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a  b  s  t  r  a  c  t

The  construction  of  compartmental  models  of  neurons  involves  tuning  a set  of  parameters  to  make  the
model  neuron  behave  as realistically  as  possible.  While  the  parameter  space  of  single-compartment
models  or  other  simple  models  can  be  exhaustively  searched,  the  introduction  of  dendritic  geometry
causes  the  number  of  parameters  to balloon.  As  parameter  tuning  is  a daunting  and  time-consuming
task  when  performed  manually,  reliable  methods  for automatically  optimizing  compartmental  models
are  desperately  needed,  as  only  optimized  models  can  capture  the  behavior  of  real  neurons.  Here  we
present  a  three-step  strategy  to  automatically  build  reduced  models  of  layer  5 pyramidal  neurons  that
closely  reproduce  experimental  data.  First,  we  reduce  the  pattern  of  dendritic  branches  of  a  detailed
model  to a  set  of equivalent  primary  dendrites.  Second,  the  ion  channel  densities  are  estimated  using  a
utomated fitting
endritic geometry
iring pattern
endritic calcium dynamics

multi-objective  optimization  strategy  to  fit  the voltage  trace  recorded  under  two  conditions  –  with  and
without  the  apical  dendrite  occluded  by  pinching.  Finally,  we  tune  dendritic  calcium  channel  parameters
to  model  the  initiation  of  dendritic  calcium  spikes  and  the  coupling  between  soma  and  dendrite.  More
generally,  this  new  method  can  be  applied  to construct  families  of  models  of  different  neuron  types,  with
applications  ranging  from  the  study  of  information  processing  in single  neurons  to  realistic  simulations
of  large-scale  network  dynamics.
. Introduction

To incorporate realism into large-scale simulations of cortical
nd other networks (Traub et al., 2005; Markram, 2006), one needs
o construct biophysically realistic compartmental models of the
ndividual neurons in the circuit. Many parameters of these models
ave not been directly measured experimentally; therefore, these
arameters must be tuned to match the experimentally observed

nput–output relation of the neuron. Solving the resulting nonlinear
ptimization problem is difficult and requires extensive comput-
ng resources, especially for models comprising a detailed neuronal

orphology and a large number of compartments (Traub et al.,
005; Achard and De Schutter, 2006; Markram, 2006; Druckmann

t al., 2007; Hay et al., 2011).

Here we develop reduced models of neocortical layer 5 pyra-
idal cells with a small number of compartments to represent
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the dendritic geometry. Compared to fully detailed compartmental
models, reduced models confer significant speed advantages both
for the optimization of the single neuron model and for simulation
of networks of such neurons. The reduced model’s geometry, even
though simplified, should still incorporate the fact that synaptic
inputs arriving at different layers in the dendritic tree are integrated
differently (Larkum et al., 1999, 2004; Schaefer et al., 2003; Branco
et al., 2010). This implies that a sufficient number of compartments
must be used for the reduced dendritic morphology. The ability of a
neuron to lock onto fast fluctuations in the input depends critically
on how sharp the action potential onset is in its voltage time-course
(Naundorf et al., 2005; Palmer and Stuart, 2006; Kole et al., 2007;
Popovic et al., 2011). As the initiation site of the action potential,
located in the axon (Stuart and Sakmann, 1994; Palmer and Stuart,
2006; Kole et al., 2007; Popovic et al., 2011), determines how steep
the action potential onset is (Yu et al., 2008), a reduced model must
also have a minimum number of compartments for the axon.

We  construct the reduced pyramidal cell models step by step,

applying methods adapted to the problem (Roth and Bahl, 2009).
The first step, which determines the reduced cell morphology and
passive membrane properties, follows the tradition of defining cer-
tain passive electrical properties of the full model that are preserved

dx.doi.org/10.1016/j.jneumeth.2012.04.006
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:arbahl@gmail.com
dx.doi.org/10.1016/j.jneumeth.2012.04.006
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n the reduced model (Stratford et al., 1989; Bush and Sejnowski,
993; Destexhe, 2001). Second, we apply a powerful optimization
trategy, Evolutionary Multi-Objective Optimization (EMOO) (Deb
t al., 2002; Druckmann et al., 2007). This method, starting from

 family of models characterized by multiple features, generates a
uite of new models at each step, without making an a priori deter-
ination as to which one of the multiple desired objectives is most

mportant.
In previous approaches to evolutionary model optimization, up

o twenty different features are defined (Hay et al., 2011), from the
ction potential width to the depth of the after-hyperpolarization
otential (AHP). Each feature is associated with a single number.
n contrast, we return to the classical approach of minimizing
he least square difference between the recorded trace and the

odel’s response. We  define four least square difference objective
unctions, one for each of the different time scales present in the
ynamics – from the AP onset dynamics on the microsecond time
cale to the slow sub-threshold charging phase lasting several tens
f milliseconds.

The experimental data we fit include the responses of a layer
 pyramidal neuron to somatic current injection when the apical
endrite is occluded or pinched (Bekkers and Häusser, 2007). Such

 procedure yields essential information about the electrical prop-
rties of the cell and its apical dendrite. This information allows
arameter optimization to narrow down the possible combinations
f channel densities and properties along the dendritic geometry
hat could explain the neuron’s voltage response to somatic current
njection.

Finally, we show how the evolutionary approach can be
xtended to ensure that a neuronal model captures features that
o not take on continuous values, but are discrete. For this pur-
ose, we took another data set from a different experiment on
lder layer 5 pyramidal neurons. We  optimized the dendritic cal-
ium channel parameters and adjusted these values such that the
odel reproduces the shape of the dendritic calcium AP as well as

omato-dendritic coupling factors found in experiments (Schaefer
t al., 2003).

After pursuing these three steps in optimizing neuronal mod-
ls, we present a family of 10 reduced models of layer 5 pyramidal
eurons whose input–output relation matches a range of experi-
ental data. These models could be used in large-scale network

imulations of the neocortex.

. Methods

.1. The cell model

Our aim is to create a reduced pyramidal cell model that is sim-
le and fast but detailed enough to show complex somato-dendritic

nteractions. The model is based on standard techniques from com-
artmental and ion channel modeling (Hodgkin and Huxley, 1952;
all, 1962), implemented in NEURON 7.1 (Carnevale and Hines,
005) and controlled via the NEURON-Python interface (Hines et al.,
009).

