconnected.

When instruments are strong or there are highly informative
additional restrictions (for example parametric restrictions) the
sets Hl(Z) may be empty for all but one value of l and then the
identified set is convex. Otherwise, the identified set may be very
irregular and complex, composed of the union of a very large
number of convex sets. With M and K as low as 4 the value of L
is 369, 600 and asM or K increases the value of L quickly becomes
astronomical.

Shape restrictions bring simplification as shown now.

3.3. Shape restrictions

3.3.1. Complete separation
In this case, there is the following restriction.

min{hm(x1), . . . , hm(xK )} ≥ max{hm−1(x1), . . . , hm−1(xK )}

for allm.

Such completely separated threshold functions must arise when
X has no effect on the structural function and will arise when the
effect of X is weak. There are K ! arrangements of the elements of
γ associated with each threshold function and M − 1 threshold
functions so there are
L = (K !)M−1

admissible orderings of the elements of γ under the complete
separation restrictions. This result presumes that no elements in γ
are equal. The value is an upper bound on the number of admissible
orderings once ties are allowed. Henceforth, counts of orderings
are conducted assuming no ties.

3.3.2. Monotonicity
Now suppose the threshold functions are all restricted to be

monotone in a scalar explanatory variable X , with a common
direction of dependence. This restriction would arise in a typical
parametric ordered probit model.

We consider the case in which the direction of dependence
is specified.7 The problem of finding the number of admissible
orderings of γ under this restriction can be recast as the problem
of finding the number of ways of filling a (M − 1) × K matrix with
the integers {1, 2, . . . ,N} such that the array increases both across
columns and across rows. With K = 2 this is the Catalan number
1
M


2(M−1)
(M−1)


. The restriction of monotonicity with respect to X

brings an M-fold reduction in the number of admissible orderings
in this case.

These row and column ascending matrices are rectangular
Young Tableaux and the hook length formula of Frame et al. (1954)
delivers the following expression for the number of admissible
orderings of γ under the monotonicity restriction.

L =
(K(M − 1))!

M−1∏
m=1

K∏
k=1

(M + K − m − k)
(7)

Table 1 shows the number of admissible orderings (L) for val-
ues of M and K up to 5 with no shape restriction (None), the

7 Leaving this unspecified doubles the number of admissible arrangements.
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Table 1
Number of admissible orderings of γ with no shape restrictions (None),
monotonicity (M) with respect to scalar X and complete separation (CS).

K
M Restriction 2 3 4 5

2
None 2 6 24 120
M 1 1 1 1
CS 2 6 24 120

3
None 6 90 2,520 113,400
M 2 5 14 42
CS 4 36 576 14,400

4
None 20 1,680 369,600 168,168,000
M 5 42 462 6,006
CS 8 216 13,824 1,728,000

5
None 70 34,650 6,306,300 305,540,235,000
M 14 462 24,024 1,662,804
CS 16 1,296 331,776 207,360,000

monotonicity restriction (M) and the complete separation restric-
tion (CS). The restrictions bring substantial reductions in the num-
ber of admissible orderings but there remain very large numbers
for only moderately large values ofM and K .

3.3.3. Single- and twin-peakedness
Now suppose Y is binary so there is just one threshold function,

h1. Let X be scalar and consider restrictions that limit the number
of turning points of h1(x) as x passes through its ordered points of
support denoted by

x[1] < x[2] < · · · < x[K ].

Let γ[i] denote h1(x[i]).
When h1(x) is unrestricted there are K ! admissible orderings of

elements of γ .8 When h1(x) is restricted to be monotone in x there
are 2 admissible orderings. Monotone orderings have

γ[1] < γ[2] < · · · < γ[K ]

or

γ[1] > γ[2] > · · · > γ[K ].

We now consider numbers of admissible orderings of elements
of γ when h1 is restricted to be (i) single-peaked and (ii) at most
twin-peaked. Denote these respectively c1(K) and c2(K), and note
that these are equal to the number of permutations of the integers
{1, . . . , K}which are respectively single- and atmost twin-peaked.

Definition 1. A single-peaked permutation of {1, 2, . . . , K} is
a permutation in which either (i) elements are increasing, or
(ii) elements are decreasing, or (iii) elements are first increasing
and then decreasing.

Note that permutations that are monotone are classified as
single-peaked, their peak is at one or the other end of the
permutation.

Definition 2. An at most twin-peaked permutation of {1, 2,
. . . , K} is a permutation that is either single-peaked or has
elements that: either (i) first decrease and then rise with at most
one subsequent decrease, or (ii) first rise and then fall with at most
one subsequent increase.

We drop the qualifier ‘‘at most’’ in most of the discussion that
follows. One or both of the peaks in a twin-peaked permutation
may appear at the start or the end of the permutation. Note that the

8 Wework supposing that all elements of γ are distinct. The counts of admissible
arrangements reported are upper bounds on counts when there are ties.
definitions designate all single-peaked permutations twin-peaked.
Here are examples of twin-peaked permutations when K = 5:

γ[1] < γ[2] < γ[3] < γ[4] < γ[5]

γ[1] < γ[2] > γ[3] > γ[4] > γ[5]

γ[1] > γ[2] > γ[3] < γ[4] < γ[5]

γ[1] < γ[2] > γ[3] < γ[4] > γ[5]

and here is a permutation for K = 5 that is not twin-peaked

γ[1] > γ[2] < γ[3] > γ[4] < γ[5]

there being 3 peaks, at γ[1], γ[3] and γ[5].
Here are two propositions with proofs giving the number of

single- and twin-peaked permutations of the first K integers.

Proposition 2. The number of single-peaked permutations of {1, 2,
. . . , K} is c1(K) = 2(K−1).

Proof of Proposition 2.9 First observe that whatever the value of
c1(K − 1), the value of c1(K) is 2c1(K − 1). This is so because
for each single-peaked permutation of length {1, 2, . . . , K − 1}
there are exactly two single-peaked permutations of {1, 2, . . . , K}

constructed by placing the integer K to the left or to the right of
the peak in the permutation with K − 1 elements. Placing the
value K anywhere else in the permutation with K − 1 elements
would introduce a second peak. Since c1(1) = 1, it follows that
c1(K) = 2K−1. �

Proposition 3. The number of at most twin-peaked permutations of
{1, 2, . . . , K} is

c2(K) = 2(K−1)
× (1 + 2K−2

− K/2).

