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Abstract 

Perception of nonverbal vocal information is essential in our daily lives. Patients with 

degenerative dementias commonly have difficulty with such aspects of vocal communication; 

however voice processing has seldom been studied in these diseases. This thesis comprises a 

series of linked studies of voice processing in canonical dementias: Alzheimer’s disease, 

behavioural variant frontotemporal dementia, semantic dementia and progressive nonfluent 

aphasia. A series of neuropsychological tests were developed to examine perceptual and semantic 

stages of voice processing and to assess two aspects of accent processing: comprehension of 

foreign accented speech and recognition of regional and foreign accents; patient performance was 

referenced to healthy control subjects. Neuroanatomical associations of voice processing 

performance were assessed using voxel based morphometry. Following a symptom-led approach, 

a syndrome of progressive associative phonagnosia was characterised in two detailed case studies. 

Following a disease-led approach, this work was extended systematically to cohorts of patients 

representing the target diseases and assessing voice processing in relation to other aspects of 

person recognition (faces and names). This work provided evidence for separable profiles of 

voice processing impairment in different diseases: associative deficits were particularly severe in 

semantic dementia, whilst perceptual deficits showed relative specificity for Alzheimer’s disease. 

Neuroanatomical associations were identified for voice recognition in the right temporal pole and 

anterior fusiform gyrus, and for voice discrimination in the right inferior parietal lobe. The final 

phase of this work addressed the neuropsychological and neuroanatomical basis of accent 

processing, as an important dimension of nonverbal vocal analysis that is not dependent on voice 

identity. This work provides evidence for impaired processing of accents in progressive nonfluent 

aphasia and Alzheimer’s with neuroanatomical associations in the anterior and superior temporal 

lobe. The thesis contributes new information about voice processing in the degenerative 

dementias and furthers our understanding of the mechanisms of human voice analysis.  

 

  



 

 

4 

Division of labour for experimental work 

The experimental work described in this thesis was conducted by the author in collaboration with 

researchers at the Dementia Research Centre and affiliated institutions. Substantial contributions 

made by others are detailed below, and other contributions are credited in the acknowledgements.  

 

Chapter 3 (Study 1) 

Experimental design of voice tests: author, Jason Warren, Sebastian Crutch 

Experimental design of size test: author, Martin Vestergaard and Roy Patterson 

Construction and piloting of tests: author 

Data collection: author  

Data analysis: author in consultation with Jonathan Bartlett 

Writing the published paper: author and Jason Warren 

 

Chapters 4 & 5 (Studies 2 and 3) 

Experimental design: author, Jason Warren and Sebastian Crutch 

Construction and piloting of tests: author 

Experimental data collection: author 

Background neuropsychological data collection: author, Jo Goll and Aisling Buckley  

Data analysis: author in consultation with Jonathan Bartlett 

VBM image processing: author in consultation with Jo Goll 

VBM analyses: author in consultation with Gerard Ridgway  

Writing the published papers: author and Jason Warren 

  



 

 

5 

Acknowledgements 

Thanks must first be expressed to my supervisors: Jason who has provided an encyclopaedic 

knowledge of the field and has been a major source of inspiration for the work, and to Sebastian 

who provided neuropsychological expertise and moral support which have been invaluable to the 

work and to my professional development. Together they have been a tireless source of help and 

support and have steered my PhD to completion. I am also indebted to two important contributors 

to this work: Jonathan Bartlett for continual statistical advice and Ged Ridgway for masterful 

consultation on VBM analyses. My deepest thanks go to the patients and control participants 

without whom this work would not have been possible, and Professors Martin Rossor and Nick 

Fox for overseeing the clinical care of the patients involved. 

 

I am grateful to Dr Doris-Eva Bamiou for assistance with audiometric assessments, Dr John 

Stevens for assistance in interpretation of brain images and Professor Warrington for helpful 

discussion. I thank members of the admin team at the Dementia Research Centre: Suzie Barker, 

Anne Parnell, Ayesha Khatun and Carolyn Anderson who assisted in the logistics of patient 

recruitment and research visits. I am grateful to Johanna Goll, Manja Lehmann and Susie Henley 

for their support with VBM and general comradery. I am indebted to all the DRC members and 

friends that been guinea pigs for pilot neuropsychological tests and/or have allowed me to record 

their voice for tests in this Thesis: Adam Reid, Rick Merrick, Francesca Silman, Josephine 

Davies, Harry Lee and Sophie Coulombeau, Laila Ahsan, Shona Clegg, Anne Parnell, Jane 

Douglas, Claire Bloomfield and Mary Keilty. I am also grateful to Marina Tyndall, Tessa 

Mellow, Katie Piwnica-Worms, Keri Sills, Kate Butler and Kerry Fernhead for recording non-

British accent samples and to staff at the British Library for their help sourcing voice recordings. 

Lastly I would like to thank Pete, Laila and my family for their kindness and support throughout 

this demanding process.  

 

This work was undertaken at UCLH/UCL who received a proportion of funding from the 

Department of Health’s NIHR Biomedical Research Centres funding scheme. The Dementia 

Research Centre is an Alzheimer’s Research UK Co-ordinating Centre. This work was funded by 

the Wellcome Trust and by the UK Medical Research Council.  

  



 

 

6 

 

Contents 

Declaration ..................................................................................................................................................2 

Abstract .......................................................................................................................................................3 

Division of labour for experimental work...................................................................................................4 

Acknowledgements .....................................................................................................................................5 

Contents ......................................................................................................................................................6 

Figures presented in this Thesis ................................................................................................................ 11 

Tables presented in this Thesis ................................................................................................................. 12 

Abbreviations presented in this Thesis ..................................................................................................... 13 

1. General Introduction ............................................................................................................................ 14 

1.1. Overview ...................................................................................................................................... 14 

1.2. Background: perception of paralinguistic information in voices .................................................. 16 

1.2.1. Segregation of linguistic and paralinguistic processing streams ................................................... 16 

1.2.2. Voice production: shaping of the vocal auditory signal ............................................................... 19 

1.2.3. Paralinguistic perceptual characteristics of voices........................................................................ 20 

1.3. Neuropsychological and neuroanatomical framework for assessing voice processing ................ 22 

1.4. Familiar voice processing: cognitive, neuropsychological and neuroanatomical mechanisms .... 22 

1.4.1. Familiar voice recognition in healthy volunteers .......................................................................... 22 

1.4.2. Disorders of familiar voice recognition: phonagnosia .................................................................. 24 

1.4.3. Functional imaging of voice recognition in healthy controls ....................................................... 27 

1.5. Non-native accent processing: cognitive, neuroanatomical and neuropsychological mechanisms

 ...................................................................................................................................................... 32 

1.5.1. Non-native accent processing in healthy controls ........................................................................ 32 

1.5.2. Neuropsychology of accent processing ........................................................................................ 35 

1.5.3. Functional imaging of accent processing ...................................................................................... 36 

1.6. Voices as auditory objects ............................................................................................................ 38 

1.6.1. Neuroanatomy of auditory object processing ............................................................................... 39 

1.6.2. Disorders of voice recognition and auditory agnosias .................................................................. 42 

1.7. Models of voice processing .......................................................................................................... 44 

1.7.1. Bruce and Young cognitive model of person recognition ............................................................ 44 

1.7.2. Belin’s model of voice processing ................................................................................................ 46 

1.7.3. Model of voice processing in this Thesis ...................................................................................... 47 

1.8. Voice processing and neurodegenerative disease ......................................................................... 50 

1.8.1. Voice processing in semantic dementia ........................................................................................ 51 

1.8.2. Voice processing in behavioural variant FTLD ............................................................................ 55 

1.8.3. Voice processing in Progressive Non-Fluent Aphasia .................................................................. 57 

1.8.4. Voice processing in typical Alzheimer’s disease .......................................................................... 59 

1.9. Aims of this Thesis ....................................................................................................................... 62 



 

 

7 

1.10. Chapter Outline & hypotheses ...................................................................................................... 63 

2. General Methods .................................................................................................................................. 66 

2.1. Subject characterisation ................................................................................................................ 66 

2.1.1. Patients ......................................................................................................................................... 66 

2.1.2. Controls ........................................................................................................................................ 66 

2.2. Background measures ................................................................................................................... 67 

2.2.1. General neuropsychological assessment ....................................................................................... 67 

2.2.2. Assessment of peripheral hearing ................................................................................................. 67 

2.2.3. Assessment of media exposure ..................................................................................................... 68 

2.3. Experimental investigations of voice and accent processing: plan and general procedure ........... 68 

2.4. Experimental investigations:  Perceptual analysis of voice attributes .......................................... 68 

2.4.1. Tests of vocal gender and size ...................................................................................................... 70 

2.5. Experimental investigations:  Voice discrimination ..................................................................... 71 

2.5.1. Tests of speaker discrimination .................................................................................................... 71 

2.6. Experimental investigations: Voice recognition ........................................................................... 72 

2.6.1. Tests of familiarity of voices, faces and names ............................................................................ 74 

2.6.2. Tests of voice, face and name identification ................................................................................. 75 

2.6.3. Tests of cross-modal recognition of voices and faces ................................................................... 75 

2.7. Experimental investigations: Accent processing .......................................................................... 76 

2.8. Neuroimaging: Structural MRI in dementia ................................................................................. 76 

2.8.1. Structural image acquisition ......................................................................................................... 77 

2.9. Voxel-based morphometry (VBM) ............................................................................................... 77 

2.9.1. VBM image processing ................................................................................................................ 77 

2.9.2. VBM analyses .............................................................................................................................. 78 

2.10. Statistical analyses of behavioural data ........................................................................................ 79 

3. Study 1: Progressive associative phonagnosia: a neuropsychological analysis ................................... 81 

3.1. Introduction .................................................................................................................................. 81 

3.2. Methods ........................................................................................................................................ 83 

3.2.1. Subject details ............................................................................................................................... 83 

3.2.2. Experimental investigations.......................................................................................................... 86 

3.3. Results .......................................................................................................................................... 88 

3.3.1. Familiarity of voices, faces and personal names .......................................................................... 88 

3.3.2. Naming, identification and cross-modal matching of voices and faces ........................................ 89 

3.3.3. Identification of lower frequency faces ........................................................................................ 90 

3.3.4. Perceptual analysis of voices and faces ........................................................................................ 92 

3.3.5. Recognition of vocal emotions ..................................................................................................... 93 

3.3.6. Identification of environmental sounds ........................................................................................ 93 

3.3.7. Identification of musical instruments ........................................................................................... 93 



 

 

8 

3.4. Discussion..................................................................................................................................... 94 

4. Study 2: A neuropsychological and neuroanatomical analysis of voice processing in tvFTLD and AD .

 ...............................................................................................................................................................99 

4.1. Introduction .................................................................................................................................. 99 

4.2. Materials and methods ................................................................................................................ 101 

4.2.1. Subject demographic characteristics and clinical details ............................................................ 101 

4.2.2. Subject background neuropsychological assessment .................................................................. 104 

4.2.3. Experimental tests....................................................................................................................... 106 

4.2.4. Analyses of behavioural data ...................................................................................................... 106 

4.2.5. VBM analyses ............................................................................................................................ 107 

4.3. Neuropsychological results ......................................................................................................... 108 

4.3.1. Perceptual analysis of voice attributes ........................................................................................ 108 

4.3.2. Semantic analysis of voices ........................................................................................................ 109 

4.3.3. The effect of disease severity ..................................................................................................... 111 

4.3.4. The relationship of voice performance to other cognitive skills ................................................. 112 

4.3.5. Individual patient data ................................................................................................................ 113 

4.3.6. Right versus left temporal lobe damage in tvFTLD ................................................................... 115 

4.4. Neuroanatomical data ................................................................................................................. 116 

4.4.1. Neuroanatomical correlates of experimental tests ...................................................................... 116 

4.4.2. Neuroanatomical correlates of general semantic tests ................................................................ 120 

4.5. Discussion................................................................................................................................... 122 

4.5.1. Neuropsychological impairments of voice processing in tvFTLD and AD ................................ 122 

4.5.2. Neuroanatomical correlates of familiar voice recognition impairments in tvFTLD and AD ..... 123 

4.5.3. Voice recognition and models of semantic memory ................................................................... 125 

4.5.4. Associations with other neuropsychological tests and disease severity measures in tvFTLD .... 127 

4.5.5. Neuropsychology and neuroanatomy of vocal apperceptive deficits ......................................... 127 

4.5.6. Associations with other neuropsychological tests and disease severity measures in AD ........... 128 

4.5.7. Voice performance and models of voice processing .................................................................. 129 

4.5.8. Methodological considerations ................................................................................................... 130 

4.5.9. Conclusions & future work ......................................................................................................... 132 

5. Study 3: Neuropsychological and neuroanatomical analysis of accent processing in PNFA and AD

 .............................................................................................................................................................135 

5.1. Introduction ................................................................................................................................ 135 

5.2. Subject demographic characteristics and clinical details ............................................................ 136 

5.3. Experimental investigations: Tests of accent processing ............................................................ 138 

5.3.1. Experimental investigations: Tests of accent comprehension .................................................... 139 

5.3.2. Experimental investigations: Tests of accent recognition ........................................................... 141 

5.4. Analysis of behavioural data ...................................................................................................... 142 

5.4.1. Group statistical analyses ........................................................................................................... 142 



 

 

9 

5.4.2. Further analyses in the control group ......................................................................................... 143 

5.4.3. Correlation analyses in the AD group ......................................................................................... 143 

5.5. VBM analysis ............................................................................................................................. 144 

5.6. Results: Background tests ........................................................................................................... 144 

5.6.1. General neuropsychological performance .................................................................................. 144 

5.6.2. Peripheral hearing ....................................................................................................................... 146 

5.7. Results: Experimental tests ......................................................................................................... 147 

5.7.1. Accent comprehension ............................................................................................................... 148 

5.7.2. Accent recognition ...................................................................................................................... 151 

5.8. Correlations of accent processing performance with neuropsychological measures and tests of 

apperceptive and semantic voice processing .............................................................................. 152 

5.9. Neuroanatomical data ................................................................................................................. 152 

5.10. Discussion....................................................................................................................................155 

6. Conclusions ........................................................................................................................................ 161 

Appendices .................................................................................................................................................. 171 

Appendix A.1. Quantification of voice recognition ability: control pilot study. ............................. 171 

Associations between voice familiarity, naming and identification tests and background control variables

 ................................................................................................................................ 172 

Appendix A.2. List of the background neuropsychological tests used in this Thesis ...................... 173 

Appendix A.3. Lists of the public figures selected for Experiments 1 and 2 and faces frequency 

matched to voices in Experiment 3 ......................................................................... 174 

Appendix A.4.1. Correlations of apperceptive performance: modality and semantic performance ... 175 

Appendix A.4.2. Correlations between semantic subtests, within modality and between presentation 

modalities ................................................................................................................ 176 

Appendix A.4.3. Associations between semantic and perceptual test performance and disease severity 

measures.................................................................................................................. 177 

Appendix A.4.4. Correlations between vocal semantic subtests and background neuropsychological 

performance ............................................................................................................ 178 

Appendix A.4.5. Correlations between speaker discrimination and neuropsychological performance

 ................................................................................................................................ 179 

Appendix A.4.6. Number of patients (and proportion of each patient group) impaired at 0, 1, 2 & 3 

modalities of presentation on familiarity, identification, naming and cross-modal 

recognition semantic tasks ...................................................................................... 180 

Appendix A.4.7. Comparison of right-sided versus left-sided tvFTLD subgroups ............................ 181 

Appendix A.5.1. Spoken sentences in question comprehension test .................................................. 182 

Appendix A.5.2. Stimuli used in the word verification task ............................................................... 183 

Appendix A.5.3. Stimulus trials in the regional accent recognition tests ........................................... 184 

Appendix A.5.4. Stimuli used in the test of naming of countries from verbal description ................. 185 

Appendix A.5.5. Correlations between accent comprehension tests and phoneme discrimination, and 

between tests of accent recognition and country knowledge tests within the AD 

group (N=20) .......................................................................................................... 186 



 

 

10 

Appendix A.5.6. Correlations between accent processing tests and subset of background 

neuropsychological tests, and apperceptive and semantic voice processing tests 

within the AD group (N=20) ................................................................................... 187 

Appendix A.6. Publications arising from this Thesis ...................................................................... 188 

7. Reference List ................................................................................................................................... .188 

 

  



 

 

11 

Figures presented in this Thesis 

Figure 1.1.  The human vocal tract. ............................................................................................................... 19 

Figure 1.2.  Spectrogram of a human voice (saying “My dad’s tutor”), a box being dropped, and a flute 

playing a single note. .................................................................................................................. 20 

Figure 1.3.  Anatomical regions predicted to be involved voice processing on the basis of evidence from 

neuropsychological and functional imaging studies. .................................................................. 28 

Figure 1.4. Anatomical regions predicted to be involved in cognitive processes of voice recognition based 

on (Belin, Fecteau, and Bedard 2004) ........................................................................................ 46 

Figure 1.5.  Model of voice processing model proposed for this thesis ......................................................... 48 

Figure 3.1. Representative T1-weighted coronal brain MRI sections from each patient .............................. 84 

Figure 4.1. Box plots to show tvFTLD, AD and control group semantic test scores.................................. 110 

Figure 4.2. Individual patient data for voice, face and name semantic subtests ......................................... 114 

Figure 4.3. Statistical parametric maps of grey matter volume associated with voice processing 

performance .............................................................................................................................. 119 

Figure 4.4. Statistical parametric maps of grey matter volume associated with semantic task performance

 .................................................................................................................................................. 121 

Figure 5.1. Individual subject data for accent processing performance ...................................................... 150 

Figure 5.2.  Statistical parametric maps of grey matter volume associated with accent processing 

performance .............................................................................................................................. 154 

Figure 6.1 Updated model for this thesis ................................................................................................... 167 

 

 

  



 

 

12 

Tables presented in this Thesis 

Table 3.1. Summary of patient and control performance on background neuropsychological assessment. 85 

Table 3.2. Results of experimental tests assessing recognition of public figures from voice, face and name 

in patients and controls ............................................................................................................... 88 

Table 3.3. Results of experimental tests of perceptual processing of voices and faces in patients and 

controls. ...................................................................................................................................... 92 

Table 3.4.  Results of experimental tests of recognition of vocal emotions, environmental sounds and 

musical instruments in patients and controls. ............................................................................. 93 

Table 3.5.  Summary of experimental neuropsychological profiles in QR and KL...................................... 95 

Table 4.1. Summary of subject characteristics .......................................................................................... 102 

Table 4.2. Results of general neuropsychological assessment .................................................................. 105 

Table 4.3. Behavioural data:  perceptual and apperceptive processing of voices and faces ...................... 108 

Table 4.4. Behavioural data: semantic processing of voices, faces and names ......................................... 109 

Table 4.5. VBM data: neuroanatomical associations of experimental test performance ........................... 117 

Table 4.6. VBM data: neuroanatomical associations of general semantic test performance ..................... 120 

Table 5.1. Summary of demographic and clinical characteristics of patient and control groups .............. 137 

Table 5.2. General neuropsychological assessment in patient and control groups .................................... 145 

Table 5.3. Results for experimental tests in patient and control groups .................................................... 147 

Table 5.4. VBM data: neuroanatomical associations of experimental test performance in the patient groups

 .................................................................................................................................................. 153 

 

 
  



 

 

13 

Abbreviations presented in this Thesis 

AD Alzheimer’s disease 

ATL anterior temporal lobe 

BPVS British picture vocabulary scale  

BvFTD behavioral variant frontotemporal dementia 

CI confidence interval 

CSF cerebrospinal fluid 

DARTEL differomorphic anatomical registration through exponentiated lie algebra (toolbox 

in SPM8) 
dB  decibels 

F0 fundamental frequency 

FAS foreign accent syndrome 

fMRI  functional magnetic resonance imaging 

FRU face recognition units 

FTLD frontotemporal lobar degeneration 

FWE family-wise-error  

GMV grey matter volume 

GNT graded naming test 

Hz  hertz 

IAC interactive activation and competition network model  

KHz kilohertz  

MMSE mini mental state examination score 

MNI  Montreal Neurological Institute (standard stereotactic space) 

MRI magnetic resonance imaging 

NART national adult reading test 

PIN person identity node 

PNFA progressive non-fluent aphasia  

PPA primary progressive aphasia  

ROI region of interest 

SD semantic dementia 

sec seconds 

SPM statistical parametric map 

SPM8 statistical parametric mapping software version 8 

STG  superior temporal gyrus 

STS  superior temporal sulcus 

TIV total intracranial volume 

tvFTLD  temporal variant frontotemporal lobar degeneration 

VBM voxel-based morphometry  

VRU voice recognition units 

VTL vocal tract length  

  



 

 

14 

 

1. General Introduction 

 

1.1.  Overview 

The experiments designed in this thesis address the cognitive and neural mechanisms of voice 

processing in neurodegenerative disease. The neuropsychology of voice processing has been 

relatively little studied in contrast to the vast literature on face processing in the visual domain. 

This thesis focuses on two aspects of voice processing: recognition of familiar voices, and 

processing of foreign and regional accents. These are investigated neuropsychologically and 

using neuroimaging methodology: voxel-based morphometry (VBM) in degenerative patients 

with frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD).  

 

The ability to recognise a voice without visual cues is a common experience: we are able to 

identify the voices of family members over the telephone, to find voices of media personalities on 

the radio familiar, and to recognise a colleague’s voice from behind a closed door. Impairments of 

voice recognition (or phonagnosia) have been studied in cases of focal lesions involving the 

temporal and parietal cortices (Van Lancker, Cummings, Kreiman et al. 1988; Van Lancker, 

Kreiman, and Cummings 1989) and in degenerative cases with atrophy affecting the right anterior 

temporal lobe (ATL) (Evans, Heggs, Antoun et al. 1995; Gentileschi, Sperber, and Spinnler 1999; 

Gentileschi, Sperber, and Spinnler 2001).  Analogous to specialized visual mechanisms proposed 

for face processing, functional imaging studies in healthy controls have provided evidence for 

specialised auditory neuroanatomical substrates for voice processing in the superior temporal lobe 

(Warren, Scott, Price et al. 2006;  von Kriegstein and Giraud 2004; Belin, Zatorre, Lafaille et al. 

2000; Belin, Zatorre, and Ahad 2002) and models of voice processing hypothesize serial 

processing pathway from posterior to anterior superior temporal sulcus (STS) and superior 

temporal gyrus (STG) (Warren, Scott, Price et al. 2006; von Kriegstein and Giraud 2004; Belin, 

Fecteau, and Bedard 2004). Other studies of familiar voice recognition have found activations in 

extra-temporal multimodal processing regions (Imaizumi, Mori, Kiritani et al. 1997; Nakamura, 

Kawashima, Sugiura et al. 2001; Shah, Marshall, Zafiris et al. 2001; von Kriegstein, Eger, 

Kleinschmidt et al. 2003); the stages and functions of auditory and multimodal cortical regions 

recruited in voice processing tasks however are underspecified.  

 

Recognition of a person’s regional or foreign accent is also an ecologically valid task, speakers 

with different accents regularly interact with each other; within the United Kingdom accents show 
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great variation even within the same county (www.bl.uk/learning/langlit/sounds), and in 

multicultural environments such as London people are exposed to a wide variety of foreign 

accents. Knowledge about variation in non-native accents is likely to facilitate an understanding 

of the cultural and social background of a speaker, and to enhance speech comprehension. Two 

types of task have been used in studies of healthy volunteers: recognition of regional or foreign 

accents and comprehension of speech spoken in non-native accents (Adank, Evans, Stuart-Smith 

et al. 2009; Clarke and Garrett 2004; Clopper and Pisoni 2004b; Clopper and Pisoni 2007; 

Floccia, Butler, Goslin et al. 2009; Goldstone 1994; Howell, Barry, and Vinson 2006), however 

few neuropsychological studies of accent processing have been carried out (Dunton, Bruce, & 

Newton 2011). Activations during accent recognition tasks indicate that a network involving 

frontal, parietal and temporal cortices may be recruited (Adank, Evans, Stuart-Smith et al. 2009; 

Berman, Mandelkern, Phan et al. 2003) overlapping with the network of regions involved in 

processing of emotion and prosody. The study of voice processing in patients with relevant 

pathology is required to determine which regions within the network are critical to accent or voice 

processing more broadly. 

 

There are strong clinical and neurobiological grounds for a systematic analysis of voice 

processing in cohorts of patients with degenerative dementias. Clinically, voice processing 

impairments are likely to be under-recognised in these populations due to the general availability 

of compensatory cues from face and other contextual information, yet they may constitute a 

significant and disabling symptom especially in situations where such additional cues are reduced 

or unavailable. Disease-specific deficits (or relative preservation) of voice processing could 

potentially assist diagnosis of particular dementias. Neurobiologically, these diseases offer a 

perspective on voice processing that is complementary both to studies in normal subjects and in 

patients with focal brain lesions: in contrast to focal lesion studies where damage occurs as a 

result of random stochastic or physical factors (such as blood supply), neurodegenerative diseases 

disrupt functional cortical networks (Seeley, Crawford, Zhou et al. 2009). Anatomical 

degeneration of functional neural networks in dementia (Seeley et al.2009; Sonty, Mesulam, 

Weintraub et al. 2007; Young, Newcombe, de Haan et al. 1993) and systematic 

neuropsychological assessment of the breakdown of voice processing would potentially enable 

identification of critical nodes in functional and anatomical cerebral networks, and inform 

neurocognitive models of voice processing.   

Voice processing in this thesis will be investigated in four syndromes with differing patterns of 

cortical atrophy: semantic dementia (SD), behavioural variant FTLD (bvFTD), Progressive Non-

http://www.bl.uk/learning/langlit/sounds/index.html
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fluent Aphasia (PNFA) and typical Alzheimer’s disease (AD). These diseases affect areas in the 

temporal, parietal and frontal lobes that have been implicated in neuropsychological and 

neuroimaging studies of voice processing (Belin, Zatorre, & Ahad 2002; Imaizumi, Mori, Kiritani 

et al. 1997; Nakamura, Kawashima, Sugiura et al. 2001; von Kriegstein, Kleinschmidt, & Giraud 

2006; Warren, Scott, Price et al. 2006) but with differing distributed patterns atrophy. In 

particular, the brunt of tissue damage in AD and several diseases in the FTLD spectrum initially 

falls on the temporal lobes, which are likely to contain mechanisms integral for voice analysis and 

recognition (Belin, Fecteau, & Bedard 2004). In PNFA and also in AD, atrophy impinges on 

cortical regions that are implicated more generally in complex sound processing such as posterior 

temporal auditory association cortex, whereas in SD multimodal regions are implicated. Voice 

processing impairments have rarely been systematically tested in these syndromes although 

emerging evidence suggests that all four groups may have vocal or more general auditory 

processing disorders. Patterns of voice processing performance and the neuroanatomical 

correlates of any impairment will be compared between disease groups and related to the 

neuropsychological and clinical profiles of each syndrome in order to improve understanding of 

the nonverbal symptoms these patients experience.   

 

In the following chapter the neurology of voice and accent processing in healthy individuals and 

in patients with focal brain lesions are reviewed. A model of vocal processing is then outlined and 

the rationale for the study of voice processing in neurodegenerative disease considered.  

 

1.2. Background: perception of paralinguistic information in voices 

 
1.2.1. Segregation of linguistic and paralinguistic processing streams 

The human voice is the acoustical signature of our species. Recognition and interpretation of the 

vocal signals across different contexts and listening conditions play a central role in nonverbal 

social communication, which has a long evolutionary history preceding language by millions of 

years (Fitch 2000). Not only is the voice the carrier of speech but it is an “auditory face” rich in 

acoustical features which communicate a wealth of information about the speaker: their identity, 

sex, age, social background and geographical origins (communicated via their regional accent). 

Paralinguistic information in the voice conveys stable characteristics of the speaker, but also 

serves as an important mode of communication about an individual’s emotional state, mood or 

attitudes. Vocal information may combine with visual cues from faces in facilitating non-verbal 
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communication, but may also be particularly useful when the face is not visible, such as when 

communicating in the dark, over longer distances, or over the telephone.  

 

Speaker characteristics and affective cues are communicated via combinations of qualities of the 

sounds we produce: characteristics which include the pitch, timbre (or vocal quality), regional 

accent, intonation (variation in pitch which is not used to distinguish words) and articulation. 

Characteristic patterns in these features contribute to a consistent and stable representation of a 

person (Belin et al.2004; Karpf 2006) and like face recognition allow us to recognize a person’s 

identity from their voice. Nonverbal vocal communication is not specific to humans: non-human 

primates also orient to conspecific vocalizations and recognize other individuals from their voice 

(Ghazanfar, Turesson, Maier et al. 2007; Masataka 1985; Rendall 2003), indicating evolutionary 

conservation of conspecific vocal recognition.  In developing infants vocal recognition skills have 

been shown to precede language, and there is even evidence to suggest that neonates (Ockleford, 

Vince, Layton et al. 1988) and even preterm fetuses are able to distinguish familiar voices 

(Kisilevsky, Hains, Lee et al. 2003), quantified in heart rate measurements. Yet whereas studies 

of speech perception have enjoyed a great deal of neuroscientific interest, perception of 

paralinguistic information in voices has only attracted interest recently in cognitive psychology 

and neuroscience and far less is known about the neural bases.   

 

Evidence from neuroimaging, neuropsychological and electrophysiological studies suggest that 

linguistic and paralinguistic vocal information are processed in partially dissociated functional 

pathways. Neuropsychological studies have been described in which voice recognition is 

impaired (phonagnosia) but comprehension of speech is intact (Van Lancker & Canter 1982; Van 

Lancker, Cummings, Kreiman et al. 1988), and the converse in which subjects have impaired 

comprehension of speech but demonstrate normal voice recognition (Van Lancker et al.1982). 

Double dissociations have also been reported in brain lesion subjects between the ability to 

recognise vocal emotions and comprehend speech: with reports of cases commonly with right 

hemisphere lesions demonstrating impaired emotion recognition but intact speech 

comprehension, and aphasic subjects with left-hemisphere lesions showing the opposite pattern 

(Barrett, Crucian, Raymer et al. 1999; Ross & Monnot 2008). Studies in healthy volunteers have 

also shown that speakers can be reliably recognised in voice samples where linguistic information 

has been eliminated (by temporal reversal or filtering the frequency content) but some or all of 

the spectrotemporal attributes are retained (Compton 1963; Pollack, Pickett, & Sumby 1954; Van 

Lancker, Kreiman, & Cummings 1985). Whereas speaker discrimination has been found to be 
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impaired when nonverbal spectrotemporal content is impoverished in whispered speech, where 

linguistic comprehension is retained (Pollack et al.1954).   

 

Electrophysiological studies of healthy volunteers have shown selective early pre-attentive 

responses to nonverbal vocal stimuli when compared to either other complex sounds or verbal 

stimuli (Knosche, Lattner, Maess et al. 2002; Levy, Granot, & Bentin 2001), suggesting that there 

is early parallel processing of phonetic and paralinguistic vocal information. Specific 

electrophysiological responses have also been shown in response to speaker related vocal 

characteristics including the familiarity of the speaker (Beauchemin, De Beaumont, Vannasing et 

al. 2006), and the accent of the speaker (Scharinger, Monahan, & Idsardi 2011), and dissociable 

responses were demonstrated for changes in speaker and vocal affect (Toivonen & Rama 2009). 

These studies provide evidence that stable paralinguistic information about speakers is rapidly 

extracted from single words, a process that involves pre-attentive auditory processing and is 

hypothesized to depend on long-term representations of identity and other paralinguistic 

categories.   

 

Neuroimaging studies in healthy volunteers have also provided evidence for neural specialization 

of non-linguistic voice processing in auditory cortex. Belin and colleagues found areas located on 

the upper bank of mid- STS bilaterally which respond more to voices than to other complex 

sounds (Belin, Zatorre, Lafaille et al. 2000; Fecteau, Armony, Joanette et al. 2004), whereas right 

lateralized anterior superior temporal activations have been found associated with tasks involving 

listening to familiar voices (Belin & Zatorre 2003; von Kriegstein & Giraud 2004). Voice-

specific responses in temporal cortex have also been demonstrated in infants from 7 months of 

age (Beauchemin, Gonzalez-Frankenberger, Tremblay et al. 2011) suggesting that the neural 

mechanisms that underpin nonverbal voice processing emerge early in development. Studies in 

the macaque brain have also found comparable functional regions in the anterior superior 

temporal plane that respond preferentially to conspecific vocalizations and to the identity of 

conspecific individuals (Petkov, Kayser, Steudel et al. 2008). These studies provide evidence for 

the existence of voice-selective neural regions which may be the auditory analogue to areas of 

inferior temporal cortex in humans and monkeys which show preferential responses to faces over 

other visual stimuli e.g.(Kanwisher, McDermott, & Chun 1997).   

 



 

 

19 

1.2.2. Voice production: shaping of the vocal auditory signal 

The paralinguistic features of the voice are determined by the mechanical characteristics of the 

source of the sound in the larynx, and the shaping or filtering that occurs both in the larynx and 

the vocal tract (see Figure 1.1). Phonetic information in English and many other non-tonal 

languages is primarily conveyed by formant frequencies produced by changing the conformation 

of the vocal machinery and paralinguistic features are also produced by static and dynamic 

filtering of the sound (see Figure 1.1). “Static” individual differences in speakers’ voices occur as 

a result of variation in vocal tract anatomy (for example as a result of size differences between 

speakers), or cultural factors such as vocal habits in positioning of vocal filters (Karpf 2006), 

whereas “dynamic” changes of the vocal filters may occur for example as a result of affective 

experiences of an individual. Individual differences in perceptual vocal characteristics of pitch 

and timbre result from differing conformations of the vocal tract. Although the perceptual 

properties of sounds do not entirely map to the physical acoustic structure directly: pitch is 

primarily determined by the fundamental frequency of the sound, whereas the timbre or vocal 

quality is determined by the temporal pattern and strength of different frequencies in the sound 

above the fundamental frequency (f0).  

 

Figure 1.1.  The human vocal tract. 

Air expelled from the lungs through the glottis 

creates a pressure drop, causing oscillation of the 

vocal folds of the larynx. The temporal 

periodicity of the waveform that is generated 

from this oscillation determines the lowest 

frequency of the voice or f0. The fundamental 

frequency determines the perceived pitch of a 

person’s speaking voice and is dependent on the 

size (mass and length) of the vocal folds which 

are larger in men and adults than in females or 

children, resulting in lower f0 values. In addition 

to f0, the sound wave emitted from the larynx 

contains harmonic overtones which are multiples 

of the fundamental frequency, and subsequent 

filtering by the vocal tract enhances some 

frequencies and attenuates others producing peak 

frequencies also known as formant frequencies 

(Ghazanfar & Rendall 2008; Titze 2008). Other 

filters in the mouth including lips, tongue and 

jaw further shape and articulate the sound.  
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The vocal tract acts in a similar way to a musical instrument, shaping the auditory signal in a way 

which results in a highly harmonic sound, meaning that voices have peaks in energy at frequency 

values at regular time intervals, which can be seen on spectrograms (images of spectral 

information across time), for example in Figure 1.2. This distinguishes voices from many other 

sorts of natural sounds, such as the sound of rain or wind, or mechanical sounds such as engines 

or tools which have little harmonic structure, containing noise or energy across a wide range of 

frequencies (for example in Figure 1.2 below: the sound of a box being dropped). Analysis of the 

spectrotemporal content of sound (or timbre) is thought to be critical to the perception of voices 

(Belin et al.2004; Goll, Crutch, & Warren 2010; Warren et al.2006). 

 

Figure 1.2.  Spectrogram of a human voice (saying “My dad’s tutor”), a box being 

dropped, and a flute playing a single note. 
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Figure was taken from http://openlearn.open.ac.uk/mod/oucontent. 

 

1.2.3. Paralinguistic perceptual characteristics of voices 

Perceptual properties of voices are likely to recruit distinguishable and separable, lower level 

cortical mechanisms to those that represent the object-level representation of the voice itself. The 

set of perceptual properties that bind together to encode a voice are underspecified. This is 

illustrated in comparison between the face inversion effect: in which presenting a face upside-

down dramatically reduces its recognition, whereas in the voice modality it is not clear which are 

the critical features to “invert” or how to invert them (Bedard & Belin 2004). A contributing 

factor is likely to be variability in the vocal signal due to changes in the linguistic content, or 

changes in vocal quality as a result of social, cultural and other contextual factors such as mood 
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or physiological state (Cummings, Chin, & Pisoni 1996; Karpf 2006). Extracting meaningful 

paralinguistic information from such a variable stimulus is a complex problem for neurocognitive 

models of voice processing; this is exemplified in computerised systems for automatic speaker 

recognition which currently can only operate under highly constrained conditions. The rarity of 

case studies of perceptual voice processing deficits in the literature (Neuner & Schweinberger 

2000; Van Lancker & Kreiman 1987; Van Lancker et al.1988; Van Lancker, Kreiman, & 

Cummings 1989) and a lack of detailed neuropsychological and auditory perceptual experimental 

analyses in those cases has meant that perceptual processing models for voices are much less well 

developed than for faces.  

 

The contributions of perceptual cues to voice processing were investigated in early studies of 

healthy listeners’ speaker, emotion or accent recognition ability, assessed after one or more 

perceptual features were removed or controlled by analysing or resynthesising the speech signal  

(Childers & Wu 1991; Compton 1963; Lavner, Gath, & Rosenhouse 2000; Pollack et al.1954; 

van Dommelen 1987). In other studies the acoustic features of the stimuli were analysed after 

healthy listeners categorised individual voices by speaker, emotion or accent; analysis typically 

involved visual inspection of vocal spectrograms, or by further listener ratings (Cummings et 

al.1996; Hanson 1997; Singh & Murry 1978; Walden, Montgomery, Gibeily et al. 1978). These 

studies tended to analyse a small closed set of voices limiting the generalisability of the results; 

however they have together provided a basis for understanding and testing voice perception, and 

have predicted differing but overlapping constellations of perceptual cues represent identity, 

accents and emotional content of voices (Juslin & Laukka 2001; Lavner et al.2000; Sauter, 

Calder, Eisner et al. 2010; Van Lancker et al.1985).  

 

Based on this body of work, Belin and colleagues (Belin et al.2004) predict that a person’s vocal 

identity is conveyed primarily through “static” or “invariant” perceptual features which 

characterize a speaker’s unique vocal tract anatomy: primarily timbre, and also pitch cues 

including the modal range of pitches within which a person speaks (which highly overlap 

between speakers of the same gender), and formant frequency information embedded within or 

between formants. Emotion recognition is hypothesised to primarily depend on temporally 

varying or “dynamic” perceptual cues which include changes in intonation, intensity and 

duration, and to a lesser extent pitch and timbre cues. Recognition of accents (although not a 

feature of Belin’s model) may utilize overlapping paralinguistic prosodic features to emotion 

recognition, such as prosodic cues (Berman et al.2003) (see Section 1.5 on accent processing), for 
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example segmental prosodic cues such as stress cues within a word, may be particularly 

important for accent processing. 

 

1.3. Neuropsychological and neuroanatomical framework for assessing voice processing 

Voices are rich in identity information, as described in Section 1.2.1. Nonverbal cues within a 

voice can tell us about the gender, size and age of the person, or more specific information about 

the identity or geographical background of the speaker. Gender, size and age discrimination are 

likely to depend on recognition of low level auditory perceptual cues which can be detected early 

in the auditory system (Baumann & Belin 2010; Childers et al.1991; Hanson 1997; Ives, Smith, 

& Patterson 2005; Klatt & Klatt 1990; Smith & Patterson 2005; Smith, Walters, & Patterson 

2007; von Kriegstein, Warren, Ives et al. 2006). Tests of discrimination of gender and vocal size 

developed for this thesis are described in the Methods Section 2.4.1. Extraction of other 

information about the person such as their identity, accent, emotional state, intentions or mood 

from the voice, are likely to involve multiple levels of analysis involving perceptual, semantic, 

cross-modal and executive mechanisms. Recognition of familiar voices and accent processing are 

two aspects of voices investigated in this thesis that are likely to require perceptual analysis of 

multiple auditory features (such as prosodic cues for accent recognition and timbre and pitch 

analysis in speaker recognition; described in more detail in Section 1.2.3) and to involve 

mechanisms of semantic analysis. Cognitive, neuropsychological and neuroimaging studies of 

voice and accent processing will be considered in the following section, and a model for voice 

processing in this thesis is presented in Section 1.7.3. 

 

1.4. Familiar voice processing: cognitive, neuropsychological and neuroanatomical 

mechanisms 

 

1.4.1. Familiar voice recognition in healthy volunteers 

A growing body of psychological studies have investigated familiar voice recognition: either 

using the voices of famous individuals (Hanley & Turner 2000; Schweinberger, Herholz, & 

Sommer 1997) or personally familiar people such as family members or colleagues (Nakamura et 

al.2001; Pollack et al.1954). Early studies of familiar voice recognition often used a small, closed 

set of familiar speakers and multiple-choice response formats, and it was found that recognition 

performance critically depends on the size of the response set (Pollack et al.1954; Saslove & 

Yarmey 1980). More recently, studies have used famous people as a way of assessing voice 

recognition in a large number of control subjects using many familiar identities, enabling an 
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“open” response procedure such as confrontation naming of individuals. Open response sets 

present a more realistic and ecologically valid test of recognition (Papcun, Kreiman, & Davis 

1989) and parallel tests of familiar face recognition (Snowden, Thompson, & Neary 2004; 

Warrington & James 1967). Studies investigating the ability to judge familiarity (yes/no 

decisions), and semantic and episodic recall from voices (Damjanovic & Hanley 2007; Hanley, 

Smith, & Hadfield 1998; Hanley et al.2000; Schweinberger, Herholz, & Stief 1997), together 

they have demonstrated that a consistent and stable representation of a speaker can be reliably 

formed in normal individuals after very short exposures: even less than a second in duration 

(Schweinberger et al.1997), and that previously unheard voices can be learnt and remembered 

after a delay of several weeks (Papcun et al.1989).   

 

Repetition priming studies in healthy volunteers have provided evidence that voice recognition 

may operate via similar cognitive mechanisms to faces (Ellis, Jones, & Mosdell 1997; 

Schweinberger 2001; Schweinberger et al.1997). In these studies, exposure to a sample of an 

individual’s voice has been found to benefit familiarity decisions towards the same person’s voice 

presented at a later time point, with increases in efficiency measured in terms of decreases in 

reaction time and error rates (Ellis et al.1997; Schweinberger et al.1997). Repetition priming 

effects have been shown to be resilient to relatively long time intervals (Ellis et al.1997) and to 

changes in the speech sample between presentations of the same individual (Schweinberger et 

al.1997), suggesting that familiar voice recognition involves activation of structural 

representations of familiar voices stores in long-term memory, which are insensitive to changes in 

speech content. Similar studies have found that familiarity decisions to a famous voice are also 

significantly faster if previously presented with the same person’s face within a short time frame 

(Ellis et al.1997; Schweinberger et al.1997). These results suggest strong cross-modal 

connectivity between face and voice modalities, and provide evidence for a shared cross-modal 

processing stage where familiarity decisions are made across face, voice and name modalities 

(see Section 1.7.1 describing the Bruce and Young model of voice recognition).  

 

Voice recognition in healthy controls has been generally found to be a slower and less successful 

process than face recognition (Damjanovic et al.2007; Ellis et al.1997; Schweinberger et 

al.1997). This is likely at least partially to reflect a lower frequency of exposure to famous voices 

in isolation compared with faces (Hanley et al.2000). Hanley and colleagues have also shown that 

controls are less able to recall person-specific information from voices they have judged as 

familiar, resulting in a large percentage of “familiar only” states from voices compared to faces 



 

 

24 

(Hanley et al.1998; Hanley et al.2000). Accordingly it has been proposed that there is weaker 

activation of associated semantic information from voices (Hanley et al.2000) as a result of 

weaker connections between the PIN (the gateway to accessing semantic information) and VRUs 

compared to FRUs (see Bruce and Young model of person recognition in Section 1.6.1). An 

alternative hypothesis is that familiarity mechanisms differ between auditory and visual 

modalities. The extent to which there is cognitive and neural segregation of voice familiarity and 

recognition from other modalities of person recognition is a contentious issue which will be 

investigated in this thesis, and is considered in relation to neuropsychological studies below 

(Section 1.4.2).   

 

1.4.2. Disorders of familiar voice recognition: phonagnosia 

Impairments of familiar voice processing have been described in studies of patients with focal 

temporal and parietal lesions (Ellis, Young, & Critchley 1989; Hanley, Young, & Pearson 1989; 

Lang, Kneidl, Hielscher-Fastabend et al. 2009; Neuner et al.2000; Van Lancker et al.1987; Van 

Lancker et al.1982; Van Lancker et al.1988; Van Lancker et al.1989) and more recently in 

developmental case KH (Garrido, Eisner, McGettigan et al. 2009) who reported a lifelong social 

problem in which she was unable to recognise the voices of family, friends and colleagues over 

the telephone. Phonagnosia is much less well characterised than prosopagnosia, and aside from 

the technical difficulty of assessing voice processing in clinical settings, this may be because 

phonagnosia is intrinsically less salient than face or name recognition deficits (Neuner et 

al.2000). Nevertheless, it may be a significant and disabling clinical issue, especially in situations 

where compensatory cues are reduced or unavailable (e.g., over the telephone).  