To obtain a simplified geometry of the dendrites, we model
he functional neuronal sections (soma, basal dendrites, apical
endrite and the apical dendritic tuft) each by a single cylinder
hose length and diameter will be later determined by the opti-
ization algorithm we describe. The axonal geometry is based

n a detailed reconstruction (Zhu, 2000) and consists of a coni-
al axon hillock (l = 20 �m)  which has a diameter of 3.5 �m at the

oma connection and tapers to 2.0 �m.  The conical axon initial
egment (iseg; l = 25 �m)  is connected to the hillock and its diam-
ter tapers from 2.0 �m to 1.5 �m.  The actual axon (l = 500 �m)  is
onnected to the initial segment and has a uniform diameter of
e Methods 210 (2012) 22– 34 23

1.5 �m.  We  did not model nodes of Ranvier or myelination. As the
reduced model should be fast, the number of compartments ought
to be as small as possible. We  chose the following compartment
numbers for the functional sections: soma = 1; basal dendrite = 1;
apical dendrite = 5; apical dendritic tuft = 2; axon hillock = 5; initial
segment = 5; axon = 1. Hence, the model has a total of 20 compart-
ments.

Ion channels were selected and distributed based on recent
experimental findings and modeling studies and were downloaded
from ModelDB (Hines et al., 2004): A hyperpolarization-activated
cation channel (HCN) (Kole et al., 2006) was  inserted into the basal
dendrite, the apical dendrite and the dendritic tuft. A transient
sodium channel (Nat) (Kole et al., 2006) was  placed into the soma,
the axon hillock, the initial segment, the apical dendrite and the
dendritic tuft. The voltage dependency of the channel kinetics was
shifted to higher values (vshiftNat = +10 mV)  in all compartments to
yield higher thresholds (Mainen and Sejnowski, 1996). We  intro-
duced a second voltage shift (vshift2Nat) for the Nat channel in the
initial segment to account for different channel properties in this
area (Colbert and Pan, 2002). Nat channel density decayed linearly
in the apical dendrite with distance from the soma (Mainen et al.,
1995; Keren et al., 2009). A fast potassium channel (Kfast) (Kole
et al., 2006) was  inserted into the soma, the apical dendrite and
the tuft. Its density decayed exponentially from the soma towards
the tuft (Keren et al., 2009). A slow potassium channel (Kslow) was
inserted into the soma, the apical dendrite and tuft and chan-
nel densities decayed exponentially with distance from the soma
(Korngreen and Sakmann, 2000). A persistent sodium channel (Nap)
was  inserted into the soma to adjust the neuron’s excitability (Traub
et al., 2003). A muscarinic potassium channel (Km) was inserted into
the soma. The Km channel is a non-inactivating voltage-dependent
slow potassium channel which is thought to play a role in spike
frequency adaption (Winograd et al., 2008). A slow calcium chan-
nel (Cas) was inserted into the tuft. The voltage dependency of
its kinetics could be shifted (vshiftCas) to adjust activation thresh-
olds. Finally, a calcium dependent potassium channel (KCa) (Mainen
and Sejnowski, 1996) as well as a calcium pump (CP) (Kole et al.,
2006) was inserted into the tuft. The 10 optimized reduced model
neurons and the ion channel models are available for download at
http://senselab.med.yale.edu/ModelDB.

2.2. Free model parameters

Reliable data on the biophysical properties of ion channels in
pyramidal neurons are rare and measurements mostly stem from
different neurons from different animals or even species. More-
over, due to experimental limitations many parameters just cannot
be measured. In particular, information about ion channel densi-
ties and kinetics in distal dendritic branches are not available. It
is, therefore, not sufficient to put together all existing information
on pyramidal neurons and build a working model; a long list of
uncertainties remains. We  made a selection of the most uncertain
parameters that we  thought could be estimated by means of an
optimization strategy: The lengths (l), the diameters (d) and the
axial resistances (Ra) of the functional sections of the reduced mor-
phology were free parameters, as were the values of the membrane
resistance (Rm) and capacitance (Cm). We  introduced a dendritic
scaling factor (dendscaling) that allowed the adjustment of den-
dritic membrane resistance and capacitance relative to the soma.
This should account for dendritic spines, systematic errors in den-
dritic reconstructions or different ratios between the soma size and
the dendritic tree size in different cells. Further free parameters

were the ion channel densities in different compartments, which
were described by the channel’s maximal ionic conductance per
membrane area (e.g. soma ḡNat). It was shown that certain ion chan-
nel densities along the apical dendrite can be described by simple

http://senselab.med.yale.edu/ModelDB
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Table  1
Full list of all optimized parameters with their lower and upper search bounds (LSB, USB) together with a summary of model properties for all 10 reduced models. (a) The
morphological parameters found by reducing the detailed model (first step) are shown. The remaining parameters are given because the method maintains the total surface
area  of the functional sections during the optimization (Asoma = 1682 �m2, Abasal = 7060 �m2, Aapical = 9312 �m2 and Atuft = 9434 �m2 and therefore dsoma = 23 �m, Lsoma = 23 �m,
dbasal = 8.7 �m,  dapical = 5.9 �m,  dtuft = 6.0 �m).  (b) The model parameters are shown that were found after the optimization of ionic conductances (second step). Models 1–6
were  optimized using target data before and during pinching, while models 7–10 were optimized only with target data from the intact neuron. (c) Model parameters found
after  optimizing the dendritic calcium dynamics (third step) are shown. In models 4, 5, 9 and 10 no parameters could by found satisfying the requirements for proper calcium
dynamics. (d) We summarized a few properties of the 10 resulting models: the ratio of the somatic sodium and potassium channel density, the ratio of the sodium channel
density  in the initial segment and soma as well as the ratio of the tuft HCN and basal HCN channel density. It is also summarized that all models show back-propagating APs
and  which models show a decay of BAP amplitude with somatic distance (illustrated in Fig. 7). Finally we summarize the modulation of the resting potential along the apical
dendrite (distal voltage–somatic voltage at rest, see Fig. 6). If proper calcium dynamics could be found in the third step we  show the resulting coupling factor.

Parameter Result LSB USB Unit

(a) Parameters found in first step
soma Ra 82 80 200 � cm
basal L 257 170 280 �m
basal Ra 734 700 2000 � cm
apical L 500 500 800 �m
apical Ra 261 150 300 � cm
tuft  L 499 400 600 �m
tuft  Ra 527 500 1200 � cm

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 LSB USB Unit

(b) Parameters found in second step
epas −83.06 −80.40 −80.50 −78.97 −82.55 −85.00 −83.68 −80.74 −84.37 −80.75 −85.00 −60.00 mV
Rm 23,823 20,588 20,514 10,784 17,387 15,159 21,298 11,594 11,081 14,712 10,000 30,000 � cm2

