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SPACE TILING ZONOTOPES

P. McMULLEN

Abstract. A d-dimensional zonotope Z in Ed which is the vector sum of n line
segments is linearly equivalent to the image of a regular n-cube under some ortho-
gonal projection. The zonotope Z in E"~d which is the image of the same cube
under projection on to the orthogonal complementary subspace is said to be
associated with Z. In this paper is proved a conjecture of G. C. Shephard, which
asserts that, if Z tiles Ed by translation, with adjacent zonotopes meeting facet against
facet, then Z tiles E"~d in the same manner. A number of conditions, conjectured by
Shephard and H. S. M. Coxeter to be equivalent to the tiling property, are also
proved.

§1. Introduction. In a recent paper, Shephard [1974b] has considered a number
of properties of zonotopes, or vector sums of line segments. One main theme of
his paper, which carries on his and the present author's earlier work (McMullen
[1971], Shephard [1974a]), is the investigation of the relationship between associated
zonotopes. This term will be defined more rigorously below, but, roughly speaking,
two zonotopes are associated if they are the images of a regular cube under ortho-
gonal projection on to orthogonal complementary subspaces.

The basic property he considered was that of tiling space; that is, covering space
by translates of the zonotope, in such a way that the intersection of any two trans-
lates is empty or a common face of each. He showed that, provided the zonotope is
at most four-dimensional, if it tiles space, then so does the associated zonotope. He
also showed, under the same restrictions, that various conditions on zonotopes are
equivalent to the tiling property; one of these is due, originally, to Coxeter [1962].

Shephard conjectured that his relationships held without the restriction on the
dimension; it is this conjecture that we shall establish here. We shall often, in fact,
prove results which are slightly stronger than Shephard's. For example, we shall
show that, if a zonotope tiles space, then every zonotope which is combinatorially
isomorphic to it must actually be equivalent to it (that is, linearly equivalent, except
possibly for changes in the lengths of its component line segments), and so it tiles
space also.

Throughout we shall adopt Shephard's notation (with minor changes); however,
to make the paper self contained, we shall repeat the statements of his conditions.

§2. Statement of conditions and theorems. By a zonotope we mean a vector (or
Minkowski) sum of line segments, say Z = St + ... + Sn. The line segments S} are
called the components of Z; there is no essential loss of generality in assuming them
to be of the form St = conv{x,-, — xt} (i = 1, ..., «), so that the segments, and hence
Z itself, are centrally symmetric about the origin o. We shall assume that aff Z = Ed,
and, to avoid certain trivial complications, that Z is not a prism, and that no xt = o.
(If these latter conditions are violated, some of the statements below may need
modification, but these modifications will not affect the truth of the theorems.)
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However, we shall allow two components to be parallel, so that the particular
representation of a zonotope as a sum of segments is not irrelevant.

Each face of Z is of the form

F = etxla + ... + skxka + S(t+1)ff + ... + Sna,

for some et = +1 and some permutation a of {1, . . . ,«} . The components S{ are
just those which lie in the hyperplane through o parallel to one which supports Z
in F, and the points et xia all lie on one side of this hyperplane. (For proofs of these
and subsequent combinatorial properties of zonotopes, see McMullen [1971].)
F is itself a zonotope, whose centre is BX xla + ... skxka. In particular, let the facets
{{d - l)-faces) of Z be denoted ±FU ..., ±Fr, and the centre of Fj by

where etje{—l, 0, 1}. We shall write

y — \ e l j ' •••>snj) U — »> •••>')•

Later, My shall denote an outer normal vector to the facet .F,-.
As a general point of notation, a capital letter shall denote the matrix whose

rows are the corresponding minuscule letters. Thus,

X =

We shall also use X = (x1; ..., xn) (and so on) to denote the ordered set of these
vectors; however, no confusion should be caused by this, as the particular meaning
will be clear from the context. As usual, XT is the transpose of the matrix X.

We shall be concerned in this paper with a number of conditions on the zonotope
Z or on the set of vectors X; we shall label these conditions by roman numerals.
The first of these is the most basic.

I Z tiles Ed. By this we mean that there exists a set A of vectors of Ed, such
that the translated zonotopes Z + t (t e A) cover Ed, and any intersection
(Z + tj) n (Z + t2) is empty or a common face of each translate. In particular, this
implies that A is a lattice (discrete additive subgroup of Ed), and that 2c3 e A
(j = 1, ...,r). In fact, we shall later show that A = 2<C>, the lattice generated by
2clt ...,2cr.