 

Like deficits of familiar face recognition (prosopagnosia), apperceptive and associative agnosias 

have been described for voices. Apperceptive and associative processing stages are established 

concepts in the visual modality (e.g. (Warrington & James 1988)) and are also characteristic of 

models of auditory processing of other complex sounds (Goll et al.2010). Both apperceptive and 

associative mechanisms involve the formation of object level representations in which perceptual 

features are bound together into unified representations. Whereas apperceptive auditory agnosia 

refers to the inability to perceive or analyse a gestalt object representation prior to the attribution 

of meaning, associative auditory agnosia refers to the inability to associate an object 

representation with meaning (Goll et al.2010), auditory object agnosia is described in further 

detail in Section 1.6.2. Models of visual object processing hypothesize that perceptual 

representations are needed which provide descriptions of the way that the features of an object 
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and its three dimensional structure combine, which may involve non-linearity, emphasising some 

features and de-emphasizing others (Riddoch & Humphreys 1987; Riddoch & Humphreys 2003; 

Taylor & Warrington 1971; Warrington & James 1986; Warrington et al.1988). These structural 

representations are essential to “object constancy”, enabling an object to be recognised across 

different contexts and viewpoints. 

 

In parallel to visual object processing, models of auditory object processing (see Section 1.6. for a 

description of auditory objects) (Goll et al.2010; Griffiths, Kumar, Warren et al. 2007; Griffiths 

& Warren 2004) hypothesise that structural representations or auditory templates contain 

complex non-linear mappings between spectral and temporal components in which object-

relevant features are emphasized; for voices this is likely to emphasise timbre (Belin et al.2004; 

Goll et al.2010; Warren et al.2006), whereas in the case of words for example this may 

emphasise fine-grain temporal analysis (Griffiths, Rees, & Green 1999; Jorgens, Biermann-

Ruben, Kurz et al. 2008; Otsuki, Soma, Sato et al. 1998). 

 

Vocal apperceptive deficits have been described in patients with focal lesions to either 

hemisphere that were unable to discriminate between two speakers of the same gender and/or 

perceive a voice under non-canonical listening conditions (Lang et al.2009; Van Lancker et 

al.1987; Van Lancker et al.1982; Van Lancker et al.1988; Van Lancker et al.1989). Deficits are 

primarily observed on both perceptual and semantic voice tasks in these studies (Neuner et 

al.2000; Van Lancker et al.1987; Van Lancker et al.1988), which can be explained by models 

which propose serial processing from perceptual to semantic analysis of the vocal signal (for 

example Bruce and Young’s cognitive model described in Section 1.7.1). A small number of 

cases have also been described in which voice discrimination is impaired but familiar voice 

recognition is not (Van Lancker et al.1988), which is compatible with models developed for 

visual objects in which apperceptive processes can be recruited under some conditions (for 

example (Warrington et al.1988)). Double dissociations are needed in order to demonstrate 

functional independence of processing, and further detailed investigation of auditory perceptual 

deficits in such cases is required to further understand the auditory or cognitive mechanisms 

underpinning these deficits.  

 

Cases of “associative” phonagnosia provide evidence that perceptual and post-perceptual 

semantic processes utilize functionally segregated neural mechanisms (for example Bruce and 

Young’s cognitive model described in Section 1.7.1); those affected are unable to identify a 
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person from their voice or find them familiar (i.e. semantic mechanisms or associations are 

impaired), but performance on vocal perception tasks is spared (Neuner et al.2000; Van Lancker 

et al.1987). Associative phonagnosia has predominantly been described in cases with right-

lateralized lesions affecting the temporal lobes often co-occurring with deficits in identification of 

familiar faces and names, in keeping with a loss of multimodal conceptual representations in the 

right temporal pole (Ellis et al.1989; Hanley et al.1989; Lang et al.2009). The function of the 

right ATL is debated; it may contain multimodal perceptual representations of people, amodal 

person-specific semantic concepts and/or autobiographical memory stores (Gainotti 2007a; 

Hanley et al.1989; Kopelman, Stanhope, & Kingsley 1999; Lucchelli & Spinnler 2008). 

Alternative theories propose that the right ATL represents “unique entities”: individual known 

exemplars within a category (such as people, buildings or landmarks) that form separate nodes or 

“convergence zones” in which multiple simple perceptual features are bound together into 

complex multimodal configurations (Damasio 1990). Supporting this hypothesis, patients with 

focal lesions to the right ATL have also been described that exhibit impaired recognition of other 

visual unique entities: famous buildings and landmarks, although in general impairment on these 

tasks was less severe than at face recognition (Gainotti 2007b). It is unclear how the concept of 

“unique entities” extends to the auditory modality: the voices of familiar people are likely to 

contain hundreds of individual exemplars within a category, only people with specialised auditory 

expertise such as knowledge of musical compositions or bird calls may have comparable fine-

grained knowledge in another category of sounds (Chartrand & Belin 2006; Chartrand, Peretz, & 

Belin 2008) . 

 

Phonagnosic cases have been described in which deficits have occurred independently of 

equivalent semantic deficits of person recognition in other modalities; most frequently 

phonagnosia with spared face recognition has been reported (Garrido et al.2009; Neuner et 

al.2000; Van Lancker et al.1982). These cases suggest there may be at least relative neural 

segregation between modalities at semantic levels of processing. Van Lancker and colleagues 

have attempted to look for more precise neural correlates of voice deficits and found deficits of 

familiar voice recognition correlated with damage in the right parietal cortex, whereas lesions to 

either temporal lobe were associated with speaker discrimination (Van Lancker et al.1988; Van 

Lancker et al.1989). The finding that unilateral temporal lesions to either hemisphere impair 

speaker discrimination is not inconsistent with functional imaging data which suggest bilateral or 

right-sided STS/STG involvement in perceptual analysis of voices (described further in Section 

1.4.3). Right parietal cortex involvement in familiar voice recognition is more unusual, a region 
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which is generally associated with mechanisms of voice and auditory perception, such as memory 

for intonation, rather than semantic tasks (Berman et al.2003; Bishop & Miller 2009; Lattner, 

Meyer, & Friederici 2005; Rohrer, Sauter, Scott et al. 2010; Sokhi, Hunter, Wilkinson et al. 2005; 

Tucker, Watson, & Heilman 1977), and is not typically activated in functional imaging studies 

involving listening to familiar voices in controls (in Section 1.4.3).  Methodological limitations, 

for example the lesion-deficit correlation methods which identified the presence or absence of 

damage by visual inspection of patients’ CT scans was inaccurate or biased by selecting pre-

specified regions of interest. Recent re-inspection of the CT scans in Van Lancker’s study by 

Gainotti found that damage was associated with right inferior parietal or temporoparietal regions 

rather than other regions of the parietal lobe (Gainotti 2011), which is more consistent with data 

from neuroimaging studies (see Section 1.4.3). In this thesis, familiar voice processing will be 

assessed using multiple neuropsychological tasks with differing output demands, and VBM will 

be used to investigate the neural correlates of voice processing, a more powerful and less biased 

method of lesion-deficit analysis.  

 

1.4.3. Functional imaging of voice recognition in healthy controls 

An increasing number of studies have investigated voice processing in the healthy brain using 

functional imaging (Andics, McQueen, Petersson et al. 2010; Belin et al.2002; Belin et al.2000; 

von Kriegstein et al.2006) and have found a distributed network of areas engaged by voice 

processing tasks (Belin et al.2002; Imaizumi et al.1997; Nakamura et al.2001; von Kriegstein et 

al.2006), primarily recruiting regions of temporal lobe but also activations of inferior frontal and 

parietal cortices; see Figure 1.3.  
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Figure 1.3.  Anatomical regions predicted to be involved voice processing on the basis of 

evidence from neuropsychological and functional imaging studies. 

 

 

A number of studies have shown voice-specific activations when contrasted with other complex 

sounds. The first functional imaging studies of voice processing found voice-specific activations 

in bilateral mid STS in association with passive listening to vocal stimuli when contrasted with 

listening to complex stimuli that were spectrotemporally matched to voices, but not comparable 

in terms of their meaningfulness or saliency, such as musical bells and scrambled voices (Belin et 

al.2000; Binder, Frost, Hammeke et al. 2000). However since these first studies, voice specific 

activations in STS have been consistently shown using a range of contrast sounds including 

animal vocalizations and environmental sounds (Belin et al.2002; Fecteau et al.2004; Lewis, 

Talkington, Walker et al. 2009; von Kriegstein et al.2004).  

 

Experimental designs manipulating the task rather than the acoustic material have examined the 

functional contributions of different neural regions during voice processing tasks. For example a 

study found that a non-linguistic task requiring subjects to judge if the voice is familiar to them or 
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not, was associated with activations in the right ATL when contrasted with a verbal task 

performed using the same spoken stimuli, (von Kriegstein, Eger, Kleinschmidt et al. 2003), 

providing evidence for specialised mechanisms of nonverbal vocal analysis in right anterior STS. 

It is unclear from several of these neuroimaging studies which of the voice processing stages 

implicated in cognitive models are associated with activations, as contrasts often involved 

comparison with acoustically but not semantically matched stimuli, (Belin et al.2003; Belin et 

al.2002; Belin et al.2000) or involved task manipulations which do not explicitly address these 

processing stages (von Kriegstein et al.2003; von Kriegstein et al.2004). This is likely to be at 

least in part due to the difficulty with finding acoustically and semantically valid control stimuli 

to compare to voices.  

 

Hierarchical processing stages however have been predicted on the basis of task specific 

manipulations in fMRI paradigms. Perceptual mechanisms of voice analysis are implicated in mid 

and posterior regions of the STS by studies associating listening to unfamiliar voices when 

contrasted with other stimuli (Belin et al.2002; Belin et al.2000; Fecteau et al.2004). In one study 

a region in the right posterior superior temporal cortex activated to a greater extent to unfamiliar 

than familiar speakers, which it was hypothesised was due to a greater emphasis on 

spectrotemporal analysis of unfamiliar voices, (von Kriegstein et al.2004). These regions of 

activation overlapped with activations in response to other complex sounds temporally matched 

to speech, leading the authors to propose that this region plays a more general role in perceptual 

analysis of nonverbal temporally complex acoustic forms. In a different study, bilateral 

activations in posterior superior temporal cortices were found when subjects listened to a change 

in speaker, in a test comparable to the apperceptive tests used in neuropsychological studies 

(Warren et al.2006). In voice processing models regions in posterior STS are hypothesised to 

recruit generic auditory perceptual analysis mechanisms (Belin et al.2004; Scott, Rosen, Lang et 

al. 2006; Warren et al.2006).  

 

More anterior regions in the upper bank of mid STS have been found to show voice-selective 

responses when contrasted with listening to other complex sounds (Belin et al.2002; Belin et 

al.2000; Fecteau et al.2004). Although the location of the voice-associated maxima in the STS 

varies between studies, and indeed between individual subjects (for example (Belin & Zatorre 

2000)), these regions are hypothesised to contain voice-specific mechanisms of analysis and/or 

analysis of timbral characteristics that are highly relevant to voice processing (described further 

in Section 1.2.3). In Belin’s model (Belin et al.2004) neurons here encode characteristic 
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configurations of voice-specific features, as implicated in nonhuman primates (Wang 2000), and 

correspond to the anatomical locus of the vocal apperceptive stage of processing. Functional 

connectivity analyses found that this region of the STS interacts with both posterior and anterior 

regions of the right STS (von Kriegstein et al.2004) and is likely to represent an intermediary 

stage of spectrotemporal analysis in the processing hierarchy. 

 

Neuroimaging studies have also shown consistent voice-specific activations in response to 

familiar voices in right lateralized regions of the ATL, in keeping with the results of 

neuropsychological studies of associative phonagnosia (described in Section 1.4.2). Right ATL 

activations have been demonstrated when passive listening to familiar voices or performing 

familiarity judgements towards a set of known and unfamiliar voices (Andics et al.2010; Belin et 

al.2003; Imaizumi et al.1997; Nakamura et al.2001; von Kriegstein et al.2003; von Kriegstein et 

al.2004). Changes in right ATL activation have been associated with habituation or learning of 

previously unfamiliar voices, implicating a role for this region in forming long-term perceptual 

representations of speakers (Andics et al.2010; Belin et al.2003). As proposed by Belin (Belin et 

al.2004) it is plausible that the right anterior superior temporal lobe contains stored 

spectrotemporal representations of previously encountered voices.  

 

The issue of whether there are modality specific representations of familiar people at the ATLs 

(see Section 1.4.2) has not been established using neuroimaging. A review of imaging of familiar 

voice and face processing found that voices recruit more superior regions and faces more inferior 

regions of the ATLs (Olson, Plotzker, & Ezzyat 2007) providing evidence that there is modality 

specific segregation. In contrast to neuropsychological studies which suggest that this region is 

involved in high level semantic representations (see Section 1.4.2), several imaging studies 

suggest that the right ATL may play a role in high level perceptual analysis of voices. Increasing 

the amounts of available spectrotemporal information in voice stimuli was associated with 

activation in the right ATL (Warren et al.2006), and in another study activations here were 

associated with familiarity discriminations towards both unfamiliar as well as familiar voices 

(von Kriegstein et al.2003; von Kriegstein et al.2004). Together this suggests the ATL plays a 

role in more fine-grained spectrotemporal analysis of voices, It is also possible that there is closer 

linkage between perceptual and semantic stages in the auditory modality compared to vision, as 

proposed in models of complex sound recognition (Goll et al.2010; Lewis et al.2009; Warren et 

al.2006).  
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Multimodal and cross-modal regions outside the temporal lobes have also been found to activate 

when presented with familiar voices (Imaizumi et al.1997; Nakamura et al.2001; Shah, Marshall, 

Zafiris et al. 2001; von Kriegstein et al.2003; von Kriegstein et al.2004) including the posterior 

cingulate (retrosplenial cortex) and precuneus, regions that are anatomically close to each other, 

and are unlikely to be voice specific; activating in one study also for familiar faces (Shah et 

al.2001). These regions are proposed to serve a role in multimodal integration, familiarity or 

imagery and are hypothesised to be recruited by temporal voice areas (Belin et al.2004). 

 

Cross-modal responses in the fusiform face area and functional interactions between the STS and 

fusiform gyrus during familiar speaker recognition have been demonstrated in functional imaging 

paradigms (von Kriegstein et al.2006; von Kriegstein, Kleinschmidt, Sterzer et al. 2005). These 

results suggest that cross-modal coupling may occur at a perceptual level voice and face 

processing regions prior to semantic processing at the ATLs, and is proposed to be necessary for 

successful familiar speaker recognition. Studies in brain-damaged patients may help to clarify the 

role of inferior temporal cortex and other extra-temporal regions in familiar voice recognition.   

 

Summary 

Phonagnosia has been described as a developmental disorder and more commonly in association 

with focal damage involving the right or left temporal lobe or the right inferior parietal lobe. 

Associative voice recognition deficits have been described in the presence or absence of 

apperceptive deficits, supporting at least partially dissociable processing stages, which together 

with studies of repetition priming in healthy controls provide evidence for hierarchical 

mechanisms of voice recognition analogous to face processing models. Cognitive models of voice 

processing propose that low level perceptual analysis occurs prior to more complex analysis of 

individual voices (an apperceptive stage) which is followed by semantic associative processing. 

Limitations to the methods used in the few patient studies investigating the precise neural 

correlates of phonagnosia means that the critical neuroanatomical bases of perceptual and 

semantic voice processes have not been established. In particular, very few cases of apperceptive 

phonagnosia have been described, and functional imaging paradigms investigating voice 

perceptual mechanisms suggest that there are generic mechanisms for analysis of complex sounds 

in posterior regions of the superior temporal cortex, whereas more voice-specific mechanisms in 

bilateral mid STS may be recruited.  
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Associative phonagnosia has been consistently described in cases with focal and degenerative 

pathology affecting the right ATL. Although modality-specific deficits have been described in a 

few studies, deficits generally co-occurred with familiar face and name recognition impairments, 

implicating a role for this region in multimodal representations of familiar people. Neuroimaging 

studies of healthy controls also support a role for right lateralized anterior temporal regions in 

familiar voice processing, however a review of imaging studies suggests that there is segregation 

of modality specific representations in the anterior temporal cortices, with voice representations 

represented more superiorly and faces more inferiorly. Whether the right anterior superior 

temporal lobe is the neuroanatomical locus of multimodal semantic representations of familiar 

people or where high level perceptual representations are formed has not been established; 

imaging studies investigating the functional contributions of this region suggest it may be 

involved in perceptual as well as semantic processes. Other extra-temporal multimodal cortical 

regions have also been implicated in imaging studies of familiar voice processing, for example 

the precuneus and retrosplenial cortex. Addressing associative and apperceptive voice processes 

in patients with brain damage involving widespread cortical networks of regions, using VBM 

may help to clarify the roles of temporal and extra-temporal regions.  

 

1.5. Non-native accent processing: cognitive, neuroanatomical and neuropsychological 

mechanisms  

   
1.5.1. Non-native accent processing in healthy controls 

Communicating with speakers with different accents is an important task that is performed 

routinely by the healthy brain. Accents signal important information about speakers, including 

geographical origins, ethnicity and social milieu. Extraction of this information requires analysis 

of segmental (phonetic and phonological) speech features (Clopper & Pisoni 2004a; Clopper & 

Pisoni 2004b; de Mareuil & Vieru-Dimulescu 2006; Evans & Iverson 2004; Floccia, Goslin, 

Girard et al. 2006; Howell, Barry, & Vinson 2006; Van Bezooijen & Gooskens 1999). Unlike 

familiar voice identification where linguistic cues are hypothesised to be secondary to extraction 

of paralinguistic features, studies in healthy volunteers have found that segmental phonemic cues, 

in particular vowel sounds, are critical to recognition of regional accents in American and English 

listeners (Clopper et al.2004a; Clopper et al.2004b; Howell et al.2006). Sharing similarities with 

recognition of emotions from voices, accent processing is also likely to involve analysis of 

prosodic features such as pitch contour, rhythm and stress patterns. A study in Dutch and English 

healthy volunteers found that listeners were still able to accurately recognise accents when only 
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prosodic features were retained, but found a greater reduction in accent recognition accuracy 

when phonemic information was removed (Van Bezooijen et al.1999). In another study Spanish 

and French listeners were more influenced by prosodic parameters (pitch contour and duration) 

than phonemic characteristics in detecting Spanish and Italian accents (de Mareuil et al.2006).  It 

is likely that a configuration of linguistic and paralinguistic cues characterise accents: object-

relevant features for accents may for example include formant frequency information 

(representing vowel sounds (Tanji, Suzuki, Okuda et al. 2003)) and intonational cues, as 

described above. 

 

The extent to which linguistic and paralinguistic information are separately extracted from speech 

is not established (Nygaard & Pisoni 1998; Nygaard, Sommers, & Pisoni 1994; von Kriegstein, 

Smith, Patterson et al. 2010). Processing of accents is likely to be a computationally demanding, 

multi-component neural operation recruiting brain mechanisms separable from those encoding the 

verbal content of speech. As an aspect of human meta-linguistic communication, accent 

processing is likely to bear some similarities to processing of voice identity (Berman et al.2003; 

Clarke & Garrett 2004; Clopper et al.2004a; Remez, Fellowes, & Rubin 1997). 

Neuropsychological models of accent processing have not been developed. Like recognition of 

familiar voices (Belin et al.2004; Ellis et al.1997) recognition of accents is likely to involve 

perceptual analysis of the vocal signal and semantic mechanisms which associate vocal percepts 

with previously stored knowledge about geographical regions.  

 

It has been found that healthy volunteers are able to recognise or categorize the region or country 

of origin of speakers based on a short speech sample with above chance accuracy in multiple 

choice arrays (Bayard, Gallois, Weatherall et al. 2001; Clopper et al.2004a; Van Bezooijen et 

al.1999), however performance has been shown to be very poor under free classification or open 

response procedures (Clopper & Pisoni 2007). Factors influencing the rates of recognition include 

the geographical boundaries chosen for the categories (e.g. countries or regions and areas within a 

country) and familiarity with an accent, whether through direct exposure to the accent (Clopper & 

Bradlow 2008; Clopper et al.2004a) or passive exposure to the accent through the media (Bayard 

et al.2001), suggesting that semantic representations of accents may be constrained by similar 

principles to learning other aspects of semantic knowledge, such as familiarity and frequency 

(Lambon Ralph, Graham, Ellis et al. 1998; Lambon Ralph, Graham, Patterson et al. 1999). 

Listener experience and exposure to a variety of accents (not necessarily the accents to be tested) 

improves accent discrimination performance (Clopper et al.2007), and it may be that listeners 
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develop skills at fine-grained vocal analysis, analogous to developing expertise in music listening 

or bird call discrimination (Chartrand et al.2008) in which listeners learn to discriminate and 

recognise relevant cues. 

 

Psychophysical studies investigating the perceptual cost associated with comprehension of speech 

in the presence of an unfamiliar foreign or regional accent also find that familiarity with an accent 

reduces the magnitude of the processing cost associated with the non-native accent in the healthy 

brain (Adank et al.2009). Normal listeners show impressive flexibility in response to acoustic-

phonetic confusions (Evans et al.2004; Norris, McQueen, & Cutler 2003) by shifting their 

phonetic boundaries for example to match the speaker’s accent or idiosyncrasies (Evans et 

al.2004; Norris et al.2003). Processing costs measured either in terms of an increase in reaction 

times or error rates, have been observed particularly under adverse listening conditions such as 

speech presented in noise (Adank et al.2009; Best, McRoberts, & Goodell 2001; Clarke et 

al.2004; Floccia, Butler, Goslin et al. 2009; Floccia et al.2006).  

 

In cognitive neuropsychological terms, a word or phoneme spoken in an unfamiliar (foreign or 

regional) accent has been viewed as an extreme form of native inter-speaker variation (Best et 

al.2001; Clarke et al.2004; Evans et al.2004; Floccia et al.2006; Nathan, Wells, & Donlan 1998; 

Schmale & Seidl 2009). Theories suggest that through exposure to multiple speakers of a native 

accent, and/or exposure to different accents tolerance regions develop around prototypes of 

phonetic elements (Floccia et al.2009; Francis, Nusbaum, & Fenn 2007; Goldstone 1994; Nathan 

et al.1998). The magnitude of the processing cost associated with a non-native accent is 

influenced by the accent’s acoustical distance (e.g. phonological-phonotactic) from native speech 

(Clarke et al.2004): in which regional accents generally fall closer to native speech than foreign 

accents. Processing of foreign-accented speech therefore may be a noisier version of a pattern-

matching process in which speech sounds are matched to smoothed spectral templates of vowels 

(for example (Hillenbrand & Houde 2003; Nearey 1997)). Processing of foreign-accented speech 

could be regarded as a ‘non-canonical view’ of a phoneme or word (or other auditory object) 

which will be accommodated by linguistic mechanisms for native speech with varying degrees of 

accuracy depending on an individual’s previous experiences. A priori processing non-native 

accents may engage auditory apperceptive mechanisms analogous to the visual apperceptive 

mechanisms that process unusual views of visual objects (Goll et al.2010; Riddoch et al.2003; 

Warrington et al.1988) (apperceptive voice processes are described in Section 1.4.2). 
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1.5.2. Neuropsychology of accent processing 

Recognition of regional or foreign accents has not to date been studied in brain-damaged subjects. 

Several studies have shown a reduced comprehension of unfamiliar or non-native accented 

speech in older adults (Adank & Janse 2010; Burda, Bradley-Potter, Dralle et al. 2009; Burda, 

Scherz, Hageman et al. 2003), in non-demented aphasic subjects (Burda, Brace, & Hosch 2007; 

Burda et al.2009; Dunton et al.2011) and in dementia patients (Burda, Hageman, Brousard et al. 

2004). The majority of these studies failed to demonstrate a significantly greater cost relative to 

age-matched controls for the unfamiliar accent relative to the familiar (Burda et al.2004; Dunton 

et al.2011), this includes a study of patients with AD and vascular cognitive impairment (Burda et 

al.2004). The cognitive and neuroanatomical bases of deficits in these studies have also rarely 

been investigated. One study in aphasia speculated that impaired verbal comprehension or 

cognitive speed in the patient group were critical (Dunton et al.2011).  

 

In any neuropsychological study of accent processing due consideration may be given to Foreign 

Accent syndrome (FAS), a rare form of speech apraxia typically described in stroke cases 

(Blumstein, Alexander, Ryalls et al. 1987; Hall, Anderson, Filley et al. 2003; Kurowski, 

Blumstein, & Alexander 1996) in which the patient produces speech sounds that are not part of 

the speaker’s native language. It has most commonly been described in cases with left 

hemisphere lesions, but also in association with frontal, parietal, cortical and subcortical lesions. 

FAS has been described in a degenerative case of PNFA and associated with left perisylvian 

atrophy (Luzzi, Viticchi, Piccirilli et al. 2008). Although FAS is not a common symptom in 

PNFA, patients may share features of FAS such as dysprosody, distorted vowel sounds, and 

deviations in rhythm and stress.  

 

It has been proposed that FAS is a listener-bound phenomenon rather than a syndrome  

(Kurowski et al.1996; Van Borsel, Janssens, & Santens 2005), based on detailed analyses of 

patients’ errors which were all phonetically plausible sounds within their language (Kurowski et 

al.1996), variability in the accent listeners perceived the patient to have (Van Borsel et al.2005), 

and the common co-occurrence of other speech disorders (including aphasia, apraxia and 

dysarthria) which could account for features such as dysprosody and distorted speech sounds. It is 

notable that studies of FAS have not assessed subjects’ own perception and comprehension of 

accents, therefore it remains possible that in some cases deficits may have been underpinned by 

deficits such as impaired feedback from the mechanisms used to perceive linguistic or 

paralinguistic cues.  
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1.5.3. Functional imaging of accent processing 

Functional imaging evidence has implicated a distributed network including STS, STG, planum 

temporale, inferior parietal and inferior frontal gyrus in accent processing (Adank, Noordzij, & 

Hagoort 2012; Berman et al.2003). The components of this network are likely to mediate 

particular aspects of accent analysis, including vocal timbre (Belin et al.2000; Fecteau et 

al.2004), intonation (STG and STS) (Meyer, Alter, Friederici et al. 2002; Meyer, Steinhauer, 

Alter et al. 2004; Patterson, Uppenkamp, Johnsrude et al. 2002; Zhang, Shu, Zhou et al. 2010) 

and dynamic phonetic cues (left superior temporal lobe: (Buchsbaum, Hickok, & Humphries 

2001; Chang, Rieger, Johnson et al. 2010; Jancke, Wustenberg, Scheich et al. 2002; Liebenthal, 

Binder, Spitzer et al. 2005; Scott et al.2006; Turkeltaub & Coslett 2010)). Whereas Berman’s 

study (Berman et al.2003) found activations in a right lateralized network, whereas Adank and 

colleagues found that a change in accent correlated with regions of left STG (Adank et al.2012) 

typically recruited in speech processing. It is possible however that activity in the latter study was 

related to unnatural deviations or irregularities in the speech as the study used an artificial accent 

rather than natural accents. Accent processing will be investigated in this thesis using accented 

speech by native English speakers to look at perception of natural accent variation.  

 

Accent related activations in Adank and colleagues’ study (Adank et al.2012) also included areas 

implicated in neuroanatomical models of voice processing (Belin et al.2004) including right 

posterior, mid and anterior regions of STG. It is likely that accent processing mechanisms engage 

anterior temporal regions previously implicated in other dimensions of semantic processing, 

including recognition of voices (Belin et al.2003; Nakamura et al.2001; von Kriegstein et 

al.2004; Warren et al.2006), and might a priori align with other dimensions of person knowledge 

or with other kinds of geographically differentiated knowledge (Crutch & Warrington 2003; 

Crutch & Warrington 2010; della Rocchetta, Cipolotti, & Warrington 1998; Ellis et al.1989; 

Gainotti 2007a). In common with voice processing, accent recognition may involve formation of 

high level representations of vocal features associated with conceptual knowledge about countries 

or regions. Accent processing however does not require knowledge of individual identities and 

therefore may recruit separable cortical networks (as proposed in the model for this thesis in 

Section 1.7.3). Whereas familiar voice recognition has been found to recruit cortical regions 

implicated in multimodal processing (such as retrosplenial cortex and fusiform gyrus), accent 

processing may not have such strong neuroanatomical connections to representations in the visual 

modality.  
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In addition to activations in temporal (and also parietal) cortical regions which share 

commonalities with voice processing regions, imaging studies of accent processing implicate 

inferior frontal areas similar to those activated when healthy listeners process emotional and 

linguistic prosody (Buchanan, Lutz, Mirzazade et al. 2000; George, Parekh, Rosinsky et al. 1996; 

Mitchell, Elliott, Barry et al. 2003; Zatorre, Evans, Meyer et al. 1992). As detailed in Section 

1.2.3 recognition of accents may require overlapping paralinguistic prosodic features to emotion 

recognition, such as pitch contour and rhythm and it is possible that analysis of these “dynamic” 

features in accent and emotion tasks places greater demands on auditory working memory than 

speaker recognition tasks which rely on “static” perceptual cues. It has been hypothesised for 

example that functional connectivity between the auditory cortex and inferior frontal cortex may 

be involved in the retrieval of auditory information in working memory (Demonet, Chollet, 

Ramsay et al. 1992; Zatorre et al.1992).  

 

In models of emotional prosody recognition, functional connections between inferior frontal and 

inferior parietal lobe areas are important in storing intonational information. Although inferior 

parietal activations were not found in the two imaging studies of accent discrimination, 

connectivity with this region may be important in higher level judgements of accent recognition 

or comprehension of accented speech. A hierarchical neuroanatomical model has been theorized 

for recognition of emotional prosody in which following low level perceptual analysis, higher 

level perceptual analysis in mid superior temporal and right posterior STS represent meaningful 

suprasegmental prosodic sequences. This information is fed forward to bilateral inferior frontal 

cortex where cognitive evaluations and explicit emotional judgements are computed (Wildgruber, 

Ackermann, Kreifelts et al. 2006), potentially by focussing attention on behaviourally relevant 

auditory features (Schonwiesner, Novitski, Pakarinen et al. 2007) and involving interaction with 

working memory mechanisms in the inferior parietal cortex (Paulesu, Frith, & Frackowiak 1993; 

Wildgruber, Pihan, Ackermann et al. 2002; Wildgruber, Riecker, Hertrich et al. 2005). A similar 

hierarchical model to that hypothesised for recognition of emotional prosody may also apply to 

accent recognition and comprehension as hypothesised in the model of voice processing proposed 

for this thesis in Section 1.7.3. Understanding the contributions of different regions within the 

network implicated in functional imaging studies will benefit from the study of accent processing 

in brain-damaged subjects with degenerative pathologies affecting frontal and temporal cortical 

networks. 
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Summary 

Accents represent a key interface between linguistic and paralinguistic processing, conveyed both 

in paralinguistic features of a voice and also “non-canonical views” of linguistic units in the 

realization of vowels and consonants. As an aspect of human meta-linguistic communication 

accent processing is likely to share similarities with processing of familiar voices. 

Neuropsychologically, recognition of accents may involve hierarchical perceptual and semantic 

mechanisms in which auditory percepts are associated with relevant geographical knowledge. 

Neuroanatomically, similar regions in the posterior and anterior superior temporal lobes have 

been implicated in functional imaging studies of voices and accent processing. Whereas studies of 

voice processing often show right lateralized patterns of activity in STS/STG, activations during 

accent processing are bilateral, including activations in left superior temporal regions implicated 

in linguistic feature analysis and speech intelligibility. Functional imaging studies of accent 

processing show commonalities with networks of activation found in analysis of emotional or 

linguistic prosody, in particular implicating inferior frontal regions which may reflect auditory 

working memory demands required for tracking intonational cues over time or comparing “non-

canonical” phonetic cues in accent processing. Studies investigating comprehension of accented 

speech suggest that processing of unfamiliar accents may represent an extreme form of inter-

speaker variability and may engage auditory apperceptive mechanisms, in particular access to 

high level perceptual representations of linguistic units. There are few neuropsychological studies 

of accent processing in the literature; investigation of the cognitive and neuroanatomical bases of 

accent processing deficits in brain-damaged subjects may enhance understanding of the role of 

particular regions within the networks identified in functional imaging studies. 

 

1.6. Voices as auditory objects 

In models of voice recognition, beyond basic perceptual parsing of the auditory stimulus voices 

are processed separately from processing of other complex sounds. As proposed earlier, this fits 

neatly with domain-specific hypotheses in the visual modality which predict dedicated neural and 

cognitive mechanisms for face perception and recognition (Kanwisher et al.1997). However, it 

has been shown that analysis of the spectrotemporal characteristics of voices shares 

commonalities with other meaningful categories of complex sounds (Singh & Theunissen 2003). 

Areas in the lateral and anterior temporal lobe contribute to processing of a variety of natural 

sounds including animal calls, environmental sounds and complex timbre processing (Lewis, 

Wightman, Brefczynski et al. 2004; Menon, Levitin, Smith et al. 2002; Thierry, Giraud, & Price 

2003). In a functional imaging study in which contributions of vocal and non-vocal (musical 
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instrumental) perceptual information were varied using synthesised stimuli, behavioural ratings of 

the “naturalness” of stimuli rather than “voiceness” correlated with activations in mid-temporal 

voice areas (Belizaire, Fillion-Bilodeau, Chartrand et al. 2007). The extent to which voice 

perception and recognition mechanisms are separately processed compared to other complex 

sounds or “auditory objects” has not been established (Goll et al.2010; Leaver & Rauschecker 

2010; Lewis et al.2009). In this section voice processing will be considered from the more 

general perspective of the processing of auditory objects, of which voices form one special 

category.  

 

The concept of an auditory object itself is debated. One parsimonious definition is any 

meaningful pattern in the sound which can be disambiguated from a background auditory scene 

(Goll, Crutch, Loo et al. 2010; Griffiths et al.2004). Auditory objects include the acoustic source 

such as a voice or a musical instrument, or the acoustic events which emanate from the source 

which include speech content or melodies. Both the source and acoustic events present 

simultaneously (for example a vowel sound produced by an individual’s voice), and both types of 

information need to be extracted by the auditory system. In order for an auditory object to be 

perceived and recognised, an invariant or shared configuration of features must be bound together 

and extracted to distinguish sound sources or events. Like voice processing models, models of 

auditory object processing predict a hierarchical organization. Early encoding of perceptual 

properties is followed by an “apperceptive” stage prior to the attribution of meaning, often tested 

by assessing the ability to discriminate between meaningful and meaningless complex sounds. An 

“associative stage” follows in which meanings or names are associated with perceptual 

representations, tested by the ability to identify different classes of sounds (Eustache, 

Lechevalier, Viader et al. 1990; Goll et al.2010). As is the case for voices, the neural mechanisms 

that represent stages of auditory object processing more generally are not established (Goll et 

al.2010; Griffiths et al.2007; Griffiths et al.2004).  

 

1.6.1. Neuroanatomy of auditory object processing  

Recognition of auditory objects is proposed to occur by extracting a set of ‘acoustic signatures’ or 

auditory features specific to a sound source through a hierarchically organized processing 

pathway along anteroventral auditory cortex. Analogous to ventral “what” (object-related), and 

dorsal “where” (spatial) pathways hypothesised in the visual system, distinct processing pathways 

have also been proposed in the auditory system (Kaas & Hackett 1999; Rauschecker 1998) on the 

basis of anatomical tract tracing, the functional properties of single neurons in the macaque, and 
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functional imaging studies in both nonhuman primates and humans. Although the functional 

organization of the human auditory system is debated (Belin et al.2000), there is evidence to 

suggest that auditory representations become increasingly complex from primary to secondary 

auditory cortex followed by association cortices: regions with distinct anatomical and functional 

properties, which include planum temporale, planum polare, STS/STG and insula. In primary 

auditory cortex, lesions cause deficits in sound detection (Heffner & Heffner 1986), and imaging 

in humans indicates there may be topographical representation of the intensity of sounds (Bilecen, 

Seifritz, Scheffler et al. 2002), and spatial mapping of frequency (tonotopy) of pure tones 

(Wessinger, Buonocore, Kussmaul et al. 1997). Sounds with increasing spectral and temporal 

complexity activate regions in nonprimary regions e.g. (Rauschecker 1998); secondary auditory 

cortex has been shown to activate in association with subjective pitch percepts and sequences 

(Griffiths, Buchel, Frackowiak et al. 1998; Schneider, Sluming, Roberts et al. 2005; Warren & 

Griffiths 2003; Warren, Uppenkamp, Patterson et al. 2003). The functional contribution of 

auditory association cortices to auditory object processing is unclear; it is possible that discrete 

regions represent specific features or combinations of features, perform specific analyses 

(responding to modulations of amplitude or frequency for example) or contain categorically 

organized auditory or semantic representations. 

 

Essential to the concept of an auditory object is “object constancy” (described in Section 1.4.2 on 

apperceptive voice processes) in which invariant features or characteristics which define an 

auditory object are bound together to form a coherent percept, enabling an object to be detected in 

the presence of background noise and distinguished from other auditory objects when presented 

simultaneously with other sounds in the environment. In models of auditory object processing a 

specialised role has been proposed for a region in auditory association cortex in posterior STS: 

the planum temporale, which is proposed to act as a “computational hub”, enabling analysis and 

segregation of spectrotemporal information from multiple sound sources as well as 

transformation between auditory and motor representations during speech (Griffiths & Warren 

2002; Warren, Wise, & Warren 2005). Planum temporale is proposed to contain a generic 

mechanism for extracting spectrotemporal features for different classes of complex sounds, 

grouping the spectral and temporal components of a sound source into coherent percepts, 

enabling auditory object streams to be segregated and categorised or identified. It is hypothesized 

that the STS contains both generic as well as voice-specific mechanisms, such that vocal 

templates abstracted in more posterior regions are used in subsequent analyses more anteriorly in 

the STS where more detailed analysis of voice-specific perceptual and semantic information 
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occurs (Warren, Jennings, & Griffiths 2005; Warren et al.2006); such a hierarchy is consistent 

with models of voice recognition (Belin et al.2004; von Kriegstein et al.2004).  

 

Analysis of timbre, such as spectral envelope or degree of periodicity (Lewis et al.2009) which 

are highly relevant to voice processing, is thought to contribute importantly to the 

spectrotemporal signature of individual auditory objects and has been shown to recruit several 

posterior auditory association areas as well as anterior STS/STG (Halpern, Zatorre, Bouffard et 

al. 2004; Warren et al.2005). It has been proposed that neurons encoding harmonic or 

spectrotemporal features in bilateral mid superior temporal cortex serve as an intermediate stage 

of processing between early analysis in Heschl’s gyrus (in primary and secondary auditory 

cortices) and later processing in anterior temporal regions (Lewis et al.2009) where further 

analysis or grouping of features occurs leading to meaning or identification of sounds. It is as yet 

unclear what aspects of voice processing warrants specialised mechanisms in the anterior STS but 

these could include both fine-grained spectrotemporal analysis (Menon et al.2002; Warren et 

al.2005) and fine-grained semantic mechanisms: as familiar people are a densely individuated 

semantic category (Chartrand et al.2008). Cross-modal processing may also be important for 

speaker recognition (Gainotti, Ferraccioli, Quaranta et al. 2008; von Kriegstein et al.2005). 

 

Other categories of auditory object may also show separable representations in superior temporal 

cortex. Category specific activation clusters have been shown not just for voices but also musical 

instrument sounds and the phonetic content of speech (Leaver et al.2010). Large acoustic 

differences between sound categories (i.e. differing perceptual demands of processing different 

categories) tend to confound studies attempting to isolate categorical auditory semantic 

mechanisms. Perceptual differences may be integral to differentiating auditory objects or 

categories of objects.  

 

One model of auditory object processing proposes that perceptual and semantic mechanisms of 

analysis are highly interactive, involving both bottom-up and top down processes. According to 

the model, perceptual regularities (involving spectral and temporal feature analysis) drive 

auditory object categorisation whereas ‘top down’ mechanisms forge associations between 

acoustic properties (Goll et al.2010). A number of imaging studies have shown that separable 

distributed neural networks across low and high level auditory processing regions represent 

different auditory object categories such as living and nonliving sounds, melodies, animals and 

mechanical sounds (Engel, Frum, Puce et al. 2009; Giordano, McDonnell, & McAdams 2010; 
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Lewis, Brefczynski, Phinney et al. 2005; Saygin, Leech, & Dick 2010). For example selective 

responses to particular sounds (such as singers, cats and guitars) were found in bilateral primary 

and association auditory cortices (Staeren, Renvall, De et al. 2009) which were hypothesised to 

represent a configuration of simple and complex features of these auditory objects. These results 

are in line with property-based or embodied cognition models of semantic processing which 

propose that retrieval of a concept occurs through activations across distributed cortical networks 

representing perceptual features of a concept (as well as motor and affective components) (Martin 

2007). Recognition of different auditory object categories is likely to recruit relevant processing 

regions: environmental sounds may be more dependent on generic spectral and temporal analysis 

mechanisms, whereas voices are highly dependent on higher level analysis of spectral shape (Goll 

et al.2010). Together this model may explain generic deficits extending across different 

categories of complex sounds as well as more specific auditory agnosias.  

 

1.6.2. Disorders of voice recognition and auditory agnosias 

There is a limited literature on category selective neuropsychological impairments within the 

auditory modality. Selective deficits for voice processing at associative levels of processing have 

been described both in lesion studies and a developmental phonagnosic case, in particular in the 

presence of spared recognition of environmental sounds (Assal, Aubert, & Buttet 1981; Garrido 

et al.2009; Neuner et al.2000; Peretz, Kolinsky, Tramo et al. 1994). Neuner and Schweinberger 

(Neuner et al.2000) described six cases with right and left hemisphere lesions with severe deficits 

of recognition of familiar voices (only one of whom also had a deficit at voice discrimination) 

that showed a preserved ability to recognise environmental sounds. The reverse dissociation: 

auditory agnosia for environmental sounds in the presence of preserved voice recognition has 

rarely been described, although two patients displaying this pattern were mentioned in a research 

report (Van Lancker et al.1982) these cases were not described in detail and require replication.  

 

To date few studies have found dissociations between recognition of voices and other categories 

of sounds, for example there are no studies of phonagnosia in brain-damaged subjects reporting 

spared recognition of musical melodies or instruments, whereas conjoined deficits have been 

described in several temporal lobe lesion cases (Assal et al.1981; Peretz et al.1994). 

Developmental phonagnosic case KH was found to have intact recognition of both environmental 

sounds and familiar tunes (Garrido et al.2009): while it is possible that this reflects an abnormal 

pattern of auditory development, semantic or “associative” levels of auditory processing voice 

representations for familiar people may dissociate from semantic processing of other types of 
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auditory object. KH had no signs of brain damage on her MRI, and therefore the neuroanatomical 

correlates of selective associative phonagnosia are still to be determined.  

 

Whereas there is some evidence for selective conceptual deficits in recognition of voices at an 

“associative level” there is little evidence for a selective perceptual deficit for vocal stimuli.  An 

apperceptive case of phonagnosia was described that did not show impaired performance at 

environmental sound recognition (Neuner et al.2000), however further investigation of auditory 

perceptual deficits was not undertaken. Overlap has been found between vocal perceptual deficits 

and dystimbria in a patient with a right temporo-parietal lesion (Mazzucchi, Marchini, Budai et 

al. 1982). This case showed difficulty at both distinguishing and identifying voices, whereas 

perception of gender and recognition of other human sounds (including laughing and yawning) 

was unimpaired. Although an in-depth analysis of timbre processing was not performed, this 

subject showed deficits in recognising sounds from different categories requiring fine-grained 

distinctions of timbre: such as discriminating between human voices of the same age and gender 

or between vehicle engine sounds, but was not impaired at discriminating sounds distinguishable 

by rhythm, pitch or loudness cues. Other cases of dystimbria have been described in which 

perceptual phonagnosia is implicated; in a description of a stroke case with right posterior 

superior temporal lobe damage “human voices sounded ‘unreal’ as if they were being played 

through poor quality speakers” (Griffiths et al.2007).  

 

Deficits of voice recognition have also been associated with impaired processing of melodic 

contour in cases with bilateral lesions to the superior temporal lobe (Assal et al.1981; Peretz et 

al.1994). These cases exhibited impairments of both recognition of musical melodies and vocal 

prosody but showed preserved performance on environmental sound and speech recognition 

tasks, hypothesised to be explained by spared rhythmic perceptual analysis (Peretz et al.1994). 

These studies, together with the rarity of selective apperceptive phonagnosia suggest that analysis 

of voices recruits perceptual mechanisms that are shared with processing of other auditory 

objects. In particular, voice processing is likely to be particularly reliant on aspects of timbre (in 

common with other auditory objects including nonhuman vocalizations and musical instruments), 

but also prosody or melodic contour (in common for example with musical melodies).   

 

Summary 

Whether deficits are selective for voices or extend to processing of other auditory objects is of 

interest both to voice processing models which treat voice processing as a separate module, and to 
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general models of auditory object processing. Such models implicate shared mechanisms for 

processing of different classes of auditory object, in particular a generic mechanism for extracting 

invariant perceptual signatures in posterior temporal cortex. Recognition of auditory objects is 

proposed to occur in an anteroventral “what” processing pathway in which increasingly complex 

auditory properties are extracted. Whereas some studies implicate category level processing of 

vocal and other auditory objects in STS/STG, others have identified distinct distributed networks 

of low and high level auditory processing regions for different kinds of objects, and propose that 

different levels of perceptual feature analysis are integrally recruited during recognition 

depending on the object or category of objects. Such a model may provide a basis for 

neuroanatomical differences between voice processing and processing of other auditory objects, 

in which voice processing is particularly highly reliant on analysis of timbre, which recruit mid 

temporal regions of the STS. This model is supported by neuropsychological evidence for 

dissociation between voice and environmental sounds at associative levels of processing but little 

evidence for selective apperceptive phonagnosia where deficits typically occur with other 

perceptual impairments, in particular those that require analysis of timbre. The neuroanatomical 

basis of associative auditory deficits that are selective for voices or extend to other sorts of sounds 

has not been established.  