Cm 2.30 2.23 2.41 1.79 2.02 2.71 2.37 2.34 1.40 2.51 0.60 3.00 �F/cm2

dendscaling 0.86 0.78 0.69 0.50 0.52 0.50 0.55 0.50 0.50 0.50 0.50 2.00 1
soma ḡNat 284.55 236.62 238.88 182.17 248.75 295.47 447.25 402.17 277.35 371.43 0.00 500.00 pS/�m2

soma ḡKfast 50.80 67.20 59.26 45.43 44.77 43.23 43.78 41.35 32.41 48.25 0.00 300.00 pS/�m2

soma ḡKslow 361.58 475.82 433.80 467.50 523.27 630.25 190.33 264.79 187.87 621.74 0.00 1000.00 pS/�m2

soma ḡNap 0.87 1.44 1.48 3.33 2.29 3.52 0.85 4.18 2.21 4.16 0.00 5.00 pS/�m2

soma ḡKm 7.12 10.46 11.12 12.99 14.20 11.91 11.05 14.92 12.22 7.00 0.00 15.00 pS/�m2

basal ḡHCN 15.71 11.04 10.72 7.94 13.62 12.87 3.12 11.92 13.90 22.09 0.00 50.00 pS/�m2

tuft ḡHCN 17.69 16.19 17.80 18.89 15.73 23.93 40.67 15.27 51.84 3.34 0.00 150.00 pS/�m2

tuft ḡNat 6.56 47.82 29.01 76.65 40.38 45.92 0.41 11.56 46.94 87.60 0.00 100.00 pS/�m2

�Kfast 58.52 20.08 55.58 2.15 8.91 65.61 82.07 91.80 73.47 67.52 1.00 100.00 �m
�Kslow 42.21 37.71 88.72 55.49 49.67 34.33 65.18 75.61 69.61 83.03 1.00 100.00 �m
hillock ḡNat 8811 9512 8303 5997 4988 9451 8171 8030 4904 8407 0 20,000 pS/�m2

iseg ḡNat 13,490 13,327 17,624 12,625 10,730 17,194 19,583 17,591 10,777 15,509 0 20,000 pS/�m2

iseg vshift2Nat −9.80 −10.61 −9.57 −10.16 −10.75 −8.92 −5.36 −5.98 −10.26 −8.47 −15.00 0.00 mV

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 LSB USB Unit

(c) Parameters found in third step
apical Ra 454.06 382.22 444.13 – – 445.01 332.92 358.47 – – 250.00 500.00 � cm
tuft ḡCas 3.68 0.45 2.12 – – 0.49 2.81 3.86 – – 0.00 4.00 pS/�m2

tuft vshiftCas 7.48 7.19 8.35 – – 0.80 2.35 3.79 – – −10.00 10.00 mV
tuft ḡKCa 9.76 6.15 8.23 – – 9.69 9.55 9.60 – – 0.00 4.00 pS/�m2

Property Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

(d) Model properties
soma ḡNat/(ḡKfast + ḡKslow) 0.69 0.44 0.48 0.36 0.44 0.44 1.91 1.31 1.26 0.55
iseg ḡNat/(soma ḡNat) 47.41 56.32 73.78 69.30 43.14 58.19 43.78 43.74 38.86 41.76
tuft ḡHCN/(basal ḡHCN) 1.13 1.47 1.66 2.38 1.16 1.86 13.03 1.28 3.73 0.15
BAPs?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
BAPs  decay? Yes Yes Yes No No Yes Yes Yes No No
Mod.  of rest +1.2 mV +1.5 mV +2 mV  +1.5 mV +1.5 mV +2 mV  +5 mV +0.5 mV +4 mV −2 mV
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Coupling 0.50 0.50 0.50 – – 

unctions (Berger et al., 2001; Kole et al., 2006). We  assumed an
xponential decay of the potassium channel density along the api-
al dendrite but allowed the space constant (�Kfast, �Kslow) to be

 free parameter. Nat and HCN channel densities were changed
inearly along the apical dendrite with slopes calculated based on
he channels’ densities in the soma and tuft. Finally, some kinetic
arameters of the same ion channel type are distinct in different
arts of the neuron (Colbert and Pan, 2002). Therefore we  chose the
oltage dependency of the Nat channel in the axon initial segment

iseg vshift2Nat) and the voltage dependency of the Cas-channel in
he tuft (tuft vshiftCas) as further free parameters. The free model
arameters used for optimization as well as lower and upper search
ounds are listed in Table 1.
 0.50 0.54 – –

2.3. The optimization algorithm

In all three optimization steps we used the Evolutionary Multi-
Objective Optimization (EMOO) algorithm (Deb, 2001; Deb et al.,
2002). The EMOO-algorithm allows one to simultaneously min-
imize multiple and possibly conflicting error functions and is
therefore especially well suited for the optimization of spiking neu-
ron models to experimental data (Druckmann et al., 2007, 2008).
EMOO is a genetic algorithm and uses mechanisms inspired by

biological evolution, such as selection, crossover and mutation,
to grow a population of size N to a certain capacity C and to
transfer good individuals into the next generation. We  used a Sim-
ulated Binary Crossover operator (Deb and Agrawal, 1995) and a
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olynomial Mutation operator (Deb, 2001). The efficacy of an oper-
tor is controlled by �c and �m respectively. Large values �c and �m

ean that the operator’s effect is weak. The EMOO-algorithm was
mplemented in Python and run parallelized on an AMD  x86 64
luster with 80 processors running Linux. The Python-Framework
or the evolutionary multi-objective optimization is available for
ownload under www.g-node.org/emoo.

. Results

.1. Stepwise fitting strategy

An important aspect of a good model is that it closely reproduces
ata used to construct the model and, even more importantly, pre-
icts key features of new data that were not used to constrain the
odel (Druckmann et al., 2011). Tuning a set of parameters by hand

uch that the model fulfills these requirements is a daunting, time-
onsuming or even impossible task and a new set of data or minor
odel modifications might require a repetition of that process.

herefore the process of creating a model and tuning its param-
ters should be as automated as possible. To divide the parameter
pace into smaller units and to optimize each parameter subset
ndependently we have developed a three-step fitting strategy: In
he first step we estimated the geometry of the model, including the
xial resistances of the sections. The geometrical parameters of the
odel were fixed after this step. In the second step all ion chan-

el and membrane parameters affecting somatic spiking but not
alcium spiking dynamics were optimized. Once this step was car-
ied out, these parameters were also fixed. Finally, in the third step
e estimated the parameters needed for dendritic calcium spike
ynamics. In an optimal scenario all these data would come from
he same neuron from the same animal. This would be an exper-
mental challenge and currently such a set of data does not exist.
herefore we have to combine data from different experiments in
ach of these steps.