The next condition is due to Coxeter [1962], who proved that it is a necessary
condition for Z to tile Ed. We can derive from Z in two ways zonotopes which are
the sum of fewer segments. First, we write

s, = t+1

which we say is obtained from Z by contracting Sf. In general, the sum of a subset
of Si, ..., Sn is a contraction of Z. Second, let <j>t be a linear map with kernel lin Sh

and let S'k = Sfc0;. Then we write

Z/St = S\ + ... + S' , .! + S'i+l + ... + S'n,
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which we say is obtained from Z by natural projection in direction St. More generally,
if L is a spanned subspace of Ed, by which we mean a linear subspace spanned by the
segments St (or points xt e X) which it contains, and Z' is the image of Z under a
linear map with kernel L, we say that Z' is the image of Z under a natural projection.
In talking about Z', we ignore the segments of zero length arising from the com-
ponents of Z lying in L.

II Every spanned (d — 2)-space of Ed is contained in lor 3 spanned hyperplanes.
Equivalently, every 2-dimensionaI image of Z under a natural projection is a
parallelogram or a hexagon.

The next two conditions relate to the matrix E, whose rows are eu ..., en, and
whose columns are e1( ..., er.

III rankE = d.

IV Let Tt = conv{ei, - e ; } (i = 1, ...,n), and Y = Tj + ... + Tn c £'.
Then Y is a zonotope combinatorial^ isomorphic (or equivalent, see below) to Z.

We say that an ordered set X' = (x\, ..., x'n) is equivalent to X = (xt, ...,xn),
if there is a linear mapping <j>, one to one on l inZ, and scalars Xu ...,ln > 0, such
that x'i = XiXi(j) (i = 1, ..., n). This induces an equivalence of the corresponding
zonotopes. Clearly, equivalent zonotopes are combinatorially isomorphic, but the
converse is, in general, false. It is also clear that, if Z tiles Ed, then so does every
zonotope equivalent to Z. Our next two conditions are concerned with the set X
which determines Z.

V There is some set X' equivalent to X, such that +X' lies in each spanned
hyperplane, and two hyperplanes parallel to it.

VI There is some set X' equivalent to X, such that whenever

fei'!,,...,!;^^} c ±X'

is the set of vertices of a simplex with o in its relative interior, then

The Voronoi polytope of a lattice in Ed is the set of points of Ed which are no
further from o than from any other lattice point. A Voronoi polytope need not be
a zonotope; for example, the regular 24-cell in E* is the Voronoi polytope of the
centres of the densest lattice packing of spheres. If it is, then the centre cs is a
normal vector to its facet Fj, in which case we call the zonotope regular.

VII Some zonotope equivalent to Z is the Voronoi polytope of a lattice.

We can now state our first theorem.

THEOREM 1. The conditions I-VII on a zonotope Z are equivalent.

Before we can formulate the next result, we must formally define an associated
zonotope. We first do this geometrically, enlarging on the remarks in the introduc-
tion. Every d-zonotope Z with n components is linearly equivalent to the image
under orthogonal projection of some regular n-cube. (In this context, we shall regard
Ed as embedded as a subspace of £".) Any zonotope Z which is linearly equivalent
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to the image of the same «-cube under orthogonal projection on to the orthogonal
complementary subspace E"~d is said to be associated with Z. (In McMullen [1971],
where this concept was introduced, the term derived was used; we now prefer the
term used here, which is due to Shephard [1974a].)

Algebraically, the condition is as follows. If X = (x1; ..., xn) linearly spans Ed,
let X = (5cj, ..., xn) be any set of vectors in E"~d such that the n x n matrix

is non-singular, and is such that each of its last n — d columns is orthogonal to each
of its first d. Then X is called a linear transform (or representation) of X. If X corres-
ponds to the zonotope Z, and we define S; = conv{xf, — 3cf} (i = 1, ...,«) and
Z — St + ... + Sn, then Z is associated with Z. We may observe that the relation-
ship (as denned here, or geometrically as above) between Z and Z (or between X
and X) is symmetrical. It should be noted that each linear dependence of X, that is, a
vector (<*!, ...,an) such that at xt + ... + <xnxn = o, is such that a; = <a, x;>
(i = 1, ...,ri) for some a e En~d; conversely, every a e En~d gives rise to a linear
dependence of X in this way. Thus the last n — d columns of the matrix [X | X]
form a basis for the space L(X) of linear dependences of X, and conversely, any
basis of L(X) gives rise to a linear transform of X. In particular, the linear transform
X of X is determined by X up to linear equivalence.