 

1.7. Models of voice processing 

 
1.7.1. Bruce and Young cognitive model of person recognition 

Cognitive models of voice processing have evolved from early models of person recognition 

(Bruce & Young 1986; Burton, Bruce, & Johnston 1990; Ellis et al.1997), and based on evidence 

from healthy volunteers and studies of phonagnosia these agree on the segregation of early 

unimodal perceptual processes (in which incoming face, voice and name stimuli are processed in 

parallel modality-segregated pathways) from later multimodal semantic mechanisms. The 

processing stages predicted in the model are displayed in Figure 1.4. Voice identification occurs 

via serially and hierarchically organised processing stages: basic auditory perceptual encoding of 

voices (“structural encoding”), is followed by further processing of feature information which is 

combined to form more complex structural descriptions of individual voices or templates called 

voice recognition units (VRUs). In parallel with face recognition units (FRUs), structural 

representations of familiar faces, VRUs enable a familiar voice to be recognised across listening 

conditions and linguistic contexts. Modality segregated perceptual representations from VRUs 

and FRUs are fed into cross-modal representations of familiar people or Person Identity Nodes 
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(PINs) which when activated enable subsequent retrieval of associated semantic information, 

such as the name or biographical information. 

 

Whereas in the original versions of the model PINs were units that stored knowledge, in the 

updated “interactive activation and competition network” (IAC) model (Bruce et al.1986; Burton 

& Bruce 1993; Burton et al.1990) PINS do not store person specific information, but are cross 

modal nodes, serving only to signify a sense of familiarity in response to any modality of 

incoming stimulus. In this model, the PIN serves a crucial ‘gating’ function enabling access to 

biographical information which can be used to identify the person including the person’s name. It 

acts as a modality-independent gateway: sufficient activation of the PIN from any modality 

facilitates access to semantic information units. The IAC model predicts that damage to the PIN 

will result in multimodal deficits such that familiarity and semantic judgements will occur equally 

in voice, face and name modalities. In the model, selective deficits of voice processing are only 

possible at the level of apperceptive processes at VRUs or earlier auditory perceptual processing. 

The occurrence of multimodal deficits of person knowledge in degenerative cases with damage to 

the right ATL (Ellis et al.1989; Gainotti, Barbier, & Marra 2003; Gainotti et al.2008; Gentileschi, 

Sperber, & Spinnler 2001) provides support for a neural region which plays a multimodal role in 

person recognition, either as the locus of the PIN in cognitive models or in higher level semantic 

representations.  

 

Together the findings of neuropsychological and neuroimaging studies have provided evidence 

for the neural bases of processing stages predicted in the Bruce and Young model in which 

generic analysis of complex sounds occurs in posterior regions of the auditory association cortex, 

then structural encoding of voices occurs more anteriorly in bilateral mid STS, either involving 

voice-specific analysis or analysis of the harmonic structure of voices. Information is passed more 

anteriorly in the right anterior STS/STG where more fine-grained spectro-temporal analysis 

occurs and VRUs may be stored and extra-temporal multimodal processing regions are recruited. 

Figure 1.4 is an adapted version of a model proposed by Belin and colleagues (Belin et al.2004) 

hypothesized for voice recognition. The model is adapted to account for uncertainty of the roles 

of particular regions at higher levels of analysis in the right anterior STS/STG and temporal pole.  
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Figure 1.4. Anatomical regions predicted to be involved in cognitive processes of voice 

recognition  

 

 

Model is adapted from the model proposed by Belin and colleagues (Belin et al.2004). Incoming 

voices are first processed at low levels of auditory analysis and the primary flow of information is 

downwards towards formation of a multimodal representation of a person at the last stages of 

analysis, although as indicated by the model connections are bidirectional. Grey boxes indicate 

generic auditory processing mechanisms, voice specific analysis is displayed in green, and 

multimodal mechanisms are indicated in blue.   

 

1.7.2. Belin’s model of voice processing 

Elaborations of the Burton cognitive model has been applied to extend to other voice processing 

tasks (Belin et al.2004); hierarchical processing mechanisms (in which perceptual and semantic 

processes are segregated) are also applied to identification of vocal emotions and speech analysis, 

in line with other models (Scott et al.2006; Wildgruber et al.2006). Voice processing tasks are 

hypothesised to share basic auditory and spectrotemporal processing mechanisms, but operate in 

parallel at higher levels of perceptual analysis. The model therefore predicts that there is 

functional dissociation between speech analysis, recognition of emotions and identification of 

familiar individuals from their voice at “apperceptive” levels of processing. There are a number 

of cases described in the literature providing evidence for segregation of speech analysis from 

voice recognition processing and emotion recognition respectively, described in Section 1.2.1; 

however evidence for functional segregation of affective and identity pathways is more limited. 
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Developmental phonagnosic case KH (Garrido et al.2009) exhibited spared recognition of vocal 

emotions, and a less detailed case description of a patient with brain damage affecting the right 

temporal cortex indicates a similar pattern of results (Benzagmout, Chaoui, & Duffau 2008). No 

cases however have been reported that have shown the reverse dissociation: impaired affect or 

emotion judgements with spared identity processing.  

 

Although face processing has offered a useful model for understanding recognition of familiar 

people from the voice, the extent to which these apply to other voice processing tasks has not 

been rigorously tested. Belin’s model does not incorporate accent processing tasks and the model 

has been elaborated in this thesis to include accent recognition and comprehension, as described 

below in Section 1.7.3. 

 

1.7.3. Model of voice processing in this Thesis 

Together evidence from healthy controls and neuropsychological studies strongly suggest a 

hierarchical organisation in which auditory representations of voices and accents increase in 

complexity and are integrated with other cross-modal or executive cognitive processes. A 

simplified cognitive and neuroanatomical model is displayed in Figure 1.5 to provide a structure 

for understanding voice processing mechanisms underpinning accent processing and familiar 

voice recognition, based on Belin’s model of voice processing and Goll and colleagues’ 

neuropsychological model of auditory object processing (Belin et al.2004; Goll et al.2010). 
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Figure 1.5.  Model of voice processing model proposed for this Thesis 

 

This model was developed from previous models of voice and auditory processing (Belin et al.2004; Goll et al.2010). On the 

basis of neuropsychological and neuroanatomical evidence a hierarchical model of voice processing is proposed. Size and 

gender discrimination is indicated in yellow, and parallel processing pathways for voice identity processing (in green) and 

accent processing (in orange) are indicated with their component cognitive operations: utilising shared perceptual analysis at 

the bottom of the processing hierarchy, and at the top of the hierarchy separable mechanisms for each process, which are 

underpinned by differing neural substrates. Candidate anatomical substrates for these operations are displayed on the relevant 

side of the diagram, and although they are displayed as discrete “nodes”, it is likely that areas cooperate as networks. Accented 

processing is proposed to recruit linguistic processing mechanisms, mechanisms are indicated by analysis of phonemes*, 

however the linguistic mechanisms may operate at the level of speech sounds: consonants and vowels, phonemes, 

phonological units and/or at the level of words: these processes were not specifically investigated in this thesis. Coloured 

arrows demonstrate the primary information transfer pathway and are uni-directional indicating the primary direction of 

communication between stages in the hierarchy, the dotted lines indicate that these perceptual cues may contribute to the 

processes that they are linked to, albeit to a lesser extent than those joined via solid arrows. Although the main pathways of 

information transfer are displayed, it is likely that connections may be reciprocal and that there is some lateral interaction 

between parallel pathways. Arrows linking template processing and spectral and temporal shape representations are shown as 

bidirectional to emphasise the dynamic updating of these templates via the interaction between incoming information and 

stored representations, in line with Goll and colleagues’ model of auditory object processing (Goll et al.2010).  
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Mechanisms underpinning processing or recognition of accents do not feature in Belin’s model 

but may operate via similar hierarchical mechanisms in parallel with a model of recognition of 

emotional prosody (Wildgruber et al.2006). In line with this model lower level auditory analysis 

would precede more complex accent specific perceptual representations and semantic and 

executive processes. On the basis of evidence from studies of accent processing in healthy 

controls (Section 1.5.1) it is hypothesised that comprehension of non-native speech would require 

the “speech analysis” processing pathway, in which the incoming speech must be matched to 

stored spectrotemporal templates of phonemic or phonological units of sound; the flexibility of 

these representations (if non-native speech represents a non-canonical representation of a 

phoneme as discussed in Section 1.5.1) would determine how successful the match is. 

Recognition of accents may also require reference to stored templates of spectrotemporal 

signatures of accents which contain a configuration of paralinguistic and linguistic cues 

represented in right and left ATLs. It is possible that accent comprehension is more reliant on 

left-lateralized mechanisms of linguistic analysis in posterior and anterior temporal cortices and 

inferior frontal cortices, whereas recognition of accents may be more dependent on nonverbal 

representations in the right ATL. In this model accent comprehension and accent recognition 

pathways have not been clearly disambiguated neuroanatomically due to limited 

neuropsychological evidence.  

 

The model predicts that accent processes recruits a separate but overlapping neural network to 

voice processing. Shared neural mechanisms for voice and accent processes occur early on in the 

processing hierarchy: ascending auditory pathways and primary and secondary auditory cortices 

represent basic features which are combined into whole object representations in planum 

temporale. Bilateral mid and anterior temporal regions may be important in fine-grained analysis 

of timbre (such as spectral shape) which are critical to voice perception, whereas for regional and 

foreign accent analysis regions of bilateral mid and posterior temporal cortices are important in 

the extraction of meaningful linguistic segmental features and paralinguistic segmental and 

suprasegmental features, such as intonational, rhythm and stress cues. For both accent and voice 

processes, further auditory object analysis occurs in an anteroventral path along the STS and STG 

where more detailed perceptual and semantic information are extracted. The right anterior 

STS/STG may contain complex nonverbal spectrotemporal representations: templates of 

previously encountered voices (VRUs) and/or accents, or may contain semantic information 

about voices, such as knowledge about familiar people or geographical locations. More 

anteriorly, at the temporal pole multimodal perceptual representations of familiar people may be 
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formed (PINs) or amodal semantic knowledge about people or accents such as geographical 

knowledge could be stored.  

 

In the last stages of processing, information is passed to extra-temporal regions which integrate 

high level auditory representations with other cognitive processes. In parallel with emotion 

recognition pathways, connectivity with inferior frontal and parietal regions may assist in 

tracking “dynamic” prosodic features of speech (including linguistic deviations or paralinguistic 

features) in working memory, or directing attention to behaviourally relevant perceptual features 

in processing of accents. In familiar voice processing, rather than depending on high level 

cognitive evaluations, other multimodal processing regions are likely to be recruited, such as the 

precuneus and retrosplenial cortex and the anterior fusiform. Whereas in Belin’s model cross-

modal processing mechanisms are emphasized for recognition of familiar people, recognition of 

regional and foreign English speaking accents are not likely to be so inherently tied to multimodal 

or facial information, and may be useful stimuli for isolating voice or auditory specific processes. 

Cross-modal connectivity may also occur in the voice recognition pathway earlier in the 

processing hierarchy between STS and face-processing regions in the inferior temporal cortex 

(von Kriegstein et al.2006; von Kriegstein et al.2005); these interactions are not displayed in the 

model.   

 

1.8. Voice processing and neurodegenerative disease 

The experiments designed in this thesis address the cognitive and neural mechanisms of voice 

processing in neurodegenerative disease. As described in Section 1.1 there are both clinical and 

neurobiological grounds for a systematic analysis of voice processing in cohorts of patients with 

degenerative dementia. Clinically, voice processing impairments are likely to be under-

recognised but may contribute to socially disabling nonverbal symptoms. The break-down of 

voice processing in dementia and the concomitant atrophy within functional cerebral networks 

may enable identification of critical nodes within these networks and inform neurocognitive 

models and understanding of these diseases.  

 

In this thesis voice processing will be investigated in four syndromes: SD, bvFTD, PNFA and 

typical AD. These syndromes are associated with distributed patterns of atrophy affecting 

temporal, parietal and frontal regions implicated in voice processing studies (Belin et al.2002; 

Imaizumi et al.1997; Nakamura et al.2001; von Kriegstein et al.2006; Warren et al.2006). 

Damage to distinct networks in these diseases results in unique patterns of cognitive impairment 
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and comparison of the cognitive and neuroanatomical bases of impaired voice processing 

between disease groups may facilitate understanding of the nonverbal symptoms that characterize 

each syndrome.  

 

1.8.1. Voice processing in semantic dementia 

SD is a subtype of FTLD and the paradigmatic disorder of conceptual knowledge which produces 

progressive disintegration of both verbal and nonverbal knowledge systems associated with 

relatively focal atrophy of the ATLs. Striking deficits of verbal semantic tasks (including naming, 

word fluency and comprehension) typically dominate the clinical syndrome, but impairments of 

nonverbal tasks are also described including impaired recognition of people (progressive 

prosopagnosia), agnosia for famous landmarks and places, and tactile and chemosensory agnosias 

(Edwards-Lee, Miller, Benson et al. 1997; Miller, Chang, Mena et al. 1993; Omar, Hailstone, 

Warren et al. 2010; Perry, Rosen, Kramer et al. 2001; Piwnica-Worms, Omar, Hailstone et al. 

2010). Verbal and visual knowledge have been extensively investigated in SD, and evidence 

supports a multimodal breakdown of semantic processing. Early in the disease autobiographical 

memory is thought to be relatively spared (Neary, Snowden, Gustafson et al. 1998; Nestor, Fryer, 

& Hodges 2006) as well as other non-semantic abilities including visuospatial skills, working 

memory and arithmetic functions associated with relative sparing of parietal, occipital and dorsal 

frontal brain regions in this disorder (Edwards-Lee et al.1997; Thioux, Pillon, Samson et al. 

1998; Waltz, Knowlton, Holyoak et al. 1999). The selective nature of the breakdown of 

conceptual knowledge in this syndrome offers an opportunity to investigate both the organization 

of person knowledge, and the organization of nonverbal auditory object concepts using voices.  

 

ATL atrophy early in the disease is generally asymmetric and in the majority of cases presenting 

at specialist clinics and reported in the literature affects the left side more than the right 

(Brambati, Rankin, Narvid et al. 2009; Desgranges, Matuszewski, Piolino et al. 2007; Eustache et 

al.1990; Lambon Ralph, McClelland, Patterson et al. 2001). On MRI, atrophy early in the disease 

affects the anterior and inferior temporal lobe and spreads to the right ATL as the disease evolves. 

Cases where atrophy primarily affects the right anterior, inferior and superior temporal cortex: 

(‘right temporal lobe variant’ FTLD (right tvFTLD)) and subsequently affects the left temporal 

lobe suggest a more complex nosology. These cases typically display relatively spared language 

abilities initially, and a greater preponderance of nonverbal deficits; prominent clinical features 

are changes in behaviour and personality including obsessions, compulsions and loss of empathy 

(Brambati et al.2009; Busigny, Robaye, Dricot et al. 2009; Edwards-Lee et al.1997; Gorno-
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Tempini, Rankin, Woolley et al. 2004; Perry et al.2001). Studies directly comparing performance 

in right and left –sided tvFTLD suggest that verbal and nonverbal semantic performance may 

dissociate: right sided ATL damage has been associated with greater deficits at face semantic 

tasks and left hemisphere ATL damage with greater impairments with names (Gainotti 2007a; 

Gainotti 2007b; Snowden et al.2004). Together differing anatomical and neuropsychological 

profiles justify using “tvFTLD” rather than SD to define patient groups. This view however is 

controversial, not least because both right and left temporal variant cases exhibit bilateral atrophy 

on magnetic resonance imaging (MRI) scans and display verbal and nonverbal symptoms as the 

disease evolves (Brambati et al.2009; Lambon Ralph et al.2001). The relations between verbal 

and nonverbal knowledge systems, and any segregation between left and right ATLs, are debated 

in theories of semantic processing (Humphreys & Riddoch 1988; Lambon Ralph & Patterson 

2008; Snowden et al.2004; Warrington 1975) and have rarely been explored using nonverbal 

auditory stimuli.  

 

The syndrome of progressive prosopagnosia is well recognised in association with right temporal 

lobe atrophy (Belin et al.2004; Chan, Anderson, Pijnenburg et al. 2009; Evans, Heggs, Antoun et 

al. 1995; Josephs, Whitwell, Vemuri et al. 2008; Joubert, Felician, Barbeau et al. 2003; Joubert, 

Felician, Barbeau et al. 2004). It is of considerable neuropsychological as well as clinical 

importance because it provides a window into the organisation of person knowledge in the brain 

(Bruce et al.1986; Burton et al.1993; Lucchelli et al.2008; Lyons, Kay, Hanley et al. 2006; 

Snowden et al.2004; Thompson, Graham, Williams et al. 2004; Warrington 1979) and is likely to 

represent a variant of SD dominated by deficits of nonverbal knowledge, including knowledge of 

familiar people (Gainotti 2007b; Gainotti et al.2008; Gentileschi, Sperber, & Spinnler 1999; 

Gentileschi et al.2001; Hanley et al.1989; Snowden et al.2004; Thompson et al.2004). Other 

channels of person knowledge, notably voices, commonly become affected with evolution of the 

progressive prosopagnosia syndrome (Gainotti et al.2003; Gainotti et al.2008; Gentileschi et 

al.2001), although voice recognition has only been rigorously tested in a few cases (Gainotti et 

al.2003; Gainotti et al.2008; Joubert, Felician, Barbeau et al. 2006). Voice processing is often 

anecdotally assumed to be normal in early progressive cases (Evans et al.1995; Gentileschi et 

al.1999; Joubert et al.2003), and is generally assessed only following the development of face 

recognition deficits (Gainotti et al.2003; Gentileschi et al.1999; Gentileschi et al.2001). 

Phonagnosia may not be identified as a clinical issue due to the lower saliency of voices but it 

may be that deficits in voice recognition co-occur with or precede difficulties in the face 
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modality. The modality specificity of deficits in dementia is relevant to predictions made by voice 

processing models (presented in Section 1.7.1). 

 

Segregation of person-specific semantic representations, unique entities, or modality specific 

representations in the ATLs (described in Section 1.4.2 on phonagnosia) is disputed by theories 

proposing that bilateral ATLs are amodal stores or “hubs” with no category-specific organization. 

Evidence for this theory primarily comes from studies of visual and verbal object recognition in 

SD which show that category-specific deficits of semantic knowledge are very rare (Coccia, 

Bartolini, Luzzi et al. 2004; Humphreys et al.1988; Lambon Ralph et al.1999; Lambon Ralph et 

al.2008; Rogers, Ivanoiu, Patterson et al. 2006). Hubs contain abstract information about the 

similarity relations between semantic concepts which allow objects with very different perceptual 

features to be conceptually related. A number of cases of progressive prosopagnosia have been 

described in which there is relative preservation of other categories of knowledge, such as objects 

and animals (Evans et al.1995; Gentileschi et al.2001; Thompson et al.2004) and a case of left-

tvFTLD showing the reverse pattern: spared person recognition in the presence of impaired 

general semantics (Thompson et al.2004). This evidence indicates that deficits of person 

knowledge can dissociate from other categories of semantic knowledge. According to some 

theories of semantic memory, category specific deficits can only occur as a result of underlying 

perceptual deficits (Humphreys et al.1988; Lambon Ralph et al.2008), however cases of selective 

prosopagnosia demonstrating spared perception of faces dispute this (Evans et al.1995; Gainotti 

et al.2003; Gainotti et al.2008; Gentileschi et al.1999; Gentileschi et al.2001). Perceptual voice 

processing has not previously been assessed in any degenerative cases. Performance on voice 

processing tasks represents a relatively unexplored avenue for investigating semantic and 

perceptual object representations in tvFTLD. 

 

Impairments on other high level voice and auditory tasks have been described in SD including 

recognition of emotions from voices and from music (Omar, Henley, Bartlett et al. 2011; Rankin, 

Salazar, Gorno-Tempini et al. 2009), deficits of environmental sound recognition (Bozeat, 

Lambon Ralph, Patterson et al. 2000; Goll et al.2010) and recognition of musical instrument 

sounds (Omar et al.2010). It has been suggested that semantic deficits primarily underpin 

impairments of auditory object recognition, but apperceptive deficits may partially contribute at 

least to some auditory recognition tasks (Goll et al.2010; Goll et al.2010). Musical knowledge 

has been found to fractionate in SD, for example selective preservation of semantic memory for 
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musical melodies has been demonstrated with impaired knowledge of musical instruments 

(Hailstone, Omar, & Warren 2009; Omar et al.2010).  

 

The core regions of atrophy in tvFTLD, the anterior and inferior temporal lobes, are areas 

implicated in voice processing both in lesion studies and functional imaging studies. As the 

disease progresses (both in cases with both greater left or right sided atrophy) it extends into the 

insula and orbitofrontal cortex: regions beyond the temporal lobe which have been implicated in 

voice processing studies in primates and functional imaging studies in humans (Fecteau, Belin, 

Joanette et al. 2007; Olson et al.2007; Remedios, Logothetis, & Kayser 2009; Wong, Parsons, 

Martinez et al. 2004). Investigating the neural basis of voice processing deficits in tvFTLD may 

improve understanding of the contributions of temporal cortices and extra-temporal regions to 

both voice and auditory object processing in SD as well as understanding of the symptoms these 

patients experience.  

 

Summary 

The selective nature of the breakdown of conceptual knowledge in right and left-sided tvFTLD 

offers an opportunity to investigate both the cognitive and neural organization of voice 

processing. Selective atrophy of the anterior and inferior temporal lobes in tvFTLD affects 

regions implicated in familiar voice recognition, and may extend to extra-temporal regions 

implicated in voice processing. Voice recognition deficits in tvFTLD however have only been 

described in the presence of multimodal deficits of recognition of familiar people in progressive 

prosopagnosia. The modality specificity of semantic voice processing deficits and the category 

specificity of any deficits within the auditory modality speak to the debate over the organization 

of semantic knowledge in the ATLs, for example the prediction that either person-specific 

knowledge or more general nonverbal semantic knowledge is represented in right ATL. 

Impairments of familiar voice recognition and recognition of other nonverbal auditory objects are 

assumed to occur at associative or semantic levels of processing: however perceptual processing 

of voices has not previously been tested in degenerative ases. It is possible that perceptual or 

apperceptive voice impairments (for example involving timbre processing) may contribute to 

voice recognition performance. Performance across perceptual and semantic voice tasks, and 

correlations with patterns of atrophy on MRI in tvFTLD may further understanding of the 

mechanisms of person recognition and nonverbal auditory semantic processes in this syndrome.  
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1.8.2. Voice processing in behavioural variant FTLD 

BvFTD is a syndrome defined primarily by a decline in social function and personality which is 

typically associated with atrophy of the mesial and orbitofrontal cortex, anterior and medial 

temporal lobe structures, as well as limbic areas including the insula and amygdala (Piguet, 

Hornberger, Mioshi et al. 2011; Rascovsky, Hodges, Kipps et al. 2007; Seeley, Crawford, 

Rascovsky et al. 2008). A decline in emotional responsivity and interpersonal skills such as social 

conduct, social disinhibition and loss of empathy are some of the behavioural changes that appear 

early in the course of the disease (Neary et al.1998; Neary, Snowden, & Mann 2000). Other core 

behavioural features include stereotyped behaviours and alterations in eating patterns. 

Neuropsychological performance deficits may be relatively restricted to frontal executive and 

social cognition tasks in the early stages, and in particular episodic memory may be spared. 

BvFTD however is clinically heterogeneous, varying for example in the extent and severity of 

language impairment that appears with disease progression or the patterns of behaviours exhibited 

(for example apathy versus disinhibition (Snowden, Bathgate, Varma et al. 2001; Wicklund, 

Johnson, Rademaker et al. 2007)). Variation in behavioural presentation may mirror anatomic 

variability in the pattern of fronto-temporal-limbic atrophy (Whitwell, Przybelski, Weigand et al. 

2009).   

 

Regions implicated in functional imaging and lesion studies of voice processing are affected in 

bvFTD, including ATLs, amygdala, and also temporo-parietal atrophy (Seeley et al.2008; 

Whitwell et al.2009). Fronto-temporal networks that are affected in this syndrome overlap with 

those implicated in recognition of emotional and linguistic prosody and accent processing in 

functional imaging studies of healthy controls (Adank et al.2012; Berman et al.2003; Mitchell et 

al.2003). Impairments are typically reported on complex multimodal tasks involving detection of 

social faux pas or sarcasm for example (Kipps, Nestor, Acosta-Cabronero et al. 2009). Few 

studies have explored voice processing in isolation. Impairments of recognition of basic vocal and 

facial emotions however have been described (Keane, Calder, Hodges et al. 2002; Omar et 

al.2011; Snowden, Austin, Sembi et al. 2008), which in combination with impaired recognition 

of familiar people may contribute to the early emotional and social behavioural features and a 

lack of social connectedness characteristic of the syndrome (Chan et al.2009; Olson et al.2007; 

Omar, Rohrer, Hailstone et al. 2010; Rosen, Perry, Murphy et al. 2002; Rosen, Wilson, Schauer 

et al. 2006; Snowden et al.2008).  
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Nonverbal symptoms in bvFTD have been associated with atrophy of the right temporal lobe 

(Chan et al.2009; Edwards-Lee et al.1997; Perry et al.2001). Fronto-temporal atrophy is typically 

bilateral and symmetric; however asymmetric right-sided atrophy has also been reported (Seeley 

et al.2008) showing pathological and behavioural overlap with SD. Both syndromes are 

associated with socio-emotional dysfunction (Neary et al.1998; Neary et al.2000; Snowden et 

al.2001): whereas symptoms in SD have been linked to a fronto-temporal network mediating 

conceptual knowledge about objects, bvFTD has been associated with disruption to an anterior 

cortical network involving the temporal pole, orbitofrontal cortex and amygdala (Kipps et 

al.2009; Olson et al.2007; Omar et al.2011; Rosen et al.2002; Seeley et al.2009; Seeley, Menon, 

Schatzberg et al. 2007; Zhou, Greicius, Gennatas et al. 2010), which mediate evaluation of and 

responses to emotional stimuli and complex real-life social contexts (Kipps et al.2009; Olson et 

al.2007; Omar et al.2011; Rosen et al.2002).  

 

Investigation of voice processing offers an opportunity to assess both object and emotion 

processing using a highly socially salient stimulus. Correlation between anatomical and 

behavioural performance in this thesis will offer an avenue to assess relative contributions of 

regions within the fronto-temporal-limbic network. Increased understanding of the breakdown of 

auditory cortical functions may facilitate an understanding of similarities or differences between 

SD and bvFTD syndromes, and in particular some of the unusual disorders observed. For 

example, it has been proposed that altered emotional reactions to music and sounds (Boeve & 

Geda 2001) may result from abnormal coupling between the auditory object property of timbre 

and affective processing mechanisms (Hailstone, Omar, Henley et al. 2009).  

 

Summary 

BvFTD presents primarily with social, emotional and behavioural changes, and it is possible that 

deficits of voice processing contribute to the dysfunctional social behaviours observed. Although 

voice processing has rarely been tested in bvFTD, atrophy involves a network of frontotemporal 

regions that are implicated in both familiar voice recognition, recognition of emotional and 

linguistic prosody and accent processing. The syndrome shows overlapping nonverbal 

symptomatology to tvFTLD related to involvement of the right ATL. Whereas in tvFTLD deficits 

have been associated with impaired object and person recognition, in bvFTD altered responses 

and representations of social and emotional stimuli have been associated with disruption to a 

fronto-temporal-limbic network. Voice processing offers an opportunity to analyse the 
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component deficits that may contribute to abnormal social behaviours in bvFTD using a highly 

socially salient stimulus.  

 

1.8.3. Voice processing in Progressive Non-Fluent Aphasia 

PNFA is a rare syndrome of FTLD typically associated with relatively focal atrophy around the 

sylvian fissure, particularly affecting the left inferior and dorsolateral prefrontal regions and 

insular cortex, and extending into STS (anteriorly and posteriorly) and inferior parietal areas 

(Grossman, Mickanin, Onishi et al. 1996; Mesulam 2001; Rohrer & Schott 2011). Degeneration 

of the perisylvian region has been critically associated with the striking language-led clinical 

features of the syndrome: effortful and dysfluent speech production, agrammatism and anomia, 

and research in PNFA has primarily focussed on the production and processing of verbal 

material. Quantitative observations of speech production errors in PNFA suggest that speech 

dysfluency is not necessarily caused by speech apraxia or motor planning impairments (Gorno-

Tempini, Dronkers, Rankin et al. 2004), but may result from impaired syntactical processing due 

to agrammatism or working memory impairments (Gunawardena, Ash, McMillan et al. 2010; 

Wilson, Dronkers, Ogar et al. 2010), or due to impoverished phonological representations of 

words, resulting in phonemic paraphasias (Ash, McMillan, Gunawardena et al. 2010; Croot, 

Patterson, & Hodges 1998). Heterogeneity in the pattern of symptoms and foci of perisylvian 

atrophy is a feature of the disease (Gorno-Tempini et al.2004; Rohrer et al.2011). Despite very 

severe impairments of speech production, relatively spared single word comprehension, object 

recognition, and semantic task performance at least early in the course of the disease, 

differentiates the syndrome from the other language-led variant of FTLD, SD (Grossman & Ash 

2004; Neary et al.1998).  

 

An uncertain proportion of PNFA patients present with symptoms of auditory dysfunction. Cases 

with PNFA-like syndromes have been described in which either a selective deficit for the 

perception of words (word deafness) or agnosia for sounds and words has led the clinical 

presentation. Word deafness is rarely reported (Jorgens et al.2008; Otsuki et al.1998) and is not a 

clinical feature of all PNFA cases but has been associated with atrophy affecting posterior 

superior temporal lobes (either bilaterally or in the left hemisphere), regions implicated more 

generally in auditory object processing. Reports of category-specific auditory deficits affecting 

recognition of environmental sounds (Uttner, Mottaghy, Schreiber et al. 2006) and receptive 

linguistic and affective prosody have been described in PNFA (Rohrer et al.2010). Although 
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potentially less clinically salient, deficits of ‘metalinguistic’ functions including nonverbal 

processing of voices, may be particularly debilitating in patients with language impairments. 

 

A limited number of studies have addressed apperceptive and associative levels of nonverbal 

auditory processing deficits (Goll et al.2010; Otsuki et al.1998; Rohrer et al.2010) and have 

implicated both perceptual and semantic impairments in PNFA. Studies have found that 

perceptual deficits can contribute to impairments at recognition of environmental sounds (Goll et 

al.2010), and impairments of linguistic prosody in this syndrome (Rohrer et al.2010). In a single 

case of PNFA with word deafness, concurrent impairments were observed on a perceptual task 

(temporal auditory discrimination), environmental sound recognition and syllable discrimination 

(Otsuki et al.1998). In this case it is likely that temporal perceptual deficits underpinned verbal 

and nonverbal sound recognition deficits, which is plausible in view of hierarchical models of 

auditory object processing (described in Section 1.6.1).  

 

The neuroanatomical basis of auditory processing deficits in general has been inferred on the 

basis of the pathological disease process in PNFA rather than through lesion-behaviour 

correlations. Both word deafness and nonverbal sound deficits have been associated with 

posterior and/or anterior superior temporal lobe atrophy (either bilaterally or in the left 

hemisphere), regions implicated in more general roles in auditory processing. In a group study of 

PNFA, apperceptive environmental sound deficits was hypothesised to relate to the extent of 

posterior perisylvian atrophy (Goll et al.2010). In particular damage to planum temporale, which 

is predicted to be involved in either the formation or access to spectrotemporal templates of 

auditory objects (including words and voices) would provide a neural mechanism for deficits of 

receptive linguistic and paralinguistic auditory processing deficits as well as speech production 

deficits, as this region is implicated in the transformation between auditory and motor 

representations during speech  (Warren et al.2005).  

 

Lesion-behaviour correlation studies in PNFA are uncommon, which is likely to be at least in part 

due to the rarity of the syndrome.  In the only VBM study of nonverbal voice processing in PNFA 

to date, a network of perisylvian regions involving frontal, temporal and parietal cortices was 

associated with performance on affective and linguistic prosody tasks across PPA syndromes 

(Rohrer et al.2010). These networks have been implicated in functional imaging studies of both 

emotion processing and accent processing (Adank et al.2012; Berman et al.2003; Mitchell et 

al.2003; Wildgruber et al.2006). Exploring voice processing in this group will increase 
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understanding of receptive auditory processing deficits in PNFA, and may help to delineate the 

functional contributions of perisylvian regions.   

 

Summary 

In PNFA deficits of language production dominate the clinical presentation; however receptive 

nonverbal auditory processing deficits have also been described which may contribute to social 

disability in the condition. Perisylvian atrophy in the disease affects posterior temporal regions 

which are critical to high level analysis of spectrotemporal information, and may underpin 

deficits in perception of paralinguistic and linguistic characteristics of voices. Receptive deficits 

for recognition of words and processing of nonverbal auditory objects (such as environmental 

sounds and emotional prosody) have been described in PNFA and group studies indicate that 

apperceptive and semantic deficits may occur. Such studies have rarely investigated the neural 

correlates of voice processing and in the only study to date, a network of frontal, parietal and 

temporal regions was implicated. Improved understanding of the neural regions involved in voice 

processing may help to delineate the contributions of different perisylvian regions to the 

relatively heterogeneous clinical profile of PNFA.  

 

1.8.4. Voice processing in typical Alzheimer’s disease 

AD is clinically, neuroanatomically and neuropsychologically distinct from FTLD syndromes, 

and typically presents in a more clinically and pathologically homogeneous way. Commonly the 

first and most salient symptoms are memory dysfunction and pathological changes in the medial 

temporal lobes, in particular in the entorhinal cortex and hippocampus (Barnes, Ourselin, & Fox 

2009; Lee, Buckley, Gaffan et al. 2006). The medial temporal lobes are thought to play a crucial 

role in the acquisition of long-term memories (Squire, Stark, & Clark 2004), and atrophy here is 

thought to result in pervasive deficits in episodic memory in AD. In some patients episodic 

memory function may present as an isolated symptom for many years; more usually however 

other cognitive functions including language, visuospatial skills, executive function and praxis, 

are affected either at presentation or with the involvement of other cortical regions (including 

parietal and frontal lobes) as the disease progresses.  

 

The uniformity of AD is often emphasized, however Snowden and colleagues have found 

heterogeneity in the clustering of symptoms that present together (Stopford, Snowden, Thompson 

et al. 2008). For example aspects of memory loss may dissociate: deficits on tests of episodic 

memory (such as recall and recognition memory tasks), working memory tasks (involving the 
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retention of material across very short delays) or tests of semantic memory (assessed in tests of 

word or sentence comprehension, category fluency or naming) may not cluster together. A more 

dramatic illustration of this heterogeneity is the existence of posterior and language-led AD 

variants (Gorno-Tempini, Brambati, Ginex et al. 2008; Lehmann, Barnes, Ridgway et al. 2011; 

Lehmann, Crutch, Ridgway et al. 2009; Rohrer, Rossor, & Warren 2012).  

 

Recognition of famous faces has been frequently assessed in AD, and in combination with 

deficits of familiar name recognition suggests that semantic deficits occur across modalities of 

person knowledge (Greene & Hodges 1996). Deficits have also been described on other visual 

and verbal semantic tests (Hodges, Salmon, & Butters 1992; Lambon Ralph, Patterson, Graham 

et al. 2003; Perry & Hodges 2000), and it is not clear whether these deficits are the result of 

generalized damage to conceptual representations as has been predicted in SD as a result of 

atrophy in ATLs, or due to impaired access to knowledge stores (Hodges et al.1992; Reilly, 

Peelle, Antonucci et al. 2011), which may for example relate to damage to temporo-parietal 

cortices (Noonan, Jefferies, Corbett et al. 2010). One reason for the lack of clarity is that semantic 

memory is often assessed using tests of object naming, and confrontational naming impairment in 

AD may have a different cognitive and neural basis to semantic deficits, for example due to 

impaired lexical retrieval as a result of temporo-parietal abnormalities (Stopford et al.2008). The 

contribution of perceptual deficits to person and object recognition deficits has seldom been 

studied in AD. The pattern of deficits on perceptual and semantic tasks and the neuroanatomical 

correlates of performance may help to elucidate this; for example the ATLs have been predicted 

to be the locus of amodal conceptual representations whereas temporo-parietal regions may either 

implicate underlying auditory perceptual deficits or semantic access impairments. 

 

Recognition of voices has not been previously tested in AD, however impairments of recognition 

of other auditory objects, including words (Eustache, Lambert, Cassier et al. 1995), 

environmental sounds (Rapcsak, Kentros, & Rubens 1989) and musical melodies (Baird & 

Samson 2009; Omar et al.2010; Vanstone & Cuddy 2010) have been described, while recognition 

of musical emotions has been found to be spared. Reports of deficits of auditory processing in 

AD are relatively infrequent in the literature. A limited number of studies suggest that 

impairments arise at auditory perceptual levels, for example impairments of timbre discrimination 

(Kurylo, Corkin, Allard et al. 1993) or representation of auditory duration (Hellstrom & Almkvist 

1997) have been described, although results have not be consistently replicated.  
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A recent study (Goll, Kim, Ridgway et al. 2012) suggests that AD impacts on more complex 

auditory processes in particular related to analysis of auditory scenes (in perceptual grouping 

tasks), impairments that were associated using VBM with atrophy in the posterior cingulate and 

posterior superior temporal lobe, the latter is in accordance with the proposed role for the planum 

temporale in auditory stream segregation (see Section 1.6.1). Other high level voice processing 

impairments have also been reported, for example deficits in discriminating linguistic and vocal 

emotional prosody (Allender & Kaszniak 1989; Roberts, Ingram, Lamar et al. 1996; Taler, Baum, 

Chertkow et al. 2008; Testa, Beatty, Gleason et al. 2001), which have been shown to present 

early in the disease and become more severe with disease progression (Testa et al.2001). Vocal 

impairments potentially present prior to deficits in language comprehension: one study proposed 

that linguistic meaning and context was used to compensate for impairments in interpreting 

prosodic cues in mild AD (Taler et al.2008). The cognitive and neuroanatomical underpinnings of 

voice processing deficits in AD have not been systematically investigated to date, although 

several of these studies speculated impairments were the result of posterior cortical dysfunction.  

 

In typical AD perisylvian disease is found early in the disease (Minoshima, Giordani, Berent et 

al. 1997; Neary, Snowden, Shields et al. 1987) affecting posterior temporal regions implicated in 

the perceptual processing of auditory objects. Despite anatomical overlap with PNFA, deficits of 

language production, grammatical and phonological processing are uncommon in typical AD. 

Instead abnormalities in temporoparietal cortex have been associated with other cognitive 

impairments, in particular with a cluster of symptoms that include deficits on language, spelling, 

calculation, and working memory tasks (Stopford et al.2008). As deficits in AD can affect more 

posterior cortical regions in the parietal lobe, AD may be a useful disease to investigate the roles 

of temporal and parietal regions implicated in phonagnosia (Van Lancker et al.1989).  

 

Summary 

Typical AD primarily presents with memory difficulties, with other cognitive domains including 

visuo-spatial skills, language and executive functions, affected at presentation or with disease 

progression. Associations between voice processing and other patterns of deficit in AD are of 

interest to identification of different clinical phenotypes. Impairments on semantic memory tasks 

have been described in AD including impairments of familiar face and name recognition, 

however it is unclear whether these result from generalized degradation of semantic knowledge 

stores (as predicted in SD), semantic access impairments, or whether they are underpinned by 

perceptual deficits. Familiar voice recognition has not been tested in AD to date. Recognition of 
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prosody and non vocal auditory objects, including environmental sounds and musical melodies, 

have been found to be affected early in the disease; however the neuroanatomical correlates of 

such deficits have not been reported. It is likely that temporo-parietal atrophy may affect regions 

critical to the perceptual analysis of voices, however very few studies have investigated 

perceptual levels of auditory or voice processing. Investigating performance on perceptual and 

associative voice processing tasks in AD and their neural correlates may further understanding of 

an under-recognised class of symptoms in this disease.  

 

1.9. Aims of this Thesis 

The studies in this thesis aim to delineate voice and accent processing mechanisms in 

neurodegenerative disease using neuropsychological tests and to explore the relations between 

voice processing test scores and grey matter volume in patients with dementia syndromes using 

VBM. The voice processing studies aim to evaluate current cognitive models which implicate 

separable perceptual and semantic voice processing stages and to investigate the neuroanatomical 

substrates for these processing stages. A further aim is to investigate vocal semantic processing 

mechanisms in relation to both semantic analysis of person knowledge in other modalities, and 

semantic analysis of other auditory objects, such as environmental sounds and music. The 

neurocognitive bases of two aspects of processing of accents are investigated in this thesis: accent 

recognition and comprehension of accented speech using novel neuropsychological assessments 

and VBM. Regional and foreign accent processing has rarely been investigated in lesion cases or 

in neurodegenerative disease, and is explored here in the context of voice processing models and 

auditory processing deficits in the target diseases.  

 

The key focus of this work is to assess voice processing in neurodegenerative disorders with 

anatomically relevant frontal, temporal and parietal pathology, including typical AD and three 

syndromes of FTLD: bvFTD, SD, and PNFA. A growing body of functional imaging studies 

suggests temporal, frontal and parietal cortices are involved in perception of voices, recognition 

of familiar voices, and foreign accent discrimination. A joint behavioural and neuroanatomical 

approach is used to investigate the cortical organisation of voice and accent processing and to 

understand the brain basis of important nonverbal symptoms in these neurodegenerative diseases. 

  

Specific aims 
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The specific aims of this thesis are summarised as follows: 

 

1.   To delineate voice processing deficits in the target diseases bvFTD, SD, PNFA and AD 

using neuropsychological tests designed to assess current cognitive models of voice 

processing that implicate separable perceptual and semantic voice processing 

mechanisms. 

2.   To demonstrate the brain basis of these deficits using VBM. 

3.  To further investigate semantic voice processing mechanisms in relation to semantic 

analysis of other complex auditory objects and to semantic processing of person 

knowledge in other modalities, by comparison to face and name processing. 

4. To use novel neuropsychological tests to detect deficits of accent recognition and 

comprehension of accented speech in the target neurodegenerative syndromes of PNFA 

and AD. 

5. To explore the neural bases of any deficits of accent processing using VBM. 

6.  To relate the above findings to patterns of nonverbal symptomatology in the target 

diseases. 

 

1.10. Chapter Outline & hypotheses 

Study 1 (Chapter 3) 

Models of both voice processing and more broadly auditory object processing agree broadly on 

hierarchical processing of person information from early perceptual to higher semantic levels of 

processing. Key unresolved issues include the degree of modality-specificity of voice and face 

processing deficits; the level at which any modality specificity arises; the extent to which 

perceptual and semantic levels of processing are interdependent; and the status of voices versus 

other categories of auditory objects, and other fine-grained semantic categories beyond the 

domain of person knowledge. These issues are addressed in a case control study of two patients 

with deficits of person knowledge. The index case, patient QR, with bvFTD exhibited progressive 

loss of recognition of familiar voices as a leading clinical symptom, while the second patient, KL, 

presented with progressive prosopagnosia without a clinical complaint of altered voice 

recognition.  

 

Selective deficits for voice recognition (relative to face and name modalities) could present either 

as associative or apperceptive impairments. According to models of nonverbal auditory object 

processing, low level perceptual deficits would result in a generalised auditory agnosia. 
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Apperceptive deficits are likely to result in impaired processing and recognition of other auditory 

objects, in particular those requiring high level timbral feature analysis such as musical 

instruments, but may not extend to deficits in recognition of all other auditory objects which are 

less reliant on timbre processing such as particular environmental sounds. These aspects are 

specifically addressed in this experiment.  

 

Study 2 (Chapter 4) 

In this study the neuropsychological and neuroanatomical signatures of voice processing are 

investigated in a group study of two canonical dementias, tvFTLD and AD, syndromes affecting 

temporal and parietal regions implicated in voice processing. Processing of voices is assessed in 

relation to current models of voice processing implicating perceptual and semantic mechanisms, 

and compared to processing of faces and names, in order to assess the modality- and material-

specificity of any voice processing deficit.  

 

Group level neuroanatomical correlates of voice processing performance are assessed using VBM 

and considered in relation to the neural correlates of voice processing implicated in studies of 

phonagnosia in brain-damaged cases and functional imaging studies of healthy controls. Distinct 

profiles of phonagnosia in tvFTLD and AD are hypothesized, with more severe associative 

impairment in tvFTLD and relatively more prominent apperceptive impairment in AD. It is 

further hypothesised, based on anatomical evidence in the healthy brain, that semantic deficits in 

processing voices would be associated with atrophy of ATL regions, and voice apperceptive 

deficits are associated with atrophy of more posterior temporo-parietal regions.   

 

Study 3 (Chapter 5) 

In this study the cognitive and neuroanatomical bases of accent processing are investigated in a 

group study of PNFA and AD. A novel neuropsychological battery is used to assess these 

cognitively impaired patient groups, addressing two aspects of accent processing: the 

intelligibility of accented speech (accent comprehension) and recognition of non-native regional 

and foreign accents (accent recognition). Neuroanatomical associations of behavioural 

performance are assessed using VBM. It is hypothesised that these dementia syndromes are 

associated with separable behavioural profiles of impaired accent processing. It is further 

hypothesized that accent comprehension and accent recognition performance have overlapping 

neuroanatomical associations in the postero-lateral and anterior temporal lobe regions previously 

shown to be critical for other aspects of vocal signal processing. 
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2. General Methods 

 
2.1. Subject characterisation 

All studies reported in this thesis were approved by the local institutional research ethics 

committee and all subjects gave informed consent in accord with the principles of the Declaration 

of Helsinki. Further characterisation of the subjects assessed in each experiment will be described 

in Study 1 (Chapter 3), Study 2 (Chapter 4) and Study 3 (Chapter 5). 

