Electronic Notes in Theoretical Computer Science 67 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume67.html pages

A logical approach to A-Prolog

Mauricio Osorio®, Juan Antonio Navarro? and José Arrazola

Centro de Investigacion en Tecnologias
de Informacion y Automatizacion (CENTIA)
Universidad de las Américas
Puebla, México

Abstract

It has been recently provided a characterization of Answer Sets by intuitionistic
logic as follows: a literal is entailed by a program in the stable model semantics if
and only if it belongs to every intuitionistically complete and consistent extension
of the program formed by adding only negated literals. We show that if we replace
intuitionistic logic by any si-logic the result still holds.

Key words: answer sets, A-prolog, stable semantics

1 Introduction

A-Prolog (Stable Logic Programming [2] or Answer Set Programming) is the
realization of much theoretical work on Nonmonotonic Reasoning and Al ap-
plications of Logic Programming (LP) in the last 15 years. The main syntactic
restriction needed in this paradigm is to eliminate function symbols from the
language. This is because using infinite domains the stable models are no
longer necessarily recursively enumerable [5]. The two most well known sys-
tems that compute Answer sets are DLVE] and SMODEL@.

It has been recently provided a characterization of Answer Sets by intu-
itionistic logic as follows: a literal is entailed by a program in the stable model
semantics if and only if it belongs to every intuitionistically complete and con-
sistent extension of the program formed by adding only negated literals. This
result is a generalization of a recent result given by Pearce from disjunctive
programs to augmented programs (programs with nested expressions permit-
ted in the head and body of rules). Moreover, Pearce only considered adding

Email: josorio®mail.udlap.mx

Email: ma108907@mail.udlap.mx
http://www.dbai.tuwien.ac.at/proj/dlv/
http://saturn.hut.fi/pub/smodels/

W N =

(©2002 Published by Elsevier Science B. V.

mailto:josorio@mail.udlap.mx
mailto:ma108907@mail.udlap.mx
http://www.dbai.tuwien.ac.at/proj/dlv/
http://saturn.hut.fi/pub/smodels/

OSORIO, NAVARRO AND ARRAZOLA

negated atoms [I0]. This logical approach provides foundations to define the
notion of nonmonotonic inference of any propositional theory (using the stan-
dard connectives {—, A, V,—}) in terms of a monotonic logic (namely intu-
itionistic logic). The propose interpretation would be the following: Given
a theory T, its knowledge is understood as the formulas F' such that F' is
derived in 7" using intuitionistic logic. This makes sense, since in intuitionistic
logic according to Brouwer, A is identified with “I know A”. An agent whose
knowledge base is the theory T believes F' if and only if F' belongs to every in-
tuitionistically complete and consistent extension of T by adding only negated
literals. Take for instance: —a — b. The agent knows —a — b, =b — ——a and
so on. The agent does not know however a. Nevertheless, one believes more
than one knows. But a cautious agent must have his/her beliefs consistent to
his/her knowledge. This agent will then assume negated literals to be able
to infer more information. Thus, in our example, our agent will believe —a
and so he/she can conclude b. It also makes sense that a cautious agent will
believe —a or ——a rather than to believe a (recall that a is not equivalent to
——a in intuitionistic logic). This view seems to agree with a point of view
by Kowalski, namely “that Logic and LP need to be put into place: Logic
within the thinking component of the observation-thought-action cycle of a
single agent, and LP within the belief component of thought” [3].

We show in this paper that if we replace intuitionistic logic by any si-logic
we can also characterize Answer Sets. Pearce already noticed this, but again,
only for disjunctive programs and by adding negated atoms. Our result applies
to every propositional theory.

In this paper we restrict our attention to finite propositional theories; the
semantics can be extended to theories with variables by grounding[®] This is
a standard procedure in A-Prolog. We assume that the reader has some basic
background in logic and A-Prolog.

Our paper is structured as follows: in section [2| we present the syntax of
general clauses and define several types of programs. In section [3| we present
the logical framework for A-Prolog based on si-logics. In section 4] we present
our main result, theorem [£.7 In section [5] we present our conclusions.

2 Background

Some basic concepts and definitions will be explained in this section.

2.1 Propositional Logic

The language of propositional logic has an alphabet consisting of

5 Without function symbols to ensure that a ground program would be finite.

2

OSORIO, NAVARRO AND ARRAZOLA

propositional symbols: pg, p1, ... connectives: A,V,—, L
auxiliary symbols: ().

