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Abstract

This paper develops a model of nonlinear pricing of storable goods.

We show that storability imposes novel constraints on a monopolist’s

ability to extract surplus. We then show that the attempt to relax

these constraints can generate cyclical patterns in pricing and sales,

even when consumers are homogeneous. Thus, the model provides a

novel explanation for sales that does not rely on discrimination mo-

tives. Enriching the model to allow for buyer heterogeneity in storage

technology, delivers the prediction that larger containers are more likely

to be on sale.

1 Introduction
Non-linear pricing is prevalent in many markets, from phone and electricity

tari↵s to supermarkets items. There is an extensive literature that studies

non-linear pricing as a tool for surplus extraction, often as a device for price

discrimination in the context of heterogeneous buyers (see Wilson (1997)).

However, the contrast with linear pricing is particularly stark when consumers

are homogeneous: in this case, the optimal non-linear pricing policy involves a

monopolist selling the socially optimal quantity and extracting all the surplus.
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Many of the products sold through non-linear prices are storable. For

example, the typical scanner data show quantity discounts in a variety of

products ranging from yogurt to detergent (see Hendel and Nevo (2006a) and

Hendel and Nevo (2006b)). These products are storable; so are many other

products, like intermediate goods, that are also priced non-linearly. Product

storability enables consumers to detach the timing of purchase from the tim-

ing of consumption. Consumers’ ability to store a product may a↵ect sellers

capabilities to price non-linearly.

This paper presents a first attempt to understand the consequences of

storability on non-linear pricing. Product storability makes the monopolist

contend with a new type of constraint that we call no-skipping constraint or

spot-participation constraint: the consumer may choose to consume out of

storage and skip a purchase. In order to satisfy all no-skipping constraints,

prices have to be set in such a way that consumers are willing to purchase

and consume their intended bundles, as opposed to alternative consumption

sequences supported by storage and consumption smoothing.

We show that the impact of storability on non-linear pricing can be severe.

In the context of stationary o↵erings, namely, when a seller o↵ers the same

bundle over time, the monopolist can lose all ability to price non-linearly. The

monopolist is still able to make a profit, but with stationary policies, non-

linear prices do no better than linear prices: by choosing the frequency of

purchases and consuming out of storage, consumers fully undo any attempt to

extract additional surplus. Storage enables consumers to unbundle non-linear

pricing policies. The logic of this result is related to the constraint on non-

linear pricing that is imposed by resale: the consumer can purchase bundles

cheaply and “resell” them to his future self.

Given the ine↵ectiveness of stationary policies, we ask whether there are

more sophisticated ways for the monopolist to enable surplus extraction via

non-linear prices.

We study seller behavior in two set-ups: with homogenous as well as het-

erogeneous consumers. We start with homogenous buyers so that the only

gain from non-linear pricing is surplus extraction (no discrimination motive).

We then consider heterogeneity in storage. The analysis is presented through
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a combination of a two-period model and a particularly stark infinite horizon

set-up. The two-period model is a natural first step, since it helps to highlight

some key forces. However, the two-period framework introduces asymmetries

between periods in that the second period involves no further potential for

storage. The infinite horizon model restores symmetry across periods.

We show that the monopolist can partially regain some ability to extract

surplus via a suitable cyclical policy that involves the infrequent sale of large

bundles. This holds even in an environment with identical consumers, thus, it

represents a novel reason for cyclical pricing (or sales) by a monopolist, and

provides a stark contrast with models of sales based on price discrimination.

In most existing models, sales are a mechanism to discriminate among hetero-

geneous buyers (like in Salop and Stiglitz (1982), Narasimhan (1988), Sobel

(1984), Hong et al. (2002) and Pesendorfer (2002)). In this paper sales arise

to enhance non-linear prices.

The seller gains from forcing consumers to fully use their storage capacity

as a way of relaxing the “no-skipping” constraint. By o↵ering infrequent pur-

chase opportunities (sales) the seller limits consumers’ opportunities to skip

purchases, consuming out of storage. At the same time, by making each pur-

chase take up the full storage capacity the seller makes the storage unavailable

for skipping, thereby relaxing the no-skipping constraints. In other words, the

infrequent sale of large quantities eliminates consumers’ ability to get ready

to skip, namely, to slowly accumulate inventory in anticipation of skipping a

purchase. Notice that the cost of skipping is the utility of foregone consump-

tion. Such cost goes down if consumers could save over many periods, so that

the foregone consumption involves a lower utility loss.

While the quantity sold is determined by the storage capacity, consumption

and prices are determined by the frequency of purchases. More frequent pur-

chases of a given quantity naturally translate into a higher consumption rate.

Prices, the surplus captured by the monopolist, are determined by the follow-

ing trade-o↵. In order to make the consumer show up to purchase (namely,

prevent skipping), the monopolist must promise him enough surplus so that

he does not prefer to consume out of storage. It turns out that sellers can

extract at most V (c) � V ( c2) (per period). The term V (c) is the surplus at
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the intended consumption, while V
�

c

2

�

is the surplus of a consumer who skips

every second purchase.1 A higher consumption rate (up to the socially e�cient

level) increases the target surplus, thus, the amount the seller can potentially

capture. On the other hand, a higher consumption flow also increases the

utility from skipping a purchase event. The enhanced threat of skipping limits

the surplus that can be extracted. We show that consumption is distorted

downward, relative to the e�cient level (absent storage), but it is larger than

consumption under optimal linear prices.

We extend the analysis to introduce heterogeneity in consumers’ ability

to store, a type of heterogeneity that naturally cannot arise in static models.

This heterogeneity allows us to generate more realistic patterns of sales and to

generate a novel empirical implication: the model predicts that sales are more

important for large packages. While we emphasize that the model is very stark

and does not allow for many features that are present in actual markets, it is

interesting to note that this prediction is consistent with typical scanner data

patterns. For example, Hendel and Nevo (2006b) report that while the small

(32 oz.) detergent container is hardly on sale (2% of the time) the larger, most

purchased, container size (128 oz.) is on sale 16.6% of the time. In the soda

category, twelve and twenty four-packs are on sale twice as often as single soda

cans (over 40% of the time vs 19.6%), while six-packs are on sale 34.3% of

the time.

2 Related Literature
There is an extensive literature on non-linear pricing (see for instance Wil-

son (1997) and Rochet and Stole (2002)). The literature has considered many

constraints on non-linear pricing, including resale and asymmetric information

on consumers’ valuations, as well as competition among producers (see for in-

stance Stole (2007)). However, all the theory of non-linear pricing is static,

and ignores potential e↵ects that arises from intertemporal substitution in

demand.

Several theoretical papers o↵er models of price dispersion (Varian (1980),

Salop and Stiglitz (1982), Narasimhan (1988)), interpreted as sales, however,

1Skipping every second purchase is the most tempting deviation: if a consumer does not
want to skip once, they also do not want to skip more than once.
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these models do not capture the dynamics of demand generated by sales. Hong

et al. (2002) closer to our interest, presents one aspect of the dynamics of sales.

It is a competitive industry model, where consumers are assumed to chose a

store based on the price of a single item and firms are informed about other

firms’ prices and hence sales. Jeuland and Narasimhan (1985) present a related

idea in the context of a monopolist.

Dudine et al. (2006) provide an analysis of the role of commitment in a

monopoly market with storable goods. They only consider linear prices and

show that, in contrast with the literature on the Coase conjecture that dis-

cusses durable goods markets, prices are higher in all periods when the mo-

nopolist lacks commitment when goods are storable and demand anticipation

motives are present.

Nava and Schiraldi (2012) explain sales, in the absence of consumer hetero-

geneity or a discrimination motive, based on collusion. Sales, and the induced

storage, lower the incentives to deviate from collusion, and lower payo↵ during

punishment periods.

Although it does not involve storage, Sobel (1991) also presents a model

of sales (see also Conlisk et al. (1984), Sobel (1984), and Pesendorfer (2002)).

The model involves a market with a durable good monopolist; at every date

a mass of new consumers enter the market. Consumers have unit demands

and two possible valuations for the good. Sobel (1991) characterizes the set

of equilibria under the assumption that the monopolist cannot commit. An

important feature of the analysis is that there can be price cycles.

Price cycles are also generated in the customer recognition literature (Villas-

Boas, 2004) where firms price, non-anonymously, according previous purchas-

ing behavior.

There is an extensive literature on durable goods.2 The distinction be-

tween the products we consider, storables, and durables is tricky. The durable

good literature is largely based on unit demand, one-time purchase, and the

incentives to postpone such purchase. In contrast, the focus of this paper is

on storage, which permits anticipating purchases. Naturally, multiple units

of durables, cars or TVs, are often consumed. Buyers of most durables re-

2See Waldman (2003) for a survey.
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turn to the market, and may do so in anticipation of their needs should prices

grant it. We view the distinction between the assumptions in the durable good

literature and our paper, as one capturing the frequency of purchase. For in-

frequently purchased products the one-time, single unit, purchase seems like

a reasonable simplification. Instead, for frequently purchased non-perishable

products, storage and demand anticipation are important forces to model.

3 Two-Period Model

3.1 Setup
We first consider a 2-period model with homogenous consumers. The sim-

plicity of the two period environment helps to highlight some basic forces

created by the interplay between storability and non-linear pricing.

Buyers’ per period willingness to pay for consumption C is denoted V (C).

The function V (C) is assumed to be increasing and concave, with V (0) = 0

and a saturation point C⇤ so that for all C � C⇤ : V (C) = V (C⇤). The latter

guarantees bounded monopoly profits.3 We normalize the marginal cost of

production to zero.

As a benchmark, note that absent storability the seller would o↵er the

e�cient quantity C⇤, with V 0(C⇤) = 0, and extract all the surplus with tari↵

P ⇤ = V (C⇤) each period.

For simplicity we assume that there is no discounting. Thus, if the con-

sumer has Q units to allocate over the two periods, he would like to consume

equal amounts in each period. Consumers’ payo↵s from consumption C1 and

C2 and payments P1 and P2 is given by:

V (C1) + V (C2)� (P1 + P2)

We assume that all consumers have a storage capacity of S. Storing quan-

tity s, so that 0  s  S, is free, but it is impossible to store more than S.4

The feasible consumption of a consumer who purchases bundles Q1 and Q2 in

3Alternatively, we could assume a positive marginal cost and lim
C!1

V

0(C) = 0.

4An earlier version of the paper considered a convex cost of storage and results were
qualitatively similar.
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period 1 and 2 respectively is given by C1 = Q1 � s and C2 = Q2 + s.

Finally, we assume that the monopolist can commit to future actions: in

the first period, the monopolist announces (and commits to) the menu for each

period, and then consumers make decisions.5 All transactions take place on

the spot market, so that past history of purchases has no e↵ect on current

transactions.6 The storage capacity is known by the seller. We relax this

assumption later, when we allow heterogeneous storage.

3.2 Optimal policy
The monopolist’s problem is to choose the sequence of bundles Q1 and Q2,

and tari↵s P1 and P2 to maximize the sum of revenues P1 + P2. The transfers

are determined by three constraints.