 

2.1.1. Patients 

Deficits of voice recognition were addressed in the context of frontotemporal lobar degeneration 

(FTLD) and Alzheimer’s disease (AD). All patients were recruited from the tertiary Cognitive 

Disorders Clinic at the National Hospital for Neurology and Neurosurgery. Experimental tasks 

were administered to patients with a diagnosis of one of three variants of FTLD according to the 

consensus criteria of (Neary et al.1998): bvFTD, SD and PNFA. Patients would have also 

fulfilled recent criteria for probable bvFTD (Rascovsky, Hodges, Knopman et al. 2011) and 

Primary Progressive Aphasia (PPA) (Gorno-Tempini, Hillis, Weintraub et al. 2011), on the basis 

that all patients had supportive MRI. Different FTLD subjects were tested in each of the three 

studies, with the exception of one subject (KH) recruited as a case control in Study 1 (Chapter 3) 

who was also used as part of the tvFTLD patient group in Study 2 (Chapter 4).  

 

Patients with a clinical syndrome of typical mild to moderate AD led by memory decline were 

recruited. Twenty two subjects fulfilling modified NINCDS-ADRDA (National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related 

Disorders Association) criteria for a clinical diagnosis of probable AD (Dubois, Feldman, Jacova 

et al. 2007) were recruited into Study 2 (Chapter 4), twenty of these patients also completed tests 

for Study 3 (Chapter 5).  

 

2.1.2. Controls 

Experimental tasks were also administered to a control group of healthy older individuals 

recruited from a database of control subjects through previous participation in research studies at 

the Dementia Research Centre and local community organisations. Controls were all native 

British residents with no history of neurological or psychiatric illness.   

 

http://en.wikipedia.org/wiki/National_Institute_of_Neurological_and_Communicative_Disorders_and_Stroke
http://en.wikipedia.org/wiki/National_Institute_of_Neurological_and_Communicative_Disorders_and_Stroke
http://en.wikipedia.org/wiki/Alzheimer%27s_Disease_and_Related_Disorders_Association
http://en.wikipedia.org/wiki/Alzheimer%27s_Disease_and_Related_Disorders_Association


 

 

67 

Twenty-four controls were recruited for Study 1, an additional 11 controls were recruited for 

Studies 2 and 3 (N=35).  A separate group of controls were used for the pilot study described in 

Appendix A.1.  

 

2.2. Background measures 

 

2.2.1. General neuropsychological assessment 

 

Patients and healthy control subjects completed general neuropsychological assessments 

including tests of IQ, executive function, auditory verbal working memory, object perception, 

single word comprehension and naming. Subjects were also assessed on standard tests assessing 

identification of faces (Study 1) and topographical landmarks (Studies 1 and 2); examples of 

‘unique entities’ in the visual modality. A full list of neuropsychological tests utilised in this 

thesis is displayed in Appendix A.2. Individual subjects’ neuropsychological test scores were 

defined as impaired if performance fell below the 5
th
 percentile of the standardisation sample.  

 

2.2.2. Assessment of peripheral hearing 

Presbycusis or peripheral hearing loss is common in older adults and typically involves loss of 

higher frequency hearing. A screening peripheral hearing test was used in all subjects to assess 

the magnitude of any hearing loss and potential influences on auditory voice cognitive tests. A 

pure tone audiometry test involved a procedure adapted from a commercial screening audiometry 

software package (AUDIO-CD
TM

, http://www.digital-recordings.com/audiocd/audio.html). A 

notebook computer was used to administer tones (via headphones) and to record responses; the 

test was conducted in a quiet room. Five frequency levels (0.5, 1, 2, 3, 4 kilohertz (KHz)) were 

assessed: at each frequency, subjects were presented with a continuous tone that slowly and 

linearly increased in intensity (1 decibel (dB) per second (sec)). Subjects were instructed to tap as 

soon as they could detect the tone and the response time was stored for offline analysis. The mean 

value of response time (i.e., detection threshold) for three presentations of the same tone in the 

right ear was taken as the detection threshold for that frequency.  

 

In Studies 2 and 3 differences in mean response time between the groups for each pure tone 

frequency adjusted for age and gender are reported, with p values found with z-tests using 

bootstrap (2000 bootstrap samples) standard errors. In Study 1, subjects’ response times were 

compared to age determined normal limits provided as part of the software. In the two cases 
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described in Study 1 in addition to screening hearing test, full audiometry was assessed clinically 

by audiologists to detect peripheral hearing loss. Any patient or control subject in Studies 2 and 3 

reporting abnormalities of hearing also received a full audiometry assessment.  

 

2.2.3. Assessment of media exposure 

The background media exposure of the control subjects and patients was assessed formally in 

Studies 1 and 2 as a potentially relevant factor influencing familiar voice recognition ability. The 

results of the pilot study (described in further detail in Appendix A.1.) found that older adult 

control voice recognition performance on all measures (familiarity, naming and identification) 

were significantly associated with questionnaire measures of media exposure news exposure and 

TV (television) watching (see Appendix A.1.) but not other demographic measures of the controls. 

A brief questionnaire recording the estimated average number of hours spent each week watching 

television and listening to the radio and the average number of news exposures each week (over 

the period of previous three months) was completed by control subjects and by patients’ carers. 

 

2.3. Experimental investigations of voice and accent processing: plan and general 

procedure  

Auditory stimuli were presented from digital wavefiles on a laptop computer at a comfortable 

listening level (typically 70-80 dB) in a quiet room, in Studies 2 and 3 stimuli were delivered 

through headphones, in Study 1, voice stimuli were delivered in free-field at a comfortable 

constant listening level. Visual stimuli were presented as clear high-quality black and white 

photographs. Verbal stimuli were simultaneously presented as written words and spoken by the 

examiner (control subjects were presented with written words only). The tests were presented in a 

fixed order to all participants; within a test, the order of stimuli was randomised, but the same for 

all subjects. Subject responses were collected for off-line analysis. Before beginning each test, 

several practice trials were administered to ensure the subject understood the task. No feedback 

was given about performance during the test. Voice and accent stimuli were presented once only 

for all tasks, with the exception of the famous voice identification task, where subjects were 

permitted a further presentation if requested. No time limit was imposed. The experimental tests 

were administered to subjects over several sessions. 

 

2.4. Experimental investigations:  Perceptual analysis of voice attributes 

Unlike receptive tests of linguistic processing there is no gold standard for assessing 

paralinguistic voice perceptual processes. In this thesis, low level perceptual tasks were selected 
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with several constraints: that they used vocal stimuli to ensure that assessments were not simply 

testing aspects of auditory perception that were irrelevant to voice processing, secondly that they 

should be ecologically valid tasks, lastly that there should be evidence for their validity from 

psychological and neuroimaging studies of normal healthy volunteers. Perceptual encoding of 

two vocal attributes which serve as important cues to identity were selected: judgments of vocal 

size and gender. These are tasks that require intact processing of vocal pitch and aspects of 

timbre, but enable a listener to extract useful invariant information about the speaker. The brain 

mechanisms that represent these attributes may be at least partly voice-specific (Belin et al.2000; 

von Kriegstein et al.2006). To date there have been no previous neuropsychological studies of 

impaired gender or vocal size discrimination in brain-damaged subjects, in accord with the lack 

of descriptions of apperceptive phonagnosia in the literature. 

 

The ability to recognise gender from the voice is a natural and easy task for the healthy brain; 

normal listeners are able to discriminate gender to levels of over 90% accuracy even in degraded 

listening conditions such as reduced spectral resolution (Childers et al.1991; Remez et al.1997; 

Wu & Childers 1991). Infants are able to categorize the gender of voices from 8 months of age 

(Patterson & Werker 2002), suggesting that the perceptual cues underlying gender can be easily 

perceived. It is generally believed that the perception of pitch determined by F0 (or Glottal Pulse 

Rate) is the strongest cue to gender, as there is little overlap in the F0 between males and females: 

female voices are typically an octave higher than males, as described in Section 1.2.2. Formant 

frequencies are also lower in males compared to females as a result of differences in vocal tract 

length (VTL), and are likely to influence gender discrimination (Childers et al.1991; Smith et 

al.2005; Smith, Patterson, Turner et al. 2005; Smith et al.2007). The neural correlates of gender 

discrimination performance are likely to overlap with the neural correlates of pitch perception in 

primary and non- primary auditory association cortices (posterior superior temporal cortices) 

(Kawahara & Irino 2004; Patterson et al.2002). Characteristics of vocal quality (timbre and 

prosody) are also proposed to differ between genders, for example a more “breathy” and melodic 

quality in females (Childers et al.1991; Klatt et al.1990; Singh et al.1978), however these are 

much more subtle cues for gender and likely to be subsidiary to pitch cues under normal listening 

conditions. 

 

Vocal size is a fundamental and invariant perceptual property of voices which can be reliably 

extracted from the voice, and is likely to be encoded earlier than representations needed in voice 

discrimination (Smith et al.2005; Smith et al.2007; Vestergaard, Haden, Shtyrov et al. 2009; von 
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Kriegstein, Smith, Patterson et al. 2007).  Perceptual judgment of speaker size is a fundamental 

task of auditory cognition in humans and other species, and VTL is an important cue for 

perception of speaker size by normal subjects; differences in VTL show systematic differences 

between children and adults, and between males and females. VTL not only determines the pitch 

of the formant frequencies (as described in Section 1.2.2, longer VTLs lower the frequency of 

formants) but different VTLs also lead to systematic differences in vocal timbre, as longer VTLs 

result in a greater presence of lower frequencies in the sound and longer decay times (for example 

resulting in a deeper lower voice in adult males). A computational algorithm has been developed 

to mimic these changes in timbre at any given pitch (Kawahara et al.2004), and studies using 

generated stimuli have shown that normal healthy volunteers are able to discriminate this 

characteristic of speaker size with ease (Smith et al.2005; Smith et al.2005).  Healthy listeners are 

also able to discriminate auditory size for other auditory objects such as musical instruments, 

however, imaging studies implicate specialized mechanisms for the representation of the auditory 

size in speech formants in left posterior STG (von Kriegstein et al.2007; von Kriegstein et 

al.2006). 

 

2.4.1. Tests of vocal gender and size 

Vocal size and gender were firstly assessed in two subtests based on forced-choice responses. 

Subjects’ ability to assign gender to vocal samples was based on all available auditory cues. 

Vocal samples (each 5 sec in duration) were derived from publicly available sources. 24 trials (12 

male, 12 female) were presented; the task on each trial was to decide if the voice was male or 

female. 

  

Categorical (‘big’ versus ‘small’) perceptual judgements of vocal size were assessed by 

manipulating VTL information in isolation, as previously described in normal subjects (Ives et 

al.2005). Stimuli were based on consonant-vowel syllables recorded by a single male speaker and 

digitally resynthesised using a previously described algorithm (Kawahara et al.2004) that allows 

apparent VTL to be varied independently of glottal pulse rate (voice pitch).  Each syllable was 

presented at two extreme VTL values, one corresponding to a speaker height of 2 meters 

(equivalent to a very tall male, ‘big’) and the other to a height of 0.5 meters (equivalent to a child, 

‘small’), and randomly assigned one of four pitches within the normal human male vocal range 

(Study 1: 116, 120, 138, 158 Hertz (Hz); Study 2: 116, 120, 172, 190 Hz), which was varied 

independently of VTL. Equal numbers of “big” and “small” trials were randomly presented, on 

each trial subjects heard a sequence consisting of repetitions of the same stimulus:  three 
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repetitions were presented in Study 1; four repetitions were presented in Study 2. Subjects were 

asked to judge if the sounds were made by a big person or a small person. 32 trials were presented 

in Study 1, whereas in Study 2, 20 trials were administered.  

 

2.5. Experimental investigations:  Voice discrimination 

Beyond early perceptual encoding but prior to the attribution of meaning it is likely that voice 

processing entails an interposed stage of representation of the voice as a complex auditory object 

(Griffiths et al.2004; Warren et al.2006). This apperceptive stage of vocal processing can be 

assessed by tasks requiring discrimination of unfamiliar speakers, an auditory analogue of 

apperceptive processing in the visual domain (described in Section 1.4.2). Several studies have 

assessed “apperceptive” voice processing, and have mostly assessed the ability to discriminate 

between unfamiliar voices of the same gender: requiring listeners to decide if two audio samples 

played in succession are the “same” or “different” speakers. Studies of phonagnosia have shown a 

double dissociation between performance on this test and recognition of familiar voices (Garrido 

et al.2009; Van Lancker et al.1987; Van Lancker et al.1985). This task, in theory cannot be 

performed solely using low level cues between voices (such as pitch, gender or size information) 

and is likely to represent complex or later stage of perceptual processing. It is likely that such 

fine-grained analysis of voices is dependent on both pitch and timbre processing (Belin et 

al.2004).  

 

2.5.1. Tests of speaker discrimination 

Previous studies of speaker discrimination have used voice samples from foreign speakers 

(Garrido et al.2009) or samples that are fairly long in duration, such as utterances of a sentence 

spoken by two speakers in succession (Van Lancker et al.1987; Van Lancker et al.1988; Van 

Lancker et al.1989). Here, a novel voice discrimination task was created in which subjects were 

required to detect a change in speaker within a short spoken phrase using native speakers. The 

verbal content of the phrase was highly over-learned spoken phrases: comprising days of the 

week ‘Monday, Tuesday, Wednesday, Thursday’ or months of the year ‘January, February, 

March, April’. In order to control for gender, age and accent factors, all speakers were female, 

aged 21–31 years, with a standard Southern English accent. Recorded single words were 

concatenated with fixed inter-word gaps (0.1 sec) to equate overall speech rate. If the sequence 

contained a speaker change, this change always occurred at the midpoint of the phrase, to 

maximise available vocal information for each speaker. If the sequence was spoken by the same 
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speaker, recordings from two separate recording sessions were used, and stimuli were presented 

also with a change in recording at the midpoint of the phrase.  

 

Two versions of the test were created. In the original ‘difficult’ version of the test (used in Studies 

1 and 2), inter-speaker variations in vocal pitch were controlled by setting f0 of recorded stimuli 

at 220 Hz using Goldwave® software. An ‘easy’ version of the task was also created in which 

voice pitch (f0) was not fixed.  In Study 1, 48 ‘difficult’ items were administered: 24 trials (12 

speaker fixed, 12 speaker change) consisting of spoken sequences of days of the week were 

presented, followed by 24 trials (12 speaker fixed, 12 speaker change) using sequences of 

months. In Study 2 all stimuli presented used spoken sequences of days of the week: first 28 trials 

of the ‘easy’ discrimination items were administered (14 speaker fixed, 14 speaker change), 

followed by 12 items from the ‘difficult’ speaker discrimination test (6 speaker fixed, 6 speaker 

change). On each trial, the task was to decide whether the spoken phrase contained a change in 

speaker.  

 

Patient performance on these vocal tasks was compared with performance on a standard test of 

perceptual processing of face identity, the Benton Facial Recognition Test (Benton, Hamsher, 

Varney et al. 1989): this test depends on successful perceptual encoding of the configuration of a 

face, and requires the subject to match a photograph of target face to one (or three) of six other 

photographs of the target with distractor faces under different viewing conditions. The short form 

of the test was administered. Scores were normalised for age and education and scored out of 56. 

 

2.6. Experimental investigations: Voice recognition 

In order to investigate subjects’ ability to recognise familiar voices, audio recordings of famous 

personalities were used. There may be some differences between neurocognitive representations 

of famous people compared to personally familiar people (Giovannetti, Sestito, Libon et al. 2006; 

Joubert, Mauries, Barbeau et al. 2004; Snowden, Griffiths, & Neary 1994), however recognition 

of famous individuals using photos of faces is an established neuropsychological paradigm for 

detecting prosopagnosia (Warrington et al.1967), and has been used in the voice modality to 

detect phonagnosia in brain-damaged subjects (Ellis et al.1989; Gainotti et al.2003; Hanley et 

al.1989; Joubert et al.2006; Neuner et al.2000; Van Lancker et al.1982; Van Lancker et al.1988; 

Van Lancker et al.1985). In order to assess the modality specificity of any deficit, aspects of 

semantic processing of famous voices (voice recognition) were compared to recognition of faces 

and names.  
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Previous work has shown that normal individuals have greater difficulty recognising public 

figures from voice than from faces or name (Damjanovic et al.2007; Ellis et al.1997; Hanley et 

al.1998). Not only are voices not as easily recognised as faces, a bias also exists in recognition of 

public figures’ faces versus their names: famous faces are less well recognised than names in 

normal controls and amnesic AD (Young, McWeeny, Hay et al. 1986). The intrinsic relative 

efficiency of recognition from voice versus face information is an important issue when 

comparing voice recognition to person identification from different modalities. Poor normal 

control performance on voice recognition tests is potentially a serious limitation on the 

characterisation of any deficit; in a recent study of developmental phonagnosia controls were 

excluded due to having insufficient television exposure (Garrido et al.2009).  

 

Pre-morbid familiarity with a set of voices has been assured by using the voices of people 

personally familiar to subjects in neuropsychological and neuroimaging studies (Gentileschi et 

al.1999; Gentileschi et al.2001; Imaizumi et al.1997; Nakamura et al.2001; von Kriegstein et 

al.2006; von Kriegstein et al.2005), however the use of such stimuli complicates attempts to 

quantify performance between patients and in relation to controls. Addressing the ability of older 

adults to recognise public figures is necessary to effectively quantify dementia patient 

performance; older adults are likely to differ from younger adults in their exposure to media 

personalities and in their ability to perform auditory tasks due to high frequency hearing loss due 

to ageing (see Section 2.2.2) or differences in auditory expertise (Hailstone et al.2009; Halpern, 

Bartlett, & Dowling 1995). Normal voice and face recognition ability was quantified in a pilot 

study in healthy older adult controls, further details of methods and results are provided in 

Appendix A.1.  

 

Supporting previous work (Damjanovic et al.2007; Ellis et al.1997; Hanley et al.1998; Neuner et 

al.2000) the pilot study found that across familiarity, naming and identification semantic tasks, 

famous individuals were consistently better recognised by healthy controls in the face modality 

compared to from their voice. This may be partially due to the higher frequency of exposure to the 

faces of public figures in the media (for example in the news) compared to voices, alternatively as 

proposed by Hanley and colleagues, this may represent systematic differences in access to person-

specific information between the two modalities (Hanley & Damjanovic 2009; Hanley et al.2000). 

The results of the pilot study do not resolve this issue, but show that matching the control 

recognition frequency across modalities is likely to be difficult (as previously indicated in studies 
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in which face stimuli were presented blurred in order to match control recognition frequency to 

voices (Hanley et al.2009; Hanley et al.2000)); nearly all public figures assessed in the pilot study 

were recognised by more controls from their face than voice (reported in Appendix A.1). 

Familiarity and frequency of exposure are likely to be important constraints on the robustness of 

semantic representations to neurodegenerative disease (Lambon Ralph et al.1999; Lambon Ralph 

et al.2001; Lambon Ralph, Patterson, Garrard et al. 2003), however according to person 

recognition models the same individual represented in different modalities should activate the 

same multimodal perceptual representation (PIN) and access the same amodal semantic 

representations associated with the person. In this thesis, instead of matching control recognition 

frequency across modalities, identical famous individuals were used in all modalities both to 

control semantic factors (activation of PIN and amodal representations) but also, here interest was 

not just differences between modalities but the profile of overall patient performance relative to 

healthy controls across modalities.  

 

As for other kinds of person knowledge, semantic processing of voices leading to identification 

could in principle comprise a number of different subprocesses, and the relations between these 

have not been defined. For the purposes of this study separate semantic subtests were designed 

based on familiarity judgement, free identification (by naming or verbal biographical 

description), and forced-choice cross-modal recognition. The specificity of any voice recognition 

deficit was assessed by testing recognition of the same set of famous people represented in two 

other modalities: faces and names. For famous faces, the same four semantic tasks were used as 

for voices, for famous names, familiarity judgement and biographical description were used. As 

voice recognition was the primary focus here, voice tasks (familiarity, naming, biographical 

description) were presented first, followed by face tasks (familiarity, naming, biographical 

description), and name tasks (familiarity, biographical description). Finally, cross-modal 

recognition of voices and faces was assessed; in order to avoid priming effects on face 

recognition during the voice recognition task, face recognition was assessed first (matching a face 

to a choice of names), followed by voice recognition (matching a voice to a choice of faces-name 

pairs). 

 

2.6.1.  Tests of familiarity of voices, faces and names    

In this subtest familiarity judgments on famous voices were compared with familiarity judgments 

on faces and names for the same famous individuals. 24 public figures whose voices were best 

identified from voice by pilot study controls were selected (correctly identified by 64-92% of 
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controls (mean = 75.0, SD=9.0)). These individuals (see Appendix A.3) comprised ten 

politicians, five actors, seven media personalities from television and radio, and two members of 

the British royal family. Face photographs and written and spoken names of the same set of 24 

famous individuals were used for face and name processing tasks, respectively.   

 

The set of 24 famous voices was supplemented by 24 unfamiliar voices and faces (as classified by 

over 75% of healthy controls in the pilot study (Appendix A.1)) which were matched by gender 

to the famous set and approximately matched for age and accent. The written names of the same 

24 famous individuals were supplemented with 24 fabricated personal name foils. For each 

modality, 48 trials (24 famous, 24 unfamiliar) were presented; each stimulus was presented once, 

and the task on each trial was to decide if the stimulus was familiar in a forced choice (‘yes – no’) 

protocol.  

 

2.6.2. Tests of voice, face and name identification 

This subtest assessed subjects’ ability to name or to identify the set of 24 public figures 

(described above in Section 2.6.1) by providing other biographical details (e.g., an event closely 

associated with the person, occupational information), in line with the criteria used by Snowden 

and colleagues (Snowden et al.2004). In voice and face modalities, on each trial, the task was to 

identify the person as precisely as possible; if the subject was not able to name the person they 

were encouraged to provide other information about them. In the name modality, on each trial the 

subject was required to provide identifying information about the person. For voice stimuli, 

national or regional origin was not accepted as evidence of person recognition, since this could be 

based on accent cues alone.   

 

2.6.3. Tests of cross-modal recognition of voices and faces    

SD patients often perform poorly on verbal retrieval tasks; accordingly, a cross-modal matching 

task was employed in order to allow patients to demonstrate recognition of voices and faces using 

an alternative procedure that did not rely on word retrieval. For both face and voice targets, three 

stimulus arrays were selected using individuals from the set of 24 public figures; each individual 

was represented in one of the arrays. The first array contained the six females from the complete 

set, a second array contained the nine male politicians, and the third contained the nine male 

media figures (as career is likely to be an important organisational principle in the domain of 

person knowledge: (Crutch & Warrington 2004)). The set of 24 faces was presented first, and the 

task on each trial was to match the face to one of the names in the array. The set of 24 famous 



 

 

76 

voices was presented with the same arrays but with simultaneous presentations of faces and 

names in each array; the task on each trial was to match the voice to one of the face – name pairs.  

 

2.7. Experimental investigations: Accent processing 

Neuropsychological assessments of accent processing are described in Chapter 5, Sections 5.2 

and 5.3.   

 

2.8. Neuroimaging: Structural MRI in dementia 

High resolution brain MRI images are frequently used to measure pathological changes in 

dementia because of the greater anatomical detail compared to images from other methods; three-

dimensional volumes and strong grey and white matter contrast resolution result from 

visualisation of the radio signal produced by different tissue types. For example prominent 

atrophy of the temporal lobes in semantic dementia is well visualized by high-resolution MRI, but 

may not be detected by CT (computerised tomography). As a non-invasive method for visualizing 

and quantifying atrophy in different structures and for measuring rates of progression of atrophy, 

MRI is frequently used in neurodegenerative diseases for purposes of diagnosis and to monitor 

rates of disease progression. 

 

It is possible to quantify the volume of different structures either by manually outlining healthy 

and diseased tissue or regions of interest (ROIs), or a template is used to measure healthy and 

diseased tissue within this template region. Healthy or atrophic regional volumes are then used in 

statistical analyses to calculate either population volumes or to correlate regional GMV with 

scores on neuropsychological tests. Alternative approaches have also been used to quantify and 

locate pathological differences between patient groups including VBM or cortical thickness 

methods which examine tissue types across the brain (in particular, grey or white matter) to 

identify regions where statistically significant differences in image intensities exist between 

groups. The advantages of these methods are that they are semi-automated and unbiased, because 

they do not require a priori hypotheses about particular ROIs. In this thesis patterns of atrophy on 

MRI on the basis of radiological visual descriptions were utilised in descriptions of individual 

cases in Study 1 and group patterns of atrophy were analysed with VBM in Studies 2 and 3 to 

correlate patterns of atrophy with neuropsychological scores as described below.   
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2.8.1. Structural image acquisition   

For all patients willing to volunteer and tolerate a scan, T1-weighted volumetric MR images were 

acquired on a Siemens Trio TIM 3 tesla (3T) scanner (Siemens Medical Systems, Erlangen, 

Germany). Scans were acquired using a 3D magnetization prepared rapid gradient echo (MP-

RAGE) sequence producing 208 contiguous 1.1.mm thick sagittal slices with 28-cm field of view 

and a 256 x 256 acquisition matrix, giving approximately isotropic 1.1 mm cubic voxels.  

 

2.9. Voxel-based morphometry (VBM) 

VBM involves aligning patients’ volumetric MRI scans into the same spatial framework so that 

groups of scans can be statistically compared on a voxel-by-voxel (point by point) basis. 

Statistical analysis is frequently performed to localize group differences in patterns of atrophy in 

dementia (Henley, Wild, Hobbs et al. 2009; Lehmann et al.2009), and more recently methods 

have been developed to relate atrophy with neuropsychological test scores. Traditional methods 

for studying lesion-deficit relationships required that groups of patients were prespecified either 

on the basis of the presence or absence of a behavioural deficit (Adolphs, Damasio, Tranel et al. 

2000) or on the basis of their lesion location (Van Lancker et al.1982; Van Lancker et al.1989), 

which meant that a large number of patients were needed and variation between patterns of 

atrophy or in test scores were discarded. In VBM smaller numbers of patients can be used, 

patterns between and across patient groups can be analysed, and variations in scores are utilised 

in the analyses.  

 

2.9.1. VBM image processing 

VBM relies on successful preprocessing of the scans to ensure anatomical correspondence 

between all the brain images, and modifications to methods are desirable when studying atrophic 

or lesioned brains. Here, MR brain images were processed using MATLAB 7.2 (The MathWorks, 

Inc., Natick, MA, USA) and an image analysis package SPM8 software (Statistical Parametric 

Mapping, Version 8; http://www.fil.ion.ucl.ac.uk/spm) with default settings for all parameters.  In 

preprocessing, raw brain images were first manually rigidly reoriented to standard space (the 

international consortium for brain mapping template). A series of steps were then performed 

using SPM; firstly the reoriented scans were segmented into grey and white matter using the new 

Segmentation Toolbox in SPM8. “Imported” grey and white matter segmentations were used in 

DARTEL (Differomorphic Anatomical Registration Through Exponentiated Lie Algebra) 

(Ashburner 2007), a
 
toolbox for SPM8 which uses an algorithm for improved image registration 

between individuals which iteratively registers the segments to an evolving estimate of their 

http://www.fil.ion.ucl.ac.uk/spm
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group-wise average (Ashburner & Friston 2009) resulting in improved localisation and relative to 

previous spatial normalization methods (Ashburner & Friston 2000). Grey matter segments were 

then normalised using the final DARTEL transformations and modulated to account for local 

volume changes (Ashburner et al.2000). Finally, the images were smoothed so that each voxel is 

made an average of itself and the surrounding voxels (the larger the size of the kernel the larger 

the surrounding region included), using an isotropic Gaussian smoothing kernel (Study 2: 8 mm 

full-width-at-half-maximum; Study 3: 6mm full-width-at-half-maximum). Smoothing helps to 

compensate for the inexact nature of the spatial normalization process, and also makes the data 

more normally distributed which increases the validity of parametric statistical analyses, and is 

based on Gaussian random field theory (Ashburner et al.2000). 

 

2.9.2. VBM analyses 

For each experimental test, associations between regional grey matter volume (GMV) and 

experimental test performance were assessed across and within disease groups using linear 

regression models. Total brain volume in healthy controls has been found to vary with head size 

(Acer, Sahin, Bas et al. 2007) and gender (Good, Johnsrude, Ashburner et al. 2001) and it has 

been shown that adjusting whole brain volume for total intracranial volume (TIV) can eliminate 

differences due to head size and gender (Whitwell, Crum, Watt et al. 2001). TIV is the volume 

within the cranium which includes the brain, meninges and cerebrospinal fluid (CSF). It was 

measured outside SPM on each subject’s T1 weighted segmented images using an algorithm to 

summate and linearly interpolate the sum of the volume of grey matter, white matter and CSF 

segmentations (Whitwell et al.2001). For each experimental subtest, GMV was modelled as a 

function of score, including age and TIV and group as covariates. A score-by-group interaction 

term was included in the combined-groups analyses to allow different GMV-score slopes between 

groups. Further analyses were carried out in Studies 2 and 3 (described in Section 4.2.5 and 

Section 5.5, respectively).  

 

An explicit analysis mask was used to exclude any voxels for which more than 20% of the images 

had an intensity value of less than 0.1. This proportional thresholding  procedure has been shown 

to improve visualisation of markedly atrophic brain regions compared with the default “absolute 

thresholding” mask option in SPM(Ridgway, Omar, Ourselin et al. 2009). For each experimental 

test, grey matter associations were assessed both over the whole-brain and within the ROI 

specified by our prior anatomical hypotheses. A voxel-wise statistical threshold p < 0.05 family-

wise-error (FWE)-corrected for multiple comparisons was applied in all analyses (a global p<0.05 
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FWE-corrected threshold was applied in the combined-modalities conjunction analysis). Small 

volumes for were created manually for each study separately in MRIcron® 

(http://www.cabiatl.com/mricro/mricron/index.html) from a study-specific template created by 

warping all native space whole-brain images to the final DARTEL template and calculating the 

average of the warped brain images. Separate small volumes were created for the right and left 

hemispheres and each was intentionally generous to ensure adequate coverage of the whole 

temporal lobe, anterior to the temporo-occipital junction, the temporo-parietal junction and 

inferior parietal lobe. These regions were selected because temporal and inferior parietal regions 

have been previously been implicated in vocal processing (Chapter 1) (Adank et al.2009; Belin et 

al.2003; Belin et al.2002; Hanley et al.1989; Joubert et al.2006; Lewis et al.2009; Rohrer et 

al.2010; Scott et al.2006; Van Lancker et al.1988; von Kriegstein et al.2004; Warren et al.2006). 

All attributions within each small volume were subsequently inspected to ensure anatomical 

accuracy.  Statistical parametric maps (SPMs) were displayed as overlays on the study-specific 

template.  

 

In order to report coordinates of local maxima in the standard stereotactic MNI (Montreal 

Neurological Institute) space, the grey matter segment of the final DARTEL template was affine 

registered to the a priori grey matter tissue probability map in SPM, and the DARTEL 

coordinates were transformed using the estimated affine mapping to MNI space. 

 

2.10. Statistical analyses of behavioural data 

Statistical analyses in Studies 2 and 3 were carried out in STATA release 9.2 (Stata Corporation, 

College Station, Texas, USA). Fisher's exact test was used to assess group differences in gender, 

for all other demographic variables differences between the groups on demographic measures, 

neuropsychological and experimental test scores were assessed using z-tests and 95% Wald type 

confidence intervals, with standard errors calculated using bootstrapping (2000 replicates). 

Further details of statistical analyses of group behavioural data in Studies 2 and 3 are described in 

Chapters 4 (Section 4.2.4) and 5 (Section 5.4).  

 

In Study 1, single-case results were assessed in relation to the control sample using a method 

designed for use with a small control sample in which the control sample statistics are treated as 

statistics rather than as population parameters, and are compared using a t-test to the single case 

statistic (which is treated as a sample of N=1 (Crawford & Howell 1998)). The advantage of this 
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method is that it has been shown to control the Type 1 error rate regardless of the control sample 

size, whereas the z test has been shown to be vulnerable to a Type 1 error with smaller control 

sample sizes (Crawford & Garthwaite 2005; Crawford et al.1998). Methods have been developed 

for comparing the difference between a patient’s performance on two or more tasks which control 

the Type 1 error rate by the same authors, including the Revised Standardized Difference test. In 

Study 2, this test was used to compare individual patient performance on scores between two 

modalities of presentation relative to differences in score in the control sample (Crawford et 

al.2005).  In the single cases in Study 1, McNemar’s test was used to compare performance 

between modalities on corresponding items between items (McNemar 1947). 

 

For both group Studies 2 and 3, individual subject performance was classed as impaired if below 

the 5
th
 percentile cut-off score for the healthy control group.  
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3. Study 1: Progressive associative phonagnosia: a neuropsychological 

analysis 

 

3.1. Introduction 

In the first study in this thesis voice processing performance was addressed in two patients with 

deficits of person knowledge in the context of FTLD. The index case, patient QR, exhibited 

progressive loss of recognition of familiar voices as a leading clinical symptom of bvFTD, while, 

KL, a case with a diagnosis of tvFTLD with progressive right temporal lobe atrophy presented 

with progressive prosopagnosia without a clinical complaint of altered voice recognition. Several 

issues raised by models of voice recognition and auditory object cognition were addressed in this 

case control study which are described below.  

 

Cognitive models of voice recognition provide a framework for analysing voice processing: 

models agree broadly on the segregation of perceptual processing (via parallel processing of 

faces, voices and name stimuli), however detailed predictions of these models and their 

neuropsychological instantiation have yet to be fully worked out. In the few studies in 

degenerative disease in which associative phonagnosia has been described (primarily in 

progressive prosopagnosic cases) perceptual voice processing was not tested, and the extent to 

which perceptual and semantic levels of processing are independent is of interest to both these 

models and theories of auditory object processing. The degree of modality-specificity of voice 

processing impairment and the level at which any modality specificity arises are unresolved 

issues for voice processing models; associative voice recognition deficits have been described in 

degenerative cases, generally only after the onset of face recognition deficits (Evans et al.1995; 

Gainotti et al.2003; Gentileschi et al.1999; Gentileschi et al.2001; Joubert et al.2003) and 

therefore they may not be identified as a clinical issue (described in Section 1.8.1).  

 

The extent to which processing of voices is separable from other complex non-verbal sounds has 

also not been established. Voice processing models predict that specialized auditory mechanisms 

are needed for voices, in particular at the level of high level perceptual analysis in the VRUs 

(Belin et al.2004) however there is little evidence neuropsychologically for dissociation at 

apperceptive levels of voice processing with other types of sounds, in particular it is likely that 

deficits co-occur with perception of sounds that are dependent on analysis of timbre (Goll et 



 

 

82 

al.2010; Mazzucchi et al.1982). There is evidence from studies of patients with focal lesions that 

phonagnosia can dissociate from agnosias for other sounds at associative levels of processing: in 

particular phonagnosia has been shown in a few cases with preserved environmental sounds 

recognition (Garrido et al.2009; Neuner et al.2000; Peretz et al.1994). However, impairments of 

voice processing are also described in cases with temporal lobe lesions combined with deficits of 

recognition of other auditory objects (Assal et al.1981; Peretz et al.1994), it is plausible therefore 

that the two may co-occur in degenerative disease.  Recognition of voices in this study was 

compared with recognition of another category of auditory objects by probing identification of 

environmental sounds.   

 

Selective deficits of voice processing versus other kinds of complex sounds may either reflect the 

privileged ecological status of human voices or rather the greater demands of processing unique 

auditory exemplars; voice identification requires fine-grained perceptual and semantic processing 

as a single highly differentiated category of complex sounds. Similar arguments have previously 

been advanced to challenge claims that human faces constitute a privileged category of visual 

objects (Gainotti et al.2008). The status of voice processing in comparison to other fine-grained 

semantic categories beyond the domain of person knowledge is of interest to auditory object 

processing models and theories of semantic processing, which make hypotheses about categorical 

segregation and/or levels of processing, for example hypothesising segregation of generic versus 

fine-grained knowledge representations in the inferior and anterior temporal lobes (Mion, 

Patterson, Acosta-Cabronero et al. 2010). This issue was addressed by testing recognition of an 

alternative highly differentiated category of complex sounds: musical instruments.  

 

A further issue for cognitive models of voice processing is the extent to which vocal identity 

information dissociates from recognising vocal emotion (see Belin’s model of voice processing in 

Section 1.7.2). The only study to have shown this neuropsychologically is developmental 

phonagnosic case KH (Garrido et al.2009) who displayed associative deficits of voice recognition 

but normal performance at recognising vocal emotion. Patients with FTLD (in particular bvFTD) 

often show altered responses to emotions in various input modalities, including the voice 

modality (Keane et al.2002; Snowden et al.2008), whereas in SD similar alterations in social and 

emotional behaviour can co-occur with impairments of nonverbal object recognition including 

people. In SD behavioural and person recognition symptoms have been associated with atrophy 

affecting the right ATL (Brambati et al.2009; Chan et al.2009; Edwards-Lee et al.1997; Perry et 

al.2001). In this study it was of interest to compare recognition of familiar identities to 
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recognition of emotions in order to assess whether these are cognitively and neuroanatomically 

separable processes in patients with FTLD.  

 

3.2. Methods  

 

3.2.1. Subject details 

Patient QR 

This 61-year-old right-handed female hairdresser presented with a two year history of insidiously 

progressive behavioural decline, with impassivity, obsessionality, clock-watching, loss of 

empathy and development of a sweet tooth. Impaired voice recognition was an early symptom. 

When first assessed she was no longer able to identify the voices of her children on the telephone, 

nor did she evince any sense that their voices were familiar. In contrast, recognition of faces had 

not been similarly affected: she consistently recognised family members, and despite the 

suggestion of some recent difficulty identifying friends in social situations, she continued to 

exhibit a sense of familiarity toward them. On examination there was evidence of executive 

dysfunction, disinhibition, perseveration and impulsivity. Naming and verbal memory were 

impaired whereas early visual perceptual skills were preserved. The general neurological 

examination was unremarkable. Peripheral hearing assessed using pure tone audiometry was 

within normal limits for age. Brain MRI (Figure 3.1) showed bilateral fronto-temporal atrophy 

somewhat accentuated in the right ATL but extending posteriorly within the temporal lobe and 

including the STS, with no significant cerebrovascular changes. The clinical diagnosis was 

bvFTD. 

 

Patient KL 

This 72-year-old left-handed male academic presented with an eight year history of insidious 

cognitive decline; initially reporting a difficulty recognising neighbours and other close 

acquaintances, followed by progressive difficulties with word finding and topographical memory 

and mild behavioural changes. He had been born in the US but had lived in the UK periodically 

for over 50 years and consistently for the last 11 years. There was no history to suggest 

phonagnosia though he reported that he found understanding unfamiliar accents increasingly 

difficult. On examination there was evidence of mild disinhibition and impaired recognition of 

famous faces, with preservation of early visual perceptual skills. The general neurological 

examination was unremarkable. Peripheral hearing assessed using pure tone audiometry was 

within normal limits for age. Brain MRI (Figure 3.1) showed bilateral predominantly ATL 
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atrophy, more marked on the right side and in the inferior temporal cortices including the 

fusiform gyrus. The clinical diagnosis was tvFTLD with progressive right temporal lobe atrophy. 

 

Figure 3.1. Representative T1-weighted coronal brain MRI sections from each patient  

 

The right hemisphere is shown on the left side of each image. Sections have been selected to 

show the following regions of potential relevance to voice processing deficits: a, frontal lobes; 

b, temporal poles; c, ATLs; d, mid-temporal lobes including Heschl’s gyri; e, temporo-parietal 

junction. Focal cerebral atrophy is shown in both patients: in QR, bilateral fronto-temporal 

atrophy accentuated in the right ATL and extending posteriorly and including the STS; and in 

KL, bilateral predominantly ATL atrophy, more marked on the right side and in the inferior 

temporal cortices including the fusiform gyrus.  

 

Healthy controls 

Perceptual and semantic tasks were administered to 24 control subjects (17 female; mean 

age=64.5, SD=4.3, range: 55-73; mean years of education 15.5, SD=3.5, range 11-25). All had 

normal screening audiometry. Between 20 and 24 controls completed each of the voice 

processing tests, and 14 controls also completed a test of environmental sound recognition. In 

addition, a test of vocal emotion recognition was administered to a separate group of 22 older 

controls (12 female; mean age=67.2, SD=8.8, range: 53-78).  
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Background neuropsychological assessment  

The performance of QR, KL and healthy controls on general neuropsychological tests and 

standard tests assessing identification of faces and topographical landmarks, examples of ‘unique 

entities’ in the visual modality, are summarised in Table 3.1. 

 

Table 3.1. Summary of patient and control performance on background 

neuropsychological assessment 

 QR KL Controls   

 score (percentile) score (percentile) mean (SD) 

General neuropsychological tests   n=23 

NART Full Scale IQ 86 113 120.9 (6.3) 

MMSE (/30) 28 25 n/d 

WAIS III Digit span (forwards, back) (/14) 12,5 (60-80
th

) 14,5 (80-95
th

) n/d 

Graded Naming Test (/30) 4 (<5
th

) 6 (<5
th

) 26.0 (2.0) 

Concrete synonyms (/25) 17 (10
th

)
b
 21 (50

th
)

b
 24.5 (0.7) 

Abstract synonyms (/25)         12 (1-5
th

)
b
 24 (75-90

th
)

b
 24.3 (0.8) 

Object Decision Task (/20) 19 (75–90
th

) 18 (50-75
th

) 17.8 (1.9) 

DKEFS Design Fluency Task: switching 1 (<5
th

) 6 (50-75
th

) n/d 

Identification of unique visual entities   n=17 

Famous Faces Test: Naming (/12) 4 (5
th

) 1 (<5
th

) 9.9 (1.7) 

Famous Faces Test: Recognition (/12) 8 (10-25
th

) 1(<5
th

) 10.8 (1.2) 

Landmark Naming (/15) 7 (<5
th

)
a
 6 (<5

th
)

a
 13.6 (1.7) 

Landmark Recognition (/15) 8 (5
th

)
a
 8 (5

th
)

a
 13.7 (1.4) 

 

Percentiles calculated from standardised tests, except where marked: a, calculated from previous healthy 

control sample (n=143); b, test administered with both visual and auditory presentation of words whereas 

the standardised percentiles are calculated for auditory presentation only; n/d = test not performed  

 

Both QR and KL had evidence of anomia on the GNT, and QR had evidence of additional 

impairments of single word comprehension (abstract synonyms), surface dyslexia on the NART 

and executive function on design fluency; neither patient showed a deficit of short term memory 

or early visual perceptual function. On the standard Famous Faces Test (Warrington et al.1967) 

QR performed at the 5
th
 percentile on face naming and normally on the face recognition 

component of the test, while KL showed impairments on both tasks. On a test assessing naming 

and recognition of 15 famous London landmarks from photographs, QR and KL each performed 

below the 5
th
 percentile for naming and at the 5

th
 percentile for recognition. 
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Subjects’ exposure to the media. 

The background media exposure of the control subjects and both patients was assessed formally 

as a potentially relevant factor influencing voice recognition ability. All subjects completed a 

questionnaire asking them to estimate their average media exposure for the preceding three 

months according to one of six categories: number of hours per week spent watching television, 

number of hours per week spent listening to the radio, and number of times per week they 

watched or read the news. QR’s media exposure was greater than the average experience of the 

controls in each of these categories: on average each week she spent over 20 hours watching 

television (median control category=5-10 hours per week, range: 0-20+), over 20 hours listening 

to the radio (median control category=5-10 hours per week, range: 0-20+), and read or watched 

the news more than 10 times (median control category=8-10 times per week, range: 0-10+). In 

contrast control KL reported lower than average exposure in all categories but fell within the 

control range. He currently listened to the radio 0-1 hours per week (a change from 1-5 hours five 

years previously), he read the news once a week, and did not regularly watch television.  

 

3.2.2. Experimental investigations  

Semantic tests of voice, face and name recognition 

Voice recognition was assessed using tests of familiarity, naming, identification and cross-modal 

matching of famous voices, and was compared to performance on parallel tests of face processing 

to examine the modality specificity of any deficits. In addition familiarity for written and spoken 

names was compared to performance in the voice modality. Methods are described in more detail 

in Chapter 2 (Section 2.6).  

 

Comparison with identification of lower frequency faces 

As the majority of public figures selected were recognised better from face than from voice by 

controls, and face recognition performance may be primed by previous presentation of the 

corresponding voices, therefore an alternative set of 24 difficulty-matched faces (see list of public 

figures in Appendix A.3) were selected from the pilot study stimuli which matched the set of 

famous voices in terms of accuracy of naming and identification. Identification achieved by 77% 

of pilot study group controls; mean=76.7, SD=8.7, range: 58-85%. Recognition by pilot study 

group controls was not significantly different between this set of faces and the 24 voices 

(Wilcoxon Ranksum Test: z=-1.1 p>0.26). This alternative set of faces was administered to QR 

and KL only. 
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Perceptual analysis of voices and faces 

In order to assess the effects of perceptual factors on any voice recognition deficit, tests of 

analysis of low level vocal properties (speaker size and gender) and a test of apperceptive vocal 

processing: “difficult” speaker discrimination were performed. Perceptual processing of faces 

was also assessed using the Benton facial recognition test.  

