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Locking Entanglement with a Single Qubit
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We study the loss of entanglement of a bipartite state subjected to discarding or measurement of one
qubit. Examining behavior of different entanglement measures, we find that entanglement of formation,
entanglement cost, logarithmic negativity, and one-way distillable entanglement are lockable measures in
that they can decrease arbitrarily after measuring one qubit. We prove that any convex and asymptotically
noncontinuous measure is lockable. As a consequence, all the convex-roof measures can be locked. The
relative entropy of entanglement is shown to be a nonlockable measure.
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Quantum information, unlike classical information, ex-
hibits various superadditivities. An example of superaddi-
tivity was found in [1] where, with a single bit, one can
lock (unlock) an arbitrary amount of classical correlations
contained in a quantum state (according to a physically
significant measure of classical correlations). One can ask
if similar effects can be found for entanglement. The basic
question is the following: How much can entanglement of
any bipartite or multipartite system change when one qubit
is discarded? The answer clearly depends on the measure
of entanglement. In this Letter we show that the effect of
locking holds for the entanglement of formation EF and
cost Ec, the distillable entanglement when only one-way
classical communication is allowed E!

D , as well as a com-
putable measure of entanglement—the logarithmic nega-
tivity EN [2] (cf. [3]). More specifically, we show that for
some state, measuring (or dephasing) one qubit can change
the entanglement from an arbitrary large value to zero. We
analyze other entanglement measures. We argue that if a
measure is convex but not too much, then it does not admit
locking. We show, for example, that relative entropy of
entanglement can change at most by two upon discarding
one qubit. Moreover, we link the effect of locking with the
postulate that is often adopted in the case of manipulations
of many copies of a quantum state—‘‘asymptotic continu-
ity.’’ An entanglement measure is asymptotically continu-
ous, if its entanglement per qubit is continuous. The impor-
tance of asymptotically continuous measures is that they
give rise to ‘‘macroparameters’’ describing entanglement.
That is, entanglement would be a measure that changes
little if the state changes little. The effect of locking is a
form of discontinuity, since by removing just one qubit
many ebits are destroyed. This raises the question of
whether locking is connected to asymptotic continuity.
We confirm this by proving that a convex measure that is
not asymptotically continuous admits locking. Our proof is
constructive: from the states on which a function is discon-
tinuous, one can build a state exhibiting locking. Examples
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are entanglement measures built by the convex-roof
method [4].

Entanglement cost and logarithmic negativity.—We
shall show that an arbitrary large Ec and EN of a given
state can be reduced to zero by a measurement on a single
qubit. Consider the state on the Hilbert space H A �
H B � Cd�2 � Cd�2

	AB �
1

2


 0 0 1
dW

T

0 0 0 0
0 0 0 0

1
d�
�W� 0 0 


2
6664

3
7775: (1)

Here W �
Pd�1
i;j�0 uijjiiihjjj where uij are elements of uni-

tary matrix U on Cd and the state 
 �
P
i
1
d jiiihiij is a

separable maximally correlated state, also defined on Cd.
The matrix is written in the computational basis
j00i; j01i; j10i; j11i of a pair of qubits each with one of
two parties Alice and Bob. Clearly after one party mea-
sures in the computational basis, the state will decohere,
and the off-diagonal elements will go to zero—thus the
state will be separable. However, before the measurement,
the state has an arbitrarily large entanglement cost; i.e., it
requires an arbitrarily large number of singlets shared
between Alice and Bob to create, even in the asymptotic
limit. To see this, we take the purification of the state

 ABE �
1������
2d

p
Xd�1
i�0

fjiij0igAfjiij0igBjiiE � fjiij1igA

�fjiij1igBUjiiE (2)

with the third subsystem denoted as E for Eve (we call the
state 	AE dual to 	AB). One sees that Eve gets a bit string X
of length logd encoded in one of two bases. The basis is
complementary if U is taken to be H� logd with H the
Hadamard transform. This is precisely the situation for
locking classical information between one party and an-
other (here Eve). In [1] it was shown that Eve can learn at
most 12 logd bits of X. Thus, for Eve’s optimal measure-
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ment, the entropy of Alice will be greater than 1
2 logd. But

this is precisely a definition of EF, i.e.,

EF�	AB� � inf
Ai

X
i

piS�	i�; (3)

where the infimum is taken over all measurements with
outcomes Ai performed on the purification of 	AB and
resulting in states 	i with Alice. This quantity is obviously
achievable by a measurement in basis fjiig which gives
Ef � 1� 1

2 logd. However, since accessible information is
additive as shown by Wootters [5], we get that also Ec �
1� 1

2 logd, so that it is arbitrarily large. The log-negativity
can also be calculated, and it is EN � log�1�

���
d

p
�; thus it

too can be locked. Note that here we have used only two
unitaries (I or U)—one can clearly get even greater en-
tanglement locking by using more unitaries [6] and the
results of [7].