First, we impose the standard participation constraint modified to take

into account the possibility of storage. Transfers must be lower than the sum

of utilities:

max
0sS

{V (Q1 � s)� P1 + V (Q2 + s)� P2} � 0. (1)

Second, consumers must be willing to purchase both bundles, as opposite

to just one. Note that in the absence of storage, consumption in period 1

is independent of the consumption in period 2 and hence the participation

constraints for period 1 and 2 are independent. By allowing the consumer

to store, we introduce an additional obstacle for second period participation.

5We briefly discuss the case of no commitment in the two-period model in Section 3.2.
Much of of the durable good literature focuses on the case in which the seller lacks commit-
ment, partly because the commitment solution is straightforward. Understanding lack of
commitment in the context of our model would be interesting (albeit complex). However,
commitment is a useful benchmark to which the case with no commitment must be compared
to understand the role of commitment. Furthermore, this is not an implausible assumption
for some of the markets we model, in part due to the frequency in which consumers re-
turn to the market (in the case of retailers) and the frequency with which manufacturers
and retailers contract, say in the case of supermarkets. Dudine, Hendel and Lizzeri (2006)
show that in storable goods markets with linear prices the role of commitment can be quite
di↵erent from markets with durable goods.

6If one allows the monopolist to bundle the portions of the good delivered in the future,
the problem becomes trivial: the monopolist can o↵er the contract under which he delivers
the e�cient level of consumption in each period and the consumer pays his full surplus to
the monopolist.
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The consumer’s outside option in the second period is greater than zero, due

to storage.

The constraint is that the consumer should be willing to purchase {Q2, P2}
in the second period, rather than purchase only {Q1, P1} in the first period

and optimally smooth Q1 over the two periods:

max
0sS

{V (Q1�s)�P1+V (Q2+s)�P2} � max
0sS

{V (Q1�s)�P1+V (s)}. (2)

Finally, the consumer should be willing to purchase {Q1, P1} in the first period:

max
0sS

{V (Q1 � s)� P1 + V (Q2 + s)� P2} � V (Q2)� P2, (3)

The next Lemma shows that only two of these three constraints are binding.

Lemma 3.1 Constraints (2) and (3) imply constraint (1).

For all proofs we refer the reader to the Appendix.

We call constraints (3) and (2) no-skipping constraints. They are participa-

tion constraints that assure the consumer does not skip a purchase event and

consume out of storage. The simplicity of the two-period set up stems from

the limited forms of skipping. In a longer horizon the consumer can prepare

herself to skip in numerous ways, namely, the consumer can store out any of

the previous purchases as long as she has available storage. Thus, the longer

the history the more constraints on participation need to be imposed. As we

show below eliminating or limiting the ability to skip plays an important role

in shaping optimal o↵erings by the monopolist.

We now characterize the optimal solution. Denote the optimal sales by X1

andX2 and recall that C⇤ is the e�cient consumption obtained by V 0 (C⇤) = 0.

Theorem 1 Assume S is such that 0 < S < C⇤
.

7
In an optimal policy, the

monopolist chooses first period output X1 = C⇤+S, and second period output

X2 such that X2 + S < C⇤
. In this optimal policy

7If S � C

⇤ the optimal policy for the monopolist is to set X1 = 2C⇤, X2 = 0, and
T1 = 2V (C⇤): when storage capacity is very large, the monopolist can extract all the surplus
by selling everything in the first period. We have in mind products that are frequently
purchased, so that selling once and for all is not relevant nor interesting.
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1. the monopolist induces a binding storage constraint for the consumer

2. first period consumption is e�cient

3. second period consumption is below the e�cient level

4. consumers enjoy positive surplus.

Storability induces the monopolist to create distortions in consumption

away from the first best, even though consumers are homogenous and the

monopolist can choose any non-linear price. Furthermore, the monopolist

optimally chooses to allow the consumer to enjoy positive surplus. The two

new no-skipping constraints introduced by storability are tighter than the

standard participation constraint: if the monopolist targets all the surplus,

the consumer always has the option of not purchasing in the second period

and smoothing consumption through storage. However, this is not the whole

story, since the seller could generate an allocation with fully extractable surplus

(for example, by selling only in the first period).

To make the skipping of period-two purchases more di�cult, the seller could

lower first period quantity.8 Alternatively, the seller could increase first period

quantity beyond the capacity constraint. Indeed the monopolist’s optimal

policy is designed in such a way, that the consumer fills his storage up to its

maximum capacity. Clearly, the storage provides an additional freedom for

the consumer to allocate the consumption more e�ciently across time, and

hence gives him bargaining leverage against the monopolist. However, once

the storage is filled, any additional quantity sold in the first period must be

consumed immediately and hence the monopolist can extract the full value

8If the storage capacity is small enough, the monopolist has an alternative optimal policy,
in which the role of the periods is reversed but the same profit is attained. The second period
is the one in which the consumption is optimal. Intuitively, the no-skipping constraint
becomes less restrictive when the storage capacity is small enough, so that the monopolist
can make sure that the consumer is willing to purchase a large bundle (and pay a high
tari↵) in the second period. In this case it is still true that the first period tari↵ extracts
the full surplus that is generated by the first period bundle. We have downplayed this
second implementation for the following reasons. First, we are interested in the impact of
storage, so we want to focus on the case where storage is large (bigger threat). Second, as
we will see in the next section, the alternative equilibrium is not robust to the introduction
of heterogeneity in storage.
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of these additional units. This is the underlying reason why the monopolist

induces a binding storage constraint for the consumer. Moreover, this also

explains why first period consumption is e�cient. Since, the seller can extract

all surplus (as no first period quantity can be stored, because storage is already

filled) from these additional units, it is optimal to expand consumption up to

the e�cient level.

Thus, the seller o↵ers X1 = C⇤+S and is able to extract the following first

period tari↵

P1 = V (X1 � S
| {z }

C

⇤

) + V (X2 + S
| {z }

C2

)� V (X2).

This amount equals the full extra surplus the consumer obtains from the bun-

dle X1 where: V (X1�S) is the surplus of consuming X1�S in the first period

and V (X2 + S)� V (X2) is the surplus of consuming an extra S on top of the

bundle X2 in the second period.

Let us now check the second period o↵ering and why the consumer is left

with a positive surplus. The most the seller can extract in the second period is

the di↵erence in utility between showing up in both periods and buying only

in the first period. Since storage is binding, the latter is V (X1 � S) + V (S),

the e�cient consumption plus full storage consumption. The second period

tari↵ is:

P2 = V (X1 � S
| {z }

C

⇤

) + V (X2 + S
| {z }

C2

)� V (X1 � S
| {z }

C

⇤

)� V (S) = V (X2 + S
| {z }

C2

)� V (S)

We are now ready to discuss the intuition behind the optimal X2. Second

period consumption is not e�cient for the following reason. The second period

tari↵ increases with the size of the bundle X2, so it seems that the seller would

have an incentive to sell enough in the second period to lead to a second

period consumption X2 + S = C⇤. Indeed the latter maximizes P2. However,

these additional second period units a↵ect the amount that can be extracted

in the first period. Recall that the first period tari↵ consists of two parts: the

value of consumption in the first period and the additional value of consuming

the stored inventories in the second period: V (X2 + S) � V (X2). Since the

consumer’s valuation function is concave, this part of the first period tari↵ is
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decreasing in X2, so that second period consumption is a threat to first period

surplus extraction. The monopolist has to balance the two e↵ects, and ends

up selling a bundle that leads to less than e�cient second period consumption.

Let us return to surplus extraction. Both tari↵s are set so that the seller

captures the extra surplus generated by each o↵ering. In other words, as we

saw above, P1 captures the additional surplus generated by X1 relative to the

consumer’s utility should she only enjoy X2 in the second period. Similarly for

P2. The seller is able to capture all additional surplus from each bundle. The

reason the consumer manages to keep a positive surplus is that the marginal

impact of X1 is evaluated at X2 and vice versa. Since V is concave, the

marginal surplus of each o↵ering is less than the surplus of removing both

bundles.

It is easy to see that the optimal policy characterized in Theorem 1 is

not an equilibrium absent commitment. In any pure strategy equilibrium

absent commitment, second period consumption has to be e�cient, otherwise

the monopolist could increase profits in the second period. It turns out that

equilibrium without commitment is quite complicated to characterize even in

the two period problem. For instance, there is no pure strategy equilibrium

in the two period model without commitment: for a wide range of first period

output levels, it cannot be the case that in the second period storage is known

and identical for all consumers. This creates many complications but also

raises some interesting question for possible follow-up work.

3.3 Heterogeneous storage capacities
We now extend the model by allowing for a limited amount of consumer

heterogeneity. The standard second degree price discrimination model (see for

instance Tirole 1988, Chapter 1) characterizes optimal non-linear prices when

there is heterogeneity in consumer valuations. One could of course perform the

same exercise within our environment. However, we think that it is more useful

to keep our focus on the e↵ects of storability, so we retain the assumption

of homogeneous consumer valuations, and instead allow consumers to have

heterogeneous storage capacities. We assume that a fraction ↵ of consumers

has no ability to store, and a fraction 1� ↵ has storage capacity S as above.

We reserve capital letters for the consumer with storage P1, P2, Q1 and Q2
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and small letters p1, p2, q1 and q2 for the consumer without one. For brevity

we will call the consumers with storage S, and the consumers without storage

NS.

The monopolist maximizes profits given by

⇡ = ↵(p1 + p2) + (1� ↵)(P1 + P2)

subject to the constraints that guarantee consumers choose the bundles that

are meant for them. All the constraints that appeared in the case of single

consumer carry over to this case, but we now must impose new self-selection

constraints.

Neither type of consumer should skip a purchase in either period. For

the storing consumer it amounts to constraints (3) and (2) above. For the

NS-consumer they amount to the usual static participation constraints:

p1  V (q1) (4)

p2  V (q2). (5)

Furthermore, NS-consumers should not prefer to switch to the bundles P1, Q1

or P2, Q2:

p1 � P1  V (q1)� V (Q1) (6)

p2 � P2  V (q2)� V (Q2) (7)

and S-consumers should not switch to the whole bundle meant for NS-consumers:

p1+p2�P1�P2 � max
0sS

{V (q1�s)+V (q2+s)}� max
0sS

{V (Q1�s)+V (Q2+s)}. (8)

S-consumers should not substitute any part of their bundle with the deal that
is o↵ered to NS consumers

p1 � P1 � max
0sS

{V (q1 � s) + V (Q2 + s)}� max
0sS

{V (Q1 � s) + V (Q2 + s)} (9)

p2 � P2 � max
0sS

{V (Q1 � s) + V (q2 + s)}� max
0sS

{V (Q1 � s) + V (Q2 + s)} (10)

and, finally, S-consumers should not prefer to choose just one period of the
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bundle intended for NS-consumers

p1 � P1 � P2 � max
0sS

{V (q1 � s) + V (s)}� max
0sS

{V (Q1 � s) + V (Q2 + s)} (11)

p2 � P1 � P2 � V (q2)� max
0sS

{V (Q1 � s) + V (Q2 + s)} (12)

The next result o↵ers a characterization of the optimal solution in this case

with two types of consumers.