 

Recognition of vocal emotions 

Processing of vocal emotion by QR and KL was assessed using 40 nonverbal vocalisations, 10 

representing each of the emotions happiness, sadness, anger and fear, selected from a previously 

developed set (Sauter et al.2010; Sauter & Scott 2007). Items most reliably recognised by young 

normal subjects based on these previous normative data were selected. The subject’s task on each 

trial was to select the emotion label describing the target emotion in a four-alternative forced 

choice format.  

 

Identification of environmental sounds 

40 common environmental sounds representing a variety of sound sources, including elemental 

sounds (e.g. thunder), man-made objects (e.g. kettle whistling), and animal calls (e.g. cow 

mooing), were selected from on-line databases. Environmental sounds were identified either by 

sound source (e.g. cow or a tap), or a description of the sound (e.g. mooing or dripping water); 

relatively lenient criteria for recognition were used, in line with the criteria used for voice 

identification. In a cross-modal version of the test, the subject was presented with arrays of four 

names and pictures, and required to match each sound with the correct name-picture combination.  

 

Identification of musical instruments  

Subjects were asked to name and identify 20 different sequentially presented instruments from 

their sounds (audio clips between 4 – 10 sec in duration), and then to identify the same 

instruments in a cross-modal matching condition, in which instrument sounds were presented 

together with arrays of four written instrument names and pictures. Cross-modal arrays contained 

the target instrument, a within-instrument family distractor (e.g. woodwind, brass, strings, 

percussion, and keyboard), and two instruments from a different instrument family. As QR had 

no musical training and KL had only two years of childhood piano lessons, patient performance 

was compared to 12 controls with up to two years musical training (defined as “inexperienced 

listeners”: (Halpern et al.1995)). 
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3.3. Results 

 

Table 3.2. Results of experimental tests assessing recognition of public figures from 

voice, face and name in patients and controls 

 

 

QR KL Case 

controls 

n=24 

Control 

range 

Voice    mean (SD) min-max 

Voice familiarity (/48) (% correct) 25 (52%)* 28 (58%)* 40.6 (4.0) 29-46 

Voice naming (/24) 0* 0* 16.7 (4.4) 7-23 

Voice identification (/24) 0* 0* 18.8 (3.9) 10-23 

Cross-modal matching to face/name (/24) 3* 3* 23.5 (0.9) 21-24 

Face      

Face familiarity (/48)  (% correct) 29 (60%)* 31 (64%)* 46.7 (1.6) 43-48 

Face naming (/24) 6* 3* 21.4 (2.7) 16-24 

Face identification (/24) 17* 4* 23.6 (0.8) 21-24 

Cross-modal matching to name (/24) 19
b 11

b 24.0 (0.0) 24-24 

Difficulty matched faces: naming (/24) 6* 1* 14 (6.8)
a 2-24 

Difficulty matched faces: identification 

(/24) 

13 1* 19 (5.6)
a 3-24 

Name     

Name familiarity (/48) (% correct) 43 (90%) 33 (69%)* 46.6 (1.6) 42-48 
 

a
 Pilot control sample (n=26) scores for identification of 24 faces (see Appendix A.1) were used 

to assess performance on this test;  
b
All control subjects performed at ceiling on this test, 

therefore single case statistics could not be performed; *patient scored significantly worse than 

control group (p<0.05) 

 

3.3.1. Familiarity of voices, faces and personal names   

Table 3.2 shows the results of familiarity judgments on voices, faces and names, in QR, KL and 

controls. For controls, the voice familiarity task was most difficult (mean score equivalent to 85% 

correct), compared to near-ceiling performance on face and name familiarity (mean score 

equivalent to 97% correct in each modality). QR performed close to chance (and significantly 

worse than controls: t = -3.8, p<0.01, df=22) for voice familiarity judgments; for face familiarity 
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judgments, QR’s performance was above chance but also significantly worse than controls (t = -

10.8, p<0.001, df=22), while for name familiarity judgments her performance was significantly 

worse than the control mean (t=-2.2, p=0.04, df=22) but within the control range. Further analysis 

of errors made by QR revealed that she correctly classified only 15/24 familiar voices as familiar, 

and misclassified 14/24 unfamiliar voices as familiar. On name familiarity she correctly classified 

19/24 familiar names as familiar and misclassified 0/24, while she correctly classified 19/24 

familiar faces as familiar, but misclassified 14/24 unfamiliar faces as familiar (i.e., she showed an 

inflated false alarm rate, especially for face familiarity: 14/19 errors). KL’s performance was 

significantly worse than controls for all three modalities (voices: t = -3.1, p<0.01, df=22, faces: t 

= -9.6, p<0.001, df=22, names: t = -8.3, p<0.001, df=22). Analysis of KL’s errors revealed a hit 

rate of only 6/24 familiar voices, 11/24 familiar faces and 14/24 familiar names. He made few 

false alarms: only 2/24 unfamiliar voices, 4/24 unfamiliar faces and 5/24 unfamiliar names were 

classed as familiar.  

 

The difference between familiarity judgement performance to famous voices compared to their 

corresponding faces or names in case QR did not reach statistical significance (faces: χ
2
 =0.90, 

p=0.34, df=1, names: χ
2
 =1.46, p=0.23, df= 1). In case KL, the difference between familiarity 

judgement performance to famous voices compared to their corresponding faces did not reach 

statistical significance, (faces: χ
2
 =1.46, p=0.23, df= 1), however voice performance was found to 

be significantly different to performance on the corresponding names (names: χ
2
 =4.90  p<0.05, 

df=1). The difference between familiarity judgement performance to famous faces compared to 

their corresponding names was not significant in either patient (QR: χ
2
 =0.25, p=0.62, df= 1; KL: 

χ
2
 =0.57, p=0.45, df= 1). 

 

3.3.2. Naming, identification and cross-modal matching of voices and faces  

Table 3.2 shows the results of identification tasks for voices and faces in QR, KL and controls. 

Controls performed significantly better on tests assessing identification of faces than voices 

(naming: t=5.9, p<0.001, df=21; identification: t=6.1, p<0.001, df=21); face identification test 

performance was near ceiling. Both QR and KL performed at floor and significantly worse than 

controls for both naming (t = -3.7, p<0.01, df=21) and identification (t = -4.7, p<0.001, df=21) of 

famous voices, therefore the difference between modalities was not computed. Both patients 

performed significantly worse than controls for face naming (QR: t = -5.6, p<0.001, df=22, KL: t 

= -6.7, p<0.001, df=22) and face identification (QR: t = -8.1, p<0.001, df=22, KL: t = -24.0, 

p<0.001, df=22), however QR’s performance improved substantially for identification of faces 
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compared with voices, and her performance was significantly superior to KL’s (χ
2
 = 14.31 

p<0.001, df=1). 

 

On cross-modal matching tasks, control performance was near ceiling for both voices and faces. 

For cross-modal matching of faces to names, both QR and KL performed worse than controls: 

all control subjects performed at ceiling on this test and single case statistics could not be 

performed, however QR’s performance was significantly better than KL’s (χ
2
 = 5.89 p<0.05, 

df=1). For cross-modal matching of voices to faces and names, both patients performed at 

chance and significantly worse than controls (t = -22.2 p<0.001, df=19). The difference between 

cross-modal matching performance to famous voices compared to their corresponding faces was 

highly statistically significant for case QR (χ
2
 =12.50, p<0.001, df= 1), but non-significant in 

case KL (χ
2
 =3.5, p=0.06, df=1).  

 

3.3.3. Identification of lower frequency faces 

On identification of difficulty matched faces (Table 3.2), QR’s performance did not differ 

significantly from healthy controls for either face naming (t = -1.2, p= 0.26, df=24) or 

identification (t=-1.1, p=0.30, df=24). KL’s performance remained significantly inferior to 

controls (naming: t = -2.8, p<0.05, df=24; identification: t = -3.2, p<0.001, df=24). 

 

Comment 

The experimental control group here had a high average NART IQ (120.9, SD=6.3) and a greater 

mean number of years of education than QR, raising the possibility that a generic factor such as 

IQ contributed to her voice recognition deficit. A premorbid estimate of QR’s IQ was not 

available, and any estimation based, for example, on demographic factors such as occupation 

would need to be made with caution in the individual case. Moreover, regression analysis in a 

larger control sample of older adults (n=48) (pilot study described in Appendix A.1), showed no 

evidence of association between number of years of education or NART IQ and voice recognition 

performance. In order to further explore any IQ-related contribution to QR’s voice recognition 

difficulty, her performance on the voice recognition tasks was compared with five healthy control 

subjects (three female, two male) who had an average IQ typical for the greater London 

population (mean IQ 107.6, SD 6.7, range 96-112). This control group included three controls 

from the experimental control group with lower IQs (mean IQ 110.3, SD 2.1, range: 108-112) and 

two additional older adult controls (IQs 96 and 111) not included in the main study as they did 

not complete the perceptual voice tests. QR’s performance was significantly inferior to this 
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lower-IQ control subgroup (p<0.001) on the voice familiarity (t = -6.7, p<0.001, df=4), naming (t 

= -5.0, p<0.001, df=4) and identification (t = -6.0, p<0.001, df=4) tasks.  

 

Summary 

These findings support the concept of a relatively modality-specific deficit of voice recognition in 

QR, in contrast to the multimodal deficit of person recognition exhibited by KL. At familiarity 

judgements QR performed close to chance for voices; in addition, her ability to judge the 

familiarity of faces was also clearly impaired, whereas her ability to judge the familiarity of 

names was somewhat less impaired. KL performed similarly whether judging the familiarity of 

public figures from voice, face or name, supporting a multimodal person familiarity deficit. 

Impairments of voice recognition were evident across the identification and cross-modal 

matching procedures used here in patient QR. Her ability to retrieve proper names from voice or 

face was clearly impaired, as anticipated on the basis of her general word retrieval impairment 

(Table 3.1). However, her ability to identify the same public figures from face information in the 

identification and cross-modal matching conditions (which do not rely on naming), though 

deficient to healthy controls, was clearly superior to her ability to identify voices, and superior to 

KL’s performance in either modality. QR’s score on the voice identification task was also highly 

significantly worse than the lower IQ control group: it therefore seems unlikely that her voice 

recognition deficit was due to IQ factors.   

 

In line with previous work, control voice recognition scores were significantly lower than face 

recognition scores (Hanley et al.1998). In the pilot control regression analysis (see Appendix 

A.1), increased news exposure was positively associated with voice identification score. It is 

unlikely this factor explains QR’s voice recognition deficit, as QR rated in the highest category 

for the number of times per week she read or watched the news (see subject details in Section 

3.2.1). QR’s relatively good performance on face identification appears initially somewhat 

paradoxical in relation to her poor performance on the face familiarity judgment: however, this 

pattern is likely to reflect an inflated false alarm rate (14/19 errors) on the face familiarity task.  
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Table 3.3. Results of experimental tests of perceptual processing of voices and faces in 

patients and controls 

  

QR KL Controls  

n=21 

Control 

range 

Voice perception   mean (SD) min-max 

Gender discrimination (/24) 24 24 n/a n/a 

Size discrimination (/32) 29 25 28.8 (4.7) 17-32 

Speaker discrimination (/48) 39 33 35.0 (3.1) 29-41 

Face perception     

Benton Facial Recognition Test (/56) 48 41 n/a n/a 

 

n/a = test not performed     

 

3.3.4. Perceptual analysis of voices and faces 

Table 3.3 shows the results of perceptual analysis tasks for voices and faces in QR, KL and 

controls. Both patients were able to judge gender and speaker size, and their performance was not 

significantly different to healthy controls (QR: t = 0.0, p=0.97, df=20; KL: t = -0.8, 

p=0.44,df=20). On the speaker discrimination task, QR’s performance did not differ significantly 

from controls (t = 1.3, p=0.22, df=20) (Table 3.3). KL’s performance was also not significantly 

different from controls (sample: t = -0.6, p=0.54, df=20). Both QR and KL performed normally 

on the Benton test of perceptual matching of faces. 

 

Summary 

This provides evidence that pre-semantic vocal processing mechanisms were intact in QR and 

KL. An impaired ability to identify voices was unlikely to be grounded in an early vocal 

perceptual deficit in either patient, and both patients were able to achieve an intact representation 

of individual voices as auditory objects sufficient to discriminate between different speakers, yet 

were unable to gain a sense of familiarity to a voice or to associate these representations with 

other stored information about familiar speakers. 
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Table 3.4.  Results of experimental tests of recognition of vocal emotions, environmental 

sounds and musical instruments in patients and controls 

  
QR KL Controls  

mean (SD) 
Control 

range 
   n=12 min-max 

Vocal emotion recognition     

Cross-modal matching to emotion (/40) 32 30 35.1 (3.1)
c 26-39 

Environmental sounds     

Environmental sound identification (/40) 35 34 37.1 (2.1)
a 33-39 

Cross-modal matching to picture/name (/40) 39 40 39.9 (0.3)
b 39-40 

Musical instruments     

Instrument sound name (/20)  5*  6* 13.1 (2.8) 8-18 

Instrument sound identification (/20)  6*  7* 13.7 (2.9) 9-18 

Instrument picture name (/20)  4*  11* 17.1 (1.7) 14-19 

Instrument picture identification (/20)  10*  13* 17.3 (1.5) 15-19 

Cross-modal matching sound to picture/name (/20)  12* 18 19.3 (0.8) 18-20 
 

a
 n=14 controls;  

b
n=10 controls; 

c
Separate control group results (n=22), were used to assess 

performance on this test, *patient scored significantly worse than control group (p<0.05) 

 

3.3.5. Recognition of vocal emotions 

Table 3.4 shows the results of the vocal emotion recognition test for QR, KL and controls. Both 

QR and KL performed comparably to healthy controls (QR: t = -1.0, p=0.34, df=21, KL: t = -1.6, 

p=0.12, df=21).  

 

3.3.6. Identification of environmental sounds 

 Table 3.4 shows the results of environmental sounds identification tests for QR, KL and controls. 

On the sound identification test, both QR and KL performed comparably to healthy controls (QR: 

t = -1.0, p=0.35, df=14; KL: t = -1.4, p=0.18, df=14). On the cross-modal matching task, KL 

performed at ceiling and QR near ceiling; 9/10 control subjects performed at ceiling on this task.  

 

3.3.7. Identification of musical instruments  

Table 3.4 shows the results of musical instrument identification tests for QR, KL and controls. 

Inexperienced listeners recognised on average 68.5% (SD=14.4%) of the instruments, an 

accuracy level inferior to identification of famous voices by the same controls. Both patients 

performed significantly worse than controls on tests of instrument sound naming (QR: t = -2.8, 
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p<0.05, df=11; KL: t = -2.4, p<0.05, df=11) and identification (QR: -2.6, p<0.05, df=11; KL: t = -

2.2, p<0.05, df=11). On the cross modal matching task QR performed above chance, however her 

score was significantly different to controls (t = -9.4, p<0.001, df=11); in contrast KL’s 

performance was not significantly different to controls (t = -1.7, p=0.12, df=11). Both controls’ 

and patients’ performance improved on the visual version of the task. Both patients’ scores were 

significantly different to controls on tests of instrument picture naming (QR: t = -7.4, p<0.001, 

df=11; KL: t = -3.4, p<0.01, df=11) and identification (QR: t = -4.7, p<0.01, df=11; KL: t = -2.8, 

p<0.05, df=11).  

 

Summary 

Both QR and KL performed essentially normally on tests of environmental sound and vocal 

emotion recognition. These findings suggest that the deficit of voice recognition exhibited by 

each patient is at least relatively specific for human voices, and supports dissociation between 

vocal identity and emotion processing in these patients. QR’s ability to recognise another 

category of finely differentiated sounds (musical instruments) was impaired, though superior to 

her ability to recognise voices. In contrast, KL exhibited normal auditory recognition of 

instruments on the cross-modal matching task. This pattern of results might signify that QR has 

an auditory agnosia that affects recognition of voices and certain other categories of auditory 

objects, whereas KL has a primary deficit of person knowledge. However, this interpretation 

requires some qualification, since both patients also exhibited impaired visual recognition of 

instruments relative to the healthy control group, while QR scored lower on both the auditory and 

pictorial versions of the task relative to KL. It is difficult to equate musical exposure between 

non-musicians (KL’s musical experience is likely to have been wider than QR’s) and this may 

also be affected by other factors, such as general educational attainment (QR had fewer years of 

formal education than KL). These factors are likely a priori to be relatively more important for 

music than person knowledge. Moreover, no other category of complex nonverbal sounds is truly 

comparable in diversity and familiarity to human voices (for practical purposes, a musically 

untrained subject is likely to be acquainted with perhaps ten musical instruments, but potentially 

hundreds of individual human voices). 

 

3.4. Discussion 

In this study neuropsychological evidence is presented for distinctive deficits of voice recognition 

in two patients with focal neurodegenerative disorders. The first patient, QR, exhibited severe 

impairments of voice identification and familiarity judgments with preserved identification of 
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difficulty-matched faces and environmental sounds; recognition of another highly differentiated 

category of complex sounds (musical instruments) was better than recognition of voices albeit 

impaired. In contrast, patient KL exhibited severe impairments of both voice and face 

recognition, partly preserved recognition of musical instruments and essentially normal 

identification of environmental sounds. Both patients demonstrated preserved ability to analyse 

perceptual properties of voices to the level of individual speaker discrimination and to recognise 

emotions in voices. The profiles of deficits exhibited by both QR and KL are summarised in 

Table 3.5. QR’s deficit of voice processing could be characterised as a failure to associate 

familiar voices with other specific semantic information about the individual: associative 

phonagnosia. Further, this deficit is relatively selective for voices. KL’s more uniform deficit of 

recognition across modalities (voices, faces and names) suggests a multimodal failure of person 

knowledge with associative phonagnosia as one component.   

 

Table 3.5.  Summary of experimental neuropsychological profiles in QR and KL 

 
Domain Case QR  Case KL  

Voices Identification ↓ ↓ 

Familiarity ↓ ↓ 

Emotion recognition  N N 

Perception N N 

Other sounds Musical instrument recognition  ↓↓ ↓ 

Environmental sound identification N N 

Faces Recognition   N
† ↓↓ 

Perception N N 

 

N normal performance, ↓ impaired performance relative to controls, ↓↓ impaired performance relative 

to both controls and other case; 
†
when matched to voices for difficulty 

 

Detailed studies of phonagnosia are comparatively few (Garrido et al.2009; Neuner et al.2000; 

Van Lancker et al.1987; Van Lancker et al.1982; Van Lancker et al.1988; Van Lancker et 

al.1989) and neuropsychological investigations of voice recognition have generally been 

undertaken in patients presenting with acquired or developmental prosopagnosia (Gainotti et 

al.2008; Gentileschi et al.1999; Gentileschi et al.2001; von Kriegstein et al.2006). Selective 

phonagnosia has recently been described on a developmental basis (Garrido et al.2009): this 

individual had deficits of voice recognition and familiarity despite normal face recognition. 
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Deficits in person knowledge are well described as a presentation of right temporal lobe 

degeneration: selective impairment of face recognition and multimodal impairment extending to 

recognition of voices and names have been described. However, phonagnosia has not previously 

been emphasised as the leading feature of person knowledge breakdown in degenerative disease, 

and detailed anatomical correlates of this deficit remain to be established. 

 

Modality-specific deficits of person knowledge (in judgements of familiarity and also retrieval of 

semantic information) present a potentially critical test of the IAC model of person recognition 

(described in Section 1.7.1), and indeed models of the semantic system more broadly (Gainotti 

2007a; Lucchelli et al.2008; Mahon, Anzellotti, Schwarzbach et al. 2009; Snowden et al.2004; 

Thompson et al.2004). The multimodal impairments displayed by KL here (and by most 

previously studied patients with progressive prosopagnosia) are consistent with a core defect 

affecting a multimodal store of knowledge about familiar people (Gainotti 2007a; Gainotti et 

al.2008; Gentileschi et al.2001; Lucchelli et al.2008), reflecting either damage to the stores 

proper or a disconnection from the PIN. However, QR exhibits a relatively selective associative 

deficit of voice recognition.  

 

Such a deficit could in principle arise at pre-semantic stages in the voice processing pathway: the 

demonstration of intact early vocal perceptual analysis and speaker discrimination in QR would 

be consistent with a dissociation of perceptual descriptions or voice recognition units from the 

PIN. A lesion at this processing stage might also account for loss of the sense of familiarity of 

voices. However, while voices are often analogised as ‘auditory faces’, the demands of perceptual 

analysis differ substantially between the auditory and visual modalities, and mechanisms for the 

perceptual analysis of voices remain poorly understood. Deriving a faithful neural representation 

of a voice is likely to depend on intact mechanisms for processing timbre (Griffiths et al.2004; 

Warren et al.2006). Selectivity of voice recognition deficits could arise from an abnormal 

interaction between combinations of complex vocal properties such as timbre, articulation, 

prosody which distinguish an individual’s voice (Perrachione & Wong 2007; Remez et al.1997; 

Schweinberger 2001; Van Lancker et al.1985), and subsequent stages of voice identity processing 

(it is of interest that KL reported some difficulty understanding unfamiliar accents). Interaction 

between perceptual and semantic mechanisms of voice processing would be in line with recent re-

evaluations of models of person identification (Lucchelli et al.2008), and may be particularly 

critical under non-standard listening conditions (e.g., identification of voices over the phone or 

when singing: (Benzagmout et al.2008; Garrido et al.2009)).  
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A related issue is the specificity of agnosia for voices versus other kinds of complex sounds and 

versus unique entities (i.e., items associated with proper nouns: (Gainotti et al.2008)) in sound or 

other modalities. This speaks to the more fundamental issue of the degree of specialisation of 

brain mechanisms for processing voices versus other kinds of ecologically relevant complex 

sounds (Belin et al.2004). Both QR and KL were able to recognise environmental sounds 

successfully, arguing against a generalised auditory agnosia: this dissociation corroborates 

previous findings (Garrido et al.2009; Neuner et al.2000; Peretz et al.1994). QR and KL 

demonstrated comparably weak performance for recognition of London landmarks, but in both 

cases this was clearly superior to recognition of voices (and in the case of KL, also superior to 

recognition of faces). Furthermore, QR demonstrated a clear superiority for recognition of faces 

versus voices. Taken together, these observations argue that phonagnosia in these cases is 

unlikely simply to reflect a generic defect of fine-grained semantic attributions.  

 

Within the auditory modality, both QR and KL showed superior recognition of musical 

instruments compared with voices, however QR’s performance was clearly inferior both to 

healthy controls and KL. Musical instruments are themselves likely to constitute a specialised 

category of complex sounds, but (unlike voices) cannot strictly be considered ‘unique entities’: 

nevertheless, the pattern of QR’s results raises the possibility that her phonagnosia is part of a 

broader defect of differentiation amongst closely related auditory entities, which could in turn 

arise at the level of associative (semantic) processing or as a result of an abnormal interaction 

between perceptual and semantic mechanisms. This formulation would be consistent with 

evidence in the visual domain, in both the present and previous studies (Gainotti 2007a; Gainotti 

et al.2008): patients with right temporal lobe lesions in general exhibit a more severe deficit for 

recognition of faces than landmarks and other unique visual entities, however this recognition 

deficit is seldom restricted purely to faces. 

 

The present study shares the limitations of single neuropsychological case studies, including 

limited scope for anatomical correlation: this applies particularly to neurodegenerative 

pathologies, in which any regional selectivity of brain damage is relative rather than absolute. 

That caveat aside, these cases together illustrate a syndrome of progressive associative 

phonagnosia and demonstrate that this may be relatively selective with respect to other stages of 

voice analysis, other aspects of person knowledge and other categories of auditory objects. 

Important directions for future work include the longitudinal study of the evolution of 
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phonagnosia in relation to other defects of person knowledge in patients with degenerative 

pathologies, a more detailed examination of the processing of other unique or highly 

differentiated auditory entities in phonagnosic individuals, and structural and functional 

anatomical substrates for the syndrome. 
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4. Study 2: A neuropsychological and neuroanatomical analysis of voice 

processing in tvFTLD and AD 

 
4.1. Introduction 

The majority of reported cases of phonagnosia in degenerative diseases propose that voice 

recognition becomes affected with evolution of the progressive prosopagnosia syndrome (Evans 

et al.1995; Gainotti 2007a; Gainotti et al.2008; Gentileschi et al.1999; Gentileschi et al.2001; 

Joubert et al.2006) whereas selective phonagnosia has seldom been reported. This may be 

because voice recognition has rarely been tested in cases without prosopagnosic symptoms or 

because phonagnosia is less clinically salient. In Study 1 (Chapter 3), associative phonagnosia 

was described both in a case of bvFTD with relatively-preserved face and proper name 

recognition and in a patient with right tvFTLD who showed multimodal deficits of person 

recognition; however with only two subjects in this study there was limited scope either for 

neuroanatomical correlation of deficits or for assessing how widely selective phonagnosia 

presents in FTLD. The second study in this thesis aimed to investigate the neuropsychological 

and neuroanatomical signatures of voice processing in two patient groups with FTLD and AD, 

dementias with pathology affecting regions in the temporal lobes. In targeting these disease 

groups it was recognised that FTLD is clinically and anatomically heterogeneous, whereas AD 

typically presents with a more uniform clinical and anatomical profile. In particular, the subgroup 

of patients with FTLD who have predominant temporal lobe atrophy (the subgroup predicted a 

priori to develop voice processing deficits) have heterogeneous clinical presentations, including 

both SD (progressive semantic aphasia or progressive prosopagnosia) and progressive 

behavioural decline (bvFTD), particularly if atrophy chiefly affects the right temporal lobe (Chan 

et al.2009). Accordingly, for the purposes of the present ‘lesion-led’ study an anatomical criterion 

was used for selecting patients with tvFTLD based on the presence of predominant temporal lobe 

atrophy: this noncanonical, anatomically defined subgroup was termed ‘temporal lobe variant 

frontotemporal lobar degeneration (tvFTLD)’ (Brambati et al.2009).  

 

Study 1 demonstrated that associative phonagnosia may occur independent of deficits of 

performance on perceptual tests, in line with current cognitive models and previous 

neuropsychological evidence concerning the organisation of voice processing (see Section 1.4.2) 

(Belin et al.2004; Ellis et al.1997; Hanley et al.2009; Lucchelli et al.2008; Neuner et al.2000; 

Schweinberger et al.1997; Van Lancker et al.1988) as well as frequent descriptions of selective 

impairments to multimodal semantic knowledge in FTLD affecting the ATLs. Semantic deficits 
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of person knowledge (recognition of faces and names) have also been described in AD (Greene et 

al.1996), but voice recognition has rarely been tested. Impairments of high level auditory 

processes such as recognition of linguistic prosody in AD have been primarily attributed to 

posterior cortical dysfunction (Allender et al.1989; Roberts et al.1996; Taler et al.2008; Testa et 

al.2001), therefore an apperceptive impairment of voice processing may be relatively more 

prominent in this patient group. As in Study 1, tests of early encoding, discrimination as well as 

recognition of voices were performed in the target clinical groups. As models of auditory object 

processing suggest that processing categorical information about the characteristics of complex 

sounds may depend on the interaction between perceptual encoding mechanisms and ‘top-down’ 

semantic factors the relations between perceptual and semantic task performance were analysed 

in each patient group. 

 

Temporo-parietal atrophy in AD has been associated with a particular pattern of 

neuropsychological deficits, including impairments on naming, working memory and arithmetic 

tasks (Stopford et al.2008). The relationship between voice processing and other cognitive tasks 

is also of interest to understanding variability in neuropsychological profiles of each disease 

group. In tvFTLD the relations between voice recognition performance and performance on other 

semantic processing tasks is of interest to models of semantic processing which debate whether 

there is segregation of category or modality-specific information in the ATLs. In both syndromes, 

the relations between voice measures and disease severity measures may help to understand how 

phonagnosic and multimodal person recognition symptoms relate to the progression of the 

diseases. Atrophy affecting frontal, temporal and parietal cortices in these diseases allows us to 

identify critical nodes in functional and anatomical cerebral networks delineated in functional 

imaging studies of voice processing.  

 

The neuroanatomical correlates of voice processing performance were assessed using VBM 

(Ashburner et al.2000). The results were considered in relation to the anatomical hierarchy 

hypothesized from perceptual analysis of voices in posterior temporal cortices to associative 

processing of voices and other modalities of person knowledge in more ATL areas (Belin et 

al.2002; Bishop et al.2009; Imaizumi et al.1997; Nakamura et al.2001; Van Lancker et al.1988; 

Van Lancker et al.1989; von Kriegstein et al.2006; Warren et al.2006). Voice processing was 

assessed in relation to face and name processing, as the cognitive and neural architecture of voice 

processing and its relations to other modalities of person knowledge continue to be defined.  
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On the bases of the patterns of atrophy in the two diseases, distinct profiles of phonagnosia were 

hypothesised in tvFTLD and AD, with more severe associative impairment in tvFTLD and 

relatively more prominent apperceptive impairment in AD. Based on anatomical evidence in the 

healthy brain it was hypothesised that semantic deficits in processing voices (in common with 

other kinds of person knowledge) would be associated with atrophy of ATLs: particularly in 

anterior STS/STG (Olson et al.2007), and voice apperceptive deficits would be associated with 

atrophy of posterior temporo-parietal regions.    

 

4.2. Materials and methods 

 
4.2.1. Subject demographic characteristics and clinical details 

14 consecutive patients with tvFTLD, 22 patients with AD and 35 healthy older control subjects 

participated. Demographic characteristics are summarised in Table 4.1. Subject groups did not 

differ significantly in age, gender distribution, or years of education (all p>0.05); the tvFTLD and 

AD groups did not differ significantly on two general measures of clinical severity (symptom 

duration and Mini Mental State Examination (MMSE) score). 

 

Patients with tvFTLD were selected based on the presence of selective, bilateral ATL atrophy on 

MRI (atrophy of one or both temporal lobes disproportionate to any accompanying atrophy of 

other cerebral regions, as assessed visually by an experienced, independent neuroradiologist); the 

distribution of temporal lobe atrophy was asymmetric in 13/14 cases. Clinically, most (13/14) 

patients with tvFTLD had a syndrome of SD according to the consensus criteria of Neary et al. 

(Neary et al.1998); within this SD subgroup, 10 patients presented with progressive semantic 

aphasia and three presented with progressive prosopagnosia. One patient within the FTLD group 

presented with bvFTD. 20/22 patients with a clinical diagnosis of AD had brain MRI: 16 patients 

had disproportionate symmetrical hippocampal atrophy and four had generalised cerebral 

atrophy.  
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Table 4.1. Summary of subject characteristics 

 tvFTLD 

n=14 

AD 

n=22 

Healthy controls 

n=35 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

Demographic 

characteristics 

      

Males: females 8:6  10:12  13:22  

Right: Left-handed 11:3  19:3  31:4  

Age (yrs) 64.2 (6.3) 54-76 66.5 (7.7) 49-79 63.9 (5.7) 54-79 

Years of education 13.9 (4.8) 10-25 13.5 (3.6) 9-20 15.2 (3.3) 11-25 

Clinical 

characteristics 

      

Clinical syndrome  

at presentation 

SD (n = 13)
a
 

bvFTD (n = 1) 

 Amnestic AD  n/a  

Symptom duration (yrs) 5.4 (1.7) 3-8 5.7 (2.4) 2-11 n/a  

MMSE (/30) 21.1 (7.2)** 6-29 21.3 (4.2)** 14-28 29.4 (0.6)
b
 28-30 

Medication 4
c
  18

d
  n/a  

Cardinal symptoms       

Voice recognition n = 9    (64%)  n = 11  (50%)  n/a  

Face recognition n = 7    (50%)  n = 8    (36%)  n/a  

Voice familiarity n = 3    (21%)  n = 3    (14%)  n/a  

Face familiarity n = 5    (36%)  n = 2    (9%)  n/a  

Media exposure       

TV watching  

(hrs per week) 

15.1 (9.2) 0-32 15.9 (10.0) 0-35 14.4 (10.5) 0-63 

Radio listening  

(hrs per week) 

2.4 (4.2)**‡ 0-13 11.4 (13.3) 0-42 13.8 (12.0) 0.5-55 

News exposure  

(times per week) 

8.1 (4.3) **† 1-20 13.0 (8.0) 1-30 13.9 (6.9) 4-35 

 

n/a not applicable to controls;  *significantly worse than controls (p<0.05);   **significantly worse 

than controls (p<0.001); †significantly different from other patient group (p<0.05);    ‡significantly 

different from other patient group (p<0.01); 
a
 10 cases with progressive semantic aphasia, 3 cases 

with progressive prosopagnosia;  
b 

23 controls performed MMSE;  
c
two patients taking a serotonin 

reuptake inhibitor, one taking anti-Parkinson’s medication, one taking lithium; 
d
16 patients taking a 

cholinesterase inhibitor, 2 taking memantine 

 

Clinical details of patients 

Within the tvFTLD group, 10 of the 13 patients with a diagnosis of SD presented primarily with 

difficulties with language: word finding, word comprehension and naming; 3 of these patients had 

additional symptoms at presentation, including episodic memory complaints and changes in 

personality (withdrawal and apathy). The three remaining patients in the SD subgroup presented 

primarily with difficulties with face recognition but not word finding difficulties. One patient 

with predominantly right sided temporal lobe atrophy presented with changes in personality 

(apathy), episodic memory, impaired attention, increased religiosity, auditory hallucinations, and 

decline in visual memory on neuropsychological testing. This patient was taking lithium for 

depression, diagnosed 6 years prior to the assessment. Two other patients with tvFTLD were 
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taking a serotonin reuptake inhibitor for mood symptoms; one patient with tvFTLD was on 

treatment for Parkinsonism.  

 

All patients in the AD group had episodic memory difficulty as a leading symptom; 5 patients had 

additional symptoms at presentation including changes in mood or difficulties with topographical 

memory or reading. When assessed 16 patients were taking an acetylcholinesterase inhibitor 

(donepezil or galantamine), and two patients were taking memantine. Two patients with AD were 

unable to have MRI due to a cardiac pacemaker; computed tomography in one of these patients 

showed generalised cerebral atrophy.  

 

Information about background media exposure for all subjects was obtained (see Methods Section 

2.2.3 for further details), in which control subjects and patients’ carers estimated average number 

of hours spent each week watching television and listening to the radio and the average number of 

news exposures each week (over the period of previous three months). Results are summarised in 

Table 4.1. The AD group did not significantly differ from the healthy control group in any 

category. The tvFTLD group did not differ significantly from the AD or healthy control groups 

for estimated television exposure but had significantly lower (p <0.05) estimated radio and news 

exposure than both the control group and the AD group.   

 

Face and voice recognition symptoms  

Although patients were not selected for inclusion in the study based on a history of phonagnosia, 

the frequency of voice and face recognition difficulties in the target disease groups was of 

interest. Patients’ carers were given a brief questionnaire asking them to report if the patient had 

any difficulty identifying the voices of people they should know well (e.g., over the telephone); 

and if so, whether the patient showed that they were familiar with the voice. Analogous questions 

were posed for face recognition. 9/14 tvFTLD patients and 11/22 AD patients were reported to 

have some difficulty with recognition of voices; 7/14 tvFTLD patients and 8/22 AD patients were 

reported to have some difficulty with recognition of faces.  Loss of voice familiarity was reported 

in 3/14 tvFTLD patients and 3/22 AD patients, while loss of face familiarity was reported in 5/14 

tvFTLD patients and 2/22 AD patients. 

 

Assessment of peripheral hearing 

The audiometry procedure is described in Chapter 2 (Section 2.2.2). Most subjects had no clinical 

history of hearing loss. The mean value of response time (i.e., detection threshold) in the right ear 
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for each frequency was taken as the detection threshold for that frequency except in four subjects 

(1 tvFTLD, 1 AD, 2 controls) that reported unilateral right-sided hearing loss and in these 

subjects the left ear was tested. One control subject had mild bilateral high frequency hearing 

loss, previously confirmed on clinical audiometry. One tvFTLD patient had otosclerosis corrected 

with hearing aids and another had mild cochlear-type (mid-frequency) hearing loss of genetic 

origin confirmed on clinical audiometry. One AD patient had mild bilateral high frequency 

hearing loss and another AD patient had post-infectious unilateral hearing loss, previously 

confirmed on clinical audiometry. To assess any effects of hearing loss on performance in the 

experimental tasks across the experimental groups, all subjects underwent pure tone audiometry 

on frequencies between 0.5 and 4 kHz. As anticipated, increasing age was associated with a 

significant increase in mean response time (detection threshold) at the three highest frequencies 

tested (2, 3 and 4 kHz). Relative to the healthy control group, there was a significant difference 

(p<0.05) in mean detection thresholds at 0.5 kHz for both patient groups (adjusted differences in 

means from controls:  tvFTLD group= 7.2dB, AD group= 4.7dB); these threshold elevations were 

small and unlikely to be clinically relevant. There were no significant differences between either 

patient group and the control group at any other frequency tested, and no significant differences 

were observed between tvFTLD and AD groups at any frequency.  

 

4.2.2. Subject background neuropsychological assessment 

Results are presented in Table 4.2. Relative to the healthy control group both the tvFTLD group 

and the AD group showed reduced verbal and performance IQ and deficits of executive function 

and cognitive speed, recognition memory for words and faces, naming and calculation; the AD 

group showed additional deficits of visual object perception and auditory verbal working 

memory. The tvFTLD group had lower verbal and reading IQ than the AD group and performed 

significantly worse than the AD group on tests of naming, tests of semantic knowledge (verbal 

comprehension and London landmark recognition tests), reading and recognition memory for 

faces; while the AD group performed significantly worse than the tvFTLD group on tests of 

nonverbal reasoning and recognition memory for words. Considered together, these patterns of 

performance support the clinical and neuroanatomical classification for each disease group. 
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Table 4.2. Results of general neuropsychological assessment 

Test  (max score) 
tvFTLD 

 n=14 

AD 

n=22 

Healthy controls 

n=35 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

IQ       

WASI Verbal IQ 67.6 (21.7)**‡ 40-111 96.9 (17.2)** 67-121 120.8 (9.2) 100-141 

WASI Performance IQ 99.9 (19.1)* 68-133 86.0 (16.3)**† 62-110 116.8 (11.9) 96-142 

Reading IQ
d
 88.7 (23.9)**† 45-122 106.4 (15.7)* 68-128 118.9 (7.4) 96-129 

Semantic tests       

BPVS  (/150) 73.8 (49.7)**‡ 5-148 141.4 (11.9)* 106-150 148.1 (1.5) 144-150 

Concrete synonyms (/25) 14.2 (5.3)**†
f
 7-24 20.9 (2.7) **

f
 13-24 24.3 (1.3) 19-25 

Abstract synonyms (/25) 15.4 (5.8)
 
**†

f
 8-24 20.9 (3.5)

 
**

f
 14-24 24.3 (1.2) 20-25 

Landmark name (/15) 2.6 (3.7) **
 g
 0-12 6.1 (4.0) **

g
 0-15 13.5 (1.3)

h
 11-15 

Landmark recogn (/15) 4.6 (4.7)
 
**†

g
 0-12 8.0 (4.1) **

g
 0-15 13.7 (1.2)

h
 11-15 

Non-semantic skills       

GNT (/30) 2.2 (6.1)**‡ 0-23 11.6 (7.9)** 0-26 26.0 (2.4) 19-30 

Object decision task (/20) 16.5 (5.0) 8-29 15.8 (2.8)** 9-19 18.5 (1.2) 16-20 

Digit span forward (/12) 7.3 (2.7) 4-12 7.1 (2.3)* 4-11 8.7 (2.0) 4-12 

Digit span back (/12) 6.1 (3.3) 0-10 4.9 (2.7)* 0-10 7.4 (2.6) 2-12 

Arithmetic (GDA) (/24) 8.9 (6.9)** 0-20 5.5 (4.5)** 0-14 15.4 (4.8)
c
 6-23 

Episodic memory       

RMT words  (/50) 35.4 (7.0)** 24-47 30.1 (7.3)**† 19-47 47.3 (1.8)
c
 43-49 

RMT faces  (/50) 28.9 (4.1)**‡ 24-40 35.0 (5.6)** 25-45 42.2 (4.7)
c
 35-49 

Executive function       

Stroop Word reading scaled 5.2 (4.0)
a
* 1-14 5.8 (4.6)** 1-13 10.7 (2.7)

c
 3-14 

Stroop Inhibition scaled 6.3 (4.6)
b
** 1-13 3.6 (3.2)** 1-11 11.5 (2.0)

c
 7-14 

 
*significantly worse than controls (p<0.01);   ** significantly worse than controls (p<0.001);  †significantly 

worse than other patient group (p<0.05);  ‡significantly worse than other patient group (p<0.001); WMS-R 

digit span forwards, backwards;  GDA, Graded Difficulty Arithmetic; London landmark naming and 

recognition test; (Whiteley & Warrington 1978)Stroop, D-KEFS Stroop test scaled scores; WASI, 

Wechsler Abbreviated Scale of Intelligence; 
a
 1 tvFTLD subject was unable to read the words and a scaled 

score of 1 was used.  
b
 n=12 (2 tvFTLD subjects were unable to name colours);  

c 
19 / 35 controls tested on 

these tasks.  
d 

Reading IQ was measured on the NART unless the subject scored ≤15/50 on this test, in 

which case the Schonell Graded Word Reading Test IQ was used (Schonell & Goodacre 1971). 
e 
1 tvFTLD 

subject did not perform recognition memory tasks. 
f 
2 tvFTLD and 1 AD subject did not perform synonyms 

tests.  
g 

3 tvFTLD and 2 AD subjects did not perform the London landmarks test. 
h
 34 / 35 controls tested 

on these tasks.   
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4.2.3. Experimental tests 

Experimental tests are described in detail in Chapter 2. Assessment of encoding of low-level 

voice attributes of gender and VTL, an index of vocal size were performed.  Speaker 

discrimination was assessed using two versions of the test stimuli to create two levels of speaker 

discrimination task difficulty: a ‘difficult’ test in which inter-speaker variations in vocal pitch 

were fixed and an ‘easy’ test in which pitch was not fixed. 

 

The Benton Facial Recognition Test (Benton et al.1989) was administered to assess unfamiliar 

face discrimination. Semantic tests assessing familiarity, identification, and cross-modal 

recognition of famous people in voice, face and name modalities were presented as described in 

Chapter 2 (Section 2.6).  

 

4.2.4. Analyses of behavioural data 

For experimental perceptual tests, differences in mean scores between groups were assessed using 

z-tests and 95% Wald type confidence intervals, with standard errors calculated using 

bootstrapping (2000 replicates).  

 

For the semantic subtests, the effect of stimulus presentation modality was assessed using a 

bootstrapped linear regression model with 2000 replicates, which allowed for the repeated 

measures from subjects. A global Wald test of interaction was carried out to test the hypothesis 

that group differences in scores varied between modalities, and modality-associated differences in 

performance between the tvFTLD and AD groups were assessed in pair-wise comparisons 

between modalities. Using this model, differences between the two patient groups were adjusted 

for modality performance differences exhibited by healthy controls. 

 

Within each patient group, correlation coefficients between experimental tests were estimated 

with 95% bias-corrected bootstrap confidence intervals (2000 replicates). Correlations were 

estimated between perceptual discrimination subtest scores; between semantic subtest scores 

within and between modalities; and between perceptual and semantic performance. Associations 

with disease severity measures were also assessed, using linear regression models with 95% Wald 

type bootstrap confidence intervals with 2000 replicates. As severity measures, symptom (clinical 

disease) duration was used for both disease groups; in addition, MMSE score was used for the 

AD group and British Picture Vocabulary Scale (BPVS; a measure of semantic impairment) for 

the tvFTLD group. Within the tvFTLD group, the general neuropsychological and experimental 
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test performance of subjects with predominantly left-sided versus predominantly right-sided 

temporal lobe atrophy was compared: differences in means are reported with 95% Wald type 

bootstrap confidence intervals (2000 replicates).  

 

4.2.5. VBM analyses 

 For 18 AD subjects and 11 tvFTLD MRI images were acquired. Further description of pre-

processing stages and analyses are described in Chapter 2 (Section 2.9). 

For each modality in the experimental battery (voices, faces, names), associations between 

regional GMV and subtest performance were assessed in both disease groups using linear 

regression models. Where the interaction was found to be significant, the within-group 

associations were investigated further. In separate modality design matrices, GMV was modelled 

as a function of the experimental subtest score-by-group interaction term with group, age and TIV 

included as covariates. Where no significant group interaction was identified, GMV was 

modelled as a function of experimental subtest score in both disease groups, with covariates of 

group, age, and TIV. In addition to these separate-modality analyses, joint combined-modalities 

models were used to assess the independent partial associations of voice, face and name 

modalities for the familiarity subtest and the identification subtest and partial associations of 

voice and face modalities for the cross-modal matching subtest. For each subtest, F tests were 

used to assess grey matter associations with performance for each modality (adjusting for the 

others) and conjointly across modalities.    

Grey matter associations were assessed over the whole brain and within two regions of interest 

(see Section 2.9.2). A voxel-wise statistical threshold p< 0.05 FWE-corrected for multiple 

comparisons was applied in all analyses, a global p<0.05 FWE-corrected threshold was applied in 

the combined-modalities conjunction analysis. SPMs were displayed as overlays on the study-

specific template. A voxel-wise exclusive masking procedure was applied to display grey matter 

areas associated with voice processing performance but not performance in other modalities.  

In addition to analyses for experimental tests, associations between grey matter volume and 

background semantic tests (BPVS, concrete and abstract synonyms tests, landmark naming and 

identification) were also investigated to compare with associations found for person recognition 

tasks. The same design and methodology as above to separate modality analyses was 

implemented, not all subjects performed the landmark recognition test: 17 AD subjects and 9 

tvFTLD subjects were entered into the analyses.  
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4.3. Neuropsychological results 

 
4.3.1. Perceptual analysis of voice attributes 

Results for the patient and healthy control groups on early perceptual and apperceptive subtests 

for each modality are summarised in Table 4.3.   