Proof of Proposition 3. We first show that there is the following
recursion.

c2(K) = (K − 4) × 2(K−2)
+ 4 × c2(K − 1), c2(1) ≡ 1. (8)

Consider permutations of {1, 2, . . . , K − 1}. Amongst these, by
Proposition 2, there are 2(K−2) that are single-peaked. Each of these
can have the term K added at any one of K positions to deliver an at
most twin-peaked sequence. So, associatedwith the single-peaked
permutations of {1, 2, . . . , K − 1} there are c21(K) = K × 2(K−2)

at most twin-peaked permutations of {1, 2, . . . , K}.
There remain to be considered c2(K − 1) − 2(K−2) twin-peaked

but not single-peaked permutations of {1, 2, . . . , K − 1}. Each
of these can have the term K added at any one of 4 positions,
immediately before or after each of the two peaks. Any other
placement would produce a third peak. So, associated with the
twin-peaked but not single-peaked permutations of {1, 2, . . . , K−

1} there are c22(K) = 4×(c2(K −1)−2(K−2)) atmost twin-peaked
permutations of {1, 2, . . . , K}.

Inserting the term K into a permutation of {1, 2, . . . , K − 1}
that is not at most twin-peaked cannot deliver a twin-peaked
permutation of {1, 2, . . . , K}.

The recursion is then obtained on adding c21(K) and c22(K) and
simplifying.

On repeated substitution in (8) there is

c2(K) = 4K−1
+ 2K−2

K−2−
s=0

(K − 4 − s)2s

and the result follows on using the following.
n−

s=0

2s
= 2n+1

− 1
n−

s=0

s2s
= 2(1 − 2n

+ n2n) �

9 We are grateful to Richard Spady for suggesting an inductive approach.
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Table 2
Number of admissible orderings of γ in amodel for binary Y with no restriction and
with monotone, single- and twin-peakedness restrictions.

Restriction
K Monotone Single-peaked Twin-peaked None

2 2 2 2 2
3 2 4 6 6
4 2 8 24 24
5 2 16 104 120
6 2 32 448 720
7 2 64 1,888 5,040
8 2 128 7,808 40,320
9 2 256 31,872 362,880

10 2 512 129,024 3,628,800

Table 2 shows the number of admissible orderings of γ in
a single threshold model without restrictions and under the
monotone, single- and twin-peakedness conditions. Relaxing a
monotonicity restriction to allow single-peakedness increases the
number of admissible orderings by a factor 2K−2. Further relaxation
allowing twin peaks increases the number of admissible orderings
by the same order of magnitude. When K is large even the
relatively weak twin-peakedness restriction brings substantial
reductions.

3.3.4. Two or more endogenous variables
Staying with the single threshold case, now suppose that there

are two endogenous variables, X1 and X2, with respectively K1
and K2 points of support. We will assume throughout that each
value of X1 can arise paired with each value of X2. There are
then (K1K2)! admissible orderings of γ . If the threshold function
h1(X1, X2) is restricted to be monotone (say increasing) in one of
the variables, say X1, then there are (K1K2)!/(K1!)

K2 admissible
orderings, obtained from (6) on replacing M − 1 by K1. If the
threshold function is restricted to be monotone in both variables
(with directions of dependence specified) then on applying the
hook length formula as above there are

L =
(K1K2)!

K1∏
k1=1

K2∏
k2=1

(K1 + K2 + 1 − k1 − k2)

admissible orderings of γ .
Finally suppose that an index restriction is imposed, for

example that the single threshold function has the form h1(X1 +

X2). Now we must consider how many elements are there in γ .
Denoting this by N and staying with the single threshold case
there is just one admissible ordering if monotonicity is imposed,
N! admissible orderings with no restriction on h1 and

∑N
i=1(N −

i + 1)i−1 under a single-peakedness condition.
Some subtleties arise on considering the value of N . Consider

the case in which both variables have K points of support. The
support of X1 + X2 contains at most K 2 distinct values but it can
contain less. For example, if the support of the two variables are
identical the support of X1 + X2 contains at most K(K + 1)/2
distinct values and if the support of each variable is a sequence of
K consecutive integers then X1 + X2 takes 2K − 1 distinct values.
The impact of index restrictions on the complexity of the identified
set depends critically on the nature of the support of the variables
that contribute to the index.

3.4. Characterisation of the identified set

In this section a set of values of γ , C̃0(Z), is defined as the
intersection of two sets, C0(Z) and D0(Z). These sets are defined
below. There then follow three propositions which set out the
relationship between C̃0(Z) and the identified set, H0(Z).
Proposition 4 states that for all M and K , C̃0(Z) is an outer
region for the identified set, that is, H0(Z) ⊆ C̃0(Z).

Proposition 5 states that C̃0(Z) is precisely the identified set
when the endogenous variable is binary (K = 2). The relatively
long proof is contained in an Annex.

Proposition 6 states that when Y is binary (M = 2), C0(Z) =

C̃0(Z). This reconciles the results of this paper with those in
Chesher (2010) where it is shown that when Y is binary C0(Z) is
precisely the identified set.

Here are the definitions of the sets C0(Z) and D0(Z).

C0(Z) ≡


γ : max

z∈Z

K−
i=1

M−1−
m=1

δ0
i (z)α

0
mi(z)1(γmi ≤ γls)

≤ γls ≤ min
z∈Z

K−
i=1

M−
m=1

δ0
i (z)α

0
mi(z)1(γm−1,i < γls),

l ∈ {1, . . . ,M − 1}, s ∈ {1, . . . , K}


D0(Z) ≡ {γ : γni − γmi ≥ max

z∈Z
(δ0

i (z)(ᾱ
0
ni(z) − ᾱ0

mi(z))),

n > m, (n,m) ∈ {1, . . . ,M − 1}, i ∈ {1, . . . , K}}

Proposition 4. C̃0(Z) ≡ C0(Z) ∩ D0(Z) is an outer region for the
identified set, H0(Z).