Let us consider another example for locking EN which is
motivated by the results of [8]. To this aim, consider the
state defined on the Hilbert space H �n�

A �H �n�
B in such a

way that H �n�
A �H �n�

B � C2 � �Cd��n with parameters n
and �,

%�n�
AB�

1
2�j00ih00j��

�n
0 �j11ih11j���n1

��nj00ih11j����1��
�
0 �

�n

��nj11ih00j����1��
�
0 �

�n�: (4)

Here we use the hiding states from [9], �0 � %�l
s and �1 �

�%s�%a2 ��l, where %s and %a are fully symmetric and anti-
symmetric Werner states on Cd � Cd. Note that 	�n�

AB is a
state for any j�j � 1 since it can be reproduced by specific
local operations and classical communication (LOCC)
recurrence protocol [8] from %�1� defined by the formula
above. %�1� can be easily checked to be a state. The log
negativity of %�n� for given n is

EN�%
�n�� � log2�1� ��2� 2�l�1�n�; (5)

which goes to infinity with n when j�j> �2� 2�l�1��1

(since orthogonality of %s and %a implies k�0 � �1k �
2� 2�l�1). On the other hand, measurement of Alice’s
qubit in the jii basis leads to the state 1

2

P1
i�0�jiihij�

2 �

��i�n, which is completely separable. Hence, we have that
measurement on a single qubit has locked completely an
arbitrary high amount of entanglement.

Relative entropy of entanglement.—Let us now examine
the relative entropy of entanglement (Er) [10]. We show
that it is not lockable. More precisely, two solutions are
presented, exhibiting that after tracing out one qubit of the
state 	AB, Er�	AB� can decrease at most by two, and after a
complete von Neumann measurement on one qubit, Er can
decrease at most by one.

Proposition I.—For any bipartite state 	AA0:B � 	 and
any complete von Neumann measurement 
A on the one
qubit system A there holds

Er�	� � Er�
A � IA0B�	�� � 1; (6)
20050
Er�	� � Er�TrA�	�� � 2; (7)

where TrA denotes a partial trace over system A.
Proof: Both statements of this theorem are the conse-

quence of the following property of the relative entropy of
entanglement [11] (see [12] in this context):

X
i

piEr�	i� � Er


X
i

pi	i

�
� S


X
i

pi	i

�
�

X
i

piS�	i�;

(8)

where S stands for the von Neumann entropy of the state.
For the first part of the proof, it suffices to notice that any

complete measurement can be implemented as a depha-
sing of the system. To dephase one qubit, one can add a
local random ancilla � � 1

2 �j0ih0j � j1ih1j� and perform
the controlled unitary operation U �

P1
i�0 jiihijanc � 


�i�
A

with 
�0� � IA and 
�1� � 
z—a Pauli matrix, followed
by tracing out �. One can easily check that random uni-
taries put phases which zero the coherences of the state:

T ranc�U�� � 	�U
y� � 
A � IA0B�	� � 	meas: (9)

Taking now in (8) 	i � 
i � IA0B�	� and pi �
1
2 , one gets

Er�	� � Er


X
i

pi	i

�
� S


X
i

pi	i

�
�

X
i

piS�	i�; (10)

since local unitary transformations do not change Er. For
such choices of 	i and pi the state

P
ipi	i is equal to state

	 after dephasing, and by (9) it is the same as the one after
a complete measurement, which gives us

Er�	� � Er�	meas� � S

X

i

pi	i

�
�

X
i

piS�	i�: (11)

It is known [13] that the right hand side does not exceed
H�p�, i.e., the Shannon entropy of the ‘‘mixing’’ distribu-
tion fpig. In our case this distribution is homogeneous, so
S�
P
ipi	i� �

P
ipiS�	i� � 1, which leads us to the first

part of the theorem.
The second part of the theorem can be proven in a

similar vein. Instead of tracing out, we apply total dephas-
ing, which is equivalent to the substitution of a qubit by the
maximally mixed one, uncorrelated with the rest of the
state. To this end, we a need bigger random ancilla system
��2 and the controlled unitary composed from all four
Pauli matrices: U �

P3
i�0 jiihijanc � 


�i�
A [14,15].