We shall label with I*,. . . , VII* the conditions I , . . . , VII as applied to the
associated zonotope Z. Our second result is then:

THEOREM 2. The conditions I and I* are equivalent; that is, the zonotope Z tiles
Ed, if, and only if, its associated zonotope Z tiles E"~~d.

We have two further results of rather less importance. We call a zonotope Z
zonally stable, if every zonotope conibinatorially isomorphic to Z is equivalent to Z.
The third result is, in fact, a corollary of the proof of the first two theorems.

THEOREM 3. IfZ tiles Ed, then Z is zonally stable.

Our final result is fairly intriguing. We have already introduced the notation
<C> for the set of all integer combinations of the centres cu ...,cr of the facets of
Z; <C> is derived similarly from Z. IfZ tiles E", then <C> is a lattice.

THEOREM 4. IfZ tiles Ed, with X itself (and not merely some set equivalent to X)
n

satisfying the condition ofV, then for integers vu ..., vn, £ v;Xj e <C>, if, and only

if, t v,x,e<C>.
i = l

§3. Proofs of the theorems. We shall set out our proof of Theorems 1 and 2 in the
form of a series of lemmas. For the reader's convenience, we give a scheme of this
proof.
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VI

Our first lemma has already been stated informally in the previous section; it and the
second lemma are due to Shephard [1974b], where the proofs can be found.

LEMMA 1. If the zonotope Z tiles Ed, then so does every zonotope equivalent to Z.

LEMMA 2. IfZ = S t + ... + Sn tiles Ed, then Z ~ S{ tiles Ed and Z/St tiles Ed~\

LEMMA 3 (Coxeter [1962]). I => II.

For, the lemma is trivial if d = 2. For d ^ 3, just take the natural projection
of Z in the direction of the given spanned (d — 2)-space.

For convenience, we now adopt a certain convention. We suppose (after suitable
relabelling, if necessary) {xu ..., xd} to be linearly independent vectors of X. For
each j = 1, ...,d, the subset of d — 1 vectors omitting Xj spans a hyperplane Hj
parallel to the affine hulls of a pair of facets + Fj. Interchanging + if necessary,
we see that the centre of Fj is of the form

Cj = Xj + 2 J eijxi>
i=d+l

for some e y e { — 1,0,1}. Clearly, both {eu...,ed} and {eu...,ed} are linearly
independent; {cu...,cd} is also linearly independent, as will become more clear
from the next lemma.

LEMMA 4. II => III.

Since, clearly, rank E ^ d, we must show that each other column vector ek of E
is linearly dependent on eu ...,ed. Consider the corresponding centre ck, and its
facet Fk. Pick an arbitrary linearly independent set {yu ...,yd) c ±x, d — 1 of
whose vectors are parallel to Fk. We can find a sequence of linearly independent
subsets of ±X, going from {xlt ..., xd} to {yu ..., yd}, of which successive sets differ
by one vector. In considering the relationship between the centres of the facets
corresponding to the subsets of the sequence, it is clear that we need only consider
the change in passing to an adjacent subset. There is no loss in generality in going
from {x1; ..., xd} to {xlt ..., xrf_1, xd+l} (say). Let the new centres derived from the
latter set be c\, ...,c'd_u c'd+l, with the corresponding columns of E being
e\, ...,e"d_1,e'd+1. By changing signs and reordering, if necessary, we can suppose
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Fig. 1

that xd+1 s rel intpos{xfc+1, ...,xd}, with k < d — 1, since otherwise the result is
trivial. For j < k,

hn{^ i , ..., Xj_1 ; Xj+x, ..., xd} = l in l* ! , ..., Xj-x, Xj+l, ..., x()_1, xd+i},

so that c'j = Cj and e'j = e,-. Clearly also c'd+l = cd, so that e'd+1 = ed. Finally
(compare Fig. 1), II implies that, for k + 1 < j < d — 1, c'j = Cj — cd and
e'j = ey — ed. For, the vectors in X fall into four classes: Xo consisting of those
in linf*! Xj_uxj+1, ...,xd-t}, and, for i = j , d, d + 1, Xt consisting of those
in X\X0 lying in the hyperplane Ht = lin (Xo u {xj). Changing signs in X if
necessary, we can suppose that Xt lies on the same side of the other hyperplanes as
Xj. Then, with an obvious notation, Cj = £ (X) u X,,+ 1), c'̂  = ^(Xj u (— Xd)),
cd = c'^+j = 5] ( ^ u -^d+i). and the lemma follows.

We may remark that the converse of Lemma 4 is very easy to prove.

LEMMA 5. Ill implies that <C> = <cl5 ..., cd> is a lattice.