Proof of Proposition 4. It is required to show that H0(Z) ⊆

C̃0(Z). This is done by showing in part (a) that all γ in the identified
set lie in C0(Z) and then in part (b) that all γ in the identified set
lie in D0(Z).

(a).H0(Z) ⊆ C0(Z).

Chesher (2010) shows that all structural functions, h, in the
set identified by the SEIV model associated with a conditional
distribution function F 0

YX |Z and a set of instrumental valuesZ satisfy
the following inequalities for all u ∈ (0, 1) and z ∈ Z.

Pr0[Y < h(X, u)|Z = z] < u ≤ Pr0[Y ≤ h(X, u)|Z = z].

In terms of threshold functions these inequalities are as follows.

M−
m=1

Pr0[(Y = m) ∧ (hm(x) < u)|Z = z] < u

≤

M−
m=1

Pr0[(Y = m) ∧ (hm−1(x) < u)|Z = z].

For the discrete endogenous variable case, there is the following
representation.

K−
i=1

M−1−
m=1

δ0
i (z)α

0
mi(z)1(γmi < u) < u

≤

K−
i=1

M−
m=1

δ0
i (z)α

0
mi(z)1(γm−1,i < u) (9)

Consider some arrangement of the elements of γ in which two
elements, γkr < γls are adjacent so that there is no element γqt ∈ γ
satisfying γkr < γqt < γls. Consider u ∈ (γkr , γls] and the right-
hand inequality in (9). This inequalitymust hold for all u in (γkr , γls]

and so must hold at the supremum of the interval which is its
maximal value, γls, and so there is the following.

γls ≤

K−
i=1

M−
m=1

δ0
i (z)α

0
mi(z)1(γm−1,i < γls).
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Since this inequality must hold for all z ∈ Z, the minimal value
achieved on the right-hand side as z varies in Z is all that mat-
ters.10 This produces the upper bounding function in the definition
of C0(Z).

Now consider some arrangement of the elements of γ in which
two elements, γls < γpr are adjacent so that there is no element
γqt satisfying γls < γqt < γpr . Consider u ∈ (γls, γpr ] and the left-
hand side of (9). This inequality must hold for all u in (γls, γpr ] and
so must hold as in (9) with strong inequalities at every value of u
in the interval and so with weak inequalities at the infimum of the
interval which is γls and so there is the following inequality.

K−
i=1

M−1−
m=1

δ0
i (z)α

0
mi(z)1(γmi ≤ γls) ≤ γls.

Since this must hold for all z ∈ Z, the maximal value achieved
on the left-hand side as z varies in Z is all that matters. This
delivers the lower bounding function in the definition of C0(Z).
This concludes the demonstration that H0(Z) ⊆ C0(Z).

(b). H0(Z) ⊆ D0(Z).

For each γ in the identified set, there exists for each z ∈ Z a
distribution function characterised by β(z) satisfying conditions
I1–I3. Conditions I1 and I2 imply that

γni = δ0
i (z)ᾱ

0
ni(z) +

−
j≠i

δ0
j (z)βnij(z)

γmi = δ0
i (z)ᾱ

0
mi(z) +

−
j≠i

δ0
j (z)βmij(z)

and on subtracting there is the following.

γni − γmi = δ0
i (z)(ᾱ

0
ni(z) − ᾱ0

mi(z))

+

−
j≠i

δ0
j (z)(βnij(z) − βmij(z)).

The properness condition I3 ensures that, since n > m, for each i
and j, the distribution function characterised by β(z) has βnij(z) ≥

βmij(z) and so

γni − γmi ≥ δ0
i (z)(ᾱ

0
ni(z) − ᾱ0

mi(z)).

Since this inequality must hold for all z ∈ Z, the maximal value
achieved on the right-hand side as z varies in Z is all that matters.
This delivers the lower bounding function in the definition of
D0(Z). �

Proposition 5. When X is binary H0(Z) = C̃0(Z) no matter how
many points of support Y has.

This is proved by showing that for every γ in C̃0(Z) and for each
z ∈ Z there exists a proper distribution of U given X and Z = z
characterised by β(z) such that Restrictions I1–I3 are respected.
The proof is in Appendix A.

Proposition 6. When Y is binary C̃0(Z) = C0(Z).

Proof of Proposition 6. The result follows once it is shown that
when Y is binary, C0(Z) ⊆ D0(Z). When Y is binary the free
elements in γ are γ1i, i ∈ {1, . . . , K}. The inequalities defining
D0(Z) reduce to

δ0
i (z)α

0
1i(z) ≤ γ1i ≤ 1 + δ0

i (z)(1 − α0
1i(z)) i ∈ {1, . . . , K} (10)

10 The element in Z which delivers this minimal value may vary with l and s.
and the inequalities defining C0(Z) require that
i−

j=1

δ0
j (z)α

0
1j(z) ≤ γ1i ≤ 1 +

K−
j=i

δ0
j (z)(1 − α0

1j(z))

i ∈ {1, . . . , K}. (11)

It is clear that (10) is satisfied if (11) is satisfied, and thereforewhen
Y is binary C0(Z) ⊆ D0(Z). �

Appendix B sets out the 50 inequalities that arise in a 3 outcome
case with a binary endogenous variable.

The SEIV model generally set identifies structural functions.
When values of endogenous variables can be predicted with high
accuracy identified sets can be small. The model is falsifiable as
is demonstrated in Appendix C via a simple example involving a
binary outcome.

The next section studies sets identified by an ordered outcome
model with a binary endogenous variable. The effect on the
identified set of varying the discreteness of the outcome and the
strength of the instrumental variables is investigated.

4. Discreteness and identified sets in a parametric ordered
probit model

The complexity of identified sets for nonparametrically speci-
fied threshold functions increases rapidly as the number of points
of support of the outcome, M , becomes large. In this section we
study cases with M as large as 130 when the identified set can in
principle have over 2×1076 convex components. Cases like this are
computationally challenging, and there arises the question of rep-
resenting and processing the information in the complex identified
set.

We tackle this problem by focusing on parametrically speci-
fied structural functions choosing, by way of example, the form
that arises in conventional ordered probit analysis. We explain
how identified sets in the parameter space defined by the para-
metric model can be calculated using our results on nonpara-
metric identification but without encountering computationally
intractable problems. For particular cases, we show the form taken
by the identified sets and the effects on the sets of changing the
discreteness of the outcome and the support of the instrumental
variable.

