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Secure Key from Bound Entanglement
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We characterize the set of shared quantum states which contain a cryptographically private key. This
allows us to recast the theory of privacy as a paradigm closely related to that used in entanglement
manipulation. It is shown that one can distill an arbitrarily secure key from bound entangled states. There
are also states that have less distillable private keys than the entanglement cost of the state. In general, the
amount of distillable key is bounded from above by the relative entropy of entanglement. Relationships
between distillability and distinguishability are found for a class of states which have Bell states correlated
to separable hiding states. We also describe a technique for finding states exhibiting irreversibility in
entanglement distillation.
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Recently, strong connections have been emerging be-
tween the amount of pure entanglement ED and the private
key KD one can distill from a shared quantum state. For
example, the security of key generation in Bennett-
Brassard 1984 (BB84) [1] and Bennett 1992 (B92) [2]
can be proven by showing its equivalence with entangle-
ment distillation of singlets [3,4]. These proofs had their
origin in the idea of quantum privacy amplification [5]
where two parties (Alice and Bob) distill pure quantum
entanglement until the quantum correlations are com-
pletely disentangled with an eavesdropper (Eve). Those
correlations were represented by singlet states and were
subsequently measured to obtain a classical private key to
which Eve had no access. Very recently, the hashing in-
equality [6,7] was proven [8] by showing the equivalence
between certain distillation protocols and one way secret
key distillation.

An apparent equivalence between bound entangled
states (states which require entanglement to create, but
from which no pure entanglement can be distilled) and
classical distributions which cannot be turned into a key
was conjectured in [9]. Additionally, using techniques
developed in entanglement theory, a gap similar to the
one between entanglement cost and distillable entangle-
ment was shown to exist classically for private keys [10]. It
has also been shown that for two qubits, a state is one copy
distillable iff it is cryptographically secure [11,12] (cf.
[13,14]), and there are basic laws which govern the inter-
play of key generation in terms of sent quantum states [15].

In fact, the original Letters on entanglement distillation
[6] used protocols which were derived from existing pro-
tocols for distilling privacy from classical probability dis-
tributions. Indeed, formal analogies between entanglement
and secrecy exist [16]. The evidence to date strongly sup-
ports the widely held belief that privacy and entanglement
distillation are strictly equivalent—that one can get a
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private key from a quantum state if and only if entangle-
ment distillation is possible.

Surprisingly, this is not the case—we introduce a class
of bound entangled states (no pure entanglement can be
distilled from them), from which one can distill a private
key. Examples of states that have one bit of perfect private
key and at the some time arbitrarily small distillable en-
tanglement are also provided.

Clearly, one always has KD � ED since one can always
distill singlets from a state, and then use these singlets to
generate a private key [17]. Here, we prove that one can
also have the strict inequality KD > ED, which sometimes
holds even if ED � 0. We also prove that the private key is
generally bounded from above by the relative entropy of
entanglement Er [18] (regularized). This is sufficient to
prove that one can have KD < Ec where Ec is the entan-
glement cost (the number of singlets required to prepare a
state under LOCC). This enables one to easily find states
for which ED < Er. In this Letter we state some of the
results and present the full proofs in detail elsewhere [19].

We first introduce a wide class of states which are the
most general private states in the sense that one can
produce one bit of secure key from them even though an
eavesdropper might hold the purification of the state. One
can think of these states as being the equivalent of the
singlet for key distillation. This allows us to recast all
protocols of key distillation (classical or otherwise) in
terms of distillation of private states using the distant
labs paradigm used in entanglement theory, i.e., local
operations and classical communication (LOCC). Next
we show that these states can have arbitrarily little distil-
lable entanglement while still retaining one bit of private
key. We can relate this to the problem of distinguishability
of states under LOCC. We then exhibit a bound entangled
state from which a private key can be distilled. We then
prove that KD � Er and discuss the consequences.
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Let us now introduce private states, i.e., 	ABA0B0 where
systems AB are both m qubits, and the measurement of AB
in the computational basis gives m bits of perfect key.
Systems AA0 (BB0) are held by Alice (Bob). We assume
the usual scenario—that any part of the state which is not
with Alice and Bob might be with an eavesdropper Eve.
Thus Eve holds the purification of this state. We now
provide their unique form. We first consider perfect
security.

