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Abstract
This thesis examined the bidirectional association between obesity and common mental dis-
orders (CMDs) using alternative longitudinal models. Although previous evidence from dif-
ferent studies suggests that obesity increases the risk of CMDs and CMDs increase the risk of
obesity, a more detailed longitudinal analysis is needed in order to better understand the tem-
poral patterns.

The participants were from the Whitehall II prospective cohort study with 5 data col-
lection waves between 1985 and 2009 (n=10,265 participants in total contributing 35,880 
person-observations over the follow-up), aged 35 to 55 at baseline. Body mass index (BMI) 
was determined on the basis of height and weight measured in medical examinations, and 
CMDs were assessed with the self-reported General Health Questionnaire (GHQ). In addi-
tion, several covariates (occupational status, sleep duration, bodily pain, alcohol consump-
tion, smoking, physical activity, longstanding illnesses) were included. Associations were 
examined using multilevel regression.

Obesity increased and the level of CMDs decreased with age. The development of 
both obesity and CMDs were characterized by cumulative developmental patterns, that is, the
risk of future obesity (or CMDs) increased progressively with the number of times the person
had been obese (or had CMDs) in previous study phases. Standard longitudinal regression 
models suggested that obesity was prospectively associated with future CMDs, whereas 
CMDs did not predict future risk of obesity. However, chronic CMDs increased the risk of 
obesity, so that only individuals with CMDs in several study phases over the follow-up phase 
had elevated risk of future obesity. Such cumulative pattern was not observed for chronic 
obesity in predicting future CMDs. Analysis of changes of BMI and CMDs over time indicat-
ed that a decrease in BMI was associated with a future decrease in CMDs, and an increase of 
CMDs was associated with future increase in BMI. An increase in BMI, however, was not as-
sociated with future change in CMDs, and a decrease in CMDs was not associated with a de-
crease in BMI, suggesting that the associations between changes in BMI and CMDs are de-
pendent on the direction of change in the exposure. Except for bodily pain, the covariates had
little if any effect on the associations between obesity and CMDs, and only age showed a 
consistent moderating effect such that the cross-sectional association and the association be-
tween CMDs and the future risk of obesity increased in magnitude with age.

The results from several alternative longitudinal models suggest that the bidirectional 
association between obesity and CMDs is likely to represent the effects of multiple mecha-
nisms that exert their influence over different time periods. Standard longitudinal regression 
models with only two measurement times are not sufficient to capture such complicated tem-
poral patterns.
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Chapter 1. Background 

1.1. Obesity as a public health concern

Obesity is defined as a condition of abnormal or excessive fat accumulation in adipose 

tissue, to the extent that health may be impaired.1 The most common measure used to 

determine relative body weight is body mass index (BMI) which is calculated as body 

weight in kilograms divided by the square of body height in metres (kg/m²). Categorization 

of individuals into groups of underweight, normal weight, overweight, and obese is 

commonly done using the cut-off values provided by the World Health Organization.1 For 

adults 18 years or older, underweight is defined as BMI below 18.5, normal weight between 

18.5 and 24.9, overweight between 25 and 29.9, and obesity as BMI of 30 or higher. The cut-

off value for obesity (BMI≥30kg/m²) was based primarily on the reported associations 

between BMI and mortality.1 For individuals younger than 18 years, age- and sex-specific 

cut-off values for overweight and obesity are used.2

Extensive research literature has confirmed the conjecture of Hippocrates dating back to 

400 BC that “corpulence is not only a disease itself, but a harbinger of others.” Obesity 

increases the risk of various medical conditions,3-5 including type 2 diabetes,6-8 

cardiovascular diseases,9,10 hypertension,11 dyslipidemia,12 respiratory diseases,13,14 and some 

cancers,15,16 and is one of the components of the metabolic syndrome.17 Recent research has 

shown that obesity may also be accompanied by various health risks in domains other than 

the well-known cardiovascular and related chronic diseases, including cognitive 

impairments,18 dementia19,20 and Alzheimer's disease,21 indicating that obesity is associated 

with a wide range of adverse health effects. Obese individuals may also have  physical 

limitations interfering with normal activities of daily living, such as climbing stairs or 
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carrying groceries.22-25

The ultimate consequence of the health risks associated with obesity is premature 

mortality as demonstrated in several studies.23,26-31 A collaborative analysis of 57 cohort 

studies and >900,000 participants suggested that obesity increases premature mortality risk 

by 30% compared to normal weight.29 It has been argued that the increasing prevalence of 

obesity (see below) and the associated premature mortality may begin to adversely affect 

population life expectancy.32-35 For example, Olshansky and colleagues32 estimated that the 

current prevalence of obesity has already cut 0.3-1.1 years from the population life 

expectancy in the United States.

Obesity has become increasingly common in many countries over the last decades, 

which is why obesity is widely considered to be one of the most serious global health 

problems.1,3,36-43 Although obesity is sometimes seen in the public arena as a "disease of 

affluence" assumed to affect mostly modern Western societies characterized by sedentary 

lifestyles and excessive food consumption, the obesity epidemic is not restricted to 

developed countries.41 According to the statistics of the World Health Organization,1,44 sub-

Saharan Africa is the only region in the world where the prevalence of obesity has not 

increased in recent decades, although the rates of obesity in developing countries and 

certain parts of the world, Asia and Africa in particular, are considerably lower than in 

Europe and United States.44 

Between 1980 and 2002 the prevalence of obesity in Britain increased three-fold, with 

23% of men and 25% of women being obese at the beginning of the 21th century.45 In 

Europe, the proportion of obese people varies between 4.0% and 28.3% in men and between 

6.2% and 36.5% in women,46 suggesting substantial variation between countries. Britain has 

the third-highest obesity prevalence in Europe, after Greece and Malta44 but still has lower 

obesity prevalence than the United States where one-third of adults (34%) are obese.47 

Assuming that the future development of obesity in the United States continued at the same 
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rate as to date, it has been estimated that all Americans would be overweight or obese by 

year 2048.48,48 However, most recent data suggests that the increasing obesity trend in the 

United States might be levelling off or at least slowing down.40,47 Evidence of such a 

decelerating trend has not yet been reported for any European country. 

The public health relevance of obesity has clearly increased over the recent decades, and

it is gaining increasingly more attention. Empirical data demonstrating the physical health 

risks related to obesity date back already to the early 20th century. In the United States in 

the 1920's, the Metropolitan Life Insurance Company began to charge higher insurance rates 

for overweight than normal-weight individuals because the company’s actuarial data 

showed elevated mortality risks in the overweight.49 The issue of obesity and the public 

health was first brought up in modern epidemiological context by Lester Breslow who, in a 

brief paper published in 1952,49,50 drew attention to the health consequences of the increasing

prevalence of overweight in the United States - at a time when obesity was still rare by 

modern standards. Already at that time the paper predicted that obesity was becoming an 

increasingly relevant factor in determining population health.

1.2. Common mental disorders as a public health
concern

Depressive and anxiety disorders are considered to be among the most detrimental 

mental health problems affecting large numbers of community-dwelling individuals.51-55 

There is substantial comorbidity between disorders of depression and anxiety; 50%-60% of 

individuals with a life-time history of major depression also have a lifetime history of at 

least one anxiety disorder.56 Accordingly, self-reported mental health problems in general 

populations and community samples are often characterized by co-morbidity between 

symptoms of depressive episodes, neurotic disorders and stress-related disorders.57-60 While 

clinical interviews and diagnostic criteria can be used to discriminate between symptoms of 
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depressive and anxiety disorder in psychiatric practice, self-reported symptoms are often 

too heterogeneous to be reliably measured by specific subscales of depression and anxiety 

due to the considerable overlap between them. In other words, most of the variance in self-

reported measures of depression, anxiety, and stress-related symptoms reflects a single 

underlying factor of general psychological distress.61-67

The concept 'common mental disorders' (CMDs) refers to symptoms of psychological 

distress that cause emotional disturbance and significant impairment in daily living.60,68 The 

core components of CMDs are symptoms of depression (low mood, loss of interest, inability 

to enjoy normal activities), anxiety (excessive worry, panic, phobias), and stress (inability to 

concentrate, irritability, sleep problems, somatic symptoms, fatigue). CMDs can be assessed 

using psychiatric interviews (e.g., the revised Clinical interview Schedule, CIS-R) or self-

administered screening instruments, such as the General Health Questionnaire (GHQ;58). 

In the general population, CMDs are considerably more common than major psychiatric 

disorders, increasing their relevance to public health. The prevalence estimates for CMDs 

vary depending on the cut-offs used to define clinically significant CMD. In the 2007 British 

Psychiatric Morbidity Study68 CMDs were assessed with the CIS-R interview. Clinically 

significant CMD was defined as a score of 12 or more on a scale from 0 to 49, a score 

between 12 and 17 indicating clinically significant CMD unlikely to need treatment and a 

score of 18 or more indicating severe CMD requiring treatment. 12% of men and 18% of 

women suffered from CMDs, and approximately half of these cases were evaluated to be in 

need of treatment for mental health (6% in men, 9% in women). Based on commonly used 

cut-off values for the GHQ (a score of 3+ with the 12-item GHQ or 5+ with the 30-item 

GHQ), the prevalence of CMDs is often estimated to be higher, around 25% in the British 

population.69,70  

Although CMDs may not always be severe enough to meet clinical significance 

requirements in terms of psychiatric diagnosis, even minor CMDs have been shown to be 

associated with important health consequences. Mixed depression-anxiety disorder is 
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estimated to cause one fifth of days lost from work in Britain,53 and symptoms of CMDs 

have been associated with problems in social relationships,71 increased risk of medical 

illnesses such as coronary heart disease,72-75 performance difficulties in everyday life,60 and 

elevated risk of premature mortality.76,77 Subclinical symptoms of CMDs increase the risk of 

developing a clinically diagnosable psychiatric disorder in the future.60,78,79 Thus, CMDs are 

important indicators of mental health status because they cause psychological and 

functional impairments and because they predispose individuals to develop more severe 

psychiatric problems. 

1.3. Link between obesity and common mental
disorders

Given the public health importance of both obesity and CMDs, understanding the 

nature of the relationship between these two conditions is crucial and could potentially 

inform prevention and treatment of both obesity and CMDs. Although research interest in 

the mental health implications of obesity has emerged much later than interest in the 

medical risks associated with obesity,80 a number of studies in the health psychology and 

public health literature have examined the topic, with increasing interest over the last two 

decades. 

Body height and weight, as well as some measures of mental health, are almost 

routinely assessed in health surveys, so cross-sectional data on the association between 

obesity and various mental health indicators from these surveys are plentiful. de Wit et al.81 

estimated the pooled effect size of the obesity-depression association, derived from 17 

studies and 204,507 participants, to be OR=1.18 (CI=1.10-1.37, p=0.04) when including all the

studies and OR=1.26 (CI=1.17-1.36, p<0.001) when excluding two studies considered to be 

outliers. Five studies had carried out the analysis with men and women combined, and 3 of 

these reported a significant positive association between obesity and depression. Of the 11 
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studies examining the association separately by sex, 8 reported a significant positive 

association in women, and 3 reported a significant positive association in men. The 

association appeared to be stronger in women (OR=1.31, CI=1.27-1.40) than in men 

(OR=1.12, CI=0.96-1.30), although the statistical significance of the sex difference was 

marginal (p=0.06). In almost all the studies included in the meta-analysis, confidence 

intervals for the odds ratios were larger for men than for women, possibly reflecting lower 

number of men in the samples or lower prevalence of depression in men leading into greater

measurement imprecision. In addition, the meta-analysis demonstrated more heterogeneity 

between studies among men than among women, suggesting that the obesity-depression 

association in men may be more contingent on modifying factors than that in women.81 The 

meta-analysis was unable to give more detailed clues on the potential factors accounting for 

the heterogeneity in men. 

Atlantis and Baker82 reviewed 20 cross-sectional studies, and concluded that studies 

from the United States often find significant associations between obesity and depression, 

particularly in women, while studies from other countries are less conclusive. In the World 

Mental Health Survey of 62,277 adults from 13 countries,83,84 obesity was associated with a 

modestly higher risk of depression (assessed with the Composite International Diagnostic 

Interview, CIDI 3.0) with an overall OR=1.1 (CI=1.0-1.3), although the association was not 

statistically significant in many of the countries when assessed separately.

Gariepy et al.85 report a meta-analysis of obesity and anxiety disorders in 2 prospective 

studies and 14 cross-sectional studies. There is some overlap in the included studies between

their meta-analysis and those of de Wit et al.81 and Atlantis & Baker82 because some of the 

studies included more than one measure of CMDs. In Gariepy's meta-analysis, the cross-

sectional data suggested a heightened risk of anxiety disorders in obese individuals 

(OR=1.40, CI=1.23-1.57), with no differences between women and men.  

Friedman and Brownell80 provide a historical review of research examining the 

- 15 -



psychological correlates of obesity. They divide the research program into three 

"generations" of studies, all reflecting somewhat different approaches to the issue. 

According to the authors, the first generation of studies was interested in identifying 

psychological differences between obese and non-obese individuals. These studies were 

primarily based on small-scale case-control designs that compared obese with non-obese 

participants. The second generation of studies began to explore risk factors for mental health

problems within obese individuals. The purpose of these studies was to identify factors 

placing obese individuals at risk of psychological problems and thereby explaining why 

some obese individuals suffer negative psychological consequences whereas others do not. 

Importantly, both the first- and second-generation studies were based mainly on cross-

sectional designs. The studies reviewed by de Wit et al.81 and by Atlantis and Baker82 mainly 

illustrate these early-generation studies of obesity and mental health.

In the 1995 review of Friedman and Brownell,80 the authors envisioned a third 

generation of studies extending earlier research on obesity and depression. The aim of these 

studies was to establish causal links between obesity, depression, and other risk factors 

related to the two. Because most of the evidence at the time was based cross-sectional, the 

authors concluded that “it is apparent from this discussion that little information exists on 

the presence or absence of causal relationships between obesity and psychopathology” 80 (p. 

16). During the 16 years since the publication of Friedman and Brownell's review, there have

been an increasing number of longitudinal studies examining the association between 

obesity and CMDs. Longitudinal studies cannot yet establish causal associations with the 

same degree of certainty as randomized controlled trials, but the presence or absence of 

specific longitudinal associations should provide a better understanding of how obesity and 

CMDs may be associated with each other over time.

The two following chapters review prospective studies of obesity and CMDs examining 

whether obesity predicts later risk of CMDs (Chapter 2) and whether CMDs predict later 
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obesity risk (Chapter 3). Current evidence suggests that the psychological correlates of 

obesity are not specific to depression or anxiety but extend to general psychological 

distress,86,87 so the associations should not be strongly dependent on the measure of CMDs 

used in the study. Therefore, the following reviews of prospective studies include all 

available research reports irrespective of the specific measure of CMDs. Both chapters also 

briefly review the plausible mechanisms suggested to explain the influence of obesity on the 

development of CMDs, and vice versa. Some but not all of these mechanisms are examined 

empirically in the present thesis. 

Following Chapters 2 and 3 reviewing the prospective studies of obesity and symptoms 

of CMDs, Chapter 4 considers factors that may modify the bidirectional associations 

between obesity and CMDs. As described above, the idea that obesity may be associated 

with detrimental mental health consequences only in some obese individuals has already 

been explored in the early studies of the psychological correlates of obesity.80 The meta-

analysis of de Wit81 found substantial heterogeneity between studies of obesity and 

depression, particularly in men, suggesting that the associations may vary in strength 

between specific subpopulations. Stratifying individuals according to such moderating 

factors may help to explain some of the inconsistent findings arising from previous 

literature. Chapter 4 concentrates six factors, age, sex, socioeconomic status, chronicity of 

obesity/CMD, and time-period effects, as the most promising candidates for potential 

moderator variables.
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Chapter 2. Obesity as a cause of common
mental disorders – Literature review of
previous studies and plausible
mechanisms

2.1. Prospective studies of obesity and common mental
disorders

Three prospective studies from the Alameda County Study, a prestigious cohort study 

in the United States, have explored the association between obesity and new onset of 

depression among adults of 50 years or older with no previous history of depression 

(n=1739 to 2298) using 1-year88 and 5-year89,90 follow-up periods. Depression was assessed 

using self-reported depression symptom inventory adapted from the PRIME-MD checklist. 

In the first study with a 1-year follow-up,88 obesity was associated with an increased risk of 

depression incidence (OR=1.73; CI=1.04, 2.87). This result was replicated in the two later 

studies with 5-year follow-ups,89,90 so that obesity increased the risk of incident depression 

by OR=1.79 (CI=1.06, 3.02) and by OR=1.48 (CI=0.96, 2.28). Although from the same study 

with the same follow-up, the difference between the two latter estimates reflects the 

differences in the set of covariates adjusted in the analysis. Both studies controlled for age, 

gender, education, marital status, social support and negative life events, but only the latter 

association was additionally adjusted for chronic medical conditions, difficulties with usual 

activities of living, physical activity, and financial strain.88 Given that the studies examined 

only new cases of depression, the findings provide evidence for obesity being associated 

with increased risk of incident depression.
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The Northern Finland 1966 Birth Cohort Study91 explored the association between 

adolescent obesity assessed at age 14 and depressive symptoms (Hopkins Symptom Check-

list-25 questionnaire) assessed 17 years later at age 31 (n=8451). Obese adolescents had a 

higher risk of exhibiting depressive symptoms as adults. This association was somewhat 

stronger in men (OR=1.97; CI=1.06, 3.68) than in women (OR=1.55; CI=0.93, 2.59). However, 

as depressive symptoms were not assessed at baseline, it was not possible to exclude al-

ternative explanations, such as childhood or adolescent depressive symptoms increasing 

adolescent obesity rather than adolescent obesity increasing the risk of later depression. 

To date, the largest study to examine the prospective association of obesity with later

CMDs is probably the Nord-Trondelag Health Study (HUNT) with 44396 participants and 

an approximately 10-year follow-up period between 1985-6 and 1995-7.92 Height and weight 

were measured in a medical exam and depressive symptoms at follow-up were self-reported

with the 14-item Hospital Anxiety and Depression Rating Scale (HADS). Of the 14 questions 

of HADS, 4 were also included in the baseline questionnaire, which allowed the researchers 

to adjust for baseline symptoms assessed with the brief version of the HADS. In models 

adjusted for baseline HADS, sociodemographic factors, and health behaviors, baseline 

obesity predicted increased risk of depression in the total cohort (OR=1.29, 1.14-1.45). This 

association was slightly stronger in men (OR=1.41, 1.17-1.70) than in women (OR=1.21, 

1.03-1.41). Obesity also predicted symptoms of anxiety in the total cohort (OR=1.16, 

1.03-1.31) and in men (OR=1.50, 1.23-1.83) but not in women (OR=0.99, 0.85-1.15). 

Goodman and Whitaker93 examined the obesity-depression association in a sample of

9374 U.S. adolescents participating in the National Longitudinal Survey of Youth. 

Depressive symptoms were assessed with the CES-D self-report questionnaire. BMI was 

calculated from self-reported body weight and height. Over a 1-year follow-up, obesity did 

not significantly increase the risk of incident depression when baseline obesity was 

controlled for (OR=1.16, 0.81-1.65). Needham et al.94 applied latent growth curve modeling 
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in a sample of 4643 American young adults with repeated measurements of depressive 

symptoms. They observed no association between baseline BMI and later development of 

depressive symptoms over 20 years of follow-up. In the 1946 British birth cohort,95 

trajectories of BMI from adolescence to adulthood were not associated with adult-onset 

depressive symptoms, providing no evidence for the temporal order from high BMI to 

elevated risk of depression later in life. In a sample of elderly Americans with a mean age 72 

years (n=3981) followed for 3 years,96 there was an increased risk of depression associated 

with obesity (OR=1.76) but this relationship was too imprecisely estimated to be reliable 

(CI=0.47-6.57).  

Taking a slightly different approach than used in most studies, Gariepy et al.97 

examined both the prevalence and incidence of major depression in 10,545 Canadians 

participating in the National Population Health Survey. Obese individuals were 

approximately 1 percentage point more likely to be depressed in 6 of the 7 follow-up phases 

of their study (approximately 5% in obese vs. 4% in non-obese; see figure 1 in Gariepy et 

al.,97 exact odds ratios not reported in the article). However, when examining the incidence 

rather than prevalence of major depression with survival analysis, obesity was associated 

with a lower risk of incident depression in men (HR=0.71, CI=0.51-0.98) whereas no 

association was observed in women (HR=1.03, CI=0.84-1.26). This pattern suggests that the 

positive association between obesity and prevalence of depression may reflect a separate 

phenomenon to the effect of obesity on depression incidence, perhaps mediated by different 

mechanisms.  

In addition to the large studies reviewed above, several smaller studies (n<1000) 

have investigated the longitudinal association of obesity with CMDs. In a sample of 674 

American adolescents followed for 20 years, Anderson et al.98 observed obesity to be 

associated with a heightened risk for clinical depression in adulthood, OR=2.00 

(CI=1.00-4.01, p=0.05). In the Great Smoky Mountain Study of 991 children and adolescents 
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aged 9 to 16 years, Mustillo et al.99 examined how age-related growth trajectories of BMI 

were associated with the development of psychiatric disorders, including depression and 

anxiety, over a follow-up period of 8 years. Boys with chronic obesity (obesity at both of the 

two assessment times) were more likely than other boys to develop depressive disorder by 

the end of the follow-up period, while no association was observed in girls. 

In 544 mothers participating in the Children in the Community Study,100 obesity at 

age 27 predicted increased odds of major depressive disorder (OR=3.96, 1.23-12.74) and gen-

eralized anxiety disorder (OR=4.49, 1.21-16.69). Adjusting for race/ethnicity, education, 

financial situation, marital status, chronic diseases, social support, and baseline depressive 

symptoms strengthened these associations to OR=5.25 (1.41-19.58) and OR=6.27 (1.39-28.16), 

indicating a strong but imprecisely estimated association between baseline obesity and 

symptoms of depression and anxiety assessed 22 years later. In a Finnish study101 of meta-

bolic syndrome and depressive symptoms in adults (n=688, 7-year follow-up), obese indi-

viduals not depressed at baseline were more likely to have depressive symptoms at follow-

up compared to those with normal weight (22% vs. 14%), although this difference was did 

not reach statistical significance at conventional levels (p=0.09). Waist circumference was 

also positively but non-significantly associated with depressive symptoms in men (OR=1.3, 

0.5-3.5) and women (OR=1.4, 0.7-2.8). The Maastricht Aging Study102 followed 1169 adults 

and examined whether overweight (or continuously measured BMI) at baseline predicted 

depressive symptoms assessed with the CES-D after 6 years of follow-up. Overweight indi-

viduals had higher depression score at follow-up (mean=8.6, SD=7.0 vs. mean=7.5, SD=6.4) 

but the association between overweight and depression risk was not significant in a model 

adjusted for health behaviors (smoking, alcohol consumption, physical activity), OR=1.11 

(0.75-1.61).

Luppino et al.103 performed a meta-analysis with 15 prospective studies that assessed 

the bidirectional association between obesity and depression. Of the 8 studies used to obtain 
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a pooled estimate of baseline obesity in predicting future depression risk, 5 reported a 

statistically significant positive association between obesity and depression. The overall 

estimate suggested that obesity at baseline increases the odds of later depression by 55% 

(22% to 98%). The association was slightly but not significantly stronger in studies with 

more than 10-year follow-up compared to studies with less than 10-year follow-up (OR=1.72

vs. OR=1.26; p for difference p=0.24), and when depression was assessed with clinical 

interview compared to self-reported depressive symptoms (OR=2.15 vs. OR=1.36; p=0.05). 

Studies in the United States produced stronger associations than studies in European 

countries (OR=2.12 vs. OR=1.33; p=0.05). There was also some suggestion of a stronger 

association in samples with mean age above 60 years compared to studies with mean age 

between 20 and 59 but this difference was not significant (OR=1.98 vs. OR=1.34; p=0.52). 

There was no significant sex difference in these associations (OR=1.31 in men, OR=1.67 in 

women; p=0.81).  

2.2. Plausible mechanisms
Several mechanisms possibly explaining the association between obesity and increased 

risk of CMDs have been suggested, including limited physical functioning and pain, stigma 

and discrimination, and negative self-image. 

2.2.1. Limited physical functioning and bodily pain
Obesity tends to induce physical and functional limitations in daily life.22,25,104 Obesity

also increases the risk of developing disabling bodily pain, particularly in the knee 

joints.105-107 Accordingly, obese people report worse health-related quality of life than normal 

weigh people.108-110 Functional impairment and bodily pain, in turn, are known to increase 

the risk of depressive symptoms,111 so it is plausible that functional limitations and bodily 

pain in part explain the influence of obesity on the development of CMDs. 
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2.2.2. Stigma and discrimination
A number of studies have shown that obesity is perceived negatively, or stigmatized, in 

many contemporary societies, and that most people have negative attitudes about 

obesity.112-116 These attitudes are internalized from early on. In a study of obesity stereotypes,

3-year-old children rated “chubby” target figures more negatively than otherwise similar 

figures that were thin or average weight.117 In another study, 6-year-old children rated 

silhouettes of overweight children more negatively than normal-weight silhouettes.118 

Similar findings have been obtained in studies of adolescents and adults, including people 

who are obese themselves.119-122 Medical professionals also tend to have negative attitudes 

toward obese individuals.123 The negative connotations related to obese individuals appear 

to be “contagious”. In an experimental study, male job applicants were rated less favourably

if they had been seen in the company of an obese woman than if they had been seen to 

interact with an average-weight woman, regardless of whether the subjects rating the 

applicants thought that the obese woman was a stranger or a romantic partner of the 

applicant.124

Owing to the average "anti-obesity" attitudes and perceptions, obese people are more 

likely than non-obese to face bullying, discrimination, and mistreatment from strangers, 

acquaintances, and intimates.113,115,116 In the National Survey of Midlife Development in the 

United States (MIDUS) study,125,126 obese individuals were more likely than normal-weight 

individuals to report having been rudely treated by strangers, acquaintances, and 

professionals with whom they had interacted. In employment settings, obese individuals are

less likely than non-obese individuals to be selected for a job or getting promoted, and more 

likely to be discharged and disciplined.127 Overweight children have been shown to receive 

less financial support for college from their parents than normal-weight children even when 

controlling for parental and child characteristics potentially confounding the association, 
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such as parental income, ethnicity, family size, and child’s grades.116 Such adverse effects 

appear to be less severe in subcultures and societies where obesity is less stigmatised, e.g., in

certain ethnic groups.115,119,121 In sum, discrimination and stigmatization of obesity can 

become expressed in various ways in the daily life of obese people, and the cumulative 

effect of such experiences may increase the risk of mental health problems, potentially 

explaining why obesity predicts CMDs.

2.2.3. Negative self-image and health perceptions
The social stigma and discrimination discussed above reflect the reactions and behaviors

of other people, and their influence on the mental wellbeing of obese vs. non-obese 

individuals. Explanations of the obesity-depression association have also emphasized the 

role of obese individuals' own perceptions of themselves.80,122,128,129 Overweight and obese 

people tend to be less satisfied with their body size and shape,128 and internalization of a 

negative self-body image and obesity stereotypes may predispose to the development of 

depression.128,129 The body image hypothesis is strengthened by studies demonstrating that 

such self-related perceptions may increase the risk of psychological distress regardless of 

actual body weight.130 In a cross-sectional study of Australian adults, persons who perceived

themselves as overweight had higher psychological distress than those who considered their

body weight to be within acceptable range, even when actual body weight was adjusted 

for.130 Weight perception itself was a more important predictor of psychological distress than

weight misperception, i.e., the discrepancy between perceived and actual weight. The 

authors of the study suggested that people's perceptions of their weight status may induce a 

positive correlation between obesity and psychological distress. 

Some researchers have suggested that weight perceptions may not only contribute to

negative body image but also affect subjective perceptions of poor health more generally.86,131

Obese individuals who perceive their general physical health to be poor, e.g., because of the 
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functional limitations they encounter in daily life or the knowledge of medical illnesses asso-

ciated with obesity, may develop more generalized beliefs of ill health that adversely affect 

their mental health. For instance, people with excessive body weight may believe that they 

are unable to engage in certain occupations or leisure activities, or that they will not be able 

to have a long and fulfilling life, because of their obesity. Such perceptions of limitations and

constraints may trigger depressive symptoms and beliefs.86 Some researchers have argued 

that the recent media coverage of the obesity epidemic portraying obesity as a serious health

concern for individuals may perpetuate an assumption that being obese is dangerous and 

unhealthy in many respects.86 Internalization of such ideas of poor health may not necessari-

ly encouraged to better weight control, but can negatively affect obese people's self-image 

and thereby increase the risk of CMDs.

