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Superactivation is the property that two channels with zero quantum capacity can be used together to

yield a positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent

channels, none of which can simulate each other. We also consider the case where one of two zero-

capacity channels is applied, but the sender is ignorant of which one is applied. We find examples where

the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we

show that the effect of superactivation is rather generic by providing an example of superactivation using

the depolarizing channel.
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A quantum channel is any physical process which can be
applied to a quantum system. There is an input to the
channel, and we are interested in how much information
remains at the output. Some channels are so noisy that no
quantum information can be reliably transmitted through
them—error correction becomes impossible and one can-
not send a quantum system through the channel faithfully.
We say that such channels have zero capacity. In classical
information theory, zero-capacity channels are not inter-
esting, because they only include the case where there is no
correlation between the input and output. However, some
zero-capacity quantum channels have surprising proper-
ties: for example, they can be used to share a private key
[1,2], and two zero-capacity channels can be combined in
parallel to reliably send quantum states, a situation that is
impossible classically [3].

The ability to send quantum information down two
channels which have zero capacity is called superactiva-
tion, and it is an important phenomenon which suggests
that quantum channels are radically different from classical
ones. For classical channels, we can quantify a channel by
its capacity, while the phenomena of superactivation means
that for a quantum channel the capacity does not ade-
quately characterize the channel, since the utility of the
channel depends on what other channels are also available.
One hopes that a greater understanding of superactivation
will enable progress to be made in understanding the
quantum capacity, something made difficult because we
still do not have an adequate formula for it. Additionally,
there appear to be strong links between superactivation and
privacy [4,5], and these are not yet properly understood.

Despite the importance of superactivation, only one
example is known [3]: one of the channels is a symmetric
channel, meaning that the quantum state of the output and
the environment is symmetric under exchange. This chan-
nel cannot be used for quantum communication because its
symmetry implies that if this channel had positive quantum
capacity it would violate the no-cloning theorem [6]. An

example is the 50% erasure channel, denoted as N 0:5
e ,

which faithfully transmits the input state half of the time
and outputs an erasure flag in the rest of the cases. The only
known protocol for superactivation involved using the 50%
erasure channel. The second channel is one which pro-
duces a private key, but cannot be used to send quantum
information [1]. Such a channel is known to have zero
capacity because it has a positive partial transpose (PPT)
[7], which implies that it has zero capacity [8].
It was also shown in [3] that a convex combination of

‘‘flagged’’ channels,

N ¼ �N �ðdÞ � j0ih0jB þ ð1� �ÞN 0:5
e � j1ih1jB; (1)

has positive quantum capacity for a particular private
channel N �ðdÞ and for a very small amount of mixing

(� ¼ 0:0041).
It is natural to ask about the generality of this phenome-

non. First, do there exist communication protocols that
allow for strong nonconvexity of quantum capacity, in
the sense that � can have a large range? Indeed, we will
find here that one can achieve positive capacity for any 0<
�< 1. This surprising result implies that a generic mixing
of the zero-capacity channels during the transmission will,
nevertheless, increase the quantum capacity. In fact, we
find situations where, counterintuitively, the more noise,
the greater the lower bound for the capacity given by the
so-called coherent information. A second question we
address is, what types of channels can be superactivated?
Since there are very limited techniques to show a channel
has zero capacity, this is a difficult problem. It was not
presently known whether this startling effect can be gen-
eralized to any channels other thanN 0:5

e . Here we find that
superactivation is possible for a large class of inequivalent
and generic channels (in the sense that they cannot simu-
late each other). This includes erasure channels with any
probability p 2 ½12 ; 1Þ of erasure, as well as the common

depolarizing channel [9]. Third, we are interested in
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whether superactivation is robust against noise or can only
be demonstrated using perfectly noiseless resources. This
is particularly important in lieu of proposed experiments to
test this effect [10]. We answer this question affirmatively.

It is of course a basic question in quantum information
theory to quantify the ability of quantum channels to trans-
mit quantum states faithfully. The former is described
mathematically as a completely positive trace preserving
mapN :A ! B from density matrices on input system A to
density matrices on an output system B. The performance
of a quantum channel for noiseless quantum communica-
tion is characterized by its quantum capacityQðN Þ, which
is the maximum achievable rate for quantum communica-
tion. Analogously, QðN Þ quantifies the amount of pure
state entanglement that can be transmitted through N .