The ordered probit structural function is interesting because
with exogenous explanatory variables it is widely used in
econometric practice and for applied workers a first attempt at
addressing potential endogeneity in explanatory variables could
start with this form. Given the complexity of the identified set
for nonparametrically specified structural functions it is likely that
in applications some relatively low-dimensional parameterisation
would be used.

4.1. Models

We now investigate the nature of the identified sets delivered
by a parametric ordered probit model with a binary endogenous
variable. In this model the structural function is parametrically
specified, as follows.

Y =


1 , 0 ≤ U ≤ Φ(s−1(c1 − a0 − a1X))

2 , Φ(s−1(c1 − a0 − a1X)) < U ≤ Φ(s−1(c2 − a0 − a1X))

.

.

.
.
.
.

.

.

.

M , Φ(s−1(cM−1 − a0 − a1X)) < U ≤ 1

(12)

Here Φ denotes the standard normal distribution function, the
constants c1, . . . , cM−1 are threshold values defining cells within
which a latent normal random variable is classified, and a0, a1 and
s are constant parameters. Throughout X is binary with support
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{−1, +1}, There is the independence restriction: U ⊥ Z , U is
normalised Unif (0, 1).

In one portfolio of illustrations (A) the model specifies the
values of the threshold parameters c1, . . . , cM−1 as known, and s
as known and normalised to one. This leaves just two unrestricted
parameters, a0 and a1, and it is easy to display the identified sets
graphically. In these illustrations M , the number of levels of the
outcome, is varied from 2 to 130. In econometric practice with
interval censored data it would be normal to know the values of
the thresholds but the parameter s would typically be unknown.
The methods employed here could be used with s unknown.

In another illustration (B) M is held fixed at 3 and the model
specifies the thresholds, c1 and c2, along with the slope coefficient,
a1, as unknown parameters. In these illustrations, the values of
a0 and s are normalised to respectively 0 and 1 because their
values cannot be identified once the thresholds are unrestricted. A
similar exercise could be conductedwith larger values ofM but the
graphical display of results would be problematic. In econometric
practice using attitudinal responses it would be normal to have
unknown thresholds as in this example.

In all cases the instrumental variable takes equally spaced
values in an interval [−ζ , ζ ]. In two of the illustrations the effect
on the identified sets of varying the support of the instrument is
studied.

4.2. Calculation procedures

The calculation of an identified set of parameter values for a
particular distribution F 0

YX |Z and a set of instrumental values Z

proceeds as follows.11
A fine grid of values of the parameters (e.g. a0 and a1 in the

illustrations in set A) is defined. A value, (a∗

0, a
∗

1), is selected
from the grid and the value of γ , say γ∗, determined by (a∗

0, a
∗

1)
is calculated. Recall that γ is a list of values of the threshold
functions defined by amodel at the points of support of the discrete
endogenous variable.

For the selected value γ∗ the ordering of its elements, say l∗,
is determined and the linear equalities and inequalities defining
the convex set C̃0

l∗(Z) are calculated, minimising and maximising
expressions over z ∈ Z as set out in the definitions of the sets
C0(Z) and D0(Z) at the start of Section 3.4.

In all the illustrations, because X is binary, H0
l∗(Z) = C̃0

l∗(Z). If
γ ∗ falls in this set then (a∗

0, a
∗

1) is in the identified set of parameter
values, otherwise it is not.

Passing across the grid the identified set is computed. Care is
required because the set may not be connected and sometimes
component connected subsets of the identified set can be small. To
avoid missing component subsets, dense grids of values are used
in the calculations presented here.

4.3. Illustration A1

The probability distributions used in this illustration are
generated by triangular Gaussian structures with structural
equations as follows.
Y ∗

= α1X + W
X∗

= 0.5Z + V

Y =


1 , −∞ ≤ Y ∗

≤ c1
2 , c1 < Y ∗

≤ c2
...

...
...

M , cM−1 < Y ∗
≤ +∞

11 All the computation in the paper was carried out using R (Ihaka and Gentleman
(1996)).
Table 3
Illustration A1: threshold values.

M Threshold values (ci) Shading in Fig. 1

2 {0.0} Red
4 {±0.1, 0.0} Blue
6 {±0.3, ±0.1, 0.0} Red
8 {±0.7, ±0.3, ±0.1, 0.0} Blue
10 {±1.1, ±0.7, ±0.3, ±0.1, 0.0} Red
12 {±1.5, ±1.1, ±0.7, ±0.3, ±0.1, 0.0} Green
14 {±1.8, ±1.5, ±1.1, ±0.7, ±0.3, ±0.1, 0.0} Black

X =


−1 , −∞ ≤ X∗

≤ 0
+1 , 0 < X∗

≤ +∞.

The value of α1 in this illustration is 1 and the distribution of
(W , V ) is specified to be Gaussian and independent of Z .[
W
V

]
|Z ∼ N2

[
0
0

]
,

[
1.0 0.5
0.5 1.0

]
.

These structures are closely related to a special case of the
parametric Gaussian models of discrete outcomes studied in
Heckman (1978).

Expressed in terms of a random variable U which is uniformly
distributed on the unit interval the structural functions are as
follows.

h(X,U) =


1 , 0 ≤ U ≤ Φ(c1 + X)
2 , Φ(c1 + X) < U ≤ Φ(c2 + X)
...

...
...

M , Φ(cM−1 + X) < U ≤ 1.

Two sets of instrumental values, Z1 and Z2, are considered each
containing just 10 values evenly spaced in [−1, 1] and in [−2, 2]
respectively.

Z1 = {±1.0, ±0.777, ±0.555, ±0.333, ±0.111}
Z2 = {±2.0, ±1.556, ±1.111, ±0.667, ±0.222}.

In the structures used to generate the probability distributions
applied in this and the next illustration, the effect of doubling of the
values in the support of Z is the same as the effect of doubling the
coefficient on Z in the equation for the latent variable X∗. The effect
on the identified sets of such changes in the support or strength of
the instrument are discussed shortly.

In this illustration the number of classes in which Y is observed
is increased from 2 through 14 with threshold values as set out in
Table 3.