Theorem 2 The optimal bundles with heterogeneous storage are such that

q1(↵) < C⇤
, q2(↵) = C⇤

, Q1(↵) = C⇤ + S and Q2(↵) < C⇤ � S. Under the

optimal policy

1. the monopolist induces a binding storage constraint for the S-consumers

2. S-consumers’ consumption is e�cient only in the first period

3. NS-consumers’ consumption is e�cient only in the second period

4. S-consumers enjoy positive surplus and there is b↵ such NS-consumers

enjoy positive surplus if ↵ < b↵.

The S-consumer’s bundlesQ1 andQ2 are qualitatively similar to those char-

acterized in Theorem 1. The only di↵erence is that the second period quantity

is a↵ected by the presence and proportion of non-storers. The presence of

S-consumers instead, drastically changes the way NS-consumers’ bundles are

priced. Both consumption and surplus are a↵ected. First period consump-

tion drops below the e�cient level, and even NS-consumers enjoy a positive

surplus.

When facing heterogeneous consumers, the monopolist has to worry not

only about participation and no-skipping constraints, but also about incen-

tive compatibility constraints. To understand the way incentive compatibility

a↵ects the o↵erings suppose that the bundles for the S-consumer are priced

as in Theorem 1. The first period bundle Q1 = C⇤ + S is sold. We showed

that the S-consumer pays for this bundle more than his first period surplus,

since he purchases additional quantity S for second period consumption. Do
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NS-consumers prefers to buy the bundle Q1 instead of q1? They do not. All

consumers have the same valuation for the good, but the NS-consumer un-

able to store, have to consume the whole bundle in the first period. They are

willing to pay at most V (C⇤) which is lower than what S-consumer pays, P1.

However, the reverse is possible. If q1 is large enough, the S-consumer can be

tempted to buy the cheaper bundle of the two, which is q1. The latter might

be cheaper as it is priced for current consumption, but can be stored (and

smoothed) by S-consumers.

Now consider the second period. NS-consumers are o↵ered bundle q2 = C⇤.

The S-consumer does not value this bundle as much, because he has S already

in storage (recall, that C⇤ is the saturation point). On the other hand, if the

price for the bundle q2 is close to V (q2), NS-consumer might prefer the smaller

bundle Q2 that sells for less than V (Q2), since it is priced for a consumer who

has supply in storage.

To summarize, the monopolist only has to make sure S-consumers do not

switch to the NS-bundle in the first period, and NS-consumers not switching

to S-bundle in the second period. We can now turn to NS-consumer tari↵s:

p1 = V (q1)

p2 = P2 + V (q2)� V (Q2).

It is easy to see that the optimal policy extracts the full surplus from the

NS-consumer in the first period, but the level of consumption is below the

e�cient one. In the second period the situation is reversed: consumption is at

the e�cient level, but the tari↵ is lower than V (C⇤).

The monopolist can use two instruments to make sure consumers purchase

their intended bundles: the induced consumption levels and the tari↵s. It

may be surprising that when the monopolist wants to keep the S-consumer

from switching to NS-bundle he mostly operates by distorting consumption,

and when he wants to prevent the NS-consumer from switching, he operates

mostly through lowering the tari↵. In the first period, the monopolist sets q1
low enough, so that it is not attractive for the S-consumer. Once the size of the

bundle is determined, the monopolist can set the highest price under which the
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bundle is still purchased, which is V (q1). The monopolist cannot achieve the

same e↵ect only by using tari↵s, because S-consumers’ e↵ective willingness

to pay in the first period is higher than NS-consumers’: this is because S-

consumers can smooth consumption of the good across periods, whereas NS-

consumers cannot. Naturally, the higher the proportion of NS-consumer the

more costly the quantity distortion is, that is why q1 (↵) increases in ↵.

Instead, in the second period the S-consumer receives the bundleQ2 at price

P2 = V (Q2 + S) � V (S) < V (Q2). If the NS-consumer purchases Q2 instead

of q2 he can get a surplus of V (Q2) � P2. The monopolist must guarantee

the NS-consumer the same surplus from purchasing the bundle q2. The only

way he can eliminate this surplus is to set Q2 = 0, which in turn will result

in P2 = 0. In the optimal solution, the monopolist sets the level of NS-

consumption to be e�cient and extracts all the surplus up to V (Q2)� P2, by

setting a low enough tari↵. As the proportion of NS-consumers increases the

seller is willing to further distort Q2 downward, explaining why Q2 (↵) is a

decreasing function.9

The picture that emerges from this analysis is that the skipping constraints

can be relaxed by filling the storage capacity of the consumer. Moreover,

consumption flows of non-storers are distorted downwards to alleviate storers’

incentives constraints.

Finally, recall that in the case of homogeneous consumers if the storage

capacity is small enough, there exists an alternative optimal pricing scheme for

the monopolist, in which the role of the two periods is switched: the monopolist

induces e�cient consumption in the second period, and distorts consumption

of the good in the first period. When consumers are heterogeneous in storage

capacity this alternative pricing scheme is no longer optimal. This policy

involves a small bundle in the first period, so that the consumer does not have

significant outside options in the second period. However, if the small bundle

is sold in the first period for the S-consumer, it must be the case that the small

9If the share of the S-consumers is small enough it is optimal to set Q2 = 0 to make

sure, that all the surplus of the NS-consumers is extracted. In particular, if ↵ � V 0(S)
V 0(0) , it is

optimal to set Q2 = 0. However no matter how small or large ↵, if ↵ 2 (0, 1) neither S- nor
NS-consumers are ignored by the monopolist.
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bundle is sold for the NS-consumer as well, which is a significant loss in the

revenue collected from NS-consumers.

4 Non-Linear Prices: Infinite Horizon
The two-period model has the advantage that it is a fairly simple way to

gain an initial understanding of the constraints imposed by storability, and it

could be extended to richer forms of heterogeneity. However, the two-period

model also has clear shortcomings. For example, it is unclear if the alterna-

tion between di↵erent levels of consumption, and the fact that the monopolist

induces a binding storage constraint are artifacts of the particular setup or

fundamental features of storable goods. To address these questions, we ap-

proach the problem from another angle with some advantages and some other

limitations. We consider a very stark infinite horizon model, in which the mo-

nopolist repeatedly interacts with the same consumers so that the problem has

some degree of stationarity. In this longer horizon model consumers can start

and end a period with storage, thereby enabling inventories as a tool at the

disposal of the consumer in every period; this is not feasible in a two-period

world. However, despite its extreme simplicity in some respects, the model

is much more di�cult to analyze and we are only able to obtain a partial

characterization of the monopolist’s optimal policies.

We assume that time is continuous. This assumption is mostly made for

technical reasons because it helps us to avoid dealing with divisibility issues.10

In the infinite horizon model, we reserve small letters for flow variables and

capital letters for all other ones. The consumption of an agent is denoted by

c
t

. The flow value of consumption is given by V (c
t

). If the consumer is given

a flow c
t

for an interval of time [0, T ] his average willingness to pay for this

flow is given by
1

T

Z

T

0

V (c
t

)dt

where V (c) is assumed to satisfy the same assumption as in the previous

section.

10Suppose, that the induced consumption of the consumer in the discrete time model is
C

⇤ and the storage is S. If S
C⇤ is not a natural number, the no-skipping constraints become

more cumbersome.
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We assume that there is no discounting. This assumption, together with

concavity of V imply that an agent endowed with stock Q of the good over time

period T , would like to consume Q/T each period. This drastically simplifies

the consumer’s problem, allowing us to o↵er a particularly simple exposition

of some of the key e↵ects.

The monopolist can choose to sell either a flow or a stock of the consump-

tion good. A flow sale is of the same magnitude as instantaneous consumption,

which means that it is of measure zero relative to any interval of periods of

positive consumption. This of course does not mean that flow sales cannot

be stored. As in the two-period model, we do not allow the monopolist to

o↵er history contingent prices, so all transactions happen on the spot market,

hence the flow sales are associated with flow tari↵s and stock sales with the

stock tari↵s.

The monopolist may receive both flow payments p
t

(for flow sales) and

stock payments P
i

(for stock sales). The monopolist maximizes his average

profit, i.e.

lim sup
T!1

1

T

0

@

Z

T

0

p
t

dt+
X

i2I⇢[0,T ]

P
i

1

A .

As in the two-period model we assume that the monopolist can commit to the

sequence of bundles.11 Again, we believe that this is a useful benchmark.

As in the two period model, the consumer has storage of size S. He can

fill it in two ways. If he purchases a stock bundle of size Q
t

his inventory

discontinuously jumps by Q
t

:

S
t

= S
t�0 +Q

t

.

If he purchases the flow bundle q
t

he can store the leftovers of his consumption.

Suppose the consumer purchased only a flow q
t

in the interval of time (t1, t2),

11However, given our assumptions, and in contrast with the two-period model, we believe
that the optimal policy under commitment would also be an equilibrium as a limit of a
suitably modified model without commitment. Note that in contrast with the extreme
models of durable goods monopoly, in our model there are recurring sales which gives ample
scope for sustaining non competitive profits in equilibrium when discount factors are high.
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then the consumer’s inventory at t2 is given by

S
t2 = S

t1 +

Z

t2

t1

(q
t

� c
t

)dt.

Observe that if the consumer has no storage capacity, i.e., S = 0, then the

optimal policy for the monopolist is to sell the e�cient flow bundle c
t

= c⇤ for

all t, and extract the entire surplus by charging p
t

= V (c⇤) for all t.

However, we now show that when the consumer can store a monopolist

who o↵ers only flow bundles completely loses the power to price non-linearly.

4.1 Storability eliminates non-linear pricing of flow sales
The easiest way to see that no extra surplus can be extracted from non-

linear pricing of flow bundles is to consider the case in which the monopolist

o↵ers a constant flow q
t

= q at flow-bundle price p. Given this policy by

the monopolist, consumers’ optimal consumption is given by V 0 (c) = p

q

in

all periods implying that consumers can fully unbundle the monopolist’s flow-

bundle price.

More formally, denote by � the fraction of periods when a consumer pur-

chases the good. Since the consumer can accumulate inventories, and the

capacity constraint is not binding in the case of flow sales, perfect smoothing

of consumption is feasible and optimal, so that c
t

= �q in every period. The

cost of this policy on average is �p per period. Thus, the consumer picks � as

follows:

�l = arg max
�2[0,1]

{V (�q)� �p}

If the per unit price is not too high (i.e. p

q

< V 0(0) otherwise there would be

no purchases), the optimal �l satisfies

V 0(�lq) =
p

q
.

Flow profits in this case are given by clV 0(cl), where cl = �lq. Notice that cl,

by the f.o.c. above, is also the optimal consumption of a buyer that faces the

linear price p

q

. Thus, with storage, selling a flow bundle q at bundle price p is

equivalent to setting a linear price p

q

.
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The implication is that when the monopolist o↵ers a constant flow of bun-

dles q, the ability of the consumer to store destroys all the monopolist’s ability

to price non-linearly: the best policy within this class is equivalent to a static

linear pricing policy.

This result is an intertemporal parallel to the common wisdom that suc-

cessful non-linear pricing requires constraints on arbitrage among consumers.

In our model, the arbitrage takes place across the di↵erent periods for the

same consumer.

The next results shows that the di�culty faced by the monopolist is much

more pervasive. To start with, we consider what happens for any sequence of

flow-bundle sales, not just stationary ones.