For, we observe that, for 1 < i,j < d, EtJ = 8tJ (= 0 or 1 as i = or # _/'). Thus,
d

for y = d + 1, ...,r, ê  = £ £;;£;» since rank£ = d, and e^ ..., ed are linearly

independent. We conclude that c} = J] ey cf for j = d + 1, ..., r, and the assertion
of the lemma is now obvious. i= x

We now quote a result of Shephard [1974b], which is comparatively easy to
check. Temporarily, we write E(Z) for E, to emphasize its dependence on Z.

LEMMA 6. rank£(Z ~ S,) < rank£(Z); rank£(Z/Sf) < rank£(Z) - 1.

In particular, if rank E(Z) = d, then rank £(Z ~ Sf) = d and

rank £(Z/S,-) = d - 1.

LEMMA 7. Ill => I.
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We assume the result of Lemma 5, so that <C> is a lattice. Since the tiling
property is clear for a single segment, we can make the inductive assumption that the
lemma holds for zonotopes which are the sum of n — 1 segments. It is clear that
the translates Z + 2c (c e <C» cover Ed, since Z is completely surrounded by the
translates Z ± 2cj (J = 1, ..., r), so we have only to show that no two of these
translates overlap. Since the hyperplane H = lin{c2, ..., cd} is not parallel to Su

we can take the natural projection of Z in direction St to be on to H. Then, by
Lemma 6 and the inductive assumption, Z/St tiles H, with lattice of centres
2<c2, ..., cdy. We deduce that the zonotopes Z + 2c (c e <c2, ..., cd» do not
overlap, and so form a layer, ^Co say, about H.

The zonotopes Z + 2c (c e <C» now fall into parallel layers S£k, where k is
determined by c = kct + .... Since each zonotope Z + 2c contains a translate
of Su we easily see that we need now only show that adjacent layers do not overlap.
This, in turn, will clearly follow, if int(Z0 n (Z + 2cx)) = 0 for each Zo e SC0.
We now consider the contraction of Z in direction St. If Z' = Z ~ S t and
c\ = Ci — xu then, again by Lemma 6 and the inductive hypothesis, 2<c'1; c2, ..., cd>
is (possibly a sublattice of) the lattice of centres of the tiling of Ed by Z'. (We
enlarge on this comment below.) If JSf'o is the corresponding contraction of the
layer S?o, then int(Z'o n (Z' + 2c\)) = 0 for Z'o e JS?'O. But we obtain Zo from
Z'o by adding S1; and Z 4- 2 ^ from Z' + 2c't by adding S± and translating by 2;^.
It follows that int (Zo n (Z + 2cJ) = 0 , as we wished to show. This proves the
lemma.

We remark that an apparent difficulty may arise in contractingZtoZ' = Z ~ Su

since we may contract the facet Fj, with centre Cp to a (d — 2)-face F, so that Cj is
no longer a facet centre of Z'. If bx and Z>2 are the centres of the facets of Z' which
contain F, the corresponding facets of Z have centres bL + x t and b2 + xt. Since
rank E = d, by choosing a basis of Ed from X with d — 2 of its vectors in the linear
subspace parallel to aff F, and the remaining two parallel to these facets, we see that
Cj = (bx ± Xj) + (b2 + x j = bt + b2 is in the lattice generated by the facet centres
of Z' (see Fig. 2). (Compare here the remark after Lemma 4.) We note incidentally

F,

b2 + .v,

Fig. 2
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that the proof of the lemma shows that 2(c\, c2, ..., cdy must be the whole lattice
of centres for the tiling of Ed by Z'.

We have now established the equivalence of I, II and III, which we shall hence-
forth assume without comment. We shall now show that the remaining conditions
are implied by II, and imply III, except that VII clearly implies I directly.

LEMMA 8. II => VI*.

By our conventions, {xu ..., xd} is a basis of Ed, and hence, by a standard result
in the theory of linear transforms (it follows easily from the definition), {xd+l, ..., xn}
is a basis of E"~d. Let uu ..., ud be normal vectors to the facets Fu ..., Fd, chosen
so that <*„ Uj} = Sij (i,j = 1, ...,d), and let Ay = <x;, «,•> (i = d + 1, . . . ,« ;
j = 1, ..., d). Thus 8y = sgn Ay (= — 1, 0 or 1 as Ay is negative, zero or positive).

n

For j = 1, ..., d, we have the relations corresponding to Cj and e,: x • + £ Ay x ( = o

