
Encodings of Bounded LTL Model Checking in
Effectively Propositional Logic

Juan Antonio Navarro-Pérez and Andrei Voronkov

The University of Manchester
School of Computer Science

{navarroj,voronkov}@cs.manchester.ac.uk

Abstract. We present an encoding that is able to specify LTL bounded
model checking problems within the Bernays-Schönfinkel fragment of
first-order logic. This fragment, which also corresponds to the category
of effectively propositional problems (EPR) of the CASC system com-
petitions, allows a natural and succinct representation of both a soft-
ware/hardware system and the property that one wants to verify.
The encoding for the transition system produces a formula whose size
is linear with respect to its original description in common component
description languages used in the field (e.g. smv format) preserving its
modularity and hierarchical structure. Likewise, the LTL property is en-
coded in a formula of linear size with respect to the input formula, plus
an additional component, with a size of O(log k) where k is the bound,
that represents the execution flow of the system.
The encoding of bounded model checking problems by effectively propo-
sitional formulae is the main contribution of this paper. As a side effect,
we obtain a rich collection of benchmarks with close links to real-life
applications for the automated reasoning community.

1 Introduction

Model checking is a technique suitable for verifying that a hardware or software
component works according to some formally specified expected behaviour. This
is usually done by building a description of the system, often modelled as a finite
state machine in a formal language suitable for further deployment, and using a
temporal logic to specify properties that the system is expected to satisfy.

One of the first advances in model checking consists of the use of symbolic
model checkers [9], where the transition system of the finite state machine is
represented symbolically. These symbolic representations, which usually take
the form of a binary decision diagram (BDD), provide significant improvements
over previous techniques; but some formulae are still hard to encode succinctly
using BDDs and, moreover, the encoding itself is often highly sensitive to the
variable order used to create the representation.

Another significant achievement in the state of the art of model checking
came when Biere et al. [1] proposed a technique now widely known as bounded
model checking (BMC). In bounded model checking instead of trying to prove

1

the correctness of the given property, one searches for counterexamples within
executions of the system of a bounded length. A propositional formula is created
and a decision procedure for propositional logic, such as DPLL [5], is used to
find models which in turn represent bugs in the system. When no models are
found the bound is increased trying to search for longer counterexamples.

Although the basic method is not complete by itself, i.e. it can only disprove
properties, it has been found as an useful tool to quickly find simple bugs in sys-
tems [1, 4, 11] and a good complement to other BDD based techniques. A signif-
icant amount of research has been spent recently on extending this technique to
more expressive temporal logics [6], obtaining better propositional encodings [7],
and proposing termination checks to regain completeness [10]. A recent survey
on the state of the art is found in the work of Biere et al. [2].

Bounded model checking has been largely focused on generating and solving
problems encoded in propositional logic. We observe, however, that BMC prob-
lems can also be easily and naturally encoded within the Bernays-Schönfinkel
class of formulae. One of our motivations is to obtain a new source of prob-
lems for first-order reasoners, particularly those geared towards the effectively
propositional division (EPR) of the CASC system competitions [12]. Problems
in this category are non-propositional but with a finite Herbrand Universe and
lie within the Bernays-Schönfinkel fragment.

Moreover, we believe that the EPR encoding has several advantages over the
propositional approach. First, it gives a more succinct and natural description of
both the system and the property to verify. It is not needed, for example, to repli-
cate copies of the temporal formula for every step of the execution trace where
it has to be checked. Furthermore, it is possible to directly translate systems de-
scriptions written in a modular, without requiring to flatten or expand module
definitions before the encoding. A prover could potentially use this information
to better organise the search for a proof or counterexample.

On the other hand, our encoding may also turn out to be useful for proposi-
tional, SAT-based, approaches to bounded model checking. Indeed, it preserves
the structure of the original bounded model checking problem in the obtained
effectively propositional formula and reduces the problem of finding an optimised
propositional encoding to the problem of finding an optimised propositional in-
stantiation of the EPR description.

After introducing a number of formal definitions in Section 2, we present in
Section 3 two different encodings of linear temporal logic (LTL) into effectively
propositional formulae. The first encoding takes an LTL formula and a bound k,
and produces a set of constraints that captures the execution paths satisfying
the temporal property. The second encoding is an improvement that produces
two sets of constraints: one that depends on the LTL formula only (i.e. not the
bound) and its output is linear with respect to its input; and another, with a
size of O(k), that depends on the bound k only. Compare with propositional
encodings where, if n is the size of the LTL formula, the output is typically of
size O(nk) instead of O(n + k) with our approach. Furthermore, with a binary
encoding of states, the size of the later component can be reduced to O(log2 k).

2

We also present, in Section 4, an approach to the encoding of modular de-
scriptions of model checking problems so as to preserve their modularity and
hierarchical representation. We show in particular how several features of a soft-
ware/hardware description language such as smv [3] can be easily represented
within the effectively propositional fragment. Using the ideas depicted here, it
is also possible to develop a tool to automatically translate system descriptions
in industry standard formats (e.g. smv or verilog) into a format such as tptp [13]
suitable for consumption by first order theorem provers.