Identified sets for the two parameters, (a0, a1), are drawn in
Fig. 1. The upper pane in the figure is obtained using Z1 and
the lower pane is obtained using Z2. The sets are rhombuses
arranged with edges parallel to 45° and 225° lines. Identified sets
are superimposed one upon another.

Using the set of instrumental values Z2 with broader support
delivers substantially smaller identified sets. In this case (but not
in Illustration A2) the structure of the identified sets is very similar
using instrumental values Z1 and Z2, and the following discussion
applies to the upper and the lower pane in Fig. 1.

The largest rhombus drawn in Fig. 1 is the identified set with
M = 2. Since the outcome is binary, this is the set C0(Z).

The identified set with M = 4 is the rhombus comprising the
lowest blue chevron and what lies above it but excluding a very
narrow strip on the edge of the two upper boundaries. This strip
(coloured green) is the set C0(Z) ∩ D0(Z). Notice that this does
not extend all the way along the upper edges of the set because for
the caseM = 2, C̃0(Z) = C0(Z) ⊆ D0(Z).
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Fig. 1. Illustration A1. Outer sets and identified sets in a binary endogenous
variable SEIV model with a parametric ordered probit structural function with
threshold functions of the form Φ(ci − a0 − a1x) as the number of categories of
the outcome varies from 2 to 10. The upper (lower) pane represents identified
sets when the support of the instrumental variable, Z , is Z1 (Z2). The dark blue
strip at the upper margin of the rhombuses is not part of the identified sets. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The identified set with M = 6 (respectively 8) is the rhombus
comprising the second lowest red (respectively blue) chevron and
all that lies above it apart from the narrow dark blue shaded strip
on the edge of the two upper boundaries.

The identified set with M = 10 is disconnected and comprises
the two small red shaded rhombuses in the upper part of the
picture. The identified setwhenM = 12 is the small yellow shaded
rhombus in the centre of the picture and the identified set when
M = 14 is the tiny black shaded rhombus at the intersection of the
horizontal and vertical dashed lines. Further increases in numbers
of classes deliver sets which are barely distinguishable from points
at the scale chosen for Fig. 1.

As the number of classes rises the extent of the identified
sets falls rapidly but the passage towards point identification is
complex and even when the sets are quite small they can be
disconnected.
Fig. 2. Illustration A2. Outer sets and identified sets delivered by a binary
endogenous variable SEIV model with a parametric ordered probit structural
function, intercept a0 and slope a1 . The upper (lower) pane represents identified
sets when the support of the instrumental variable, Z , is Z1 (Z2). Number of
categories of the outcome, M: 2 (red), 4 (blue) and 6 (green). The dark blue strip at
the uppermargin is not in the identified sets. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

4.4. Illustration A2

In this illustration the class of structures generating probability
distributions is as in Illustration A1 and, as there, α1 = 1. Also as
in Illustration A1 two sets of instrumental values are employed,Z1
and Z2.

In this illustration the number of classes is varied through the
following sequence.

M ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 25, 50, 75}.

Threshold values (ci) are chosen to do a good job of covering
the main probability mass of the distribution of Y marginal with
respect to X and Z . They are chosen as quantiles of an N(0, (2.4)2)
distribution associated with equally spaced probabilities in [0, 1],
e.g. {1/2} for M = 2, {1/3, 2/3} for M = 3, and so on. The
identified sets are drawn in Figs. 2–5. In each case the upper (lower)
pane gives identified sets obtained using the instrumental values
Z1 (Z2).
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Fig. 3. Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and
slope a1 . The upper (lower) pane represents identified sets when the support of
the instrumental variable, Z , is Z1 (Z2). Number of categories of the outcome, M:
8 (red), 10 (blue) and 12 (green). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

First, consider the upper panes in each of Figs. 2–5 which are
produced using the more restricted set of instrumental values Z1.
Fig. 2 shows identified sets for M = 2 (red), M = 4 (blue) and
M = 6 (green). Notice that in the latter two cases the identified sets
are disconnected comprising two rhombuses. On the upper edges
of the upper rhombus in the caseM = 4 is a narrow dark blue strip
marking the intersection C0(Z) ∩ D0(Z) which does not lie in the
identified set. This intersection is empty in the other cases that are
shown in this figure and in Figs. 3–5.

Fig. 3 shows identified sets forM = 8 (red),M = 10 (blue) and
M = 12 (green). The identified set for M = 10 is disconnected.
Notice that the scale is greatly expanded in this figure, the
identified sets are rapidly decreasing in size as the number of
classes observed for Y increases. The outline unshaded rhombus in
Fig. 3 is the identified set forM = 6 copied across from Fig. 2. Boxes
formed by the dashed lines in Fig. 2 show the region focussed on in
Fig. 3.
Fig. 4. Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and
slope a1 . The upper (lower) pane represents identified sets when the support of the
instrumental variable, Z , is Z1 (Z2). Number of categories of the outcome, M: 14
(red), 16 (blue) and 18 (green). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4 shows identified sets forM = 14 (red),M = 16 (blue) and
M = 18 (green). Again the scale is greatly expanded relative to the
previous figure. The outline unshaded rhombus is the identified set
for M = 12 copied across from Fig. 3.

Fig. 5 shows identified sets forM = 25 (red),M = 50 (blue) and
M = 75 (green). Yet again the scale is greatly expanded relative to
the previous figure. The lower part of the identified set forM = 18
is drawn in outline. All the identified sets are connected and of very
small extent. The situation is now very close to point identification.
The identified set at M = 100 is not distinguishable from a point
at the chosen scale.

Now consider the lower panes in Figs. 2–5 which are obtained
using the set of instrumental values Z2. The scales of the graphs in
the upper and lower panes are identical. In each case the doubled
range of support results in substantially smaller identified sets.
These identified sets have many features in common with the
sets obtained with more limited instrument support. They are
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Fig. 5. Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and
slope a1 . The upper (lower) pane represents identified sets when the support of the
instrumental variable, Z , is Z1 (Z2). Number of categories of the outcome, M: 25
(red), 50 (blue) and 75 (green). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

disconnected in some cases but when the instrument has greater
support this phenomenon disappears sooner as the discreteness of
the outcome is reduced.