Another proposed mechanism related to self-perceptions of obese individuals 

concerns weight loss or control. Obese individuals are more likely than normal-weight 

individuals to diet in order to lose their weight.132 However, dieting rarely results in 

permanent decreases of body weight as most dieters tend to regain their weight soon after 

they stop dieting.133 Repeated dieting attempts, dieting failures, and subsequent weight 

cycling, may increase levels of psychological distress by making individuals feel like 

failures.134 Most people’s memories of dieting tend to be negative,135 and failures to uphold 

the diet also induce negative emotions.136 Furthermore, being on a diet may itself increase 

psychological distress, because very low-calorie diets have been associated with 

irritability.137 Caloric restriction may be particularly harmful to individuals vulnerable to 

depression, as evidenced by a study showing impaired regulation of brain serotonin 

functioning in response to dieting among women with a history of depression.138 Thus, 

failed attempts to lose weight may result in heightened psychological distress and negative 

perceptions of the self, which in turn may increase the risk of developing CMDs.134
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Chapter 3. Common mental disorders as
a cause of obesity – Literature review of
previous studies and plausible
mechanisms

3.1. Prospective studies of common mental disorders
and later obesity or weight change

At least four large-scale studies (n>1000) have examined whether depression predicts 

later risk of obesity. A study of 1037 adolescents living in New Zealand,139,140 assessed 

whether depression measured in early  (ages 11, 13, and 15) and late adolescence (ages 18 

and 21) predicted the risk of obesity at age 26. Body height and weight were measured in a 

medical examination, and depression was diagnosed based on the Diagnostic Interview 

Schedule. Adjusted for baseline obesity, depression in early adolescence was not associated 

with adult obesity risk in either sex (OR=0.50, 0.19-1.28). In contrast, depression in late 

adolescence was associated with heightened risk of adult obesity in women (OR=2.32, 

1.29-3.83) but not in men (OR=0.90, 0.37-2.02). In the Alameda County Study89 introduced in 

the previous chapter, obesity was associated with later depression but depression at baseline

did not predict obesity risk over a 5-year follow-up period when obesity at baseline was 

adjusted for (OR=1.32, 0.65-2.69). In a sample of 9374 adolescents from the U.S. Add Health 

study, depressed mood at baseline (measured with the CES-D self-report inventory) was 

associated with an 2.05-fold (1.18-3.56) increased odds of obesity when adjusted for baseline 

BMI.93 

In the University of North Carolina Alumni Heart Study (n=4726; 82% men), symptoms 

of depression were assessed measured using the self-administered depression subscale of 
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the MMPI (Minnesota Multiphasic Personality Inventory) at the mean age of 18 years, and 

body weight and height were measured in a medical examination after 20 years of follow-

up.141 There was a complex interaction effect between baseline depression and BMI in 

predicting subsequent weight gain. Depressed participants who were initially lean gained 

less weight than lean participants who were not depressed. Conversely, depressed 

participants who were initially heavy gained more weight than heavy participants who 

were not depressed. In other words, depression strengthened the baseline differences in 

weight status.141

In the Zurich Cohort Study142-144 of 591 participants aged 19 at baseline and followed for 

20 years, high depression scores on the Symptom Checklist 90-R at age 19 increased the risk 

of adult obesity in women (baseline BMI adjusted HR=11.52, SE=1.24 in a proportional 

hazards model predicting the crossing the obesity threshold at follow-up phases) but not in 

men (HR=1.10, SE=0.66). Despite the absence of association for obesity in men, baseline 

depression was associated with a more rapid weight gain over time in both men and 

women.143,144 

In a sample of 800 Swedish women aged 38 to 54 years,145 higher scores of baseline 

HAM-D depressive symptoms were associated with greater weight gain over a period of 6 

years (more than 5kg vs. less than 5kg weight gain). By contrast, in the U.S. National Health 

and Nutrition Examination Survey,146 having a high depressive symptoms score assessed 

with the CES-D inventory was associated with 3kg greater weight gain in men compared to 

non-depressed men, but modestly reduced weight gain in women in a sample of adults less 

than 55 years of age. However, among women and men aged over 55 years, who on average 

lost rather than gained weight over the follow-up period, baseline depression was associated

with additional weight loss. 

Several studies have examined whether the associations between body weight and 

depression are observed already in childhood or adolescence, or whether the associations 
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emerge only in adulthood. A study of 644 American adolescents examined the association of

adolescent depression measured at baseline (average age 14 years) in a clinical interview 

with obesity measured on the basis of self-reported data on body weight and height 9 years 

later.147 Adolescent depression was associated with higher odds of obesity at an average age 

of 22 in the total sample (OR=1.75, 1.23-2.49). The association was stronger in women 

(OR=3.06, 1.91-4.91) than in men (OR=1.46, 0.78-2.74). Baseline depressive symptoms 

predicted greater BMI increase over the 9-year follow-up period into adulthood, but the 

effect was relatively modest and was lost when adjusted for covariates. In a smaller study148 

of sex-matched groups of children and adolescents aged 6-17 years with major depression (n

= 90) vs. those with no psychiatric disorders (n = 87), the participants diagnosed with major 

depression had significantly higher BMI in young adulthood 10-15 years after baseline than 

those with no diagnosed depression (mean BMIs of 26.1 vs. 24.2, respectively). 

At least one study has investigated the determinants of weight gain in a group of 6-12-

year-old children who were at a risk for developing obesity due to being overweight or 

having an obese parent.149 In these children, depressive symptoms (assessed with the 

Children’s Depression Inventory) were unrelated to weight gain over a four-year follow-up. 

In a sample of American adolescent girls,150 severe depressive symptoms (assessed with the 

Expanded Form of the Positive and Negative Affect Schedule) predicted an increased risk of

obesity onset over a 4-year follow-up period with an unadjusted OR=4.62 (1.67-12.74) and 

an adjusted OR=2.32 (0.62-8.65) in a model including dietary patterns and parental obesity. 

In the meta-analysis of Luppino et al.103 cited in Chapter 2, 4 of the 9 included studies

assessing the prospective association between baseline depression and subsequent risk of 

obesity reported a positive association. The overall odds ratios pooling the results of the 9 

studies together indicated a 58% increased odds of obesity associated with depression 

(CI=33% to 87%). The association was stronger but not significantly so in women (OR=2.01, 

1.11-3.65) than in men (OR=1.43, 0.96-2.13), p=0.50 for sex difference. No substantial 
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modifying effect was observed for duration of follow-up (OR=1.43, 1.13-1.81 for studies with

shorter than 10-year follow-up; OR=1.76, 1.35-2.25 for studies with longer than 10-year 

follow-up), method of depression diagnosis (clinical assessment OR=1.71, 1.33-2.19; self-

reported symptoms OR=1.48, 1.17-1.87), age at baseline (odds ratios in age groups of <20, 

20-60, 60+ between OR=1.27 OR=1.76) or country of origin (OR=1.49, 0.97-2.28 for European 

studies; OR=1.61, 1.29-2.01 for American studies). 

A meta-analysis by Blaine151 pooling together data from studies examining the 

prospective association between depression and subsequent risk of obesity or weight gain 

included 17 studies, of which 11 reported a positive association. The pooled estimate, 

OR=1.19 (1.14-1.24), showed no significant sex difference (OR=1.34, 1.14-1.58 in men; 

OR=1.26, 1.20-1.32 in women). However, in contrast to the meta-analysis of Luppino et al.,103 

the association of depression with later obesity risk or weight gain was stronger in 

adolescent samples than in adult samples (OR=2.31, 2.06-2.58 vs. OR=1.08, 1.03-1.13). A 

strong association between adolescent depression and subsequent risk of overweight was 

also described by a narrative literature review of Liem et al.,152 in which the results of 4 

longitudinal studies meeting the quality criteria of the review93,148,149,153 indicated a 

heightened risk, OR=1.9 to OR=3.5, of overweight associated with adolescent depression.

3.2. Plausible mechanisms
As in the case of obesity influencing the risk of CMDs, a number of explanations for the in-

fluence of CMDs on weight gain and the development of obesity have been proposed, but 

the empirical evidence for these mechanisms remains scarce. This section reviews the most 

prominent mechanisms suggested to account for the influence of CMDs on increased obesity

risk. These include psychosocial stress; poor health behaviors, especially dysfunctional eat-
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ing patterns and decreased physical activity; low self-efficacy and social support; and obeso-

genic side-effects of antidepressant medications.

3.2.1. Psychosocial stress
Psychosocial stress is thought to be a central risk factor in the onset of depression.154-157 

Negative life events, including unemployment, illness, divorce, or loss of a significant 

other,158-161 and the lack of psychological and social resources to cope with such adverse 

circumstances,162-166 have been shown to often precede the onset of a depressive episode. 

Stressful experiences in childhood and adolescence can also predispose to the development 

of depression in adulthood.167,168 

Psychosocial stress has also been implicated as a risk factor for weight gain and 

obesity.169-172 This association might be mediated by both behavioral and physiological 

mechanisms. Behaviourally, stress may adversely affect health behaviours that increase the 

risk of obesity, e.g., by making individuals eat more unhealthy snack food for comfort173-176 

and decrease levels of physical activity.177,178 Physiologically, stress involves metabolic 

changes that may enhance the rate of energy reservation in fat cells.170 A repeated and 

chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis indexed by increased 

secretion of cortisol has been suggested to increase fat accumulation and the risk of 

abdominal obesity.170,179-183 

The development of obesity and depression may share a common neuroendocrine 

basis,184,185 as depression is characterized by dysfunctional HPA axis activation and related 

neuroendocrine mechanisms underlying the stress response,186-189 such as chronically 

elevated cortisol levels. These neuroendocrine correlates of depression are often manifested 

as elevated reactivity to stress.187,190 Failure to regulate the HPA response appears to elevate 

the risk of relapse among clinically depressed patients.187 It has been suggested that 

antidepressants may exert their beneficial effects on mental health via regulation and 
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normalization of the HPA response in stressful circumstances.190 Given that these 

physiological pathways have also been demonstrated to modulate the rate of energy 

reservation and fat accumulation,170 it is possible that depression increases obesity risk via a 

common underlying physiological mechanism.184,185 There is some evidence of abnormal 

HPA axis hormone concentrations among obese people with and without co-existing 

depressive symptoms, and among obese people with binge eating disorder.184,185 

3.2.2. Unhealthy behaviours 
Whether related to psychosocial stress discussed above, or not, various health behaviors 

have been suggested to mediate the influence of CMDs on obesity risk. People with CMDs 

are more likely than their CMD-free counterparts to be physically inactive93,177,178,191,192 which, 

in turn, increases the risk of developing obesity.193-195 Increased alcohol consumption and 

smoking may also help to explain why CMDs would increase obesity risk, as some 

individuals suffering from CMDs may try to cope with the nervousness and stress with the 

help of alcohol196 or smoking.197

Adverse dietary patterns contributing to obesity development may be expressed as 

minor unhealthy choices of foods or as more severe forms of eating disorders. For some 

individuals, the negative mood associated with CMDs can be alleviated with the 

consumption of "comfort foods" that tend to include calorie-rich snack food rather than 

vegetables and fruits.174-176,198,199 In the long run, using comfort foods as a coping strategy to 

regulate negative mood associated with CMDs may lead to weight gain. In others, CMDs 

are associated with more severe forms of eating disorders, either over- and under-

consumption.86,151,174,175,200-202 Binge eating is defined as eating abnormally large amounts of 

food in a discrete period of time, accompanied by a sense of lack of control over eating 

during the binge eating episode.201 Negative mood has been shown to precipitate episodes of

binge eating,175,198 and binge eaters tend to eat in response to negative mood.136,203 Given the 
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comorbidity between CMDs and binge eating disorder,204,205 individuals with a binge eating 

disorder also often have CMDs, which may increase their exposure to negative mood. The 

tendency to over-eat in response to psychosocial stress may lead to the development of 

obesity in binge eaters who frequently have to cope with symptoms of CMDs.

In addition to the health behaviors discussed above, CMDs often involve sleep 

disturbances and insufficient sleep. Short sleep duration has been shown to increase 

BMI,206-209 perhaps mediated by disturbances in cortisol secretion,210 although not all studies 

have observed this association in longitudinal analysis 211. The temporal association between

obesity and sleep disturbances may also flow in the opposite direction, obesity causing sleep

problems,212 in which case sleep problems might mediate the effects of obesity on the 

development of CMDs.

In addition to the unhealth behaviours described above, symptoms of CMDs may also 

lead to heightened functional limitations and bodily pain which, in turn, may increase the 

risk of weight gain due to decreasing physical activity (cf. the opposite direction of causality 

involving physical functioning and bodily pain in section 2.2.1). However, this mediational 

pathway appears unlikely because prospective studies have found little if any evidence for 

depression causing bodily pain or functional limitations related to physical constraints.213,214 

Thus, physical limitations and bodily pain are more likely to mediate the effects of obesity 

on CMDs (see section 2.2.1) rather than vice versa.

3.2.3. Low self-efficacy and social support
In addition to reflecting negative mood and emotional symptoms, CMDs are often 

include a cognitive component related to negative thoughts and attitudes toward the self. In 

particular, individuals suffering from depression and anxiety tend to have low self-efficacy, 

defined as a person’s judgement about her or his abilities to achieve goals and to overcome 

challenges 215-217. In the context of obesity and weight control, low self-efficacy reduces a 
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person’s expectancies of successful weight management, leading to increased risk of 

developing obesity.218,219 Obese individuals tend to have lower weight-related self-efficacy, 

and in participants of weight loss programs, individuals with low weight-related self-

efficacy are less successful in losing weight during the program.218 In fact, subjectively 

predicted weight loss in individuals who are trying to lose weight is a good predictor of 

actual weight loss,220 which may explain why individuals with CMDs, and thereby low self-

efficacy, have a greater risk of weight gain and obesity.

CMDs may not only undermine an individual's personal perceptions of self-efficacy, 

but in the long run also reduce the social support they receive from other people. CMDs 

have been shown to increase risk of strain and erosion of social support provided by friends,

family members, and relatives.221 Social support, in turn, is an important determinant of 

health,162-166 and in the context of weight management, high social support from others has 

been associated with more successful attempts of weight loss.222 Weight loss programs em-

ploying help from friends and significant others are more successful than programs based 

only on the input of the individuals attempting to lose weight.223 Social support has also 

been demonstrated to sustain the maintenance of weight loss over time.224,225 Persons suffer-

ing from CMDs, and who therefore have less social support from friends and family, may 

therefore be less able and motivated to control weight, which increases their risk of develop-

ing obesity.

3.2.4. Antidepressant use
Commonly used pharmacologic treatments for depression and anxiety disorders may 

have side-effects that result in weight gain, weight loss or both, depending on the individual

and the length of treatment, among other factors.226-230 Many psychotropic drugs with 

antipsychotic, mood stabilizing, and antidepressant properties are associated with weight 

gain. Among antidepressants, at least amitriptyline and mirtazapine, and the antipsychotic 
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drugs chlorpromazine, clozapine, and olanzapine may also cause weight gain. Minimal 

weight gain and decreases in appetite have been associated with the commonly used 

selective serotonin reuptake inhibitors.231 Other psychotropic drugs, such as fluoxetine, 

isocarboxazid, nefazadone, topiramate, and psychostimulants, in turn, may cause weight 

loss. However, a review of the literature found that for most antidepressants the average 

effects on subsequent weight change are unclear, and that these may depend on the specific 

drug, the dosage, and the duration of treatment.231 Thus, although antidepressant use is 

often suggested as a plausible mechanism accounting for the association between CMDs and

obesity, the variability of the weight response to antidepressants and the low prevalence of 

antidepressant use among individuals with CMDs (between 3% and 6% depending on age 

group, see232) seem to suggest only a minor role for antidepressants in explaining the overall 

association between CMDs and obesity.
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Chapter 4. Moderating factors in the
association between obesity and
common mental disorders

Given the potential mechanisms underlying the bidirectional association between obesity 

and CMDs, it is reasonable to hypothesize that the association is also moderated by certain 

factors. This is because the prevalence of the potential mediating mechanisms - and thereby 

the strength of the obesity-CMD association is likely to vary according to certain modera-

tors. The present thesis examines six prominent moderator candidates: age, sex, socioeco-

nomic status, chronicity of obesity, chronicity of CMDs and secular trends.  

4.1. Age
Studies of obesity and age show that the prevalence of obesity increases with age, at 

least until late middle age.233 In older ages, obesity rates may begin to decline, with little 

variation by gender or race.234-236 For instance, in the National Health and Nutrition 

Examination Survey the prevalence of obesity was higher among persons 45 and 64 years of 

age than those under 45 or over 65.233 Many people aged 75 and older may lose weight due 

to age-related loss of muscle mass or onset of disease and its treatment,237 decreasing BMI in 

old age. However, most of the data on development of BMI in old age is based on cross-

sectional data, in which age effects may be confounded by time period and birth cohort 

effects. 

CMDs often have an early onset, indicating that their incidence is highest in adolescence 

and young adulthood, and slows down thereafter.52 The prevalence of CMDs, by contrast, 
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increases between adolescence and middle age, and then decreases up to early old 

age.68,238-243 The data on the course of CMDs in old age after age 75 is limited and the results 

have been mixed; while some studies report lower prevalence of CMDs in old age,68 other 

studies have observed old age to be associated with increasing risk of depression and lower 

life satisfaction,244-248 suggesting that mental health may deteriorate in the very old after the 

improvement observed around the age of retirement.

The association between obesity and CMDs might either strengthen or weaken with age.

First, assuming that the influence of obesity on CMDs is mediated by bodily pain and 

limited physical functioning caused by chronic illnesses (see section 2.2.1), one would expect

the obesity-CMDs association to strengthen with age, because these correlates of obesity 

become increasingly common at older ages.25,249-252 In the meta-analysis of Luppino et al.,103 

there was a marginally significant moderating effect (p=0.07) for age when predicting 

depression risk in overweight/obesity vs. normal weight participants (OR=1.05, OR=1.48, 

and OR=1.77 for age groups <20y, 20-60y, and 60+, respectively) but this was not seen for 

obesity (ORs for the three age groups 1.70, 1.34, and 1.98; p for interaction p=0.52), 

providing only provisional evidence for a strengthening association.

On the other hand, the psychologically distressing effects of obesity may attenuate with 

age if the association between the two is driven by social stigma, discrimination, and 

negative self-image - assuming that the latter factors become less important for people’s 

mental health as they become older. In a sample of 9991 overweight and obese American 

adults,24 weight-related quality of life impaired with increasing age in domains of physical 

function, sexual life, and work, indicating the more severe physical strain caused by obesity 

at older ages. By contrast, increasing age was associated with fewer weight-related 

impairments in domains of self-esteem and public distress,24 suggesting that the 

psychosocial impairments, perhaps due to social stigma and negative self-image, may 

diminish with age. In another study,122 American men and women rated pictures of 
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individuals differing in age, sex, and body weight. The ratings included six dimensions: 

attractiveness, intelligence, happiness, job aptitude, success at relationships, and popularity. 

Obesity decreased ratings of attractiveness more strongly in young than in old people. 

Although such an interaction effect was not observed for other dimensions assessed in the 

study, the finding suggests that negative attitudes toward obese people may attenuate when

people are judging older people. 

Regarding the other direction of causality, the influence of CMDs on the development of

obesity, the possible age interaction appears to be the opposite to the results of the meta-

analysis103 cited above. In particular, there appears to be a difference between adolescents 

and adults on the one hand, and between younger and older adults on the other hand. In the

other meta-analysis assessing the effects of depression on obesity risk and weight change,151 

depression increased the risk of obesity more strongly in adolescents (OR=2.31, 2.06-2.58) 

than in adults (OR=1.25, 1.14-1.38). Of the 11 studies in adults, 5 provided evidence 

suggesting that depression increases the risk of obesity whereas 3 suggested that depression 

in associated with lower risk of obesity. Although there were too few studies to stratify the 

results according to the total age range, depression appeared to be associated with lower 

risk of obesity, or lower weight gain, especially in studies with older participants while 

positive associations between depression and later obesity were observed in younger adults.

Thus, the influence of CMDs on obesity risk may attenuate or even become reversed with 

age. In the meta-analysis of Luppino et al., there was no significant age interaction when 

depression was used to predict the risk of obesity (ORs 1.76, 1.27, and 1.40 for age groups 

<20, 20-60, and 60+). For the association between depression and overweight, there was 

some suggestion of attenuation with age (OR=1.43, 0.83-2.47 for age <20; OR=0.96, 0.81-1.41 

for age 20+) but this interaction was not statistically significant (p=0.22).
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4.2. Sex 
CMDs are almost twice as common in women as in men.68 Sex differences in obesity in 

Britain are modest (23% in men, 25% in women;45). Obesity is often assumed to be more 

psychologically taxing for women than men, and there is some empirical evidence to 

support this assumption.134,253,254 It has been argued that obese women are stigmatized and 

discriminated more than obese men, because appearance is more important for women than 

men, causing obese women to have poorer self-image and other psychological problems 

with their weight.112-115 However, many of the prospective studies reviewed above have 

reported similar associations between obesity and CMDs in both sexes,89,93 and some studies 

have reported stronger effects in men than in women.91,92,99 Evidence regarding sex 

differences in the prospective effects of CMDs on the risk of obesity also suggests similar 

effects in men and women.139,140 

In the meta-analysis by Blaine,151 the associations of depression with future obesity or 

weight gain were very similar in men (4 studies, OR=1.34, 1.14-1.58) and in women (11 

studies, OR=1.26, 1.20-1.32), and no significant sex differences in either directions of 

causality between obesity and depression were observed in the meta-analysis of Luppino et 

al.103 Thus, in contrast to the commonly held assumption that obesity and depression are 

more strongly related in women than in men, the empirical evidence to date suggests no 

substantial differences between the sexes. 

4.3. Socioeconomic status 
Obesity and CMDs are both related to socioeconomic status (SES) with the 

socioeconomically disadvantaged having higher rates of obesity and CMDs than their 

socioeconomically more advantaged peers 68,255-261. Given that obesity is less prevalent among

those with high SES, people with high SES are more likely to compare themselves with 
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leaner peer groups, on average, than people with low SES. Due to the higher social salience 

of obesity in groups with lower prevalence of obesity, obese people with high SES may be 

more stigmatized and they may perceive themselves more negatively than obese people 

with low SES.125,126,258 Indeed, there is some evidence to suggest that people with high SES 

hold more negative attitudes toward obesity than people with low SES.126,258 A similar 

hypothesis has been put forward to explain why obesity is often more strongly correlated 

with CMDs in White than in Hispanic or Black populations, as obesity is more common 

among the latter groups.262-265 If, on the other hand, CMDs cause obesity, it is possible that 

this effect is more easily observed among those with low obesity rates, such as people with 

high SES.87 Based on the assumption that obesity is stigmatized differently in different sub-

populations of the society, at least three studies have hypothesized that SES might modify 

the association between obesity and CMDs.

In the Midtown Manhattan Study of 1660 Americans aged 20 to 39 years,266 obesity 

was associated with higher risk of depression in women with high SES but with lower risk 

of depression in women with low SES, suggesting that obesity was mentally distressing only

for women with high SES. No effect modification by SES was observed in men. A similar in-

teraction effect was observed in the cross-sectional U.S. National Comorbidity Survey Repli-

cation (NCS-R) study of 9125 participants who were administered the World Health Organi-

zation Composite International Diagnostic Interview assessing a range of mental disorders.87

The association between obesity and mood disorders increased in strength with increasing 

educational level (ORs 1.10, 1.20, 1.42, and 1.44 from the lowest to the highest educational 

group). Unlike in the Midtown Manhattan Study, there were no sex differences in the inter-

action effect. 

In the U.S. National Health and Nutrition Survey, men with depressive symptoms 

on average gained 3kg more weight than non-depressed men.146 This association was 

stronger in men with less than 12 years of education than in men with higher education 
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(6.2kg vs. 1.2kg), suggesting a moderating effect for education opposite to that in the two 

studies above, and the presences of sex differences compared to the absence of sex differ-

ences in the Midtown Manhattan Study. 

4.4. Chronicity of obesity and common mental
disorders

Many of the psychiatric disorders tend to be chronic, and, after the initial onset, recurrent 

episodes later in life are highly likely.52,154 Chronicity and recurrence has been studied 

particularly in relation to major depressive disorder,267-272 as recurrent depressive episodes 

are known to progressively increase susceptibility to subsequent episodes. In one of the 

studies demonstrating this pattern,271 the risk of a future episode of depression increased by 

16% with each successive episode, and a commonly cited estimate suggests that 60% of 

individuals who become depressed for the first time will have another depressive episode, 

70% of individuals who have had two depressive episodes will have a third, and 90% of 

individuals with a history of three depressive episodes will have a fourth episode.154,155 The 

continuity of obesity has not been studied with the same methodological framework as 

recurrent depression, but longitudinal studies of BMI and obesity have demonstrated 

substantial stability of obesity over age.273

The severity of CMDs and obesity have been suggested to be moderating factors in the 

association between obesity and CMDs,274,275 so that associations might be strongest among 

those with severe psychological distress and morbid obesity, although empirical tests for 

this hypothesis remain scarce. Severity of obesity and CMDs is often conceptualized as 

extreme values of BMI and CMDs measured at one point in time. However, it may be more 

useful to consider severity in terms of temporal stability. Long-term obesity and chronic/

recurrent CMDs are likely to have different health consequences than those related to more 

temporary weight gain or psychological distress. 
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Two previous studies support the moderating role of chronicity in the association 

between obesity and CMDs for both directions of causality. In the study of New Zealand 

adolescents described earlier in section 3.1.,139 depression in early and late adolescence 

increased the risk of adult obesity in women. The prevalence of adult obesity increased 

linearly with the number of assessment periods at which the women were depressed. 

Among women who had not been depressed in any of the assessment periods, 10% were 

obese. The proportion of obese women increased to 16% among those who had been 

depressed in one assessment period, and to 21% among those who had been depressed in 

two or more assessment periods. In the Great Smoky Mountains Study99 obesity was 

assessed in childhood and adolescence, and the results showed that only chronic obesity 

(obesity at all the 4 measurement times across childhood and adolescence) was associated 

with increased depression risk 8 years later, while obesity in childhood or adolescence 

measured in one point in time was not related to depression risk. 

Similar results have been obtained in two smaller studies of bipolar disorder and weight

gain. In a small (n=50) sample of individuals with bipolar disorder,276 overweight and obese 

individuals had more previous recurring episodes of depression than normal-weight 

individuals. In a larger sample (n=175) of individuals with bipolar diagnosis,276 obese 

participants had more previous depressive and manic episodes, higher baseline depressive 

symptoms, and required more time in acute treatment to achieve remission from depressive 

episodes. Obese participants were also more likely than non-obese participants to experience

a recurrent depressive episode during the period of treatment maintenance, the time to 

recurrence also being shorter for obese than non-obese individuals. These two studies with 

small and non-representative samples thus suggest that obesity may be related to more 

recurrent episodes of depression. However, it is unclear how these results generalize to non-

patient samples because the reported patterns of weight gain may have been caused by 

medication or other disorder-specific associations related to bipolar disorder.
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4.5. Secular trends
As reviewed above, the increasing prevalence of overweight and obesity is well 

established,6,37,45,46,277-279 and the age-specific obesity rates appear to have increased with 

successively younger birth cohorts.280,281 Analyses of secular trends in CMDs have produced 

less consistent results.282 Early studies examining the time periods between 1970s and 1990s 

suggested increasing rates of depression in the United States,283 Sweden,284 and Britain285 but 

not in Finland286 and Canada.287 But these time-period effects, if accurate, do not seem to 

have continued after the 1990s. The incidence of diagnosed depression in the UK declined 

between 1993 and 2005.288 According to the British Psychiatric Morbidity Survey,68,289,290 the 

rate of CMDs has remained constant between 1993 and 2007, although the prevalence of 

'mixed anxiety and depressive disorder' increased by 14% between 1993 and 2000. 