2 Background

In this section we introduce the main formal definitions that are used throughout changed!
this paper. We first define the linear temporal logic (LTL) in a way that closely
follows the standard definitions found in literature but with a few modifications
to better represent the notion of bounded executions.

Definition 1. Let V = {p1, . . . , pn} be a set of elements called state variables.
A subset s ⊆ V is known as a state.

A path π = s0s1 . . . is a, finite or infinite, sequence of states. The length of a
finite path π = s0 . . . sk, denoted by |π|, is k + 1; while, for an infinite path, we
define |π| = ω, where ω > k for every number k.

A k-path is either a finite path of the form π = s0 . . . sk, or an infinite path
with a loop of the form π = s0 . . . sl−1sl . . . sksl . . . sk . . . , in the sequel also
written as π = s0 . . . sl−1(sl . . . sk)ω. ut

We will assume that system executions are always infinite paths, i.e. there are changed!
no deadlock states. Finite paths, however, are also needed to represent the prefix
of an execution of the system up to a bounded length. With this intuition in mind
we now define the semantics of LTL formulae in negation normal form; these are
formulae built using propositional and temporal connectives, but negation is
only allowed in front of atomic propositions.

Definition 2. A path π = s0, s1, . . . is a model of an LTL formula φ at a state
si, where i < |π|, denoted by π |=i φ, if

π |=i p iff p ∈ si,
π |=i ¬p iff p /∈ si,
π |=i ψ ∧ φ iff π |=i ψ and π |=i φ,
π |=i ψ ∨ φ iff π |=i ψ or π |=i φ,
π |=i Xφ iff i+ 1 < |π| and π |=i+1 φ,
π |=i Fφ iff ∃j, i ≤ j < |π|, π |=j φ,
π |=i ψWφ iff either: π is infinite and ∀j, i ≤ j, π |=j ψ,

or: ∃j′, i ≤ j′ < |π|, π |=j′ φ and ∀j, i ≤ j < j′, π |=j ψ.

Also π is a model of > for every state si with i < |π|, and of ⊥ for no state. We
write π |= φ to denote π |=0 φ. ut

3

Note that we introduced the weak until, W, as a primary connective of our
temporal logic. Other standard temporal connectives —such as until, release and
globally— can be introduced as abbreviations of the other existing connectives:
ψUφ = Fφ ∧ (ψWφ), ψRφ = φW(ψ ∧ φ), and Gφ = φW⊥.

If we consider infinite paths only, then the definition given matches the stan-changed!
dard notion of LTL that can be found in literature; in particular dualities such
as ¬Fφ ≡ G¬φ do hold. Since we assume that system executions are always in-
finite, one can make use of these identities to put formulae into negation normal
form without any loss of generality.

Now the finite case is defined so that if π |=i φ then, for all possible infinitechanged!
paths π′ extending π, it is also the case that π′ |=i φ. Here we deviate a little
from usual definitions of LTL and dualities such as the above-mentioned do not
hold anymore. For example, neither Fφ nor G¬φ hold in a finite path where ¬φ
holds at all states. In particular, since finite paths in the temporal logic defined
are interpreted as prefixes of longer paths, one can not write a formula to test
for the end of a path.

Definition 3. A Kripke structure over a set of state variables V is a tuplechanged!
M = (S, I, T) where S = 2V is the set of all states, I ⊆ S is a set whose
elements are called initial states, and T is a binary relation on states, T ⊆ S×S,
called the transition relation of the system. We also make the assumption that
the transition relation is total, i.e. for every state s ∈ S there is a state s′ ∈ S
such that (s, s′) ∈ T .

A path π = s0s1 . . . is in the structure M if s0 ∈ I and for every 0 < i < |π|changed!
we have (si−1, si) ∈ T . We say that a path π in M is a prefix path if it is finite,
and a proper path otherwise.

An LTL formula φ is satisfiable in a Kripke structure M if there is a proper
path π in M such that π |= φ. Similarly, a formula φ is valid in M if, for every
proper path π in M , π |= φ. ut

Note that, if π is a prefix path in M and π |= φ, then for every extension π′changed!
of π we also have π′ |= φ, thus prefix paths are enough for testing satisfiability.
Observe, however, that formulae such as Gψ or ψWφ (where φ never holds) are
never satisfied by (finite) prefix paths.

We proceed now to formally introduce the fragment of quantifier free pred-
icate logic which is the target language of our main translation. This fragment,
also known as the Bernays-Schönfinkel class of formulae, does not allow the use
of function symbols or arbitrary quantification. Only variables and constant sym-
bols are allowed as terms, and variables are assumed to be universally quantified.
We also define its semantics using Herbrand interpretations.