 

Table 4.3. Behavioural data: perceptual and apperceptive processing of voices and 

faces  

Subtest  (max score) 

 

tvFTLD 

n=14 

AD 

n=22 

Healthy controls 

n=35 

tvFTLD – AD: 

 Mean (SD) Range Mean  (SD) Range Mean  (SD) Range Difference in 

means (95% CI) 

Voice perception        

Size perception (/20) 16.7 (2.8) 11-20 17.4 (2.1) 12-20 17.1 (2.9) 9-20 -0.7 (-2.4, 1.0) 

Gender perception (/24)  24.0 (0.0) 24-24 23.7 (0.6)* 22-24 24 (0.0) 24-24 -0.3† (-0.5, -0.01) 

Easy speaker 

discrimination (/28) 

24.7 (1.6) 22-27 24.1 (3.2)* 15-28 25.6 (1.5) 21-28 0.6 (-1.0, 2.2) 

Difficult speaker 

discrimination (/12) 

9.2 (1.2) 7-11 8.8 (1.7)** 6-12 9.9 (1.4) 7-12 0.4 (-0.5, 1.4) 

Face perception        

Benton Facial 

Recognition Test (/56) 

42.8 (4.0)** 37-50 42.2 (5.8)** 32-52 48.0 (3.2) 42-56 0.7 (-2.5, 3.8) 

 

CI, 95% confidence intervals; *significantly worse than controls (p< 0.05); **significantly worse than controls (P< 

0.01%); †AD group significantly worse than the tvFTLD group (p < 0.05)  

 

On the vocal gender subtest, the AD group performed significantly worse (p<0.05) than the 

healthy control group: this difference being driven by a subgroup of four AD patients (the 

remaining patients scoring at ceiling on this task); the performance of the tvFTLD group did not 

differ from healthy controls, however all subjects in tvFTLD and control groups performed at 

ceiling on this subtest. On the vocal size subtest, there were no significant group performance 

differences and a large range of scores in all three groups.  

 

On both the ‘easy’ and the ‘difficult’ speaker discrimination subtests, the AD group performed 

significantly worse (p<0.05) than healthy controls. There were no significant performance 

differences between the tvFTLD group and healthy controls or between the two patient groups. 
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No correlations were seen between speaker discrimination and performance on the Benton face 

task in either patient group (see Appendix A.4.1). 

 

4.3.2. Semantic analysis of voices  

Recognition of voices, faces and names   

Results for the patient and healthy control groups on semantic subtests for each modality are 

summarised in Table 4.4.  

 

Table 4.4. Behavioural data: semantic processing of voices, faces and names  

Subtest  (max 

score) 

 

tvFTLD 

n=14 

AD 

n=22 

Healthy controls 

n=35 

tvFTLD – AD: 

 Mean (SD)           Range Mean (SD)        Range Mean (SD)        Range Difference in means 

(95% CI) 

Familiarity        

Voice (/48) 27.5 (4.8)** 22-41 34.4 (5.5)** 24-45 41.5 (2.9) 35-46 -6.9‡ (-10.2, -3.7) 

Face (/48) 34.6 (7.1)** 19-45 39.0 (7.1)** 26-48 46.6 (1.7) 41-48 -4.4 (-9.2, 0.3) 

Name (/48) 34.6 (7.2)** 24-47 44.8 (3.2)* 33-48 46.6 (1.8) 42-48 -10.1‡ (-14.1, -6.2) 

        

Naming        

Voice (/24) 0.6 (1.6)** 0-6 3.2 (3.4)** 0-11 17.4 (3.9) 9-24 -2.6† (-4.3, -0.9) 

Face (/24) 2.2 (3.8)** 0-14 7.0 (5.7)** 0-19 21.6 (2.6) 15-24 -4.7† (-7.8, -1.7) 

        

Identification        

Voice (/24) 2.6 (5.1)** 0-19 10.3 (7.0)** 0-22 19.5 (3.1) 14-24 -7.7‡ (-11.5, -3.8) 

Face (/24) 7.7 (7.5)** 0-22 17.4 (6.0)** 2-24 23.6 (0.8) 21-24 -9.7‡ (-14.2, -5.1) 

Name (/24) 7.2 (7.3)** 0-20 19.6 (4.1)** 10-24 23.9 (0.3) 23-24 -12.4‡ (-16.6, -8.2) 

        

Cross-modal 

matching 

       

Voice (/24) 6.4 (7.1)**
a
 1-24 17.4 (6.4)** 5-24 23.6 (0.8) 21-24 -11.2‡ (-15.7, -6.7) 

Face (/24) 10.1 (7.6)** 2-23 19.6 (5.0)** 6-24 24.0 (0.0) 24-24 -9.5‡ (-13.9, -5.0) 

 
CI, 95% confidence intervals;  * significantly worse than controls (p<0.05);   ** significantly worse    than 

controls (p<0.001);   † tvFTLD group significantly worse than AD group (p<0.01);  ‡ tvFTLD group 

significantly worse than AD group (p<0.001);   
a 
1 tvFTLD patient scored 1/ 13 on the first 13 items on the 

task and declined to continue the test; his results were included in the analysis as a chance score of 3/24 

items. 
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Figure 4.1. Box plots to show tvFTLD, AD and control group semantic test scores 

 

 Boxes indicate median, 25
th
 and 75

th
 percentile values; whiskers indicate range of values.  

 

On all semantic subtests, both the tvFTLD group (p<0.001) and the AD group (p<0.05) 

performed significantly worse than the healthy control group. For both disease groups and also 

for the healthy control group, mean absolute scores across semantic subtests were lower for voice 

recognition than for recognition in the other modalities. The tvFTLD group performed 

significantly worse than the AD group (p<0.01) on all familiarity subtests apart from face 

familiarity (for which there was a trend (p = 0.07) to worse performance), on all identification 

subtests in each modality, on the cross-modal subtests and on voice and face naming.  

 

There was a significant interaction between group and modality for all subtests: familiarity 

(p<0.001), identification (p<0.05), cross-modal matching (p<0.01) and naming (p<0.01). The 
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tvFTLD group showed a significantly larger (p<0.05) decrease in score compared to the AD 

group for identification in the name modality compared with the voice modality; the tvFTLD-AD 

performance discrepancy did not differ significantly between modalities for the other subtests.  In 

particular, there was no evidence that the magnitude of the tvFTLD-AD difference varied 

between voice and face modalities in any subtest.  

 

Relationship between semantic subtest performances in disease groups 

Within both the voice and face modalities, performance was significantly positively correlated 

(p<0.05) between all semantic subtests in the AD group, while in the tvFTLD group cross-modal 

matching was positively correlated with identification and familiarity (voices only). Examining 

correlations between modalities, identification and naming subtests were each significantly 

positively correlated (p<0.05) between voice and face modalities in both patient groups; while 

voice and face familiarity were positively correlated (p<0.01) in the AD group but not in the 

tvFTLD group (see Table A.4.2 in Appendices). Between the voice and name modalities, 

familiarity scores were not significantly correlated in either patient group, while identification 

scores were significantly correlated (p<0.05) in the AD group but not the tvFTLD group. 

 

Relationship between perceptual and semantic task performance in disease groups 

In the AD group, scores on the ‘difficult’ speaker discrimination test and voice familiarity were 

significantly correlated (p<0.05), whereas in the tvFTLD group, there were no significant 

correlations between vocal perceptual and voice recognition performance (see Appendix A.4.1).   

 

4.3.3. The effect of disease severity 

Disease severity is determined by the extent of pathological changes in the brain. In the absence 

of such markers the severity for both patient groups number of years of disease severity was 

utilised, on the basis of an informant’s estimation of when symptoms were first noticed, and 

where that was not possible, estimation was taken from reviewing patient’s clinical notes.  A 

secondary measure of disease severity was examined in each patient group. MMSE score was 

utilised in AD subjects, a clinical measure of disease severity that is widely used in this disease. 

As the MMSE is a less useful measure in tvFTLD due to its over-reliance on verbal skills (Ridha 

& Rossor 2007), and due to core deficits in conceptual knowledge (in particular in SD), the 

British Picture Vocabulary Scale (BPVS) a general semantic task was used. An exploration of the 

association between disease severity and degree of voice processing impairment was tested for 

both measures.  
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Voice identification and familiarity performance were not associated with disease 

severity measures in either disease group (Table A.4.3 in Appendices). Only cross-modal 

recognition was positively associated with disease severity measures: in the tvFTLD group, it was 

positively associated (p<0.01) with BPVS score; while in the AD group, cross-modal voice 

recognition was signficantly associated (p<0.05) with MMSE score. No significant associations 

with disease severity measures were found for speaker discrimination or unfamiliar face 

discrimination in either group (see Appendix A.4.3). 

 

4.3.4. The relationship of voice performance to other cognitive skills  

In addition to the cognitive measures used as disease severity measures (MMSE and BPVS), the 

influence of background neuropsychological variables on voice task performance is of interest to 

understanding the mechanisms of and cognitive influences on voice processing. Within each 

patient group consideration was given to the relationship between voice task performance and 

background neuropsychological task performance in other potentially relevant cognitive domains, 

to facilitate understanding the pattern of cognitive impairments that may accompany deficits of 

voice recognition in each group. As vocal semantic sub-tests were impaired in both groups, the 

relationship between voice recognition performance and background neuropsychological and 

semantic tests was assessed. As vocal apperceptive deficits were observed in the AD group, the 

relationship between speaker discrimination tests and a sub-set of background neuropsychological 

tests directed to nonverbal processes and processes associated with temporo-parietal atrophy in 

AD (Stopford et al.2008) were assessed. These included nonverbal IQ, forwards and backwards 

digit span, naming on the GNT and tests of recognition memory and arithmetic.  

 

Correlations of voice performance with neuropsychological measures 

Correlations between voice semantic tests and background neuropsychological and semantic test 

scores in each patient group are displayed in Appendix A.4.4. In the tvFTLD group, there was 

limited evidence of correlation between semantic voice performance and performance on other 

semantic tests. Only voice naming positively correlated with performance on the BPVS and 

concrete synonyms, cross-modal matching to voice also correlated with the BPVS (all p<0.05). In 

the tvFTLD group voice familiarity significantly and strongly correlated with tests of verbal and 

non-verbal IQ (p<0.05).  
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In the AD group, several tests of voice recognition performance significantly positively correlated 

with tests of episodic memory: voice familiarity correlated with recognition memory for faces 

and voice identification correlated with recognition memory for words (p<0.05). In this group 

voice identification and naming tasks also significantly positively correlated with landmark 

recognition (p<0.05).  

In both groups, voice naming scores showed a significant relationship with naming of common 

objects on the GNT (p<0.05), and in the tvFTLD group only, voice naming significantly 

correlated with forwards digit span and reading IQ (p<0.05). 

 

Correlations between speaker discrimination tests and background neuropsychological and 

semantic test scores in each patient group are displayed in Appendix A.4.5. On tests of speaker 

discrimination, in the AD group easy speaker discrimination significantly positively correlated 

with forwards digit span, whereas in the tvFTLD group difficult speaker discrimination scores 

significantly correlated with performance IQ. No other significant correlations with voice 

perceptual scores were found.  

 

4.3.5. Individual patient data 

In order to assess variation in performance on perceptual and semantic measures individual 

subject data was examined for each patient group. Performance on each test was classed as 

impaired if below the 5
th
 percentile cut-off score for the healthy control group.  

 

Perceptual tests 

On tests of voice perception, 7/22 AD patients but no tvFTLD patients showed impaired 

performance on one task or more. Four AD patients fell into the impaired range on the gender 

discrimination test, the remaining patients scoring at ceiling on this task. On the vocal size subtest 

none of the patients fell into the impaired range due to the large range of control scores. On the 

speaker discrimination tasks, five patients in the AD group but no patients in the tvFTLD group 

performed below the 5
th
 percentile of healthy control scores. On the Benton face perceptual 

matching task, in both patient groups, a similar proportion of individual subjects (5/14 tvFTLD; 

9/22 AD) were impaired according to standardised criteria; however, 6/9 AD patients but no 

tvFTLD patients met criteria for severe impairment. Four AD subjects were impaired at one or 

more voice tasks but not at perception of faces on the Benton, and three subjects were impaired in 

both modalities.  
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Recognition tests 

Individual subject data for each patient group showing familiarity and identification performance 

in each modality (in relation to 5
th
 percentile cut-off scores from the healthy control group) are 

presented in Figure 4.2.  

 

Figure 4.2. Individual patient data for voice, face and name semantic subtests 

 

Patients with tvFTLD are ordered by performance on a general semantic measure (BPVS score); 

patients with AD are ordered by a measure of clinical severity (MMSE score). Green triangles 

show individual data for voice subtests; pink circles show data for face subtests; blue squares 

show data for name subtests. Dashed lines show 5
th
 percentile cut-offs for each modality 

calculated from control data.  

 

Appendix A.4.6 shows the number of patients in each group classed as impaired on each modality 

of presentation for each semantic task (familiarity, naming, identification and cross-modal 
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matching). Deficits of voice familiarity generally co-occurred with deficits in at least one other 

modality in both patient groups, most commonly with faces. No patient in either group showed 

selective sparing of voice familiarity; one patient in the tvFTLD group showed an isolated deficit 

of voice familiarity, however his peripheral hearing was not normal (see Section 4.2.1). In the 

tvFTLD group, most (8/14) patients performed best for face familiarity judgments with four 

patients showing significantly better performance for voice and face familiarity than name 

familiarity (Revised test of difference p<0.05). The AD group showed the reverse pattern with 

most (16/22) patients performing best for name familiarity judgments, with eight patients 

showing significantly better performance for name familiarity than voice and face familiarity 

(Revised test of difference p<0.05). Voice deficits in this group in all cases co-occurred with 

impairments in the face modality, however impairments of face processing were more common: 

five patients showing an isolated deficit of face familiarity and nine patients performed 

significantly better for voice familiarity than face familiarity (Revised test of difference p<0.05).  

 

Naming, identification and cross-modal matching deficits affecting all modalities were seen in all 

but one tvFTLD patient, and were present in approximately half of AD patients, the remainder of 

this group showed substantial heterogeneity of performance across modalities.  

In both disease groups, a high proportion of individual cases impaired on tests of voice 

recognition (13/14 tvFTLD, 11/22 AD) had no perceptual deficit; 4/22 AD patients (but no 

tvFTLD patients) showed a perceptual deficit in addition to a semantic deficit.   

 

4.3.6. Right versus left temporal lobe damage in tvFTLD 

Within the tvFTLD group, nine patients (all with a clinical syndrome of SD) had predominantly 

left temporal lobe atrophy, while four patients (three with SD, one with bvFTD) had 

predominantly right temporal lobe atrophy. Demographic characteristics and neuropsychological 

and experimental test performance profiles of the subgroups across modalities on the semantic 

subtests characteristics of the two subgroups are compared in Table A.4.7 in Appendices. The 

two subgroups did not differ significantly in age, years of education or disease duration. The right 

temporal subgroup had significantly higher MMSE and verbal IQ scores than the left temporal 

subgroup; the two subgroups did not differ significantly on other general neuropsychological 

measures. On the experimental measures, the right temporal lobe subgroup performed better than 

the left temporal lobe subgroup on tests of perceptual analysis of voices, on the Benton task, and 

on naming tests in all modalities; whereas the left temporal lobe subgroup performed better than 

the right temporal lobe subgroup on tests of voice and face familiarity and identification. The 
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difference in performance between the two subgroups was significant (p<0.05) only on the 

Benton task. Consistent with previous structural and functional imaging work (Demonet et 

al.1992; Vandenberghe, Price, Wise et al. 1996) these data collectively suggest that the left 

temporal lobe is integral to verbal semantic memory processes while the right temporal lobe plays 

a greater role in non-verbal semantic memory processes. Semantic processing of voices may 

preferentially segregate with semantic processing of faces rather than names. However, the small 

subgroup sizes indicate a need for caution in extrapolating these data. 

 

4.4. Neuroanatomical data  

 

4.4.1. Neuroanatomical correlates of experimental tests 

 

Interactions between disease group and performance 

No significant grey matter associations were identified for group-performance interactions for 

any of the experimental tests over the whole brain volume. Restricting analyses to the pre-

specified anatomical volume of interest there was a significant interaction between group and 

performance on the ‘easy’ speaker discrimination task in the right parahippocampal gyrus (local 

maximum MNI coordinates: 35 -51 -6; cluster size 123 voxels, p<0.05 after FWE correction). 

Voice discrimination performance in the AD group (but not the tvFTLD group) was positively 

associated with grey matter in right inferior parietal cortex (p<0.05 after FWE correction over the 

pre-specified small volume of interest; see Table 4.5); additional associations of voice 

discrimination were present in right parahippocampal gyrus and left inferior parietal cortex at an 

uncorrected threshold (p<0.001 over the whole brain volume; see Figure 4.3). 

 

Associations of performance across disease groups  

The results of the neuroanatomical analysis across both the tvFTLD and AD groups (adjusting for 

group membership) are summarised in Table 4.5; SPMs are presented in Figure 4.3.   
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Table 4.5. VBM data: neuroanatomical associations of experimental test performance 

Task Neuroanatomical associations 

 Side Area Cluster size 

(voxels) 

Local maxima  

Coordinates (mm) Z score 

Apperceptive        

Voice discrimination
a
 R Inferior parietal cortex 838 56 -50 42 4.13 

Familiarity        

Face  L Temporal pole 678 -55 5 -42 4.29 

Anterior middle temporal gyrus -62 2 -30 4.11 

R Anterior fusiform gyrus 250 28 4 -53 4.20 

Voice, face & name† R Anterior fusiform gyrus 1203 35 -20 -38 4.39 

Identification        

Voice R Temporal pole 3829 

  

28 20 -42 4.55 

Hippocampus 35 -10 -21 4.26 

Entorhinal cortex 32  1 -36 4.21 

Amygdala 32 -7 -28 4.18 

Face R Temporal pole* 558 25 18 -45 4.18 

Anterior fusiform gyrus* 30 8 -50 5.40 

L Temporal pole 481 -47 8 -47 5.39 

Name R Anterior fusiform gyrus* 18 32 -16 -42 4.76 

Temporal pole 2780 25 18 -46 4.39 

L Temporal pole 942 -47 3 -45 4.15 

Voice, face & name† R Temporal pole* 1861 25 18 -45 4.76 

Anterior fusiform gyrus 32 -17 -41 4.58 

Cross-modal matching       

Voice R Temporal pole* 16 24 18 -42 4.90 

Anterior fusiform gyrus* 3098 32 -17 -41 4.49 

Entorhinal cortex 32 1 -40 4.32 

Face R Temporal pole* 2712 25 18 -46 4.58 

Anterior fusiform gyrus 32 -15 -43 4.20 

Voice & face R Temporal pole 1159 24 18 -42 4.47 

Anterior fusiform gyrus 32 -17 -41 4.20 

 

Results for voice discrimination were derived from the AD group only; all other results were derived across 

the tvFTLD and AD groups. All clusters of size >10 voxels are presented. 
a
 ‘easy’ version of the speaker 

discrimination task (see text).  †results based on combined-modalities analyses; other results based on 

separate-modality analyses (see text).  *areas with local maxima exceeding a voxel-wise significance 

threshold p<0.05 after FWE correction over the whole brain; other local maxima after correction over the 

prespecified small volume of interest (coordinates in MNI stereotactic space).  

 



 

 

118 

Firstly the results of analyses for associations of experimental test performance over the whole 

brain volume were considered. No significant associations of voice perceptual performance 

across both disease groups were identified.  In the separate-modality analyses of semantic 

processing of person knowledge, cross-modal recognition of voices, and identification and cross-

modal recognition of faces was each positively associated with grey matter volume at the right 

temporal pole; in addition, cross-modal recognition of voices and identification of faces and 

names was each positively associated with grey matter volume in right anterior fusiform gyrus 

(all p<0.05 after FWE correction over the whole brain volume). In the combined-modalities 

analysis, there was a common grey matter association of voice, face and name identification at 

the right temporal pole (p<0.05 after FWE correction over the whole brain volume), however no 

significant partial associations of voice, face or name identification were identified.   

 

Restricting analyses to the pre-specified anatomical volumes of interest, a number of additional 

associations were identified (all p<0.05 after FWE correction over the relevant small volume). In 

the separate-modality analyses of semantic processing, across both disease groups voice and 

name identification were each positively associated with grey matter at the right temporal pole; 

voice identification (but not face or name identification) was positively associated with grey 

matter in right amygdala and hippocampus, while face and name identification (but not voice 

identification) were each positively associated with grey matter at the left temporal pole. In the 

combined-modalities analysis, a common grey matter association of voice, face and name 

familiarity was identified in right fusiform gyrus; common grey matter associations of voice and 

face cross-modal recognition were identified in right temporal pole and anterior fusiform gyrus. 

No significant partial associations were identified for voice, face or name familiarity or for cross-

modal recognition of voices or faces.  No significant grey matter associations of voice or face 

naming performance were identified.   
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Figure 4.3. Statistical parametric maps of grey matter volume associated with voice 

processing performance 

 

SPMs show grey matter associations of experimental test performance across the tvFTLD and 

AD groups (except a, see also Table 4.5): (a) speaker discrimination (AD group only), (b) voice 

familiarity, (c) cross-modal matching of familiar voices and faces, and (d – f) voice identification 

(all for tvFTLD and AD groups combined). The colour code indicates areas associated with 

apperceptive processing of voices (green), semantic processing of voices as well as faces and 

names (red) and areas associated with identification of voices but not faces or names after 

exclusive masking (blue). SPMs are presented on sections of the mean normalised T1-weighted 

structural brain image in DARTEL space. Coronal (a,b,e), axial (d) and sagittal (c,f) sections are 

shown, targeting the inferior parietal lobes (a), anterior and inferior temporal lobes (b – f). The 

sagittal sections are derived from the right hemisphere and the right hemisphere is shown on the 

right in all other sections. All SPMs are based on regions for which grey matter associations were 

significant (p<0.05) after correction for multiple comparisons over the pre-specified anatomical 

small volume (see Table 4.5); SPMs are thresholded at p<0.001 uncorrected for display purposes.  
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4.4.2. Neuroanatomical correlates of general semantic tests 

Interactions between disease group and performance 

No significant grey matter associations were identified for group-performance interactions 

for any of the experimental over the whole brain volume. 

 

Associations of performance across disease groups 

The results of the neuroanatomical analysis across both the tvFTLD and AD groups (adjusting for 

group membership) are summarised in Table 4.6; SPMs are presented in Figure 4.4.   

 

Table 4.6. VBM data: neuroanatomical associations of general semantic test 

performance 

 

Task Neuroanatomical associations 

 Side Area Cluster 

size 

(voxels) 

Local maxima  

Coordinates 

(mm) 

Z score 

Semantic tests        

BPVS L Inferior temporal gyrus  3328 -60 -31 -27 4.63 

Parhippocampal gyrus/fusiform 

 

-30 -22 -36 4.20 

Landmark naming L Anterior fusiform** 99 -39 -15 -35 5.21 

Anterior MTG** 55 -58 5 -25 5.01 

STS/MTG* 127 -58 -36 -7 4.98 

Temporo-occipital junction* 75 -50 -59 -13 4.84 

Posterior 

fusiform/parahippocampal gyrus* 

40 -37 -38 -18 4.83 

STG 15657 -56 -4 -15 4.54 

Insular -36 -5 -7 4.28 

Landmark 

recognition 

L Anterior MTG* 15 -58 7 -28 4.93 

Posterior fusiform 4440 -41 -37 -31 4.10 

Anterior fusiform -37 -19 -34 4.06 

R Posterior fusiform 869 38 -28 -31 4.31 

Anterior fusiform 120 25 -1 -50 4.09 

 

Results were derived across the tvFTLD and AD groups. All clusters of size >10 voxels are 

presented.  *areas with local maxima exceeding a voxel-wise significance threshold p<0.05 after 

FWE correction over the whole brain; **areas exceeding p<0.01 FWE correction over the whole 

brain; other local maxima after correction over the prespecified small volume of interest 

(coordinates in MNI stereotactic space).  
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Figure 4.4. Statistical parametric maps of grey matter volume associated with semantic 

task performance 

British Picture Vocabulary Scale

Landmark naming Landmark recognition

ba

c d e

SPMs show grey matter associations of semantic test performance across the tvFTLD and AD 

groups (see also Table 4.6): (a-b) BPVS, (c) Landmark naming (d-e) Landmark recognition (all 

for tvFTLD and AD groups combined). SPMs are presented on sections of the mean normalised 

T1-weighted structural brain image in DARTEL space. Coronal (a,c,d) and sagittal (b,e) sections 

are shown, targeting the anterior and inferior temporal lobes. The sagittal sections are derived 

from the left hemisphere and the left hemisphere is shown on the left in all other sections. All 

SPMs are based on regions for which grey matter associations were significant (p<0.05) after 

correction for multiple comparisons over the pre-specified anatomical small volume (see Table 

4.6); are thresholded at p<0.001 uncorrected for display purposes.  

 

Over the whole brain volume landmark naming and identification tests were associated with left 

anterior MTG, additionally naming was association with anterior fusiform gyrus, and more 
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posterior temporal regions including STS/MTG, fusiform and temporo-occipital junction in the 

left hemisphere (all p<0.05 after FWE correction over the whole brain volume). Restricting 

analyses to the pre-specified anatomical volumes of interest, a number of additional associations 

were identified (all p<0.05 after FWE correction over the relevant small volume). Across both 

disease groups BPVS was positively associated with grey matter in the left inferior temporal, 

fusiform and parahippocampal gyrus; landmark naming was additionally positively associated 

with grey matter in the left STS and insula, while landmark recognition was positively associated 

with grey matter bilaterally in posterior and anterior fusiform gyri. No significant grey matter 

associations with concrete and abstract synonyms tests were identified.   

 

4.5. Discussion  

 
4.5.1. Neuropsychological impairments of voice processing in tvFTLD and AD 

Relative to healthy control subjects, both disease groups were impaired on several measures of 

semantic processing of voices (voice familiarity, identification, naming and cross-modal identity 

matching) and voice naming was particularly severely affected; the tvFTLD group performed 

significantly worse than the AD group across semantic subtests. A qualitatively similar pattern of 

deficits to voices was observed for semantic processing of faces, while the largest discrepancy 

between the disease groups occurred for the processing of personal names, particularly at the 

familiarity task. Despite substantial individual variation in performance, both disease groups 

showed a clear overall trend to conjoined deficits of voice recognition with deficits of other 

modalities of person knowledge (particularly recognition of faces). Individual performance 

profiles corroborated the findings from the group analysis: a substantial proportion of patients in 

both disease groups showed deficits of identification in all three modalities and a substantial 

proportion of the tvFTLD group also showed deficits of familiarity in all three modalities. On 

measures of perceptual processing of voices, the AD group (but not the tvFTLD group) showed 

deficits relative to healthy controls, and voice apperceptive performance correlated with voice 

familiarity but not with face apperceptive performance. Taken together, these behavioural data 

suggest that impairments of voice recognition are significant in both these canonical dementia 

syndromes but particularly severe in tvFTLD, whereas impairments of voice perception may 

show relative specificity for AD.  

 

Impairments of voice recognition have rarely been reported in FTLD or AD and may not be 

clinically salient symptoms due to a lack of assessment of auditory impairments diagnostically 
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and due to the availability of compensatory cues (from other modalities and contextual cues). 

However a substantial proportion of the carers of patients in both groups (50% AD, 64% 

tvFTLD) noticed that the patient had some difficulty with voice recognition. The behavioural 

findings here provide further evidence that familiarity judgements and cross-modal matching 

(which do not require explicit access to a person’s name or biographical details) are nevertheless 

sensitive to semantic memory breakdown (Gainotti 2007b; Hanley et al.1998; Snowden et 

al.2004). Person recognition models predict that familiarity decisions occur at a post-perceptual 

level of the PINs: the modality-free gateway to the semantic system (Belin et al.2004; Burton et 

al.1993; Burton et al.1990). However, analogously with familiarity for other kinds of stimuli, it is 

likely to represent a multi-component cognitive operation with perceptual, affective, executive as 

well as semantic dimensions (Gainotti 2007b; Lucchelli et al.2008). In the tvFTLD group voice 

familiarity correlated with performance and verbal IQ and potentially reflects a role for frontal 

executive components in familiarity judgements as proposed by others (Gainotti 2007b; Lucchelli 

et al.2008). This multi-dimensionality might account for the more variable deficits of familiarity 

observed within and between disease groups here. Whereas there was strong evidence that voice 

semantic sub-test performance (for naming, identification and cross-modal matching tasks) 

correlated between modalities (in particular faces), this was not true for familiarity (notably in the 

tvFTLD group). It remains possible that there is a more fine-grained segregation of processing for 

different modalities within the relatively large cortical areas identified here using VBM (Olson et 

al.2007).  

 

4.5.2. Neuroanatomical correlates of familiar voice recognition impairments in 

tvFTLD and AD 

The neuroanatomical analysis provides support for a common brain mechanism in the right ATL 

that is critical for voice recognition as well as other modalities of person knowledge: recognition 

performance across modalities, subtests and disease groups was associated with grey matter 

volume in right temporal pole and anterior fusiform gyrus. Similar regions have been implicated 

in the processing of familiar voices by the healthy brain (Andics et al.2010; Belin et al.2003; 

Belin et al.2002; Belin et al.2000; Nakamura et al.2001; Shah et al.2001; von Kriegstein et 

al.2003; von Kriegstein et al.2005; von Kriegstein et al.2004) and are likely to be critical for 

other aspects of semantic processing across sensory modalities (Acres, Taylor, Moss et al. 2009; 

Drane, Ojemann, Aylward et al. 2008; Mion et al.2010; Williams, Nestor, & Hodges 2005). 

Indeed, it has been proposed that the temporal pole acts as a pan-modal (or amodal) hub in the 

semantic processing hierarchy (Lambon Ralph et al.2008). These same areas are sites of heavy 
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disease involvement in tvFTLD, consistent with the more severe person recognition deficits in 

this group compared with the AD group. However, it is unlikely the profile of anatomical 

associations observed was driven entirely by the tvFTLD group since there was no evidence of a 

significant difference in grey matter associations of semantic test performance between the 

disease groups. Whereas AD is pathologically homogeneous, ‘tvFTLD’ is likely to be 

pathologically heterogeneous (Josephs, Hodges, Snowden et al. 2011) therefore a shared macro-

anatomical substrate is likely to be underpinned by distinct patterns of cellular involvement and 

correspondingly distinct pathophysiological mechanisms both between AD and tvFTLD groups 

and within the tvFTLD group. 

 

Certain mesial temporal lobe structures (amygdala, hippocampus and entorhinal cortex) showed 

an association here with voice identification but not other modalities of person knowledge at the 

prescribed threshold (see Table 4.5); the mesial temporal lobe has been previously implicated in 

familiar voice processing by healthy subjects (Andics et al.2010; Nakamura et al.2001; von 

Kriegstein et al.2005; von Kriegstein et al.2004) and this region may be involved in processing 

sensory object information (Lee, Buckley, Pegman et al. 2005) and particularly in tracking 

information in sound for example, familiar musical melodies: (Samson & Zatorre 1992; 

Watanabe, Yagishita, & Kikyo 2008). However, any apparent modality-specificity here should be 

interpreted with caution: no independent associations of recognition in a particular modality 

emerged when modalities were assessed together. 

 

Both the behavioural and neuroanatomical findings here are consistent with a growing body of 

evidence implicating the ATL in pan-modal processing of semantic knowledge and more 

particularly with person knowledge (Bozeat et al.2000; Coccia et al.2004; Lambon Ralph et 

al.2008; Luzzi, Snowden, Neary et al. 2007; Rami, Loy, Hailstone et al. 2007), previous 

functional imaging and lesion evidence suggests that these regions participate in a cooperative 

network mediating different aspects of semantic processing (Ellis et al.1989; Grabowski, 

Damasio, Tranel et al. 2001; Mion et al.2010; Papagno & Capitani 1998; Thompson et al.2004; 

Tranel 2006; Tranel, Damasio, & Damasio 1997; von Kriegstein et al.2005). Associations were 

observed across all three modalities of person recognition task with the right anterior fusiform 

gyrus: a region anatomically located at the end of the ventral visual stream is of interest to models 

of voice processing. Associations with these “basal temporal areas” (anterior fusiform and 

inferior temporal gyri) were found also with two other semantic tasks: landmark recognition tasks 

and the BPVS, tasks that were also impaired in both disease groups here (see Table 4.2). Previous 
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work has associated basal temporal areas with semantic processing of other objects (visual and 

verbal) in patients with FTLD and focal temporal lobe lesions (Acres et al.2009; Mion et al.2010; 

Williams et al.2005)) and also in functional imaging of healthy controls performing semantic 

tasks (Binney, Embleton, Jefferies et al. 2010; Bright, Moss, & Tyler 2004; Martin & Chao 2001; 

Sharp, Scott, & Wise 2004) suggesting that they are integrally recruited in semantic processing 

mechanisms which are not specific to the modality of input.  

 

Recent models of voice recognition propose that fusiform regions are recruited via cross-modal 

connections with auditory perceptual regions in STS/STG (von Kriegstein et al.2006; von 

Kriegstein et al.2005). Alternatively a more general role in semantic processing has been 

hypothesised for this region: it has been proposed that fusiform gyri are the “hub” for “basic 

level” amodal semantic concepts whereas more specific conceptual knowledge about “unique 

entities”, such as naming people, buildings and towns are represented at the temporal poles (Mion 

et al.2010). Although no direct comparison was made here with tasks assessing basic level 

semantic concepts, associations with the anterior fusiform gyrus across person recognition tasks 

and in particular with familiarity judgements across modalities may reflect the operation of 

person identity nodes in this region. The precise role of the anterior fusiform and temporal pole 

have not been resolved in this study, the fusiform is likely to interact with other cortical areas 

involved in perceptual (including cross-modal) analysis, whereas the temporal pole may have a 

more specific role in activating conceptual knowledge about “unique entities” (such as people or 

buildings). It is often assumed that voice recognition is normal in prosopagnosia, however a 

single case study indicates that this may not be the case (von Kriegstein et al.2006); further 

studies of voice recognition performance in acquired prosopagnosia with selective damage to 

inferior temporal regions are necessary. 

 

4.5.3. Voice recognition and models of semantic memory 

Evidence concerning the behavioural and neuroanatomical differentiation of modalities of person 

knowledge is relevant to the more fundamental question of the organisation of brain knowledge 

systems. According to the two leading theoretical positions, different modalities of knowledge 

could feed into a unitary amodal system centred on ATLs or alternatively, modalities might 

continue to be represented within a multiply interconnected semantic network distributed between 

the left and right temporal lobes. These theories make divergent predictions about deficits of 

person knowledge following brain damage. The amodal position would predict that semantic 

deficits should affect all modalities of knowledge in a correlated manner, and modality-specific 
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deficits would arise from pre-semantic stages of processing; whereas the multimodal position 

would predict the existence of semantic-level modality-specific deficits despite intact pre-

semantic processes, if damage involves modality-specific components of the distributed semantic 

network. The results of this study implicate bilateral temporal associations for different kinds of 

nonverbal semantic processing, including face and landmark recognition.  

 

Rather than a purely amodal or fully multi-modal organisation, the present neuropsychological 

and neuroanatomical findings suggest that verbal and nonverbal modalities of person knowledge 

are partially differentiated, whereas different modalities of nonverbal (voice and face) knowledge 

are more closely aligned. Few individuals exhibited modality-selective deficits (in the AD group 

a few cases displayed selective deficits of face recognition), however more frequent at the group 

and individual level was discrepancy between verbal (name) recognition and nonverbal 

recognition of voices and faces. A subgroup analysis comparing neuropsychological performance 

profiles of FTLD patients with predominantly left versus right temporal lobe atrophy showed a 

trend in favour of superior naming for cases with predominantly right-sided atrophy and superior 

voice and face recognition for cases with predominantly left sided atrophy, though differences did 

not attain significance. It is likely that both the behavioural and the neuroanatomical analyses 

here were under-powered to detect laterality and modality-specific effects, particularly as 

temporal lobe atrophy (though asymmetric) was bilateral in all cases, it is possible for example 

some left tvFTLD cases may have had greater absolute volume loss on the right side e.g. 

(Brambati et al.2009; Mion et al.2010).  

 

Differentiation between the hemispheres with respect to the processing of names versus voices 

(and faces) would be consistent with previous work. Patients with tvFTLD and predominantly left 

temporal lobe atrophy typically show superior performance for visual over verbal material 

(e.g.(Lauro-Grotto, Piccini, & Shallice 1997; McCarthy & Warrington 1988; Snowden et 

al.2004)), while patients with predominantly right-sided temporal lobe atrophy are more likely to 

exhibit clinically significant agnosias for nonverbal material (Edwards-Lee et al.1997; Gorno-

Tempini et al.2004; Miller et al.1993; Perry et al.2001). Together with evidence from functional 

imaging studies (Belin et al.2003; Demonet et al.1992; Scott et al.2006), the data collectively 

suggest that the left temporal lobe is integral to verbal semantic memory processes while the right 

temporal lobe plays a relatively greater role in non-verbal semantic memory processes. The 

relations between voice and face processing remain poorly defined and this important issue will 

only be settled in future studies ideally with larger, anatomically defined clinical cohorts. 



 

 

127 

4.5.4. Associations with other neuropsychological tests and disease severity 

measures in tvFTLD 

In addition to severe deficits of person knowledge, the tvFTLD group showed severe impairments 

on other semantic tasks (see Table 4.2) in keeping with pervasive semantic deficits described in 

SD. However, voice recognition task performance did not correlate consistently with performance 

on other general semantic tasks; only famous voice naming correlated with more than one 

semantic test. This result contrasts with studies which show performance between semantic tests 

in SD is highly correlated across categories and modalities of knowledge (Lambon Ralph et 

al.1999; Lambon Ralph et al.2003). Variation in person recognition task performance was not 

accounted for by differences in disease severity or background neuropsychological measures. It is 

possible that there may be partial segregation of representations of person knowledge and other 

categories or levels of semantic knowledge; dissociations between person knowledge and other 

categories of semantic knowledge has been shown previously in a few lesion and degenerative 

cases (Ellis et al.1989; Evans et al.1995; Hanley et al.1989; Thompson et al.2004). Comparison 

between recognition of famous voices and nonverbal objects that are of comparable familiarity 

and frequency within the auditory modality is needed to investigate this further. 

 

Lack of significant correlation between semantic tasks in the tvFTLD group could in principle be 

due to floor effects on semantic tasks. However voice naming, a task where a number of tvFTLD 

subjects scored at floor, significantly positively correlated with a number of other tasks: including 

background semantic tests, naming on the GNT and also forwards digit span and reading IQ. No 

significant correlation was observed between these tests and other voice semantic tasks. Voice 

naming performance did not show any significant relationship with any other voice recognition 

task, and deficits of voice naming may have a different neuroanatomical basis to other voice 

semantic tasks in this group; for example impairments of naming of both people and common 

objects have been associated with atrophy in the left ATL in SD (Giovanello, Alexander, & 

Verfaellie 2003; Mesulam, Rogalski, Wieneke et al. 2009).  

 

4.5.5. Neuropsychology and neuroanatomy of vocal apperceptive deficits 

Whereas the profile of voice recognition impairment was consistent across subtests and disease 

groups, deficits of voice perception were restricted to the AD group and involved voice 

apperception (speaker discrimination) and encoding of one perceptual attribute (vocal gender) 

while sparing encoding of another attribute (vocal size). A neuroanatomical association of 

apperceptive performance was identified in the right inferior parietal lobe, and there was some 
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evidence of correlation between voice apperception and recognition performance in the AD 

group. Taken together, the present findings underline the potential for development of semantic 

deficits of voice recognition (and other aspects of person recognition) despite intact pre-semantic 

perceptual mechanisms; however, deficits of voice perception may have contributed to the 

development of voice recognition impairment in the AD group though the relations between 

perceptual and semantic deficits were not uniform for individual AD patients.  

 

Cognitive models postulate that pre-semantic structural encoding processes derive ‘view 

invariant’ representations of both voices and faces which are subsequently linked with stored 

representations of individual identity in face or voice recognition units (Belin et al.2004; Bruce et 

al.1986; Burton et al.1990). The present neuroanatomical data do not resolve the mechanism of 

the perceptual deficit: functional imaging work in healthy subjects has emphasised the role of 

posterior regions of the STS in encoding complex sound attributes relevant to voice analysis 

(Belin et al.2000; Menon et al.2002; von Kriegstein et al.2006; Warren et al.2005), while 

neuropsychological evidence has suggested that the right parietal cortex is critical for voice 

processing (Van Lancker et al.1988; Van Lancker et al.1989; von Kriegstein et al.2006). Inferior 

parietal lobe activations have been found in healthy listeners as part of a network of regions 

implicated in voice processing under non-canonical listening conditions (Bishop et al.2009). 

Inferior parietal cortex may therefore be involved in the structural representation of voices, 

perhaps by holding voice information on-line in working memory for comparison with incoming 

alternative views of the speaker (e.g., the same voice speaking different phonemes). Weak 

correlations between speaker discrimination performance and a measure of auditory verbal 

working memory: forwards digit span, suggests that voice apperceptive deficits may co-occur 

with or be partially determined by auditory verbal or phonological working memory impairments 

in AD. Together these suggest testable neuropsychological and neuroanatomical hypotheses for 

future work. 

 

4.5.6. Associations with other neuropsychological tests and disease severity 

measures in AD 

Perceptual impairments are unlikely to account entirely for deficits of voice recognition in AD: 

the existence of semantic deficits in other modalities is well documented (Lambon Ralph et 

al.2003; Perry et al.2000) and the AD group here showed evidence of more general semantic 

impairment on background neuropsychological testing (albeit less severe than in the tvFTLD 

group), and correlations between voice recognition performance and other  semantic tasks (face 
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identification and landmark recognition). In this series, voice recognition impairments never 

occurred in isolation, for example voice familiarity impairments always co-occurred with 

impairments in the face modality, whereas isolated deficits of face recognition were observed in 

five patients. This raises the possibility that vocal processing deficits develop after the onset of 

facial recognition deficits in AD. This hypothesis could be tested in patients in the early stages of 

AD in a future longitudinal study.  

 

In the AD group there was substantial variation in performance on the experimental tasks: several 

patients fell into the unimpaired range on both familiarity and identification tasks. There was not 

a clear relationship in this group with disease severity measures or semantic tasks. Other potential 

contributions to voice recognition performance in AD need consideration: it has been proposed 

that episodic memory about individuals contribute importantly to face recognition (McCarthy & 

Warrington 1992) and the present data show significant correlation between voice recognition 

(familiarity and identification of voices) and episodic memory tasks (both verbal and visual 

recognition memory measures), a result that was not found in the tvFTLD group. This is unlikely 

to be a coincidental correlation between voice recognition and episodic memory as a result of 

disease severity. The result might be at least partly attributable to the identification protocol here 

which encouraged subjects to provide biographical events associated with famous individuals, 

though this interpretation would be more difficult to sustain for familiarity judgments. This result 

may be a neuropsychological indicator of medial temporal involvement in voice recognition tasks 

as suggested by the neuroanatomical data. Impairments of semantic memory for familiar people 

in AD may cluster with episodic recall for words and faces (Stopford et al.2008). 

 

4.5.7. Voice performance and models of voice processing 

Unlike functional imaging studies of voice recognition (Andics et al.2010; Belin et al.2003; Belin 

et al.2000; Nakamura et al.2001; von Kriegstein et al.2004) associations were not found with 

superior temporal regions in anterior or mid STS/STG, regions that are thought to be involved 

bilaterally in voice-specific representations. This may reflect the rarity of voice-specific deficits 

in either group at semantic and perceptual tasks; across both groups only one subject with 

tvFTLD performed significantly worse at a voice semantic task (familiarity) when compared to 

performance in the other modalities, which may have been due to peripheral hearing difficulties, 

only 4 out of 22 AD subjects were impaired on vocal perceptual tests but not at the Benton. In a 

future study isolation of the auditory or neuropsychological deficits underlying selective vocal 

perceptual deficits requires investigation.  



 

 

130 

 

In this study associations with voice identification were found in the right amygdala; activations 

here have been shown in familiar voice recognition tasks (Andics et al.2010; von Kriegstein et 

al.2004), for example von Kriegstein and Giraud found that the right amygdala showed functional 

connectivity with anterior superior temporal regions during recognition of familiar voices (von 

Kriegstein et al.2004). Cognitive models of voice processing (Belin et al.2004) propose that there 

is parallel processing of identity information and emotional content from voices, on the basis of 

evidence from neuroimaging and a neuropsychological study of developmental phonagnosia 

(Garrido et al.2009; Imaizumi et al.1997) however it is possible that these two pathways in the 

voice modality are not fully independent, consistent with psychophysical and electrophysiological 

evidence (Campanella & Belin 2007). It has been shown that musical instrument timbres carry an 

affective tone (Hailstone et al.2009; Juslin & Laukka 2003), for example the violin timbre biased 

healthy subjects towards “sadness” judgements on melodies in one study (Hailstone et al.2009), 

and it may be that the affective quality of an individual’s voice contributes identity information.  