Secular trends in the association between obesity and CMDs might be hypothesized 

especially if the association was driven by social stigma and discrimination. With an 

increasing number of people being obese today compared to 20 years ago,45 one could expect

that the adverse mental health effects of obesity would attenuate with time as overweight 

and obesity have become more common and thereby normalised in the society. On the other

hand, the obesity epidemic is increasingly considered as a serious health threat not only to 

obese individuals but to the society as a whole with increasing health costs accruing from 

treating medical conditions caused by obesity.291 This might increase the stigma of obesity 

and negative attitudes toward obese people despite the increasing prevalence of overweight 

and obesity in the population.292 Prevailing negative attitudes toward obesity might also be 

expected based on studies showing that even obese people tend to hold anti-obese attitudes, 

120,122 indicating that person’s own weight does not necessarily change attitudes toward 

obesity more positive. However, no studies have assessed whether the association between 

obesity and CMDs has changed over time.
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Chapter 5. Study aims and hypotheses

Most previous longitudinal studies of obesity and CMDs have investigated the tem-

poral association using a standard longitudinal settings in which the outcome is measured 

some years after the exposure, with some studies including adjustment for the outcome val-

ue at baseline or excluding baseline cases. While these studies have suggested a bidirectional

association between obesity and CMDs,103 the association may be more nuanced or complex 

than this standard longitudinal model would lead one to assume. The purpose of the 

present thesis is to take advantage of repeated measurements of BMI and CMDs over an ex-

tended follow-up period, and to examine the bidirectional association between obesity and 

CMDs using various alternative longitudinal statistical methods. These include the assess-

ment of age-related trajectories to examine how the associations may change with age; 

lagged longitudinal models with alternative follow-up intervals to examine whether the as-

sociations change as a function of length of follow-up; change vs. change analysis to exam-

ine whether within-individual changes in obesity are associated with changes in CMDs, and 

vice versa; and cumulative exposure scores to examine whether measurement of obesity or 

CMDs as the exposure variable over a long period of time provides additional information 

on the temporal dynamics of the associations. In addition, based on the literature of poten-

tial mechanisms (reviewed in sections 2.2. and 3.2.) and modifying factors (reviewed in 

Chapter 4), the role of several sociodemographic and health-behaviour covariates in mediat-

ing or moderating the associations between obesity and CMDs is assessed.

The analysis is based on observational data. Such data without experimental 

randomized manipulation controlled by the researcher are subject to omitted variable bias, 

i.e., it is not possible to exclude alternative explanations for the observed association 
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between the variables of interest, because these association may be caused or confounded by

third variables not included in the model, and it is never possible to be sure that all relevant 

variables have been included. Definite causal inferences cannot therefore be derived from 

observational data alone. Experimental study designs in which the researchers are able to 

manipulate the exposure of interest, such as randomized controlled trials (RCTs), are the 

gold standard to establish causal effects. 

Experimental study designs are not impossible in the context of obesity and 

psychological distress. Studies in clinical samples, such as morbidly obese patients 

undergoing bariatric surgery, show that the major weight loss is often accompanied by 

improving mental health after the procedure.293-300 There is also evidence to suggest that 

various treatments of depression may affect weight, either increasing or decreasing 

it.230,276,301-304 However, it is unclear how accurately the results from these studies can be 

generalized to the general population or to more average levels of BMI or depression, e.g., 

whether more moderate weight changes than those associated with bariatric surgery lead to 

changes in mental health in individuals without morbid obesity requiring surgical 

treatment. It may also be added that most experimental studies cited above do not qualify as

randomized controlled trials because individuals usually seek treatment themselves rather 

than being randomly allocated to different treatment groups. 

The interpretation of findings from studies of depression treatment and weight 

change is also complicated by other reasons. Many of these studies are based on pharmaco-

logical treatments in which weight changes may be caused by side effects of medication 

rather than the alleviation of mental health problems.231 Other depression treatments may 

explicitly include physical activity or dietary changes as part of the treatment,302,305 in which 

case it is not possible to separate their direct effects from the effects of mental health im-

provement on subsequent weight change. Furthermore, short-term randomized controlled 
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trials are not necessarily informative regarding long-term effects of obesity and psychologi-

cal distress cumulating over several years or even decades. 

Given the limitations of randomized controlled trials in this context, one of the best 

available methodological approaches to examine the association between obesity and CMDs 

is a prospective longitudinal study in which both obesity and CMDs are assessed repeatedly

over time. Although observational data cannot definitely establish causal relations, and 

correlations do not imply causation, the absence of certain associations and the presence of 

others should help one to make sound inferences about the potential mechanisms 

connecting obesity and CMDs with each other over time.

Accordingly, bidirectional associations between obesity and CMDs were addressed 

with the following steps: First, changes in obesity and CMDs with age and time were charac-

terized. Second, temporal associations between obesity and CMDs were examined with al-

ternative lagged longitudinal models, including measurement of the exposure with a cumu-

lative score taking into account exposure status with repeated measures over several years. 

Third, exposure and outcome measures were determined using within-individual change 

scores, which provide a more reliable method of investigating potential causal associations 

without confounding by between-individual differences in unmeasured covariates. This 

analysis also examined whether increases vs. decreases in the exposure over time were qual-

itatively differently associated with the outcome in the future. Fourth, a number of covari-

ates were included in the analysis to test whether these covariates explained any of the asso-

ciation between obesity and CMDs. Fifth and finally, interaction effects with age, sex, 

socioeconomic status, chronicity and time-period were assessed to test whether the associa-

tions between obesity and CMDs varied according to these covariates. The following in-

troduces these study objectives and related hypotheses in a greater detail.
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5.1. To characterize age-related and cumulative
patterns of obesity and common mental disorders

Age trajectories: As reviewed above, the age-related development of obesity and CMDs 

both appear to follow a non-linear trajectory. Accordingly, their prevalence increases from 

adolescence to midlife but begins to decrease, or at least reaches a plateau, in late middle age

or old age,233,234,238-242 although some studies in older populations have reported an increasing 

risk of CMDs after age 75.244-248 

Hypothesis: It was hypothesized that the rates of obesity and CMDs in the

present sample of adults between 35 and 79 year would increase up to middle

age but that this increase would then slow down and eventually decrease. In

addition to assessing how obesity and CMDs are related to age, the role of

birth-cohort effects in modifying the age trajectories was also investigated.

Furthermore, the age trajectories of within-individual change scores in BMI

and CMDs were examined to test whether the effects of age observed at the

group level (between individuals of different ages) were also replicated at the

individual level, giving more robust evidence of the true aging effects.

Cumulative development: Previous studies of socioeconomic disadvantage,260,306,307 

smoking,308 childhood risk factors309-311 and other life-course exposures312-314 have modeled 

these variables taking into account the accumulation of the exposure over time.315,316 A life-

course perspective suggests that assessing the exposure only in one point in time may be 

insufficient to capture the true effects of the exposure, which evolve over longer periods of 

time. While several studies have reported substantial inter-individual stability in BMI and 
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CMDs,139,273,312,313,317 these longitudinal studies have rarely examined how the long-term 

history of obesity or CMDs condition the future course of these characteristics. Research on 

clinical depression has demonstrated that the risk of depressive episodes increases 

progressively with the number of recurrent episodes, suggesting that chronic depression 

makes people more sensitive to environmental stress and thereby increases the risk of future

depression.154,156 Whether a similar cumulative pattern is observed for obesity and self-

reported CMDs is  unknown.   

Hypothesis: Based on findings on the recurrence of depressive episodes, a

similar accumulating pattern of recurrence is hypothesized to apply to self-

reported CMDs as well, that is, the risk of future CMDs increases

progressively as a function of the proportion of times the person has reported

symptoms of CMDs at previous examinations. Although no similar

theoretical background exists for obesity, it is plausible that the development

of obesity is also characterized by a progressively increasing risk, i.e., the

more times a person has been obese at previous study phases, the higher the

risk of obesity in the future.

5.2. To assess the temporal associations between
obesity and common mental disorders

Lagged longitudinal analysis: With some exceptions,88,89 most of the earlier studies of 

obesity and CMDs have examined the issue of temporality in the same study only in one 

direction, i.e., whether obesity predicts later CMDs or vice versa. Meta-analysis of all 

available studies in both directions suggests a bidirectional association between obesity and 

depression with almost equal effect magnitudes (about 50% increased risk) for both 
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directions.103 However, differences between studies, including sample compositions, 

measures and other study design characteristics, may introduce variability and bias in the 

total estimates pooled over different studies. It is therefore important to examine the 

bidirectional association between obesity and CMDs in the same sample and with the same 

measures.  

Hypothesis: Previous studies have provided evidence in favour of both

temporal directions for the association between obesity and depression. It was

therefore hypothesized that there is a bidirectional longitudinal association

between obesity and CMDs. To test the role of length of follow-up period in

these associations, separate models were fitted with the outcome assessed 5,

10, 15, and 20 years after the assessment of the exposure. To test the

robustness of the temporal associations, the longitudinal models were also

fitted with adjustment for outcome measurement at baseline, which is the

standard longitudinal method to examine temporal associations between

exposure and outcome. 

5.3. To examine associations between within-individual
changes in BMI and common mental disorders

Concurrent changes: If the associations between obesity and CMDs are causal, one 

would expect that changes in one follow changes in the other. Analysis of interrelated 

within-individual changes in two variables provides a more reliable method of establishing 

potential causal effects than analysis of between-individual associations, which may be 

confounded by unobserved variables that vary between individuals. Within-individual 

analysis excludes the possibility of stable unobserved characteristics confounding the 
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associations, although it still leaves open the possibility that changes in some unobserved 

variables account for the observed associations between the exposure and outcome of 

interest. Given that categorical measures of obesity and CMDs would provide only crude 

measures of changes over time, the change analyses were carried out with continuous 

measures of BMI and symptoms of CMDs. The first set of within-individual analysis 

assessed whether changes in BMI and CMDs over two consecutive study phases were 

correlated with each other, i.e., whether change in BMI is accompanied by concurrent 

change in CMDs, and vice versa. This is the common method of change versus change 

analysis.  

Hypothesis: Previous studies have suggested that high BMI increases the risk

of CMDs and that CMDs increase the risk of obesity. If these associations

reflect causal effects, one would hypothesize concurrent changes in BMI and

CMDs scores to be related to each other.

Time-lagged changes: Correlations from concurrently assessed within-individual 

changes in two variables cannot be used to determine the temporal order of the changes. 

This obviously limits the possibility of making causal inferences, as temporal precedence is 

an essential requirement for demonstrating a causal effect. To separate the temporal order of

changes in BMI and changes in CMDs over time, the concurrent change analysis was 

complemented with a time-lagged change analysis in which change in the exposure variable

between two study phases was used to predict later change in the outcome between two 

subsequent study phases, e.g., change in BMI between examinations 1 and 2 predicting 

change in CMDs between exminations 2 and 3. This setting enables the evaluation of long-

term changes in the outcome that are preceded by earlier changes in the exposure and, as 

long as the associations between BMI and CMDs hold over such long time periods, it should

provide stronger evidence for a causal association than the analysis of concurrent changes. 
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Hypothesis: Evidence from several longitudinal studies suggest that obesity

and CMDs are related to each other even over long periods of time, e.g., when

adult risk of depression is predicted by adolescent obesity. It was therefore

hypothesized that the lagged change analysis would replicate the findings

from the concurrent change analysis described above.

Non-linear change: The time-lagged analysis of change can be used to assess the issue of re-

versibility of the association between BMI and CMDs. Reversibility refers to situations in 

which the removal of the causal exposure of interest leads to a reduced risk of the outcome, 

since one of the causal factors contributing to the risk has been removed. Reversibility is of-

ten considered as evidence for a causal association between two variables of interest.318-320 

For instance, obesity is known to be associated with risk of asthma, and weight loss has been

shown to alleviate symptoms of asthma, demonstrating reversibility and providing additio-

nal evidence for a causal effect of obesity on the development of asthma.321 However, a 

causal effect can also be irreversible; thus, lack of reversibility is not a strong argument to re-

fute a causal hypothesis. 

To address the issue of reversibility between BMI and CMDs in the present study, 

the time-lagged change analysis was modified to assess whether there was a qualitative dif-

ference between either a decrease or an increase in the exposure and future change in the 

outcome. A reversible causal association should be observed for both directions of change, 

i.e., weight gain leading to increase in CMDs and weight loss leading to decrease in CMDs, 

and vice versa. On the other hand, the causal association may flow in one direction only. 

Perhaps weight gain increases symptoms of CMDs but weight loss is unrelated to future 

changes in symptoms of CMDs. This pattern would imply a ratchet-like effect in which 

weight gain would be causing CMDs but weight loss would not alleviate such symptoms, 

indicating absence of reversibility. 
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Hypothesis: There are no studies examining direction-specific associations

between changes in BMI and CMDs, so there was no previous research to

draw on in formulating hypotheses. However, assuming that the bidirectional

associations reported in previous studies represent causal effects, one could

hypothesize that there is no qualitative difference between increasing and

decreasing exposure, i.e., a decrease in BMI predicts a decrease in CMDs and

an increase in BMI predicts an increase in CMDs, and vice versa.

 

5.4. To assess whether the associations between obesity
and common mental disorders are confounded or
mediated by certain sociodemographic or health-
behaviour covariates

As reviewed in sections 2.2 and 3.2., multiple mechanisms have been proposed to ac-

count for the potential influence of obesity on CMDs and the influence of CMDs on obesity 

risk. The Whitehall II dataset, the study used in this thesis, includes several measures with 

which to test for some, but not all, of these potential mechanisms. The covariates assessed in 

the present study included socioeconomic status, physical pain, dietary patterns, longstanding

illnesses, physical activity, smoking, and alcohol consumption. These variables may represent

confounders affecting both obesity risk and CMDs, or mediators through which the effects of 

one are propagated on to the other.

Hypothesis: While several mechanisms have been suggested to explain the

bidirectional association between obesity and CMDs, empirical tests of these

mechanisms remain scarce. It was hypothesized that socioeconomic status,

physical pain, dietary patterns, longstanding illnesses, physical activity,
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smoking, and alcohol consumption may account part of the bidirectional

obesity-distress association.  

5.5. To examine whether associations between obesity
and common mental disorders are modified by sex, age,
socioeconomic status, and time-period effects

The fifth objective seeks to identify factors that modify the associations between BMI 

and CMDs, assessed using the different statistical models introduced above. As reviewed 

earlier, a number of studies have investigated sex, age, socioeconomic status and chronicity 

in particular, as potential effect modifiers. Although some evidence has been gathered to 

support their role as moderators, the findings have been inconsistent and at least yet insuffi-

ciently reliable to make any firm conclusions. In addition to these three factors, the present 

study explores the role of time-period effects discussed in the previous section. 

Sex: Despite the common belief that obesity and CMDs are more strongly related in 

women than in men, previous longitudinal studies have reported inconsistent or no sex 

differences.103,151 

Hypothesis: Given the mixed findings from previous studies, we expected to

observe no consistent sex differences in the associations between obesity and

CMDs. 

Age: With respect to age, two competing scenarios can be considered. On the one hand, 

chronic pain and disabling physical conditions become more prevalent at older ages. Insofar

as the association of obesity with CMDs reflects the adverse effects of bodily pain and limits 

to physical functioning, the obesity-CMDs relationship could be expected to strengthen with
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age. On the other hand, the adverse effects of obesity may reflect social stigma and 

discrimination. If these social factors are the driving forces behind the influence of obesity 

on CMDs, then the association could be expected to weaken with age, because older people 

seem to be less stigmatized and discriminated against because of their obesity than younger 

people (see previous section for discussion). There appears to be no a priori reason to 

hypothesize that the influence of CMDs on obesity risk would change with age.

Hypothesis: There are limited data addressing age interactions in the

association between obesity and CMDs, so strengthening and weakening

associations with age are equally plausible. 

Socioeconomic status: As reviewed earlier, some studies have suggested that the 

influence of obesity on CMDs is stronger in individuals with high socioeconomic status,87,266 

perhaps due to stronger social stigma associated with obesity among social groups in which 

obesity is not as common. No similar hypotheses of moderating effects of SES have been 

presented in relation to the other direction of causality, i.e., for the influence of CMDs on 

obesity risk. 

Hypothesis: Higher SES strengthens the association between obesity and

CMDs.  

Chronicity: The development of CMDs in response to obesity, and vice versa, may 

require a long time period with accumulated exposures over time only resulting in observ-

able effects in the population. Assuming that the associations of obesity and CMDs exhibit a 

similar accumulating effect pattern as some of the variables mentioned in Aim 1 (e.g., 

smoking, socioeconomic disadvantage), one would expect the association between obesity 

and CMDs to strengthen when measures of persistent obesity and persistent CMDs are used

as the exposure variables.  
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Hypothesis: Participants who are obese at several repeated measurements are

more likely to have CMDs than individuals who are obese only at one or none

of the repeated measurements. Similarly, recurrent CMDs over the

observation period are more likely than CMDs that occur at a single

measurement phase in increasing the risk of future obesity. To test these

hypotheses, cumulative scores of obesity and CMDs were created as sum

scores calculated over several follow-up phases. 

Secular trends: If the overall prevalence of obesity in the society is relevant for the 

effects of obesity on CMDs of obese individuals, one would expect that the association of 

obesity with CMDs might have attenuated over time from 1980s to 2000s, as the increasing 

prevalence of obesity may have mitigated the social stigma attached to obesity. On the other 

hand, the negative health consequences of obesity have received increasing attention in the 

media and in public health discussions, which may have made obesity a more salient risk 

factor for CMDs. There appears to be no reason to expect that the effects of CMDs would 

have become more or less important over time in affecting obesity risk.

Hypothesis: The association between obesity and CMDs may weaken or

strengthen with time, depending on the societal dynamics underlying the

potential time-period effects.  
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Chapter 6. Methods and materials

6.1. Background
The original Whitehall study (Whitehall I) was set up in 1967 and was based on a 

sample of 18403 middle-aged men, all employed in stable jobs in the British Civil Service. 

One of the main findings of this study was an inverse social gradient in mortality: the lower 

the grade of employment, the higher the risk of death. Ten-year follow-up showed that there

was a steep inverse relation between grade of employment and death from all causes, from 

coronary heart disease, and from noncoronary causes. 

The first Whitehall study made clear that inequalities in health were not limited to the 

health consequences of poverty. This raised the question of why there should be a social 

gradient in disease in people above the poverty threshold. Even when conventional risk 

factors were taken into account, two-thirds of the mortality risk differential between the 

clerical and administrative grades remained unexplained. The Whitehall II study, a new 

longitudinal study of British civil servants, was set up in 1985 with the explicit intention of 

examining reasons for the social gradient in health and disease in men and extending the 

research to include women.322,323 The main hypothesis of the study was that psychosocial 

factors and aspects of diet and nutrition might fill the unexplained part of the social gradient

in mortality. 

6.2. Study population
Whitehall II is a British occupational cohort study. The target population for the study 

was all civil servants (men and women) aged 35–55 years working in the London offices of 
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Figure 1. Proportion of participants by employment status and study phase. 

20 Whitehall departments in 1985–88. The achieved sample size was 10 308 people: 3413 

women and 6895 men. The participants were from clerical and office support grades, mid-

dle-ranking executive grades, and senior administrative grades. Most participants have re-

mained in the civil service while others have moved elsewhere to work, but increasingly the 

sample consists of individuals who have retired, as shown in Figure 1. 

6.3. Study design
The whole cohort is invited to the research clinic at 5-year intervals (study phases 1, 3, 5,

7, and 9), and a postal questionnaire is sent to participants between clinic phases (study 

phases 2, 4, 6, and 8). The 9 data collection phases were carried out in 1985-1988 (n=10308), 

1989-1990 (n=8133), 1991-1993 (n=8637), 1997-1999 (n=8629), 2001 (n=7344), 2002-2004 

(n=6967), 2006 (n=7173), and 2008-2009 (n=6761).322 Home visits by nurses were offered for 

the first time in Phase 7 to participants unwilling or unable to travel to the clinic. A brief 

telephone questionnaire is administered to those who decline clinic and full questionnaire 
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participation at each phase. The present study used data from the clinic phases of 1, 3, 5, 7, 

and 9 when height and weight were measured to assess BMI, and when the participants 

were administered questionnaires including measures of CMDs.

6.4. Procedures
Non-responders to all phases were followed up by two reminder letters and 

telephone contact where possible, either at work or at home. After phase 2 an increasing 

number of participants had to be mailed at their home address as they had either changed 

job, retired, or left the Civil Service for other reasons. Further attempts to trace non-

responders were made through the Civil Service Pensions scheme and the OPCS’s Family 

Health Service Authorities tracing service. Data quality was backed up verifying 

questionnaire, clinical screening data, and laboratory test results by double entry. All 

variables were subjected to range and validity checks and in cases of ambiguities that could 

not be solved, values were set to missing.

 

6.5. Study variables

6.5.1. Body Mass Index
BMI was calculated as weight (kilograms)/ height (metres) squared. Following the 

World Health Organization definition, participants with BMI 25 to 29.9 kg/m² were 

considered overweight and those with BMI>30 kg/m² obese.1 Weight was measured in 

underwear to the nearest 0.1 kg on Soehnle electronic scales. Height was measured in bare 

feet to the nearest 1 mm using a stadiometer with the participant standing erect with head in

the Frankfort plane. Repeatability of the weight and height measurements over 1 month (ie 

between-subject variability/total (between + within subject) variability), undertaken on 306 

participants, was 0.99 at the Phase 7 screening.
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6.5.2. Common mental disorders - General Health Questionnaire
CMDs were assessed using the 30-item self-administered General Health Questionnaire 

(GHQ) designed to be a screening instrument for use in community settings.58-60,75,324,325 The 

original GHQ questionnaire consisted of 60 items asking about symptoms of depression, 

anxiety, and psychosomatic symptoms, but the shorter 30-item and 12-item GHQ 

questionnaires have become more popular and have been used in most recent studies using 

the GHQ.

The GHQ was developed as a self-administered questionnaire to detect undifferentiated 

CMDs in community samples and to act as a screening instrument for minor psychiatric 

disorders. It is not a specific measure of depressive or anxiety symptoms but rather extracts 

information on general psychological distress. The 30 items tap into symptoms of 

depressive, anxiety, neurotic, and stress-related disorders experienced “over the past few 

weeks.” Sample items include statements such as “Have you recently been feeling unhappy 

and depressed”, “Have you recently been able to concentrate on whatever you’re doing” 

(reverse scored), and “Have you recently felt you couldn’t overcome your difficulties”. Each 

item has four response categories (1=not at all, 2=no more than usual, 3=rather more than 

usual, 4=much more than usual). This response format is intended to differentiate the GHQ 

from personality measures assessing relatively stable individual differences in 

psychosomatic symptoms. 

The predictive validity of the GHQ is demonstrated by extensive previous research 

showing, for instance, that GHQ score is strongly associated with diagnoses of depressive 

and anxiety disorders,59,60,326,327 mortality77,328,329 and other health outcomes.74,75

The present study used the 30-item GHQ and two different methods of coding the GHQ 

scores were applied: 

Dichotomous GHQ indicator: Given that the GHQ has been developed as a screening 

tool to identify potential “cases” of psychiatric illness, depressive and anxiety disorders in 
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particular, it is commonly coded as a dichotomous rather than a continuous variable.58 Here 

the items are scored to indicate whether the symptom was present or not (0=not at all/no 

more than usual, 1=rather more than usual/much more than usual) and these 30 

dichotomous scores are summed together. The sum score is then dichotomized using a cut-

off value to differentiate "GHQ cases" from "non-cases". The optimal cut-off threshold in the 

Whitehall II cohort was identified as 0-4 vs. 5-30 on the basis of receiver operating 

characteristics analysis using data from clinical interviews.325 At this threshold the sensitivity

of the GHQ was 73% and specificity 78% against the Clinical Interview Schedule. Under this 

scoring system, at each phase the participants were defined either as GHQ cases (GHQ score

≥5) or "non cases" (GHQ score ≤4). The threshold for GHQ caseness has been used in several 

previous studies in this cohort74,330,331 as well as in many other samples.77,332 

Continuous GHQ score: In addition to the dichotomous GHQ indicator, a continuously 

coded GHQ score was used for the purpose of calculating GHQ change scores. A 

continuously coded scale retains all the available information on the person's GHQ level, 

and is therefore preferable than the dichotomous GHQ indicator to measure change over 

time. For this purpose, each GHQ item was coded with the 4-point scale (1=not at all, 

4=much more than usual), and the 30 item scores were summed together resulting in a scale 

with theoretical range of 30 to 120. 

6.5.3. Covariates
Occupational grade was measured by the participant’s civil service employment 

grade assessed on a 6-point scale at baseline. Grade of employment was determined by 

asking all participants for their civil service grade title. Based on salary, the civil service 

identified 12 non-industrial grades that, in order of increasing salary, comprise clerical 

assistant, clerical officer, executive officer, higher executive officer, senior executive officer, 

and seven “unified grades”. Other professional and technical staff were assigned to these 

grades on the basis of salary. As in previous reports from the Whitehall II cohort, unified 
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grades 1–6 were combined into one group and the bottom two clerical grades into another, 

producing six categories; here we coded the variable so that category 6 represents the 

highest status jobs and category 1 the lowest. In order of increasing occupational grades, the 

annual salary of the six groups in 1992 was between £7400 and £12000; £8500 and £17000; 

£14000 and £21000; £18000 and £25000; £25000 and £36000; and £29000 and £88000, 

respectively.322 For retired participants and participants no longer working in the civil 

service, assigned SES was the final grade before leaving the civil service.

Alcohol consumption was coded from the participants's self-reports of the number 

units of alcohol the participant had consumed during the last week. The number of units of 

alcohol per week was then divided into three categories based on UK public health 

recommendations: 0=No alcohol consumption; 1=Moderate alcohol consumption (1-21 

alcohol units per week for men, 1-14 portions for women); 2=Heavy alcohol consumption 

(more than 21 alcohol units for men, more than 14 units for women). 

Physical activity was calculated using the participants' reports of their weekly hours 

of moderate and vigorous physical activity. Hours spent undertaking moderate and vigor-

ous physical activity were summed together and divided into quartiles separately at each 

study phase.

Longstanding  illness  was  self-­‐‑reported  by  the  participants  by  responding  to  a  

question  asking  whether  the  participant  had  any  longstanding  illnesses  limiting  daily  

activities  (0=no,  1=yes).333

Smoking status was coded into three categories based on the participants' self-

reported smoking habits (0=Never-smoker, 1=Ex-smoker, 2=Current smoker). 

Sleep duration was measured by asking the participants about their normal sleep 

duration ("How many hours of sleep do you have on an average week night?"), which they 

reported on a 5-point scale (5 hours or less, 6, 7, 8, and 9 hours or more). At phase 3, the 
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wording of the question was slightly different: the participants were asked ‘On an average 

weekday how many hours do you spend on the following activities; (a) Work, (b) Time with

family, (c) Sleep?' Response categories were 1 – 12 hours. The responses to sleep question 

were collapsed to form categories identical to those at other phases. 

Bodily pain interfering the participant's daily life was measured by the bodily pain 

subscale of the self-reported Short Form 36 (SF-36) health questionnaire.334,335 The scale 

consists of two items, "How much bodily pain have you had during the past 4 weeks?" with 

response categories of None, Very mild, Mild, Moderate, Severe, Very Severe, and "During 

the past 4 weeks, how much did pain interfere with your normal work (including both work

outside the home and housework)?" with response categories of Not at all, A little bit, 

Moderately, Quite a bit, Extremely. The SF-36 questionnaire was introduced in the data 

collection at phase 3, so analyses including the SF-36 were carried out without data from 

phase 1. 

Dietary patterns were determined using the self-reported 127-item Food Frequency 

Questionnaire (FFQ;336-339) in which the participants were asked about their normal dietary 

intake of various edibles. Alternative Healthy Eating Index (AHEI) score340 was created by 

summing its nine component scores (fruits, vegetables, ratio of white to red meat, trans fat, 

ratio of polyunsaturated to saturated fat, total fibre, nuts and soy, alcohol consumption, and 

long-term multivitamin use); a higher score corresponded to greater adherence of a healthy 

diet. Data for dietary patterns were available at phases 3, 5 and 7. 

6.6. Statistical methods - Multilevel regression
The data consisted of repeated measurements over 5 data collection points from the 

same individuals, so it was necessary to apply statistical methods capable of taking 

advantage of the repeated measurement data. In multilevel regression, also known as 

hierarchical or random-effect regression, observations are nested within higher-order 
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groups, such as pupils nested within classrooms or employees nested within 

companies.341-344 Multilevel modeling can be applied in longitudinal analysis by structuring 

the data so that the repeated measurements (level 1) are nested within individuals (level 2). 

Thus, each participant can contribute multiple person-observations in the dataset, which 

allows one to pool repeated measurements in longitudinal studies into a single model. All 

individuals with data on at least one measurement time can be included in the model, so full

data from all measurement times is not needed. The estimation method of multilevel models

takes into account the non-independence of multiple observations nested within the same 

individuals. 