(see the discussion before the statement of Theorem 2). The condition II implies that
the ratios XhjJXhh and XhjJXhj2 are equal whenever all four Ay are non-zero
(compare Fig. 1 again). Hence, if we define x't = xt for i = d + 1, . . . ,« , and

n

x\, ..., x'd by x'- + X EijXi = °> t n e n t n e mapping

is an equivalence. (The reader may find it helpful here to think in terms of cross-
ratios and projectivities.) To check the condition VI*, suppose we have a relation

n

£ fi'tx'i = o, giving the origin as a relatively interior point of a simplex with
;=i «

vertices from ±X'. We then have a corresponding relation £ //f jcf = o (since
_ _ « = i

X and X' are equivalent), and so there is a vector v e E"1, such that /if = <x;, u>
(i = 1, ...,«), and those x; for which /i; = 0 span a hyperplane (see McMullen
[1971]). That is, v is a normal vector to some facet Fj, and gy = sgn \it

d

(i = 1, ...,ri). Since e,- = £ 8ye; is a linear combination of e1, ..., ed by III, it
i = l n

follows from the definition of x't that £ ey3c'; = o. This completes the proof of
the lemma. I = 1

LEMMA 9. VI* o V.

This is, in fact, an elementary exercise in the theory of linear transforms. For,
if two sets of points are equivalent, then so are their linear transforms. So, if (after
performing a suitable equivalence) X satisfies VI*, then X has the property that,
corresponding to each spanned hyperplane Hj and pair of facets ±Fj of Z, is a
normal vector uj such that <xi; «,-> = 8 y e { —1,0, 1}. (Compare the proof of
Lemma 8.) That is, X satisfies V. The argument is completely reversible, so we
have proved the lemma.

LEMMA 10. V o VI.

For, V and VI are both equivalent to the assertion that (after a suitable equivalence
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has been performed) if we choose any basis of Ed from X, then every other vector
of X is a linear combination of these basis vectors, with coefficients 0 or + 1 .

LEMMA 11. V => HI, IV and VII.

Again, let us suppose that X itself satisfies V. Then, with the normal vectors us

chosen as in the proof of Lemma 9, we have E = XUT, and so

d < rank E < min {rank X, rank U} = d.

This proves III, and also shows that E is linearly equivalent to X, which proves IV.
Moreover, by performing some linear equivalence, we can suppose that the columns
of X form an orthonormal set (again, we refer the reader back to the definition of a
linear transform). Thus, XT X = /„_,,, and hence C = ET X = UXT X = U. In
other words, the centres of the facets are themselves the normal vectors to the facets.
Since I holds, it follows that Z is a Voronoi polytope, and we have proved VII. This
establishes the lemma.

We now note in conclusion that the assertion VII => I is trivial, as is the assertion
IV => III. Thus we see that we have completed the proofs of Theorems 1 and 2.

In fact, we have proved Theorem 3 in passing. For, we have shown that the
initial set X is always equivalent to the set E (under the assumption that Z tiles space).
But £ depends only upon the combinatorial type of Z; the assertion of Theorem 3
follows at once.

It remains for us to prove Theorem 4. For this, first suppose fiu ..., \in to be
n

integers such that £ fXjXt = o. Subtracting the relation

n \

Z etJxt\ =

( c o m p a r e the p r o o f of L e m m a 8), we conc lude (since xd+1,...,xH a re linearly
d

independent) that, for i = d + 1, ..., n, nt - ]T eu /iy = 0. Recalling the definition
n d j=l

of c,, we see that £ ^x, = X Vjcj 6 <c>-

Now suppose Vj, ..., vn to be integers such that £ vtx, e <C>. Then there are
a d i = l

integers Xt, ...,Xd such that V V;*; = Y X,c,. Thus
j=\

n I d \

E K - I eij*j)x, = o,
i = 1 \ 7 = 1 /

and it follows, by the first part of the proof, and the symmetry between X and X,
that

n n I d \

Z v ^ i = Z ( v i - Z e.7AyI
1 = 1 i = l \ j = l /

This completes the proof of Theorem 4.
Theorem 4 has a suggestive geometrical interpretation. Let W be a regular

n-cube in £", whose images under orthogonal projection on to orthogonal comple-
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mentary subspaces of E" are Z and Z. Then Theorem 4 states that the same cubes in
the tiling of E" by W (in the usual way), which are projected onto translates of Z
in its tiling of Ed, are also projected onto translates of Z in its tiling of E"~d. This
hints at a possibly more direct proof of Theorem 2, although we should emphasize
that Z and Z are specially chosen to satisfy the condition of V. However, we have
been unable to find such a proof.
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