Theorem 1: A state is private in the above sense iff it is of
the following form:

	m � Uj �
2miABh 

�
2m j 	 %A0B0Uy; (1)

where j �
d i �

Pd
i�1 jiii and %A0B0 is an arbitrary state on

A0, B0. U is an arbitrary unitary controlled in the computa-
tional basis

U �
X2m
i;j�1

jijiABhijj 	U
A0B0

ij : (2)

We call the operation (2) ‘‘twisting’’ (note that only
UA0B0

ii matter here, yet it will be useful to consider general
twisting later).

Proof: We prove for m � 1 (for higher m, the proof is
analogous). Start with an arbitrary state held by Alice and
Bob, �AA0BB0 , and include its purification to write the total
state in the decomposition

�ABA0B0;E � aj00iABj�00iA0B0E � bj01iABj�01iA0B0E

� cj10iABj�10iA0B0E � dj11iABj�11iA0B0E

(3)

with the states jiji on AB and �ij on A0B0E. Since the key
is unbiased and perfectly correlated, we must have b �
c � 0 and jaj2 � jdj2 � 1=2. Depending on whether the
key is j00i or j11i, Eve will hold the states

%0 � TrA0B0 j�00ih�00j; %1 � TrA0B0 j�11ih�11j: (4)

Perfect security requires %0 � %1. Thus there exists uni-
taries U00 and U11 on A0B0 such that

j�00i �
X
i

�����
pi

p
jU0�

A0B0

i ij’Ei i;

j�11i �
X
i

�����
pi

p
jU1�

A0B0

i ij’Ei i:
(5)

After tracing out E, we thus get a state of the form Eq. (1),
where %A0B0 � �ipij�iih�ij.

It is instructive to see the matrix of a general 	1 state:

	1 �

� 0 0 X
0 0 0 0
0 0 0 0
Xy 0 0 �0

2
6664

3
7775; (6)

where the matrix is written in the computational basis on
AB, i.e., j00i, j01i, j10i, j11i, and the trace norm of block X
16050
is 1=2. Thus 	1 looks like a Bell state with blocks instead
of c numbers, and the condition on k X k can be associated
with the fact that Bell states have the corresponding ele-
ment (coherence) equal to 1=2.

Let us briefly sketch the situation where one demands
only approximate security for m � 1. Consider in place of
	1 an arbitrary state written in similar block form. One
finds that the condition k X0 k
 1=2, where X0 is the upper
right block, is equivalent to the state being close to 	1 in
norm. For the converse direction, one can verify that in

terms of the fidelity F�%E0 ; %
E
1 � � Trj

������
%E0

q ������
%E1

q
j

k X0 k�
�����������
p0p1

p
F��E0 ; �

E
1 �; (7)

where pi are probabilities of Alice and Bob to obtain
outcome ii, and �Ei are the corresponding Eve’s states.
Thus having an approximate bit of key, i.e., uniformity
p0 
 p1 
 1=2 and security F��E1 ; �

E
2 � 
 1 (implying

�E0 
 �E1 ), is equivalent to sharing state close to 	1. The
result can be generalized to m> 1 [19], and thus the
resulting state is close in norm to some 	1.

This then completely recasts the drawing of key at a rate
KD under local operations and public communication
(LOPC) in terms of distilling 	m states (at a rate of K	
under LOCC). Clearly K	 � KD since distilling 	m is a
particular way of drawing key. Additionally, by Theorem 1,
any secure protocol which distills KD is also distilling 	m
with K	 � KD when one considers all of Alice and Bob’s
laboratory as the A0B0 ancilla. That is, if one applies some
protocol coherently (since the original LOPC protocol
might be partly classical), one distills some 	m at the full
rate. We thus have equality of the two rates.

Before showing that one can have bound entangled
states which give secure key, we provide examples of
both strict and approximate 	 states, which have an arbi-
trarily small amount of distillable entanglement, i.e.,
KD � ED.