Where A, V, « are 2-place connectives and L is a 0-place connective. Propo-
sitional symbols are also called atoms or atomic propositions. Formulas are
defined as usual in logic. The formula = F is introduced as an abbreviation of
1« F,and F = G as an abbreviation of (G «+ F) A (F' « G). The formula
F « @ is just another way of writing the formula G — F'. A theory is a finite
set of formulas.

A signature L is a finite set of propositional symbols. If F' is a formula then
the signature of I, denoted as Lp, is the set of propositional symbols that
occur in F. A literal is either an atom a (a positive literal) or the negation
of an atom —a (a negative literal). A negated literal is the negation sign —
followed by any literal, i.e. —a or =—a. Let ©® denote a fixed connective in
{A,V}. Let F be a formula of the form ly ®ly ® --- ® [, where each [; is a
literal, we denote by Lit(F') the set of literals {l1,ls,...,l,}. Given a set of
formulas F, we define =F = {=F | F' € F}. Also, for a finite set of formulas
F={F,...,F,},wedefine \F=F A---ANF,and \| F=F,V---VF,. If
F = () then we define AF =T and \/ F = L, where T abbreviates L « L.
We write [3/p] to denote the substitution operator. We write «[3/p] for the
formula obtained by replacing all occurrences of the atom p in o by . See
[T1] for its formal definition.

An augmented clause is a formula of the form H « B where H and B
are formulas that do not contain the — connective. An augmented program
is then a finite set of augmented clauses. A disjunctive clause is a formula
of the form H « B where H is ether an atom or a disjunction of atoms. B
could be empty and then the clause is called a fact and can be written just
by H. A disjunctive program is then a finite set of disjunctive clauses. Note
that a disjunctive program is a particular kind of augmented program. Also
any augmented program is a particular kind of theory.

Even thought a theory P is a finite set of formulas, it can also be considered
as a formula (i.e. the conjunction of all formulas in the theory A 7"). We will
use this convention freely several times in the paper.

2.2 Answer sets

We now define the basic background for Answer sets (or equivalently stable
models). This material is taken from [4] with minor modifications since we do
not consider classical negation.

We say that a formula contains the negation-as-failure operator — if it
contains the subformula | < F and F' is not 1. This definition extends to
programs in a similar way. The formulas and programs that do not contain
the negation-as-failure operator will be called basic. Elementary formulas are
atoms as well as the connectives | and T [4].

3

OSORIO, NAVARRO AND ARRAZOLA

Definition 2.1 ([4]) We define when a set of atoms X satisfies a basic formula
F, denoted by X | F, recursively as follows:

for elementary F, X E Fif Fe X or F=T.
XEFAGHXEFand X | G.
XEFVGiHXEFor X EG.

Definition 2.2 ([4]) Let P be a basic program. A set of atoms X is closed
under P if, for every clause H «— B € P, X |= H whenever X = B.

Definition 2.3 ([4]) Let X be a set of atoms and P a basic program. X is
called answer set for P if X is minimal among the sets of atoms closed under
P.

Definition 2.4 ([4]) The reduct of an augmented formula or program, relative
to a set of atoms X, is defined recursively as follows:

for elementary F, FX = F.

(FAG)X = FXANGX.

(FVG)YX =FXvGX.

(~F)X = Lif X = F¥ and (=F)* = T otherwise.
(H — B)X = HX — BX,
PX={(H <~ B)X | H+— B € P}.

Definition 2.5 (Answer set for a program [4]) Let P be an augmented pro-
gram and X a set of atoms. X is called an answer set for P if it is an answer
set for the reduct PX.

Example 2.6 Consider the following program

P: a+« —a.

—b < cVb.
If we take X = {a} then the reduct is
PX: a«T.
T «—cVb.

Here it is easy to verify {a} is closed under this reduct and, since the empty
set () is not, it is the minimal set with this property. Then it follows {a} is an
answer set of P. However note that the empty set () is also an answer set of
P, since it produces a different reduct and is closed under it.

2.3 Basic notions on Intermediate Logics

We introduce some intermediate logics. A more complete background on these
logics can be found in [12].

OSORIO, NAVARRO AND ARRAZOLA

2.3.1 Axiomatic Logics.
An important logic, which has been a great area of interest in last years, is
Intuitionistic logic. This logic is based on the concept of proof, rather than
truth in classical logic.