.2. First step: optimizing the reduced geometry

To obtain a representative geometry for the reduced model we
tarted with a detailed model reconstruction of a layer 5 pyramidal
euron from a young (≈P21) rat (Stuart and Spruston, 1998). To do
o we adopted a model simplification strategy (Destexhe, 2001):
s we are only optimizing the neuronal geometry we removed
ll active conductances and globally set the membrane resistance
Rm) to 15,000 � cm2, the membrane capacitance (Cm) to 1 pF/�m2,
he reversal potential (epas) to −70 mV  in both the detailed and in
he reduced model. The specific membrane parameters (Rm, Cm,
pas) do not change with geometry and therefore do not need to
e optimized in the first step. However they will need further
uning when the model is matched to spiking data in the sec-
nd step. Next, we assigned each compartment in the detailed
odel to one of the functional sections (basal dendrite, soma,

pical dendrite, tuft), determined their surface areas and set the
ize of the functional sections in the reduced model to the same
alues (Asoma = 1682 �m2, Abasal = 7060 �m2, Aapical = 9312 �m2 and
tuft = 9434 �m2). Then, in the detailed model, we  set the axial
esistance (Ra) globally to the commonly used value of 100 � cm.
s it is not clear what the axial resistance and the length of the

unctional sections in the reduced model should be, we needed to
stimate these values. Once we know the length of a functional
ection, we can also compute its diameter, as this should lead to

he same surface area as measured in the reconstruction. Destexhe
2001) only used the steady state voltage in response to constant
urrent injections to fit these parameters across all compartments.

e used this target function, as well, but extended the method to
e Methods 210 (2012) 22– 34 25

reproduce the detailed neuron’s somatic input impedance and
phase shift functions for oscillatory somatic input currents
(0–1000 Hz). These impedance functions were shown to contain
information about the sub-threshold neuronal dynamics of the
whole morphology (Fox, 1985; Borst and Haag, 1996). We  deter-
mined these three functions in the detailed model and, for a
given parameter combination, in the reduced model and calcu-
lated the sum of squared differences. This gave us three features
to minimize by EMOO. We used a population size of N = 350 and
a capacity of C = 700 individuals and evaluated 100 generations.
The crossover parameter started at �c = 5 and increased linearly to
�c = 50, while the mutation parameter increased from �m = 10 to
�m = 500, thereby reducing the strength of these operators during
evolution. The mutation probability per parameter was  constant at
10%. We  dropped the axon in this step as the detailed reconstruc-
tion lacks an axon. The axon was appended again afterwards and
its membrane properties were chosen to equal those found for the
soma. Appending the axon reduced the somatic input resistance
from 69 M�  to 63 M�.

After optimization the passive response properties of the
reduced model matched those of the detailed model (Fig. 1).
One set of optimal parameters is given in Table 1; further opti-
mization trials have led to different parameter combinations
(not shown) that reproduced the passive response properties of
the detailed model similarly well. To challenge the optimization
method we  injected the same Gaussian noise into the soma of the
reduced and complex model and measured the resulting voltage
responses in the soma and in the dendrite. As demonstrated in
Fig. 2, the passive voltage responses in both models are almost
indistinguishable.

3.3. Second step: optimizing the ion channel parameters

In the next step we  estimated the ion channel parameters
affecting somatic spiking. This was  done using experimental data
on the somatic spiking dynamics under two different conditions,
first in the intact neuron, and second while the apical dendrite
has been occluded using a method called Pinching (Bekkers and
Häusser, 2007). Dendritic calcium spikes develop more fully in
older pyramidal neurons (Schiller et al., 1997) and are activated
by strong dendritic local depolarization or by somatic input com-
bined with dendritic input (Larkum et al., 1999, 2001). This means
that the experimental data does not contain information about
calcium dynamics. Therefore this feature could not be optimized
here and we  only tuned the parameters affecting somatic spik-
ing in the second step. As the recordings were made from young
rat (P17-25) pyramidal cells we  can use the optimized reduced
geometry that we obtained after the first step as it is based on
a detailed geometry of a pyramidal neuron from a rat of similar
age.

Pinching has a number of effects on neuronal dynamics (com-
pare black and blue traces in Fig. 3): (1) the input resistance
increases (from ≈82 M� to 131 M�)  and hence the spike fre-
quency. By occluding the apical dendrite, one path for current
loss is blocked, allowing the somatic membrane to be charged
more effectively (Bekkers and Häusser, 2007). (2) The somatic rest-
ing potential becomes more hyperpolarized (≈4 mV). It has been
shown that the density of Ih increases with distance from the soma
in the apical dendrite of layer 5 pyramidal neurons (Berger et al.,
2001; Kole et al., 2006). When the apical dendrite is blocked during
pinching, the depolarizing influence of dendritic HCN channels is
reduced, which might explain the hyperpolarization of the somatic

resting potential. (3) The threshold for AP initiation becomes lower
(≈3 mV)  and the AP peak voltage increases (≈0.8 mV), which, at
least in a model (Bekkers and Häusser, 2007) could be explained by
the decrease in the dendritic capacitance, reducing the electrical

http://www.g-node.org/emoo
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Fig. 1. Morphology and passive response properties for the complex and the reduced cell model. (a) The detailed reconstruction of a layer 5 pyramidal neuron (Stuart
and  Spruston, 1998) that we used as the starting point to create the reduced model. (b) An illustration of the reduced model (same scale as detailed model, geometrical
parameters can be found in Table 1). We  divided the complex morphology into four functional sections: The soma, the basal dendrites, the apical dendrites and the tuft.
The  oblique dendrites are considered to be part of the apical dendrites. (c) We injected a constant current (−1 nA) into the somata of both model neurons and measured
the  steady-state voltage at different locations. (d) We used a low-amplitude oscillatory somatic input current and measured the resulting membrane potential oscillation to
determine the somatic frequency–impedance curve for both models. (e) We calculated the somatic phase-shift between the oscillatory input current and resulting membrane
potential oscillation for both models. The black dots and curves in (c–e) describe the passive response properties of the detailed model and served as target functions for the
optimization procedure in the first step. The red dots and curves show the corresponding response of the reduced model after optimization.

Fig. 2. Comparison of the voltage traces in the complex and in the reduced model in response to noisy input current. To test whether the reduced model is a good approximation
of  the complex model, we  analyzed responses to Gaussian noise current injections. The same random current was injected into the somata of the models (green electrodes
in  a and b and green trace in e). For both models, the somatic voltage as well as the voltage distally (≈280 �m and ≈425 �m from the soma) was recorded (black and red
electrodes in a and b) and the recordings overlaid (traces in c–e).
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Fig. 3. Fitting results for the reduced model 2 after evolving the ion channel conductances using EMOO in the second step of optimization. Four sub-threshold step currents
and  one supra-threshold step current were delivered, and the neuron’s and model’s voltage response was  recorded in the soma before and during pinching of the apical
dendrite. These voltage traces were used for the optimization. The left part of the figure compares the experimental recordings (black) with the model responses (red) for the
intact  neuron before pinching. The traces in the right part (blue and orange) show the corresponding responses during pinching. A comparison of the black and blue traces
(a–c,  left and right parts) reveals the effects pinching has on the neuronal response properties. We used the following four objectives for the optimization: (1) the shape of
the  AP onset (a, left traces); (2) the shape of the AP offset (a, right traces); (3) The interspike interval times (ISIs) of the spike train (b, only the first 600 ms  are shown for
better  visualization). (4) The four sub-threshold traces (c). The five step current injections were Iamp = −0.1 nA, −0.05 nA, 0 nA, 0.05 nA and 0.4 nA (d, green traces). The four
objectives (a–c) were determined before and during pinching and compared with the experimental data. The resulting distances were summed up yielding four distance
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(2) We  determined the squared distance between the average AP
unctions that we  minimized by EMOO. No calcium channels were present in this s