Example 1.—Consider states

% � pj �ih �j 	 %� � �1� p�j �ih �j 	 %�; (8)

where  � � 1��
2

p �j00i � j11i� and %� reside on orthogonal

subspaces. One can verify that these states are particular
examples of 	1, and therefore produce at least one bit of
private key. Eve (who holds the purification of the state)
can learn the phase of the state on AB, i.e., whether Alice
and Bob hold  � or  �. She can help Alice and Bob obtain
one singlet by telling them which maximally entangled
state they possess. Yet she can learn nothing about the key
bit (i.e., whether they have j00i or j11i). In a sense, Eve can
hold one bit of information but it is the wrong bit of
information. Such a situation is impossible classically (or
with pure quantum states held by Alice and Bob).

To decrease the distillable entanglement, take p � �1�
1=d�=2 and %� to be two extreme Werner d 	 d states
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%s �
2

d2 � d
Psym; %a �

2

d2 � d
Pas (9)

with Pas and Psym the antisymmetric and symmetric pro-
jectors. The log-negativity EN which is an upper bound on
the distillable entanglement ED [20] amounts in this case to
EN�%� � logd�1

d . Thus by increasing d one can have an
arbitrarily small amount of distillable entanglement while
keeping one bit of private key.

Example 2.—We take %� to be two separable hiding
states !0 and !1. We take here those given in [21]

!0 � %	l
s ; !1 � ��%a � %s�=2�	l: (10)

By choosing d and l one can make them arbitrarily
indistinguishable under LOCC and arbitrarily orthogonal
[since X � �!1 � !0�, orthogonality of the !’s are needed
for security, i.e., k X k , while hiding is needed for low
distillability]. Choosing p � 1=2, one can show that dis-
tilling entanglement essentially reduces to Alice and Bob
determining which maximally entangled state they possess
by performing measurements on the hiding state !.
Choosing better and better hiding states decreases the
distillable entanglement arbitrarily. Again we check this
by the use of log negativity; one finds that EN�%� �k !�0 �
!�1 k where � stands for partial transpose. This quantity has
been shown to be an upper bound for distinguishability of
the hiding states, and for a suitable choice of l and d it can
be made arbitrarily small [21].

Recently, strong connections have been emerging be-
tween the amount of pure entanglement ED and the private
keyKD one can distill from a shared quantum state. In both
examples, however, the states do have nonzero distillable
entanglement. For strict 	 states, it is not hard to see that
they are always distillable. It is then clear that any key from
bound entangled states can be arbitrarily secure, but not
perfectly secure.

Main result.—We now introduce a bound entangled
state which can be shown to have KD > 0. We simply
take the preceding state, and introduce errors

� �

p
2�!0 � !1� 0 0 p

2�!1 � !0�
0 �12 � p�!0 0 0
0 0 �12 � p�!0 0

p
2�!1 � !0� 0 0 p

2�!0 � !1�

2
6664

3
7775:

(11)

One finds that for p � 1=3 and l
�������
1�p
p

q
�d� 1� � d the

state has positive partial transpose (PPT) being therefore
bound entangled [22].

Now, we take n copies and apply the recurrence distil-
lation protocol of [23] without the twirling step. The off-
diagonal block of the resulting state is given by X �
N�1�p�!1 � !0�=2�	n with N � 2pn � 2�1=2� p�n. To
see that Alice and Bob have an arbitrarily secure key, we
check that its trace norm tends to 1=2:
16050
kXk �
1

2

�
1�

1

2l

�
n


1�

�
1� 2p
2p

�
n
�
�1

(12)

Now, for p > 1=4 the norm can be arbitrarily close to 1=2
if we had previously taken l large enough, and now take
large n. Given such l, one could always have initially
chosen d to satisfy the PPT condition of the initial state
(11), so that the state �0 is PPT (as it is obtained from � by
LOCC).

Remark.—Note that we need to use large l for security,
large n for the state to approximate perfect key, and large d
for the state to be PPT. Indeed, large d is needed for !i to be
hiding states, and if they are not hiding, then the states
would be distillable by distinguishing between them, and
then distilling the correlated singlet.