Theorem 3 If S > 0 and the monopolist is restricted to sell only flows of the

good (i.e., the monopolist can not o↵er stocks Q
t

) then the optimal policy is

revenue-equivalent to linear pricing.

Although the proof is more complex, the logic of this result is similar to

the one outlined above for constant flow-bundle sales: with flow sales, the

storage constraint is never binding and the consumer can time his purchases

to unbundle the monopolist’s attempt to price bundles non-linearly.12

4.2 Storability and stationary stock sales
We now investigate whether the monopolist can restore some of its ability

to extract surplus via non-linear prices by resorting to stock bundle rather than

just flow bundles. The next result shows that simply selling stocks instead of

flow bundles is not su�cient: intertemporal arbitrage by the consumer does

not depend on the monopolist selling a flow of goods, but rather depends on

the frequent availability of purchasing opportunities.

12There is a connection between this result and results in the dynamic agency literature
on the limits on contracting imposed by the agent’s ability to time e↵ort or savings deci-
sions to undermine complicated nonlinear incentive schemes. For instance, see Cole and
Kocherlakota (2001) where savings impose significant constraints and Holmstrom and Mil-
grom (1987) where, under exponential utility and Brownian motion, and utility only over
final consumption, the optimal contract is linear in aggregate final outcomes.
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Theorem 4 In the class of policies that make available a constant bundle Q

at (non-linear) price P at each point in time the optimal policy is revenue-

equivalent to linear pricing.

Proof. The consumer’s problem is to choose the intervals, T, at which

to purchase in order to maximize flow utility. The consumer then optimally

smooths consumption within the period, to get a utility flow V
�

Q

T

�

:

max
T

✓

V

✓

Q

T

◆

� P

T

◆

The optimal T solves:

� 1

T 2

✓

QV 0
✓

Q

T

◆

� P

◆

= 0 or

V 0
✓

Q

T

◆

=
P/T

Q/T

The consumer times purchases so that marginal utility equals the unit price of

flow consumption P/T

Q/T

, where the numerator is flow price, and the denominator

is flow purchases. Thus, with stationary policies, the monopolist loses all the

ability to price non-linearly. Profits are not higher than charging a unit -linear-

price.13

Theorem 4 can be partially extended to a limited class of time-varying

bundles Q
t

.14 The main force behind consumers’ ability to intertemporally

unbundle non-linear prices in the previous results is due the fact that they

have ample opportunities to time their purchases to construct their desired

sequence of consumption.

We now show that, by choosing cyclical policies the monopolist can do

better than the profits from linear prices. It can partially restore its abil-

ity to extract surplus via non-linear pricing by limiting the opportunities for

13We neglected the constaint Q  S. Selling more than S would be immaterial since it
cannot be carried forward.

14The undoing of nonlinear pricing by storage could be obtained much more generally:
heterogeneity in consumers’ valuation, and convex costs of storage. However, this would
require much more elaborate analysis and we believe that the main idea is usefully conveyed
in our setup.
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consumers to time purchases and unbundle the non-linear prices. The idea is

to limit consumers smoothing opportunities by selling only infrequently, and

forcing the consumer to buy bundles that use-up all the storage capacity, at

each purchase.

We only consider the class of periodic sales where the monopolist o↵ers a

stock Q at bundle price PQ at periods separated by constant time intervals

TQ; in all other periods the monopolist does not sell anything (or sets a price

so high that consumers will never purchase).15

Theorem 5 The monopolist can improve on linear pricing profits by using

periodic sales.

In the class of periodic sales, the optimal policy is to only make available

a bundle equal to the storage capacity S at periods separated by constant

intervals T S

. The optimal price P S

and interval T S

are given by

P S = 2T S

✓

V (cS)� V

✓

cS

2

◆◆

; T S =
S

cS
,

where cS is the consumption that solves

cS = argmax
c�0

{V (c)� V
⇣ c

2

⌘

}.

At this optimum, consumption, profits, and welfare are independent of S.

In addition, if the function cV 0(c) is single-peaked, they are strictly between

those obtained under linear pricing and those obtained under non-linear prices

absent storage.

Proof. Without loss of generality we can assume that all bundles o↵ered

by the monopolist are actually purchased by the consumer at the optimum.

Otherwise the monopolist can, at no loss, redesign the policy to get rid of the

bundles that are not purchased.

15We conjecture that the policy outlined in Theorem 5 is optimal in the class of all
policies, but we could not prove this. This result does show that any optimal policy has to
have cyclical characteristics because our periodic sales policy does better than any constant
stationary policy.
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Suppose that the monopolist sells bundle Q every T periods and charges P .

Consumption in this case is c = Q

T

. Since the consumer makes a purchase every

T periods, the price must be such, that he is not willing to skip a purchase

and consume his inventories. The following inequality guarantees that the

consumer does not wish to skip a single purchase:

P

T
 2V (c)� 2V

⇣ c

2

⌘

(13)

We now show that the above inequality implies that skipping more than one

purchase in a row is not beneficial either. To show that we need to prove that

k
P

T
 (k + 1)V (c)� (k + 1)V

✓

c

k + 1

◆

From (13) we know, that

k
P

T
 2kV (c)� 2kV

⇣ c

2

⌘

Note, that

2kV (c)� 2kV
⇣ c

2

⌘

�
✓

(k + 1)V (c)� (k + 1)V

✓

c

k + 1

◆◆

=

(k � 1)V (c) + (k + 1)V

✓

c

k + 1

◆

� 2kV
⇣ c

2

⌘

By concavity of V (·) we obtain, that

(k � 1)V (c) + (k + 1)V

✓

c

k + 1

◆

 2kV
⇣ c

2

⌘

hence

k
P

T
 2kV (c)� 2kV

⇣ c

2

⌘

 (k + 1)V (c)� (k + 1)V

✓

c

k + 1

◆

Of all constraints for this problem, (13) is the tightest. Notice, that (13)

does not depend on Q, but only depends on consumption. Hence, setting QS =
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S is weakly optimal for the relaxed problem which only involves the constraint

that we discussed above. Also, by settingQS = S we make all other constraints

obsolete. In fact, if we set QS = S consumers can not use inventories that

were purchased more than T periods ago for current consumption. Hence, we

can restrict our attention to events of skipping consecutive purchases.

Since the monopolist is maximizing the flow of payments, he can set P

T

=

2V (c)� 2V
�

c

2

�

and solve for the optimally induced consumption:

cS = argmax
c�0

n

V (c)� V
⇣ c

2

⌘o

The rest of the solution is straightforward: T S = S

c

S and P S = 2T SV (cS)�
2T SV

⇣

c

S

2

⌘

.

It remains to show that both profits and the induced consumption at the

optimum are strictly between those that arise under linear pricing and in the

absence of storage. If the monopolist sells a bundle S at constant intervals

T and induces the consumption c, the flow profit is ⇡S = 2V (c) � 2V ( c2). If

storage is not feasible, the optimal consumption satisfies V 0(c⇤) = 0 and the

flow profit is ⇡⇤ = V (c⇤). If the monopolist uses the optimal linear pricing

that induces the consumption cl, the flow profit is ⇡l = clV (cl).

First we prove that when storage is unavailable both profits and the con-

sumption are larger then under optimal periodic policy. Note first that 2V (c)�
2V
�

c

2

�

< V (c) by the strict concavity of V (c). Since c⇤ maximizes V (c), we

obtain that V (c⇤) � V (c) > 2V (c) � 2V ( c2) for any c including cS. The first

order condition for cS is V 0(cS) � 1
2V

0
⇣

c

S

2

⌘

> 0 = V 0(c⇤), hence by strict

concavity of V (c), we obtain that c⇤ > cS.

Under linear pricing, the largest profit the monopolist can obtain is clV 0(cl).

Here, we argue, that this profit is achievable under the periodic policy as well.

Indeed observe, that

2V (cl)� 2V

✓

cl

2

◆

= 2

Z

c

l

cl

2

V 0(x)dx
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Since V 0(cl) < V 0(c) for any c < cl we get

2

Z

c

l

cl

2

V 0(x)dx > 2

Z

c

l

cl

2

V 0(cl)dx = clV 0(cl).

Finally, 2V (cS) � 2V
⇣

c

S

2

⌘

� 2V (c) � 2V
�

c

2

�

for any c, hence 2V (cS) �

2V
⇣

c

S

2

⌘

> clV 0(cl).

To prove that cS > cl we use the assumption that cV 0(c) is single-peaked.

Observe, that the first order condition for cS is

cSV 0(cS) =
cS

2
V 0
✓

cS

2

◆

By single-peakedness of cV 0 (c), it must be the case that cl 2
⇣

c

S

2 , c
S

⌘

.

The policy outlined in Theorem 5 is cyclical. This gives us a theory of

sales, based on storability, even in a stationary environment with identical

consumers. The intuition for the fact that a cyclical policy can restore some

of the ability by the monopolist to extract surplus via non-linear prices is the

following. The fact that the bundles are only available infrequently implies that

there are fewer no-skipping constraints for the monopolist to worry about; it

is more costly for the consumer to skip a purchase. By selling bundles that fill

up the storage capacity of the consumer, the monopolist makes it harder for

the consumer to smooth consumption in the event that he chooses to skip a

purchase, thereby enabling the monopolist to extract more surplus.

To gain some additional insight into the role of infrequent sales, let us go

back to the no-skipping constraint which determines prices. Any purchase has

to give the consumer higher utility than skipping it and smoothing optimally

out of storage. The utility from buying for two periods in a row: 2TV
�

Q

T

�

�2P

has to exceed the utility from smoothing the first purchase over both periods:

2TV
�

Q

2T

�

� P . Using both terms we compute the highest P that guarantees

participation:

P = 2T



V

✓

Q

T

◆

� V

✓

Q

2T

◆�
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Skipping saves P but causes the loss in utility derived from consuming Q

2T in-

stead of Q

T

over the 2T interval. Why is it optimal to fill the storage capacity

(namely, setting Q = S)? By properly adjusting T , the single-skipping con-

straint just considered leads to identical profits for any Q as long as Q

T

remains

unchanged. The advantage from setting Q = S comes from the fact that, when

Q < S, there is additional storage capacity available to plan ahead of skip-

ping a purchase, thereby smoothing out more evenly the pain of skipping and

inducing a tighter no-skipping constraint.

Recall that the first order condition for consumption that maximizes flow

revenues is: V 0(cS) = 1
2V

0
⇣

c

S

2

⌘

. Note first that cS < c⇤. This follows from

V 00 < 0 and the first order conditions for cS. If V 0(cS) = 0 and V 0( c
S

2 ) > 0 the

first order conditions would not hold. The idea is that by increasing consump-

tion toward the optimal level the seller generates more consumer surplus, but

also increases the skipping threat. The higher cS the higher the utility from

skipping the second purchase. This last e↵ect pushes the optimal consumption

below the e�cient level. The last term is due to storage.