In Chesher (2010) it is shown that the values of threshold
functions hm(x∗) are point identified at any value x∗ for which
there exists an instrumental value z∗ such that Pr0[X = x∗

|Z =

z∗
] = 1. In the light of this result these probabilities are a good

indicator of the ‘‘strength’’ of an instrument. Table 4 shows the
values of these probabilities for the structures that generate the
probability distributions used in this illustration and for the two
sets of instrumental values Z1 and Z2. The largest probability is
0.84 using Z2 compared with 0.69 using Z1.

In the structures used to generate the probability distributions
used in this illustration

Pr0[X = +1|Z = +∞] = 1 = Pr0[X = −1|Z = −∞].
Table 4
Predictive probabilities for X at values of z in two sets of instrumental values.

Z1 Z2

z Pr[X = 1|Z = z] z Pr[X = 1|Z = z]

−1.00 .31 −2.00 .16
−0.78 .35 −1.56 .22
−0.56 .39 −1.11 .29
−0.33 .43 −0.67 .37
−0.11 .48 −0.22 .46
+0.11 .52 +0.22 .54
+0.33 .57 +0.67 .63
+0.56 .61 +1.11 .71
+0.78 .65 +1.56 .78
+1.00 .69 +2.00 .84

If Z included the values +∞ and −∞ then, given the linear
specification in the parametric model for the structural function,
there would be point identification of the slope parameter a1. But
the structure generating the probability distributions employed
here is quite special. In econometric practice point identification
‘‘at infinity’’ is unlikely to be achievable.

The upper and lower panes in Fig. 6 plot logarithm (base e) of the
lengths of identified intervals for respectively a0 and a1 against the
logarithm of the number of classes in which Y is observed. Results
are shown for the weak and strong sets of instrumental values,
respectively Z1 and Z2. The lengths of the identified intervals are
always smaller using Z2 which is the set of instrumental values
with wider support.

Fig. 7 plots the logarithm of the area of the identified set for a0
and a1 against the logarithm of the number of classes. The areas
of the identified sets are always smaller using Z2. In each case the
points are quite tightly scattered around a negatively sloped linear
relationships suggesting approach to point identification at a rate
proportional to a power of the number of classes12. OLS estimates
indicate that the lengths of the sets for a0 and a1 both fall at a rate
proportional to M−2.1, and that the area of the identified set for a0
and a1 falls at a rate proportional toM−3.6.

The details of this approach towards point identification and
the geometry of the identified sets depend on fine details of
the specification of the structures generating the probability
distributions such as the precise spacing of the thresholds.

4.5. Illustration B1

The class of structures generating probability distributions is as
in IllustrationA1. In this illustrationweuse the instrumental values
in Z1

In this illustration there are M = 3 classes throughout. The
values of a0 and s are normalised to respectively zero and one. The
unknown parameters are the thresholds c1 and c2 and the slope
coefficient a1. This is the sort of setup one finds when modelling
attitudinal data where threshold values are unknown parameters
of considerable interest.

In the structure generating the probability distributions the
values of the thresholds are as follows
(c1, c2) = (−0.667, +0.667)
and α1 = 1.

The identified set resides in a three-dimensional square prism
of infinite extent: R× (0, 1)2. Figs. 8–10 show slices taken through
this at a sequence of values of a1 showing at each chosen value
of a1 the associated identified set for (c1, c2). In all cases this is

12 Where sets are disconnected the lengths of the identified sets for individual
parameters are calculated as the sum of the lengths of disjoint intervals, and the
area of the sets for a pair of parameters is calculated as the sum of the areas of the
connected component sets.
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Fig. 6. Illustration A2. Shrinkage of identified sets as the number of outcome
categories increases: (upper pane) logarithm of the length of the identified interval
for a0 plotted against the logarithm of the number of categories of the outcome,
Y , (lower pane) logarithm of the length of the identified interval for a1 plotted
against the logarithm of the number of categories of the outcome, Y . In green
(red) the identified sets are computed with the support of Z equal to Z1 (Z2). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

connected and resides above the 45° line in the unit square because
the restriction c2 > c1 has been imposed.

In each case the rectangular regions (shaded red and green)
indicate combinations of (c1, c2)which at the chosen value of a1 lie
in the set C0(Z). The green shaded regions indicate combinations
of (c1, c2) that at the chosen value of a1 are in the intersection
C0(Z) ∩ D0(Z). These combinations of (a1, c1, c2) do not lie in
the identified set. The red shaded regions indicate combinations
of (c1, c2) that at the chosen value of a1 are in the intersection
C̃0(Z) = C0(Z) ∩ D0(Z). These combinations of (a1, c1, c2) are
in the identified set.

The extent of the regions in the c1 × c2 plane grows as a1 falls
towards the value 1.0 and then shrinks as a1 falls further.

5. Concluding remarks

Single equation instrumental variable (SEIV)models for ordered
discrete outcomes generally set identify structural functions or,
Fig. 7. Illustration A2. Shrinkage of identified sets as the number of outcome
categories increases. Logarithm of the area of the identified set plotted against
the logarithm of the number of categories of the outcome, Y . In green (red) the
identified sets computed with the support of Z equal to Z1 (Z2). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

if there are parametric restrictions, parameter values. Complete
models, for example the triangular control function model, can be
point identifying, but in applied econometric practice theremay be
nogood reason to choose onepoint identifyingmodel over another.

For any particular distribution of observable variables the sets
delivered by the SEIV model give information about the variety of
structural functions or parameter values that would be delivered
by one or another of the point identifying models which are
restricted versions of the SEIV model.

For the nonparametric case we have developed a system
of equalities and inequalities that bound the identified sets of
structural functions delivered by an SEIV model in the case when
endogenous variables are discrete. When either the outcome or
the endogenous variable is binary the inequalities sharply define
the identified set. The inequalities involve only probabilities about
which data is informative and the identified sets can be estimated
and inferences drawn using the methods set out in Chernozhukov
et al. (2009). Some illustrative calculations for the binary outcome
case are given in Chesher (2009).

Calculations in a parametric model suggest that the degree of
ambiguity attendant on using the SEIV model reduces rapidly as
the discreteness of the outcome is reduced. Research to determine
the extent to which this is true in less restricted settings is one of
a number of topics of current research.