The quantum capacity is known to be lower bounded by
the coherent information [11–13]:

Q ðN Þ � IcðAiBÞ :¼ max
�

½SðBÞ� � SðEÞ��; (2)

where the von Neumann entropies are evaluated on �BE ¼
U�Uy, with U:A � BE the isometry associated to the
channel N as follows: N ð�Þ ¼ trEðU�UyÞ. The first
family of zero-capacity channels we will consider, denoted
asN �ðdÞ , produce bound entangled states—states that need

pure state entanglement to create them, but from which no
pure state entanglement can be extracted [14]. Such states,
despite being useless for transmission of quantum infor-
mation, may contain secrecy [1]. Here we takeN �ðdÞ to be

such a channel which produces bound entangled states that
contain secrecy and, in particular, ‘‘private bits.’’

Private bits and coherent information.—Quantum states
that contain d bits of secrecy are called private dits, pdits,
or twisted ebits [1,15] and have the generic form

�ðdÞ ¼ UPþ
AB � �A0B0Uy; (3)

where U ¼ Pd�1
i;j¼0 jijihijjAB �Uij is a controlled unitary

operation termed twisting (with arbitrary unitaries Uij),

Pþ
AB is the projector onto a d dimensional maximally en-

tangled state �þ
AB ¼ 1ffiffi

d
p Pd�1

i¼0 jiiiAB, and �A0B0 is an arbi-

trary state called the ‘‘shield’’ subsystem of dimension d0,
for its presence protects private correlations. In the case
when d ¼ 2 we will call it a pbit. Parties that have A and B
subsystems of a pdit (known as the ‘‘key’’) can extract
log2d ebits by performing Uy if one of them possesses the
shield A0B0 in its entirety. However, when the shield is split
between the two parties, it can be impossible to perform the
untwisting using only local operations, and there exist
states which are arbitrarily close to pdits, yet no ebits can
be produced from them. The main idea we will be exploit-
ing here is that superactivation can occur by one zero-
capacity channel being used to share pdits, and then by
Alice using a second zero-capacity channel to send her part
of the shield A0 to Bob some of the time so that he can

perform the untwisting operation, giving them shared ebits
[16] on these occasions.
We will thus consider usingN �ðdÞ in conjunction with a

number of different channels: first, erasure channels N p
e ,

which output an erasure flag with probability p 2 ½12 ; 1Þ,
and faithfully transmit the input state otherwise. These
are all inequivalent channels, in the sense that for p 2
f1� 1

n jn 2 Nnf1gg no such channel with probability p can

simulate one with probability of erasure smaller than p
[17]. Moreover, it is known that N p

e retains zero capacity
in this range since a higher erasure probability can only
decrease the capacity. Our results hold for all p 2 ½12 ; 1Þ.
Strong nonconvexity of quantum capacity.—Consider

the convex combination of two channels as in Eq. (1),
whereN �ðdÞ is the PPT channel that generates noisy pdits,

which can be made arbitrarily close to perfect pdits at the
expense of increasing the dimension of the shield, and the
erasure probability of the latter channel is in the range p 2
½12 ; 1Þ. We take the input dimension of both channels to be

equal. For clarity of presentation, we will consider the
limiting case, when the dimension of the shield goes to
infinity, and take the key part to be perfect. Both the PPT
pdit channel and the erasure channel have zero quantum
capacity. The quantum capacity of the resulting mixture of
the two channels can be strictly positive when p ¼ 0:5, and
� 2 ð0; 0:0041Þ [3]. We now show that this is much more
generic, and will employ the protocol described below to
show that for the PPT pdit channel and 50% erasure
channel in the convex mixture we can surprisingly achieve
positive quantum capacity for all � 2 ð0; 1Þ.
More formally, consider a channel N in the form of

Eq. (1) together with initial state �ABA0B0 ¼ ð�þ
ABÞ� logd �

ð�þ
A0B0 Þ� logd0 on Alice with A of dimension d and A0 of

dimension d0 and consider the following protocol.
(1) Alice initially feeds subsystems BB0 of �ABA0B0

through N , keeping AA0. If this is repeated n times, then
at the end of this step they share n instances of AA0BB0,
where each of the instances has the form of a convex
mixture of the pdit and the state, which experienced the
action of the erasure channel.
(2) Alice feeds her instances of A0 into the channel, and

pads her input with logd fresh qubits which will not play
any role in this round of the protocol and are discarded by
Bob. After the transmission Alice and Bob have n instances

of subsystems A and BB0 ~A0, respectively.
At the end of the protocol we get

IcðAiBÞ�ðdÞ ¼ 1
2ð1� �Þ½�� pð�þ 2Þ þ 1� logðdÞ: (4)

When p ¼ 0:5 the expression for the coherent information
simplifies to

IcðAiBÞ�ðdÞ ¼ 1
4ð1� �Þ� logðdÞ: (5)

See Appendix A in the Supplemental Material [18] for
the calculation of the coherent information. Figure 1
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demonstrates the full range of pairs (�; p) for which the
violation of the convexity of quantum capacity is achieved.