Now the state after the transformation U and tracing out
the ancilla ��2 is the following: IA4 � TrA	AA0B. The relative
entropy of entanglement of this state is the same as for
TrA	AA0B, because it cannot increase after tracing out IA4 for
this is a local operation, and it cannot decrease, since this
qubit is product with the rest of the state. In this case, the
right hand side of the inequality (11) is bounded by
H�p� � 2 which completes the proof.

Although it seems to be intuitive, we are not able to
show that both complete measurement and tracing out of a
qubit decrease Er by the same amount. That is, for tracing
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out, we were able to prove only a bound of 2 rather than 1
for the change of Er. Were this tighter bound to be proven,
one would have an interesting complementarity relation
between measuring and forgetting. Clearly, measuring a
qubit can decrease the entanglement by one ebit. Likewise,
forgetting the result of a measurement can also decrease
entanglement also by one ebit. An example of the latter is
the measurement result which tells one whether one has a
singlet, or some other Bell state. Since tracing out a qubit is
equivalent to measuring and then forgetting the result, we
would have that if a measurement decreases entanglement
by one, then forgetting this result cannot change the en-
tanglement and vice versa. Note that our proof also holds
for the relative entropy distance to any convex set closed
under local unitaries, e.g., the distance to the set of positive
partial transpose states.

Locking and asymptotic continuity.—Let us now pro-
ceed to the connection between asymptotic continuity and
locking. We first provide a general result on asymptotic
continuity, which is inspired by results of Alicki and
Fannes [16] on quantum conditional entropy.

Proposition 2. — Any function f satisfying (1) ‘‘ap-
proximate affinity’’ jpf�	� � �1 � p�f�
� � f�p	�
�1 � p�
�j � c, and (2) ‘‘subextensivity’’ jf�	�j �
M logd, where c and M are constants, is asymptotically
continuous; i.e., it satisfies

jf�	1� � f�	2�j � M k 	1 � 	2 k logd� 4c: (12)

Remark: For our purpose (asymptotic regime), it is only
important that c is constant. However, to have also the
usual continuity, it should be that for small p, c is small.
[For example, for f being a von Neumann entropy, we have
c � H�p�.]

To prove the proposition, we need the following lemma
of [17] (cf. [16]).

Lemma 1.—For any two states 	1 � 	2, there exist
states 
, &1, and &2 such that


 �
1

�1� '�
	1 �

'
�1� '�

&1 �
1

�1� '�
	2 �

'
�1� '�

&2;

(13)

where 2' �k 	1 � 	2 k .
Proof of the lemma: One takes states &1�2� � !�=Tr!�,

where !� are positive and negative parts of 	1 � 	2.
Proof of proposition: Let us denote xi �

1
�1�'� f�	i� �

'
�1�'� f�&i� � f�
�. The xi’s show how the function f de-
parts from the affinity on the considered states. A positive
xi means convexity, and a negative xi means concavity. Of
course, c � jxij, because c bounds the departure from
affinity for any states. Using (13) we get

f�	1� � f�	2� � '�f�&1� � f�&1�� � �1� '��x2 � x1�;

(14)

hence due to subextensivity we get
20050
jf�	1�� f�	2�j � 'jf�&1�� f�&2�j� �1�'��jx1j � jx2j�

� 2'M logd� 4c:

This ends the proof. �
Now let us exhibit what happens when a function is

subextensive, but is not asymptotically continuous. To
this end, consider a subextensive function f; i.e., let
f�	� � M logd, where 	 acts on a d-dimensional Hilbert
space. Let us assume that f is not asymptotically continu-
ous. This means that we have a sequence of states 	�n�

1 and
	�n�
2 approaching each other in a trace distance and acting

on a Hilbert space of increasing dimension dn, such that

jf�	�n�
1 � � f�	�n�

2 �j

logdn
� �; (15)

where � is some positive constant. We now consider states

�n�; &�n�

1 ; &
�n�
2 given by lemma, '�n� � 1

2 k 	
�n�
1 � 	�n�

2 k ,

and x�n�i being analogues of xi. The formula (14) applied
to those states together with (15) implies that jx1 � x2j �
��� 2'�n�M� logdn. Thus we see that at least one of
the xi must have an arbitrary large modulus for large n
(i.e., small '�n�). Without a loss of generality, we can
assume it is x1. Then we get that one of two possibilities
holds: (i) x1 � ���=2 � '�n�M� logdn, or (ii) x1 �

��=2 � '�n�M� logdn. In case (i) the function is too con-
cave, while in case (ii) it is too convex. In both cases, the
function upon mixing two states can be arbitrarily different
from the average of the function.