Acknowledgements

We thank Martin Cripps and Adam Rosen for helpful discus-
sions. Some of the results in this paper were presented at the
conference Identification and Decisions held May 8–9, 2009 at
Northwestern University. We gratefully acknowledge the financial
support of the UK Economic and Social Research Council through a
grant (RES-589-28-0001) to the ESRC Centre for Microdata Meth-
ods and Practice (CeMMAP).

Appendix A. Proof of Proposition 5

Consider candidate structural functions, that is, values of γm1
and γm2, m ∈ {1, . . . ,M − 1}. Define β(Z) so that conditions I1
and I2 are satisfied for all z ∈ Z. There is only one way to do this:
for each m and each z ∈ Z, to satisfy Condition I1:

βm11(z) = ᾱ0
m1(z) βm22(z) = ᾱ0

m2(z) (A1.1)
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Fig. 8. Illustration B1. Three class ordered probit model with unknown threshold parameters c1 and c2 and slope coefficient a1 . Cross-section of the identified set (red)
and outer set (red and green) for c1, c2 and a1 at selected values of a1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
and to satisfy Condition I2:

δ0
1(z)βm11(z) + δ0

2(z)βm12(z) = γm1

δ0
1(z)βm21(z) + δ0

2(z)βm22(z) = γm2

and, on combining these results, for m ∈ {1, . . . ,M} there are the
following expressions

βm12(z) =
γm1 − δ0

1(z)ᾱ
0
m1(z)

δ0
2(z)

βm21(z) =
γm2 − δ0

2(z)ᾱ
0
m2(z)

δ0
1(z)

(A1.2)

It is now shown that for every γ ∈ C̃0(Z) the value of β(Z)
defined by (A1.1) and (A1.2) as z varies across Z satisfies the
properness condition I3. It follows that C̃0(Z) ⊆ H0(Z) and
Proposition 4 states that H0(Z) ⊆ C̃0(Z), so it must be that
H0(Z) = C̃0(Z) in this binary endogenous variable case.

To proceed, consider the distribution function characterised by
βmj1(z) for m ∈ {1, . . . ,M − 1} and j ∈ {1, 2} and any z ∈ Z.
Here conditioning is on X = x1 and Z = z. The argument when
conditioning is on X = x2 goes on similar lines and can be worked
through by exchange of indices in what follows.

Condition I3 is satisfied if for every adjacent pair of values γsi
< γtj:

βsi1(z) ≤ βtj1(z)

and there are four possibilities to consider as follows.
A1. i = 1, j = 1. In this case t = s + 1 because γs1 < γt1 are
adjacent. Properness requires that βs11 ≤ βs+1,11 but (A1.1)
ensures that this holds because βs11 = ᾱ0

s1(z) ≤ ᾱ0
s+1,1(z) =

βs+1,11.

A2. i = 1, j = 2. Properness requires that βs11 ≤ βt21 which, on
using (A1.1) and (A1.2), requires that

ᾱ0
s1(z) ≤

γt2 − δ0
2(z)ᾱ

0
t2(z)

δ0
1(z)

which is written as follows.

δ0
1(z)ᾱ

0
s1(z) + δ0

2(z)ᾱ
0
t2(z) ≤ γt2. (A1.3)

If γ ∈ C0(Z) then there is, on replacing γls by γt2 in the lower
bounding inequality in the definition ofC0(Z) and considering
a particular value of z ∈ Z

K−
i=1

M−1−
m=1

δ0
i (z)α

0
mi(z)1(γmi ≤ γt2) ≤ γt2 (A1.4)

and since γs1 < γt2 and the values are adjacent the left-hand
side of (A1.4) as follows:

δ0
1(z)

s−
m=1

α0
m1(z) + δ0

2(z)
t−

m=1

α0
m2(z)

= δ0
1(z)ᾱ

0
s1(z) + δ0

2(z)ᾱ
0
t2(z)

and so (A1.3) holds.
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Fig. 9. Illustration B1. Three class ordered probit model with unknown threshold parameters c1 and c2 and slope coefficient a1 . Cross-section of the identified set (red)
and outer set (red and green) for c1, c2 and a1 at selected values of a1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
A3. i = 2, j = 1. Properness requires that βs21 ≤ βt11 which, on
using (A1.1) and (A1.2), requires that

γs2 − δ0
2(z)ᾱ

0
s2(z)

δ0
1(z)

≤ ᾱ0
t1(z)

which is written as follows.

γs2 ≤ δ0
1(z)ᾱ

0
t1(z) + δ0

2(z)ᾱ
0
s2(z). (A1.5)

If γ ∈ C0(Z) then there is, on replacing γls by γs2 in the upper
bounding inequality in the definition ofC0(Z) and considering
a particular value of z ∈ Z:

γs2 ≤

K−
i=1

M−
m=1

δ0
i (z)α

0
mi(z)1(γm−1,i < γs2) (A1.6)

and since γs2 < γt1 and the values are adjacent the right-hand
side of (A1.6) is as follows:

δ0
1(z)

t−
m=1

α0
m1(z) + δ0

2(z)
2−

m=1

α0
m2(z)

= δ0
1(z)ᾱ

0
t1(z) + δ0

2(z)ᾱ
0
s2(z)

and so (A1.5) holds.
A4. i = 2, j = 2. It must be that t = s + 1 because γs2 < γt2

are adjacent. Properness requires that βs21 ≤ βs+1,21 which,
on using (A1.2), requires that

γs2 − δ0
2(z)ᾱ

0
s2(z)

δ0
1(z)

≤
γs+1,2 − δ0

2(z)ᾱ
0
s+1,2(z)

δ0
1(z)
which is written as follows.

δ0
2(z)α

0
s+1,2(z) ≤ γs+1,2 − γs2. (A1.7)

If γ ∈ D0(Z) then replacing γni and γmi by respectively γs+1,2
and γs2 in the definition of D0(Z) and considering a particular
value z ∈ Z:

γs+1,2 − γs2 ≥ δ0
2(z)(ᾱ

0
s+1,2(z) − ᾱ0

s2(z)) = δ0
2(z)α

0
s+1,2(z)

and so (A1.7) holds.

We can think of the set C̃0(Z) as an intersection of sets, one
obtained at each value of z ∈ Z , thus.