  

4.5.8. Methodological considerations 

This study has several methodological considerations. A number of patients (primarily in the 

tvFTLD group) performed at or near floor on voice tasks, and it is possible that voice recognition 

was too difficult. Across patient and control groups, voice recognition was the most difficult and 

name recognition tasks was the easiest, a pattern of results expected on the basis of previous 

work. As the identities of the public figures used were the same in all three modalities this may 

have amplified this discrepancy, as no attempt was made to match control recognition frequency 

across modalities and also as the same individuals were tested, priming is likely to have occurred 

in the face and name modalities (presented after voices) which may have artificially improved 

performance, particularly in controls. Impairments of voice processing at the level of individual 

patients or within each patient group however were not disproportionate to deficits in other 

modalities relative to controls. Perhaps more problematic than low performance on voice tests in 

patients is ceiling control scores for several face and name semantic tasks, which meant that it 

was difficult to assess patterns of performance across modalities relative to controls. For example 

it is unclear whether name familiarity scores were relatively preserved in the AD group relative to 

controls (as has been found previously (Greene et al.1996)), whether tvFTLD performance was 

relatively worse (which has also has been shown previously (Snowden et al.2004)) or whether 

both factors may have been operating. A future study assessing recognition of famous people 

across modalities using a set of famous people chosen so that each modality is matched for 
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control recognition frequency could be achieved by using less common celebrities in face and 

name modalities (as in Study 1 in this thesis), or by making faces less recognisable, for example 

by blurring them (Damjanovic et al.2007), though each of these paradigms is likely to entail other 

methodological considerations, particularly when assessing patients with other cognitive or 

perceptual difficulties. It may be however that structure of person recognition mechanisms is such 

that it is highly dependent on the face channel (von Kriegstein et al.2006; von Kriegstein et 

al.2005), and voices are intrinsically more difficult to recognise than faces (Damjanovic et 

al.2007; Hanley et al.1998). This potentially needs to be assessed using the voices and faces of 

people that are personally familiar to subjects so that recognition is not influenced by channels of 

exposure in the media.  

 

Another limitation of this study was that despite using an unbiased automated whole-brain study 

of brain morphometry to investigate the neural correlates of voice processing, only voice cross 

modal matching VBM results survived whole-brain correction: grey matter associations of voice 

identification and perception were significant only in ROI analyses. Findings were therefore 

biased by focussing on the temporal lobes, and associations in other cortical regions implicated in 

studies of voice processing such as inferior frontal, parietal or cingulate cortices may not have 

been found due to exclusion in analyses. However, in whole-brain analyses not presented in this 

thesis, significant associations with all voice familiarity, identification and cross modal tasks were 

found in the right ATL after FWE correction when group membership was not included as a 

covariate further justifying ROI analysis in the temporal lobes. 

 

The VBM results indicate the regions of atrophy that correlate with a decrease in score in these 

patient groups, but they do not directly show which regions are critical to voice processing.  

Consistent associations across semantic tasks with anterior and interior temporal regions for 

example may represent a coincidental correlation in which more advanced disease results in 

greater atrophy in these regions and poorer task performance, which is plausible in the tvFTLD 

group given that atrophy is concentrated in these regions. However there was limited evidence for 

the influence of disease severity on experimental test scores, and as described above, group 

membership was included as a covariate in the analyses which adjusted for the overall mean 

difference in test performance between the two patient groups. Also identical patterns of 

association were not found for all semantic tests: voice identification was associated with right-

lateralized anterior and medial temporal but not inferior temporal or fusiform regions whereas 

landmark naming was associated with a large number of left lateralized regions (including 
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temporo-occipital and insular regions). Furthermore there was no evidence that the semantic test 

results was driven entirely by the tvFTLD group, as no significant disease specific associations of 

semantic tasks were found. This may have been because there were insufficient tvFTLD subjects 

in the VBM analyses (only 11 subjects were included) to detect tvFTLD-specific effects. 

Alternatively the result may, as presented earlier in the discussion (Section 4.5.2), reflect overlap 

in the neuroanatomical basis of impairments in the two patient groups given that semantic deficits 

(including person recognition tasks) also occurred in the AD group, and damage to the 

anterolateral temporal lobe has been previously associated with semantic impairments in AD 

(Balthazar, Yasuda, Pereira et al. 2010). Investigating voice processing in a study with a larger 

tvFTLD sample may elucidate this.  

 

4.5.9. Conclusions & future work 

In this study the behavioural and neuroanatomical signatures of voice processing deficits in 

FTLD and AD are described. Deficits on all aspects of voice recognition and impairment were 

found in both disease groups, but were more severe in the tvFTLD group than the AD group. The 

AD group showed additional deficits of vocal gender perception and voice discrimination. The 

VBM analysis across both disease groups revealed that the right ATL is likely to have a critical 

role in recognition of voices and other modalities of person knowledge. Common grey matter 

associations of familiarity, identification and cross-modal recognition in all modalities in the right 

temporal pole and anterior fusiform gyrus were found in combined analyses across the patient 

groups; while in the AD group, voice discrimination was associated with grey matter in the right 

inferior parietal lobe. The findings suggest that impairments of voice recognition are significant 

in both these canonical dementia syndromes but particularly severe in tvFTLD, whereas 

impairments of voice perception may show relative specificity for AD. Further analysis of the 

auditory perceptual impairments underlying deficits of vocal perception in AD at the group or 

individual level could be undertaken in a future study. Whereas semantic processing of voices is 

relatively easily investigated by adapting standard neuropsychological techniques, a detailed 

understanding of voice perception and its disorders will require the design of customised stimuli 

that allow particular vocal attributes to be isolated and manipulated. 

 

In addition to deficits of familiar voice recognition, face and name recognition were also impaired 

in both groups and name recognition was significantly more impaired than other modalities in the 

tvFTLD group. Although the statistical analysis adjusted for differences in control performance 

across modalities, control performance on name (and face) semantic tasks were at or close to 
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ceiling, and a future study matching control recognition frequency across modalities (rather than 

matching identities of public figures across modalities) may be useful for establishing the pattern 

of performance across modalities in the two patient groups.  There was some evidence from 

neuropsychological and neuroanatomical data that nonverbal objects (faces and voices) and 

verbal entities (names) show partial segregation in the right and left temporal lobes. A larger 

cohort, in particular of tvFTLD subjects will be necessary to determine any laterality or modality-

specific effects neuropsychologically, for example by comparison of a larger sample of right and 

left sided tvFTLD cases, while neuroanatomically, VBM analyses may have been underpowered 

to detect any modality specific associations. 

 

The tvFTLD group showed severe deficits both at person recognition tests at other semantic 

tasks: landmark recognition (recognition of visual unique entities) and a test of general semantic 

knowledge (BPVS): neuroanatomical associations with these tasks in the anterior and inferior 

temporal lobes were similar to person recognition tasks. Performance on these tests however did 

not correlate with voice recognition performance, suggesting partial segregation between 

modalities, categories or levels of knowledge. A neuroimaging study directly comparing semantic 

tasks assessing recognition of less differentiated versus highly differentiated auditory objects 

(such as recognition of environmental sounds versus musical melodies, which may be a highly 

differentiated auditory category in healthy people with some musical experience), may establish 

whether there is differential organization of these concepts for example in inferior versus polar 

regions of the temporal lobe as hypothesized by others (Mion et al.2010). Associations with the 

anterior fusiform gyrus across modalities of presentation for familiarity (and other person 

recognition tests) implicate inferior temporal regions in formation of multimodal representations 

of familiar people and other object identities. Investigation of voice recognition in acquired cases 

of prosopagnosia with damage to inferior temporal lobes may further illuminate the role of “basal 

temporal” regions in processing of familiar voices. A larger sample size of tvFTLD subjects may 

clarify the extent to which anterior and inferior temporal associations of semantic processing are 

specific to tvFTLD. 

 

This study suggests clear directions for future work. It has been proposed that modality-specific 

deficits of person knowledge become generalised with the evolution of neurodegenerative disease 

(Evans et al.1995; Gainotti et al.2003; Gainotti et al.2008; Gentileschi et al.1999): the present 

study suggests that deficits of person knowledge are not uniformly related to disease duration or 

severity, and therefore the profile of development of these deficits may hold information about 
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the organisation of processing within and between modalities. This issue will only be addressed 

by longitudinal studies based on a systematic analysis of different levels of processing and 

comparing modalities and disease groups. It will be important in future studies to directly 

compare vocal identity to emotional processing behaviourally, and may be particularly relevant to 

relate to measures of social and behavioural change in FTLD. There is a need for correlation of 

voice processing measures with structural and functional anatomical data and with tissue 

histopathology in a wider range of neurodegenerative diseases. 
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5. Study 3: Neuropsychological and neuroanatomical analysis of accent 

processing in PNFA and AD 

 

5.1. Introduction 

Accent processing in the healthy brain and the effects of brain damage on accent processing have 

been little researched compared to the mechanisms of voice perception and recognition, 

investigated in Studies 1 and 2. Studies assessing accent processing generally entail two broadly 

complementary tasks: processing of the accent as an informative vocal signal in its own right 

(Adank et al.2012; Berman et al.2003; Clopper et al.2004a; Clopper et al.2004b; Van Bezooijen 

et al.1999), and processing the effects of the accent on the prototypical speech signal (Adank et 

al.2009; Best et al.2001; Clarke et al.2004; Evans et al.2004; Floccia et al.2009; Floccia et 

al.2006). The effects on accent processing of neurodegenerative disease remain largely unknown.  

 

There are grounds to anticipate deficits of accent processing in the canonical degenerative 

dementias. Disease in AD and PNFA syndromes affects large-scale brain networks including 

superior temporal, prefrontal and parietal regions implicated in accent processing  (Adank et 

al.2012; Berman et al.2003; Gorno-Tempini et al.2004; Neary et al.1987; Rohrer, Ridgway, 

Modat et al. 2010; Scahill, Schott, Stevens et al. 2002; Seeley et al.2009; Sonty et al.2007; Zhou 

et al.2010). In particular, these diseases target anterior (in PNFA) and posterior (in AD) peri-

Sylvian cortices that mediate different levels of processing of complex verbal and nonverbal 

sounds, including inferior parietal regions implicated in apperceptive levels of analysis of voices 

in the previous study (Chapter 4). Impaired processing of complex nonverbal auditory patterns 

(Baird et al.2009; Eustache et al.1995; Goll et al.2010; Goll et al.2012; Rapcsak et al.1989; 

Uttner et al.2006) and other meta-linguistic components of the speech signal, including prosody 

(Allender et al.1989; Horley, Reid, & Burnham 2010; Rohrer et al.2010; Taylor et al.1971; Testa 

et al.2001), and speaker identity in the previous study (Chapter 4) have been documented in 

PNFA and AD.  

 

The contribution of different regions of the temporal cortex are of interest to accent processing; in 

Study 2 specific regions of the superior temporal lobe were not significantly associated with voice 

processing whereas there was some suggestion that regions of the mesial temporal cortex may 

show specificity for voice recognition. It is hypothesised that accent processing may be less 

dependent on cross-modal mechanisms of analysis than voice identity processing (described in 
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Section 1.5.3) and hence may not recruit inferior regions of the temporal cortex. In the previous 

study anterior temporal cortices were significantly associated with voice recognition performance 

in tvFTLD and AD, regions that have been previously implicated in vocal and facial identity and 

emotion processing in dementia (Ellis et al.1989; Gainotti et al.2008; Joubert et al.2006; Omar et 

al.2010; Omar et al.2010; Rosen et al.2006): damage involving these regions in 

neurodegenerative diseases may lead to a more general deficit in decoding social signals, 

including accents. 

 

In this study, the cognitive and neuroanatomical bases of accent processing were investigated in 

two canonical neurodegenerative dementia syndromes: PNFA and AD. A novel 

neuropsychological battery was designed to assess these in cognitively impaired patients, 

addressing two aspects of accent processing: the intelligibility of accented speech (accent 

comprehension) and recognition of non-native regional and foreign accents (accent recognition). 

Neuroanatomical associations of behavioural performance were assessed using VBM. It was 

hypothesised that these dementia syndromes would be associated with separable behavioural 

profiles of impaired accent processing. It was further hypothesized that accent comprehension 

and accent recognition performance would have overlapping neuroanatomical associations in the 

postero-lateral and anterior temporal regions previously shown to be critical for other aspects of 

vocal signal processing. 

 

Materials and methods 

 

5.2. Subject demographic characteristics and clinical details 

Six patients with PNFA and twenty patients with AD diagnosed according to consensus clinical 

criteria (Dubois et al.2007; Neary et al.1998) were recruited. 35 healthy older control subjects 

described in Study 2 (Section 4.2.1) also participated; background data for both healthy control 

and AD groups were included in the previous study (Section 4.2.2). Demographic and clinical 

details of subjects are summarised in Table 5.1.  
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Table 5.1. Summary of demographic and clinical characteristics of patient and control 

groups 

 PNFA 

n=6 

 AD 

n=20 

 Control 

n=35 

 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

 

Males: females 0:6 - 8:12 - 13:22 - 

Age (years) 66.0 (6.9) 58-76 66.4 (7.6) 49-79 65 (6.0) 54-79 

Education (years) 12.3 (3.3)* 10-17 13.1 (3.4)* 9-20 15.2 (3.3) 11-25 

Symptom duration (years) 3.5 (1.3)** 2-6 6.0 (2.4)**‡ 4-11 n/a  

MMSE score (/30) 20.0 (4.9)** 14-26 21.6 (4.1)** 14-28 29.4 (0.6)
a
 28-30 

 

*significantly lower than controls (p<0.05);   ** significantly lower than controls 

(p<0.01);    †significantly different to the other patient group (p<0.05);    

‡significantly longer than the other patient group (p<0.01);    
a 

n=23 controls 

performed MMSE  

 

Patient and control groups were well-matched for age. Fisher's exact test was used to assess group 

differences in gender, for all other variables differences in means were assessed using z-tests with 

bootstrap (2000 replicates) standard errors. Males were under-represented in the PNFA group 

relative to AD and control groups (although these differences were not statistically significant), 

and controls had a significantly greater average number of years of education compared to both 

patient groups (the patient groups did not differ significantly on this measure).  The PNFA and 

AD groups did not differ significantly on one measure of disease severity (MMSE score) but the 

AD group had a significantly longer mean symptom duration than the PNFA group.  

 

All subjects were native British residents with English as their first language. In order to gather 

information about their past accent exposure, at entry to the study all subjects completed a brief 

questionnaire detailing the region of Britain where they had grown up, their recent regional 

residence and any extended periods (> 6 months) spent outside the United Kingdom. This 

information indicated that the overall accent exposure of the subject groups was likely to have 

been similar. All subjects were resident in Southern England at the time of participation in the 

study. One patient with PNFA had spent her early childhood abroad (Malta) and one patient with 

PNFA, six patients with AD and nine healthy control subjects had spent their childhood in 



 

 

138 

another region of Britain; nine patients with AD and ten healthy control subjects had lived outside 

the United Kingdom for an extended period (most during their earlier adult life). 

 

Eighteen patients in the AD group and all patients in the PNFA group had undergone previous 

brain MRI; these images were reviewed by an experienced neuroradiologist. Fifteen of the AD 

patients had disproportionate bilateral hippocampal atrophy and the remainder had generalised 

cerebral atrophy. Two AD patients were unable to have MRI due to a cardiac pacemaker; 

computed tomography in one of these patients showed generalised cerebral atrophy. Patients with 

PNFA showed bilateral but asymmetric peri-Sylvian atrophy (more marked on the left in three 

cases and on the right in the remaining cases). No patient had radiological evidence of significant 

cerebrovascular disease. 

 

General neuropsychological assessment 

All patients and 19 healthy control subjects had a comprehensive general neuropsychological 

assessment; 16 control subjects performed a reduced set of tests. Groups were compared using 

linear regression, adjusting for age, gender, and years of education, with p-values from z-tests 

using bootstrap standard errors (2000 replicates). 

 

Assessment of peripheral hearing 

Most subjects had no clinical history of hearing loss. One PNFA subject had bilateral high 

frequency hearing loss, assessed on clinical audiometry. One AD patient had mild bilateral high 

frequency hearing loss. One control subject had mild bilateral high frequency hearing loss, 

previously confirmed on clinical audiometry. All subjects underwent screening pure tone 

audiometry, methods described in Chapter 2 (Section 2.2.2); four subjects (one AD patient, two 

controls) reported unilateral right sided hearing loss and in these subjects the left ear was tested. 

Group differences in mean response time at each frequency were assessed using linear regression 

adjusted for age and gender, with p-values from z-tests using bootstrap standard errors (2000 

replicates). 

 

5.3. Experimental investigations: Tests of accent processing 

Accent comprehension was assessed in two tasks: comprehension of questions spoken in a native 

British (Southern Standard English) versus a foreign accent, and verification of single words 

spoken in a foreign accent relative to the native British English accent. Southern Standard English 

was used as the reference accent as this is widespread in the Greater London area and was 
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therefore likely to be highly familiar to most participants. Accent recognition was assessed in 

three tasks, directed to progressively more fine-grained ‘levels’ of accent knowledge: 

identification of an accent as British English or foreign, identification of regional British accents 

and identification of regional English accents. For both the accent comprehension and accent 

recognition limbs of the battery, additional tests were administered to assess other cognitive 

capacities relevant to performance on the accent tasks: these additional tests comprised Southern 

Standard English phoneme discrimination (a measure of phonological processing, relevant to 

performance on the word verification subtest) and country recognition (a measure of general 

geographical semantic knowledge, potentially relevant to performance on the accent recognition 

subtests).  

 

5.3.1. Experimental investigations: Tests of accent comprehension  

Accent comprehensibility is influenced by lexical context, familiarity (Adank et al.2009; Clopper 

et al.2008) and acoustic (phonological-phonotactic) distance from native speech (Best et al.2001; 

Clarke et al.2004; Floccia et al.2006); in these respects, other regional accents generally fall 

closer to native accent than do foreign accents. For this subtest, three foreign accents were chosen 

which differ from Southern Standard English at the phonological-segmental and prosodic level: 

General American, Australian and South African. It was hypothesised that British subjects would 

be more familiar with American and Australian accents (via the media) than with the South 

African accent though we anticipated that subjects would have been fairly familiar with all the 

foreign accents selected for this study. All recorded speakers had English as their first language 

(in order to eliminate any perceptual costs associated with irregular or dysfluent speech of non-

English speakers (Floccia et al.2006)) and all were female aged 21 – 42 years; foreign accent 

speakers had all lived in the United Kingdom for less than 9 months. To minimise any effects 

from individual speech idiosyncrasies, more than one speaker was recorded for each accent (four 

Southern Standard English, two American from the Mid-West, two South African from 

Johannesburg and two from Eastern Australia).  

 

Question comprehension 

In this subtest, subjects heard 40 short spoken questions (each between 4 and 8 words in length) 

designed to elicit a one word answer (Prof EK Warrington unpublished; see Appendix A.5.1); 

each sentence was spoken once in a Standard English accent and once in a foreign accent (either 

American or South African), yielding 80 trials in total (40 trials for the English accent and 40 

trials for a ‘foreign’ accent). Trials were presented in four divided blocks of 20 trials. For each 
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sentence, the presentation order was randomly assigned first to the English accent or first to a 

foreign accent in the first set of 40 trials and assigned to the other accent category (using a 

different randomisation order) in the second set of 40 trials. The task on each trial was to answer 

the question (either aloud, or in the case of patients with PNFA, as a written response if 

preferred).   

 

Word verification 

In this subtest, subjects heard 24 spoken monosyllabic words derived from PALPA 

(Psycholinguistic Assessment of Language Processing in Aphasia) Minimal Pair Discrimination 

tests (Kay, Lesser, & Coltheart 1992) (see Appendix A.5.2.) each recorded with Standard 

English, American, Australian and South African accents. Each spoken word was presented twice 

using each accent (yielding 24 trials for each accent and 192 trials in total), once with the target 

written word and once with a foil. Stimuli were presented using Superlab version 4 

(http://www.superlab.com/). On each trial the subject was instructed to read a written word (target 

or foil, with equal probability) presented on a computer screen; two seconds later subjects heard 

the spoken word, and the task was to indicate whether this spoken word matched the written 

word.  

 

Word foils each contained a single phonetic change compared with the corresponding target word 

(half contained a change in vowel sound, half contained a change in initial or terminal 

consonant). The set of words contained a range of vowel and consonant changes; no attempt was 

made to manipulate confusability under particular accents. In order to enhance any effect of 

accent on error rates (and/or reaction times in controls) target words selected had an orthographic 

and phonological neighbourhood greater than 10 (Grainger 1990; Luce & Pisoni 1998) and foils 

had a CELEX word frequency greater than the corresponding target word (Baayen, Piepenbrock, 

& Gulikers 1995). ‘Neighbourhood’ here refers to the number of similar words of the same length 

generated by changing one letter while preserving letter position; increasing neighbourhood size 

is associated with increasing lexical decision time. Psycholinguistic data used in this study were 

obtained using N-Watch (http://www.maccs.mq.edu.au/~colin/N-Watch/).  

 

Trials were presented in eight blocks each containing the set of 24 spoken words (six words 

spoken with each of the accents); the presentation order of a particular word under each accent 

was randomised. Patients responded by pointing to ‘Yes’ or ‘No’ listed for each trial in a 

response sheet; control subjects responded by pressing ‘Yes’ or ‘No’ on a response box, and their 

http://www.superlab.com/
http://www.maccs.mq.edu.au/~colin/N-Watch/
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reaction times were recorded. As no predictions were made about how confusable distractor 

words were for each accent, only trials in which the target written word matched the spoken word 

were analysed, yielding a score / 24 for each accent.  

 

Phoneme discrimination 

As a measure of phonological processing ability, a total word verification score was calculated 

for all target words and foils spoken with a Southern Standard English accent (total score / 48). 

Words and foils were derived from the PALPA Minimal Pairs Discrimination tests (Kay et 

al.1992) (see Appendix A.5.2) each ‘target’ word differed from the corresponding ‘foil’ word 

with respect to one phonetic feature. The task on each trial was to indicate whether the spoken 

word matched the spoken word. Patients responded by pointing to ‘Yes’ or ‘No’ listed for each 

trial in a response sheet; control subjects responded by pressing ‘Yes’ or ‘No’ on a response box.  

 

5.3.2. Experimental investigations: Tests of accent recognition 

 

Foreign accents 

In this subtest, subjects were assessed for their ability to identify an accent as native British 

(Southern Standard English) or foreign. The same set of 40 questions and accents (Southern 

Standard English, American, South African) used in the question comprehension subtest was re-

presented. Maps were used to assist in explaining the task. On each trial the subject was asked ‘Is 

this person from England?’, and responded ‘Yes’ or ‘No’ verbally or by pointing on a response 

sheet. If the subject scored <12 on the first block of 20 trials the test was discontinued; scores for 

the first block and for all four blocks were analysed.  

 

Regional British accents 

For this subtest, audio samples each comprising 7-15 seconds of speech representing a Southern 

Standard English, Irish, Scots or Welsh accent were obtained from accent archives available on 

the World Wide Web (http://web.ku.edu/~idea/; http://www.bbc.co.uk/voices/; 

http://www.bl.uk/learning/langlit/sounds/index.htm; accents are listed in Appendix A.5.3.). In 

selecting the clips, an attempt was made to minimise extraneous lexical cues to accent origin. Six 

different speakers representing each of the four accents were selected, yielding a total of 24 trials. 

The task on each trial was to identify the speaker’s regional origin in a four-alternative forced 

choice procedure (England, Ireland, Scotland, and Wales); a map of the United Kingdom and 

Ireland labelling each region was also presented with which to respond non-verbally if preferred.  

http://web.ku.edu/~idea/
http://www.bbc.co.uk/voices/
http://www.bl.uk/learning/langlit/sounds/index.htm
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Regional English accents 

This subtest was designed to exploit the wide variation in English regional accents as an index of 

more fine-grained semantic processing of accents. Audio samples representing speakers from 

either the north or the south of England were selected from the on-line accent archive 

(http://web.ku.edu/~idea/; http://www.bbc.co.uk/voices/; 

http://www.bl.uk/learning/langlit/sounds/index.htm; accents utilized are listed in Appendix 

A.5.3.), following the same selection criteria as the regional British accents subtest. 24 audio clips 

each representing a different speaker from either the North or the South of England were chosen 

(avoiding the Midlands, in order to reduce ambiguity), yielding a total of 24 trials. The task on 

each trial was to identify the speaker’s regional origin in a two-alternative forced choice 

procedure (North or South England); a map of England labelling each region was also presented 

with which to respond non-verbally if preferred.  

 

Country knowledge 

As a measure of general geographical knowledge, knowledge of 10 countries (four British, four 

European and two non-European; see Appendix A.5.4.) was assessed in three subtests: naming 

from verbal description; naming from maps; and (if the subject was unable to name all 10 

countries) recognition of the map corresponding to the spoken name of the country (forced-choice 

from an array of 10 maps).  

 

5.4. Analysis of behavioural data 

 

5.4.1. Group statistical analyses 

To quantify differences between groups (control, AD, PNFA) on each experimental test, linear 

regression models were fitted to the scores, adjusting for age, gender and years of education. P-

values for group differences were found using a z-test with bootstrap standard errors (2000 

bootstrap replicates). In order to investigate the performance cost associated with listening to 

words or sentences presented in a foreign accent on accent comprehension tests, a difference 

score was calculated for each subject based on their performance on the question comprehension 

(total score for foreign accents minus total score for Southern Standard English questions) and 

word verification subtests (mean score for foreign accents minus total score for Southern 

Standard English words). Differences between groups for these scores were again assessed using 

linear regression, adjusting for age, gender and education.   

http://web.ku.edu/~idea/
http://www.bbc.co.uk/voices/
http://www.bl.uk/learning/langlit/sounds/index.htm
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5.4.2. Further analyses in the control group 

In addition, on the word verification test, to investigate differences in score by accent (Standard 

English, American, Australian, and South African) in the healthy control group, differences in 

mean score between each accent and English were calculated and 95% Wald-type bootstrap 

confidence intervals (2000 replicates) were obtained. A linear regression model was used to 

estimate differences in mean reaction time between accents, adjusting for word duration. P-values 

and 95% confidence intervals were again found using z-tests and Wald intervals using bootstrap 

standard errors (2000 bootstrap replicates). 

 

5.4.3. Correlation analyses in the AD group 

The relationship between experimental tests of accent processing and general phonological or 

geographical semantic skills was investigated within the AD group, it was not explored in PNFA 

group as the ability to detect correlations in a sample of this size (n=6) is extremely limited.  

Correlation coefficients between accent recognition scores and tests of country recognition 

(country naming from description, map naming and map recognition) were estimated with 95% 

bias-corrected and accelerated bootstrap confidence intervals (2000 replicates). Similarly 

correlation coefficients between accent comprehension difference scores (Foreign minus English) 

and phoneme discrimination task performance were estimated.   

 

In addition, in the AD group the influence of background neuropsychological performance on 

accent processing, and the relations between accent processing performance and voice processing 

(assessed in Study 2) were of interest and investigated using pairwise correlation analyses using 

the method described above. In Study 2, both voice apperception and voice semantic test 

performance was impaired in AD therefore the relations between performance on these tests and 

tests of accent processing were also analysed. The relationship between accent processing and a 

sub-set of background neuropsychological tests directed towards potentially relevant cognitive 

domains were also assessed: these comprised tests of nonverbal IQ, forwards and backwards digit 

span, semantic processing on the BPVS and executive function on the Stroop. As tests of voice 

recognition in Study 2 significantly correlated with tests of recognition memory in AD, 

correlation between voice performance and accent processing task performance were assessed; 

list of tests correlated with accent tests are displayed in Appendix A.5.6.  
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5.5. VBM analysis  

3T MRI images were acquired for 17 AD patients and 4 PNFA patients. Associations with 

regional grey matter volume were assessed separately for performance on each of the accent 

comprehension subtests (entering the difference score for each subtest) and on each of the accent 

recognition subtests (entering the raw score for each subtest). For each experimental subtest, 

performance was assessed in a combined-groups analysis (n=21) in which grey matter volume 

was modelled as a function of the experimental test score, group and the score-by-group 

interaction, with age, and TIV as covariates. Using this model, grey matter associations with 

group-performance interactions were tested for each experimental subtest, and any significant 

within patient group associations were identified. Additionally, a size-weighted average of the 

associations in the two groups (AD * 17/21 + PNFA * 4/21) was tested, which is analogous to the 

simple association in a model without the score-by-group interaction. 

 

For each test, grey matter associations were assessed over the whole-brain and within the 

temporal lobe regional volume of interest; a voxel-wise statistical threshold p < 0.05 family-wise-

error (FWE)-corrected for multiple comparisons was applied in all analyses. Statistical parametric 

maps were displayed as overlays on a study-specific template structural brain image. The grey 

matter segment of the final DARTEL template was affine registered to the a priori grey matter 

tissue probability map in SPM, and DARTEL coordinates were transformed using the estimated 

affine mapping to standard stereotactic MNI space.  

 

5.6. Results: Background tests 

 

5.6.1. General neuropsychological performance 

Relative to healthy controls, both patient groups showed impairment on tests of IQ, verbal 

recognition memory, semantic memory tests, working memory, arithmetic and executive function 

(see Table 5.2) after adjusting for age, gender and number of years of education. In addition, the 

AD group was impaired relative to controls on tests of face recognition memory and object 

perception. The PNFA group was significantly impaired relative to controls and relative to the 

AD group on tasks dependent on speech output (including reading, digit span and Stroop 

inhibition) and verbal semantic knowledge; no other significant differences between the disease 

groups were identified. 
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Table 5.2. General neuropsychological assessment in patient and control groups 

 PNFA 

n=6 

 AD 

n=20 

 Control 

n=35 

 

Test (max score)       

IQ Mean (SD) Range Mean (SD) Range Mean (SD) Range 

Verbal IQ 63.7 (15.1)**‡ 55-92 98.3 (16.7)** 67-121 120.8 (9.2) 96-142 

Performance IQ 80.2 (12.1)** 70-100 87.9 (16.7)** 62-110 116.8 (11.9) 100-141 

Reading IQ
a
 78.0 (18.9)**† 56-103 106.4 (16.4)** 67-128 118.9 (7.4) 96-129 

Episodic memory       

RMT (words) (/50) 33.7 (11.7)* 19-47 30.7 (7.5)** 19-47 47.3 (1.8) 43-49 

RMT (faces) (/50) 36.5 (5.4) 30-44 34.9 (5.8)** 25-45 42.2 (4.7) 35-49 

Semantic tests       

BPVS (/150) 127.3 (18.0)** 101-146 140.9 (12.4)* 106-150 148.1 (1.5) 144-150 

GNT (/30) 7.7 (9.5)** 0-23 12.1 (8.1)** 0-26 26.0 (2.4) 19-30 

Concrete synonyms (/25) 17.0 (2.9)**†
b
 13-20 20.8 (2.7)** 13-25 24.3 (1.3) 19-25 

Abstract synonyms (/25) 17.6 (4.0)**†
b
 12-23 20.9 (3.6)** 14-25 24.3 (1.2) 20-25 

Working memory       

Digit span fwd (/12) 4.0 (3.5)**† 0-5 7.5 (2.2) 4-11 8.7 (2.0) 4-12 

Digit span back (/12) 1.8 (1.7)**‡ 1-9 5.2 (2.7)* 0-10 7.4 (2.6) 2-12 

Spatial span fwd (/12) 4.8 (1.3)*
b
 4-7 5.7  (2.4)

c
 1-9 6.8 (1.5)

 d
 5-9 

Spatial span back (/12) 3.8 (2.0)**
b
 2-6 4.0 (2.0)**

c
 0-7 6.7 (1.7)

d
 4-10 

Other skills       

Object decision (/20) 16.8 (1.9)
b
 14-19 15.7 (2.9)** 9-19 18.5 (1.2) 16-20 

Arithmetic (GDA) (/12) 3.0 (3.2)** 0-8 5.7 (4.6)** 0-14 15.4 (4.8) 6-23 

Stroop switching scaled 

score (/18) 

1.2 (0.4)**‡ 1-2 3.9 (3.2)** 1-11 11.5 (2.0) 7-14 

 

p values are for group differences after adjusting for age, gender and years of education * 

significantly worse than controls (p<0.05); ** significantly worse than controls (p<0.01);   

† significantly worse than AD group (p<0.05);  ‡ significantly worse than AD group (p<0.01);  

WMS-R digit span tests: forwards, backwards; GDA, Graded Difficulty Arithmetic;  WMS-III 

Spatial Span tests: forwards, backwards; WASI, Wechsler Abbreviated Scale of Intelligence; DKEFS 

Stroop test switching scaled score;  
a  

Reading IQ measured on the NART unless the subject scored 

≤15/50 on this test, in which case the Schonell Graded Word Reading Test IQ was used;  
b
1 PNFA 

patient did not perform these tasks (different subject for each);   
c 
17 AD patients performed this task;  

d
 8 controls performed this task  
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5.6.2. Peripheral hearing 

Increasing age was associated with a significant increase in mean response time (detection 

threshold) at the three highest frequencies tested. Relative to the healthy control group, there was 

a significant difference (p<0.05) in mean detection thresholds for the AD group only at 0.5 kHz 

(4.1 dB) and 4 kHz (7.2 dB); these threshold elevations were small and unlikely to be clinically 

relevant, and there were no significant differences at any other frequency tested.  
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5.7. Results: Experimental tests 

Table 5.3. Results for experimental tests in patient and control groups 

 PNFA 

n=6 

 AD 

n=20 

 Control 

n=35 

 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

Question comprehension
a
       

English accent /40 31.4 (6.5)**† 24-40 38.0 (1.4)** 35-40 39.3 (0.2) 39-40 

Foreign accent /40 30.4 (6.7)**† 22-38 36.2 (2.2)** 31-39 38.6 (0.6) 38-40 

Difference score: 

Foreign – English 

/40 -1.0 (1.2) -2.0, 1.0 -1.8 (2.2) -8.0, 2.0 -1.3 (0.8) -2.0, 0 

Word verification
a, b

       

English /24 22.6 (2.6) 18-24 22.6* (2.0) 16-24 23.7 (0.5) 22-24 

American /24 20.0 (3.5)* 14-22 21.6 (2.5)** 13-24 23.5 (0.7) 22-24 

Australian /24 19.6 (3.5)* 15-24 22.1 (2.5) 13-24 23.2 (0.8) 22-24 

South African /24 18.8 (4.7) 13-24 21.7 (1.9) 17-24 22.8 (1.0) 20-24 

Difference score: 

Foreign
c
  – English   

/24 -2.4 (2.4)**‡ -5.0, 1.0 -0.8 (1.0) -2.0, 1.3 -0.6 (0.7) -2.3, 1.3 

Phoneme discrimination       

Minimal pair word 

verification  

/48 36.7 (13.7) 13-46 42.3 (5.5)** 24-47 46.7 (1.1) 44-48 

Accent recognition       

English versus foreign 

(block 1) 

/20 11.5 (4.1)**† 8-18 15.7 (3.0)** 9-20 18.8 (1.3) 14-20 

English versus foreign 

(total)
d
  

/80 60.7 (10.0)* 51-71 64.6 (8.9)** 45-75 75.1 (3.2) 64-79 

British regions /24 13.0 (4.8)** 7-19 14.9 (4.2)** 6-23 22.1 (2.5) 14-24 

English regions /24 15.7 (3.8)** 10-20 16.3 (2.5)** 12-21 21.3 (1.8) 18-24 

Country knowledge       

Naming from 

description 

/10 6.7 (2.1)** 4-10 7.9 (2.2)** 2-10 10.0 (0.2) 9-10 

Map naming /10 5.3 (1.8)** 3-8 6.0 (3.1)** 1-10 9.4 (0.9) 7-10 

Map recognition /10 7.5 (1.4)* 6-10 6.6 (3.4)** 0-10 9.9 (0.2) 9-10 

 

Group differences significant after adjusting for background covariates (age, gender, and years of education) are 

displayed. 
a 

 Results for N=5 PNFA subjects are shown (see text); 
b  

one AD patient declined to continue after three 

blocks and results were scaled to a score /24 for each accent for this subject;  
c  

mean score for all three foreign accents; 
d
 3 PNFA subjects and 18 AD subjects were able to perform all 80 items on this test; *significantly worse than controls 

(p<0.05); ** significantly worse than controls (p<0.01);  †significantly worse than AD group (p < 0.05); ‡ 

significantly worse than AD group (p<0.01)   
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5.7.1. Accent comprehension 

Question comprehension 

One patient with PNFA was unable to understand any questions on the first twenty items of the 

test (including items presented in the Southern Standard English condition); this patient was 

excluded from further analysis. Group results are presented in Table 5.3. All groups showed a 

reduction in mean scores for sentences presented in a foreign accent compared with Southern 

Standard English. Both patient groups showed a statistically significant reduction in score 

compared to controls in both foreign and Standard English accent conditions, and the PNFA 

group performed significantly worse than the AD group in both conditions. Foreign minus 

English difference scores did not differ significantly between any of the groups. 

 

Word verification in healthy controls 

Within the healthy control group, small but statistically significant differences in score were 

observed between word verification under foreign accents compared with the native English 

accent (see Table 5.3).  Word verification scores were lower under all foreign accents compared 

with the English accent (mean difference in scores: American: -0.26 (95% CI: -0.46, -0.05); 

Australian: -0.54 (CI:-0.85, -0.24); South African: -0.89 (CI: -1.25, -0.53), all p<0.0001). Scores 

for the South African accent were also lower than for the more familiar American accent 

(difference: -0.64, (CI: -0.96, -0.29); p<0.0001) and for the Australian accent (difference: -0.34, 

(CI: -0.68, 0.01); p<0.05).  Performance was weakly but non-significantly worse for the 

Australian accent than the American accent (difference: -0.29, (CI: 0.60, 0.03); p=0.08).  

 

The reaction time analysis for items correctly identified showed strong evidence for prolonged 

mean reaction times (in seconds) for the three foreign accents compared to the English accent 

(American: 0.09, (CI: 0.06, 0.11); Australian: 0.11, (CI: 0.08, 0.15); South African: 0.06, (CI: 

0.04, 0.09) all p<0.0001). Significant prolonged reaction time was also observed for Australian 

compared with South African accents (difference: 0.05 (CI: 0.01, 0.09) p<0.05). There was no 

evidence of differences between reaction times to other foreign accents (p>0.05).  

 

Word verification across subject groups 

Group results adjusted for age, gender and number of years of education, are presented in Table 

5.3. One patient with PNFA performed at chance on all target accents, and was an outlier on 
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target and distractor items in the English accent (obtaining a score of 12/24 on English target 

items, and a score of 1/24 on English distractor items, where a chance score was 12 for each set). 

Due to the small patient group size, further analyses were conducted excluding this subject’s data.  

 

Compared to controls, the PNFA group showed a significant reduction in score for American and 

Australian accents (both p<0.05), but not South African (although there was a trend (p=0.08) to 

worse performance). The PNFA group demonstrated a significantly greater foreign minus English 

difference score compared to both control and AD groups (both p<0.01). The AD group 

performed significantly below controls for English and American accents (p<0.05), and there was 

a trend to worse performance for Australian (p=0.07) and South African accents (p=0.09), 

however the mean foreign accent minus English accent difference score was not significantly 

different to controls (p>0.5). 

 

Phoneme discrimination 

On this test of phonological processing ability, both patient groups showed a decrease in mean 

score compared to the control group, but differences only attained statistical significance in the 

AD group (p<0.01), the lack of statistical significance for the PNFA-control difference being 

attributable to a much large variability in PNFA scores. No significant difference was observed 

between the patient groups, although the mean score for the PNFA group was lower than for the 

AD group.  

 

There was no evidence that difference score performance (Foreign minus English accent), for 

question comprehension and word verification) correlated with minimal pair phoneme 

discrimination in either patient group (see Appendix A.5.5). However as the PNFA group 

displayed a large decrease in score on the phoneme discrimination test, group differences in 

foreign minus English accent difference score were assessed after adjusting for performance on 

the phoneme discrimination task by adding phoneme discrimination test performance as an 

additional covariate to the regression model. The adjusted difference between PNFA subjects 

(N=5) and both the AD group (p<0.05) and the control group (p<0.01) respectively remained 

significant after adjusting for phoneme discrimination test performance. 

 

Individual patient profiles   

Raw subject data for Foreign minus English difference scores for accent comprehension tests are 

displayed in Figure 5.1. Individual subject performance was classed as impaired if below the 5
th
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percentile cut-off score for the healthy control group. On the question comprehension subtest 5/20 

AD patients showed a large performance cost for foreign accents, falling below the 5
th
 percentile 

of control values on the foreign minus English accent difference measure, while no PNFA 

patients (N=5, for whom data were available) fell below the 5
th
 percentile. In contrast, on the 

word verification subtest 3/5 PNFA patients fell below the 5
th
 percentile of control values on the 

foreign minus English accent difference measure, while no AD patients fell below the 5
th
 

percentile of control values.   

 

Figure 5.1. Individual subject data for accent processing performance 
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Raw data for performance on experimental accent processing tasks are shown for individual 

subjects in the PNFA, AD and control groups. Dashed lines show 5
th
 percentile cut-offs for each 

sub-test calculated from control data. Accent comprehension data are based on difference scores 

for question comprehension and word verification in Southern Standard English versus foreign 

accents (see text), where a negative score indicates increasing cost for presentation in a non-

native accent.  Scores (/20) for block 1 of the English-versus-foreign recognition test are shown; a 

score of 10 corresponds to chance performance on this test. For the regional British accent 

recognition test, a score of 6 corresponds to chance performance; for the regional English accent 

recognition test a score of 12 corresponds to chance performance. 
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5.7.2. Accent recognition 

Foreign accents 

Two patients with AD and three patients with PNFA performed near or at chance on the first 

block of this subtest, and therefore did not complete the full 80 item task. Group results adjusted 

for age, gender and education are presented in Table 5.3. Both patient groups performed 

significantly worse than control subjects (p<0.01) on both Block 1 of this test and the complete 

set of trials (which were performed in a reduced set of subjects as patients at chance on Block 1 

were excluded) (p<0.05). The PNFA group performed below the AD group on Block 1 of this test 

(p<0.05) and for the complete set of trials, although the latter difference was not statistically 

significant.  

 

Regional accents 

A similar profile was found for recognition of British and English regional accents: both patient 

groups performed significantly worse than controls (p<0.01) for recognition of British regional 

accents, however there was no statistically significant performance difference between the two 

disease groups. 

   

Country knowledge 

The AD and PNFA groups performed significantly worse than the control group on all country 

recognition subtests (p<0.05). There was no significant performance difference between the two 

disease groups. There was little evidence of correlation between performance on accent 

recognition tests and tests of country knowledge in the AD group (see Appendix A.5.5); only 

performance on the British accent recognition test showed a positive correlation with country 

naming from description (r=0.52, p<0.05) and no other significant correlations were observed. As 

both patient groups were significantly impaired on tests of country knowledge, differences 

between the subject groups on accent recognition subtest performance were additionally analysed 

adjusting for performance on each test of country recognition. Differences between patient groups 

and controls on accent recognition tests remained significant after adjusting for performance on 

these tests (p<0.05).  

  

Individual patient profiles 

Raw subject data for accent recognition tests are displayed in Figure 5.1. A high proportion of 

patients in both disease groups (4/6 PNFA, 17/20 AD) performed below the 5
th
 percentile control 
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score on at least one accent recognition subtest. In the PNFA group, the same 4/6 patients fell into 

the impaired range on all three subtests. In contrast, in the AD group, 6/20 subjects were impaired 

on block 1 of the foreign versus English accent subtest, 10/20 patients on the regional British 

accents subtest and 14/20 patients on the regional English accents subtest; only 4/20 patients were 

impaired on all three subtests.  

 

5.8. Correlations of accent processing performance with neuropsychological measures 

and tests of apperceptive and semantic voice processing  

Correlations between tests of accent processing and both background neuropsychological and 

voice processing in the AD group are displayed in Appendix A.5.6. All three tests of accent 

recognition correlated with two measures of voice recognition: familiarity and naming tests, in 

addition British and English regional accents tests correlated with identification and cross-modal 

matching. English versus foreign accent recognition test performance significantly positively 

correlated with difficult speaker discrimination (p<0.05), whereas Foreign minus English word 

verification difference score showed a significant negative correlation with easy speaker 

discrimination (p<0.05).   

 

Several tests of accent recognition performance significantly positively correlated with tests of 

episodic memory: British regional accent recognition performance correlated with recognition 

memory for words and England versus foreign accent recognition correlated with recognition 

memory for faces (p<0.05). Foreign minus English question comprehension difference score 

showed a significant positive correlation with digit span forwards and semantic comprehension 

on the BPVS, British regional accent recognition also significantly positively correlated with the 

BPVS as well as performance IQ (all p<0.05). 

 

5.9. Neuroanatomical data 

Results of the neuroanatomical data are summarised in Table 5.4 and statistical parametric maps 

are shown in Figure 5.2. 
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Table 5.4. VBM data: neuroanatomical associations of experimental test performance 

in the patient groups 

 

 

Areas listed are based on local maxima exceeding a voxel-wise significance threshold after 

FWE-correction over the prespecified small volume of interest. All clusters of size >10 voxels 

are shown. Z scores refer to the local maxima within these regions. MNI, Montreal Neurological 

Institute; MTG, middle temporal gyrus;
 a

 results for N=20 patients are shown as one PNFA 

subject was unable to perform this test (see text). 