In the first case we have a situation where upon mixing
two states (i.e., forgetting whether one has 	�n�

1 or 	�n�
2 ), a

function can go up an arbitrary amount—this can be
regarded as a type of activation. In case (ii), we have that
upon mixing, the function goes arbitrarily down. If f is
convex, then, of course, only (ii) can occur, and together
with convexity, it gives locking. We have then the
following.

Proposition 3.—A convex LOCC monotone E that sat-
isfies E�	� � M logd for some constant M, and that is not
asymptotically continuous, admits locking.

Proof: From assumptions it follows that there must exist
states 	1 and &1 and weights 1� * and * such that the
difference

x � �*E�	1� � �1� *�E�&1�� � E�*	1 � �1� *�&1�

(16)

can be arbitrarily large. Now let us note that a convex
entanglement measure satisfies

E�p	AB � j0ih0jA0�

�1� p�~	AB � j1ih1jA0 � � pE�	� � �1� p�E�~	�: (17)

One way follows from convexity and from nonincreasing E
under tracing out a local qubit. The second follows from
the fact that the state on the left hand side of the inequality
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can be transformed into the ensemble f�p; 	�; �1� p; ~	�g.
Consider now the state

	ABA0 � �1� *�	1 � j0ih0j0A � *~&1 � j1ih1j0A; (18)

where A0 is one qubit system. Its reduction is given by

	AB � �1� *�	1 � *~&1: (19)

Hence following (16) we obtain that the difference

E�	ABA0 � � E�	AB� (20)

can be arbitrarily large, which is locking.
Examples.—Consider the so-called convex-roof mea-

sures [4], based on Renyi entropy with 0 � �< 1. Such
measures are convex by definition, and on pure states they
are equal to the Renyi entropy S� � 1

1�� logTr	
� of the

subsystem. For our choice of � the Renyi entropy is greater
than the von Neumann entropy. It is easy to check that, for
a compressed version of state 	�n (denote it by 	typ) where
only typical eigenvalues are kept, the Renyi entropy for
large n tends to the von Neumann entropy nS�	�. On the
other hand, for the original state, it is equal to nS��	�. As
we know, the states 	typ and 	�n converge to each other.
However, for the Renyi entropy we obtain that � �
S��	� � S�	�. Thus Renyi entropy is not asymptotically
continuous, and since we pointed out states on which it
diverges, we can construct the states, on which we have a
locking effect.

Let us mention that the above theorem does not say
anything about measures that are asymptotically continu-
ous. Thus the cases of Er [18] and Ec which are asymptoti-
cally continuous had to be treated separately. Also the
theorem does not say anything about measures that are
not subextensive. Therefore the case of negativity was also
treated separately. Whether distillable entanglement is
lockable or not remains an open problem. However, if we
restrict the parties to only one-way communication, E!

D
turns out to be lockable.

One-way distillable entanglement and classical ca-
pacity.—An example of E!

D locking is the state [19]
1
2 j �iABh �j � j0iA0 h0j � 1

2
IAB
d2

� j1iA0 h1j. The state has
E!
D � ED � 1

2 logd. After removing flags, it has E!
D � 0,

by the standard no-cloning (or monogamy) argument [20].
One can also ask whether the channel capacity can be

locked by not using part of the input. In the case of classical
capacity, the answer is yes. The example comes right from
the state 	CB, which produces the locking of accessible
information. The channel acts as follows: the input consists
of a control bit and n other qubits. The control bit decides
whether or not U is applied to the other qubits. Then all
qubits are measured on a computational basis. If we choose
U � H�n, then the sender cannot use a control bit (where
instead the random bit is input), the classical capacity of
the channel drop to logd, while initially it was of order of d.
20050
For quantum capacity is it also lockable, as the example of
D! shows.

Finally, we propose a definition of the nonlockable
version of the entanglement measure.

Definition.—For any entanglement measure E�	� the
reduced entanglement measure E # �	� is defined as

E # �	� � inf

2CLOCC

E�
�	� ��S�: (21)

Here CLOCC is a class of LOCC operations in a closed
system and �S � S�
�	��� S�	� is the increase of en-
tropy produced by measurement. In fact, this is the quan-
tum analogue of the reduced intrinsic information defined
in [21]. One can also consider other versions of such a
reduction, choosing maps 
, e.g., to be local bistochastic
ones or local dephasings.
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