The size of the sample that corresponds to the independent observations from repeated 

measurements in the same individuals, i.e. the effective sample size, depends on the degree 

of clustering of the outcome measure within individuals, also known as the intraclass corre-

lation. If the outcome does not cluster within individuals, e.g., if measuring CMDs at one 

point in time would not predict a person's likelihood of reporting CMDs at another point in 

time, the intraclass correlation would be zero and the repeated measurements would effec-

tively represent independent observations even if they had been collected from the same in-

dividuals. If, on the other hand, the outcome measured at one point in time strongly predict-

ed the outcome at another point in time, the intraclass correlation of the outcome would be 

high and the effective sample size much lower than the number of person-observations from

the same participants. For instance, collecting 10 repeated measurements of height over a 10-

year period in a sample of 100 adults and treating the repeated measurements as 1000 per-

son-observations nested within 100 individuals would not result in an effective sample size 

of n=1000, since adult height is so strongly clustered within individuals; repeated measure-

ments of adult height would not substantially add statistical power in terms of sample size. 

The estimation of coefficients in multilevel longitudinal regression combines two 

sources of variance: differences in average levels of the outcome between different individu-
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als and individual-specific variation of repeated measurements around the individual's own 

average level of the outcome. In a longitudinal analysis with concurrently measured ex-

posure and outcome variables at several measurement times, between-individual differ-

ences therefore represent cross-sectional associations comparing different individuals to 

each other while within-individual differences represent longitudinal associations compar-

ing different measurement times within the same individuals. If the outcome of interest is 

highly stable over time within individuals (high intra-class correlation), between-individual 

variance gets more weight in the regression because within-individual variance accounts for 

a small portion of the overall variance - and vice versa. 

Irrespective the relative strengths of between-individual and within-individual com-

ponents of variance, it is possible to fit multilevel regression models taking into account only

between-individual or within-individual differences. The latter is also known as fixed-effect 

estimation in the econometrics literature. However, this usage of this term will not be used 

here since fixed effect (vs. random effect) also has another meaning in the context of multi-

level regression, as described below. In the present study, all multilevel models were fitted 

taking into account both between-individual and within-individual variance. Instead of fit-

ting within-individual  regressions, within-individual variance was modeled with change 

scores because this provided a more flexible and easy to interpret method to examine time-

lagged associations and directions of change (increase vs. decrease in the exposure). The 

change score analysis is described in more detail in section 7.8.

Standard linear regression without repeated measurements is able to estimate only 

the fixed effects of covariates, whereas in multilevel regression, it is possible to introduce 

random effects, in addition to fixed effects, by taking advantage of the hierarchical structure 

of the data. For instance, in a study of pupils from several different schools, it is possible to 

examine how pupils’ cognitive ability predicts their grades (fixed effect) and how this asso-

ciation between cognitive ability and grades varies over different schools (random effects) 
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and how these differences are related to school characteristics. In longitudinal models, it is 

possible to introduce random effects to examine individual-specific trajectories over time. 

Such random effects were not a topic of interest in the present study, so all the regression 

models were fitted with random-intercept models only, i.e., the regression models estimated

separate intercepts for each participant based on their repeated measurements of the out-

come, but no random effects for any of the covariates included in the models were in-

troduced. The random parts of the models are therefore not shown in the results. 
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Chapter 7. Results
The presentation of the results is structured as follows: Section 7.1. presents the de-

scriptive statistics of the sample and the subsamples used in different models. Section 7.2. 

examines the attrition patterns over the study period and creates an indicator of attrition 

pattern to be included as a covariate in subsequent analyses. Sections 7.3. and 7.4. investi-

gate how BMI and CMDs develop over age and time. Sections 7.5. and 7.6. present the 

standard regression analyses in which the exposure is measured at baseline in study phase 1

and the outcome is assessed cross-sectionally or longitudinally after 5 to 20 years in separate

regression models. Section 7.7. repeats these analyses using multilevel regression to pool the

data over all study phases. Section 7.8. moves to examine how changes in the exposure are 

related to changes in the outcome both concurrently (over the same time period) and longi-

tudinally in time-lagged models. In section 7.9., the exposure is modeled as a cumulative 

score taking into account exposure status over several study phases. Section 7.10. evaluates 

the role of several potential mediating or confounding factors in the models fitted in previ-

ous sections, and section 7.11. examines potential moderator variables in these associations.

As noted in the Declaration of Authorship on page 2, part of the results have been 

previously published in academic journals (ref. 345 for the cumulative development of CMDs;

ref. 346 comparing cumulative and non-cumulative exposures; ref. 347 for the age interaction 

between obesity and CMDs). However, none of the present results exactly replicate the earli-

er results because (1) the present analysis includes new data collected at phase 9 not includ-

ed in the previous studies and (2) the present analysis takes a somewhat different approach 

than the previously published analyses. Thus, all the previously published material have 

been incorporated to the broader multilevel methodology framework developed for the 

present thesis. First, the previous analysis of age-related trajectories of obesity and CMDs347 

examined only the relationship between cross-sectionally assessed obesity and CMDs. Thus, 
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the age interaction was not examined in relation to time-lagged longitudinal models exam-

ining different temporal orders between obesity and CMDs or to other longitudinal models 

explored in the present thesis, such as the change versus change analysis. Second, the previ-

ous analysis of cumulative patterns346 used the repeated measurements only to create the ex-

posure variable whereas the outcome variable was only measured at one time point at the 

end of the follow-up. The present analysis applies a more comprehensive multilevel ap-

proach by using repeated measurements for the outcome as well (as was done in ref. 345). 

Third, the cumulative patterns of CMDs explored in ref. 345 are only of secondary interest in 

the present context, because that paper was mainly interested in the chronic development of 

CMDs and not in the relationship between obesity and CMDs. 

All analyses were fitted with STATA 11.1 statistical software. The program code for 

all the analyses presented in the results section are reprinted in the Appendix.
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7.1. Descriptive statistics and sample composition
Purpose: The section presents basic descriptive statistics for the sample, and com-

pares the subsamples included in subsequent cross-sectional and longitudinal multilevel re-

gression models. A flowchart describing the sample composition by study phase is also 

provided.  

Methods: Descriptive statistics (means and standard deviations for continuous vari-

ables, percentages and numbers of participants for categorical variables) are calculated sepa-

rately for each study phase and for different subsamples. The number of participants with 

relevant data available is illustrated with a flowchart. 

To have a more detailed picture of distributions of BMI and GHQ beyond means and

standard deviations, density distributions of the two variables are plotted separately for 

each study phase. This is accomplished with kernel density estimation, which plots the dis-

tribution of the variable with a moving window over which the values are averaged. In con-

trast to the commonly used histogram, which represents a kernel estimation method in 

which the data are divided into discrete non-overlapping intervals within which the fre-

quency of observations are then calculated and plotted, the smoothed kernel density esti-

mates the frequency of observations at different points of the distribution by averaging the 

frequency of observations over the moving window so that observations near the midpoint 

are given higher weight than the observations further from the midpoint (but still within the

window). This produces a smoothed line illustrating the distribution of the variable. 

Results: Data were collected at Phases 1, 3, 5, 7, and 9, with different number of par-

ticipants contributing data at different study phases (Table 1-1). At each Phase, participants 

were included in the main analytic sample if they had measures of BMI and GHQ available 

at that phase. To be included in longitudinal analyses, each participant had to have data on 

BMI and GHQ at two or three consecutive study phases. Figure 1-1 presents a flowchart de-
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scribing the number of participants contributing to each sub-sample at each study phase. 

The first column shows the number of participants with data available for cross-sectional 

analysis, the second and third columns show how many participants are included and ex-

cluded from the longitudinal analyses with one and two phases of follow-up in the subse-

quent multilevel regression models. For models including the covariates dietary patterns, 

sleep duration, and SF-36 bodily pain scale, the number of participants was somewhat 

smaller than the main sample. Details of the numbers of participants and person-observa-

tions with full data for each covariate will be reported later when these covariates are in-

cluded in the models. 

Table 1-1 gives descriptive statistics for the study variables separately for each study 

phase. The prevalence of obesity almost tripled between Phases 1 and 9 (from 7% to 20%), 

although the rate of change in BMI did appear to slow down. GHQ caseness decreased by 

half (from 27% to 15%), with little difference in the rate of change over the study phases. The

proportion of women, smokers, and low-SES participants decreased slightly. And as expect-

ed, the prevalence of longstanding illnesses increased substantially. At baseline, 24 partici-

pants had missing data on BMI and 119 participants missing data on GHQ, resulting in 

10165 participants of the original 10308 Whitehall II participants at baseline. However, the 

maximum number of participants in the cross-sectional analyses was 10265, because 100 of 

the 143 participants with missing data at baseline did participate in at least one of the subse-

quent study phases and were therefore included in the present study in at least one of the 

study phases. 

The statistical models were fitted in three different subsamples derived from the 

main sample, depending on the number of study phases used to create outcome and ex-

posure variables. In cross-sectional analysis all participants with data on BMI and GHQ at 

the study phase contributed a person-observation in that Phase, so that one participant 

could contribute 1 to 5 person-observations for the dataset used in cross-sectional analyses. 
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For analyses examining changes in BMI and GHQ taking place over two study phases, parti-

cipants were included if data on BMI and GHQ were available at both of these study phases,

i.e., any two consecutive study phases between phases 1 and 9. 

Table 1-1. Descriptive statistics of the main sample

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9

Sex (% women) 32.9/3343 30.7/2424 29.3/1600 28.9/1819 28.4/1722

Age (years) 44.4 (6.1) 49.6 (6.1) 55.7 (6.0) 61.1 (6.0) 65.8 (5.9)

BMI (kg/m2) 24.6 (3.5) 25.3 (3.7) 26.1 (3.9) 26.7 (4.3) 26.8 (4.4)

Obese (%) 7.0/710 9.6/758 14.1/770 18.8/1186 19.6/1186

Change in BMI (kg/m2) - 0.78 (1.53) 0.90 (1.59) 0.55 (1.53) 0.08 (1.58)

GHQ score (range 30 to 120) 55.2 (10.3) 54.2 (9.8) 54.3 (10.7) 53.6 (10.8) 52.1 (9.6)

GHQ caseness (%) 27.0/2745 21.8/1723 22.1/1206 20.4/1284 15.2/919

Change in GHQ score - -0.89 (10.6) 0.05 (10.7) -0.69 (10.4) -1.22 (9.6)

Occupational grade

   Low (%) 37.4/3804 34.1/2692 30.6/1672 29.5/1857 28.1/1703

   Intermediate (%) 33.2/3370 34.6/2732 36.0/1966 36.7/2313 37.2/2255

   High (%) 29.4/2991 31.2/2470 33.3/1819 33.8/2133 34.7/2103

Sleep duration (range 1 to 5) 2.81 (0.79) 3.01 (0.88) 2.69 (0.88) 2.72 (0.90) 2.78 (0.92)

Bodily pain (range 0 to 9) - 1.05 (1.24) 1.18 (1.34) 1.43 (1.38) 1.22 (1.31)

AHEI diet score (range 10 to 
90)

- 50.2 (12.3) 51.4 (12.5) 51.1 (12.4) -

Longstanding illness (%) 23.6/2397 33.8/2668 49.7/2710 60.8/3834 64.6/3915

Smoking

   No 49.4/4977 51.3/3968 52.0/2779 47.6/2858 48.5/2912

   Ex-smoker 32.2/3246 34.9/2704 37.7/2017 40.4/2426 44.4/2669

   Current smoker 18.4/1858 13.8/1067 10.3/548 12.0/720 7.1/427

Alcohol consumption

   None 18.1/1827 19.4/1530 15.6/841 16.8/1051 15.9/963

   Moderate 66.1/6659 65.0/5129 60.6/3267 63.5/3970 62.5/3788

   Heavy 15.8/1589 15.6/1228 23.8/1283 19.7/1234 21.6/1309

Physical activity (quartiles) 1.68 (1.06) 1.71 (1.07) 1.51 (1.12) 1.51 (1.12) 1.52 (1.11)

n 10165 7894 5457 6303 6061

Note: Values are percentages/numbers of participants or means (standard deviations). 

N=10308 for the original Whitehall II sample.
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Table 1-2. Descriptive statistics of the sample by analysis design.

1. Cross-sectional
analysis

2. Change between
two study phases

3. Change over
three study phases

Sex (% women) 30.4/10908 29.2/6737 29.5/3883

Age (years) 53.8 (10.0) 51.6 (8.8) 49.2 (7.5)

BMI (kg/m2) 25.7 (4.0) 26.1 (4.1) 25.1 (3.6)

Obese (%) 12.3/4610 14.4/3327 8.6/1170

GHQ score (range 30 to 120) 54.1 (10.3) 53.5 (10.1) 54.4 (10.0)

GHQ caseness (%) 22.0/7877 19.9/4599 23.5/3198

Occupational grade 0.99 (0.80) 1.03 (0.80) 1.05 (0.79)

Sleep duration (range 1 to 5) 2.81 (0.87) 2.83 (0.90) 2.85 (0.84)

Bodily pain (range 0 to 9) 1.21 (1.32) 1.19 (1.30) 1.08 (1.25)

AHEI diet score (range 10 to 90) 50.8 (12.4) 50.8 (12.4) 51.0 (12.2)

Longstanding illness (%) 43.3/15523 50.1/11556 34.0/4638

Smoking

   No 49.7/17494 50.2/11344 53.1/7132

   Ex-smoker 37.1/13060 38.9/8779 35.6/4753

   Current smoker 13.3/4620 10.9/2457 11.6/1555

Alcohol consumption

   None 17.7/5249 17.3/3026 15.4/2082

   Moderate 64.3/19024 63.6/11128 66.4/8994

   Heavy 18.0/5334 19.1/3343 18.2/2468

Physical activity (quartiles) 1.62 (1.09) 1.60 (1.10) 1.69 (1.06)

Person-observations (Persons) 35880 (10265) 23076 (8315) 13630 (5322)

Note: Values are percentages/numbers of person-observations or means (standard deviations) 
calculated over all the available study phases.

Each participant could thus contribute up to 4 person-observations for this dataset. Finally, 

for lagged change score analysis in which change in exposure over two consecutive study 

phases was used to predict change in the outcome between the latter phase and the phase 

following it (e.g., change in BMI between phases 1 and 3 predicting change in GHQ score be-

tween phases 3 and 5), all participants with data on BMI and GHQ at any three consecutive 

study phases were included in the dataset. Each participant therefore had the possibility of 

contributing up to 3 person-observations. 
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Table 1-2 shows the descriptive statistics for the three subsamples (means and per-

centages calculated over all study phases included in the respective subsample based on the 

multiple person-observations). There were no consistent differences in health status between

the subsamples. The 3-phase longitudinal sample had lower prevalence of obesity (8.6%) 

than the cross-sectional sample (12.3%) and the 2-phase longitudinal sample (14.4%), 

presumably because obese individuals were more likely to drop out of the study over the 

follow-up period and thereby contributing less person-observations to the longitudinal sub-

samples compared to the total sample. GHQ caseness was most prevalent in the 3-phase lon-

gitudinal sample (23.5%), slightly lower in the cross-sectional sample (22.0%) and lowest in 

the 2-phase longitudinal sample (19.9%). The 2-phase longitudinal sample had the highest 

levels of longstanding illnesses (50.1%), followed by the cross-sectional sample (43.3%) and 

the 3-phase longitudinal sample (30.4%). The longitudinal samples were naturally also 

younger in terms of data cycle baseline age, because phases 7 and 9 were not included as 

data cycle baselines in these analyses.  

Figure 1-2 plots the distributions of BMI and continuous GHQ by study phase. Over 

time, the distribution of BMI moved progressively to the right and became less peaked, indi-

cating increasing mean levels of BMI during the follow-up as normal-weights tended to be-

come overweight or obese. By contrast, the distribution of GHQ moved to the left and be-

came more peaked, indicating decreasing levels of GHQ scores over the follow-up. Figure 

1-3 shows the corresponding distributions for change scores of BMI and GHQ between two 

study phases. The distribution of GHQ change became more peaked and concentrated 

around the value of zero with time, indicating less change in GHQ in later phases compared 

to earlier phases. The distribution of BMI change moved to the left, indicating progressively 

decelerating change in BMI.   
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Phase 1

Phase 3

Phase 5

Phase 7

Phase 9

Cross-sectional
Longitudinal,
Over 1 phase

Longitudinal,
Over 2 phases

10165

Missing data

Missing data

Missing data

Missing data

Missing data

7894

5457

6303

6061

7810 5066

5119 4407

4658 4157

5489 0

0 0

(143)

(2414)

(4851)

(4005)

(4247)

(2355)

(2775)

(799)

(814)

(6061)

(2744)

(712)

(501)

(5489)

(0)

Figure 1-1. Flowchart showing the number of eligible participants in different subsamples by study

phase, starting with 10308 participants (10165+143). Numbers in parenthesis indicate excluded par-

ticipants. Cross-sectional analysis (first column) requires the participant to have data on BMI and

GHQ in the phase in question. Longitudinal analysis (second column) over one study phases requires

the participant to have data at the baseline phase of the data cycle and in the next phase. Longitudi-

nal analysis over two study phases requires the participant to have data at the baseline phase of the

data cycle, and in the next two study phases. 
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Figure 1-2. Smoothed distributions of BMI and GHQ score by study phases. 
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Figure 1-3. Smoothed distributions of 5-year changes in BMI and GHQ score by study phases.  

Comment: These descriptive statistics provide initial contextual data for the study. 

Clear changes in obesity and GHQ caseness were observed over the 5 study phases, but a 

more substantial interpretation of these changes is postponed to a later section, which 

presents the results for age-related trajectories. The three subsamples used in cross-sectional 

and longitudinal analyses did not differ markedly from each other, although the longitudi-

nal subsample requiring data from 3 consecutive study phases had approximately 5 percent-

age points lower prevalence of obesity than the cross-sectional and 2-phase longitudinal 
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samples. Perhaps surprisingly, the 3-phase longitudinal sample also had the highest levels 

of GHQ caseness (23.5%) compared to the two other subsamples (22.0% and 19.9%), suggest-

ing that the 3-phase longitudinal sample was not consistently healthier than the 2-phase lon-

gitudinal and cross-sectional subsamples; general expectation of poor health affecting selec-

tive drop-out might lead one to expect otherwise. Selective attrition is investigated in detail 

in the next section.
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7.2. Attrition
Purpose: In multilevel modeling, participants can have missing data in some of the 

measurement time points, which allows one to include in the analysis all participants with 

data from at least one measurement time. Thus, the total sample includes individuals with 

different participation and attrition patterns. The present section describes the attrition pat-

terns over the 5 study phases and examines how the study covariates are related to selective 

attrition. In addition to providing descriptive statistics of selective attrition, an attrition indi-

cator variable is created for each participant to take into account selective attrition (and the 

unobserved characteristics affecting participants' likelihood of staying in the study over the 

follow-up period) in subsequent longitudinal analysis.

Methods: Attrition analysis was carried out in four steps. First, the frequency of dif-

ferent patterns of study participation (or, to be precise, the availability of data for BMI and 

GHQ) over the 5 study phases was determined to provide a summary of all the different al-

ternative combinations of data availability for the participants over measurement times. Sec-

ond, the participants were categorized according to the length of follow-up (the most recent 

study phase in which they had taken part in), and descriptive statistics of the study variables

were calculated separately in each of these groups to evaluate sample differences as a func-

tion of length of follow-up. Third, logistic regression analysis was used to predict the proba-

bility of non-participation in the next phase as a function of study covariates at each study 

phase. Finally, following the method of pattern mixture modeling,348 a new variable charac-

terizing selective attrition for each participant was created. 

Results: All the 31 alternative combinations of study participation, defined as the 

availability of data on BMI and GHQ, in the 5 study phases are shown in Table 2-1. Full data

at each of the study phases was the most common pattern (38.1% of participants), followed 
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Table 2-1. Participation patterns with each row representing a specific combination of participa-

tion and non-participation, listed in order of descending frequency

Study phase participation (X = Yes; . = No) Participants

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9 % n

1 X X X X X 38.1 3906

2 X . . . . 16.2 1665

3 X X . . . 11.3 1157

4 X X . X X 11.0 1131

5 X X X . . 4.8 490

6 X X X X 4.4 455

7 X X . X . 2.3 236

8 X X . . X 2.1 220

9 X X X . X 2.1 215

10 X . X X X 2.0 204

11 X . . X X 1.8 184

12 X . . . X 1.0 104

13 X . . X . 0.7 74

14 X . X . . 0.6 57

15 . X X X X 0.4 41

16 X . X X . 0.4 40

17 X . X . X 0.3 26

18 . X . X X 0.2 15

19 . X . . . 0.1 14

20 . . X X X 0.1 6

21 . X X . . 0.1 5

22 . X X X . 0.1 5

23 . . . X . 0.0 2

24 . . . X X 0.0 2

25 . . X . . 0.0 2

26 . . X . X 0.0 2

27 . X X . X 0.0 2

28 . . . . X 0.0 1

29 . . X X . 0.0 1

30 . X . . X 0.0 1

31 . X . X . 0.0 1

Total 100.0 10265

Note: Study participation is here defined as the availability of data on BMI and GHQ.
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by drop out after phase 1 (16.2%), full data in phases 1 and 3 but drop out after phase 3 

(11.3%), otherwise full data except missing data in phase 5 (11.0%), full data up to phase 5 

(4.8%), and full data up to phase 7 (4.4%). These 6 participation patterns accounted for 85.8%

of all the alternative participation patterns of the participants, with the remaining 14.2% of 

the participants having more checkered participation/non-participation patterns.

The length of follow-up period is an important indicator of attrition when consider-

ing longitudinal data. In Table 2-2, baseline characteristics are presented separately for 

groups of participants who dropped out of the study at different points in time. For in-

stance, 1663 participants took part at baseline but at none of the following phases, while 

5998 participants were followed up to phase 9. Participants who were followed up to phase 

9 were more likely to be men, younger, non-obese, and to have higher occupational grade, 

lower prevalence of longstanding illnesses, and lower SF-36 bodily pain score than those 

dropping out of the study earlier on. By contrast, the differences in GHQ score or GHQ case-

ness were small; participants followed up to phase 9 were actually slightly more likely to be 

GHQ cases than those dropping out of the study after baseline (27.9% vs. 24.8%).

Table 2-3 extends the study of attrition patterns by assessing sex- and age-adjusted 

associations between study covariates and the probability of non-participation in the next 

phase separately for phases 1 to 7. Females, smokers, obese individuals, and those with low 

occupational grade, high SF-36 bodily pain score were fairly consistently more likely to drop

out of the study. Age, GHQ score, poorer diet (AHEI score), and low physical activity be-

came stronger predictors of non-participation over time. For instance, GHQ caseness was 

not related to attrition between Phases 1 and 3 (OR=0.93) but did predict drop out between 

Phases 7 and 9 (OR=1.28).

Selective attrition may introduce bias in the estimated associations in longitudinal 

studies, and several methods to adjust for selective attrition have been suggested. In the 

present study, the method of pattern mixture modeling developed for multilevel regression 
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Table 2-2. Baseline characteristics according to attrition pattern indicator (the phase in which the

participant most recently provided data on BMI and GHQ).

The most recent study phase for which data for the participant were
available

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9

Sex (% women) 45.0/748 36.5/421 33.8/185 36.5/292 29.3/1697

Age (years) 45.2 (6.2) 45.4 (6.1) 46.3 (6.2) 45.6 (6.2) 43.7 (5.9)

BMI (kg/m2) 25.1 (4.0) 24.8 (3.6) 25.0 (3.6) 25.2 (3.7) 24.4 (3.2)

Obese (%) 11.4/189 7.6/88 7.5/41 9.7/78 5.2/314

GHQ score (range 30 to 
120)

55.2 (10.9) 54.8 (10.5) 55.4 (11.1) 55.4 (10.1) 55.3 (10.1)

GHQ caseness (%) 24.8/412 25.8/298 26.1/143 27.6/221 27.9/1671

Occupational grade (0 to 2) 0.64 (0.79) 0.70 (0.80) 0.80 (0.83) 0.80 (0.81) 1.07 (0.79)

Sleep duration (range 1 to 5) 2.81 (0.85) 2.79 (0.79) 2.73 (0.85) 2.79 (0.80) 2.83 (0.77)

Bodily pain (range 0 to 9)* - 1.20 (1.41) 1.08 (1.31) 1.10 (1.23) 1.02 (1.22)

AHEI diet score (range 10 to 
90)*

- 49.0 (12.8) 49.3 (12.9) 49.1 (13.0) 50.6 (12.0)

Longstanding illness (%) 25.6/425 25.2/291 27.0/148 26.0/208 22.1/1325

Smoking

   No 43.0/725 44.9/518 48.4/266 43.7/352 53.1/3201

   Ex-smoker 27.1/457 31.6/364 29.3/161 34.5/278 33.4/2014

   Current smoker 29.9/504 23.5/271 22.4/123 21.8/176 13.4/809

Alcohol consumption

   None 25.6/430 24.4/285 22.0/120 20.0/161 14.6/877

   Moderate 59.7/1002 60.6/706 61.7/337 63.1/507 69.6/4187

   Heavy 14.7/246 15.0/175 16.3/89 16.9/136 15.9/956

Physical activity (quartiles) 1.54 (1.10) 1.53 (1.11) 1.56 (1.08) 1.60 ( 1.07) 1.76 (1.02)

n 1663 1155 548 801 5998

Note: Values are percentages/numbers of participants or means (standard deviations) 

Baseline characteristics assessed at Phase 1 unless otherwise indicated.

* Baseline characteristics assessed at Phase 3.

models348 was applied to take into account that the participants did not drop out of the study

randomly. In pattern mixture modeling, a covariate characterizing the participants' drop-out

patterns is created, and this covariate is included in the multilevel regression models to take 

into account differences between groups with different drop-out patterns. There are many 
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alternative ways to create the drop-out indicator, e.g., based on the number of follow-ups 

the participant takes part in, the final follow-up phase at which the participant provides 

data, or a more detailed structure of drop-out and participation over the study phases. The 

researcher needs to decide what kind of drop-out patterns are taken into account. 

Table 2-1 suggested that most of the variance in drop-out patterns was related to the 

most recent study phase in which the participant provided data on BMI and GHQ. The val-

ue of the attrition indicator for each participant was therefore determined by the most recent

study phase (0=drop-out after phase 1; 4=participated in phase 9). The number of partici-

pants in each group is shown on the bottom row of Table 2-2. 

Table 2-3. Predicting non-participation in the next study phase by covariates in the preceding

study phase (odds ratios)

Phase 1 Phase 3 Phase 5 Phase 7

Sex (0=male, 1=female) 1.55 1.25 1.37 1.52

Age (per 5 years) 1.05 1.09 1.22 1.36

BMI (per kg/m2) 1.04 1.02 1.03 1.04

Obesity 1.73 1.37 1.24 1.49

GHQ score (per 10 points) 0.99 1.04 1.10 1.19

GHQ caseness 0.93 1.11 1.20 1.28

Occupational grade 0.74 0.79 0.71 0.69

Sleep duration 1.02 0.98 0.86 0.97

Bodily pain (SF-35) 1.15 1.06 1.07 1.09

AHEI score 1.00 1.00 0.99 0.98

Longstanding illness 1.14 1.03 0.75 1.17

Smoking (0=no, 1=yes) 2.05 1.47 2.09 2.07

Physical activity (quartiles) 0.96 0.92 0.81 0.79

Alcohol consumption (0=none/
moderate, 1=heavy)

1.05 1.00 1.00 0.96

Number of participants 10165 7894 5457 6303

Percentage/number of 
participants with missing data at 
the next phase

23.2/2355 35.2/2775 14.6/799 12.9/814

All associations adjusted for age and sex.

Odds ratios printed in bold are statistically significant (p<0.05)
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Comment: Attrition analysis demonstrated clear and consistent associations between

study variables and selective attrition. First, attrition was related to health status and health 

behaviors, so that longer follow-up time was predicted by being non-obese,  low bodily 

pain, non-smoking, healthy diet, and high physical activity. GHQ caseness increased the risk

of attrition only after phase 5, and the overall differences in GHQ caseness between partici-

pants dropping out of the study in different study phases were modest. Somewhat surpris-

ingly, participants who were still in the study in phase 9 had slightly higher rather than low-

er prevalence of GHQ caseness at baseline than those who left the study after baseline 

(27.9% vs. 24.8%), suggesting relatively weak effect of GHQ caseness on selective attrition 

compared to many other covariates, such as smoking or occupational grade.

Multilevel modeling of longitudinal data differs from many of the earlier longitudi-

nal analysis methods, such as repeated-measure analysis of variance, which required com-

plete data from all the measurement time points for the participant in order for the partici-

pant to be included in the analysis.341 Multilevel regression does not require complete data 

from all measurement points but uses all the available data from each participant. Even data

from individuals with only one measurement time are included – they contribute to the esti-

mation of mean level (i.e., intercept) and between-individual variance but not to estimation 

of change over time (i.e., slope) and within-individual variance. This does not yet solve the 

problem of attrition, but it does mitigate the need to apply data imputation methods in or-

der not to lose participants with incomplete repeated-measurement data. 