Definition 4. We assume given a set of predicate symbols P, a finite set of
constant symbols D = {s0, . . . , sk}, and a set of variables which we will usually
denote by uppercase letters: X, Y , The set D is sometimes referred to as the
domain of the logic. A term is either a variable or a constant symbol. An atom
is an expression of the form p(t1, . . . , tn) where p ∈ P and each ti is a term. A
ground atom is an atom all whose terms are constant symbols.

4

Quantifier-free predicate formulae are built from atoms using the standard
propositional connectives (>, ⊥, ∧, ∨, ¬). Other connectives can be introduced
as abbreviations: F → G ≡ ¬F ∨ G. A ground formula is a formula built using
only ground atoms. A ground instance of a formula F is any ground formula
obtained by uniformly replacing the variables in F with constant symbols.

A Herbrand interpretation is a set of ground atoms. The notion of whether a
Herbrand interpretation I is a model of a ground formula F , denoted by I |= F ,
is defined in the usual way:

I |= A iff A ∈ I, I |= F ∧G iff I |= F and I |= G,
I |= ¬F iff I 6|= F, I |= F ∨G iff I |= F or I |= G.

Also I is always a model of > and never of ⊥. Now a Herbrand interpretation I
is said to be a model of a non-ground formula F if it is a model of every ground
instance of F , and a model of a set of formulae if it is a model of every formula
in the set. A set of formulae, also referred to as a set of constraints, is called
satisfiable if it has at least one model. ut

Since we will only be dealing with quantifier-free formulae and Herbrand
interpretations, we will often simply say predicate formula when we refer to a
quantifier-free predicate formula and interpretation when we refer to a Herbrand
interpretation. Also note that, while the symbol si represents a state in a path, si
represents a constant symbol in a predicate formulae. The similar notation was
chosen intentionally since a constant si will be used as a symbolic representation
of a state si. The intended meaning should always be clear by context, but a
different typeface is also used as a hint to distinguish the two possibilities.

Similarly, it is assumed throughout this paper that P contains a unary pred-
icate symbol p for every state variable p ∈ V. The atom p(si) symbolically
represents the fact that a variable p is true at the state si of a path (i.e. p ∈ si),
and the symbol PV denotes the set of predicates representing state variables. Our
next aim is to define a notion of symbolic representation of Kripke structures
along the lines of representations commonly used in the propositional case.

Let us define the canonical first-order structure for PV , denoted by CV . This changed!
structure is an interpretation which, instead of the symbolic representations si
used elsewhere, draws constant symbols from the domain 2V , its signature the
set of predicate symbols PV , and the interpretation of every predicate p ∈ PV is
defined as CV |= p(s) iff p ∈ s.

Definition 5. Let I(X) and T (X,Y) be predicate formulae of variables X and
X,Y , respectively, using predicate symbols PV and no constants. We say that
this pair of formulae symbolically represents a Kripke structure M if

1. a state s is an initial state of M iff CV |= I(s).
2. a pair (s, s′) belongs to the transition relation of M iff CV |= T (s, s′). ut

The idea used in this definition extends to represent paths in a Kripke structure
M by Herbrand interpretations as follows.

5

Definition 6. Given an interpretation I over the domain D = {s0, . . . , sk},
we define the k-path induced by I, denoted by πI , by πI = sI0 . . . s

I
k , where

sIi = {p ∈ V | I |= p(si)}, for all 0 ≤ i ≤ k. We will rather informally refer to
the states sIi as induced states. For the induced k-path πI we will often omit the
superscripts on the induced states and simply write πI = s0 . . . sk.

Given a value l with 0 ≤ l ≤ k, we also introduce the notation πl,I to denote
the infinite k-path s0 . . . sl−1(sl . . . sk)ω with a loop starting at sl. ut

In the sequel we will assume that the set of initial states I and the transition
relation T of our Kripke structures are always symbolically described in this
way. Also, we will normally consider only interpretations I over the domain
D = {s0, . . . , sk}. Then sIi means the induced state along the k-path sI0 , . . . , s

I
k

induced by I. Definition 6 immediately implies the following fact.

Lemma 1. Let M = (S, I, T) be a Kripke structure and I an interpretation.

1. I |= I(si) iff sIi is an initial state of M .
2. I |= T (si, sj) iff (sIi , s

I
j) belongs to the transition relation of M . ut

3 Encoding of temporal properties

In this section we present a translation that allows one to encode an LTL formula
as a quantifier free predicate formula. Following the results from Biere et al. [1],
it has been shown that, if one wants to check the satisfiability of an LTL formula,
it is enough to search for k-paths that satisfy this formula.

Theorem 1 (Biere et al. [1]). An LTL formula φ is satisfiable in a Kripke
structure M iff, for some k, there is a k-path π in M with π |= φ.

Our translation makes use of this result by creating, for a given value k and
a Kripke structure M , a predicate formula whose models correspond to k-paths
of the system satisfying the original LTL formula (the details of such correspon-
dence are given later in Proposition 2). We begin giving a set of constraints that
characterise the k-paths of Kripke structures and define some auxiliary symbols,
which are used later in the translation.