oad on the AP initiation site in the axon. (4) The spike after-
yperpolarizing potential (AHP) becomes stronger during pinching
≈3 mV). It is unknown what causes the increase in the AHP. Under
ormal conditions in the intact cell, back-propagating action poten-
ials (BAPs) (Stuart and Sakmann, 1994) are carried by dendritic
oltage-dependent currents, and this in turn leads to dendritic cur-
ents flowing back to the soma that counteract the AHP. Upon
inching, this source of depolarization is removed, which could
esult in an apparent increase of the AHP.

For our target data, we chose a pyramidal layer 5 cell’s volt-
ge traces in response to four weak current injections (−0.1 nA,
0.05 nA, 0 nA, 0.05 nA) and one stronger current injection (0.4 nA)

hat led to spiking responses under both conditions, before as
ell as during pinching. The goal of parameter optimization using

MOO was to reproduce these data and the effects of pinching.
MOO automatically distributed the active conductances in the
xon, soma and dendrites.

A spike was defined as a voltage excursion above a thresh-
ld (� = −20 mV). The spike time was given by the time at which
he voltage reaches its maximum, whereas the spike width is

easured by voltage crossing the threshold before and after the
pike.

In response to supra-threshold stimulation of 0.4 nA, the model

ad to respond with at least six spikes. Further prerequisites for the
odel’s response at this current were: no spike width could exceed

 ms;  the absolute spike heights (voltage peaks) from the third to
 the optimization.

the penultimate spike could not change by more than 20%; the volt-
age minimum between the third and the fourth spike compared to
the voltage minimum between the penultimate and the last spike
should not change by more than 10%; and, finally, there should not
be any interspike interval (ISI) below 15 ms.  For all other currents,
the model was required not to spike.

If these prerequisites were not met, for both the intact neu-
ron as well as for the model neuron in which the apical dendrite
was  pinched, the EMOO algorithm severely punished the model by
assigning it an extremely high error value. With the prerequisites
fulfilled, four squared distance values were measured between the
model response and the experimental data:

(1) We  determined the distances between model and data
for each of the four sub-threshold traces between t = −50 ms  and
300 ms  (relative to the current injection onset, t0 = 100 ms)  and
summed these distances up:

E1 =
∑

k

∫ 300

−50

(vk
Model(t) − vk

Exp(t))
2
dt
onset in the model and the AP onset in the data. For this purpose,
the time segment between −0.5 and −0.1 ms before the AP peak
was  considered, and both the voltage and its time derivative were
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ig. 4. Model generalization. To illustrate how well the optimized model generaliz
.6  nA) with the corresponding experimental data (black and blue traces). These e
redictions of the AP shape (a) and of the spike train (b) before and during pinching

sed:

2 =
∫ tspike−0.1

tspike−0.5

(vModel(t) − vExp(t))
2

+ 0.01 ·
(

d

dt
vModel(t) − d

dt
vExp(t)

)2

dt

(3) We  also determined the distance between the average AP
ffsets, including their first derivatives (time window ranged from
.1 ms  to 14 ms  after the spike peaks):

3 =
∫ tspike+14

tspike+0.1

(vModel(t) − vExp(t))
2

+ 0.01 ·
(

d

dt
vModel(t) − d

dt
vExp(t)

)2

dt

As we included the time derivative for feature extraction
ur approach resembles the idea of taking the phase-plane of

 spike train for the optimization (LeMasson and Maex, 2001).
hat approach, however, puts more weight on the sub-threshold
esponses than on the spike shape. This can lead to imperfect fit-
ing results, especially when experimental data is used as a target
Druckmann et al., 2008). We  instead focus on the average spike
ather than on the whole spike train and hence overcome that lim-
tation. The experimental data we used for the optimization was
ecorded at 50 kHz (�t  = 20 �s) and does not provide sufficient time
esolution for proper spike alignment and hence for calculating the
verage spike and its time derivatives. Therefore we applied a cubic

pline interpolation (new �t  = 5 �s) to each spike and then aligned
nd averaged these interpolated spikes (Wheeler and Smith, 1988).

(4) Finally we also determined a distance for each ISI and
ummed these differences up. This distance function has already
e compare the model responses (red and orange traces) to a new input current (c,
mental traces have not been used during the optimization. Shown are the model

proven to be well suited for the optimization of conductance-based
models (Keren et al., 2005):

E4 =
∑

i

(ISIModel
i − ISIExp

i
)
2

For each of the four distances, the value was  determined before
and during pinching and summed, yielding four final distance
values. If all four distances are minimized, then the resulting
model reproduces experimental sub-threshold responses, spiking
responses as well as detailed AP shape before and during pinching.
The effect of pinching was introduced into the model by increasing
the axial resistance of the apical dendrite to a high value (106 � cm).

To minimize the four distance values, we  used EMOO with a pop-
ulation size of N = 1000 and a capacity of C = 2000 individuals. 1000
generations were evaluated. The crossover and mutation param-
eters remained constant at �c = 10 and �m = 20 respectively. The
probability of a mutation per parameter was 20%. By design, EMOO
ends with a population containing models that perform well on
one of the distance measures alone, but could be far off the mark in
the others. But the final population also contains models that have
intermediate fitness in each of the distance functions. It is up to
the modeler to choose an individual from the population. In order
to do this step automatically as well, we  normalized each distance
function by the lowest value found in the respective distance func-
tion of the last generation. This natural normalization then allowed
us to go through all generations and pick the individual for which
the sum (=total error, ET) of these normalized distance values was
minimal.

We  performed six independent optimization trials, with each

trial requiring approximately two days of runtime. The relative
improvement of the total error during evolution was  86 ± 5% (mea-
sured as (ET(0) − ET(i))/ET(0); ET(0) is the minimal total error in the
initial population and ET(i) is the minimal total error in the final
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Fig. 5. Model prediction of firing frequency. We  compare the experimentally mea-
sured with the predicted firing frequencies before and during pinching (black and
red dots and blue and orange dots respectively) for current injections ranging from
0  nA to 1.1 nA. The current injection’ amplitude taken for model optimization was
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.4  nA which is illustrated with the black dashed line. Error bars for the experimental
ata show the standard deviation of the two  measurements for each data point.

opulation) indicating a significant improvement of the fit. We
btained six models that closely reproduce the experimental sub-
hreshold responses, the spike train as well as the AP shape before
nd during pinching, but have different sets of parameters (models
–6, Table 1). Fig. 3 shows the fitting results for model 2. The other
ve models reproduce the data similarly well (not shown).