In order to compare cS to consumption under the optimal linear prices cl

notice that the latter is set where revenue cV 0(c) is highest, namely, by V 0(c)+

cV 00(c) = 0 or where the inverse demand elasticity cV

00(c)
V

0(c) = 1. In the optimal

policy with periodic sales instead, 2V 0(cS) = V 0( c
S

2 ), which implies that the

arc elasticity of V 0 between c and c

2 is 1. Under the standard assumption of

decreasing elasticity (which is guaranteed by demand not being too convex)

this implies that the elasticity evaluated at cS is lager than 1, and thus cS > cl,

since the elasticity is 1 at the latter.

4.2.1 Quadratic Example

In order to give some sense of the magnitude of the e↵ects of storabil-

ity, we now provide an example with quadratic preferences (linear demand).

Assume V (q) = q � q

2

2 . In this case, the optimal solution presented in Theo-

rem 5 involves a frequency of sales: T ⇤ = 3
2S. This is associated with a flow

consumption S

T

⇤ = 2
3 and average profits P

⇤

T

⇤ = 1
3 .

Table 1 o↵ers a contrast between this solution and those of non-linear

pricing absent storability, and of linear pricing. As one can see, storability

generates sizable distortions in consumption and a reduction profits relative
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Table 1: Linear vs Non-Linear Pricing

Regime Consumption Profits C. Surplus

Non-Linear no storability 1 1
2 0

Non-Linear with storability 2
3

1
3

1
9

Linear 1
2

1
4

1
8

to static non-linear pricing, but periodic sales allow the monopolist to extract

substantially more than via linear pricing.

4.3 Heterogeneous storage capacities
As in Section 3.3, we now consider the possibility that consumers are het-

erogeneous in their storage capacity. The purpose of this extension is to gen-

erate richer testable implications and more realistic pricing patterns. Indeed,

an unpalatable feature in the policy outlined in Theorem 5 is that in between

stock sales the monopolist does not sell.

We again assume that a fraction (1�↵) of consumers have storage capacity

S while the rest cannot store at all. All consumers have the same preferences.

The presence of no storage consumers (NS-consumers) reintroduces the neces-

sity to o↵er flow bundles q
t

. If this was the only option for the monopolist

then it would only capture the surplus from non-linear pricing the non-storers

at the expense of reducing the surplus extracted from storers.

However, the monopolist can simultaneously o↵er a flow-bundle intended

for non-storers and an infrequent stock-bundle intended for storers. We now

characterize the optimal policy where the monopolist o↵ers a flow bundle q
t

at price p
t

and a stock-bundle S every T periods at price P .

NS-consumers can only purchase flow q
t

, but the S-consumers can purchase

both flow and bulk sales. Moreover, since the consumers are anonymous, the

S-consumers can purchase multiple flow bundles at a time. So, if at time t,

the S-consumer decides to buy b
t

flow bundles, he will have to pay b
t

p
t

and his
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inventory will go up by b
t

q
t

:

s
t

= s
t�0 + b

t

q
t

.

We first note that the price for the flow should be p
t

= V (q
t

). If it were

greater than V (q
t

) then consumers who can not store would not buy the good.

If it were less than V (q
t

) it could be raised up to V (q
t

) without violating the

participation constraints of those who do not store, and at the same time make

skipping bulk sales more di�cult for those who have storage.

Recall, that if the monopolist o↵ers a flow bundle q
t

to the NS-consumers

alone, the flow profit that he collects is

⇡NS(q
t

) = V (q
t

).

As we showed in Section 4.2 the policy of selling a stock bundle of size S to

S-consumers every T periods generates a flow profit of

⇡S(c) = 2V (c)� 2V
⇣ c

2

⌘

.

We also define an auxiliary function that is helpful in stating our next result:

⇡�(c, q) ⌘ 2
⇣

V (x)� V
⇣ c

2

⌘

�
⇣

x� c

2

⌘

V 0(x)
⌘

1
n c

2
 x

o

,

where

x(q) = V 0�1

✓

V (q)

q

◆

.

We are now ready to state a result that characterizes the monopolist’s optimal

policy. As we mentioned, the monopolist can o↵er both stock and flow bundles

on the market. The only restriction we place on the monopolist, is that if the

stock bundles are o↵ered, they have to be sold every T periods and the size

of these stock bundles has to be constant. The monopolist is of course free to

choose both the period length T and the size of the bundle Q. He is also free

to set any flow bundle sequence q
t

.

Theorem 6 In the class of periodic policies, the optimal policy consists of
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both flow and stock bundles. A stock bundle of size S is o↵ered every T ↵

periods, and a flow bundle of constant size q↵ is o↵ered all the time. This policy

induces a consumption c↵ for the S-consumers and q↵ for the NS-consumers.

The pair (c↵, q↵) solves

(c↵, q↵) = argmax
c,q

{↵⇡NS(q) + (1� ↵)
�

⇡S(c)� ⇡�(c, q)
�

}.

Under the optimal policy:

1. S-consumers only purchase stock bundles of size S, and NS-consumers

only purchase flow bundles of size q↵

2. S-consumers pay lower per-unit price than NS-consumers

3. the presence of S-consumers lowers the consumption of NS-consumers:

q↵  c⇤

4. the presence of NS-consumers increases the consumption of S-consumers:

c↵ � cS.

The monopolist’s profit consists of two parts. The first part is ↵⇡NS(q) +

(1 � ↵)⇡S(c), which is the hypothetical profit, the monopolist would collect

if he could perfectly identify which consumers can store and which can not.

The second part is (1 � ↵)⇡�(c, q). This is the penalty, due to the fact that

the monopolist cannot prevent S-consumers from purchasing the flow bundles

that are meant for NS-consumers. Indeed, if V 0 � c
2

�

� V (q)
q

= V 0(x), the S-

consumer’s bargaining position improves since in the event of skipping a sale of

a stock bundle, he can purchase a flow bundle and increase his consumption by
�

x� c

2

�

. For the storage consumer, this increase in consumption is e↵ectively

priced according to a linear per unit price of V 0(x), which is smaller than the

average per unit gain in utility
V (x)�V ( c

2)
x� c

2
. The gain from purchasing

�

x� c

2

�

units at linear price V 0(x) cannot be extracted by the monopolist, hence must

be granted to S-consumers as a discount on the price of a bulk bundle.

According to Theorem 6, S-consumers pay a lower per-unit price than

NS-consumers. This result follows from the no-arbitrage condition. Since S-
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consumers have more freedom in the market (i.e., they can easily mimic the

choices of NS-consumers), they pay a lower price.

Note that if V 0
⇣

c

S

2

⌘

< V (c⇤)
c

⇤ the optimal policy is a combination of two

optimal policies for for the S- and NS-consumers, as if the types of the con-

sumers were observable. The condition above guarantees, that the flow bundles

meant for NS-consumers are not going to be purchased by S-consumers, so the

separation of types in this case comes for free.

In light of Theorem 3 it is worth emphasizing that the monopolist’s pol-

icy involves both flows and stocks. Theorem 3 shows that flow sales can be

linearized by the storing consumer, thus failing to deliver profits beyond lin-

ear pricing. It is interesting that, when consumers are heterogeneous in their

storage capacities Theorem 6 says that the monopolist benefits from o↵ering

stocks to storers, even when a flow is available. The monopolist has to leave as

much surplus to storers as they would achieve by unbundling the flow o↵ered

to non-storers. Actually, the flow is likely to be o↵ered at a low linear price.

Recall that the linearized price is V (q)
q

. Moreover, since the ideal non-storer

bundle involves V 0(q) = 0 the linearized price V (q)
q

is quite low, or at least

the monopolist would like to target non-storers with a bundle that leads to

low linearized prices. The intuition for why it is still possible for the seller to

extract more from storers than by just pricing linearly can be seen in a static

framework. Can the seller benefit from selling a bundle to a consumer who can

also purchase at linear price p? The seller can o↵er the e�cient bundle, and

price it to leave buyers with at least the surplus obtained from linear prices. A

similar calculation is at work here, with the additional consideration that the

seller o↵ers less than optimal consumption to the storer due to the skipping

constraint.

The policy outlined in Theorem 6 has some interesting empirical content.

It predicts that sales are more relevant for large bundles. As discussed in

the Introduction this is a typical pricing pattern found in scanner data. The

result is also consistent with smaller, more urban-located, stores to have less

prominent promotional activity. Buyers in urban areas have less storage, or at

least, a smaller proportion of them are likely to store. Naturally, we have to be

careful making strong empirical prediction due to the simplicity of the model,
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(a) V (c) = � c2

2 + c (b) V (c) = � c3

3 + c

Figure 1: Consumption of S– (dashed line) and NS– (solid line) consumers.

which allows for a very limited form of heterogeneity. It would be natural

to assume that customers di↵er not only in storage but preferences as well,

perhaps in a systematic way, with more intense buyers being more likely to

store. The positive correlation between storage and usage may reinforce the

finding that larger containers are more likely to be promoted.

4.3.1 Example

We now return to the example with linear demand presented in Section

4.2.1. As shown in Fig. 1a (see page 30), consumption of both S– and NS–

consumers increases when the share of the latter goes up. In the case of

linear demand, NS-consumers always consume more than S–consumers from

the same population. However, this property does not hold in general. The

example shown on the Fig. 1b illustrates this point. If the share of NS–

consumers is small the potential profit that can be extracted from this part

of the population is negligible. It is not optimal to o↵er a large flow for the

NS–consumers because it induces a low per unit price of a good and provides

S–consumers with additional bargaining leverage against the monopolist. To

avoid losses that are caused by the strong bargaining position of S–consumers,

the monopolist induces a small consumption (and hence a high per unit price)

for NS–consumers.
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5 Concluding Remarks
We studied the impact of product storability on non-linear pricing. We

showed that storability can enable consumers to undo sellers’ attempt to price

non-linearly. The constraint is particularly severe under constant o↵erings, in

which case sellers cannot extract more surplus than under linear prices.

Cyclical pricing, in the form of infrequent and bulky sales, constrain buyers

ability to undo non-linear prices. Infrequent sales limit skipping opportunities,

while bulky sales make harder for consumers to get ready to skip a purchase.

Thus, the model delivers a theory of sales. Unlike most explanation of sales,

this one is not based on a discrimination motive.

Allowing for heterogeneity in storage delivers testable implications consis-

tent with observed patterns. However, this paper has only begun to explore

the interactions of heterogeneity and storability. A richer model would be par-

ticularly useful for delivering a broader set of empirical predictions. The richer

model could allow heterogeneous preference, correlation between preferences

and storage, as well as other storage technologies.

This paper has also focused on an environment on a monopolist that can

commit to a sequence of bundles. Natural next steps would be to consider

seller competition and lack of seller commitment.

6 Appendix
Proof of Theorem 1

Observe that constraints (3) and (2) can be written as

P1  max
0sS

{V (Q1 � s) + V (Q2 + s)}� V (Q2)

P2  max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (Q1 � s) + V (s)}.

Since the monopolist maximizes P1+P2, both constraints are going to be bind-

ing at the optimum. Substituting the constraints into the objective function,

the monopolist’s problem becomes

max
Q1,Q2

⇢

2 max
0sS

{V (Q1 � s) + V (Q2 + s)}� V (Q2)� max
0sS

{V (Q1 � s) + V (s)}
�

.
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Suppose that the monopolist induces a binding storage constraint for the

consumer. Lemma 6.1 on page 33 proves that under the optimal policy this is

indeed the case.