A Hilbert type axiomatization of Intuitionistic logic (I) can be defined in
term of the ten axiom schemes:

(i) A— (B— A)

(i) (A= (B—=0C) = (A= B)—(A—=0))
(iii)) ANB— A

(iv) ANB— B

(v) A= (B — (AAB))

(vi) A— (AV B)

(vii) B — (AV B)
(viii) (A—-C)—=(B—C)—(AvB—())
(ix) (A— B) = (A — —~B) — 2A)

(x) ~A— (A— B)

Modus Ponens is the only inference rule: If we have A and A — B then we
can deduce B. Note that if we add (-A — A) — A we obtain classical logic.

Godel observed that there are infinitely many logics stronger (or equal)
than intuitionistic logic and weaker than classical logic ([12]). Those logics
are sometimes called intermediate or super-intuitionistic logics (si-logics for
short). We assume that intuitionistic logic is included in the intermediate
logics. For an axiomatic logic X, defined similarly as above, we say that a
formula A is provable in X, denoted as Fx A, if using the defined set of atoms
and corresponding inference rules it is possible to obtain the formula A. Also,
if I is a set of formulas then I' Fx A has its usual meaning.

Another important axiomatic logic is Jankov logic (Jn), which is obtained
by adding to the set of intuitionistic axioms the new axiom scheme AV ——A.

This axiom, that characterizes Jankov logic, is also called the weak law of
excluded middle.

2.3.2 Multivalued Logics.

Logics can also be defined in terms of truth values and evaluation functions.
Godel defined the multivalued logics G;, with values in {0,1,...,i — 1} where
T =i — 1 is the designated value, with the following evaluation function f:

f(B—A)=Tif f(A) < f(B), and f(B « A) = f(B) otherwise.
f(AV B) = max(f(A), f(B))-

J(AN B) = min(f(A), f(B)).

F(=A) = 0if f(A) > 0 and f(=A) = T if f(A) =

f(T) =T and f(L) =

OSORIO, NAVARRO AND ARRAZOLA

An interpretation in such multivalued logics is a function that assigns to
each atom in £ a value from {0, 1,...,7}. The interpretation of an arbitrary
formula is obtained propagating the evaluation of each connective as defined
above. For a given interpretation I and a formula F' we say that I is a model
of F' (or I models F) it I(F) = 7. Of course, we extend this definition as
usual to a theory (set of formulas). A tautology is a formula that evaluates to
T for every possible interpretation.

JFrom these logics we will find useful Gj logic. Note that G is classical
propositional logic. An axiomatization of G3 (also called Sm, or HT) can be
defined as the si-logic whose axioms are I U {axgs}, where axgs is the axiom
scheme:

(=q = p) = (((p = q) = p) = p)
It is known that G is the strongest si-logic [12].

2.3.3 General Definitions

Some general concepts can be defined on any logic without depending on their
nature. For an axiomatic theory, like I, we also use its name to denote the set
of axioms that define it. We say that a theory T is consistent with respect
to logic X iff there is no formula A such that T'Fx A and T Fx —=A. We say
that a theory T is (literal) complete w.r.t. logic X iff, for all a € L7, we have
either ' Fx a or T' Fx —a. Two programs P, and P, are equivalent under logic
X, denoted as P, =x P, iff P, Fx A for every A € P, and P, Fx A for every
AeP.

For a given set of atoms M and a program P we will write P Fx M to
abbreviate P Fx a for all ¢« € M and P Hx M to denote the fact that P is
consistent, complete (w.r.t. logic X) and P Fx M. If one of the symbols Fx
or H-x lacks of the subscript X we assume that it refers to the intuitionistic
logic I.

We will also use the following basic well-known result very often.

Lemma 2.7 ([11]) Let T be any theory (set of formulas), and let F,G be a
pair of equivalent formulas (under any si-logic X). Any theory obtained from
T by replacing some occurrences of F by G is equivalent to T (under X).

Lemma 2.8 Let T}, T, be two theories and A a formula such that Lpiay N
Lr, =0, Ty is a set of negative literals, and Ty UTy by A. Then Ty by A.

Definition 2.9 ([6]) The set P of positive formulas is the smallest set con-
taining all formulas that do not contain the | connective. The set N2 of
two-negated formulas is the smallest set X with the properties:

(i) If a is an atom then (—-—a) € X.
(ii) If A€ X then (—lﬁA) e X.
(iii) If A, B € X then (AA B) € X.