The full nonconvexity of the coherent information for
the convex combination (1) holds when p ¼ 0:5, when the
dimension of the shield subsystem tends to infinity, and is
not true for larger p. This is also where the greater the
entropy of mixing of the two channels, the greater the
lower bound for the capacity given by the coherent
information.

Inequivalent classes of superactivating channels with
noisy resources.—We next address the question of general-
izing the superactivation example to the class of erasure
channels with p > 1

2 , and wewill simultaneously tackle the

question of robustness of superactivation to noise. We do
so by establishing the region of pairs (p; �), where p 2
½12 ; 1Þ is the erasure probability and � denotes the amount of

tolerable noise in the PPT pbit channel, for which we can
demonstrate superactivation.

In the two-step protocol [16] that achieves superactiva-
tion for an arbitrary pbit channelN �ðdÞ , Alice and Bob first

use the pbit channel to share states of Eq. (3), then in the
second step Alice sends her part of the shield (subsystem
A0) through the erasure channel N 0:5

e . Half of the time,
when the erasure does not take place, Bob is able to
perform the Uy of Eq. (3) and they end up sharing an
ebit. When erasure occurs, they are left with a classically
correlated state and an erasure flag. We now show that this
protocol works for other values of p. Since the case of
erasure (nonerasure) is distinguishable on Bob’s site, the
lower bound for the capacity of the joint channel N � �
N p

e is just the coherent information averaged over the two
cases:

Q ðN �ðdÞ �N p
e Þ � pIcðAiBÞ�ðdÞ

er
þ ð1� pÞIcðAiBÞ�ðdÞ

uner
;

(6)

where p ¼ 0:5 in the original example [3], and the first

term is evaluated on the state �ðdÞ
er that corresponds to the

case when Bob received the erasure flag while the latter is

evaluated on �ðdÞ
uner, when Alice’s share of the shield was

successfully transmitted to Bob. If the erasure event takes
place, and the shield does not get through, Bob will not be
able to undo the unitary U, so IcðAiBÞ�ðdÞ

er
¼ 0. If the

shield gets through, assuming operations are perfect,
IcðAiBÞ�ðdÞ

uner
¼ logd. In the case of many copies, Alice

and Bob will share m ¼ ð1� pÞn pdits on average and

IcðAiBÞð�ðdÞÞ�m ¼ mIcðAiBÞ�ðdÞ
uner

¼ ð1� pÞn logðdÞ: (7)

This is under the assumption that the pbits are perfectly
private, and so to investigate what happens when this
restriction is lifted, we consider channels which produce
approximate pbits.

Definition: The state ~�ðdÞ is called an �-approximate
pdit if there exists a set of local measurement operators on
the key subsystem of Alice and Bob fPA

i � PB
j gdi;j¼1 such

that

��������TrA0B0

�X
ij

PA
i �PB

j ~�
ðdÞPB

j �PA
i

�
�KAB�ME

����������; (8)

where KAB represents the perfect key and ME represents
the environment.
An approximate pdit satisfies the following property:

For every ~�ðdÞ there exists a unitary U ¼ fUijg on the

system such that

jUy ~�ðdÞU��þ
AB � �A0B0 j � �: (9)

This follows directly from Theorem 2 in [15]. From now
on, we will limit the set of all approximate pdits to the
subset of the approximate pdits which have PPT. The
existence of good PPT approximations of pdits is shown
in [1]. It is known that using Choi-Jamiolkowski isomor-
phism from each such state we can construct a channel that
produces it in the same way as it was done in [8].
Following the same protocol as in [3,16], consider a pair

of channels

~N �ðdÞ �N p
e ; (10)

with p 2 ½12 ; 1Þ, where using ~N �ðdÞ results in Alice and

Bob sharing an �-approximate pdit ~�ðdÞ. Then Alice sends
her share of the shield to Bob using N p

e as above. After

many independent uses of ~N �ðdÞ they share m ¼ ð1� pÞn
copies of ~�ðdÞ. The question of interest is whether given a

large number n of ~�ðdÞ Alice and Bob could superactivate
them with an erasure channel of probability p, i.e.,
whether there exist pairs (p; �) which will make the lower
bound on the quantum capacity given by Eq. (10) strictly
positive. The following lemma will make use of Eq. (6)
and relation (8) to derive a lower bound on the joint
channel of Eq. (10).