.3.1. Optimization without the pinching data
The data set we have used for optimization is unusual, given that

he neuron’s response with and without the apical dendrite was
easured. We  wished to quantify how much is gained by using such

ata. Therefore, we repeated the optimization strategy described
bove but excluded the distances obtained during pinching and
nly used model responses and data from the intact neuron. This
as done for four independent runs (models 7–10, Table 1). The

uality of the fit improved significantly during evolution as shown
y a relative improvement of the total error of 82 ± 10%. These mod-
ls reproduce the experimental recordings for the intact neuron
ell, including the AP shape. However the prediction of the record-

ngs during pinching is poor in all these models and also variable
etween models (see Figs. S1 and S2).  This shows that the differ-
nce in neuronal responses before and during pinching contains
seful information about dendritic parameters.

.3.2. Model evaluation
We checked how well the optimized reduced models generalize

o input currents that were not used in the optimization process.
or this we compared the responses of model 2 with the experi-
ental data for another current injection (0.6 nA), which the model

redicts well (Fig. 4, the other models’ predictions were similarly
ood). Moreover, the model’s spike frequency before and during
inching is qualitatively correct for a broad set of current injections
between 0 and 1.1 nA), with a slightly higher firing frequency for
tronger input currents (Fig. 5).

We were also interested in how the optimized models pre-
ict other experimental findings in pyramidal neurons. Models 1–6
howed a resting potential modulation with distance from the soma

f approximately +2 mV  (Fig. 6A and Table 1) which is qualitatively
lso seen in experiments (Stuart et al., 1997). Following previ-
us studies (Keren et al., 2009) we used model 2 to evaluate the
onductances active at rest along the apical dendrite. It can be
e Methods 210 (2012) 22– 34 29

seen that the enhanced dendritic depolarization at rest is due to
an increased dendritic depolarizing HCN current (Fig. 6B) and due
to a lack of hyperpolarizing dendritic potassium currents (Fig. 6D
and E). The modulation of the resting potential in models 7–10
was  variable, and in model 10 the neuron’s voltage became even
more hyperpolarized the farther away from the soma (Table 1).
This shows that the pinching data is beneficial to properly con-
strain dendritic parameters. Next, we tested if the model predicts
realistic BAPs (Stuart and Sakmann, 1994; Stuart et al., 1997). In
all 10 models somatic APs actively propagated into the apical den-
drite while the AP half-width (width at halfway from −60 mV to
the AP peak) increased. In models 1–3 and 6–8 the AP amplitude
decreased with somatic distance, while in models 4, 5, 9 and 10 the
AP amplitude remained nearly constant along the apical dendrite
(not shown). Fig. 7 illustrates BAPs for model 2.

Finally we tested how well an average of the optimized models
1–6 would fit the experimental data. The resulting model presented
a surprisingly good fit to the data (Fig. S4)  and the prediction of the
experimental IF – curve appeared even better than in any of the 6
optimized models (Fig. S5).  It might be possible that the parameter
range leading to good fitting results is broad and that the aver-
age model still lies within this range. To test for this we replaced
only a single parameter (like Rm) per model with its average, which
produced a model that failed reproducing the experimental data.
This shows that the quality of the averaged model is rather an indi-
cation that certain parameter ratios (that are maintained during
averaging) determine the quality of the fit.

3.4. Third step: optimizing the calcium spike dynamics

Older pyramidal neurons show elaborate calcium spike dynam-
ics, i.e. a strong dendritic current input induces a local dendritic
calcium spike, which can in turn depolarize the soma suffi-
ciently to evoke axosomatic APs (Schiller et al., 1997; Larkum
et al., 1999). Moreover, axosomatically initiated spikes can actively
back-propagate along the apical dendrite and reduce the current
threshold for dendritic calcium spike initiation (Larkum et al., 1999,
2001). This threshold reduction translates into a coupling factor
between soma and dendrite, estimated to be around 0.5 for pyra-
midal neurons (Schaefer et al., 2003).

We wanted our reduced model to reproduce these calcium
spike dynamics and show how the method can be extended to
match rather different data sets. In general, four parameters in
the model dominate the calcium dynamics. The strength and ini-
tiation threshold of a dendritic calcium spike are determined by
the calcium channel density in the tuft (ḡCas) and the voltage
shift (vshiftCas) of this channel. The calcium-dependent potassium
channel curtails the length of the calcium plateau and thereby
the number of somatic action potentials in a burst. The density
of this channel (ḡKCa) was  also optimized. The apical resistivity
(apical Ra),  even though it had been previously optimized in the
first step, had to be left as a free parameter as well. All remain-
ing parameters that had been previously optimized were not
modified.

To illustrate the power of the evolutionary optimization
approach, we  do not use quantitative experimental data to con-
struct the distance function. Instead, we took general experimental
observations of how dendritic calcium dynamics depend on the
coupling of the soma and the dendrite (see experimental traces
in Fig. 8) and constructed a discrete step-like distance function
describing which of these interactions the model qualitatively

reproduced. Genetic algorithms for the optimization, as opposed to
gradient descent, for instance, can handle such a step-like distance
function. For a given parameter combination we set the distance
function (or error) E as follows:
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Fig. 6. Model prediction of dendritic properties and channel densities. The resting potential is more depolarized in the distal regions than in the proximity of the soma (a).
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(C) (Schaefer et al., 2003):
he  HCN channel density increases along the apical dendrite, adding to the depolar
omatic distance (c). Both potassium channel conductances decay rapidly with som

(1) We  determined the threshold somatic current pulse
equired for a somatic spike. Observing more than a single
omatic spike at threshold implies that a single back-propagating
P already elicits a dendritic calcium spike and thereby fur-

her somatic spikes. This is not seen in experiments, however.
ence, a model exhibiting multiple spikes was  penalized and
ssociated with the highest error value (E = 5000) during optimiza-
ion.