Although multilevel regression does not impute any missing values, the maximum 

likelihood estimation produces valid inferences in the presence of "ignorable nonreponse".348

That is, the estimation is not biased by missing data if (a) the patterns of missing data are 

unrelated to any of the variables included in the analysis (missing completely at random), or

(b) the probability of nonreponse is dependent on observed covariates included in the model
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and previous values of the dependent variable from the participants with missing data (mis-

sing at random). Thus, the estimation of the present models takes into account the selective 

attrition related to obesity and CMDs and other covariates included in the models (Table 

2-3). Pattern mixture modeling extends the missing data treatment by introducing a new 

variable that provides information on the missing pattern itself. The missing data mecha-

nisms therefore does not need to be ignorable, because the attrition indicator provides infor-

mation for the purpose of missing at random estimation.348

The issue of missing data cannot be solved completely with any statistical method, so

a variety of methodological approaches have been suggested to address attrition in longitu-

dinal analysis. Alternatives to pattern mixture modeling include "selection models" or "joint 

modeling" of the outcome and drop-out, in which a model of attrition probability is first de-

veloped and then the drop-out propensity scores are used to adjust the main analysis for 

drop-our propensity.349 The advantage of pattern mixture modeling compared to selection 

models is that attrition can be modeled without measured predictors of attrition probability. 

Another modern method to tackle missing data is multiple imputation.350 Given that multi-

level regression can already include participants without complete data and provide valid 

inferences if the data are not missing not at random, multiple imputation does not substan-

tially add value in the context of multilevel regression.  

The main limitation of pattern mixture modeling compared to selection models (i.e., 

first building a model to predict drop-our probability and then adjusting for this probability 

in the main analysis) is that the pattern mixture model indicator is not effective when there 

is no variance in the attrition indicator variable. For example, when using obesity at baseline

to predict CMDs 20 year later (see section 7.5.), only individuals who have been followed up

to the last study phase are included, and they all get the same value on the attrition indicator

indicating the length of the participant's follow-up time. Also, the attrition indicator does 
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not take into account different reasons for attrition (e.g., death, inability to participate, re-

fusal, relocation), which may be important in some instances. 
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7.3. Age trajectories of BMI and GHQ

Purpose: The current section examines how BMI and GHQ develop with age, both 

between and within individuals. 

Methods: Multilevel linear regression was used to model age-related changes in 1) 

BMI, 2) obesity, and 3) within-individual 5-year change scores of BMI. Corresponding mod-

els were fitted for GHQ, GHQ caseness, and GHQ change scores. In order not to force the 

functional form of the age trajectories to any predefined shape (linear, quadratic, or any oth-

er), age was used as a categorical variable (coded in years). All models were adjusted for sex,

birth year (birth cohort effect), and attrition indicator. The specific role of adjustments for 

birth year and attrition was examined by comparing the age trajectories unadjusted and ad-

justed for these covariates.  

Results: In a multilevel linear regression model with no covariates, the intraclass cor-

relation for BMI was 0.80, indicating that a substantial proportion of total sample variance in

BMI (80%) was due to between-individual differences in mean levels of BMI averaged across

study phases. The remaining 20% of the total variance was due to within-individual varia-

tion around the participants' mean levels of BMI over the study phases. Intraclass correla-

tion for GHQ was 0.43, suggesting higher within-individual variation in GHQ compared to 

BMI. That is, 43% of the total variance in continuous GHQ was due to average differences 

between individuals while 57% of the variance was due to within-individual variation 

around the individuals' average GHQ levels across study phases.

Figure 3-1 plots the age-, sex- and attrition-adjusted mean levels of BMI, prevalence 

of obesity, and BMI change over 5-year periods, respectively, against age.  Mean BMI and 

obesity prevalence increased substantially and fairly linearly between ages 35 and 80, with 
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Figure 3-1. Mean body mass index, obesity prevalence, and 5-year change in BMI plotted against 

age, adjusted for sex, birth year, and attrition indicator.
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Figure 3-2. Mean GHQ score, GHQ caseness prevalence, and 5-year change in GHQ plotted 

against age, adjusted for sex, birth year, and attrition indicator.  
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<5% of participants under 40 years of age being obese compared to >25% of obese partici-

pants among participants over 70 years. However, as suggested by the decelerating increase 

of average BMI levels (top panel of Figure 3-1), the rate of within-individual increase in BMI 

attenuated over time from a relatively stable +1 BMI units per 5 years between ages 35 and 

45 to null or even slightly negative by age 65 (bottom panel of Figure 3-1).

Figure 3-2 plots the corresponding age trajectories for GHQ. GHQ levels remained 

quite stable between ages 35 and 55, after which there was a decline in GHQ scores and 

GHQ caseness continuing up to age 65. Between ages 65 and 75, GHQ again remained quite 

stable. After age 75 there was some indication of increasing GHQ scores, but due to low 

number of participants over age 75, the estimates were too imprecise to make strong conclu-

sions on increasing GHQ in old age. Age-related patterns in within-individual changes over 

5-year periods provided very similar conclusions: There was little change between ages 35 

and 45, accelerating decrease in GHQ between ages 45 and 55, followed by a return to stable 

GHQ change between ages 55 and 65, after which there was suggestive evidence for increas-

ing GHQ scores after age 70. However, the estimates were again too imprecise to draw de-

finitive conclusions of within-individual GHQ change in old age. 

Age trajectories in Figure 3-1 and Figure 3-2 were adjusted for sex, attrition, and 

birth year. To examine the influence of selective attrition and birth cohort effects on the esti-

mated age trajectories of obesity and GHQ caseness, the models were fitted without adjust-

ment for attrition and for birth year (Figure 3-3). Adjusting for attrition (the most recent fol-

low-up in which the participant had provided data on BMI and GHQ) had little effect on the

age trajectories, as indicated by the almost completely overlapping estimates with unadjust-

ed means in Figure 3-3. 

By contrast, adjusting for birth cohort effects had a substantial influence on the shape

of obesity trajectory, so that the unadjusted increase in obesity begun to flatten out around 

age 60-65 whereas the age trajectory adjusted for birth year continued to increase linearly 
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Figure 3-3. Illustrating the effect of adjusting for birth cohort effects when assessing age trajecto-

ries in obesity and GHQ caseness prevalence. Predicted values of models adjusted for attrition and 

sex (in dark red) are plotted in the figures, but they almost completely overlap with predicted values

of models adjusted only for sex (in orange).

even after age 65. The cohort effect was due to the fact that data for old age was derived 

from older cohorts who had lower prevalence of obesity than younger cohorts. Given that 

the cohort effects in obesity were not the main focus here, they are only briefly illustrated 

here. The participants were born between years 1930 and 1953. When birth year was catego-

rized into 5-year intervals (1930-4, 1935-9, 1940-4, 1945-9, 1950-3), data for BMI were avail-

able for all birth cohort groups between ages 52 and 62 from different study phases. Within 

this age range, the prevalence of obesity from the oldest to the youngest birth cohort group 

was 9.8%, 12.0%, 16.0%, 18.9%, and 19.6%, suggesting a two-fold difference in obesity at age 

52-62 between the youngest (1950-3) and oldest (1930-4) birth cohort. 

Comment: Mean BMI and prevalence of obesity increased with age, although the av-

erage rate of within-individual increase in BMI over time decelerated with age; between 

ages 35 and 45 the participants gained an average of 1 BMI unit per 5 years, but after reach-

ing age 65 the average within-individual change in BMI was not distinguishable from zero. 

The estimation of obesity prevalence by age was substantially affected by adjustment for 

0!

5!

10!

15!

20!

25!

30!

35!

40!

35    
(1536)!

40     
(3982)!

45      
(4879)!

50       
(5931)!

55      
(6536)!

60      
(5671)!

65      
(3824)!

70      
(2372)!

75      
(1090)!

80     
(59)!

O
b

e
si

ty
 (

%
)!

Age!

Adjusted for birth cohort, attrition, sex!

Adjusted for attirition, sex!

Adjusted for sex!

0!

5!

10!

15!

20!

25!

30!

35!

40!

35    
(1536)!

40     
(3982)!

45      
(4879)!

50       
(5931)!

55      
(6536)!

60      
(5671)!

65      
(3824)!

70      
(2372)!

75      
(1090)!

80     
(59)!

G
H

Q
 c

as
e

n
e

ss
 (

%
)!

Age!

Adjusted for birth cohort, attrition, sex!

Adjusted for attrition, sex!

Adjusted for sex!

- 87 -



birth cohort effects, because older cohorts had lower prevalence of obesity and the data for 

older ages in the age trajectory modeling was naturally derived from the older birth cohorts.

When birth cohort effects were not taken into account, the increase in obesity appeared to 

slow down around age 60-65. But when the lower obesity prevalence in older cohorts was 

taken into account in modeling the age trajectory, obesity continued to increase also after 

age 65. Thus, despite the observation of decelerating within-individual change in BMI, the 

prevalence of obesity was estimated to increase with age more steeply after age 65 than the 

crude data not taking into account birth cohort differences would have suggested.

GHQ exhibited a non-linear developmental trajectory characterized by a temporary 

improvement in GHQ scores between ages 45 and 60, with a peak at age 55, as suggested by 

the within-individual change scores. GHQ caseness prevalence remained fairly stable be-

tween ages 35 and 55, after which it decreased up to age 70. There was suggestive evidence 

for increasing GHQ in old age, but the data did not allow one to draw strong conclusions to 

be drawn about this late development. The age trajectory for GHQ caseness was not sub-

stantially influenced by birth cohort or attrition effects. 
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7.4. Cumulative development of obesity and GHQ

Purpose: The preceding section assessed how obesity and GHQ caseness develop 

with age. The present section examines the cumulative development of these outcomes with 

time, i.e., how obesity status or GHQ caseness in a given study phase is dependent on obesi-

ty status and GHQ caseness 1) in one of the previous study phase, and 2) in all the previous 

study phases. 

Methods: First, transition matrices of obesity status between two study phases with 

5-, 10-, 15-, and 20-year follow-up intervals are calculated. These transition matrices indicate 

the proportion of non-obese individuals who became obese, and vice versa, during the fol-

low-up period, and the proportion of obese and non-obese individuals who retain the same 

obesity status over time. Second, the cumulative risk of obesity is modeled as a function of 

the number of times the individual has been obese at previous measurement phases. For 

each phase, a cumulative obesity score is calculated as a sum of the times the person has 

been obese in the previous study phases, and this cumulative score is used to predict the 

probability of being obese in the study phase. A corresponding analysis is carried out for 

GHQ caseness. The analysis is performed with multilevel logistic regression in which a par-

ticipant can contribute 1 to 4 person-observations of the cumulative exposure between phas-

es 1 and 7, depending on the number of consecutive study phases uninterrupted by non-par-

ticipation after Phase 1. In other words, the calcuation of the cumulative exposure score for a

give study phase requires there to be no missing data in the exposure variable at any of the 

phases preceding the given study phase. For instance, a participant with missing data on 

obesity at phase 5 would contribute 1 person-observation for the analysis: obesity at phase 1 

predicting phase 3 obesity; cumulative score across phases 1, 3, 5, and 7 would not be calcu-
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lated even if the participant had full data on obesity at all other phases except phase 5 be-

cause of the missing data at phase 5. 

Results: The transition probabilities of obesity status over 5 to 20 years of follow-up 

are shown in Table 4-1. The risk of becoming obese increased with increasing length of fol-

low-up interval. Over 5 years, 5.5% of non-obese participants became obese, while this pro-

portion was 15.8% at the 20-year follow-up. The reverse transition was less strongly associat-

ed with length of follow-up. While 12.8% of obese participants were non-obese after 5 years 

of follow-up, the proportion was 9.5% over a 20-year interval. The transition probability for 

GHQ non-cases becoming GHQ cases remained fairly stable (between 10.8% and 13.9%) 

over 5 to 20 years of follow-up (Table 4-2).

Table 4-1. Transition matrices of obesity status with different follow-up intervals.

Obesity status at data cycle baseline

Non-obese; % (n) Obese; % (n)

Over 5 years

   Non-obese 94.5 (19849) 12.8 (332)

   Obese 5.5 (1162) 87.3 (2271)

   Total 100.0 (21011) 100.0 (2603)

Over 10 years

   Non-obese 90.0 (13114) 12.3 (176)

   Obese 10.0 (1457) 87.7 (1254)

   Total 100.0 (14571) 100.0 (1430)

Over 15 years

   Non-obese 86.3 (9629) 9.9 (83)

   Obese 13.7 (1532) 90.1 (756)

   Total 100.0 (11161) 100.0 (839)

Over 20 years

   Non-obese 84.3 (4874) 9.5 (31)

   Obese 15.8 (911) 90.5 (294)

   Total 100.0 (5785) 100.0 (325)

Values are percentages (and numbers of person-observations in parenthesis). Transition 
probabilities are calculated over 5 study phases with 5-year intervals, so transitions over shorter 
follow-up times are calculated with larger samples than transitions over longer follow-up times.
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 Table 4-2. Transition matrices of GHQ caseness with different follow-up intervals

GHQ caseness at data cycle baseline

Non-Case; % (n) Case; % (n)

Over 5 years

   Non-Case 86.1 (16648) 59.0 (3439)

   Case 13.9 (2691) 41.0 (2389)

   Total 100.0 (19339) 100.0 (5828)

Over 10 years

   Non-Case 86.1 (11544) 62.6 (2686)

   Case 13.9 (1870) 37.4 (1603)

   Total 100.0 (13414) 100.0 (4289)

Over 15 years

   Non-Case 86.9 (8181) 67.7 (2148)

   Case 13.1 (1230) 32.3 (1026)

   Total 100.0 (9411) 100.0 (3174)

Over 20 years

   Non-Case 89.2 (4163) 73.2 (1342)

   Case 10.8 (504) 26.8 (491)

   Total 100.0 (4667) 100.0 (1833)

Values are percentages (and numbers of person-observations in parenthesis). Transition 
probabilities are calculated over 5 study phases with 5-year intervals, so transitions over shorter 
follow-up times are calculated with larger samples than transitions over longer follow-up times.

By contrast, the risk of GHQ case remaining a GHQ case after 5, 10, 15, and 20 years of fol-

low-up decreased from 41.0% to 26.8%.  

Figure 4-1 shows how the cumulative obesity score predicted the probability of obe-

sity at the next phase. Participants who had not been obese up to a given phase had approxi-

mately 5% risk of becoming obese at the next phase after 5 years. Having been obese at least 

in one previous study phase predicted a >60% probability of being obese in the future, and 

this probability increased linearly with the number of measurement times in which the par-

ticipant had been obese, the probability reaching >90% if the participant had been obese at 

least two previous study phases and 97% if the participant had been obese at all four 

measurement times between phases 1 and 7. 
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Cumulative obesity 
score

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9

0 93.0/9455 89.6/7064 84.7/4364 80.1/3671 77.8/3229

1 7.0/710 5.2/410 6.8/350 6.4/294 5.2/217

2 - 5.2/407 4.3/221 6.0/273 4.9/202

3 - - 4.2/218 3.6/164 5.3/218

4 - - - 3.9/179 3.5/145

5 - - - - 3.4/140

Total n 10165 7881 5153 4581 4151

Percentage/Number of participants by cumulative obesity score and study phase

Notice that data from Phase 9 are not used in the analysis illustrated in the figure because no data 
are available for obesity in the next phase (future phase 11).

Figure 4-1. Risk of obesity at the subsequent study phase as a function of number of times the

person has been obese up to the previous study phase, adjusted for sex, birth year, and attrition

indicator. 

Figure 4-2 shows the cumulative analysis for GHQ caseness. The pattern suggested a

progressively increasing risk of GHQ caseness as a function of the number of times the parti-

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100!

Phase 1! Phase 3! Phase 5! Phase 7!

R
is

k
 o

f 
O

b
e

si
ty

 (
%

)!

Number of measurement times of the cumulative score!

0! 1! 2! 3! 4!

- 92 -



cipant had been a GHQ case at previous study phases. At phase 7, a participant who had not

been a GHQ case at any of the 4 previous measurement times had a 4% probability of being 

Cumulative GHQ 
score

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9

0 73.0/7420 61.7/4830 54.4/2835 48.6/2666 45.9/2267

1 27.0/2745 27.4/2141 26.4/1377 26.2/1436 25.4/1255

2 - 10.9/852 13.4/699 14.2/779 14.3/707

3 - - 5.8/301 7.5/414 7.9/391

4 - - - 3.5/194 4.3/212

5 - - - - 2.2/108

Total n 10165 7881 5153 4581 4151

Percentage/Number of participants by cumulative obesity score and study phase

Notice that data from Phase 9 are not used in the analysis illustrated in the figure because data for 
GHQ caseness at the next phase (future phase 11) are not available.  

Figure 4-2. Risk of GHQ caseness at the subsequent study phase as a function of number of times

the person has been a GHQ case up to the previous study phase, adjusted for sex, birth year and at-

trition indicator.
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a GHQ case in phase 9 compared to a 60% risk for a participant who had been a GHQ case at

all of the 4 preceding phases. The tables below Figure 4-1 and Figure 4-2 show the number 

of participants in each group separately by study phase. Naturally, the range of the cumula-

tive score was limited by the number of times obesity and GHQ caseness had been 

measured. The total number of participants decreased at each study phase because the cu-

mulative score could only be calculated for participants having complete data for the ex-

posure variable up to the given phase.

Comment: These data demonstrate strong path dependence in the development of 

obesity and GHQ caseness. The risk of non-obese participants becoming obese increased 

with time from 5.5% to 15.8% when examined after 5 to 20 years of follow-up, while obesity 

at one phase was quite similarly related to future obesity risk whether future obesity was 

measured 5 or 20 years later, future risk being between 87.3% and 90.5%. The future risk of 

obesity also increased linearly with the number of times the person had been obese at previ-

ous study phases. For GHQ caseness, the probability of transition from GHQ caseness to 

non-caseness increased with time while the probability of crossing the threshold of GHQ 

caseness remained relatively stable between 5 and 20 years of follow-up for GHQ non-cases. 

GHQ caseness also increased linearly with the number of times the person had been a GHQ 

case at previous study phases, although this cumulative risk was not as strong as it was for 

obesity.  
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7.5. Associations between baseline obesity at phase 1
and GHQ caseness at phases 1 to 9
 

Purpose: Obesity may be differently related to GHQ caseness when assessed cross-

sectionally vs. longitudinally, and the strength of the longitudinal association may vary de-

pending on the length of the follow-up. This section examines the cross-sectional and longi-

tudinal associations of baseline obesity with GHQ caseness assessed at phases 1 to 9.  

Methods: Cross-sectional and longitudinal associations are assessed with 5 separate 

linear regression models for each of the study phases. In addition to the models adjusted for 

sex and age, additional longitudinal models with adjustment for baseline GHQ caseness are 

fitted. Due to selective attrition over the follow-up period, the sample composition of differ-

ent study phases is not the same, which can introduce variability in the strength of the esti-

mated longitudinal associations even if the true associations remained the same over the fol-

low-up. To exclude this possibility, the cross-sectional and longitudinal models are 

additionally fitted in participants who have full data in all the study phases (n=3906) to keep

the sample composition the same. To statistically test whether the association between obesi-

ty and GHQ caseness is different in those with vs. those without full data, a dichotomous 

variable for each participant is created to indicate whether or not the participant has full 

data, and then the interaction effect between this indicator variable and obesity is tested in 

each of the models. A significant interaction effect would indicate that the association be-

tween obesity and GHQ caseness is stronger or weaker in those with compared to those 

with no full data over all the study phases. 
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Table 5-1. Separate logistic regression models for associations of baseline (phase 1) obesity with 

GHQ caseness in phases 1 to 9.

Outcome Model 1:
Unadjusted for
baseline GHQ

Model 2:
Adjusted for

baseline GHQ

Model 3: Model
1 fitted in

participants with
full data

p for
difference
between

Models 1 and
3

n

GHQ caseness in

Phase 1 1.10 (0.93, 1.31) - 1.14 (0.82, 1.58) 0.697 10165

Phase 3 1.04 (0.83, 1.31) 1.04 (0.82, 1.32) 1.33 (0.94, 1.87) 0.039 7881

Phase 5 1.35 (1.03, 1.77) 1.35 (1.02, 1.79) 1.28 (0.90, 1.81) 0.745 5446

Phase 7 1.46 (1.14, 1.87) 1.49 (1.16, 1.93) 1.20 (0.83, 1.72) 0.174 6293

Phase 9 1.48 (1.12, 1.97) 1.50 (1.13, 2.01) 1.30 (0.88, 1.92) 0.341 6053

All models are adjusted for sex, age, and attrition indicator.

Models 1 are fitted in samples with maximum number of participants (numbers in the far right-hand
column)

Models 2 are models 1, adjusted for baseline GHQ caseness

Models 3 are fitted in participants with full data available at each phase (n=3906)

p-value indicates the difference in the association between those without full data vs. those with full
data (model 1 vs. model 3)

Results: Baseline obesity was not related to baseline GHQ (OR=1.10) or with GHQ at the 

next phase (OR=1.04; Table 5-1, Model 1). However, a significant association emerged 

for phases 5 to 9 (ORs between 1.35 and 1.48), suggesting that the association strengthened 

with lengthening follow-up time. Adjusting for baseline GHQ caseness did not alter the co-

efficients substantially (Table 5-1, Model 2), and the observed changes in phases 7 and 9 in-

dicated small increase rather than decrease in the odds ratios when adjusted for baseline 

GHQ caseness. 

When the models were fitted in the 3906 participants with full data at all the study 

phases, there was little change in the cross-sectional association but the different longitudi-

nal associations were all quite similar in magnitude, although not statistically significant due

to the diminished sample size, with no evidence of a strengthening association with longer 

follow-up times. The latter result suggests that the strengthening association observed in 
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Model 1 may have been due to effects of attrition. Interaction effects between obesity and the

indicator variable of 'full data vs. without full data' suggested no consistent effect of study 

attrition on the coefficients. At phase 3, the association was significantly stronger among 

those with full data compared to those without full data (p=0.039) but neither of the coeffi-

cients themselves were statistically significant.

Comment: In standard logistic regression models, obesity was not significantly relat-

ed to GHQ caseness risk cross-sectionally or over 5 years follow-up but, surprisingly, a sig-

nificant association between baseline obesity and subsequent GHQ caseness emerged when 

GHQ caseness was assessed 10, 15, or 20 years after baseline (odds ratios between 1.35 and 

1.48), and these associations remained unchanged when adjusted for baseline GHQ case-

ness. The stronger association with longer follow-up times most likely represented the ef-

fects of attrition because no such pattern was observed when the associations were exam-

ined in participants with full data over the follow-up period.
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7.6. Associations between baseline GHQ caseness at
phase 1 and obesity at phases 1 to 9
 

Purpose: The aim and structure of the current section is the same as in the previous 

section, except that here baseline GHQ caseness at phase 1 is used to predict obesity at phas-

es 1 to 9.

Methods: Following the methods used in the previous section, cross-sectional and 

longitudinal associations are assessed with 5 separate linear regression models for each of 

the study phases. The longitudinal models are examined with and without adjustment for 

baseline obesity. 

Results: Baseline GHQ caseness was not associated with obesity in cross-sectional or 

longitudinal models whether or not they were adjusted for baseline obesity status, or 

whether examining the association in the total sample or only in those with full data at all 

study phases (Table 6-1).  

Comment: The present section suggests that GHQ caseness is not related to later 

obesity risk whether obesity is assessed 5, 10, 15, or 20 years later and whether or not base-

line obesity is adjusted for.  
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Table 6-1. Separate logistic regression models for associations of baseline (phase 1) GHQ case-

ness with obesity in phases 1 to 9.

Outcome Model 1:
Unadjusted for
baseline obesity

Model 2: Adjusted
for baseline

obesity

Model 3: Model 1
fitted in

participants with
full data

p for
difference
between

Models 1 and
3

n

Obesity in

Phase 1 1.10 (0.93, 1.31) - 1.14 (0.82, 1.58) 0.758 10165

Phase 3 0.98 (0.82, 1.16) 0.95 (0.75, 1.19) 1.00 (0.77, 1.30) 0.842 7823

Phase 5 1.07 (0.90, 1.27) 1.06 (0.87, 1.30) 1.12 (0.91, 1.37) 0.456 5404

Phase 7 1.13 (0.98, 1.30) 1.16 (0.99, 1.36) 1.18 (0.98, 1.42) 0.450 6240

Phase 9 1.07 (0.93, 1.23) 1.08 (0.93, 1.27) 1.12 (0.93, 1.35) 0.363 5999

All models are adjusted for sex, age, and attrition indicator.

Models 1 are fitted in samples with maximum number of participants (numbers in the far right-hand
column)

Models 2 are models 1, adjusted for baseline obesity

Models 3 are fitted in participants with full data available at each phase (n=3906)
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7.7. Cross-sectional and longitudinal associations
between obesity and GHQ caseness

Purpose: The section continues the analyses in the two previous sections in exam-

ining whether obesity and GHQ caseness are related to each other, and whether obesity pre-

dicts future risk of GHQ caseness or whether GHQ caseness predicts later obesity risk in 

longitudinal models spanning 5 to 20 years of follow-up. While the analysis in the two pre-

vious sections was based on separate ordinary linear regression models, the present section 

applied multilevel modeling to pool the longitudinal data from multiple study phases to-

gether in unified models with repeated measurements from the same individuals. 

Methods: Multilevel logistic regression was used to predict the the risk of GHQ case-

ness by obesity, and vice versa, in cross-sectional and longitudinal analysis. To examine 

whether the longitudinal associations were dependent on the length of follow-up time, mod-

els with 5-, 10-, 15-, and 20-year follow-ups were fitted. Each participant could contribute a 

maximum of 4 person-observations to the 5-year analysis (data cycles consisting of phases 1 

to 3; 3 to 5; 5 to 7; 7 to 9), 3 person-observations to the 10-year analysis (1 to 5; 3 to 7; 5 to 9), 2

person-observations to the 15-year analysis (1 to 7; 3 to 9), and 1 person-observation to the 

20-year analysis (1 to 9). In addition to models unadjusted for outcome variable at data cycle

baseline, baseline-adjusted models were fitted to provide a stronger setting for the assess-

ment of temporal order between obesity and GHQ caseness.  

Results: The associations of obesity with GHQ caseness assessed concurrently with 

obesity and longitudinally after 5, 10, 15, and 20 years of follow-up after obesity, are shown 

in Table 7-1. In cross-sectional analysis, the magnitude of the association between obesity 

and GHQ caseness was OR=1.27. As in the regression models fitted separately by study 
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phase in section 7.5, the longitudinal association between obesity and GHQ caseness in-

creased in strength with longer follow-up from OR=1.16 over a 5-year interval to OR=1.63 

over a 20-year interval. The odds ratios remained essentially the same when adjusted for 

obesity at baseline of the data cycle (Table 7-1, Model 2).

Table 7-1. Cross-sectional and longitudinal associations of obesity with GHQ caseness assessed 

with different time intervals.

Model 1:
Unadjusted for
baseline obesity

Model 2: Adjusted
for baseline

obesity

Model 3: Full data
(n=3906)

Outcome: GHQ 
caseness assessed

OR (95% CI) OR (95% CI) OR (95% CI) n

Concurrently 1.27 (1.14, 1.42) - 1.17 (1.00, 1.37) 35878 (10264)

5 years later 1.16 (1.00, 1.34) 1.14 (1.02, 1.28) 1.20 (0.99, 1.45) 25167 (8553)

10 years later 1.24 (1.02, 1.50) 1.21 (1.03, 1.44) 1.15 (0.90, 1.48) 17703 (7522)

15 years later 1.58 (1.23, 2.03) 1.53 (1.22, 1.93) 1.29 (0.91, 1.84) 12585 (7135)

20 years later 1.63 (1.24, 2.16) 1.66 (1.24, 2.22) 1.31 (0.87, 1.98) 6499 (6499)

All models adjust for sex, birth year, age, and attrition indicator.

Table 7-2. Cross-sectional and longitudinal associations of GHQ caseness with obesity assessed 

with different time intervals.