Definition 7. Let M = (S, I, T) be a Kripke structure, and also let k ≥ 0. The
predicate encoding of k-paths, denoted by |[k]|, is defined as the set of constraints:

succ(s0, s1)
succ(s1, s2)
. . .
succ(sk−1, sk)
succ(X,Y)→ less(X,Y)
succ(X,Y) ∧ less(Y, Z)→ less(X,Z)
succ(X,Y)→ trans(X,Y)
hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk)

6

And the predicate encoding of the structure M , denoted by |[M]|, is defined as:

trans(X,Y)→ T (X,Y)
I(s0)

We also define |[M,k]| = |[M]| ∪ |[k]|. Note that of the predicates succ(X,Y),
less(X,Y), trans(X,Y) and hasloop are fresh new predicates not in PV . ut

The intuition behind the predicates introduced in the previous definition is changed!
to model paths in the Kripke structure. It easily follows, for example, that if an
interpretation I |= trans(si, sj) then the pair (sIi , s

I
j) is in the transition relation

of the structure. The encoding of temporal formulae can then use the hasloop
predicate as a trigger to enforce paths accepted as models to be infinite, since it
would make trans(sk, sl) true for some l. The following proposition summarises
important properties of the models of |[M,k]|.

Proposition 1. Let M be a Kripke structure, and let I be a model of the set of
constraints |[M,k]|. Then for every 0 ≤ i, j, l ≤ k:

1. If i < j then I |= less(si, sj).
2. The induced k-path πI = s0 . . . sk is a finite path in M .
3. If I |= trans(sk, sl) then the induced k-path πl,I = s0 . . . sl−1(sl . . . sk)ω is an

infinite path in M .

The following two definitions give the translation of an LTL formula φ into a
predicate encoding following an approach similar to structural clause form trans-
lations: a new predicate symbol is first introduced to represent each subformula,
here denoted by Θφ(X) in Definition 8, and then a set of constraints, given in
Definition 9, are added to give Θφ(X) its intended meaning.

Definition 8. We define the symbolic representation of an LTL formula γ, a
predicate formula Θγ(X), as follows:

Θ>(X) = > Θ⊥(X) = ⊥
Θp(X) = p(X) Θ¬p(X) = ¬p(X)

Θψ∧φ(X) = Θψ(X) ∧Θφ(X) Θψ∨φ(X) = Θψ(X) ∨Θφ(X)
ΘXφ(X) = nextφ(X) ΘFφ(X) = eventlyφ(X)

ΘψWφ(X) = weakψ,φ(X)

where nextφ(X), eventlyφ(X) and weakψ,φ(X) are fresh new predicates, not al-
ready in PV , introduced as needed for subformulae of γ. ut

Definition 9. For every pair of LTL formulae ψ, φ and a value k ≥ 0, we define
the following sets of constraints:

ΦkXφ: x1: nextφ(X) ∧ trans(X,Y)→Θφ(Y)
x2: nextφ(sk)→ hasloop

7

ΦkFφ: f1: eventlyφ(X)→ eventφ(X, s0) ∨ · · · ∨ eventφ(X, sk)
f2: eventφ(X,Y)→Θφ(Y)
f3: eventφ(X,Y) ∧ less(Y,X)→ hasloop
f4: eventφ(X,Y) ∧ less(Y,X) ∧ trans(sk, L) ∧ less(Y, L)→⊥

ΦkψWφ: w1: weakψ,φ(X)→Θφ(X) ∨ xweakψ,φ(X)
w2: xweakψ,φ(X) ∧ trans(X,Y)→ weakψ,φ(Y)
w3: xweakψ,φ(X)→Θψ(X)
w4: xweakψ,φ(sk)→ hasloop

Again eventφ(X,Y) and xweakψ,φ(X) are fresh new predicates not in PV .
We finally introduce the set of structural definitions of an LTL formula γ

(with depth k), denoted by |[γ, k]|, as the union of the sets Φkφ for every temporal
subformula φ of the original γ. ut

Later in Proposition 2 we show how the models of such formulae relate to
the k-paths satisfying an LTL formula. We need first to introduce the concept of
a rolling function which will be used as a tool in the proof of such proposition.

Definition 10. Given a k-path π we define its rolling function δ, a function
defined for every 0 ≤ i < |π| and with range {0, . . . k}, as follows:

– If π is of the form s0 . . . sl−1(sl . . . sk)ω, then

δ(i) =

{
i i ≤ k

l + [(i− l) mod (k + 1− l)] otherwise .