FIG. 1 (color online). Nonconvexity of quantum capacity for
IcðAiBÞ ¼ 1

2 ð1� �Þ½�� pð�þ 2Þ þ 1� logd when d ¼ 2 when

the dimension of the shield subsystem tends to infinity.
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Lemma 1: Consider independent uses of ~N �ðdÞ �N p
e ,

p 2 ½12 ; 1Þ. Then
Q ð ~N �ðdÞ �N p

e Þ � ð1� p� 4�Þ logðdÞ � 2hð�Þ; (11)

where d is the dimension of the key part, and hð�Þ is a
binary entropy.

See Appendix B in the Supplemental Material [18] for
the proof and graphical illustration.

Superactivation using depolarizing channel.—It turns
out that the erasure channel and its variants are not the
only channels that can be used in conjunction with the PPT
pbit channel for superactivation. Here we also consider
~N �ðdÞ �N dep, withN dep the commonplace depolarizing

channel [9] given by

N dep ¼ pN id þ ð1� pÞN mix: (12)

The first channel in this mixture is the identity channel
acting as N idð�Þ ¼ �, and the second one is the com-
pletely randomizing channel acting as N mixð�Þ ¼ 1

r . The

depolarizing channel is so ubiquitous in part because all
quantum channels can be twirled to this form by applying
some randomly chosen bilateral unitary to the system left
at the sender’s site and output of the channel [9]. It follows
that N dep, for arbitrary input dimension r, is antidegrad-

able [19] and thus has zero capacity in the range p 2 ½0; 12�.
This follows from the fact that the Jamiolkowski state
associated with the channel 1=2ðPþ

AB þ 1AB=r
2Þ has a

two-symmetric extension, namely, 1=2ðPþ
AB � 1B0=rþ

Pþ
AB0 � 1B=rÞ. Remarkably, we will find that this channel

can be used for superactivation, even as the amount of
noise is made arbitrarily large.

The superactivation protocol is as before—after creating

approximate pbits using ~N �ðdÞ , Alice sends the shield A0 to
Bob through the depolarizing channel. Unlike the previous
examples of erasure channels, there are no flags attached to
the output, so Bob does not know which channel was
applied. After the transmission, Alice and Bob are left
with the mixture of two states: with probability p, after
Bob performs the untwisting operation Uy, they share the
noisy maximally entangled state�þ

AB;� such that k�þ
AB;� �

�þ
ABk � �, and with probability (1� p) the ebits cannot

be untwisted and they share the state �AB;� that approx-

imates the classically correlated state �AB :¼
1=d

P
kjk; kihk; kj; i.e., they share the state

!AB ¼ p�þ
AB;� þ ð1� pÞ�AB;�: (13)

The fact that we only get an approximation �AB;� of the

classically correlated state is due to the fact that the chan-

nel ~N �ðdÞ �N dep only created approximate pbits. For any

� > 0 we can choose the dimension of the shield state and
of the depolarizing channel sufficiently large so that
k�AB;� � �ABk1 � �. The coherent information, evaluated

on !AB for d ¼ 2, can be lower bounded as follows:

IcðAiBÞ!AB
� 1þ 1� p

2
log

�
1� p

2

�
(14)

þ 1þ p

2
log

�
1þ p

2

�
� 4� logðdÞ þ 2hð�Þ:

(15)

This follows by computing the coherent information
for p�þ

AB þ ð1� pÞ�AB and using Fannes inequality and
the relation k�AB;� � �ABk1 � �. For any fixed p we can

take the dimension of the depolarizing channel and of the
shield part of N �ð2Þ sufficiently large so that � is as small

as we wish. In this regime we find superactivation for a
large region of values of p in the range ð0; 12�, which
constitute new examples of superactivation using the de-
polarizing channel [see Appendix C in the Supplemental
Material [18] for the plot of the region for ½p; �ðpÞ�].
We have seen that superactivation does not only occur

for the two special channels considered in the initial dis-
covery of the effect. Rather, there are classes of generic and
common channels, as well as inequivalent ones, which can
be used for superactivation and, likewise, for the curious
effect where adding noise (by increasing the entropy of
mixing of two channels) can increase the quantum ca-
pacity. Here too, we find that it is not a tiny mixture of
noise which increases the capacity, but rather, there are
cases where the more the noise, the greater the capacity,
and generally any amount of mixing can result in positive
capacity. Although we have found superactivation to be
more generic than previously thought, we have only con-
sidered cases where one channel has zero capacity because
it is PPT, and the other channel has zero capacity because
of the no-cloning bound. The big question of whether
superactivation exists for channels which do not each
belong to these classes remains unanswered. This is a
challenging question since at the moment we have no other
way of showing a channel has zero capacity. We hope the
considerations here provide some clues to the answer.
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