Note that, in our candidate policy, the consumer purchases in both periods.

Therefore, the monopolist maximizes

⇧S = max
Q1,Q2

{V (Q1 � S) + 2V (Q2 + S)� V (Q2)� V (S)}

At the optimum we must have

V 0(Q1 � S) = 0 (14)

and

2V 0(Q2 + S)  V 0(Q2). (15)

Equation (14) implies that the optimal first period output is X1 = C⇤+S.

Let us now consider the optimal choice of second period output. If 2V 0(S) <

V 0(0) then the solution is X2 = 0. Thus, the optimal solution involves X2 = 0

whenever S � Ŝ, where Ŝ solves

2V 0(Ŝ) = V 0(0).

In this case it is immediate that second period consumption is equal to S < C⇤.

From now on we assume that S < Ŝ so thatX2 must satisfy (15) as an equality.

We now show that X2 < C⇤ for every S, despite the fact that Q2 � C⇤ would

satisfy the necessary condition given by equation (15) (since V 0(Q) = 0 for all

Q � C⇤). To see this, assume by way of contradiction that X2 � C⇤. Note

that when Q2 � C⇤

2V (Q2 + S)� V (Q2) = V (C⇤) ⌘ V ⇤.

However, for any S > 0,

max
Q2

{2V (Q2 + S)� V (Q2)} � 2V ⇤ � V (C⇤ � S) > V ⇤
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which is the desired contradiction.

Because X2 < C⇤ the optimality condition (for S < Ŝ) is given by

2V 0(X2 + S) = V 0(X2) > 0

This implies that X2 + S < C⇤, which concludes the proof of parts (ii) and

(iii). For future reference, profits are:

⇧S = V ⇤ + 2V (Q2 + S)� V (S)� V (Q2).

Finally the following lemma concludes the proof of this theorem.

Lemma 6.1 Under the optimal policy the storage constraints are binding.

Proof. See supplementary Appendix.

Proof of Theorem 6

We begin this proof with the assumption, that the monopolist sets a con-

stant size of a flow bundle as a part of the optimal policy. Once we find the

characterization of the optimal policy, we then prove, that, indeed the monop-

olist can not do better by allowing the flow bundle to change over time (see

Lemma 6.2 on page 37).

Let us look at the problem of the consumer with storage. In principle,

S-consumers can purchase share � of the flow in addition to the the amount

S they buy every period. The share �1 that they buy if they do not skip any

bulk sales is defined by

V 0(c+ �1q) 
V (q)

q

and the share �2, that they buy if they skipped one bulk sale is defined by

V 0
⇣ c

2
+ �2q

⌘

 V (q)

q

These conditions hold as strict inequalities if � is zero, i.e. if the per unit price

for the flow is so high that we have a corner solution.

If both �1 and �2 are strictly positive, given the optimal menu, there should

be no bulk sales. To show this, observe that, if both �1 and �2 are strictly

33



positive, then the inequalities above, should hold as equalities, i.e.

V 0(c+ �1q) =
V (q)

q

V 0
⇣ c

2
+ �2q

⌘

=
V (q)

q

and, hence c + �1q = c

2 + �2q. Denote by x the consumption that is induced

by linear pricing:

V 0(x) =
V (q)

q

Clearly, x is a function of q, but instead of x(q) we are going to write x

wherever it does not lead to the confusion. The no-skipping constraint in this

case becomes

P

T
 2

⇣

V (c+ �1q)� V
⇣ c

2
+ �2q

⌘

+ (�1 � �2)V (q)
⌘

= � c

2q
V (q)  0

hence setting P = 0 and c = 0 is constrained optimal. The monopolist’s profit

under the policy without the stock bundles is

⇡q(q) = ↵V (q) + (1� ↵)xV 0(x)

Now we proceed to the case where bulk sales are present in optimal menu.

We first observe that �1  �2, hence it must be in this case that �1 = 0.

We have two cases: (i) �2 = 0 and (ii) �2 2 (0, 1).

Suppose that �2 2 (0, 1). Then

V 0
⇣ c

2
+ �2q

⌘

=
V (q)

q

Note that c

2 + �2q = x.

Given this, the monopolist’s profit becomes

2(1� ↵)V (c) + ↵V (q)� 2(1� ↵) (V (x)� �2V (q))
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If we substitute �2q = x� c

2 , then the monopolist’s profit becomes

↵V (q) + (1� ↵)xV 0(x) + 2(1� ↵)

✓

V (c)� V (x)� V 0(x)

2
(c� x)

◆

When deriving this expression we assumed that �2 > 0. This assumption is

valid only if the following inequality is satisfied

V 0
⇣ c

2

⌘

>
V (q)

q
(16)

If (16) is not satisfied, it must be that �2 = 0, in which case the monopolist’s

profit is given by

↵V (q) + 2(1� ↵)
⇣

V (c)� V
⇣ c

2

⌘⌘

Combining these two expressions, the monopolist’s profit is given by

⇡(c, q) =

8

>

>

>

>

<

>

>

>

>

:

↵V (q) + 2(1� ↵)
�

V (c)� V

�

c

2

��

, if V 0 � c
2

�

 V (q)
q

↵V (q) + (1� ↵)xV 0(x)

+ 2(1� ↵)

✓

V (c)� V (x)� V

0(x)

2
(c� x)

◆

, otherwise.

We can now prove, that if ↵ < 1 monopolist always o↵ers a stock bundle

for sale. For that we need to show, that max{⇡(c, q)} � max{⇡q(q)}. Take

bq = argmax{⇡q(q)}. We are going to argue, that we can always find c such,

that ⇡(c, bq) � ⇡q(bq). As we mentioned, x is the function of q, so we introduce

bx = x(bq). We assume (and later verify), that c is such that V 0 � c
2

�

> V (bq)
bq .

Then,

⇡(c, bq)� ⇡q(bq) = 2(1� ↵)(c� bx)
✓

V (c)� V (bx)

c� bx � V 0(bx)

2

◆

.

Since, lim
c!bx

V (c)�V (bx)
c�bx = V 0(bx), we can always find bc close enough to bx such, that

V (bc)� V (bx)

bc� bx >
V 0(bx)

2
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and hence ⇡(bc, bq)� ⇡q(bq) > 0.

Finally, since bc = bx+ ✏ for small enough ✏ > 0, bc
2 < bx and hence

V 0
✓

bc

2

◆

> V 0(x) =
V (bq)

bq
.

The optimal policy must satisfy V 0(c)  V (q)
q

and must solve

(c↵, q↵) = argmax
c,q

{⇡(c, q)},

where

⇡(c, q) =↵V (q) + 2(1� ↵)
⇣

V (c)� V
⇣ c

2

⌘⌘

� 2(1� ↵)
⇣

V (x)� V
⇣ c

2

⌘

�
⇣

x� c

2

⌘

V 0(x)
⌘

1

⇢

V 0
⇣ c

2

⌘

� V (q)

q

�

If V 0
⇣

c

S

2

⌘

< V (c⇤)
c

⇤ , the consumption induced by optimal pricing policy is

c↵ = cS and q↵ = c⇤. If the condition above is violated then either (c↵, q↵)

satisfies first order conditions (i)

2V 0(c↵) =
V (q↵)

q↵

↵q↵V 0(q↵) = 2(1� ↵) (V 0(q↵)� V 0(x↵))

✓

c↵

2
� x↵

◆

or (ii)

V 0
✓

c↵

2

◆

=
V (q↵)

q↵

↵q↵V 0(q↵) = 2(1� ↵)

�

2V 0(c↵)� V 0 � c↵
2

��

�

�V 00
�

c

↵

2

��

(V 0(q↵)� V 0(x↵))

Clearly, in both cases

2V 0(c↵)� V 0
✓

c↵

2

◆

 0,
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which leads to the conclusion that c↵ � cS.

Let us now look at the per-unit prices paid by S- and NS-consumers. The

consumers without storage pay V (q↵)
q

↵ for one unit of the good. The storers pay
P

↵

c

↵ , where

P↵ =

8

<

:

2V (c↵)� 2V
�

c

↵

2

�

, if V 0 � c↵
2

�

 V (q↵)
q

↵

2V (c↵)� 2V (x↵) + 2
�

x↵ � c

↵

2

�

V 0(x↵), if V 0 � c↵
2

�

> V 0 (x↵) = V (q↵)
q

↵

We show that in both cases P

↵

c

↵ < V (q↵)
q

↵ . Suppose, that V 0 � c↵
2

�

 V (q↵)
q

↵ . Then

P↵

c↵
=

V (c↵)� V
�

c

↵

2

�

c

↵

2

< V 0
✓

c↵

2

◆

 V (q↵)

q↵

If V 0 � c↵
2

�

> V 0 (x↵) = V (q↵)
q

↵ , then

P↵

c↵
=

V (c↵)� V (x↵) +
�

x↵ � c

↵

2

�

V 0(x↵)
c

↵

2

< V 0(x↵) =
V (q↵)

q↵
.

Now, the following lemma is going to show, that the monopolist can not

increase profits by allowing the size of the flow bundle to depend on time.

Lemma 6.2 Suppose, the monopolist can set the size of the flow bundle at

each moment in time. The optimal policy is q↵
t

= q↵.

Proof. Take any arbitrary policy q
t

. We are going to show, that we can

find a policy with a constant size of a flow bundle, that generates weakly higher

revenue than q
t

.

First, we have to characterize the consumer choice of what bundles to buy

and how much to consume. Clearly, consumer will smooth his consumption

up to a point, when he faces one of the two storage constraints: when either

the storage is empty or it is full. Here we introduce the purely technical

assumption, that the consumption as a function of time is right-continuous.

Lemma 6.3 Suppose, the agent’s consumption at time t is x
t

. Then,
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1. if V 0(x
t

) > V (qt)
qt

, the agent purchases as much flow bundles as his storage

allows

2. if V 0(x
t

) < V (qt)
qt

, the agent does not purchase any flow bundles.

Proof. See supplementary Appendix.

Suppose, that the bulk bundle is sold at time 0, T, 2T, 3T, and so on. Let

us first consider the price of a bulk bundle sold at time T . It is, as before,

determined by no-skipping constraint. If the S-consumer skips the sale, he

will purchase the flow bundle if and only if the per-unit price of the good

is lower then the marginal utility of consumption and his storage is not full

(see Lemma 6.3). Since we allow for multiple purchases of the flow, we can

assume with out loss of generality, that he is going to buy the flow at the

countably many points in time. Suppose, in the interval [0, T ] he purchases

the flow K
T

times at {tT
i

}KT
i=1. The consumption xT

t

is piece-wise constant with

discontinuities at tT
i

.

Now let us consider the bulk bundle sold at time 0. Again, if the S-

consumer skips the sale at time 0, his consumption x0
t

is going to be piece-wise

constant with discontinuities at t0
i

. Let us take a coarsest refinement of the

two sets of intervals that are induced by {tT
i

}KT
i=1 and by {t0

i

}K0
i=1. By K0,T we

denote the number of intervals and by {t0,T
i

}K0,T

i=1 their endpoints. Both x0
t

and

xT

t

are constant within each interval. We denote their value for the interval
⇣

t0,T
i

, t0,T
i+1

⌘

by x0
i

and xT

i

respectively.