Model 1:
Unadjusted for
baseline GHQ

caseness

Model 2:
Adjusted for

baseline GHQ
caseness

Model 3: Full data
(n=3906)

Oucome: Obesity 
assessed

OR (95% CI) OR (95% CI) OR (95% CI) n

Concurrently 1.29 (1.09, 1.55) - 1.11 (0.86, 1.43) 35878 (10264)

5 years later 1.00 (0.81, 1.24) 1.06 (0.93, 1.20) 0.97 (0.74, 1.27) 23614 (8439)

10 years later 1.25 (0.95, 1.64) 1.22 (1.01, 1.46) 1.33 (0.97, 1.82) 16001 (6950)

15 years later 1.27 (0.88, 1.82) 1.20 (0.93, 1.55) 1.32 (0.83, 2.08) 12000 (6787)

20 years later 1.06 (0.91, 1.22) 1.11 (0.89, 1.38) 1.12 (0.93, 1.36) 6109 (6109)

All models adjust for sex, age, and attrition indicator. Birth year was not included in any of the 
models, because some of the models did not reach convergence when birth year was included 
together with time-varying age.
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In the analysis of GHQ caseness and later obesity risk, some of the models failed to 

converge when birth year was included together with age as a time-varying factor in the 

model. In the interest of consistency, all the models presented in Table 7-2 are therefore fit-

ted without birth year as a covariate. In addition to the cross-sectional association, only the 

baseline-adjusted association over a 10-year follow-up was statistically significant 

(OR=1.22). Although the unadjusted associations over 10-year and 15-year intervals were 

equal In terms of effect magnitude they were not statistically significant. 

Comment: The multilevel regression models provide support for the longitudinal or-

dinary logistic regression models presented in sections 7.5. and 7.6. fitted separately for out-

comes measured at different phases. Obesity was associated with future GHQ caseness more

strongly the longer the time interval between measurement of obesity and subsequent GHQ 

caseness. GHQ caseness was not consistently associated with future obesity, although there 

were some suggestive associations over 10- and 15-years of follow-up. Hence, these results 

suggest that the temporal order between the two variables is from obesity to GHQ caseness 

but not the reverse. Unlike in the regression models presented previously, using only cross-

sectional data from phase 1 (Table 5-1 and Table 6-1), the multilevel logistic regression 

models indicated a significant cross-sectional association when the 5 study phases were 

pooled together (OR=1.27). 
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7.8. Change versus change analysis of BMI and GHQ

Purpose: While it is informative to examine cross-sectional and longitudinal associa-

tions between BMI and CMDs measured at different points in time, in terms of prevention 

and clinical practice a crucial question is whether (un)favourable change in either body 

weight or mental health is likely to result in (un)favourable change in the other. The present 

section takes advantage of the repeated measurements of BMI and GHQ to create change 

scores for the two variables to examine how within-individual changes in BMI are related to 

changes in GHQ, and vice versa. This analysis of change versus change is performed using 

time-lagged and concurrent time intervals in the exposure and outcome. In addition to as-

sessing change as a linear exposure, non-linear models are fitted to assess whether an in-

crease in the exposure is differently related to future change in the outcome than a decrease 

in the exposure. The models are also fitted separately by BMI category (normal weight, over-

weight, obese) and GHQ caseness (GHQ case versus non-case). 

Methods: Change scores for BMI and continuous GHQ scores are created by sub-

tracting the value of the variable at the previous study phase from the value of the variable 

at the current study phase. The associations between concurrent changes in BMI and GHQ 

are tested with these change score variables, i.e., how BMI change over 5 years is correlated 

with GHQ change over the same 5-year period. This analysis, however, cannot determine 

whether change in BMI precedes change in GHQ, or the reverse. To determine temporal or-

der of the change scores, change in the exposure variable over 5 years is used to predict 

change in the outcome over the following 5 years, e.g., change in BMI between phases 3 and 

5 is used to predict change in GHQ scores over phases 5 and 7. 
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For the non-linear modeling of the effects of increase vs. decrease in exposure, the 

method described by Naumova et al. 351 is used. A dichotomous variable indicating the di-

rection of change is first created (0=change < 0; 1=change ≥ 0), and the change score and an 

interaction effect between the change score and the dichotomous indicator (but not the main 

effect of the dichotomous indicator) is included in the regression model. This allows the re-

gression slope for the exposure variable to differ for increasing vs. decreasing values. The in-

teraction term between the change score and the dichotomous indicator determines whether

the regression slope is significantly different for a decrease compared to an increase in the 

exposure. 

Results: In the analysis of concurrent changes, an increase in BMI correlated with a 

decrease in GHQ (Table 8-1, Model 1) and an increase in GHQ score correlated with a de-

crease in BMI (Table 8-2, Model 1). 

Table 8-1. Change score analysis of BMI and GHQ with linear exposure variable. 

Model 1. Concurrent change
scores

Model 2. Lagged change scores

B 95% CI n B 95% CI n

A. BMI change predicting 
GHQ  change (per 1 BMI 
unit)

-0.17 (-0.26, -0.09) 23076
(8315)

0.07 (-0.04, 0.19) 13630
(5322)

B. BMI change (per 1 BMI 
unit) predicting GHQ change 
in

   Normal weight -0.43 (-0.58, -0.28) 11582
(5257)

0.10 (-0.10, 0.29) 7388
(3454)

   Overweight -0.09 (-0.22, 0.05) 8974
(4542)

0.13 (-0.05, 0.30) 5072
(2785)

   Obese 0.02 (-0.15, 0.19) 2520
(1384)

-0.03 (-0.28, 0.22) 1170
(697)

Multilevel linear regression models, adjusted for age, sex, birth year and attrition indicator (n=8315 
participants, 23076 person-observations). n=Number of person-observations (and persons)
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Table 8-2. Change score analysis of GHQ and BMI with linear exposure variable. 

Model 1. Concurrent change
scores

Model 2. Lagged change scores

B 95% CI n B 95% CI n

A. GHQ change predicting 
BMI change (per 10 GHQ 
points)

-0.04 (-0.06, -0.02) 23076
(8315) 0.04 (0.01, 0.07) 13630

(5322)

B. GHQ change (per 10 GHQ
points) predicting BMI change
in

   Non-GHQ cases 0.02 (-0.01, 0.05) 17745
(7461) 0.06 (0.02, 0.09) 10432

(4834)

   GHQ cases -0.05 (-0.08, -0.01) 5331
(3477) 0.05 (0.01, 0.10) 3198

(2186)

Multilevel linear regression models, adjusted for age, sex, birth year and attrition indicator (n=8315 
participants, 23076 person-observations). n=Number of person-observations (and persons)

These correlations were observed in normal weights but not in overweight or obese partici-

pants (Table 8-1), and in GHQ cases but not in GHQ non-cases (Table 8-2). In other words, 

decreasing BMI over time correlated with increasing GHQ scores over the same time period 

among normal-weight participants but not in overweights or obese participants. Similarly, 

increasing GHQ over time correlated with decreasing BMI over the same time period among

participants with high GHQ scores (GHQ cases) but not in those with low GHQ scores 

(GHQ non-cases).

The analysis of change versus change with the change in the exposure and change in 

the outcome measured over different time periods produced quite different results. Change 

in BMI over 5 years did not predict future change in GHQ scores (Table 8-1, Model 2). This 

lack of association was observed in all weight groups. By contrast, increasing GHQ over a 5-

year time period predicted increasing BMI 5 years later, which was observed in GHQ cases 

and non-cases (Table 8-2, Model 2).  
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Thus, the time-lagged association for GHQ caseness predicting BMI change was in the oppo-

site direction than in the analysis of concurrent change.

Table 8-3. Change score analysis of BMI and GHQ with non-linearly modeled exposure variable. 

Decrease Increase p for
difference

Total n

B 95% CI B 95% CI

BMI change predicting future 
GHQ change (per 1 BMI unit) 0.33 (0.05, 0.61) -0.04 (-0.20, 0.12) 0.05 13630

(5322)

BMI change (per 1 BMI unit) 
predicting future GHQ change in

   Normal weight 0.53 (-0.03, 1.10) -0.04 (-0.29, 0.21) 0.11 7388
(3454)

   Overweight 0.31 (-0.13, 0.75) 0.05 (-0.20, 0.30) 0.38 5072
(2785)

   Obese 0.23 (-0.26, 0.73) -0.24 (-0.64, 0.18) 0.23 1170
(697)

Multilevel linear regression models, adjusted for age, sex, birth year and attrition indicator. 
n=Number of person-observations (and persons)

Table 8-4. Change score analysis of GHQ and BMI with non-linearly modeled exposure variable. 
Decrease Increase p for

difference
Total n

B 95% CI B 95% CI

GHQ change predicting future 
BMI change (per 10 GHQ units) -0.02 (-0.06, 0.02) 0.10 (0.06, 0.15) 0.001 13630

(5322)

GHQ change (per 10 GHQ 
units) predicting future BMI 
change in

   Non-GHQ cases -0.07 (-0.16, 0.03) 0.10 (0.05, 0.15) 0.006 10432
(4834)

   GHQ cases 0.01 (-0.06, 0.07) 0.14 (0.03, 0.25) 0.08 3198
(2186)

Multilevel linear regression models, adjusted for age, sex, birth year and attrition pattern. 
n=Number of person-observations (and persons)

- 106 -



Figure 8-1. Non-linear change versus change analysis of BMI and GHQ. Left-hand panel shows 

that decreasing BMI predicted decreasing GHQ scores in the future, while increasing BMI was not 

associated with future change in GHQ. Right-hand panel shows that decreasing GHQ did not predict

future change in BMI whereas increasing GHQ was associated with greater weight gain in the future.

Error bars are 95% confidence intervals. See Table 8-3 and Table 8-4 for statistical details.

Next the possibility of non-linear change was introduced. As shown in Table 8-3, de-

creasing BMI predicted future decrease in GHQ (weight loss improves GHQ scores) while 

increase in BMI was unrelated with future GHQ change (weight gain does not affect GHQ 

scores). The association of decreasing BMI with decreasing GHQ scores was slightly 

stronger in normal weight participants than in the overweight and obese, but the confidence 

intervals for all the groups were too wide to make definite conclusions. The corresponding 

analysis for the other direction of temporality presented in Table 8-4 shows that an increase 

in GHQ predicted a later increase in BMI (worsening GHQ scores lead to weight gain) but 

that a decrease in GHQ was unrelated to future BMI change (improving GHQ scores do not 

affect weight change). This association was similar in GHQ cases and non-cases. These non-

linear associations for increase vs. decrease in the exposure associated with future change in 

the outcome  are illustrated in Figure 8-1 which plots the predicted change in the outcome as

a function of the preceding change in the exposure. 
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Comment: Within-individual analysis of change provides more detailed information 

on the potential mechanisms connecting BMI and GHQ. The findings suggest that weight 

loss leads to future improvements in mental health, and worsening mental health tends to 

increase the risk of accelerated future weight gain. By contrast, long-term weight gain nei-

ther leads to worsening mental health, on average, nor does improving mental health pro-

tect against future weight gain. Thus, the temporal associations between BMI and GHQ may

be bidirectional, but the nature of these associations may be quite different in terms of the 

mechanisms responsible for bringing about the associations. 
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7.9. Associations between obesity and GHQ caseness
with the exposure assessed using a cumulative score

Purpose: As described in section 7.4., the risk of obesity increased progressively with

the number of times the person had been obese in the preceding study phases, and a similar 

cumulative effect was observed for the risk of GHQ caseness. In this section, the cumulative 

score for obesity is used to predict future GHQ, and vice versa, to examine whether cumula-

tive effects of obesity and GHQ caseness have different effects compared to obesity and 

GHQ caseness measured only based on one time point, as in section 7.7. 

Methods: Cumulative exposure scores are calculated as described in section 7.4., i.e., 

by summing the number of times the person has been obese or a GHQ case in the previous 

study phases. Data were pooled over all study phases, and multilevel regression was used to

estimate the associations. 

Results: GHQ scores as a function of the number of times the person has been obese 

in the preceding study phases are shown in the left-hand panel of Figure 9-1. There was no 

significant linear trend between cumulative obesity score and GHQ (p=0.64), even though 

there was some indication of an inverse association in individuals who had been obese at 

three or four of the previous study phases. By contrast, the more times a participant had 

been a GHQ case at previous measurement phases, the higher the participant's BMI, as illus-

trated in right-hand panel of Figure 9-1. To test the robustness of the association, the multi-

level models were fitted with within-individual (or 'fixed effect') estimator which estimates 

the association using only within-individual variation, in this case the same individuals hav-

ing different values for the cumulative GHQ score and future BMI. The association was
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Figure 9-1. Associations between a cumulative score for obesity and future GHQ score (left-hand

panel), and cumulative GHQ score and future BMI (right-hand panel). Predicted values from multi-

level linear regression models, adjusted for age, sex, and attrition indicator. Error bars are 95% con-

fidence intervals.   

similar in the within-individual analysis and in the overall analysis, suggesting that the as-

sociation was not caused by between-individual confounding factors.

Comment: The analysis of bidirectional associations between obesity and GHQ case-

ness in sections 7.6. and 7.7 suggested that obesity predicts GHQ caseness but not vice versa.

The findings of the current section indicate that GHQ caseness may be relevant for increas-

ing BMI only when the individual has an elevated GHQ score over longer periods of time, 

which is why study designs assessing GHQ as an exposure only at one point in time do not 

observe an association with BMI. Obesity did not have a cumulative effect on GHQ risk. 
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7.10. Mediator variables in the associations between
obesity and GHQ caseness

Purpose: To examine whether the associations between obesity and GHQ caseness, 

and between BMI change and GHQ change, are explained by occupational grade, sleep du-

ration, bodily pain, dietary patterns, longstanding illnesses, physical activity, smoking, or al-

cohol consumption. 

Methods: The statistically significant associations between obesity and GHQ case-

ness reported in section 7.7 and between changes in BMI and GHQ reported in section 7.8 

are refitted with adjustments for the covariates. In cross-sectional analyses, covariates are 

naturally assessed at the same study phase as the exposure and the outcome. In longitudinal

analysis with follow-up interval spanning two consecutive study phases, data for covariates 

can be derived from the data cycle baseline or from the follow-up 5 years later when the out-

come of interest is assessed. Here both methods were applied to test whether the measure-

ment phase of the covariate affects the adjustment effect. In analyses of change in exposure 

versus change in outcome, the associations were adjusted for 1) covariate assessed at data 

cycle baseline and 2) change in the covariate over the same period of time as the change in 

the exposure. For models including non-linear change in the exposure (see section 7.8), the 

covariate was also modeled as non-linear using the same method used for the modeling of 

the exposure, as described in section 7.8 above.

Results: Cross-sectional and bidirectional longitudinal associations between obesity 

or GHQ caseness and the covariates are reported in Table 10-1 and Table 10-2. When as-

sessed concurrently (Models 1), obesity and GHQ caseness were associated with shorter 

sleep duration, higher bodily pain, lower physical activity, smoking, and higher risk of long
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Table 10-1. Cross-sectional and longitudinal associations between obesity and study covariates.

Multilevel linear and logistic regression models.

Model 1: Cross-
sectional

Model 2:
Longitudinal,

obesity predicting
covariate

Model 3:
Longitudinal,

covariate
predicting obesity

Covariate B or OR (95% CI) B or OR (95% CI) OR (95% CI)

Continuous outcome (B coefficient, 95% CI)

Occupational grade -0.03 (-0.05, 0.00) -0.03 (-0.06, 0.01) 0.83 (0.77, 0.91)

Sleep duration -0.09 (-0.12, -0.07) -0.07 (-0.11, -0.03) 0.82 (0.73, 0.92)

Bodily pain 0.30 (0.25, 0.35) 0.30 (0.24, 0.37) 1.16 (1.05, 1.28)

AHEI diet score -1.57 (-2.11, -1.03) -0.96 (-1.83, -0.09) 0.98 (0.97, 0.99)

Physical activity -0.14 (-0.19, -0.10) -0.14 (-0.20, -0.08) 0.89 (0.81, 0.97)

Dichotomous outcome (Odds ratios, 95% CI)

Longstanding illness (0=no, 1=yes) 1.64 (1.48, 1.82) 1.37 (1.23, 1.53) 1.46 (1.20, 1.76)

Alcohol consumption (0=none/
moderate, 1=heavy)

1.11 (0.91, 1.35) 1.00 (0.77, 1.32) 1.18 (0.91, 1.53)

Smoking (0=no, 1=yes) 0.45 (0.35, 0.59) 0.91 (0.67, 1.24) 0.83 (0.58, 1.17)

Values are odds ratios of separate multilevel logistic regression models, adjusted for age at baseline,
age at assessment, sex, birth year and attrition indicator. 

standing illness. Obesity also correlated with a poorer diet score. Except for smoking, all of 

these associations for obesity were also significant when obesity was used to predict the cov-

ariates longitudinally over 5-year intervals (Models 2) or when the covariates were used to 

predict future obesity after 5 years of follow-up (Models 3). Again, except for smoking, the 

longitudinal associations in both directions for GHQ and the covariates replicated the cross-

sectional results (Table 10-2).  

The adjusted cross-sectional associations between obesity and GHQ caseness are 

shown in Table 10-3. Given that some of the study covariates were not assessed at all the 

study phases (see Table 1-1) and different covariates had varying numbers of missing val-

ues across the study phases, the first column of Table 10-3 first shows the unadjusted associ-

ation between obesity and GHQ caseness in the subsample with data on the covariate in 

question 
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Table 10-2. Cross-sectional and longitudinal associations between GHQ caseness and study cov-

ariates. Multilevel linear and logistic regression models.

Model 1: Cross-
sectional

Model 2:
Longitudinal,

obesity predicting
covariate

Model 3:
Longitudinal,

covariate
predicting obesity

Covariate B or OR (95% CI) B or OR (95% CI) OR (95% CI)

Continuous outcome (B coefficient, 95% CI)

Occupational grade 0.00 (-0.02, 0.01) 0.03 (0.01, 0.05) 0.97 (0.94, 1.00)

Sleep duration -0.23 (-0.25, -0.21) -0.06 (-0.08, -0.03) 0.86 (0.81, 0.90)

Bodily pain 0.57 (0.54, 0.61) 0.26 (0.22, 0.31) 1.41 (1.35, 1.46)

AHEI diet score -0.30 (-0.67, 0.08) 0.18 (-0.37, 0.73) 1.00 (0.99, 1.00)

Physical activity -0.14 (-0.17, -0.12) -0.04 (-0.08, 0.00) 0.93 (0.89, 0.97)

Dichotomous outcome (Odds ratios, 95% CI)

Longstanding illness (0=no, 1=yes) 1.68 (1.56, 1.81) 1.39 (1.29, 1.50) 1.51 (1.38, 1.65)

Alcohol consumption (0=none/
moderate, 1=heavy)

1.09 (0.96, 1.24) 1.03 (0.88, 1.21) 1.04 (0.93, 1.17)

Smoking (0=no, 1=yes) 1.25 (1.06, 1.47) 1.13 (0.93, 1.37) 1.08 (0.95, 1.24)

Values are odds ratios of separate multilevel logistic regression models, adjusted for age at baseline,
age at assessment, sex, and attrition indicator. 

(number of participants and person-observations reported in the right-most column of Ta-

ble 10-3). This method of assessing the effects of adjustment for the covariates is used 

throughout the section from Table 10-4 to Table 10-7. The second column of Table 10-3 

shows the cross-sectional association adjusted for each covariate. Adjusting for bodily pain 

attenuated the odds ratios from OR=1.31 to OR=1.10 (67% attenuation). Adjusting for sleep 

duration produced an attenuation from OR=1.27 to OR=1.21 (21% attenuation) and long-

standing illness from OR=1.27 to OR=1.22 (17% attenuation). Other covariates had little if 

any effect on the cross-sectional association.

Table 10-4 reports the effects of covariate adjustment in the longitudinal analysis of 

obesity and GHQ caseness assessed over 5-year intervals (see section 7.7). Again, adjusting 

for bodily pain had the strongest attenuating effect (from OR=1.23 to OR=1.12 when adjust-

ed for bodily pain at data cycle baseline; 48% attenuation), especially when bodily pain was 

- 113 -



Table 10-3. Cross-sectional association between obesity and GHQ caseness, adjusted for covari-

ates. Multilevel logistic regression models.

Model 1:  Base model Model 2: Adjusted for
covariate

Covariate OR (95% CI) OR (95% CI) n (participants, person-
observations)

Occupational grade 1.27 (1.14, 1.42) 1.27 (1.14, 1.42) 10264 (35878)

Sleep duration 1.27 (1.14, 1.42) 1.21 (1.08, 1.35) 10259 (35772)

Bodily pain 1.31 (1.16, 1.49) 1.10 (0.97, 1.24) 8598 (25650)

AHEI diet score 1.32 (1.13, 1.53) 1.31 (1.13, 1.52) 8372 (17810)

Longstanding illness 1.27 (1.14, 1.42) 1.22 (1.09, 1.36) 10264 (35878)

Physical activity 1.26 (1.11, 1.42) 1.23 (1.08, 1.39) 10114 (29227)

Alcohol consumption 1.26 (1.11, 1.42) 1.26 (1.11, 1.42) 10235 (29607)

Smoking 1.29 (1.15, 1.44) 1.28 (1.15, 1.43) 10236 (35174)

Models adjusted for age at baseline, age at assessment, sex, and attrition indicator (Models 1) and 
additionally for a covariate (Model 2).

The unadjusted models are shown separately for each covariate because the number of participants
varies depending on covariate.

Table 10-4. Longitudinal association between obesity and GHQ caseness, adjusted for covariates.

Multilevel logistic regression models.

Model 1: Base model Model 2: Adjusted for
covariate at baseline

Model 3: Adjusted for
covariate at follow-up

Covariate OR (95% CI) OR (95% CI) OR (95% CI)

Occupational grade 1.16 (1.00, 1.34) 1.15 (1.00, 1.33) 1.15 (1.00, 1.33)

Sleep duration 1.15 (0.99, 1.33) 1.13 (0.98, 1.30) 1.10 (0.95, 1.27)

Bodily pain 1.23 (1.04, 1.46) 1.12 (0.96, 1.32) 0.97 (0.82, 1.15)

AHEI diet score 1.12 (0.87, 1.44) 1.12 (0.87, 1.45) 1.11 (0.86, 1.44)

Longstanding illness 1.16 (1.00, 1.34) 1.13 (0.98, 1.30) 1.11 (0.96, 1.28)

Physical activity 1.20 (1.00, 1.43) 1.19 (0.99, 1.42) 1.16 (0.97, 1.40)

Alcohol consumption 1.18 (0.99, 1.40) 1.18 (1.00, 1.40) 1.18 (0.99, 1.40)

Smoking 1.17 (1.01, 1.35) 1.16 (1.00, 1.35) 1.16 (1.00, 1.34)

Models adjusted for age at baseline, age at assessment, sex, and attrition indicator (Models 1) and 
additionally for a covariate (Model 2). Base models are shown separately for each covariate because
the number of participants varies between 5055 and 8553 participants (8488 to 25167 person-
observations) depending on covariate. 
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Table 10-5. Associations between concurrent changes in BMI and GHQ score, adjusted for cov-
ariates. Multilevel linear regression models.

Model 1: Base model Model 2: Adjusted for
covariate at data cycle

baseline

Model 3: Adjusted for
change in covariate

Covariate B (95% CI) B (95% CI) B (95% CI)

Occupational grade -0.17 (-0.26, -0.09) -0.17 (-0.26, -0.09) -0.17 (-0.26, -0.09)

Sleep duration -0.16 (-0.25, -0.08) -0.16 (-0.24, -0.07) -0.18 (-0.26, -0.09)

Bodily pain -0.15 (-0.25, -0.05) -0.14 (-0.25, -0.04) -0.17 (-0.27, -0.07)

AHEI diet score -0.15 (-0.30, 0.00) -0.15 (-0.30, 0.00) -0.15 (-0.30, 0.00)

Longstanding illness -0.17 (-0.26, -0.09) -0.17 (-0.26, -0.08) -0.17 (-0.26, -0.09)

Physical activity -0.24 (-0.34, -0.14) -0.24 (-0.35, -0.14) -0.26 (-0.36, -0.16)

Alcohol consumption -0.23 (-0.33, -0.12) -0.23 (-0.33, -0.12) -0.23 (-0.33, -0.12)

Smoking -0.14 (-0.23, -0.05) -0.14 (-0.23, -0.05) -0.14 (-0.23, -0.05)

All models adjusted for age at baseline, age at assessment, sex, and attrition indicator

The unadjusted models are shown separately for each covariate because the number of participants
varies between 4387 and 8315 participants (7806 to 23076 person-observations) depending on 
covariate (see Table 1-1).

Table 10-6. Association of decreasing BMI with future decrease in GHQ score, adjusted for cov-

ariates. Multilevel linear regression models.

Model 1: Base model Model 2: Adjusted for
covariate at data cycle

baseline

Model 3: Adjusted for
non-linear change in

covariate

Covariate B (95% CI) B (95% CI) B (95% CI)

Occupational grade 0.33 (0.05, 0.61) 0.35 (0.07, 0.63) 0.33 (0.05, 0.61)

Sleep duration 0.34 (0.06, 0.62) 0.33 (0.04, 0.61) 0.34 (0.05, 0.62)

Bodily pain 0.33 (-0.01, 0.67) 0.34 (0.01, 0.67) 0.33 (-0.01, 0.67)

AHEI diet score 0.33 (-0.03, 0.70) 0.36 (0.01, 0.71) 0.33 (-0.03, 0.70)

Longstanding illness 0.33 (0.05, 0.61) 0.34 (0.06, 0.62) 0.33 (0.05, 0.61)

Physical activity 0.33 (0.05, 0.61) 0.33 (0.05, 0.61) 0.33 (0.05, 0.61)

Alcohol consumption 0.31 (0.03, 0.59) 0.31 (0.03, 0.59) 0.31 (0.03, 0.59)

Smoking 0.26 (-0.03, 0.54) 0.32 (0.04, 0.60) 0.26 (-0.02, 0.55)

All models adjusted for age at baseline, age at assessment, sex, and attrition indicator

The unadjusted models are shown separately for each covariate because the number of participants
varies depending on covariate.
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Table 10-7. Association of increasing GHQ score with future increase in BMI, adjusted for covari-

ates. Multilevel linear regression models.

Model 1: Base model Model 2: Adjusted for
covariate at data cycle

baseline

Model 3: Adjusted for
non-linear change in

covariate

Adjusted for B (95% CI) B (95% CI) B (95% CI)

Occupational grade 0.10 (0.06, 0.15) 0.10 (0.06, 0.15) 0.10 (0.06, 0.15)

Sleep duration 0.10 (0.06, 0.15) 0.10 (0.06, 0.15) 0.11 (0.06, 0.15)

Bodily pain 0.13 (0.08, 0.19) 0.14 (0.08, 0.19) 0.12 (0.07, 0.18)

AHEI diet score 0.14 (0.08, 0.19) 0.14 (0.09, 0.20) 0.14 (0.08, 0.19)

Longstanding illness 0.10 (0.06, 0.15) 0.10 (0.06, 0.15) 0.10 (0.06, 0.15)

Physical activity 0.11 (0.07, 0.15) 0.11 (0.07, 0.16) 0.11 (0.07, 0.15)

Alcohol consumption 0.11 (0.07, 0.15) 0.11 (0.06, 0.15) 0.11 (0.07, 0.16)

Smoking 0.10 (0.06, 0.15) 0.10 (0.05, 0.14) 0.10 (0.06, 0.15)

All models adjusted for age at baseline, age at assessment, sex, and attrition indicator

The unadjusted models are shown separately for each covariate because the number of participants
varies depending on covariate.

assessed at the follow-up (OR=0.97; 100% attenuation of the positive association). Adjusting 

for sleep duration and longstanding illness accounted for 33% and 31% of the association, 

respectively, when the covariates were assessed at follow-up at the time of GHQ assessment.

The results for covariate-adjusted models of change versus change analysis are 

shown in Table 10-5 (concurrent changes), Table 10-6 (decreasing BMI predicting future de-

crease in GHQ), and Table 10-7 (increasing GHQ predicting future increase in BMI). In these

models, adjusting for any of the covariates had no substantial effect on the associations be-

tween changes in BMI and GHQ, whether the covariate was assessed at data cycle baseline 

or modeled as a change score in the same way as the exposure variable of interest was 

modeled. 

Comment: In cross-sectional and longitudinal analysis, bodily pain was the most 

prominent covariate to attenuate the association between obesity and GHQ caseness. In lon-

gitudinal analysis predicting GHQ 5 years after the assessment of obesity, bodily pain re-
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ported at the same measurement phase as GHQ attenuated the association between obesity 

and GHQ completely, suggesting that obesity is related to increased risk of GHQ caseness 

because obesity increases bodily pain which, in turn, is associated with higher GHQ scores. 