– Otherwise, if π = s0 . . . sk, then δ(i) = i for every 0 ≤ i < |π|. ut

The rolling function is a notational convenience used to unfold an infinitechanged!
k-path π = s0 . . . sl−1(sl . . . sk)ω as the sequence π = sδ(0)sδ(1) . . . , without
explicitly showing the loop. We emphasise the fact that the rolling function is
defined only when 0 ≤ i < |π|; in particular, if π is finite, the function is not
defined for indices outside of the path. Also notice that, for both finite and
infinite paths, the rolling function acts as the identity for all i with 0 ≤ i ≤ k.
Moreover, for 0 ≤ i < |π|, it is always the case that si = sδ(i); in fact, the
following stronger result holds.

Lemma 2. Let π be a k-path, φ an LTL formula, i < |π| and δ the rolling
function of π. Then it follows that π |=i φ if and only if π |=δ(i) φ.

We can now prove one of the main propositions, which shows how from
models of the encoded formula, one can obtain a k-path in the given Kripke
structure that, moreover, satisfies the original LTL formula at a particular state.

Proposition 2. Let M be a Kripke structure, γ an LTL formula, and I a model
of the formula |[M,k]|∪|[γ, k]| with domain D = {s0, . . . , sk}. We define a path
π according to the following two cases:

8

1. If I |= trans(sk, sl), for some 0 ≤ l ≤ k, then let π = πl,I for any such l.
2. If I 6|= trans(sk, sl), for every 0 ≤ l ≤ k, then let π = πI .

Let i < |π|, and let δ be the rolling function of π. If I |= Θγ(sδ(i)) then π |=i γ.

The previous proposition shows that, under the given assumptions, if an
interpretation I |= Θφ(sδ(i)) then there is a path π, determined by I, such that
π |=i φ. Note, however, that the converse is not always true, e.g. I 6|= Θφ(sδ(i))
does not necessarily imply π 6|=i φ for the possible induced paths.

Additional constraints could be added to the set |[φ, k]| in order to make
the converse hold but, since we are mostly interested in satisfiability of the LTL
formulae, this is not required for the correctness of our main result. Whether
the addition of such constraints would be helpful for the solvers to find solutions
more quickly, is an interesting question for further research.

What we do need to show is that, if there is a path that satisfies an LTL
formula, we can also find an interpretation that satisfies its symbolic representa-
tion. The following definition shows how to build such interpretation and later,
in Proposition 3, we prove it serves the required purpose.

Definition 11. Let π be a k-path and δ its rolling function. We define an in-
terpretation Iπ with domain D = {s0, . . . , sk}, for every si, sj ∈ D and pair of
LTL formulae ψ, φ, as follows:

Iπ |= p(si) iff p ∈ si, for p ∈ V.
Iπ |= less(si, sj) iff i < j.
Iπ |= succ(si, sj) iff i+ 1 = j.
Iπ |= trans(si, sj) iff δ(i+ 1) = j.
Iπ |= hasloop iff π is an infinite path.
Iπ |= nextφ(si) iff π |=i Xφ.
Iπ |= eventlyφ(si) iff π |=i Fφ.
Iπ |= eventφ(si, sj) iff π |=j φ and there is a j′ ≥ i with δ(j′) = j.
Iπ |= weakψ,φ(si) iff π |=i ψWφ.
Iπ |= xweakψ,φ(si) iff π |=i ψWφ ∧ ¬φ. ut

Proposition 3. Let π be a k-path in a Kripke structure M , and δ its rolling
function. Also let γ be an arbitrary LTL formula, and let i < |π|.
1. Iπ |= Θγ(sδ(i)) iff π |=i γ,
2. Iπ |= |[M,k]| ∪ |[γ, k]|.

With this results being put in place we can now show, in Theorem 2, how the
problem of testing the satisfiability of an LTL formula in a Kripke structure can
be translated into the problem of checking satisfiability of predicate formulae.

Definition 12. Let M be a Kripke structure, φ an LTL formula and k ≥ 0. The
predicate encoding of M and φ (with depth k), denoted by |[M,φ, k]|, is defined
as the set of constraints |[M,k]| ∪ |[φ, k]| ∪ {Θφ(s0)}. ut

Theorem 2. Let φ be an LTL formula, and M a Kripke structure.

1. φ is satisfiable in M iff |[M,φ, k]| is satisfiable for some k ≥ 0.
2. φ is valid in M iff |[M,NNF(¬φ), k]| is unsatisfiable for every k ≥ 0.

9

3.1 Implicit bound encoding

As can be seen in Definition 9, the encoding just presented makes explicit use
of the bound k in order to build the symbolic representation of an LTL formula.
Notice that, in particular, a constraint of size O(k) is created for every subfor-
mula of the form Fφ of the property to be checked. In this section we present
an alternate encoding, which only uses the bound in an implicit way.