We start with observation, that for any t 2
⇣

t0,T
i

, t0,T
i+1

⌘

,

V (q
t

)

q
t

� max{V 0(x0
i

), V 0(xT

i

)}.

Indeed, if it were not the case, i.e. the inequality were reversed for some t, this

t would be the endpoint of some interval by definition, which would lead to the

contradiction, that t belongs to the open interval. Since the S-consumer is not

purchasing the flow bundles within the interval t 2
⇣

t0,T
i

, t0,T
i+1

⌘

, we can change

the size of the flow bundle inside the interval
⇣

t0,T
i

, t0,T
i+1

⌘

to q0,T
i

. The new size

of the bundle is such that, the S-consumer’s does not change his decisions on
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when and how much of the flow bundles to buy:

V (q0,T
i

)

q0,T
i

= max{V 0(x0
i

), V 0(xT

i

)}.

Notice, that q
t

 q0,T
i

for any t 2
⇣

t0,T
i

, t0,T
i+1

⌘

. This change will not a↵ect

the price of the bulk bundle and will weakly increase the profit collected from

NS-consumers. From now on we will restrict our attention to the policies that

are obtained by this transformation.

If the S-consumer skips a sale, he plans his consumption while having the

storage filled up to its maximum capacity. He consumes from the storage when

the price of the flow bundle is too high. The utility of the S-consumer in this

case is
2T
Z

0



V (x
t

)� x
t

V 0(x
t

) + SV 0
✓

min
⌧2[0,2T ]

{x
⌧

}
◆�

dt.

The part of the tari↵ that depends on x0
i

and xT

i

is16

P (x0,xT ) = ↵
K

X

i=0

⌧
i

V (q
i

)� (1� ↵)
S

2

⇣

V 0
⇣

min
i

{x0
i

}
⌘

+ V 0
⇣

min
i

{xT

i

}
⌘⌘

� (1� ↵)
K

X

i=0

⌧
i

��

V (x0
i

) + V (xT

i

)
�

�
�

x0
i

V 0(x0
i

) + xT

i

V 0(xT

i

)
��

.

Notice, that by construction V (q
i

)  1
2V (q0

i

) + 1
2V (qT

i

), and hence

P (x0
,x

T ) 
K

X

i=0

⌧

i



↵

2
V (q0

i

)� (1� ↵)
c

2
V

0
✓

min
i

{x0
i

}
◆

� (1� ↵)
�

V (x0
i

)� x

0
i

V

0(x0
i

)
�

�

+
K

X

i=0

⌧

i



↵

2
V (qT

i

)� (1� ↵)
c

2
V

0
✓

min
i

{xT
i

}
◆

� (1� ↵)
�

V (xT
i

)� x

T

i

V

0(xT
i

)
�

�

.

Recall, that q0
i

satisfies the equation V (q0i )

q

0
i

= V 0(xT

i

), and that q0
i

satisfies

16From now on we drop 0, T from the upper indexes: K

0,T becomes K, t0,Ti becomes ti

and so on.
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similar one. Also recall that our solution (q↵, x↵) maximizes

↵

2
V (q(x))� (1� ↵)

c

2
V 0(x)� (1� ↵) (V (x)� xV 0(x)) ,

where q(x) is such that V (q(x))
q(x) = V 0(x). From this we conclude that P (x0,xT )

is lower, than what we get under the flat q↵, hence under the optimal policy

the size of the flow bundle is constant.
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7 Supplementary Appendix (Not for Publica-

tion)
Proof of Lemma 3.1

Combining equations (2) and (3) we obtain:

P1+P2  2max
sS

{V (Q1�s)+V (Q2+s)}�
✓

Max
sS

{V (Q1 � s) + V (s)}+ V (Q2)

◆

.

Because V is concave, we have that

max
sS

{V (Q1 � s) + V (s)}+ V (Q2) � Max
sS

{V (Q1 � s) + V (Q2 + s)}.

Therefore,

P1 + P2  Max
sS

{V (Q1 � s) + V (Q2 + s)}

which, is the same as inequality (1).

Proof of Theorem 2

Monopolist maximizes the sum of the tari↵s, subject to all the constraints

introduced in Section 3.3. We start the proof by noticing, that some constraints

can be omitted from the problem.

Lemma 7.1 Constraints (3) and (5) are not binding:

• (4) and (9) imply (3);

• (2) and (7) imply (5).

Proof. First we prove, that (4) and (9) imply (3). If we add up constraints

(4) and (9), we obtain

P1  max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (q1 � s) + V (Q2 + s)}+ V (q1),

which is a tighter bound on P1 than (3). Similarly, by adding up constraints

(2) and (7) we obtain that

p2  V (q2)+ max
0sS

{V (Q1�s)+V (Q2+s)}� max
0sS

{V (Q1�s)+V (s)+V (Q2)},
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which implies (5).

Let us assume (and later prove) that inequalities (2), (4) and (7) are bind-

ing, i.e.

p1 = V (q1) (17)

P2 = max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (Q1 � s) + V (s)} (18)

p2 = P2 + V (q2)� V (Q2). (19)

Given that, inequalities (9) and (11) provide the condition on P1:

P1  p1 + max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (q1 � s) + V (Q2 + s)}

P1  p1 + max
0sS

{V (Q1 � s) + V (s)}� max
0sS

{V (q1 � s) + V (s)}.

We also assume that one of these two inequalities is binding. By Z(Q1, q1, x)

we denote the following expression:

Z(Q1, q1, x) = max
0sS

{V (Q1 � s) + V (x+ s)}� max
0sS

{V (q1 � s) + V (x+ s)}

Using notation we obtain that

P1 = p1 +min{Z(Q1, q1, 0), Z(Q1, q1, Q2)}. (20)

Equations (17),(18),(19) and (20) can be used to write down the profit of

the monopolist as a function of q1, q2, Q1 and Q2.

⇡ = V (q1) + max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (Q1 � s) + V (s)}

+ ↵(V (q2)� V (Q2)) + (1� ↵)min{Z(Q1, q1, 0), Z(Q1, q1, Q2)}

Observe, that q⇤2 = C⇤ and Q⇤
1 = C⇤ + S maximize profit. To find the rest

of the solution we need to maximize

V (q1) + V (Q2 + S)� ↵V (Q2) + (1� ↵)min{V (Q2 + S)

� max
0sS

{V (q1 � s) + V (Q2 + s)}, V (S)� max
0sS

{V (q1 � s) + V (s)}}
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By proving the following lemma, we check, that the set of inequalities, that

we assumed to be binding, are actually binding in the optimum.

Lemma 7.2 Inequalities (2), (4), (7), (9) and (11) define the tari↵s that max-

imize monopolist’s profits.

Proof. To prove this lemma we need to check if the rest of the inequalities

are satisfied with the solution of the relaxed problem. In particular we need

to check if inequalities (6), (8), (10) and (12). We start with (6)

p1 � P1 � V (q1) + V (Q1) =

max

(

max
0sS

(

V (q1 � s) + V (Q2 + s)

� V (Q2 + S)� V (q1)

)

, max
0sS

(

V (q1 � s) + V (s)

� V (S)� V (q1)

))

 0

(8) is equivalent to

p1 + p2 � P1 � P2 + max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (q1 � s) + V (q2 + s)} �

max
0sS

{V (q1 � s) + V (Q2 + s)}� V (Q2)� V (q1) � 0

(10) is equivalent to

p2 � P2 + max
0sS

{V (Q1 � s) + V (Q2 + s)}� max
0sS

{V (Q1 � s) + V (q2 + s)} =

V (Q2 + s)� V (Q2) � 0

and finally (12) is also satisfied:

p2 � P1 � P2 + max
0sS

{V (Q1 � s) + V (Q2 + s)}� V (q2) �

max
0sS

{V (q1 � s) + V (Q2 + s)}� V (q1)� V (Q2) � 0.

Lemma 7.2 ensures, that the solution of a relaxed maximization problem

coincides with the solution of the original profit maximization problem. Now

that we have this result, we can get back to solving the relaxed problem. Let
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us consider the following expression:

min{V (Q2+S)� max
0sS

{V (q1�s)+V (Q2+s)}, V (S)� max
0sS

{V (q1�s)+V (s)}} (21)

If Q2 � q1 we have

max
0sS

{V (Q2 + S) + V (q1 � s) + V (s)}� V (q1)� V (Q2)� V (S)  0

and hence (21) becomes

min{V (Q2 + S)� V (q1)� V (Q2), V (S)� max
0sS

{V (q1 � s) + V (s)}} =

V (Q2 + S)� V (q1)� V (Q2).

If Q2 + 2S � q1 � Q2 we observe, that

max
0sS

{V (Q2 + S) + V (q1 � s) + V (s)}� 2V

✓

q1 +Q2

2

◆

� V (S)  0

and (21) can be rewritten as

min{V (Q2 + S)� 2V

✓

q1 +Q2

2

◆

, V (S)� max
0sS

{V (q1 � s) + V (s)}} =

V (Q2 + S)� 2V

✓

q1 +Q2

2

◆

.

Finally, if Q2 + 2S  q1 (21) becomes

min{�V (q1 � S),�V (q1 � S)} = �V (q1 � S).

We can rewrite part of maximization problem that solves for Q2 and q1 as

max
Q2,q1

{f(q1, Q2)}
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where

f(q1, Q2) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

↵V (q1) + (2� ↵)V (Q2 + S)� V (Q2), if q1  Q2

V (q1) + (2� ↵)V (Q2 + S)� ↵V (Q2)

� 2(1� ↵)V

✓

q1 +Q2

2

◆

,

if Q2 < q1  Q2 + 2S

V (q1) + V (Q2 + S)� ↵V (Q2)� (1� ↵)V (q1 � S), if Q2 + 2S < q1

First we observe that the solution for maximization problem can never

satisfy q1 < Q2 because function ↵V (q1) + (2 � ↵)V (Q2 + S) � V (Q2) has

unique maximum q1 = C⇤ and Q2 + S < C⇤. It means, that we should look

for the solution in the set where q1 � Q2. There, however, observe that first

order condition for q1 and Q2 suggest that V 0(q1) > 0 and V 0(Q2 + S) > 0,

hence q1 < C⇤ and Q2 < C⇤ � S.