(2) Now, if at threshold only a single somatic spike was  ini-
iated, we next tested whether a strong EPSP shaped dendritic
urrent injection alone could induce a local dendritic calcium spike.

e also checked whether this also resulted in a quickly forward
preading Ca spike and eventually multiple somatic spikes. We
earched for the dendritic current amplitude threshold (=ICA) that
ed to this behavior. Based on experimental observations, such

 current should elicit a burst of 2–4 spikes in the soma. Yet a
omatic spike can occur simply due to depolarization of the soma,
ithout a dendritic spike. So we double-checked whether the first

omatic spike was, in fact, due to a somatic depolarization result-
ng from a dendritic Ca spike. For this purpose, we  integrated the

oltage in the tuft from −10 ms  to 0 ms  before the first somatic
pike peak. A large value for this integral indicates that the calcium
pike was triggered locally; as long as the tuft voltage integral was
arger than 500 mV  ms  we considered the calcium spike to be local.
n at rest (b). The sodium conductance at rest is negligible and decays linearly with
istance (d, e). At rest, these conductances thus only hyperpolarize the soma.

If no current amplitude was found to produce a locally initiated
and forward propagating calcium spike we set the error value to
E = 4000.

(3) The next test was  to determine how a back-propagating Na-
spike from the soma influences that threshold. To measure this,
we injected a brief somatic current pulse into the soma to initi-
ate a back-propagating AP and searched for the minimal dendritic
current threshold (=IBAC) needed to initiate a calcium spike. The
resulting calcium spike had to fulfill the following requirements: It
should produce a somatic burst of 2–4 spikes and it should consist
of prolonged dendritic depolarization with a fast shut off. To quan-
tify these requirements we  determined 2 voltage integrals in the
tuft (I1 from 0 ms  to 50 ms  and I2 from 100 ms  to 150 ms  after the
first somatic spike respectively): I1 had to be larger than 500 mV ms
while I2 had to be smaller than 1000 mV  ms.  If no dendritic current
could be found that initiated a calcium spike we set the error value
to E = 3000.

(4) If the model passed all the preceding tests, the error was
determined completely by the somato-dendritic degree of coupling
C = ICA − IBAC

ICA
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Fig. 7. Shape transformation of the back-propagating AP and the underlying ionic conductances in the reduced model. A short current pulse (�t  = 5 ms,  Iamp = 1 nA) was
injected into the soma to elicit an AP. We recorded the voltage of the resulting back-propagating AP at the initial segment (dark red line), in the soma (red line), and in the
apical  dendrite and tuft (light red lines) (a and b). The initiation of the AP occurs in the initial segment. The amplitude of the back-propagating AP decays with distance from
the  soma (c), while the half-width (width at halfway from −60 mV to the AP peak) increases with distance (d). The sodium and the fast and slow potassium conductance
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The target value for C was set to 0.5, and the error was mea-
ured as the squared difference between the true coupling and the
arget.

We used the EMOO-Framework for the optimization with a
opulation size of N = 100 and a capacity of C = 200. The crossover
nd mutation parameters remained constant at �c = 10 and �m = 20,
espectively. Parameters mutated with a probability of 20%. As the
istance function is step-like, the algorithm accumulates models
hat fulfill the general experimental observations in the first phase
f evolution; once all requirements are met, the algorithm selects
hose models that come close to the desired somato-dendritic cou-
ling factor. The evolution was stopped once a model was found
ith a coupling factor of 0.5 or if, after 5 generations, no further

rror minimization could be observed.
We  optimized the calcium dynamics for the 10 models found

n the second step. For models 1–3 and 6–8 we  obtained param-
ter combinations satisfying the experimental constraints while
or model 4, 5, 9 and 10 we did not. In the latter set, the back-
ropagating APs do not decay with distance from the soma, which
onsequently increases the coupling between soma and dendrite
uch that a single somatic spike always elicits dendritic calcium
pikes. Fig. 8 compares experimental recordings with the responses
rom model 2 (models 1, 3, 6–8 have similarly good waveforms).

We also tested whether the modification of apical axial resis-
ance and the activation of dendritic calcium channels would have
n influence on the fitting results from the second step. We  only
bserved minor differences in model behavior (Fig. S3).
. Discussion

In this study, we have presented a three-step strategy to auto-
atically generate accurate models of neurons with simplified
ed with a passive spread of the somatic AP, for which dendritic Nat channels were
t back-propagating APs were not elicited (dashed black line). The illustrated axon

morphologies, without resorting to tuning parameters by hand. In
each step, we defined objective functions for Evolutionary Multi-
Objective Optimization, a genetic algorithm (Deb, 2001; Deb et al.,
2002; Druckmann et al., 2007).

We fitted the somatic voltage recordings of a layer 5 pyrami-
dal neuron with and without its primary apical dendrite, as this
dendrite was  reversibly squeezed or pinched to block current flow
(Bekkers and Häusser, 2007). These data allowed us to study the
(nonlinear) electric load of the dendrite, as seen from the soma.

Some prior knowledge about the distribution of ion channels
along the dendrites (Berger et al., 2001) and their kinetics (Hille,
2001) exists and was built into the models. Even with this knowl-
edge and even though the entire geometry of dendritic branches is
reduced to a single cable, many free model parameters remained
that were subject to optimization (Table 1).

To our surprise, after randomly initializing the algorithm six
times, different local densities of ion channels were found each
time, but the model in each case fit the voltage traces well (Fig. 3).
As in single compartment models (Goldman et al., 2001; Prinz et al.,
2003; Schulz et al., 2006) no unique set of optimal model parame-
ters was found; certain parameters can be offset by others (Taylor
et al., 2009) which could enable a cell to homeostatically regulate
its firing pattern (Prinz et al., 2004). Certain parameters, however,
are consistent across optimizations. For instance, the ratio of the
sodium channel density in the initial segment and that in the soma
was  around 40–70, which is in agreement with experimental stud-
ies (Kole et al., 2008). Moreover, the shift in voltage activation of
the transient Na channel, a free parameter in the model, was  con-

sistently found to be around −10 mV,  which is close to what has
been found in experiments (Colbert and Pan, 2002; Kole and Stuart,
2008) and has been ascribed to the Nav1.6 channel (Rush et al.,
2005).
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Fig. 8. Optimization of the dendritic calcium dynamics and somato-dendritic coupling for varying current injections into the soma and the dendrite, based on experimental
studies  (Larkum et al., 1999; Schaefer et al., 2003). The experimental data illustrated in the left part of the figure were kindly provided by Matthew Larkum. (b) A small
EPSP  shaped dendritic current injection does not lead to spiking. (c) A somatic current pulse elicits a single somatic spike that back-propagates into the dendrite without
crossing  the threshold for the initiation of dendritic calcium APs. (d) However, if a small dendritic current injection is added the threshold can be crossed and dendritic
calcium spikes are elicited and eventually somatic bursting. (e) A calcium spike can also be initiated locally in the dendrite when a strong dendritic current injection is used.
The  somato-dendritic coupling factor describes the relative reduction of the strong dendritic current injection threshold when a back-propagating AP is present. Black, blue
and  red electrodes indicate the current injections and voltage recordings in the soma, the apical dendrite and tuft, respectively (a). We used these general experimental
observations for the optimization in the third step. The responses of model 2 (right part of the figure) are compared with the respective experimental traces. We used
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t  = 5 ms, t0 = 100 ms  for the somatic current pulse and found that a threshold cur
njections were modeled as I = Iamp · (1 − e−t/2 ms) · e−t/8 ms, t0 = 106 ms. Current thresh

as  present (e) and Iamp = 1.8 nA otherwise (d) resulting in a somato-dendritic coup