Thus we have shown that we can get an arbitrarily secure
bit from bound entangled states. The structure of our states
sheds some light, perhaps for the first time, on the phe-
nomenon of bound entanglement: they can contain singlets
that are so ‘‘twisted’’ they cannot be distilled, but they can
exhibit their quantum character through privacy. This ex-
planation probably cannot be applied to low-dimensional
bound entangled states.

Having shown that one can draw one bit of key, we now
show that Alice and Bob can draw key at a nonzero
asymptotic rate, using Lemma 1.

Lemma 1: For any state  ABA0BE consider the state %ABE
emerging after measurement on AB in the standard basis.
The latter state does not change under twisting. (The proof
boils down to direct checking.)

Since the trace norm of the off-diagonal block (12) of the
state is close to 1=2, by the use of polar decomposition, one
finds a twisting operation after which the trace of block X
is equal to its trace norm. For such new state �00, by
Lemma 1, Eve’s states correlated with the outcomes of
AB measurements that are still the same as for �0. Now,
however, after tracing out A0B0, the state is close to singlet.
Clearly, the problem is reduced to drawing key from out-
comes of measurement, from a state close to singlet, which
can be done, for example, by the protocol of Devetak and
Winter [8]. As we have already noted, this draws 	 states at
the same rate as KD when the corresponding classical
protocol is applied coherently.

We now provide a general upper bound on KD in terms
of the relative entropy of entanglement Er��� :�
inf�2sepS�� k ��, with S�� k �� :� Tr���ln�� ln���
and ‘‘sep’’ being the set of separable states. Namely, we
have Theorem 2.

Theorem 2: KD��AB� � E1
r ��AB�, where E1

r is the regu-
larization of the relative entropy of entanglement
E1
r ��� :� limn!1Er��

	n�=n.
Our proof is inspired by the idea that transition rates are

bounded by LOCC monotones [24], yet it needs essentially
new techniques, mostly due to the possibility of large
scaling of the size of the ancilla A0B0 with the number of
obtained bits of key. We present it in [19].
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Since we can have Er���<Ec���, the above theorem
implies that for some states, the key rate is strictly less than
the entanglement cost, and, in fact, can be made arbitrarily
small for fixed Ec. For example, for antisymmetric Werner
state %a we have Ec�%a� � 1 [25] while E1

r �%a� �
log�d� 2�=d which can be arbitrarily low.

In summary, we have found that, in general, ED �
KD � E1

r � Ec with strict inequalities ED < KD < Ec
and ED < E1

r also possible (the latter was shown previ-
ously in [26]; our result allows for easy construction of new
examples). One can even haveKD > 0 for bound entangled
states. This implies that the rate of distillable key is not
only an operational measure of entanglement, but is also
nontrivial in that it is not equal to other known operational
measures: Ec and ED. This is also likely to be true for the
quantum key cost Kc which we define to be the minimum
size m of 	m required to form a state in the asymptotic
limit. These results also put into question the possibility of
‘‘bound information’’ for bipartite systems conjectured in
[9], although the phenomena may well exist for distribu-
tions derived from other bound entangled states. Our re-
sults also suggest that the qualitative equivalence between
privacy and distillability in 2 	 2 [11] is likely to be due to
the fact that in low dimensions, bound entanglement does
not exist.

One could define a unit of privacy, by calling 	1 irre-
ducible, if one and only one bit of privacy can be obtained
from it. An irreducible private state may therefore be
thought of as the basic unit state of privacy, much as the
singlet is the basic unit of entanglement theory (although
not all 	 states are equivalent to each other, thus one thinks
of 	m in its entirety). From Theorem 2 it follows that
irreducibility can be imposed by demanding that 	1 have
a relative entropy of entanglement of one. However, we do
not know if this condition is too strong.

Here our interest in privacy is motivated by the funda-
mental insight it gives into entanglement—there seems to
exist a deep connection between the entanglement cost of
PPT states, and privacy. In terms of cryptographic proto-
cols, the states considered here can be incorporated into an
actual scheme by performing a suitably randomized to-
mography protocol on the obtained states to verify that
they are, indeed, close to the expected form. Such a pro-
tocol is highly inefficient, but appears to be secure for
binding entanglement channels, although the scaling of
security parameters may be qualitatively different than in
BB84. Determining how efficient such a protocol could be
is an interesting open problem.
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