Longstanding illnesses and sleep duration were the two other covariates that had an attenu-

ating effect on the obesity-GHQ association, accounting for 17% to 33% of the association.  
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7.11. Moderator variables in the associations between
obesity and GHQ

Purpose: This section examines whether the associations between BMI and GHQ are 

modified by sex, age, occupational grade, and time-period. As reviewed in the introduction, 

these variables have been suggested to be potential modifying factors in the association be-

tween obesity and GHQ, but the empirical evidence to date is limited.

Methods: To assess whether there are consistent moderator effects in the association 

between BMI and GHQ, all the different statistical models described in earlier sections are 

rerun including an interaction effect between exposure (obesity or GHQ caseness; change in 

BMI or change in GHQ) and the moderator variable (sex, age, occupational grade, and time-

period). The statistical significance of these interactions is first determined, and then the sta-

tistically significant interaction effects are investigated in more detail by examining the asso-

ciation of obesity and GHQ caseness stratified by the moderating factor.

Results: P-values for the interaction effects for the four covariates in different cross-

sectional and longitudinal models are reported in Table 11-1. None of the moderator vari-

ables had a consistent effect across different statistical models, but there were some indi-

vidual interaction effects, as described below.  

Sex: Although there was no sex difference in the cross-sectional association between 

obesity and GHQ caseness (p=0638), a significant interaction effect indicated that lagged 

obesity predicted future risk of GHQ caseness in men (OR=1.42, CI=1.17-1.72, p<0.001) but 

not in women (OR=0.93, CI=0.74-1.18, p=0.56). There was also a sex difference in the lagged 

GHQ change in predicting future change in BMI, so that a decrease in GHQ was not associ-

ated with future change in BMI in men (B=-0.04; CI=-0.08, 0.01, p=0.123) or in women 
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Table 11-1. P-values for interaction effects between the exposure and moderator variables in dif-

ferent statistical models.

Sex Age Grade Time
period

Model 1. Cross-sectional association 0.638 0.032 0.651 0.024

Model 2. Lagged obesity predicting future GHQ 
caseness (5-year interval)

0.011 0.727 0.640 0.883

Model 3. Lagged GHQ caseness predicting future 
obesity (5-year interval)

0.475 0.004 0.317 0.022

Model 4. BMI change predicting concurrent change 
in GHQ

0.817 0.153 0.265 0.254

Model 5. Lagged BMI change predicting future 
change in GHQ

   Increase in BMI 0.372 0.306 0.508 0.449

   Decrease in BMI 0.106 0.065 0.310 0.693

Model 6. Lagged GHQ change predicting future 
change in BMI

   Increase in GHQ 0.086 0.391 0.324 0.880

   Decrease in GHQ 0.009 0.832 0.533 0.201

Details of the models are described in earlier sections of the results.

 

(B=0.02; CI=-0.08, 0.11; p=0.722) whereas an increase in GHQ was associated with future in-

crease in BMI somewhat more strongly in men (B=0.11; CI=0.06-0.16; p<0.001) than in 

women (B=0.09; CI=-0.01, 0.18; p=0.069).  

Age: Age interactions were observed in cross-sectional analysis, and when lagged 

GHQ caseness was used to predict future obesity risk. As illustrated in Figure 11-1, the asso-

ciation between GHQ caseness and obesity strengthened with age.

Occupational grade: There was no significant modifying effects for occupational grade 

for any of the associations between BMI and GHQ.

Time period. The interaction effects for time period were the same as for age, i.e., in 

cross-sectional analysis and in lagged GHQ caseness predicting future obesity risk. Given 

the similarity, it is possible that the interactions for age and time-period both reflect the 
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same underlying interaction effects as both are concerned with the passage of time. To test 

the relative strengths of the interactions when included in the same model, cross-sectional 

and lagged longitudinal models were rerun by including interaction effects for both age and 

time-period. In cross-sectional analysis neither interaction effects were significant in the sin-

gle model (p=0.778 for age, p=0.286 for time-period), while in the lagged analysis the age in-

teraction was marginally significant (p=0.09) and the time interaction was not (p=0.70).  

Comment: Of the 32 tests of interaction effects between the covariates and the ex-

posures in different models of BMI and GHQ, 6 were statistically significant. Based only on 

chance, one would expect to find 32*0.05=1.6 or 2 significant effects with statistical signifi-

cance at the 5% level. The strongest evidence for a moderating effect was for age. The cross-

sectional association nd the longitudinal association of GHQ caseness predicting obesity risk

5 years later increased in strength with age. Obesity was associated with future GHQ case-

ness risk in the longitudinal analysis in men but not in women, and a similar sex difference 

was observed for the change score analysis in which an increase in GHQ score predicted a 

later increase in BMI more strongly in men compared to women. 

Figure 11-1. Interaction effects between GHQ caseness and age in predicting obesity in cross-sec-

tional and longitudinal setting. Predicted values from interaction models presented in Table 11-1. 
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Chapter 8. Discussion  

Research on the associations between excessive body weight and symptoms of depression, 

anxiety or other common mental disorders (CMDs) has produced rather mixed findings 

over the years. First, some of the early cross-sectional studies suggested that obesity may 

protect from the development of CMDs (352,353; see section 8.4. below), while several but not 

all subsequent cross-sectional studies provided evidence for a positive correlation between 

obesity and CMDs.81,82 The more recent longitudinal studies have generally found support 

for a positive bidirectional association between obesity and CMDs, although many indi-

vidual studies have observed no associations.103 These inconsistencies have puzzled many 

scholars trying to integrate their own findings with the existing literature. Some researchers 

have argued that this line of research has been driven by the stubborness of the researchers 

rather than the robustness of the results. In discussing the absence of a substantial associa-

tion between obesity and depression in their study of British adolescents, Wardle and col-

leagues354 ponder

"One interesting issue is why the belief that obese people, and especially

obese children, are depressed, has not been rejected despite numerous studies

producing negative findings. Perhaps it reflects sensitivity to and sympathy

for the plight of obese people. Alternatively, it could be viewed as part of

society's - and health professionals' - prejudice against obese people,

involving the attribution of negative emotional characteristics along with the

other negative stereotypes." (p. 641)
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The present thesis was based on the assumption that the association between obesity 

and CMDs is unlikely to be spurious but that this association may be more specific or com-

plex than postulated in simple cross-sectional and longitudinal studies. This may be the rea-

son why the results from different studies with less sophisticated methodology have 

produced mixed findings, and why the nature of the bidirectional association has not been 

established with accuracy. As shown by the different statistical models applied in the 

present thesis, a single analysis method may not provide a full description because different 

mechanisms may be involved in different aspects of the association.

8.1. Synopsis of the main findings
First, obesity and CMDs followed different age trajectories. The proportion of obese 

participants increased throughout the age period from 35 to 79 years, whereas CMDs became 

less common especially between ages 50 and 65, after which there was no clear changes in 

CMDs with age. Second, the development of both obesity and CMDs was characterized by 

cumulative developmental patterns, that is, the risk of future obesity (or CMDs) increased 

progressively with the number of times the person had been obese (or had CMDs) in previous

study phases. Third, standard longitudinal regression models suggested that obesity was 

prospectively associated with future CMDs, whereas CMDs did not predict future risk of 

obesity. Fourth, when cumulative exposure measures were used, chronic obesity over several 

study phases did not increase the risk of obesity any more than obesity in one study phase 

only. However, chronic CMDs exhibited a temporal dose-response association with the risk 

of obesity, so that only individuals with CMDs in several study phases over the follow-up 

phase had elevated risk of future obesity while no association was observed for short-term 

CMDs. Fifth, analysis of interrelated changes of BMI and CMDs indicated that weight loss 
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was associated with a future decrease in CMDs, and an increase of CMDs was associated 

with future increase in BMI. Weight gain, however, was not associated with future change in 

CMDs and improving levels of CMDs were not associated with a decrease in BMI. These 

results suggest that the associations between changes in BMI and CMDs are dependent on the

direction of change in the exposure. Sixth, several potential mediators (SES, sleep duration, 

dietary patterns, physical activity, longstanding illness, alcohol consumption, smoking) had 

little if any explanatory power in accounting for the associations between BMI and CMDs. 

Bodily pain accounted for 67% of the cross-sectional and 48% of the longitudinal association

between BMI and CMDs, but did not explain any of the associations of the interrelated 

changes between BMI and CMDs over time. Seventh, analysis of potential moderating fac-

tors (sex, age, SES, secular trends) provided little consistent evidence for these factors in 

modifying the associations between BMI and CMDs in different models. The most consistent

evidence was observed for age, so that the cross-sectional association and the association be-

tween CMDs and the future risk of obesity increased in magnitude with age. 

8.2. Strengths and limitations

8.2.1. Longitudinal data with multiple repeated measurements
The main strengths of the present study include a long follow-up period with repeat-

ed measurements of BMI and CMDs at 5 study phases, which made it possible to apply so-

phisticated and complex longitudinal models. A comparison between the conclusions drawn

from the multiple repeat-measurement data and from the standard longitudinal method of 

measuring the exposure once at baseline and the outcome some years after, possibly adjust-

ing for the level of outcome at baseline, suggested that multiple repeated measurements do 
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bring important additional information to our understanding of the longitudinal associa-

tions between obesity and CMDs. As reported in sections 7.5. and 7.6., standard analysis 

used in most previous studies of obesity and CMDs would have implied that obesity has a 

causal effect on risk of CMDs, or at least that obesity precedes CMDs not vice versa. The 

strengthening association between obesity and future GHQ caseness with a longer follow-

up period might have led one to conclude that obesity has a cumulative effect on risk of 

CMDs. This turned out not to be the case as demonstrated by the analysis using cumulative 

scores presented in section 7.9.

Although the analyses covered several aspects of the association between obesity 

and CMDs, the longitudinal methods used in the present study were by no means exhaus-

tive. In particular, latent trait models based on structural equation modeling (SEM) could 

have been added to further investigate longitudinal patterns, e.g., by examining measure-

ment invariance of GHQ over time355 or by modeling between-individual and within-indi-

vidual associations separately by creating latent variables accounting for the stability in BMI

and CMDs across the study phases and using residuals of these latent variable to indicate 

within-individual variance. Although multilevel models can be used to address most of the 

research questions that can be modeled using SEM, the use of latent variables could add ad-

ditional information. However, these models were beyond the scope of the present thesis 

and will be explored in future research.

Another potential limitation regarding the present longitudinal data is that BMI and 

CMDs were measured at 5-year time intervals. Such intervals capture long-term develop-

mental trends but may be too long to observe potential short-term effects of BMI and CMDs.

For instance, rapid weight gain over one year may increase the risk of CMDs more strongly 

than equivalent weight gain over 5 years because the 1-year gain is more marked and may 

reflect different determinants than the 5-year weight gain. The analysis of bidirectional asso-

ciations, cumulative effects and change vs. change should therefore be carried out with 
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datasets with annual or biannual measurements to evaluate whether similar or different pat-

terns are observed with differing time intervals.

As discussed in section 7.2. on attrition patterns, the present data analysis strategy 

applied multilevel regression augmented with pattern mixture modeling to adjust for the 

data missingness related to selective attrition. These methods can produce valid estimates 

assuming that the attrition mechanisms are related only (or largely) to the covariates includ-

ed in the models. The pattern mixture modeling method extends this by including a covari-

ate of its own in the models to take into account differential attrition patterns between indi-

viduals. In the present analysis, adjusting for length of follow-up did not have substantial 

influence on the estimated developmental trajectories of obesity or CMDs (Figure 3-3), sug-

gesting that selective attrition may not have been a major source of bias. However, no meth-

ods can definitively solve the problem of selective attrition, and it is not possible to know 

whether the potential bias would  underestimate or overestimate the observed associations 

in the data. It would be useful to empirically assess the impact of selective attrition in epi-

demiological studies for example by comparing results from registry data (not affected by 

selective attrition) with parallel survey data (affected by selective attrition). 

8.2.2. BMI as a measure of obesity
Assessment of BMI was based on objectively measured height and weight, so peo-

ple's general tendency to slightly overestimate their height and underestimate their weight 

in self-reports did not confound the associations.356-358 Body mass index is a reliable and valid

indicator of the health risks associated with excess adiposity,27,29,30,359 and it is the most com-

monly used method to assess obesity in epidemiologic studies. More accurate measures of 

body fat, such as bioelectrical impedance or hydro-densitometry, are often too expensive 

and impractical to use in large data collections, and other indicators of body fat, including 

skinfold thickness and waist circumference, are more difficult to measure accurately and 
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with consistency across large populations.360 Although BMI may not always be an accurate 

measure of body fat at the individual level, it has proven to be one of the best proxy 

measures of body fat in studies examining associations of body fat at the population level.360

BMI has limitations in estimating body fat in persons who are very muscular or have 

lost muscle mass, and BMI does not capture any information of specific patterns of fat accu-

mulation, such as abdominal adiposity.360 In statistical terms, BMI may have high specificity 

but not so high sensitivity in correctly identifying obese individuals, as suggested by a study

of 13,601 Americans comparing measures of BMI and body-fat percent determined by bio-

electrical impedance.361 Almost all (95% of men, 99% of women) participants categorized 

obese on the basis of BMI were also categorized obese based on body-fat percent (high 

specificity of BMI), but only 36% of men and 49% of women categorized obese by body-fat 

percent were categorized obese by high BMI (low sensitivity of BMI). The rather low sensi-

tivity of BMI also resulted in underestimation of obesity prevalence based on BMI compared

to body-fat percent (19% vs. 44% in men, 25% vs. 52% in women). It has also been suggested 

that not all health improvements associated with physical activity or other lifestyle changes, 

including reductions in visceral fat and cardiovascular risk factors, may be observed as 

weight loss based on measurement of BMI, suggesting that BMI may not be sensitive to all 

health changes related to obesity.362

Imprecisions related to BMI as a measure of adiposity may bias the results of studies 

using BMI if factors associated with measurement imprecision are systematically associated 

with covariates of interest. For instance, BMI may be a problematic measure of obesity in el-

derly people, who often lose height in old age. Such loss of height would tend to bias the 

measure of BMI upward.363 The above-mentioned study comparing BMI and body-fat per-

cent also observed that the diagnostic performance diminished with increasing age,361 al-

though other studies have suggested that BMI may still be a valid measure of obesity in the 

elderly on population level.364 These potential problems imply that the present findings of 

- 126 -



interaction effects between age and CMDs in predicting obesity need to be interpreted with 

caution, as BMI may not be an equivalent measure of adiposity across the adult life course. 

8.2.3. GHQ caseness as a measure of CMDs
The GHQ is a well-validated instrument for screening CMDs58-60,325 and GHQ scores 

are strongly associated with diagnoses of depressive and anxiety disorders.59,60,326,327 Previous

studies of obesity and different aspects of CMDs (depression, anxiety, psychosomatic com-

plaints) have found no systematic evidence to suggest that obesity would be specifically as-

sociated with one aspect of CMDs but not with others81,85,87 suggesting that a global assess-

ment of CMDs is appropriate and no separation of different dimensions of CMDs is 

required. 

The meta-analysis of longitudinal studies by Luppino et al.103 suggested that obesity 

may be significantly (p=0.05) more strongly related to clinically diagnosed depression 

(OR=2.15, 1.48-3.12) than to self-reported symptoms of depression (OR=1.36, 1.03-1.80) and 

that clinically diagnosed depression predicts future obesity risk slightly but not significantly 

more strongly than self-reported depression symptoms (OR=1.71, 1.33-2.19 vs. 1.48, 

1.17-1.87). These results from previous studies imply that the use of self-reported measures, 

such as the GHQ, may underestimate associations between obesity and psychiatric 

morbidity.

As in the case of BMI as a measure of body fat, it is not certain that GHQ is an equiv-

alent measure of CMDs over the life course. Individual items of the GHQ may take on dif-

ferent meanings especially in older age. This could be studied in detail by examining age 

trajectories of individual GHQ items and by applying SEM models of measurement invari-

ance365,366 or alternative methods of examining stability and change in the psychometric 

structure of GHQ. 
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8.2.4. Study design
There are some limitations to the study sample and design that need to be consid-

ered when drawing conclusions on the associations between obesity and CMDs. First, being 

an occupational cohort, the Whitehall II sample is not completely representative of the gen-

eral population. Occupational groups are, on average, by their very nature healthier than the

general population, for example due to exclusion from sampling frame of unemployed indi-

viduals and individuals not able to work due to mental or physical limitations.  Further-

more, two thirds of the cohort are male white collar workers in the civil service, potentially 

reducing the generalisability of the observed associations because of the occupationally se-

lective nature of the sample. The range of variation in CMDs and BMI might therefore be 

narrower in the Whitehall II cohort than in the British general population. Range restriction 

of variable distributions often attenuates associations between two variables of interest.367 

The selective nature of the Whitehall II sample might therefore have attenuated the present 

estimates compared to what would have been observed in the general population. The re-

stricted range of some variables may have masked associations or interactions that might ex-

ist in the general population. For example, the moderating effect of SES in the association be-

tween obesity and CMDs reported in some studies87,266 would have been more difficult to 

observe in the Whitehall II sample even if it were present in the general population. On the 

other hand, the homogeneous nature of the Whitehall II sample may reduce the effects of 

confounding factors related to SES differences in the general populations because the partic-

ipants are more similar to each other than people in the general population on average.

Second, the participants were aged between 35 and 55 at baseline, so no data on 

childhood or adolescent BMI or CMDs were available. As reviewed in Chapters 2 and 3, 

some evidence suggests that the association between obesity and CMDs may be particularly 

strong in adolescence,151 and that adolescence may be a particularly important developmen-

tal period during which the association between depressive symptoms and later weight gain
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trajectories originate.95 Many psychiatric disorders have an early onset in adolescence and 

young adulthood,51,52 and individual differences in body weight become more stabilized 

with age.317 Thus, some of the more dynamic patterns might be observed only in younger 

ages. Given that our longitudinal data were derived only from adulthood, the present analy-

ses could not address the hypothesis of childhood, adolescence or young adulthood being 

critical developmental periods for the origins of links between body weight and CMDs. It is 

important to apply the present analysis methods in younger samples to examine whether 

the developmental pattern are similar or different, and whether measurements at younger 

ages provide important additional insights into the bidirectional association between body 

weight and CMDs.

 

8.2.5. Measurement of covariates
Most of the covariates included in the study did not moderate or mediate the associa-

tions between obesity and CMDs. This is in contrast to some previous findings on potential 

moderators reviewed in Chapter 4, and to hypotheses proposed to explain the association 

between obesity and CMDs.86,184,274,275 The lack of support for these hypothesis in the present 

study need to be interpreted within the limitations set by the measurement of the mediator 

and moderator variables. All the covariates were based on self-reported data, which in-

troduces measurement error particularly in behavioral factors such as physical activity, alco-

hol consumption and dietary patterns that are often difficult for individuals to report accu-

rately. Measurement error, in turn, reduces the possibility to observe statistically significant 

mediator or moderator effects. It is thus possible that some of the true mediator or modera-

tor effects were not observed in the present analyses because of imprecise measurement of 

the covariates. However, one can argue that if some of the covariates had a major role in me-

diating the associations of obesity or CMDs, adjusting for imprecisely assessed but relevant 

covariates should have some influence on the examined associations. As most of the adjust-
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ments had no discernible effect, it is unlikely that the present analysis would have missed 

the true mediator or moderator effects with substantial effect sizes. 

Another methodological problem related to the use of self-reported data on CMDs 

and the covariates is the possibility of common informant bias. For example, the association 

between obesity and CMDs was substantially attenuated when adjusted for self-reported 

bodily pain, suggesting a potential mediator effect. However, the psychological content of 

self-reported CMD symptoms and experiences of bodily pain are likely to overlap substan-

tially as somatic symptoms correlate with symptoms of anxiety and depression. This makes 

it difficult to interpret the "mediating" effect of bodily pain, because adjusting the association

between obesity and CMDs for bodily pain may lead to overadjustment due to the overlap 

of self-reported CMDs and pain, almost as if one were to adjust the association between obe-

sity and GHQ for another measure of CMDs. The use of more objectively measured indica-

tors of pain or limitations of physical functioning (e.g., grip strength, walking speed, more 

specifically determined pain symptoms) could be used to further investigate the mediating 

role of bodily pain in explaining the association between obesity and CMDs. 

8.3. Evaluating evidence from alternative models
 A crucial issue in evaluating the association between obesity and CMDs is whether 

these two characteristics are causally related in a unidirectional or bidirectional manner, or 

whether the association between the two is caused by chance, confounding due to other 

unmeasured variables, or biases inherent in the study design. The starting premise of the 

present thesis was that any one methodologial approach to the study of the association be-

tween obesity and CMDs may not give the full and accurate picture of the true association. 

A given method may have a systematic bias for or against one interpretation, or produce 

chance findings not reflecting the true association. This is why it is important to try to trian-

gulate the association between obesity and CMDs with alternative statistical models. 

- 130 -



As reviewed in Chapters 3 and 4, previous studies on the bidirectional association 

between obesity and CMDs have not produced consistent findings. One way to try to solve 

this problem is to pool all available studies in a meta-analysis and to draw conclusions from 

the overall effects.103 However, inconsistent findings may also imply that the association of 

interest is not due to a singular effect or mechanism. The overall association may reflect a 

combination of multiple mechanisms and processes that contribute to a different degree to 

different aspects of the bidirectional associations. Therefore, inconsistent results from differ-

ent analyses need not imply contradictory findings. Different methods may address differ-

ent aspects of the association in terms of, say, length of exposure or the mechanisms that ac-

count for differences between individuals vs. differences within the same individual over 

time. The evidence from alternative modeling approaches is next discussed with this point 

in mind.  

8.3.1. Standard longitudinal models
As reviewed in the introduction, the meta-analysis of Luppino et al.103 concluded that

the association between obesity and depression is likely to be bidirectional, with the risk of 

depression being elevated by 55% in obese persons compared to normal-weight persons and

the risk of obesity being elevated by 58% in depressed compared to non-depressed individu-

als. While this meta-analysis, based on 15 different studies, yields strong evidence of a bidi-

rectional association, the findings may be confounded by study differences in the measure-

ment of obesity (self-reported vs. objectively measured), measurement scales and 

assessment method for depression, time of follow-up, sample composition, and other poten-

tial factors that may bias the estimates upwards or downwards. Therefore, it is important to 

assess both directions of temporality in the same sample with the same measures. 

Standard longitudinal methods used to evaluate the temporal direction of the associ-

ation between obesity and CMDs have been the most commonly used methods in previous 
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longitudinal studies of obesity and CMDs. Using these methods, as in sections 7.5., 7.6. and 

7.7., obesity was associated with an increased risk of CMDs assessed 5 to 20 years after the 

assessment of obesity, after adjustment for baseline CMDs (Table 7-1). By contrast, there 

was no significant association between CMDs and future risk of obesity (Table 7-2), except 

for one apparently spurious significant association between CMDs and obesity assessed 10 

years later. The assumption that this finding is spurious is based on the fact that there were 

no consistent associations with other measurement intervals. These results suggest that any 

causal association between obesity and CMDs would run from obesity to increased risk of 

CMDs rather than the reverse. 

Only a few other studies have assessed both temporal directions in the same study. 

The present results from time-lagged models are in agreement with at least two of them. In 

the Alameda County Study,89,90 obesity was prospectively associated with an increased risk 

of depression over a 5-year follow-up (OR=1.79, CI=1.04-2.87) while depression at baseline 

was not associated with obesity 5 years later after obesity status at baseline had been adjust-

ed for (OR=1.32, CI=0.65-2.69). This would seem to imply that obesity is a cause of depres-

sion but not the reverse. In the Maastricht Aging Study,102 overweight at baseline predicted 

higher depressive symptoms 6 years later but baseline depressive symptoms were again un-

related to future risk of overweight. By contrast, a Finnish study of the metabolic syndrome 

and depression101 reported that obesity at baseline was not significantly related to depressive

symptoms over a 7-year follow-up period (OR=0.77, CI=0.38-1.56) but baseline depressive 

symptoms predicted increased risk of obesity at the end of the follow-up (OR=1.47, 

CI=0.80-2.71). 

Taken together the results from these studies examining both temporal directions 

within a single analytic setting would seem to suggest that the association between obesity 

and CMDs is unidirectional such that obesity increases the risk of CMDs but not vice versa. 

However, data from other studies support the finding from the Finnish study, that is, CMDs 
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are also risk factors for obesity and weight gain.151. Adding weight to findings in the present 

study, similar evidence was obtained in more advanced longitudinal models in which the 

exposure was modeled with cumulative scores and changes over time, as described in the 

following section.

8.3.2. Cumulative effects of the exposure
For the determination of any potential dose-response relationship, the dose was con-

ceptualized in terms of the persistence or cumulative effects of the exposure (obesity or 

CMDs) over time. Rather than measure the exposure only at one point in time, a cumulative 

score was created indicating the persistence of risk over the 5 to 20 years of follow-up. As-

suming that there is a causal association, one would expect longer exposure to obesity and 

CMDs to predict CMDs and obesity, respectively, more strongly than a transient exposure. 

Results from the cumulative analyses led to quite different conclusions as compared 

with those obtained from the time-lagged longitudinal models described above. The number

of times a person had reported symptoms of CMDs at the data collection phases over the 5 

to 20 -year follow-up period was linearly associated with future BMI (Figure 9-1), suggest-

ing a dose-response relationship between persistent CMDs and BMI. By contrast, there was 

no increase in risk of CMDs associated with an accumulation of exposure to obesity; in fact, 

the dose-response curve in Figure 9-1 suggests a slightly declining risk of CMDs associated 

with persistent obesity (obese at 3 or 4 study phases) compared to more transient exposure 

to obesity (obese at 1 or 2 study phases). This would imply that chronically obese individu-

als might adjust psychologically and socially to their excess body weight over time, thereby 

attenuating the negative mental health effects associated with obesity. However, the inverse 

association between persistent obesity and CMDs was not statistically significant, so no sub-

stantial conclusions should yet be drawn from these data alone.
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The fact that a longitudinal, prospective association between CMDs and BMI was ob-

served only with persistent, but not with transient, exposure to CMDs suggests that the 

process by which CMDs increase BMI may work over long periods of time. Compared to 

transient and short-lived exposure to CMDs, chronic exposure to CMDs may have different 

biological, psychological and social consequences related to body weight accumulation. This

finding is in agreement with the study of Richardson et al.139,140 in which the risk of adult 

obesity in women increased linearly with the number of times the participants had been de-

pressed at 4 assessment times in adolescence. However, the present findings did not follow 

the same pattern as the findings of Mustillo and colleagues99 which indicated that chronic 

childhood and adolescent obesity was associated with increased risk of depression in boys 

whereas no association was observed with obesity in childhood or adolescence alone.

Biologically, depression is known to be associated with dysregulation of the hypo-

thalamic-pituitary-adrenal (HPA) axis, e.g., with chronically elevated cortisol levels, which 

is a central neuroendocrine pathway underlying the psychophysiology of stress.186-189 Re-

peated and chronic activation of the  HPA axis and the secretion of cortisol, in turn, are in-

volved with increased rate of fat accumulation and the risk of obesity.170,179-183,368 Thus, psy-

chosocial stress discussed in section 3.2 as a potential mechanism mediating the effect of 

CMDs on obesity risk might be a particularly relevant mechanism in the case of chronic 

CMDs. Psychological and social effects of persistent exposure to CMDs might lead to more 

marked declines in healthy behaviors, self-efficacy or social support, or other related mecha-

nisms discussed in section 3.2, although there appear to be no empirical studies directly ad-

dressing this issue. The present findings provided little if any support for the relevance of 

health behaviours in mediating the association between CMDs and obesity.

To extend the analysis of cumulative effects further, two lines of research should be 

pursued. First, the present analysis did not examine how cumulative CMDs over time are 

associated with other outcomes besides BMI. Such analysis could provide additional clues to

- 134 -



the mechanisms accounting for the observed effects of persistent CMDs. Second, assuming 

that other determinants of weight gain have similar cumulative effects that are observed 

only when the covariate is measured repeatedly over time, future studies of BMI trajectories 

and obesity should analyze these other determinants using cumulative scores that take into 

account the persistent vs. non-persistent nature of the exposure. This may add to our under-

standing of the role of other determinants of weight gain besides CMDs. 

The absence of a cumulative effect of obesity on CMDs, on the other hand, implies 

that the adverse mental health effects associated with obesity are more likely to act over a 

short rather than long term period. Psychological and social factors, such as negative self-

image, stigma and discrimination related to obesity,113,115 as well as some physical conse-

quences, such as bodily pain and physical limitations caused by obesity,109,250,369 could be ex-

pected to have such short-term and reversible effects; an obese person who loses weight to 

become normal-weight does not experience the physical limitations of obesity anymore, al-

though some of the adverse effects of obesity, such as strain and damage caused to knee 

joints, would not be expected to be completely reversible especially at older ages, and these 

effects could have cumulative effects on CMDs. 