Definition 13. Given pair of LTL formulae ψ, φ, we define the following sets
of constraints:
Φ′Fφ: f1’: eventlyφ(X)→Θφ(X) ∨ xeventlyφ(X)

f2’: xeventlyφ(X) ∧ succ(X,Y)→ eventlyφ(Y)
f3’: xeventlyφ(X) ∧ last(X)→ hasloop
f4’: xeventlyφ(X) ∧ last(X) ∧ trans(X,Y)→ evently2φ(Y)

f5’: evently2φ(X)→Θφ(X) ∨ xevently2φ(X)
f6’: xevently2φ(X) ∧ succ(X,Y)→ evently2φ(Y)
f7’: xevently2φ(X) ∧ last(X)→⊥

The sets Φ′Xφ and Φ′ψWφ are identical to ΦkXφ and ΦkψWφ, except for the following
constraints which replace x2 and w4 respectively.
Φ′Xφ: x2’: nextφ(X) ∧ last(X)→ hasloop

Φ′ψWφ: w4’: xweakψ,φ(X) ∧ last(X)→ hasloop

We finally introduce the set of implicit structural definitions of an LTL for-
mula γ, denoted simply by |[γ]|, as the union of the sets Φ′φ for every temporal
subformula φ of the original γ. ut

Note that the newly defined sets Φ′φ, do not explicitly use the value of the
bound k anymore. We replaced the explicit references to sk with a predicate
last(X) which should be made true for the constant symbol representing the last
state. Moreover, since the size of Φ′Fφ is constant, the size of the encoding |[γ]|
is now linear with respect to the size of γ.

The k-paths that satisfy an LTL formula φ can therefore now be captured
with the set of constraints |[k]| ∪ {last(sk)} ∪ |[φ]| ∪ {Θφ(s0)}. This represen-
tation is convenient since it breaks the encoding in two independent parts, one
depending on the bound only and the other on the LTL formula only. Moreover
it has a size of O(n+ k) where n is the size of the original temporal formula.

A complete instance of the bounded model checking problem would be then
represented, analogous to Definition 12, as

|[M,φ, k]|∗ = |[M]| ∪ |[k]| ∪ {last(sk)} ∪ |[φ]| ∪ {Θφ(s0)}

and, for such set of constraints, the statement of Theorem 2 also holds.
This encoding is particularly useful when searching for counterexamples in anchanged!

incremental setting, since both the system description and the temporal formula
have to be encoded only once. Just the small set |[k]| ∪ {last(sk)} needs to
be updated while testing for increasing bounds. If using a model finder that
supports incremental solving features, then one only needs to add succ(sk, sk+1)
and replace last(sk) with last(sk+1).

10

3.2 Logarithmic encoding of states

As can be seen in the previous section, the only part of the translation where
there is an increase of size with respect to the input is in |[k]|, because of the
series of facts of the form succ(si, si+1) and the constraint

hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk) . (1)

This group of constraints, which is of size O(k), can be more compactly
encoded by representing the names of states in binary notation. For this we
introduce a pair of constant symbols {b0, b1} so that we can write, for example
when k = 24, the following definition for the succ predicate:

succ(X3, X2, X1, b0 , X3, X2, X1, b1)
succ(X3, X2, b0 , b1 , X3, X2, b1 , b0)
succ(X3, b0 , b1 , b1 , X3, b1 , b0 , b0)
succ(b0 , b1 , b1 , b1 , b1 , b0 , b0 , b0)

In general we only need w = dlog ke constraints, with a total size of O(log2 k).
On the other hand, the constraint (1) can be rewritten as:

hasloop→ loopafter(b0)
loopafter(X) ∧ last(Y)→ trans(Y ,X) ∨ xloopafter(X)
xloopafter(X) ∧ succ(X,Y)→ loopafter(Y)
xloopafter(X) ∧ last(X)→⊥

where b0 is a string of w symbols b0, X = Xw−1, . . . , X0 and similarly for Y .
One also has to replace everywhere else occurrences of s0 with b0, the constant

symbol sk with its binary representation (e.g. for k = 13 use b1, b1, b0, b1), and
variables such as X and Y with the corresponding X or Y . The resulting set of
constraints, which we denote by |[M,k, φ]|b, is of size O(n log k+ log2 k), where
n is the compound size of M and φ, and satisfies the statement of Theorem 2.

4 Encoding of the system description

Generating an instance of the bounded model checking problem requires three
parameters as input: a system description M , a temporal formula φ and a
bound k. In the previous section we showed how to encode an LTL formula
as a predicate formula (w.r.t. the bound), but we generally assumed that the
system (a Kripke structure M) was already symbolically described.

In this section we deal with how a system, which is originally given in some
industry standard format suitable to describe software/hardware components,
can be also be encoded in the form of a predicate formula. An advantage of using
a predicate rather than a propositional encoding is that important features for
component development, such as the ability to describe systems in a modular
and hierarchical way, can be directly represented in the target language. There

11

is no need, for example, to perform a flattening phase to create and instantiate
all modules of a system description before doing the actual encoding.

We will show now, by means of an example, how a system described in the changed!
smv language can be succinctly and naturally encoded within the effectively
propositional fragment. Although we would prefer to formally define the frag-
ment of smv considered here, the number of different smv variants and the lack
of documentation on the formal semantics in existing implementations made this
task particularly difficult. Anyway, the explanation of the ideas presented in this
section is always general enough so that they can be applied to other arbitrary
systems, not only the one in the example, and even implemented to be performed
in an automated way.