OSORIO, NAVARRO AND ARRAZOLA

(iv) If A € X and B is any formula then (AV B),(BV A), (A — B) € X.

For a given set of formulas I', the positive subset of I'; denoted as Pos(I'), is
the set 'N P.

Proposition 2.10 ([6]) Let I' be a subset of P UN2, and let A € P be a
positive formula. If Ty A then Pos(T') b1 A.

3 Logical Foundations of A-Prolog based on si-logics

In this section we present several results from [7]. One of them provides a
characterization of stable models of augmented programs in terms of intu-
itionistic logic. Based on this result, the authors of [7] propose a definition of
stable models for general propositional theories.

Pearce showed the following: a formula is entailed by a disjunctive program
in the stable model semantics if and only if it belongs to every intuitionisti-
cally complete and consistent extension of the program formed by adding only
negated atoms. Pearce also showed that his result also holds if intuitionistic
logic is replaced by any si-logic.

Lemma 3.1 ([10]) Let P be a disjunctive program. M is a stable model of
P if and only if PU—-M H- M.

However, Pearce’s result does not hold if we want to consider free programs.
Take P := aV —a. Note that P has two stable models (namely {a} and @) but
only one consistent and complete extension of P obtained adding only negated
atoms, namely {—a} (which corresponds to @)). In our approach we can get
the desired effect (with respect to [4]) if we allow ourselves to add not just
negated atoms, but negated literals in general. We can add —a to obtain the
) model (as Pearce does), but we can also add ——a to obtain the {a} model
(since =—a,a V —a by a).

Theorem 3.2 ([7]) Let P be an augmented program. M is a stable model of
P if and only of PU—-M U—-~—=M H-1 M.

Thanks to this characterization of stable models, it makes sense to propose
a definition of the stable semantics of any propositional program P, based on
intuitionistic logic, as follows:

Definition 3.3 ([7]) Let P be any propositional theory. We define M to be a
stable model of P based on the si-logic X if and only if PU-M U—--M H-; M.

We show in this paper however, that the stable semantics is invariant under
any si-logic. This is the main result of our paper and it will be proved in the
next section. Pearce noticed this same result but only for the subclass of
disjunctive programs [10].

OSORIO, NAVARRO AND ARRAZOLA

3.1 Reducing a theory

In this section we will define some reductions that can be applied to free
programs in order to simplify them. The notion of reductions and/or trans-
formations has several applications in Logic Programming; see for instance
[9/T]. Our set of reductions will be used later as a theoretical tool in the proof
of theorem [4.7 Some properties of these reductions will be studied.

Definition 3.4 For a formula «, we define its reduction with respect to L by
replacing each subformula of the form[®}
(i) aV Lor LVaby a.
(i) aVTor TVabyT.
(iii) a AT or T Aa by a.
(iv) aAnLor LAaby L.
(V) a— Tor L —abyT.
(vi) T — a by a.
(vii) (e = L) —1)—1)bya— L.
until no more reductions could be applied. This definition is extended to

programs as usual: apply the reduction to each formula contained in the
program.

Definition 3.5 (Negative reduction [§]) Let P be a theory and L, a set of
negative literals. We define P’ := redul(P,L,) as the theory obtained as
follows: Replace every occurrence of an atom a in P by L if —a € L,. Call the
resulting theory P”. Then, reduce P” with respect to L to obtain the final
theory P’.

Definition 3.6 (Negative2 reduction [§]) Let P be a theory and L, a set of
negated negative literals. We define P, := {redu2s(a, L,) : a € P}, where
redu2; applied over formulas is defined by recursion as follows:

(i) for an atom a, redu2s(a, L,) = a.
(ii) for a formula @ — L, redu2f(oc — L, L,) is the formula obtained by
replacing every occurrence of an atom a in o — L by T if =—a € L,.

(iii) For a formula a ® 3, where ® € {V, A, —}, redu2y is defined recursively
as redu2s(a © 3, L,) = redu2s(«, L,) © redu2¢(3, L,). We assume that
if © is — then [is not L.

Then, reduce P; with respect to L to obtain the theory P,. Finally, define
redu2(P,L,) = P, \ {a € Py | Fra}.