C̃0(Z) =


z∈Z

C̃0(z).

It has been shown that for any z ∈ Z and for all γ ∈ C̃0(z) there are
conditional distribution functions characterised by β(z) defined as
in (A1.1) and (A1.2) such that conditions I1, I2 and I3 hold.

Let β(Z) be the conditional distribution functions generated
using definitions (A1.1) and (A1.2) as z varies within Z. Values
γ ∈ C̃0(Z) lie in every set C̃0(z), and so for each such value of
γ there are conditional distribution functions in β(Z) such that
conditions I1, I2 and I3 are satisfied. It follows that C̃0(Z) ⊆ H0(Z)
and since H0(Z) ⊆ C̃0(Z), it follows that H0(Z) = C̃0(Z). This
completes the proof of Proposition 5. �
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Fig. 10. Illustration B1. Three class ordered probit model with unknown threshold parameters c1 and c2 and slope coefficient a1 . Cross-section of the identified set (red)
and outer set (red and green) for c1, c2 and a1 at selected values of a1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Appendix B. Inequalities defining the identified set for the case
M = 3, K = 2

When M = 3 and K = 2 there are six arrangements of
the set of values of γ , of which three (B1–B3) can be obtained
by the exchange of indexes labelling elements of support of
X in arrangements A1–A3. Dependence of probabilities on z is
suppressed in notation. The inequalities excluding (13) deliver
set C0(z). Intersection with D0(z) introduces the additional
inequality (13).

(A1) : γ11 < γ12 < γ21 < γ22

(A2) : γ11 < γ12 < γ22 < γ21

(A3) : γ11 < γ21 < γ12 < γ22

(B1) : γ12 < γ11 < γ21 < γ22

(B2) : γ12 < γ11 < γ22 < γ21

(B3) : γ12 < γ22 < γ11 < γ21

(A1)

δ0
1α

0
11 < γ11 ≤ δ0

1α
0
11 + δ0

2α
0
12

δ0
1α

0
11 + δ0

2α
0
12 < γ12 ≤ δ0

1(α
0
11 + α0

21) + δ0
2α

0
12

δ0
1(α

0
11 + α0

21) + δ0
2α

0
12 < γ21 ≤ δ0

1(α
0
11 + α0

21)

+ δ0
2(α

0
12 + α0

22)

δ0
1(α

0
11 + α0

21) + δ0
2(α

0
12 + α0

22) < γ22 ≤ δ0
1 + δ0

2(α
0
12 + α0

22)
(A2)

δ0
1α

0
11 < γ11 ≤ δ0

1α
0
11 + δ0

2α
0
12

δ0
1α

0
11 + δ0

2α
0
12 < γ12 ≤ δ0

1(α
0
11 + α0

21) + δ0
2α

0
12

δ0
1α

0
11 + δ0

2(α
0
12 + α0

22) < γ22 ≤ δ0
1(α

0
11 + α0

21)

+ δ0
2(α

0
12 + α0

22)

δ0
1(α

0
11 + α0

21) + δ0
2(α

0
12 + α0

22) < γ21

≤ δ0
1(α

0
11 + α0

21) + δ0
2

δ0
2α

0
22 < γ22 − γ12 (13)

(A3)

δ0
1α

0
11 < γ11 ≤ δ0

1α
0
11 + δ0

2α
0
12

δ0
1(α

0
11 + α0

21) < γ21 ≤ δ0
1(α

0
11 + α0

21) + δ0
2α

0
12

δ0
1(α

0
11 + α0

21) + δ0
2α

0
12 < γ12 ≤ δ0

1 + δ0
2α

0
12

δ0
1(α

0
11 + α0

21) + δ0
2(α

0
11 + α0

21) < γ22 ≤ δ0
1 + δ0

2(α
0
11 + α0

21)

Appendix C. Falsifiability of the SEIV model

This Annex provides a simple example of probability distribu-
tions for Y and X given Z which cannot be supported by an SEIV
model. Faced with these probability distributions the SEIV model
delivers a system of inequalities that define an empty set. The exis-
tence of such cases ensures that the SEIVmodel is falsifiable. In the
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example, Y , X and Z are all binary. It is easy to extend tomore com-
plex cases and there aremany choices of values of the probabilities
that deliver an empty identified set.

When Y is binary the structural function has a single threshold
function taking values γ11 and γ12 at the two values of X . There
are two orderings: l = 1: γ11 ≤ γ12 and l = 2 : γ12 ≤ γ11. The
identified sets associated with zi, i ∈ {1, 2} are, for each ordering:

H1(zi) = {γ : δ1(zi)α1(zi) ≤ γ11 ≤ δ1(zi)α1(zi) + δ2(zi)α2(zi)
≤ γ12 ≤ δ1(zi) + δ2(zi)α2(zi)}

H2(zi) = {γ : δ2(zi)α2(zi) ≤ γ12 ≤ δ1(zi)α1(zi) + δ2(zi)α2(zi)
≤ γ11 ≤ δ2(zi) + δ1(zi)α1(zi)}

and the identified set is as follows.

H(Z) = (H1(z1) ∩ H1(z2)) ∪ (H2(z1) ∩ H2(z2))

Here is an example with proper probabilities such that this set
is empty.

δ1(z1) = δ1(z2) = δ2(z1) = δ2(z2) = 0.5 (A2.1)
α1(z1) = α2(z1) = 0.2 α1(z2) = α2(z2) = 0.8. (A2.2)

The components of the identified sets are:

H1(z1) = {γ : 0.1 ≤ γ11 ≤ 0.2 ≤ γ12 ≤ 0.6}
H1(z2) = {γ : 0.4 ≤ γ11 ≤ 0.8 ≤ γ12 ≤ 0.9}
H2(z1) = {γ : 0.1 ≤ γ12 ≤ 0.2 ≤ γ11 ≤ 0.6}
H2(z2) = {γ : 0.4 ≤ γ12 ≤ 0.8 ≤ γ11 ≤ 0.9}

and the identified set, H(Z) = φ, the empty set, because

H1(z1) ∩ H1(z2) = H2(z1) ∩ H2(z2) = φ.

There is no nonparametric SEIV model that supports the probabil-
ity distribution that delivers (A2.1) and (A2.2).
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