For our running example we consider a distributed mutual exclusion (DME)
circuit first described by Martin [8] and then made available in the smv format
with the distribution of the NuSMV model checker [3]. The system description
is fragmented in a number of modules, each being a separate unit specifying
how a section of the system works. The DME, for example, organises modules
in a hierarchical way: the most basic modules are gates which perform simple
logical operations, then a number of gate modules are replicated and assembled
together to form the module of a cell, finally a number of cells are also replicated
and linked together in the main module which represents the entire system.

4.1 Module variables

A module usually defines a number of variables and describe how their values
change in time. In the DME example, a typical gate module looks like:

module and−gate (in1 , in2)
var

out : boolean ;
assign

in i t (out) := 0 ;
next (out) := (in1 & in2) union out ;

This is a module named ‘and−gate’ which defines two boolean variables as
input (‘in1’ and ‘in2’) and an output boolean variable (‘out’). The initialisation
part causes the output of all ‘and−gate’ instances to hold the value zero (i.e.
false) when the system starts to execute. At each step the module nondetermin-
istically chooses to compute the logical and of its inputs and update the output,
or keep the output from the last clock cycle.1 Note that this is the model of
an asynchronous logic gate; fairness constraints (which can also be encoded as
LTL formulae) could be added to ensure, for example, that the gate eventually
computes the required value.

In the symbolic description we represent each of these variables with a pred-
icate symbol such as, in this particular example, and gate in1(I1, I2, X). The

1 The ‘union’ operator in smv effectively creates a set out of its two operands and
nondeterministically chooses an element of the set as the result of the expression.

12

variable name is prefixed with the module name so that variables of different
modules do not interfere with each other. Since, moreover, several instances of
the ‘and−gate’ can be created, the first arguments I1, I2 serve to distinguish
among such instances, the following section explains this in more detail. The
last argument X represents a time step within the execution trace. Using this
naming convention, the module can then be described as follows:

¬and gate out(I1, I2, s0)
trans(X,Y)→

(and gate out(I1, I2, Y)↔ and gate in1(I1, I2, X) ∧ and gate in2(I1, I2, X))
∨ (and gate out(I1, I2, Y)↔ and gate out(I1, I2, X))

Note that, although the original smv description distinguishes between inputs
and outputs of the module, our proposed encoding does not need to.

4.2 Submodel instances

Modules can also create named instances of other modules and specify how its
own variables and the variables of the its submodule instances relate to each
other. There is also one designated ‘main’ module, an instance of which repre-
sents the entire system to verify. One has to distinguish between the notions of a
module (the abstract description of a component) and its possibly many module
instances, which actually conform the complete system. In our running example,
the DME circuit, part of the definition of a cell module looks like:

module c e l l (l e f t , r i ght , token)
var

ack : boolean ;
c : and−gate (a . out , ! l e f t . ack) ;
d : and−gate (b . out , ! u . ack)
...

Here two submodule instances ‘c’ and ‘d’ are created, both instances of the
‘and−gate’ module. The elements ‘a, b: mutex half’ and ‘u: user’ are instances
of other modules also created within the cell, with definitions of other internal
variables such as ‘out’ and ‘ack’. The elements ‘ left ’ and ‘right’ are references
to other ‘ cell ’ instances, these are explained later in the following section.

Symbolically, we can describe the relations between the inputs and outputs
of these modules using the constraints:

and gate in1(I, c, X)↔mutex half out(I, a, X)
cell left(I, J)→ and gate in2(I, c, X)↔¬cell ack(J,X)

and gate in1(I, d, X)↔mutex half out(I, b, X)
and gate in2(I, d, X)↔¬user ack(I, u, X)

(2)

Here the variable I stands for a particular cell instance, the second argument of
the predicates is now filled in with the instance names of the different modules.

13

In general, if a module M1 creates instances of a module M2, we say that
M2 is a submodule of M1. The submodule relation must then create a directed
acyclic graph among the modules of a system; and the submodule depth of a
module is the length of the longest path that can reach it from the designated
‘main’ module. The depth of the ‘main’ module, for example, is always 0; and
the depth of a module is strictly less than the depth of its submodules.

In a module of depth d we will therefore use d+1 arguments in the predicates
that represent the module’s boolean variables. The last argument always denotes
time, and the interpretation of the other d arguments is the string of names that
represent each created instance in a chain of submodules. Consider for example
the ‘out’ variable of a module ‘some−gate’ which corresponds to an instance
with the fully qualified name of ‘main.sub1.sub2.sub3.sub4.out’; symbolically
we would represent such variable with the predicate

some gate out(sub1, sub2, sub3, sub4, X) .