Example 3.7 The following example illustrates our definitions negative and
negative2 reduction. We will consider L, = {=b}, L;, = {—=—a,~~c}, P’ =
reduy (P, Ly,), and P" = reduy(P, L}):

6 Recall that T is an abbreviation for L — 1.
8

OSORIO, NAVARRO AND ARRAZOLA

P: aVec«— —b —c. P: aVc+— —ec P’ a+c.
1L« bc 1L~ 1.
a <« (0b—c). a <« c.

Lemma 3.8 ([8]) Let P be a theory and L, a set of negative literals, then
redul (P, L,) U L, =1 PUL, and L1, N Lyequip,r,) = 0.

Proof. Without lost of generality it suffices to prove the case when P consists
of just one formula. This proof is done by a straightforward induction on the
size of the formula. u

Lemma 3.9 ([8]) Let P be a theory and L, a set of negated literals, then
redu2(P, L,) U L, =1 PU L,.

Proof. Without lost of generality it suffices to prove the redu2; transforma-
tion. This proof is done by a straightforward induction on the size of the
formula. The key point to observe is the second case, namely when the for-
mula is of the form: o — L. Here, provability in classical and intuitionistic
logic corresponds and that explains why our substitution is correct. O

Definition 3.10 (Eqg-reduction) Let P be a theory and a be any atom. We
define P’ := redFq,(P) as the theory obtained as follows: Replace every
occurrence of every atom x in P by a. Call the resulting theory P”. Then,
reduce P” with respect to L to obtain the final theory P’.

4 Main Result

Consider the definition of stable models for propositional theories given in
last section (definition [3.3). Our main result is that: a literal is entailed by a
program in the stable model semantics if and only if it belongs to every com-
plete and consistent extension of the program formed by adding only negated
literals, where the background logic is any si-logic. The formal statement is
given in theorem [4.7]

Definition 4.1 Let M be any set of atoms, then we write Eqy; to denote the
set {a=b:a,be M}.

Lemma 4.2 Let P be a positive consistent theory such that M := Lp = {a}.
Then P k¢ a implies that P Fy a.

Proof. First, replace every subformula of the form”|
(i) avTor TVaby T.

(ii) a AT or T Aa by a.

(iii) «a = T by T.

(iv) T — a by a.

7 Recall that T is an abbreviation for L — 1.
9

OSORIO, NAVARRO AND ARRAZOLA

(V) aVaoraAaby a.
(Vi) a > aby T.

until no more reductions could be applied. Notice that our transformations
preserve logical equivalence (under any si-logic) and that the reduced formula
must be either a or T. However, since P F¢ a, the case T is excluded. Thus,
P is intuitionistically equivalent to a, and the result follows immediately. O

Lemma 4.3 Let P be a positive consistent theory such that M = Lp and
a € M. Then Ptc M implies that redEq,(P) F¢ a.

Proof. Suppose P ¢ M. Then P k¢ Eqy. But Eqy Fe P = redEq,(P).
Thus Eqy U redEq,(P) ¢ a. Since P is consistent and Fqy U {—a} is
consistent, then redEq,(P) F¢ a, as desired. O

Lemma 4.4 Let P be a positive consistent theory such that M := Lp. Then
P Fc M implies that Py M.

Proof. The proof is by induction on the number of elements in M. If M
has one element the result follows by lemma [4.2l Now suppose that M has
n + 1 elements and that P F¢ M. Then P8 k¢ M6, where 6 := [T /al.
So, PO ¢ M6\ {T}. By inductive hypothesis P F; MO\ {T}. Thus,
PO 1 M. Hence, PO 1 b, for all b € M6. Thus, PO U {a} i b, for all
be M. So, PU{a} k1 b, for all b € M. Then Pty a — b, for all b € M.
Since a is arbitrary, P 1 b — a, for all a,b € M. Thus P 1 Eqy. Note
that Eqy b1 P = redEq,(P), where a is any fixed atom in M. Therefore
Pty redEq,(P). Then, by lemma , redEq,(P) ¢ a. Thus, by lemma ,
redEq,(P) k1 a. Finally, by transitivity, Py a. O

Proposition 4.5 Let P be any theory such that M C Lp. Then P U ~M U
-~ MH M iff PU-MU-—-MHqg, M

Proof. Without lost of generality it suffices to prove that if P U ~M UM
is consistent and P U-~-M U —-—-M Fqg, M then PU-M U--M - M.
Suppose P U ~MU--M Fa, M.