First order conditions that define Q⇤
2 and q⇤1 are

V 0(q⇤1) =

8

<

:

(1� ↵)V 0
⇣

q

⇤
1+Q

⇤
2

2

⌘

, if Q⇤
2  q⇤1 < Q⇤

2 + 2S

(1� ↵)V 0(q⇤1 � S) , otherwise

and

V 0(Q⇤
2 + S) =

8

>

>

>

>

<

>

>

>

>

:

↵V 0(Q⇤
2) + (1� ↵)V 0

✓

q⇤1 +Q⇤
2

2

◆

� (1� ↵)V 0(Q⇤
2 + S)

, if Q⇤
2  q⇤1 < Q⇤

2 + 2S

↵V 0(Q⇤
2) , otherwise

Proof of Theorem 3

Fix the time horizon to be T . Suppose the monopolist o↵ers the flow q
t
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and charges p
t

for it. Then consumer’s problem is

max
ct�0,bt2{0,1}

{
T

Z

0

(V (y
t

c
t

)� x
t

b
t

p
t

) dt}

s
t

=

t

Z

0

(x
⌧

b
⌧

q
⌧

� y
⌧

c
⌧

)d⌧

x
t

2

8

<

:

0, if s
t

= S and b
t

q
t

� y
t

c
t

> 0

{0, 1}, otherwise

y
t

2

8

<

:

0, if s
t

= 0 and b
t

q
t

� y
t

c
t

< 0

{0, 1}, otherwise

Where vector (x
t

, y
t

) denotes so-called regime. The meaning of this regime

variables in our problem is the following. By setting variable x
t

= 0 we make

sure, that when the agent’s storage is filled up to maximum capacity, the

agent does not purchase the flow of good that is larger than his consumption

. Similarly, by setting y
t

= 0, we guarantee, that when the agent’s storage is

empty, the agent can not consume more than what he purchases. Note, that

correspondence that defines the domain of x
t

and y
t

is right continuous.

The control variables in this problem are c
t

and b
t

. By b
t

we denote a

binary decision whether consumer buys a flow at time t or not. Naturally, by

c
t

we denote consumption at time t.

The state variable for this problem is the amount of good, that is stored

in the consumer’s inventories at time t, i.e. s
t

.

By H we denote Hamiltonian for this problem:

H =  
t

(x
t

b
t

q
t

� y
t

c
t

) + V (y
t

c
t

)� x
t

b
t

p
t

.

Following Panteleev et al. (2011)17, we obtain necessary conditions for this

17See Panteleev, A.V., Bortakovskiy, A.S., Letova, T.A., “Optimalnoe Upravlenie V
Primerah I Zadachah”, Izdatelstvo MAI, 1996.
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problem:

c⇤
t

=

8

<

:

0, if y⇤
t

= 0

V 0�1( ⇤
t

), otherwise

b⇤
t

2

8

>

>

>

<

>

>

>

:

1, if x⇤
t

= 1 and  ⇤
t

> pt

qt

{0, 1}, if x⇤
t

= 1 and  ⇤
t

= pt

qt

0, otherwise

Note, that  ⇤
t

is piecewise constant with jumps at discontinuity points of x⇤
t

and y⇤
t

.

These necessary conditions state, that agents smooths his consumption

whenever he has some amount of good in the storage. Also, the agent purchases

the good only when per unit price is lower than the marginal utility of his

current consumption.

Lemma 7.3 If c⇤
⌧

= 0, it must be that c⇤
t

= 0 and b⇤
t

= 0 for all t 2 [0, ⌧ ]

Proof. By contradiction let us assume that c⇤
t

> 0 for all t 2 [t1, t2] ⇢ [0, ⌧ ]

(since  ⇤
t

is piecewise constant there must exist non-degenerate interval). Then

it must be that
R

t2

0 b⇤
t

dt > 0. We can always find ✏ > 0 small enough, such that

consumer stores ✏ more by the time t2 and consumes it around time ⌧ . Since

c⇤
⌧

= 0 and V (·) is concave, it is an improvement, hence the contradiction.

By this Lemma, we can restrict our attention on policies that induce strictly

positive consumption everywhere.

Let us partition our time interval [0, T ] into intervals {[t
i�1, ti]}I

i=1 such that

t0 = 0, t
I

= T , and for all 1  i < I: t
i

= t () s⇤
t

= S and for any ✏ > 0

s⇤
⌧

is not constant on ⌧ 2 (t � ✏, t + ✏). By construction, consumption inside

interval i is constant if 8t 2 [t
i�1, ti] : st > 0 (we denote the consumption in

the interval i by c
i

in this case). Aggregate amount of good purchased within
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such interval i is

Z

t2[ti�1,ti]

x⇤
t

b⇤
t

q
t

dt =

8

>

>

>

<

>

>

>

:

c
i

(t
i

� t
i�1), if 1 < i < I

c1t1 + S, if i = 1

c
I

(T � t
I�1)� S, if i = I

Now let us look at the intervals that have the property that 9t 2 (t
i�1, ti) :

s⇤
t

= 0. Take such interval [t
i�1, ti] if it exists and partition it further into

subintervals, such that consumption is constant within each subinterval (we

can do that because  ⇤
t

is piecewise constant). Lets index those subintervals

by j = 1, ...,m
i

. The endpoints of those intervals are t0
i

= t
i�1, and {tj

i

}mi
j=1,

where tj
i

is the right endpoint of jth interval. Observe, that consumption is

increasing in j i.e. cj
i

< cj+1
i

for all j = 1, ...,m
i

� 1. Also the aggregate

amount of good purchased within each subinterval is

Z

t2[tj�1
i ,t

j
i ]

x⇤
t

b⇤
t

q
t

dt =

8

>

>

>

<

>

>

>

:

cj
i

(tj
i

� tj�1
i

), if 1 < j < m
i

c1
i

(t0
i

� t1
i

)� S, if j = 1

cmi
i

(t
i

� tmi�1
i

) + S, if j = m
i

From necessary conditions we know that per unit price of a good is bounded

from above by V 0(c). Also, we know that V 0(cmi
i

)  V 0(c1
i

), hence the profits

of the monopolist that are collected from sales in interval i are bounded from

above by

mi
X

j=1

(tj�1
i

� tj
i

)cj
i

V 0(cj
i

) + S(V 0(cmi
i

)� V 0(c1
i

)) 
mi
X

j=1

(tj�1
i

� tj
i

)cj
i

V 0(cj
i

)

Now let us reindex our partitions by k 2 K such that the new partition

is the coarsest refinement of the partitions above. Again price of a good is

bounded from above by V 0(c) so total profits that are bounded from above by

X

k2K

(t
k

� t
k�1)

T
c
k

V 0(c
k

) +
S

T
(V 0(c1)� V 0(c

I

))

49



In the limit this bound becomes

lim sup
T!1

 

X

k2K

(t
k

� t
k�1)

T
c
k

V 0(c
k

) +
S

T
(V 0(c1)� V 0(c

I

))

!

 max
c�0

{cV 0(c)}

The expression on the left hand side is the profit from pricing the good linearly.

Proof of Lemma 6.1

We now need to prove that it is indeed optimal to induce binding storage

constraints. There are several cases to be considered.

Consider first, the case in which the monopolist sets a policy in which

storage is interior: 0 < s < S. We first discuss the case in which storage does

not bind even if the consumer chooses to skip the second period purchase,

i.e., Q1

2  S. In this case, consumer optimal smoothing behavior implies that

profits are:

⇧I = 4V

✓

Q1 +Q2

2

◆

� 2V

✓

Q1

2

◆

� V (Q2).

The first order conditions can be combined to yield

2V 0
✓

QI

1 +QI

2

2

◆

= V 0
✓

QI

1

2

◆

= V 0(QI

2)

so that
QI

1

2
= QI

2 and 2V 0
✓

3QI

2

2

◆

= V 0(QI

2).

For storage not to be binding even when the consumer chooses to skip the

second period purchase, it must be the case that S � QI

2.

We now show that all policies in the interior of this class violate the second

order conditions for the monopolist.

Assume by way of contradiction that QI

1 and QI

2 satisfy the first and second

order conditions, namely

V 00
✓

QI

1 +QI

2

2

◆

� V 00(QI

2)  0

1

2
V 00(QI

2)

✓

V 00(QI

2)� 3V 00
✓

QI

1 +QI

2

2

◆◆

� 0

50



These two inequalities imply that

2V 00
✓

QI

1 +QI

2

2

◆

 V 00(QI

2)  3V 00
✓

QI

1 +QI

2

2

◆

which can only be true if V 00
⇣

Q

I
1+Q

I
2

2

⌘

� 0. This contradicts the assumption

that V is strictly concave showing the desired contradiction.

This means that the solution to the maximization problem must be on the

boundary of this set: one of the constraints on storage is binding.

We now need to consider the case where capacity binds for skipping the

second period purchase but not for smoothing consumption. The reasoning is

very similar. In this case, profits are

⇧II = 4V

✓

Q1 +Q2

2

◆

� V (Q1 � S)� V (S)� V (Q2).

First order conditions for this problem imply that QII

1 � S = QII

2 . Second

order condition then is

V 00
✓

QII

1 +QII

2

2

◆

� V 00(QII

2 )  0

V 00(QII

2 )

✓

V 00(QII

2 )� 2V 00
✓

QII

1 +QII

2

2

◆◆

� 0

By combining two inequalities together we get that

V 00
✓

QI

1 +QI

2

2

◆

 V 00(QI

2)  2V 00
✓

QI

1 +QI

2

2

◆

but this contradicts the concavity of V .

Finally, we need to show that the seller does not prefer to sell Q1 < Q2 in

which case optimal storage would be zero. When the seller sets Q1 < Q2 (and

as long as capacity binds in the event that the consumer skips second period

purchases), there are two possibilities: in the first case, when Q1 � 2S, if the

consumer skips the second period purchase, then storage capacity binds. In
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this case, profits are

⇧0 = 2(V (Q1) + V (Q2))� V (Q1 � S)� V (S)� V (Q2)

which are maximized when

2V 0(Q0
1) = V 0(Q0

1 � S)

V 0(Q0
2) = 0

thus we can rewrite profits as:

2V (Q0
1) + V ⇤ � V (Q0

1 � S)� V (S).

It is easy to see that these are the same profits as in our candidate optimal

policy. The role of Q1 and Q2 are now reversed: second period consumption is

e�cient while first period consumption is ine�ciently low.18 This only happens

when capacity is small enough, i.e. S  S̃ where S̃ solves

2V 0(2S̃) = V 0(S̃).

When S � S̃, capacity does not bind when the consumer skips second

period purchases. Observe that Q1 < 2S in this case. Monopolist profits are

then

max
Q1

{V ⇤ + 2V (Q1)� 2V

✓

Q1

2

◆

}.

We need to show, that

max
Q1

{V ⇤ + 2V (Q1)� 2V

✓

Q1

2

◆

} < ⇧S

We notice that if Q1 � S we can set Q2 = Q1 � S and obtain

2V (Q1)� 2V

✓

Q1

2

◆

< 2V (Q2 + S)� V (Q2)� V (S)  ⇧S

18Thus, when storage capacity is low there is another solution. We do not highlight this
solution because it is no longer optimal in the cases considered later.
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and, if Q1 < S, we obtain that

2V (Q1)� 2V

✓

Q1

2

◆

< V (Q1) < V (S)  ⇧S

Proof of Lemma 6.3

This lemma is almost identical to Theorem 3, so we only sketch the proof

here.

Suppose by contradiction, that V 0(x
t

) > V (qt)
qt

, and agent’s storage is not

full, i.e. s
t

< S. If agent buys an ✏ > 0 of good (where ✏ is small enough), he

is going to pay ✏V (qt)
qt

. After the purchase agent can spread this small portion

of the good across
p
✏ of time. His consumption is going to go up by ✏p

✏

=
p
✏.

The net gain in utility in this case is

p
✏
�p

✏V 0(x
t

)
�

� ✏V (q
t

)

q
t

> 0

which is a desired contradiction. The same logic works for the case, when

V 0(x
t

) < V (qt)
qt

.
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