Finally note that instances of the same module could be reached from the
main module by paths of different lengths.2. Consider for example a module of
depth d that creates an instance named ‘sub’ of another module of depth d′; if
a sequence of constant symbols m1, . . . ,md is used to identify an instance of the
first module, then the sequence of d′ constant symbols m1, . . . ,md, . . . , o, . . . , sub
—where a number of dummy constant symbols ‘o’ (unused anywhere else) serve
as padding to get the required length— is used to identify the second.

4.3 Module references

Another feature of the smv language is that modules can receive references to
other modules as parameters (e.g. ‘ left ’ and ‘right’ in the cell example). This
feature is encoded introducing a new predicate, c.f. cell left(I, J) in (2), that
establishes these relation between the two modules. References are used in our
running example to communicate three different cells ‘e−1’, ‘e−2’ and ‘e−3’:

module main
var

e−3: process c e l l (e−1,e−2 ,1) ;
...

which is encoded as: {cell left(e 3, e 1), cell right(e 3, e 2), cell token(e 3, X)}. In
general, the reference from a ‘module1’ to another ‘module2’ is encoded as:

module1 link(I, J)→module1 var1(I,X)↔module2 var2(J,X)

where I and J are sequences of variables of appropriate lengths according to the
depths of each module, and ‘link’ is the local name which the first module uses
to reference the second. Compare this with the relevant constraint in (2).
2 Consider a module ‘m1’ that creates instances of ‘m2’ and ‘m3’, but ‘m2’ also creates

instances of ‘m3’. As long as the submodule relation is acyclic, this is possible.

14

4.4 Enumerated types

Finally, another common feature of component description languages is the use of
enumerated types, e.g. ‘colour: {red, green, blue}’. Using standard encodings,
such variables are represented with an additional argument to denote the value
currently hold. Also, a number of constraints have to be added in order to ensure
that one (and only one) value of an enumerated variable holds at a time.

5 Conclusions and future work

In this paper we presented different strategies to encode instances of the bounded
model checking problem as a predicate formula in the Bernays-Schönfinkel class.
We showed a translation which, given a linear temporal logic formula and a
bound k, produces a set of constraints whose models represent all the possible
paths (of bounded length k) which satisfy the given property. We also discussed
how to further improve this translation and generate an output of size O(n+ k)
where n is the size of the input LTL formula. The translation is also further
improved by using a binary representation to denote the states.

We then proceeded to show how to efficiently describe transition systems as
effectively propositional formulae, and demonstrated how many features com-
monly found in software/hardware description languages are succinctly and nat-
urally encoded within our target language. Most significantly, modular and hier-
archical system descriptions are directly encoded without a significant increase
in the size; unlike propositional encodings where a preliminary, and potentially
exponential, flattening phase needs to be applied to the system description.

We are also currently working in the development of a tool that —taking as
input a smv description, an LTL formula, and a bound k— produces an EPR
formula in the tptp format suitable for use with effectively propositional and
first-order reasoners.3 Directions for future work include the extension to more
general forms of temporal logics (such as µTL), the inclusion of more features to
describe systems (such as arrays and arithmetic) and the application of similar
encoding techniques to other suitable application domains.

References

[1] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In TACAS ’99, volume 1579 of LNCS, 1999.

[2] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear
encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5:5), 2006.

[3] A. Cimatti, E. Clarke, F. Giunchiglia, M. Pistore, Marco Roveri, R. Sebas-
tiani, and Armando Tacchella. NuSMV 2: An opensource tool for symbolic

3 The developed tool and a number of generated benchmarks are publicly available at
http://www.cs.man.ac.uk/~navarroj/eprbmc.

15

model checking. In CAV’02, volume 2404 of Lecture Notes in Computer
Science, pages 359–364. Springer, 2002.

[4] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M.Y. Vardi. Benefits of bounded model checking at an industrial setting.
In CAV’01, volume 2102 of LNCS, pages 436–453. Springer, 2001.

[5] Martin Davis, George Logemann, and Dondald Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5:394–397, 1962.

[6] Markus Jehle, Jan Johannsen, Martin Lange, and Nicolas Rachinsky.
Bounded model checking for all regular properties. Electr. Notes Theor.
Comput. Sci., 144(1):3–18, 2006.

[7] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple bounded LTL
model checking. In FMCAD’04, volume 3312 of LNCS, pages 186–200.
Springer, 2004.

[8] Alain J. Martin. The design of a self-timed circuit for distributed mutual ex-
clusion. In H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference
on Very Large Scale Integration, 1985.

[9] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explo-
sion Problem. Kluwer Academic Publishers, 1993.

[10] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent ad-
vances in SAT-based formal verification. International Journal on Software
Tools for Technology Transfer (STTT), 7:156–173, April 2005.

[11] O. Strichman. Accelerating bounded model checking for safety properties.
Formal Methods in System Design, 24(1):5–24, 2004.

[12] G. Sutcliffe and C. Suttner. The state of casc. AI Communications, 19(1):
35–48, 2006.

[13] G. Sutcliffe and C.B. Suttner. The TPTP problem library: CNF release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

16