Suppose in addition that a Hilbert-type proof used the set AXg3 of instances
of axiom aTGy to prove the result. We can assume that £4 Xoy © Lp.

Then P U ﬂM U—--MUAXgz 1 M. .
By lemma (3.8, P; U U—-MU-=MU AX1gs b1 M, where P := redul(P, M
and AXl(;g = redul(Ang,—'M) Moreover Lp, = M. By lemma [2
PLU-~—-MUAX1g3 b1 M. By lemma 3.9, P, U—-~—M UAX2qg3 1 M, where
Py := redu2(Py,——M) and AX2q3 := redu2(AX1gs, ~—=M). Moreover Py U
AX?2q3 is a set of positive formulas. Thus, by lemma [2.10],

P, U AX2q3 1 M. In addition, due to the reductions, is easy to verify that
AX2q3 is a set of classical tautological instances.

Thus Pg Feo M. Recall that Lp, = M. By lemma @ P2 Fr M. Thus
PyU-MU-==M F M. But P,U~MU--M = PU-MU--M, since

10

OSORIO, NAVARRO AND ARRAZOLA

Py = redu2(redul (P, —JTJ), —=M). Hence, PU-MU~=M F{ M as desired.0

Theorem 4.6 Let P be any program and let X, Y be two si-logics. PU-MU
=M Hx M iff PU-MU—-—-MH~y M.

Proof. It suffices to observe the following: P U ~M U ——M Fx M implies
PU-MU--M tFg, M (because G5 is the strongest si-logic). Therefore
PU-MU--M M (by proposition. Therefore PU =M U——=M vy M
(because [is the weakest si-logic). O

Our main theorem follows immediately from previous result:

Theorem 4.7 Let P be any program. M is a stable model of P if and only
if PU-M U—--M H-x M, where X is any si-logic.

5 Conclusions

We showed that Answer sets can be characterized by X complete and consis-
tent extension of the program formed by adding only negated literals, where
X is any si-logic. This paper shows many connections between answer set
programming and si-logics that opens a new line of research. Our ultimate

goal is to provide new evidence on the usefulness of si-logics as a framework
for A-Prolog.

References

[1] Dix, J., M. Osorio and C. Zepeda, A general theory of confluent rewriting
systems for logic programming and its applications, Annals of Pure and Applied
Logic 108 (2001), pp. 153-188.

[2] Gelfond, M. and V. Lifschitz, The stable model semantics for logic programming,
in: R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming
(1988), pp. 1070-1080.

[3] Kowalski, R., Is logic really dead or just sleeping, in: Proceedings of the 17th
ICLP, 2001, pp. 2-3.

[4] Lifschitz, V., L. R. Tang and H. Turner, Nested expressions in logic programs,
Annals of Mathematics and Artificial Intelligence 25 (1999), pp. 369-389.

[5] Marek, V. B. and J. B. Remmel, On the foundations of answer set programming,
in: Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning (2001), pp. 124-131.

[6] Osorio, M., J. A. Navarro and J. Arrazola, Equivalence in answer set
programming, in: A. Pettorossi, editor, LOPSTR’01: Logic-Based Program
Synthesis and Transformation, Paphos, Cyprus, 2001, pp. 18-28.

11

OSORIO, NAVARRO AND ARRAZOLA
[7] Osorio, M., J. A. Navarro and J. Arrazola, Applications of intermediate logics
in ASP (2002), submitted to TCS.

[8] Osorio, M., J. A. Navarro and J. Arrazola, Debugging in A-Prolog: A logical
approach (2002), accepted at ICLP as a poster paper.

[9] Osorio, M., J. C. Nieves and C. Giannella, Useful transformation in answer
set programming, in: Answer Set Programming: Towards Efficient and Scalable
Knowledge Representation and Reasoning (2001), pp. 146-152.

[10] Pearce, D., Stable inference as intuitionistic validity, Logic Programming 38
(1999), pp. 79-91.

[11] van Dalen, D., “Logic and Structure,” Springer, Berlin, 1980, second edition.

[12] Zakharyaschev, M., F. Wolter and A. Chagrov, Advanced modal logic, in:
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic 3,
Kluwer Academic Publishers, 2001, second edition.

12

	Introduction
	Background
	Propositional Logic
	Answer sets
	Basic notions on Intermediate Logics

	Logical Foundations of A-Prolog based on si-logics
	Reducing a theory

	Main Result
	Conclusions
	References