Evolving a population of compartmental models allows one to
xplore an entire subspace of ion channel properties and densities
hat give rise to the same response. Golowasch et al. (2002) showed
hat this parameter space can be non-convex, so that averaging
onductance parameters over different models fitted to the data
roduces a new model that fails. We  present here six different mod-
ls for the same cell as optimized by the evolutionary algorithm,
ith six very different sets of parameters. Averaging the param-

ter values, however, across models 1–6 yielded a representative
ell model that mimicked the experimental data similarly well as
he 6 optimized models on its own (compare Fig. 3 and Fig. S4).

The ‘training data’ consisted of the somatic voltage response to
 fixed current pulse, in the presence or absence of the apical den-
rite, whereas the ‘test data’ were the responses to all other current
mplitudes, which were measured experimentally, but not used for
ptimization. All models generalized well to other amplitudes of
njected current (Figs. 4 and 5).

Fitting the model in the second step to both the data with the
ntact apical dendrite and the data in which the apical dendrite

as pinched proved to be essential in narrowing down the degrees

f freedom in parameter space. For example, the relative density of
CN channels varied greatly across regions when we only used data

rom the intact neuron (models 7–10), indicating that a low HCN
f Iamp = 0.9 nA was needed to elicit a somatic spike (c and d). The dendritic current
plitudes to elicit a dendritic calcium AP were Iamp = 3.6 nA when no somatic spike

f 0.5.

density in the tuft, for instance, can be compensated by a higher
density in the basal dendrites to yield the same somatic voltage
response. The density ratio, ranging from 0.15 to 13.03 for optimiza-
tions for which only data from the intact cell were taken (models
7–10), narrowed to the range from 1.15 to 2.38 when both data
before and after pinching were used (models 1–6). Data from pinch-
ing also narrowed down the ratio of the somatic sodium channel
density to the sum of somatic potassium channel densities. Without
pinching data, this ratio varied by a factor of four across optimiza-
tions, but with the pinching data, the ratio varied by a factor of less
than two. Moreover, models that were only optimized to predict
the voltage response in the case of intact dendritic geometry failed
to generalize to the case in which the dendrite was removed.

Of course, observing only the voltage trace at a single point in
the neuron means that much of the neuronal dynamics remains
hidden. Embedding the voltage data in higher dimensions (Takens,
1981; Eckmann and Ruelle, 1985; Kennel et al., 1992) or examin-
ing the relationship between the voltage V and its time derivative
dV/dt, known as phase plane analysis (LeMasson and Maex, 2001;
Achard and De Schutter, 2006), can uncover some of the hidden

dynamics. Several authors have used the phase plane as the basis
for fitting neuronal data. Yet many divergent time scales gov-
ern the voltage dynamics at the soma, from the slow charging
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o threshold to the rapid discharge during the action poten-
ial. The algorithm used here treats these multiple time scales
eparately, so that action potential onset, offset, sub-threshold
ehavior each define an objective function. With multiple objective
unctions, some parameter changes may  improve one objective,
hile adversely affecting another. Yet the evolutionary algorithm
oes not enforce hard trade-offs between the objective functions,
hich is one of the algorithm’s core advantages: at each genera-

ion, many models compete, and a model that may  perform poorly
n one objective, but well on another, is not discarded.

Understanding the function of dendrites may  well require a
ore detailed model of dendritic geometry and how ion channels

re distributed along the dendrites. Yet even the reduced model
resented here is under-constrained, as many configurations of
hannel densities and properties will give rise to the same observed
esponse in the soma. Some authors have used multiple simulta-
eous somatic and dendritic recordings to refine computational
odels (Keren et al., 2005; Metz et al., 2007; Keren et al., 2009);

deally, one would want to observe each compartment’s response
n isolation.

While the original data used for fitting did not include the
endritic response, we  were able to use a new data set from a
ifferent experiment to fine-tune the calcium spike in the api-
al dendrite (Fig. 8). Instead of seeking an exact quantitative fit
o disparate experiments, we used a qualitative measure to cre-
te a discrete, as opposed to continuous, objective function. The
alue of this objective function was conditional on the dendritic and
ack-propagating action potentials occurring in the right temporal
equence, based on the stimulation of the neuron. The success of
uch an approach demonstrates that evolutionary multi-objective
ptimization can go beyond finding the least square difference
etween model and experiment.

Reproducing realistic calcium action potentials and incorporat-
ng active properties in the dendrites is crucial to a neuron’s ability
o discriminate different sequences in time (Larkum et al., 1999;
ranco et al., 2010). The computational models’ simplified geom-
try captures both the succession of dendritic events and how the
ack-propagating action potentials decay along the apical den-
rite. In a commonly used model of pyramidal neurons (Mainen
nd Sejnowski, 1996), back-propagating action potentials do not
ecay. Indeed, the second step of optimization in our case is indif-
erent to whether the back-propagating action potentials decay
r not. If they do not decay, then the third step of optimization
ails. In contrast, if all three steps succeed, the resulting mod-
ls, as presented here, more accurately reflect the qualitative and
uantitative behavior of layer 5 pyramidal neurons. The intrinsic
implicity of such models makes them ideally suited for simulating
etworks of neurons.

Our method could be further extended. If for example, local Na-
Ps are required in the basal dendrite (Nevian et al., 2007) this

eature could be added to the optimization algorithm in the same
ashion as the apical Ca-AP’s were tuned. This, however, would
equire experimental data from the basal dendrite, such as den-
ritic patch-clamp recordings. It might also be suitable to build a
istance function based on knowledge about the decay of the back
ropagating AP in the basal dendrite.

The method we have presented should directly relate to fitting
ore complex models using a detailed morphology, and thereby

reating models that incorporate features like more fine-grained
endro-dendritic interactions or the influence of synaptic cluster-

ng on the firing dynamics (Poirazi et al., 2003), but the use of a
etailed morphology would require even larger computing facil-
ties than we  had available in this study. One possible strategy
ight be to start with the optimized reduced model and then to

everse the dendritic simplification process while maintaining the
ub- and supra-threshold properties. Still, a detailed model also
e Methods 210 (2012) 22– 34 33

requires more computing resources just to simulate it, especially
in the case of large networks of such neurons. Which degree of
complexity is truly required is a matter of great debate (Herz et al.,
2006; Markram, 2006).
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