Perhaps the lack of cumulative effects of obesity on CMDs reflects people's general 

propensity to adapt over time to circumstances, both negative and positive, that initially af-

fect their mental wellbeing.370-374 Although there are some notable exceptions to this rule,375-379

the impact of many personal experiences and environmental changes on mental wellbeing 

seems to dilute over time, often within a couple of years, suggesting that individuals have a 

relatively stable "set point" of mental wellbeing around which life events introduce transient

fluctuations in mental health.371,373,374 Such a process of mental adaptation might explain the 

observed tendency for persistent obesity to be associated with slightly, albeit not significant-

ly, lower levels of CMDs compared to non-persistent obesity (Figure 9-1). People who have 
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been obese over long periods of time may have become adjusted to their body weight, which

is why persistent obesity is not associated with heightned risk of CMDs. 

The lack of a cumulative effect of obesity is surprising considering that the standard 

time-lagged longitudinal models indicated that the association between obesity and future 

CMDs was stronger over longer compared to shorter follow-up intervals (OR=1.14, 

CI=1.02-1.28, over 5-year follow-up; OR=1.66, 1.24-2.22 over 20-year follow-up; Table 7-1). A

cumulative effect of obesity could have explained this somewhat paradoxical pattern of 

results because obesity is highly stable over time, and therefore a long follow-up period in 

obese participants would indicate a high probability of persistent obesity, which would have

explained the strengthening association with longer follow-up time. But this was not what 

the results of persistent obesity demonstrated. A more plausible explanation for the 

strengthening association is confounding effects due to attrition over the study period, be-

cause no changes in the odds ratios were observed with lengthening follow-up times when 

only participants with full data at all study phases were included (Model 3, Table 5-1). 

8.3.3. Direction-specific change scores
Modeling of changes in BMI and CMDs rather than levels of BMI and CMDs in sin-

gle points in time revealed new features of the association. An analysis of change in ex-

posure versus change in outcome allows two important questions regarding causality to be 

addressed. First, if change in the exposure can be shown to precede change in the outcome, 

evidence for a causal association is strengthened. Second, whether or not the association be-

tween the outcome and exposure is reversible is crucial to inform public health interven-

tions; it is important to know whether or not changing the level of the exposure variable 

would result in a change in the level of the outcome. In the present context, a reversible bidi-

rectional association between obesity and CMDs would indicate that a successful attempt to 

decrease the prevalence of obesity would also result in an average improvement of mental 
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health in the population, and that a successful attempt to improve mental health would lead 

to a better weight control (overall decrease in the average BMI) in the population. 

Naturally, the question of reversibility can be addressed with confidence only by 

randomized controlled trials (experimental studies) in which the researcher is able to modify

the exposure independently of the participants' other characteristics that might influence the

association of interest. As reviewed briefly in Chapter 5, studies of bariatric surgery and re-

lated treatment methods of obesity have suggested a beneficial effect of weight loss on men-

tal health,293-300 and that studies of depression treatment have reported both increases and 

decreases of body weight over the course of depression treatment.230,276,301-304 Although these 

treatment studies, the studies of bariatric surgery in particular, might be considered as evi-

dence for reversibility of the influence of obesity on CMDs, it is not clear how the results are 

generalizable to populations beyond the morbidly obese patients seeking bariatric surgery 

for their problems with obesity. Due to the lack of randomization in these studies, it is likely 

that the participants are not representative of obese individuals in general, most of whom do

not seek drastic treatment options such as bariatric surgery, and the beneficial mental health 

effects of weight loss in this selected population may reflect their satisfaction with successful

treatment rather than the association between obesity and mental health in general.

In the absence of randomized controlled trials to address the issue of reversibility, 

observational data can be used as an alternative approach to assess whether increases and 

decreases in the exposure are differently or similarly related to changes in the outcome. 

There appears to be no previous studies addressing this question in the association between 

obesity and CMDs. The present data did not provide support for a simple pattern of risk 

and reversibility. The modeling of time-lagged analysis of change in the exposure vs. change

in the outcome indicated that an increase in CMDs over a 5-year period is associated with an 

increase in BMI in the 5-year period following the change in CMDs (Figure 8-1). No associa-

tion between a decrease in CMDs and subsequent change in BMI were observed. By con-
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trast, a decrease in BMI was associated with a subsequent decrease in CMDs whereas an in-

crease in BMI was unrelated to future changes in CMDs. These observations would seem to 

suggest causal roles for a decrease in BMI and an increase in CMDs, implying that a bidirectio-

nal association between obesity and CMDs may not develop in a reciprocal manner. Rather, 

there appear to be non-reversible, ratchet-like effects which create a positive association be-

tween BMI and CMDs because 1) CMDs increase BMI and 2) weight loss improves mental 

health. 

The association between an increase in CMDs and subsequent weight gain was mod-

erate in magnitude. Compared to no change, a 10-point increase (about 1 standard deviation

of change) in GHQ score increased the rate of future weight gain by one-fifth (0.50kg/m² vs. 

0.60kg/m² per five years). A 2-unit decrease in BMI (slightly more than 1 standard deviation

of change) more than doubled the rate of subsequent decrease in CMDs by (0.52 points vs. 

1.15 points per five years). However, in absolute terms these differences are rather modest. 

Antidepressant treatment has been shown to improve mental health scores by 1.5 to 2 

standard deviations when measured with the SF-36 mental health component score.380-383 

Thus, a depressed person quitting antidepressant treatment or a person otherwise experi-

encing an equivalent 2 standard deviation decline in their level of mental well-being would 

be expected to gain only an extra 0.20 BMI-units of weight over 5 years. Similarly, the 0.6-

unit difference in GHQ scores associated with a 2-unit loss in BMI is only about 5% of the 

change observed for antidepressant treatment. Assuming that the effect sizes were similar in

clinical interventions, the present findings would seem to suggest that CMDs are not crucial 

to weight management and weight loss is not an effective way to treat CMDs. However, 

randomized controlled trials should be carried out to directly test whether the effect sizes 

are comparable before the present results are applied in clinical settings.

How should we interpret these quite specific findings from the analysis of change in 

the exposure vs. change in the outcome? Weight gain and improving mental health are nor-
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mative in middle age and early old age, as shown in section 7.3. It therefore appears that 

only changes deviating from these normative patterns are predictive of future changes in 

BMI and CMDs - a decrease in BMI predicting an improvement in mental health and a dete-

rioration in mental health predicting an increase in BMI. Given public health messages on 

avoiding weight gain, intentional long-term weight loss in adulthood might improve mood 

(and alleviate symptoms of CMDs) by giving individuals a sense of self-efficacy, perhaps ac-

companied by other life-style modifications.  Worsening mental health, on the other hand, 

may increase weight gain by leading to a diminished motivation for self-care, increase in 

unhealthy habits such as emotional overeating and reduced physical activity, or to neuroen-

docrinological changes in the HPA axis, which may induce weight gain.170,179-183 

The analysis of change in the exposure versus change in the outcome paints quite a 

different picture of the bidirectional association between BMI and CMDs than the time-

lagged longitudinal models discussed above. While the time-lagged longitudinal models 

showed a clear association between obesity and future CMDs, the analysis of change 

demonstrated no significant association between weight gain and subsequent increase in 

CMDs. This may be due to the differences in the questions the two methods address. Given 

the high stability of BMI over time, the time-lagged longitudinal models primarily address 

the issue of the between-individual association of obesity and CMDs, that is, whether obese 

persons have higher levels of CMDs than normal-weight persons. The analysis of change in 

the exposure vs. change in the outcome, in contrast, removes the between-individual vari-

ance from the analysis by concentrating only on within-individual changes, and therefore 

addresses the question of whether individuals who gain weight also experience increasing 

levels of CMDs. Hence, different results from these two analysis methods need not indicate 

contradictory or inconsistent findings, as they are concerned with different kinds of process-

es accounting for the association between body weight and CMDs.
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Improving mental health associated with intentional and successful weight loss is 

plausible given the attempts by many people to lose weight. However, the absence of an as-

sociation between weight gain and increasing CMDs, and the presence of an association be-

tween obesity and CMDs suggests that the latter association may not be causal in the way it 

is often interpreted to be. If obesity was causally related to CMDs because obesity brings 

with it various biological, psychological and social factors that adversely affect mental 

health, one would expect within-person weight gain to increase that person's level of CMD. 

The results could be more plausibly interpreted to suggest that obesity and CMDs are corre-

lated with each other because of mechanisms that vary between individuals but not within 

individuals. As a hypothetical example, if the association between obesity and CMDs were 

due to common genetic effects,384 one would expect to observe an association between obesi-

ty and CMDs when comparing different individuals with each other but not when compar-

ing levels of BMI and CMDs within the same individuals over time, because the genetic 

background of those individuals would not change. Of course, the between-individual vari-

ance need not to be due to genetic effects specifically but could also reflect differences in oth-

er biological, psychological or social variables influencing both obesity and CMDs. For in-

stance, various inflammatory markers (e.g., C-reactive protein and interleukin 6) have been 

suggested to account for the association between obesity and depression, as inflammation 

may be involved in both conditions.385

For the other direction of association - the influence of CMDs on obesity risk and 

weight gain - the results from the cumulative models and the analysis of change in the ex-

posure versus change in the outcome were at least partly in agreement. The former indicat-

ed that persistent CMDs increase future BMI and the latter implied that an increase in CMDs

over time predicts future increases in BMI within individuals, thus providing a more con-

vincing causal interpretation for the association of CMDs and weight gain. However, the 

analysis of change in the exposure vs. change in the outcome did not support the reversibili-
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ty of this association, as decreasing levels of CMDs over time were unrelated to future 

changes in BMI.    

8.3.4. Mediating mechanisms

Some of the plausible mechanisms for each direction of causality between obesity 

and CMDs were introduced in sections 2.2. and 3.2. Obesity may increase the risk of CMDs 

via (1) limited physical functioning and bodily pain, (2) stigma and discrimination associat-

ed with obesity, (3) internalization of negative self-image and generalized perceptions of 

poor physical and mental health caused by obesity. CMDs may increase the risk of obesity 

via (1) psychosocial stress and associated physiological mechanisms involved in energy 

reservation, (2) dysfunctional health behaviours following depressed and anxious mood, (3) 

low self-efficacy in weight management and lack of social support from others, and (4) anti-

depressant use.184,274,275,386 

While many alternative explanations have been put forward, these explanations have

rarely been systematically explored in other studies besides the study initially suggesting 

the mechanism. In the present study, several covariates were adjusted for in order to test po-

tential confounding and/or mediating mechanisms, as described in section 7.10. These cov-

ariates included occupational grade, sleep duration, bodily pain, dietary patterns, long-

standing illnesses, physical activity, alcohol consumption, and smoking. Adjustment for 

bodily pain (self-reported by the participants using the 4-item "bodily pain" subscale of the 

SF-36 questionnaire) attenuated the cross-sectional association by two-thirds and the longi-

tudinal association between obesity and CMDs by almost one-half. Other covariates had 

mostly minor or negligible effects on the associations between obesity (or change in BMI) 

and CMDs (or changes in CMDs). 

Results from the mediation analyses thus partly supported the hypothesized path-

way by which obesity increases levels of bodily pain which, in turn, is associated with an in-
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creased risk of CMDs. Physical health is an important determinant of mental health, al-

though subjectively reported physical health has been shown to correlate with mental health

more strongly than objectively assessed physical health,373 which probably reflects the 

heightened sensitivity to physical illnesses and symptoms in people suffering from mental 

health problems. This makes it somewhat difficult to interpret the attenuation due to bodily 

pain, as the reporting of bodily pain may be confounded by symptoms of CMDs. Neverthe-

less, bodily pain and limited physical functioning have been among the most prominent 

candidates suggested to explain the influence of obesity on CMDs, and the present media-

tion analysis provided empirical evidence only for this pathway and not for others.

In within-individual change analysis, adjustment for bodily pain or any other covari-

ates had no discernible influence on the change versus change analysis of BMI and CMDs, 

irrespective of temporal direction or the method of adjustment (covariate reported at base-

line data collection or assessed with change scores calculated over time concurrently with 

the change score in the exposure variable). It needs to be emphasized that the adjustment in 

the case of change in BMI predicting future change in CMDs was concerned with how 

weight loss preceded future decrease in CMDs rather than how weight gain would precede 

increase in CMDs. Thus, one would expect to observe a mediating effect of bodily pain in 

this analysis of change in the exposure vs. change in the outcome only if the effects of BMI 

and bodily pain were reversible, i.e., that weight loss would lead to decreasing bodily pain 

which would then lead to improving mental health. 

8.3.5. Moderator effects
If the associations between obesity and CMDs were observed only in some sub-sam-

ples of the population, this might give clues to the mechanisms mediating the associations. 

Several candidates for modifying factors in the associations between obesity and CMDs 

have been proposed but the evidence for any of them has not been consistent.87,184,274,275,387 As 
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reviewed in Chapter 4, the most prominent candidates have included age, sex, socioeconom-

ic status, chronicity, and time-period effects. 

In the present study, most robust evidence for a modifying effect was observed for 

age, which significanly modified the cross-sectional association and the longitudinal associa-

tion of CMDs predicting future obesity risk (Table 11-1). In both instances, the association 

between obesity and CMDs became stronger with increasing age, suggesting that CMDs 

may be relevant for increasing the risk of obesity only after 60 years of age. No significant 

moderator effect was observed for age in longitudinal models of obesity predicting subse-

quent risk of CMDs. This pattern does not support either of the a priori hypotheses put for-

ward in the introduction, one suggesting that the obesity would become a stronger predictor

of CMDs with age due to the increasing prevalence of physical illnesses and limitations 

caused by obesity, and the other suggesting that obesity might become a weaker predictor of

CMDs with age if the stigma and discrimination associated with obesity became less severe 

with age. Instead, the present findings suggest that the nature of CMDs in increasing obesity

risk may be different for older compared to younger individuals. The explanation for this ef-

fect remains to be further examined.

It is often assumed that obesity and CMDs would be more strongly related in women

than in men because physical appearance is believed to be more important for mental well-

being of women. The present results do not support such a sex difference as the longitudinal

association between obesity and subsequent CMDs was observed in men (OR=1.42, 

CI=1.17-1.72) but not in women (OR=0.93, CI=0.74-1.18). The Whitehall II sample is not a 

representative sample of men and women, as most of the civil servants (and thereby White-

hall II participants) are male, and women civil servants are unlikely to be representative of 

British women in general. The absence of a longitudinal association between obesity and 

CMDs might therefore reflect the selective nature of the women in the Whitehall II sample. 
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Previous studies have produced inconsistent findings concerning sex differences, 

and the overall evidence from the meta-analysis of Luppino et al.103 suggested no sex differ-

ences in the association in either direction. Simon et al. suggested that differences in statisti-

cal power may be one of the methodological factors contributing to the sex differences ob-

served in some of the studies as women tend to have higher levels of CMDs than men, 

thereby providing greater statistical power to detect associations in women. Simple stratifi-

cation by sex may lead to spurious conclusions of sex differences. For example, in the 

NHANES III survey,388 obesity was associated with depression in women (OR=1.82, 

CI=1.01-3.30) but not in men (OR=1.73, CI=0.56-5.37). This result is sometimes cited by other 

researchers as indicating a sex difference83,386 even though the odds ratios were very similar 

in both sexes, albeit not significant in men. A statistical test would indicate a similar associa-

tion in men and women. 

Socioeconomic status (SES) and time period (secular trends in obesity and/or CMDs)

might also modify the social circumstances in which obesity and CMDs influence each other.

Both covariates are related to differences in the prevalence of obesity,87 which could influ-

ence the social salience of obesity and therefore the negative mental health effects of obesity 

due to stigma and discrimination.125,126,258,266 However, no evidence for interaction effects with

SES was observed in the present study. Time period showed the same interaction effects 

with obesity as age, and additional analyses suggested that the interaction effects were 

mainly due to age rather than time period, although the issue could not be determined with 

certainty due to the close correlation between age and time period in the study.

Assuming that body dissatisfaction is more distressing for women and that women 

are judged more frequently on the basis of their physical appearance than men, the lack of a 

female-specific association between obesity and CMDs and the stronger association between

CMDs and obesity in men would seem to suggest that factors related to social stigma and 

discrimination may not be the forces driving the potential causal association between obesi-
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ty and CMDs. The absence of interaction effects with SES or time period, and the strength-

ening rather than weakening association with age, would also be somewhat surprising if so-

cial stigma, negative self-image or discrimination were responsible for the association 

between obesity and CMDs. It seems reasonable to hypothesize that an association between 

obesity and CMDs driven by social stigma, negative self-image or discrimination would 

have been modified by sex, age, SES and time period differently than was observed here. 

This evidence is only indirect and circumstantial, of course, and it does not provide a strong 

argument against the hypothesis that psychosocial pathways link obesity and CMDs. Direct 

measures of the relevant psychosocial factors were not available in the present study. How-

ever, the lack of support for these hypothesized moderator effects needs to be taken into ac-

count when considering the totality of evidence.  

8.4. Additional evidence from Mendelian randomization
studies

The present study was concerned with various longitudinal methods in examining 

the association between obesity and CMDs. Two recent studies have assessed the potential 

causal influence of obesity on CMDs by applying the method of Mendelian randomization, 

or instrumental variables (IV) regression with genetic instruments.389-391 IV-regression is 

based on the idea of using an instrument to restrict the range of the exposure in predicting 

the outcome so as to reduce the influence of confounding in the association.392-398 A valid in-

strument is a covariate that is associated with the exposure, and with the outcome only via 

its association with the exposure, but is not correlated with factors confounding the associa-

tion between the exposure and outcome. The outcome of interest is then predicted only with

the variance in the exposure that is associated with the unconfounded instrument, thus 

removing the effects of confounding factors. The method has been favored especially by 
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economists trying to estimate the true causal effects of various individual characteristics or 

policies. 

Mendelian randomization is IV regression with measured genetic variants as the in-

struments.394 Given that genotypes of individuals are determined by the random allocation 

of alleles from the parents in the formation of gametes and in conception, the genotypes are 

less likely to be biased by common confounds, such as socioeconomic factors and health be-

haviours.398 Genetic variants underlying individual differences in BMI can therefore be used 

as instruments for BMI, that is, symptoms of CMDs are predicted with the genetic variance 

in BMI associated with the genetic instrument included in the study. 

In the first Mendelian randomization study of BMI and CMDs carried out in the 

Whitehall II study, the FTO gene was used as an instrument for obesity and CMDs were as-

sessed with the GHQ.389 The positive association between obesity and CMDs observed with 

phenotypic data was also observed in the Mendelian randomization analysis, providing 

supporting evidence for a causal association between obesity and increased risk of CMDs. 

By contrast, a large Danish study of 53,221 participants390 using the FTO and MC4R genes as 

instruments for BMI found a positive association between obesity and symptoms of CMDs 

in the phenotypic analysis (e.g., risk of reporting "feels like giving up" associated with obesi-

ty vs. normal weight: OR=1.33, CI=1.21-1.46), but a strong, albeit imprecisely estimated, neg-

ative association when applying Mendelian randomization (OR=0.25, CI=0.04-1.66). 

Thus, the association of obesity with risk of CMDs appears inconsistent also in 

Mendelian randomization studies, even though the method has been suggested to improve 

data analysis based on observational data by removing common confounding influences. 

Mendelian randomization is not a method without limitations,391,393 the most problematic as-

sumption being that the genetic effects of specific 'obesity genotypes' on CMDs are mediated

only via BMI. It is quite possible that the FTO, MC4R, and other genotypes influence CMDs 

via other pathways besides their associations with body weight (pleiotropic effects), in 
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which case they would not be valid instruments for obesity or BMI in Mendelian random-

ization studies. Unfortunately, there are no Mendelian randomization studies that have as-

sessed the other direction of causality, that is, whether genetic instruments for CMDs are as-

sociated with BMI.  

8.5. The competing "jolly-fat" hypothesis
In contrast to the overall evidence from studies to date81,103 and most results of the 

present study, some studies have reported the diametrically opposite effect, that obesity has 

a protective effect against CMDs or depression. Indeed, one of the earlier articles of obesity 

and mental health in modern medical journals was entitled “Jolly fat: relation between obesity 

and psychoneurosis in general population”352 which gave rise to the "jolly fat" -hypothesis of 

obesity. The paper, published in the British Medical Journal, showed that obese individuals 

had lower levels of anxiety (men and women) and depression (men only) than their normal 

weight counterparts. The finding was later replicated by the same research group in another 

sample.353 

Some of the more recent studies have provided additional evidence for the jolly-fat 

hypothesis. In 2,245 men and women above age 50 living in California, USA, obese men had 

lower odds (OR=0.28) of being depressed, as indicated by high scores in the self-reported 

Beck's Depression Inventory.399 Data from the US National Longitudinal Alcohol Epidemio-

logic Survey (NLAES) of 16,764 men and 23,322 women, obesity increased the risk of being 

depressed in women but decreased the risk of depression by 37% in men.253 In the Renfrew/

Paisley study of 7036 men and 8327 women living in the Scottish towns of Renfrew and 

Paisley, near to Glasgow, obese individuals were less likely (OR=0.52, 0.33-0.84) than nor-

mal-weight individuals to have a hospital admission due to depression.400 And as described 

earlier, Gariepy et al.97 showed an inverse association between obesity and incident depres-

sion in men (HR=0.71, 0.51-0.98). 
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In the present analysis of concurrently measured changes BMI and CMDs were in-

versely associated with each other, so that an increase in BMI over a 5-year period correlated

with a decrease in levels of CMDs, which would be in agreement with the jolly fat -hypothe-

sis. However, the association between a decrease in BMI and an increase in CMDs could also

reflect some underlying disease or deteriorating general health, as many diseases and chron-

ic medical illnesses are accompanied by weight loss. The onset of psychiatric disorders is 

also often associated with weight loss, which could account for the apparent association be-

tween lower weight and increased levels of CMDs. To date, plausible mechanisms explain-

ing the inverse association between BMI and CMDs remain to be identified and demonstrat-

ed. Given the wealth of data and plausible mechanisms suggesting a positive association 

between obesity and CMDs, the evidence for a causal effect of obesity on lower rather than 

higher risk of CMDs remains relatively weak and without a convincing mechanism to ex-

plain the association.

Despite the inconsistent evidence supporting the jolly-fat hypothesis, a rather consis-

tent protective role of obesity has been observed in studies of suicide. Several studies have 

reported that obese people are less likely to die by suicide than their leaner counter-

parts,401-404 and obesity has also been associated with a lower probability of attempted (non-

fatal) suicides.405 However, a recent study found that obese individuals who had gone 

through bariatric surgery had an elevated risk of dying by suicide during the 10 years after 

the surgery,406 although this finding may be unrelated to the mechanisms accounting for the 

inverse association between BMI and suicide risk observed in the general population. 

The inverse association between obesity and suicide appears to be quite robust 

across studies, but the explanation for it is yet unclear. Mukamal and Miller402 assessed 

whether obesity was associated with suicide risk factors, including alcohol use, mental 

health, marital status, firearm ownership, and risk-taking behaviours. All the conventional 

risk factors for suicide were inconsistently associated with BMI, indicating that they were 
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unlikely to mediate the observed relationship of BMI with lower risk of suicide. Others have 

suggested that the association may not be causal but rather reflect some unidentified con-

founding405,407 or the influence of incident psychiatric disorder on weight loss and height-

ened suicide risk; unexplained weight loss seems to be more strongly related to suicide risk 

than BMI per se.408 The possible protective association of obesity in relation to suicide and 

CMDs thus remains unexplained and poorly understood, and the status of the jolly-fat hy-

pothesis is upheld only by occasional studies reporting an inverse association between obe-

sity and symptoms of CMDs, and most of these studies have not pursued the topic beyond 

the demonstration of a simple inverse correlation. Alternative methods and more detailed 

analysis are needed to build a more coherent body of research investigating the circum-

stances in which obesity may protect from mental health problems.  

8.6. Conclusions and future directions

8.6.1. Bidirectional association reconsidered
Previous results from standard longitudinal studies of obesity and CMDs have sug-

gested that the association is bidirectional with almost equal effect magnitudes in both direc-

tions.85,103,151 The present study demonstrates that such a conclusion is not completely war-

ranted when evidence from different longitudinal analysis methods are considered together.

Moreover, different patterns of association between obesity and CMDs are unlikely to reflect

the same etiologic factors or causal mechanisms but rather multiple independent mecha-

nisms. A similar conclusion was reached in the recent study of Gariepy et al.97 in which obe-

sity was positively associated with the prevalence of depression but inversely associated 

with depression incidence, implying that various alternative causal mechanisms may be at 

work.
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Based on the present results, evidence for a causal influence of CMDs on weight gain

and increased risk of obesity would seem to be fairly strong. This remains despite the lack of

association between baseline CMDs and future obesity in standard longitudinal models; 

measurement of CMDs at one point in time may not be sufficient to detect the association, 

because persistent rather than transient exposure to CMDs is relevant for weight gain. This 

was shown in the analysis of cumulative CMDs which demonstrated a linear dose-response 

relationship between the number of times a participants reported CMDs and future BMI. An

increase in CMDs over time also predicted subsequent increase in BMI over the following 

five years, providing further support for a causal association inferred by within-individual 

changes. These two findings suggest that CMDs are likely to have a causal effect on weight 

gain, especially when symptoms of CMDs are persistent, although the possibility of time-

varying confounding factors cannot be ruled out. A decrease in CMDs was not associated 

with future weight loss, which implies a lack of reversibility. Perhaps improving mental 

health is not a strong enough factor to reverse existing adverse effects of CMDs on weight 

gain.

Obesity predicted higher levels of CMDs in longitudinal regression models, but there

was no evidence for a dose-response relationship between weight gain and subsequent in-

crease in CMDs in terms of within-individual changes. Thus, the association of obesity with 

CMDs appears to represent mainly a between-individual association in which within-indi-

vidual weight gain does not affect changes in levels of CMDs. This between-individual asso-

ciation might be explained by biological comorbidity or other individual characteristics that 

act as common causes for the development of obesity and CMDs (see below). By contrast, 

weight loss was associated with subsequent decrease in CMDs, which may represent the 

positive experiences associated with successful long-term weight loss, possibly accompanied

by other life-style modifications. The inverse association between concurrent weight loss 
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and increasing CMDs, on the other hand, may be due to medical or psychiatric illnesses that 

cause an increase in CMDs and cause weight loss. 

Many of the explanations and interpretations offered above represent post hoc expla-

nations that were developed after the empirical results had been observed. Although they 

are all possible and some maybe highly plausible, they should be interpreted cautiously be-

fore confirmation by additional independent studies. Unfortunately, the covariates included 

in the present study offered limited additional information concerning potential 

mechanisms. 

 

8.6.2. Pathways of biological comorbidity
Considering the findings and limitations of the present study, one of the most 

promising avenues for future research on obesity and CMDs would probably be the investi-

gation of their biological comorbidity.185 This could be especially useful for elucidation of the

cross-sectional association between obesity and CMDs that may be unrelated to mechanisms

accounting for the dynamic within-individual changes in BMI and CMDs. The choice was 

made not to include any measures of biological markers, such as cholesterol, blood pressure 

or inflammation in the present study as the additional level of complexity was beyond the 

scope of this thesis. Several recent studies have suggested that obesity and mood disorders 

may share common pathophysiological pathways, including the HPA axis, immuno-inflam-

matory reactions and insulin signaling.385,409-414 For example, obesity and mood disorder may 

both represent pro-inflammatory states, in which case their association might be explained 

by underlying inflammatory processes.385 Biological markers could also help to explain some

of the dynamic longitudinal associations between obesity and CMDs.

The inclusion of biological markers in future studies of obesity and CMDs is impor-

tant because this may facilitate specification of the association with relevant biological path-

ways. For instance, if the inflammation hypothesis is correct, BMI and CMDs might be asso-
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ciated with each other only to the extent they are associated with the inflammatory markers, 

while other sources of variance in BMI and CMDs would represent only noise that attenu-

ates the true association due to inflammatory processes. There is also some inconsistent evi-

dence suggesting a genetic link between obesity and CMDs.384,415,416 One study reported that 

the association between obesity and chronic pain may also share familial background,417 im-

plying that adjusting for bodily pain in the association between obesity and CMDs may ad-

just for common genetic factors rather than for mediating pathways of the causal effects of 

obesity. These initial findings suggest that future studies need to consider biological and ge-

netic effects together with phenotypic data to test alternative causal models explaining the 

association between obesity and CMDs.
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