 

 Side Region Z 

score 

Cluster 

size 

(voxels) 

 

MNI Coordinates 

(mm) 

WITHIN-AD GROUP (n = 17)        

 

Accent comprehension 

       

Difference score:  

Foreign – English questions 
Left Anterior STG 4.74 125 -42   -8 -18 

 

Accent recognition  

       

British regions Right Anterior STG 4.55 214 50  16 -11 

COMBINED GROUPS (n = 21) 

       

 

Accent comprehension 

       

Difference score:  

Foreign – English questions
 a
 

Left Anterior STG 4.38 78 -42  -8 -18 

Accent recognition  

       

English versus foreign (block 1) Left Anterior STG/STS 4.36 765 -61  8 -12 

British regions Left 

 

Anterior 

STS/STG/MTG 

 

4.86 

 

1704 -64  -3 -11 

 
 

Right 

 

Anterior STG 

 

4.39 

 

162 

 

50  

 

16 

 

-11 
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Figure 5.2.  Statistical parametric maps of grey matter volume associated with accent 

processing performance 

 

SPM shows grey matter associations of experimental test performance across the AD and PNFA 

groups (see also Table 5.4): top, difference score on  question comprehension under foreign 

versus standard English accents (accent comprehension); middle, recognition of foreign vs. 

standard English accents (foreign accent recognition); bottom, recognition of regional British 

accents (regional accent recognition). SPMs are presented on sections of the mean normalised T1-

weighted structural brain image in DARTEL space. Coronal (left) and sagittal (right) sections are 

shown. The sagittal sections are derived from the left hemisphere and the left hemisphere is 

shown on the left in the coronal sections. All SPMs are based on regions for which grey matter 

associations were significant (p<0.05) after correction for multiple comparisons over the pre-

specified anatomical small volume (see Table 4); SPMs are thresholded at p<0.001 uncorrected 

for display purposes.   
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Combined data across groups 

The analysis combining disease groups (n = 21) revealed no significant grey matter associations 

for group-performance interactions for any of the experimental subtests, over either the whole 

brain or the pre-specified temporal lobe volumes of interest. There were no significant grey 

matter associations of experimental test performance across groups after whole brain correction. 

Restricting analyses to the pre-specified temporal lobe volumes of interest, several associations 

were identified (all p<0.05 after FWE correction over the small volume). The foreign minus 

English accent difference score for the question comprehension subtest (n=20, as one PNFA 

subject was unable to perform this test) was positively associated with grey matter in left anterior 

STG. Performance on the foreign accents recognition test was also positively associated with grey 

matter volume in left anterior STG and STS; while performance on the regional British accents 

test was positively associated with grey matter volume in left anterior STS / STG/ MTG, and 

right anterior STG. No significant grey matter associations were identified for performance on 

other experimental subtests.  

 

Within-group data 

The AD group (n = 17) showed no significant grey matter associations of experimental test 

performance after correction for multiple comparisons over the whole brain volume; however, 

restricting analyses to the pre-specified temporal lobe volumes of interest, the foreign minus 

English accent difference score (question comprehension subtest) was positively associated with 

grey matter in left anterior STG, while performance on the regional British accents subtest was 

positively associated with grey matter volume in the right anterior STG (all p<0.05 after FWE 

correction over the small volume). The AD group-only cluster maxima for these experimental 

tests were identical to those for the combined group analyses (see Table 5.4), and therefore the 

statistical parametric maps are not displayed. The PNFA group (n=4) showed no significant grey 

matter associations of experimental test performance. 

 

5.10. Discussion  

In this study impairments of non-native accent comprehension and recognition were 

demonstrated in patients with two canonical dementia syndromes, AD and PNFA. Both patient 

groups showed impaired recognition of foreign and regional accents; at the individual subject 

level patients with PNFA showed a more consistent pattern of impairment over different (foreign 

and regional) levels of accent recognition. The PNFA group also showed reduced comprehension 

of words spoken in foreign accents compared with a Southern Standard English accent. Individual 
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subject data suggested dissociable patterns of impairment under foreign accents: while patients 

with PNFA frequently showed a perceptual cost for comprehension of accented words (but not 

sentences), patients with AD frequently showed a perceptual cost for comprehension of accented 

sentences (but not single words). These deficits were not clearly attributable to a general 

phonological or geographical semantic impairment.  

 

Information about accent processing in neurodegenerative disease is very limited. However, the 

present findings add to previous evidence for impairments of other aspects of complex auditory 

pattern processing in these diseases. In particular, deficits in the perception and comprehension of 

prosody have been demonstrated in AD (Allender et al.1989; Horley et al.2010; Roberts et 

al.1996; Taler et al.2008; Testa et al.2001) and PNFA (Rohrer et al.2010). As another example of 

a meta-linguistic vocal signal with segmental, suprasegmental and semantic dimensions, prosody 

is expected to engage brain mechanisms similar to those involved in accent processing. However, 

previous studies of nonverbal sound processing in AD and PNFA suggest that these diseases may 

affect distinct components of vocal signal analysis: whereas AD is predominantly associated with 

deficits of sound pattern analysis under non-canonical listening conditions  (Gates, Beiser, Rees 

et al. 2002; Goll et al.2012), PNFA is predominantly associated with conjoint deficits of timbre 

and auditory semantic processing suggesting a more fundamental deficit in the encoding of 

auditory object properties (Goll et al.2010; Goll et al.2012). These core deficits might contribute 

to the dissimilar patterns of accent comprehension impairment (perceptual cost) shown by 

individual patients with AD versus PNFA: whereas comprehension of questions is likely to 

depend on tracking extended auditory patterns, comprehension of monosyllables is more likely to 

depend on accurate encoding of individual sound objects (here, spoken phonemes). A primary 

perceptual deficit might lead to degraded representation of accent characteristics and 

consequently reduced recognition of those accents, or conversely, impaired accent knowledge 

might damage ‘top-down’ mechanisms that normally act to disambiguate the effects of perceptual 

distortion, as has been suggested in previous work. It has been hypothesized that adaptation to 

unfamiliar accents engages top-down lexically driven categorisation mechanisms (Bradlow & 

Bent 2008; Norris et al.2003); such dynamic mechanisms could plausibly be degraded in 

neurodegenerative disease and could be assessed in future work.  

 

Although tests of potentially relevant vocal perceptual processes such as prosodic contour 

discrimination (Rohrer et al.2010) were not assessed in this study, the present data do not suggest 

a clear, consistent perceptual defect across the disease groups. English versus Foreign accent 
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recognition performance positively correlated with performance on a test of voice perception: 

difficult speaker discrimination (tested in the AD group only). It is possible that this may 

represent a shared apperceptive level of processing  as the English versus Foreign accent test 

relied on an ability to distinguish a ‘canonical’ from a non-canonical accent.  

 

The results of this study suggest that additional semantic-level deficits may also play a role in 

impaired recognition of non-native accents in AD and PNFA. It is plausible a priori that the 

semantic processing of accents might be aligned with other geographically-organised concepts 

(Crutch et al.2003; Crutch et al.2010; della Rocchetta et al.1998); the present data provide only 

limited support for correlated performance on accent and geographical knowledge (though this 

correlation was assessed in the AD group only) and suggest that accent recognition is not merely 

subsumed by brain mechanisms of geographical semantic processing. A consistent pattern of 

correlation (again tested in the AD group only) was found between tests of accent recognition and 

familiar voice recognition (results from Study 2) suggesting that impairments on other semantic 

vocal tasks accompany accent recognition deficits, at least in AD.  

 

The present neuroanatomical findings corroborate these behavioural profiles. Both in the AD 

group alone and across groups, a measure of accent comprehension was positively associated 

with grey matter volume in left anterior STG, however interpretation of this association should be 

cautious in the absence of a clear overall behavioural cost relative to healthy controls. 

Recognition of foreign and non-native regional accents was positively associated with grey matter 

volume in a more anterior cortical region in left anterior STG / STS, while more fine-grained 

recognition of regional accents was additionally associated with grey matter volume in right 

anterior STG. It is noteworthy that cortical associations were found within temporal lobe areas 

close to cortical associations of voice recognition identified in the previous study (Chapter 4) but 

somewhat more anterior than those previously implicated in certain other aspects of nonverbal 

perceptual analysis (Norris et al.2003; Rohrer et al.2010). This might reflect shared mechanisms 

for processing the meaning of accents and other dimensions of the vocal signal: the processing of 

accents may depend on brain mechanisms analogous to those mediating speech intelligibility 

under other forms of perceptual distortion (Binder et al.2000; Bishop et al.2009; Friederici, Kotz, 

Scott et al. 2010; Leff, Iverson, Schofield et al. 2009; Scott, Blank, Rosen et al. 2000; Scott et 

al.2006; Zatorre et al.1992). Indeed, accented speech could be viewed as an ‘ecological’ example 

of degraded speech, representing an extreme form of the phonological–phonetic variation 

exhibited by individual speakers even within the spectrum of a native accent (Best et al.2001; 
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Best, McRoberts, & Sithole 1988; Clarke et al.2004; Flege, Munro, & MacKay 1995; Floccia et 

al.2006; Iverson & Kuhl 2000; Iverson, Kuhl, Akahane-Yamada et al. 2003; Norris et al.2003; 

Nygaard et al.1998). Comprehension of accented speech may involve assimilation of accented 

phonemes into categories used for native speech, for example involving matching to stored 

prelexical templates (Best et al.2001; Best et al.1988; Clarke et al.2004; Flege et al.1995; Floccia 

et al.2006; Iverson et al.2000; Nathan et al.1998). Tolerance to phonetic variation is likely to be 

established via exposure to many individual speakers with different accents (Adank et al.2009; 

Bradlow et al.2008; Clopper et al.2008; Clopper et al.2004b; Floccia et al.2006). The putative 

template matching algorithm has been shown to be inflexible in infants (Nathan et al.1998; 

Schmale et al.2009) and may be disrupted in neurodegenerative disease.  

 

While stored representations of single phonemes are likely to be instantiated in posterior superior 

temporal cortices (Chang et al.2010; Jancke et al.2002; Rauschecker & Scott 2009; Turkeltaub et 

al.2010), decoding of extended utterances such as questions posed in a foreign accent is likely to 

require tracking of auditory information streams over longer time periods, a function previously 

localised to more anterior temporal cortices (Friederici, Meyer, & von Cramon 2000; Humphries, 

Willard, Buchsbaum et al. 2001; Meyer et al.2002; Scott et al.2000). Comprehension of spoken 

sentences in AD may also have been influenced by working memory capacity: in this study 

correlation was demonstrated with digit span (Table 5.6.), and previous work in AD has 

associated deficits of auditory stream analysis with working memory impairments (Goll et 

al.2012).  

 

A complementary interpretation of the present data would hold that accent comprehension 

depends on stored knowledge about accent properties that also supports accent recognition: in 

particular potentially access to representations of linguistic features in the left ATL, supporting 

the preliminary model of accent processing proposed in this thesis (described in Section 1.7.3). 

Models of speech comprehension and voice recognition (Belin et al.2004; Belin et al.2000; Scott 

et al.2006) assign to the anterior STG / STS a key role later in the cortical processing hierarchy 

for auditory “what” information. Although our analyses are likely to have been underpowered to 

differentiate laterality effects between tasks, as predicted in the model of voice processing for this 

thesis recognition of accents was associated with the ATL bilaterally. 

 

Neuropsychological and neuroanatomical overlap between accent recognition and voice 

recognition suggests that semantic representations of familiar accents as well as familiar voices 
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may be stored in the right ATL in line with the view that this area represents knowledge about 

nonverbal, socially relevant vocal signals (Olson et al.2007; Omar et al.2010; Omar et al.2010; 

Rosen et al.2006). The results suggest there may be at least partial differentiation between these 

representations with voice and cross-modal person recognition in inferior parts of the ATL and 

associations with accent recognition in more superior parts of the right ATL, as predicted in the 

model (Section 1.7.3). The results further suggest that involvement of the right ATL in voice 

processing more broadly is not likely to be solely dependent on representation of timbre, as 

accent recognition is likely to be more dependent on prosodic cues such as pitch contour and 

stress cues. Rather, the right ATL may be fundamentally concerned with processing 

representations of complex spectrotemporal configurations embodied in voices and accents, and 

in particular, associating these with meaning. This would be in line with auditory object 

processing models proposing that there is close correspondence between apperceptive and 

semantic mechanisms. Investigation of how the processing of non-native accents relates to the 

processing of other vocal properties is needed to further develop models of voice processing.  

 

The findings suggest that impairments of accent processing may constitute signatures of 

neurodegenerative diseases and not merely amplification of an effect already present in the 

normal brain. Healthy control subjects here showed a performance profile across non-native 

accents that could reflect past exposure and familiarity with those accents (Adank et al.2009; 

Clopper et al.2008; Clopper et al.2004a) or alternatively, the relative perceptual similarity of the 

accents chosen here to Southern Standard English (see Supplementary Material on-line), in line 

with previous suggestions (Clarke et al.2004; Flege et al.1995; Floccia et al.2006; Iverson et 

al.2000; Norris et al.2003). Processing of accents is potentially a test case with much broader 

implications for understanding how the brain encompasses perceptual variation in behaviourally 

relevant, semantically laden stimuli and how neurodegenerative diseases damage the distributed 

cortical networks that are presumed to support such processing.  

 

This study has several limitations and suggests a number of directions for future work. Accent 

processing here was assessed in relation to a limited number of other neuropsychological 

functions: a more complete understanding of the deficits identified here would require a more 

detailed investigation of accent processing in parallel with other kinds of complex nonverbal 

sound processing and a more fine-grained analysis of potentially relevant perceptual and 

linguistic mechanisms. This study aimed to address a broad range of accent processing functions 

(aspects of accent comprehension and recognition) for accents that were likely to be familiar to 



 

 

160 

our subject population and using various relevant response procedures (sentence comprehension, 

word verification and forced-choice responses): future work should analyse the component 

processes in more detail and compare these processes more directly using uniform test 

procedures. It will be important to assess performance in relation to the specific perceptual 

characteristics that define particular accents, a key issue in attempting to generalise findings 

across populations with very different accent exposures.  

 

A further dimension is the potential interaction between altered accent perception and distorted 

production of the patient’s own native accent, as illustrated most dramatically in the so-called 

‘foreign accent syndrome’ (Hall et al.2003; Kurowski et al.1996; Luzzi et al.2008; Van Borsel et 

al.2005): this would entail a parallel acoustic analysis of patients’ spoken output. Even if 

temporal lobe areas are critical for accent processing, such processing is likely to be mediated by 

distributed brain networks extending beyond the temporal lobes (Adank et al.2012; Berman et 

al.2003; Burton, Small, & Blumstein 2000; Peschke, Ziegler, Eisenberger et al. 2012). As in 

Study 2, grey matter associations were only significant in ROI analyses, and associations were 

not found with inferior frontal and parietal cortical regions hypothesised to be recruited in accent 

processing tasks, VBM analyses may have been underpowered to detect associations across the 

whole brain, or alternatively these regions may not have been critical to impaired task 

performance in PNFA and AD. A more complete picture of these mechanisms will require 

complementary functional and connectivity-based imaging techniques, in line with the emerging 

concept of neurodegenerative diseases as ‘network-opathies’ (Buckner, Sepulcre, Talukdar et al. 

2009; Seeley et al.2009; Sonty et al.2007; Zhou et al.2010). 

 

A further limitation is that the patient cohorts here were relatively small and this limitation is 

likely to be particularly relevant to intrinsically heterogeneous syndromes such as PNFA; tests for 

disease-performance interactions here were likely under-powered, and the PNFA group did not 

contribute substantially to the combined-group results. There is a need to address these issues in 

larger patient cohorts, in other neurodegenerative diseases and longitudinally, in order to establish 

how accent processing relates to the development of other cognitive deficits and the specificity of 

deficits for particular neurodegenerative pathologies. 
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6. Conclusions 

 

The work presented in this thesis has addressed the neuropsychological and neuroanatomical 

underpinnings of voice processing impairments in neurodegenerative disease. The present 

experimental evidence has implications for our understanding of the pattern of nonverbal auditory 

impairments in FTLD and AD, and for the architecture of voice processing in the healthy brain. 

In this chapter a summary of the findings of this thesis and directions for future work are 

presented.  

 

1.  Voice processing deficits are significant in neurodegenerative disease  

Detailed studies of voice processing in degenerative disease are limited, however the findings of 

this thesis suggest that vocal processing impairments are likely to be prevalent in both AD and 

FTLD syndromes, in keeping with predictions that the brunt of tissue damage in these diseases 

involves a network of temporal, frontal and parietal cortical regions which are likely to contain 

mechanisms integral for voice and accent analysis (Adank et al.2009; Belin et al.2004; Berman et 

al.2003; Van Lancker et al.1988; Van Lancker et al.1989; von Kriegstein et al.2004). Further 

investigations will be required in larger patient cohorts, however the current findings suggest that 

different dementia syndromes lead to distinct but partly overlapping profiles of voice processing 

impairment.  

 

2.  Associative deficits predominate in these syndromes  

Semantic deficits of voice processing (recognition of voices or accents) were found in all the 

dementia syndromes investigated in this thesis: SD, bvFTD, PNFA and AD. The selective nature 

of the breakdown of conceptual knowledge in right and left-sided tvFTLD (primarily consisting 

of cases that fulfilled clinical criteria for SD) was a critical test case to investigate the nature of 

semantic voice processes. In common with deficits of recognition of other nonverbal auditory 

objects (Bozeat et al.2000; Goll et al.2010; Omar et al.2010; Omar et al.2011), severe associative 

deficits were generally observed in the presence of relatively preserved perceptual and 

apperceptive vocal task performance, and alongside multimodal deficits of person knowledge. 

VBM correlates further implicated the anterior and inferior temporal lobes in the pan-modal 

semantic analysis of sensory objects. The neuroimaging evidence presented in this thesis suggests 

dedicated brain regions representing modality-specific information within a distributed bi-

temporal network instantiate mechanisms for processing multiple aspects of knowledge. The right 
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ATL was implicated particularly for aspects of nonverbal knowledge (voice recognition (Study 2) 

and accent recognition (Study 3)), while the left ATL may be more important in verbally 

mediated knowledge (single word comprehension on the BPVS (Study 2) and the intelligibility of 

accented speech (Study 3)).  

 

In previous work, deficits of voice processing in AD and PNFA, in particular studies of prosodic 

discrimination, were attributed to apperceptive auditory object impairments associated with 

posterior temporo-parietal atrophy (Goll et al.2010; Rohrer et al.2010). The present data however 

suggest that vocal semantic deficits associated with atrophy to the anterior and superior temporal 

lobes are prevalent in both syndromes. The proximity of neuroanatomical associations in the right 

ATL between accent and voice semantic processing tasks, as well as strong evidence for 

correlation between accent recognition and voice recognition task performance in the AD group 

suggest overlapping impairments between two vocal tasks. In AD these deficits are likely to be 

part of a broader profile of nonverbal semantic deficits associated with ATL atrophy in this 

disease (Greene et al.1996; Hodges et al.1992; Lambon Ralph et al.2003; Perry et al.2000), 

whereas in PNFA, receptive vocal processing deficits such as perception of “non-canonical” 

foreign-accented phonemes may provide a point of convergence between receptive and 

characteristic expressive speech impairments such as abnormalities of accent or prosody (Rohrer 

et al.2010). 

 

3.  Apperceptive and semantic vocal processing stages may interact 

In parallel with processing of visual information in the face modality, hierarchical cognitive 

models of voice processing propose that apperceptive processes precede semantic mechanisms of 

analysis (Belin et al.2004; Bruce & Valentine 1985; Ellis et al.1997). The results of this thesis 

present a more complex picture. Study 2 found that deficits of speaker discrimination were not 

consistently related to semantic task performance in AD, and although speaker discrimination 

correlated with voice familiarity, the direction of the influence was not established, and could 

involve reciprocal interaction (Goll et al.2010). BvFTD case QR (Study 1) also raised the 

possibility that selective associative phonagnosia could arise as a result of an abnormal 

interaction between complex perceptual representations (for example timbre, articulation or 

prosody) and subsequent semantic mechanisms. Close association and interaction between 

perceptual and semantic stages of nonverbal processing has been suggested in models of person 

identification (Lucchelli et al.2008) and auditory object models in which increasingly cross-

modal information and semantic processes are integrated as increasingly complex 
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spectrotemporal representations are formed (Goll et al.2010; Griffiths et al.2007; Lewis et 

al.2009).  

 

Feedback from cross-modal or semantic processes to perceptual analyses may be particularly 

important under non-standard listening conditions (e.g., identification of voices over the phone or 

when singing: (Benzagmout et al.2008; Garrido et al.2009)) when the auditory system is 

confronted with ambiguous or novel auditory information such as when confronted with a 

speaker with a novel foreign accent. Under such conditions, dynamic updating and generalization 

of conceptual representations may be necessary, for example updating of spectrotemporal 

representations of a linguistic unit and stored representations of particular accent features. The 

functional underpinnings of deficits of accent recognition and vocal identity processing 

associated with regions in the right ATL were not evaluated in this thesis, but may have resulted 

from defective perceptual differentiation amongst closely related auditory entities and/or fine-

grained analysis at associative (semantic) processing stages. To investigate the nature of deficits 

at the ATLs further neuropsychological and neuroimaging paradigms are needed, manipulating 

perceptual and semantic demands. 

 

4. Vocal apperceptive processing utilises auditory and non-auditory cognitive mechanisms 

Neuroimaging work suggests voice-specific mechanisms for perceptual analysis of voices exist in 

bilateral regions of the upper STS. Study 2 found that vocal apperceptive deficits in AD subjects 

were associated with regions of the right inferior parietal cortex, raising the possibility that vocal 

apperceptive mechanisms may depend on a distributed temporo-parietal network, involving both 

analysis of critical auditory features as well as other cognitive mechanisms, such as auditory 

working memory. This is concordant with deficits of nonvocal auditory object analysis, which are 

usually accompanied by impaired lower level object property processing and/or other non-

auditory cognitive processing deficits (Goll et al.2012; Griffiths, Rees, Witton et al. 1997; Saygin 

et al.2010).  

 

In the model of voice processing presented in this thesis, auditory working memory mechanisms 

are also proposed to be integral for accent processing. However differences between perceptual 

and apperceptive processing of voices and accents are hypothesised in the model, in particular 

accented speech presents listeners with a “non-canonical view” of a phoneme and may therefore 

utilise apperceptive mechanisms for another category of auditory objects: speech sounds. Voice 

specific apperceptive deficits are rarely detected clinically, hence systematic investigation of 
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voice processing in brain-lesioned cases presenting with other auditory deficits (such as 

dystimbria, aprosodia or word deafness, where voice processing deficits have been implicated in 

previous work (Mazzucchi et al.1982; Peretz et al.1994)) and in cases with auditory working 

memory impairment is needed to establish the critical neuro-cognitive mechanisms for voice and 

accent perception. 

 

Speaker discrimination is a neuropsychological paradigm developed by analogy with tests of 

facial and visual apperception (Benton et al.1989; Warrington et al.1986) and it is possible that 

comparing different “views” of unknown speakers addresses voice processing mechanisms that 

operate in parallel to voice recognition; for example recognition of familiar speakers may be less 

dependent on comparison of timbre between consecutive voices in working memory, and more 

reliant on fine-grained matching of spectrotemporal information to stored complex 

representations. A neuropsychological apperceptive task which does not require comparison of 

vocal features across a delay needs to be developed, for example a task which requires subjects to 

decide whether a sound is a “voice or not a voice” (a similar idea was utilised in a functional 

imaging paradigm previously (Belizaire et al.2007)) may parallel apperceptive tests of 

environmental sound processing in which subjects decide whether environmental sounds are real 

or unreal (Goll et al.2010), analagous to the Object Decision Task in the visual modality. 

Alternatively a test in which subjects must decide how old an unfamiliar voice is, by analogy with 

the De Renzi test of facial apperception (De Renzi, Faglioni, Grossi et al. 1991; De, Bonacini, & 

Faglioni 1989) could be developed. Further neuroimaging and neuropsychological investigation 

of vocal perceptual and apperceptive processes is needed to establish the nature and extent of 

analogies between auditory and visual modalities.  

 

5.  Familiar voice identification segregates from recognition of other auditory objects in 

degenerative disease 

The data presented in Study 1 found that recognition of environmental sounds was not impaired 

with phonagnosia in neurodegenerative disease, supporting the results from previous work 

showing dissociation between vocal associative processes and this class of auditory object (Assal 

et al.1981; Garrido et al.2009; Neuner et al.2000; Peretz et al.1994). This result contrasts with the 

results of previous work showing impairments of environmental sound recognition in SD (Bozeat 

et al.2000; Goll et al.2010). Both cases in Study 1 however performed in the impaired range on 

musical instrument identification; music is another specialized category of auditory objects 

involving highly differentiated auditory entities (musical instruments and melodies) and musical 
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instrument recognition, like voice processing is highly dependent on analysis of timbre. A 

neuroanatomical profile either affecting mid temporal cortical regions and disrupting mechanisms 

of timbre analysis, but sparing posterior regions of the STS critical for analysis of lower level 

auditory perceptual features sufficient for environmental sound discrimination could explain this 

result (Goll et al.2010; Lewis et al.2009). Investigation of auditory object processing in larger 

groups of phonagnosic individuals is needed; musical auditory objects may be valuable for 

matching processing demands to voices (for example timbre processing between instruments and 

individual voices, and melodic processing between melodies and accented voices). Finding 

another auditory category which is as highly differentiated as familiar voices may be difficult in 

listeners without auditory expertise; regional accents may offer a less highly differentiated class 

of vocal semantic object to compare to other auditory object categories which do not require 

expertise (such as tool or animal sounds) (Goll et al.2010; Goll et al.2010; Lewis et al.2005; 

Staeren et al.2009).  

 

The data presented in Study 1 also demonstrated that phonagnosia can spare recognition of vocal 

emotions in FTLD, parallels the results exhibited by developmental case KH (Garrido et al.2009), 

and corresponds to dissociations between identity and emotion pathways in the face modality. 

However, right-lateralised regions of the amygdala associated with familiar voice recognition in 

Study 3 raised the possibility that there is greater overlap between emotion and identity 

processing pathways than proposed by Belin (see Section 1.7.2) (Campanella et al.2007; von 

Kriegstein et al.2004). Interaction with affective processing may occur at the level of processing 

of object properties (such as timbre or intonational qualities); such interactions have been tested 

in music: melodies have been shown to be adept at conveying emotions and abstract feeling states 

(Gosselin, Peretz, Hasboun et al. 2011; Gosselin, Peretz, Johnsen et al. 2007; Peretz & Zatorre 

2005), musical instrument timbre has been found to communicate emotional tone (Hailstone et 

al.2009). The emotional qualities of voices could be tested empirically. Recognition of personally 

familiar voices may also be more dependent on affective associations than recognition of public 

figures, and could for example involving arousal via the amygdala as has been suggested 

underpins covert face recognition (Schweinberger & Burton 2003). Further work is needed to 

establish whether personally familiar voices are affected similarly to recognition of public 

figures.   
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6.  Updated model of voice processing in this Thesis 

On the basis of the results from thesis, the model of voice processing outlined in Chapter 1 can be 

updated. This updated model is displayed in Figure 6.1. Hypotheses arising from the model are 

discussed below and directions for future work are suggested.  
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Figure 6.1 Updated model for this Thesis 

 

 

Developed from Figure 1.5 on the basis of neuropsychological and neuroanatomical data from the studies 

in this thesis. Parallel processing pathways for accent processing (in orange), voice identity processing (in 

green) and speaker discrimination (in yellow) are indicated with their component cognitive operations. 

Candidate anatomical substrates for these operations are displayed on the relevant side of the diagram, and 

although they are displayed as discrete “nodes”, it is likely that areas cooperate as networks. Accented 

processing is proposed to recruit linguistic processing mechanisms, mechanisms are indicated by analysis 

of phonemes*, however the linguistic mechanisms may operate at the level of speech sounds: consonants 

and vowels, phonemes, phonological units and/or at the level of words: these processes were not 

specifically investigated in this thesis. 
a
Apperceptive voice processes are indicated by two stages, and 

although are poorly understood and were not specifically investigated in this thesis, in this model generic 

auditory object analysis has been segregated from more individuated analysis of previously encountered 

voices (VRUs) and linguistic templates for the purposes of distinguishing the process of familiarity. 

Coloured arrows demonstrate the primary information transfer pathway and indicate the primary direction 

of communication between stages in the hierarchy. Although the main pathways of information transfer are 

displayed, connections may be reciprocal and some lateral interaction between parallel pathways is likely. 

Arrows linking template processing and spectral and temporal shape representations are shown as 

bidirectional to emphasise the dynamic updating of these templates via the interaction between incoming 

information and stored representations, in line with Goll and colleagues’ model of auditory object 

processing (Goll et al.2010). 
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On the basis of neuroimaging results of Studies 2 and 3 in which the right ATL was implicated in 

accent and voice recognition performance, it is hypothesised that the right superior anterior 

temporal cortex contains complex spectrotemporal representations or templates of both familiar 

voices (VRUs) and of regional and foreign accents. It is therefore predicted that damage to the 

right anterior superior temporal lobe could result in impairments of voice and accent recognition 

tasks. Regions of the left anterior superior temporal lobe (STS/STG) and anterior mid temporal 

gyrus predicted to be involved in higher level linguistic analysis were associated with both accent 

recognition and comprehension tasks in Study 3, and hence it is predicted that damage to the left 

ATL would severely affect accent comprehension and recognition performance. Associations 

with bilateral regions of the temporal pole were found across vocal semantic tasks in Study 2, 

regions involved in representations of  amodal or multimodal semantic knowledge (Humphreys et 

al.1988; Lambon Ralph et al.2008; Snowden et al.2004; Warrington 1975), therefore it is 

predicted that selective damage to the left ATL would impair identification and naming tasks but 

may not impair voice familiarity or nonverbal cross-modal recognition, such as voice- face 

matching. These predictions could be tested systematically in unilateral temporal lesion cases as 

well as patients with right or left predominant temporal lobe atrophy.  

 

Study 2 found consistent associations across person recognition tasks with grey matter in the right 

anterior and inferior temporal lobe. Familiarity decisions across modalities were associated with 

the right anterior fusiform gyrus, in line with models of person recognition which hypothesise 

that multimodal familiarity decisions do not require access to conceptual knowledge (Belin et 

al.2004; Bruce et al.1986; Burton et al.1990), represented at the poles. It is possible that the right 

anterior fusiform gyrus is the neural locus for the PIN, in which damage here would result in 

multimodal deficits of person recognition, but not deficits of other semantic vocal tasks such as 

accent recognition. A neural mechanism for multimodal familiarity decisions does not easily 

explain neuropsychologial evidence in Studies 1 and 2 for dissociations between performance on 

familiarity tasks across modalities. Notably, dissociation was found between verbal and 

nonverbal modalities, corroborating results found in previous work (Gainotti 2007a; Gainotti 

2007b; Snowden et al.2004). Neuroanatomical segregation between modalities however was not 

seen in VBM analyses, which may have been underpowered to detect modality specific effects.  

 

The model in this thesis is based on a recent model (Gainotti 2011), which argues against the 

existence of a PIN based on evidence for modality specific deficits at familiarity tasks (Gainotti 

2007a; Gainotti 2007b; Gainotti 2011), proposing that familiarity decisions occur in modality 
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independent recognition units in line with the original Bruce and Young model (Bruce et 

al.1986). Gainotti’s model is complementary to a model proposing direct and reciprocal 

connectivity between modality-specific recognition units (von Kriegstein et al.2006), based on 

work showing functional connectivity between STS and fusiform during familiar speaker 

recognition (von Kriegstein et al.2006; von Kriegstein et al.2005). The model for this thesis 

predicts that deficits of voice familiarity and associative phonagnosia (in Study 1) can result from 

selective damage to superior regions of the right ATL. It is proposed that damage to the anterior 

fusiform would impair voice cross-modal recognition or identification tasks.These hypotheses 

could be tested in patients with lesions or focal atrophy affecting the right anterior fusiform, in 

line with previous study of voice recognition in prosopagnosia (von Kriegstein et al.2006).  

 

In the model familiarity is also hypothesised to be mediated by attention or executive resources, 

particularly under challenging or non-standard listening conditions (Benzagmout et al.2008; 

Garrido et al.2009). Further exploration of modality specific differences in neural networks is 

needed, and manipulations of both the modality of presentation and listening conditions could be 

readily explored using fMRI in patients as well as healthy subjects. In particular fMRI would 

allow the functional connectivity of voice networks to be explored (for example von Kriegstein 

and colleagues’ work (von Kriegstein et al.2005).  

 

On the basis of results in Study 2, the updated model predicts that speaker discrimination is 

processed at least partially in parallel to the voice recognition pathway engaging auditory 

working memory mechanisms in the inferior parietal cortex. In the original model of voice 

processing presented in this thesis, accent processing was also hypothesised to recruit inferior 

parietal and inferior frontal regions in high level explicit judgements, in line with models of 

emotional prosody (Wildgruber et al.2006). Lower level accent discrimination tasks may share 

cognitive demands with speaker discrimination, and may integrally require working memory to 

track and compare prosodic contours (either at a segmental or suprasegmental level). It is 

therefore proposed in the updated model that attentional and working memory mechanisms 

operate at apperceptive levels as well as at explicit recognition tasks. Neural networks activated 

by vocal and accent perceptual processes could be compared using fMRI. 

 

 

 

7.  Clinical implications of voice processing impairments 
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In everyday life, voice processing deficits are likely to be critical when additional cues are 

reduced or unavailable such as on the telephone or in the presence of background noise, and 

particularly in neurodegenerative disease, in conjunction with multimodal impairments of 

recognition of familiar people and other cognitive impairments, such as episodic memory deficits 

in AD or executive function deficits in FTLD. Although impairments of voice and accent 

processing may not be clinically salient symptoms, the work presented in this thesis suggests that 

this may be at least partly attributable to a lack of assessment of auditory impairments 

diagnostically and perhaps also to the availability of compensatory cues (from other modalities 

and context). It is notable that a substantial proportion of carers of patients in both groups in 

Study 2 had noticed that the patient had some difficulty with voice recognition. Voice processing 

deficits may contribute importantly to disability, such as social withdrawal in AD (Reichman & 

Negron 2001) or a loss of social-connectedness characteristic of the behavioural changes 

associated with right temporal atrophy in FTLD (Chan et al.2009; Olson et al.2007), behaviours 

which could be assessed empirically in relation to vocal object and emotion processing.  

 

The data presented in Study 1 demonstrated that phonagnosia can occur with preserved 

recognition of vocal emotions in a case of bvFTD. However as deficits of affective processing are 

more commonly described than object recognition impairments in bvFTD it is possible that the 

reverse dissociation may also occur. Such dissociations may explain heterogeneity in clinical 

symptoms in this syndrome. Disease-specific deficits (or relative preservation) of voice 

processing could potentially assist diagnosis; for example differing presentations of vocal 

processing impairment were demonstrated between cases of bvFTD and tvFTLD in Study 1, 

between AD and SD groups in Study 2, and between PNFA and AD groups in Study 3. Cognitive 

deficits in degenerative syndromes may underpin differential patterns of voice impairment; for 

example in AD deficits of auditory working memory (Stopford, Snowden, Thompson et al. 2007) 

or episodic memory impairment may contribute to deficits of voice processing. Longitudinal 

study of voice processing performance in relation to other patterns of cognitive impairment is 

required in patients with degenerative pathologies to understand the evolution of clinical 

impairments of voice processing.  
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Appendices 

 
Appendix A.1. Quantification of voice recognition ability: control pilot study.   

 

A pilot study was conducted to quantify voice recognition ability in a sample of older adults 

firstly to select famous voice stimuli for the main study and secondly to investigate the 

relationship between voice performance and demographic variables and measures of media 

exposure. Faces were selected to compare performance in the voice modality to the same 

identities presented in another non-verbal modality.  

  

A pilot control sample of 26 older controls, 18 female (mean age=65.5, SD=7.3, range: 51-82) 

were tested using 60 voice and face stimuli, obtained from publicly available sources. Familiarity, 

naming and recognition of 60 famous and 60 unfamiliar voices and faces were assessed, 

presenting the same public figures in both modalities. Order of presentation of faces and voices 

was randomised and balanced between subjects. One control subject from the pilot study was 

excluded, based on performance greater than 2 standard deviations below the control mean on all 

tests of voice and face identification; this may reflect a developmental or acquired difficulty with 

person recognition.  

 

In order to investigate the relationship between background control variables and identification 

scores, the pilot control sample scores for naming and recognition of the 24 voices and faces used 

in the final study were combined with scores from the main study control sample. Statistics for 

the total control sample of 48 controls, 33 female (mean age=64.8, SD=5.9, range: 51-82) were 

calculated. Voice identification scores (naming: mean=16.2, SD=4.9, range: 5-23; recognition: 

mean=18.4, SD=4.6, range: 5-24) were lower than scores for identification of the faces (naming: 

mean=20.1, SD=3.8, range: 8-24; recognition: mean=22.8, SD=2.0, range: 15-24). Paired t-tests 

were used to assess the difference in control scores between face identification and voice 

identification scores. Face naming scores were significantly greater than voice naming scores 

(t=7.1, p<0.001, df=47) and face recognition scores were significantly greater than voice 

recognition scores (t=7.9, p<0.001, df=47). 

 

In order to assess the relationship between background control variables and voice and face 

identification test scores, univariate associations between the effects of age, sex, number of years 

of education, IQ (measured on the NART), naming ability (assessed on the GNT), and media 
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exposure categorical data: for television watching (hours per week), radio listening (hours per 

week) and news exposure (see Methods Section 2.2.3) on famous voice naming, voice 

recognition, face naming and face recognition test scores, respectively. To allow for violations of 

the normality assumption, bias-corrected bootstrapped confidence intervals (CI) were used.   

 

Associations between voice familiarity, naming and identification tests and background 

control variables 

 

 Familiarity Naming Identification 

Demographic variables Coefficient (CI) Coefficient (CI) Coefficient (CI) 

Age (years) -0.08 (-0.9, 0.7) -0.75 (-1.6, 0.1) -0.55 (-1.4,  0.3) 

Gender 1.21 (-9.1, 11.5) -8.71 (-18.6, 1.2) -7.15 (-17.3, 1.0) 

Years of education  -0.35 (-2.0, 1.3) 0.27 (-1.4, 2.0) 0.36 (-1.5, 2.2.) 

NART IQ 0.20 (-0.4, 0.8) 0.47 (-1.0, 1.0) 0.41 (-0.2, 1.0) 

GNT (/30) -0.79 (-2.2., 0.6) 0.77 ( -0.4, 2.0) 0.28 (-1.0, 1.6) 

Media exposure measures    

Television (hours per week) 3.46 (0.50, 6.4)*  1.81 (-1.4, 5.0) 2.8.6 (-0.18, 5.89) 

Radio (hours per week) 1.26 (-2.3., 4.8) -0.52 (-3.9, 2.9.) -0.13 (-3.5, 3.3) 

News (times per week) 4.00 (2.0, 6.0)** 3.53 (1.2, 5.9)** 3.65 (0.8, 6.5)* 

 

   CI represents 95% bootstrapped confidence intervals; Significance level: *p<0.05, **p<0.01 

 

There was no evidence of association between any of the voice recognition scores with 

background demographic or neuropsychological variables (age, sex, number of years of 

education, NART IQ, GNT score). There was significant evidence that an increase in exposure to 

the news was associated with an increase in score on all three voice recognition tests. Hours of 

television watching were also significantly associated with an increase in voice familiarity score.  

 

To select items for the final study, as the voice was the modality of interest, the 24 public figures 

best identified from voice by pilot study controls were selected; these items were correctly 

identified by 64-92% of controls (mean = 75.0, SD=9.0). The same set of public figures presented 

in the face modality were recognised by a larger proportion (76 – 100%) of controls (mean = 

91.8, SD=7.2), and all but one of these 24 public figures (Ann Widdecombe: 88% (voice), 76% 

(face)) was recognised by a larger proportion of controls in the face modality than the voice 

modality. Across the entire set of 60 voices, only seven public figures were identified by a larger 

proportion of controls better from their voice than their faces. 
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Appendix A.2. List of the background neuropsychological tests used in this 

Thesis 

 

Background Neuropsychological tests 

Test (maximum score) Test (maximum score) 

IQ Semantic tests 

WASI Verbal IQ British Picture Vocabulary Scale (/150) 

WASI Performance IQ Concrete synonyms (/25) 

NART full-scale IQ Abstract synonyms (/25) 

Schonell reading IQ Landmark Naming (/15) 

 Landmark Recognition (/15) 

Working memory Famous Faces Test: Naming (/12) 

WAIS III Digit span forwards (/14)  

WAIS III Digit span backwards (/14) Other non-semantic skills 

WMS-R Digit span forwards (/12) Graded Naming Test  (/30) 

WMS-R Digit span backwards (/12) Object Decision Task (/20) 

WMS-III Spatial span forwards (/12) Graded Difficulty Arithmetic (/24) 

WMS-III Spatial span backwards (/12)  

 Executive function 

Episodic memory DKEFS: Stroop Word reading 

Recognition Memory Test: words (/50) DKEFS: Stroop inhibition 

Recognition Memory Test: faces (/50) DKEFS: Design Fluency Task: switching 

 

WASI, Wechsler Abbreviated Scale of Intelligence (Wechsler 1999); NART, National Adult 

Reading Test (Nelson 1982); Schonell Graded Word Reading Test IQ (Schonell et al.1971); 

BPVS, British Picture Vocabulary Scale (McCarthy et al.1992); Concrete and Abstract 

Synonyms (Warrington, McKenna, & Orpwood 1998); Landmark name, London landmark 

naming and identification test (Whiteley et al.1978); Famous Faces Test: naming and recognition 

(Warrington et al.1967); WAIS III (Wechsler Adult Intelligence Scale- version III) digit span: 

forwards, backwards (Wechsler 1997); WMS-III (Wechsler Memory Scale-version 3) Spatial 

Span: forwards, backwards (Wechsler 1999); WMS-R (Wechsler Memory Scale-Revised) digit 

span: forwards, backwards (Wechsler 1987);  Graded Naming Test (Warrington 1997);  Object 

Decision Task (Warrington & James 1991); Graded Difficulty Arithmetic (Jackson & Warrington 

1986);  Recognition Memory Tests: words and faces (Warrington 1984);  DKEFS, Delis-Kaplan 

Executive Function System Stroop tests and Design Fluency Task (Delis, Kaplan, & Kramer 

2001).  
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Appendix A.3. Lists of the public figures selected for Experiments 1 and 2 and 

faces frequency matched to voices in Experiment 3 

 

 Experiment 1: main study figures Experiment 3: frequency matched faces 
1 Alan Bennett Alan Titchmarsh 

2 Ann Widdecombe  Anne Robinson  

3 Bill Clinton Anthony Hopkins 

4 Billy Connolly Barbara Windsor 

5 Bob Geldof Bruce Forsyth 

6 David Attenborough Charles Kennedy 

7 Edward Heath Cilla Black 

8 George Bush David Cameron 

9 Gordon Brown David Frost 

10 Ian Paisley David Jason 

11 Janet Street-Porter Dolly Parton 

12 Joanna Lumley Hugh Grant 

13 John Humphreys Jack Nicholson 

14 John Major Jeremy Clarkson 

15 Jonathan Ross Jimmy Carter 

16 Judi Dench John Cleese 

17 Kenneth Williams John Snow 

18 Margaret Thatcher Michael Caine 

19 Neil Kinnock Michael Portillo 

20 

Prince Charles (written name: Charles 

Windsor) Moira Stewart 

21 Princess Diana (written name: Diana Spencer) Robbie Coltrane 

22 Ronnie Corbett Sean Connery 

23 Terry Wogan Stephen Fry 

24 Tony Blair Woody Allen 
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Appendix A.4.1. Correlations of apperceptive performance: modality and 

semantic performance 

 
Subtest tvFTLD 

n=14 
AD 

n=22 
Apperceptive   
Easy speaker discrimination 
& Benton face test 

0.12 (-0.64, 0.66) 0.26 (-0.13, 0.61) 

Difficult speaker discrimination 

& Benton face test 
0.16 (-0.37, 0.65) 0.04 (-0.41, 0.59) 

Apperceptive & familiarity   
Easy speaker discrimination 
& voice familiarity 

0.07 (-0.46, 0.55) 0.18 (-0.27, 0.67) 

Difficult speaker discrimination 

& voice familiarity 
0.42 (-0.15, 0.81) 0.41* (0.05, 0.67) 

Benton face test & face 

familiarity 
-0.42 (-0.77, 0.23) -0.05 (-0.47, 0.35) 

Apperceptive & identification   
Easy speaker discrimination 
& voice identification 

0.21 (-0.25, 0.66) 0.10 (-0.33, 0.52) 

Difficult speaker discrimination 

& voice identification 
0.23 (-0.73, 0.82) 0.20 (-0.20, 0.56) 

Benton face test & face 

identification 
-0.16 (-0.66, 0.35) 0.17 (-0.24, 0.51) 

 

Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence 

intervals; *p<0.05  
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Appendix A.4.2. Correlations between semantic subtests, within modality and 

between presentation modalities 

 
Subtest tvFTLD 

n=14 
AD 

n=22 
Within-modality correlations   

Voices   
Familiarity & naming 0.04 (-0.41, 0.66) 0.54* (0.23, 0.72) 
Familiarity & identification 0.73 (-0.39, 0.97) 0.67* (0.38, 0.83) 
Familiarity & cross-modal  0.70* (0.14, 0.98) 0.81* (0.60, 0.90) 
Identification & naming 0.18 (-0.25, 0.88) 0.60* (0.31, 0.78) 
Identification & cross-modal 0.84* (0.04, 0.98) 0.78* (0.53, 0.89) 
Naming & cross-modal 0.59 (-0.08, 0.99) 0.54* (0.20, 0.74) 

Faces   
Familiarity & naming 0.29 (-0.39, 0.73) 0.50* (0.13, 0.75) 
Familiarity & identification 0.48 (-0.19, 0.80) 0.67* (0.28, 0.87) 
Familiarity & cross-modal  0.53 (-0.15, 0.81) 0.69* (0.30, 0.87) 
Identification & naming 0.47* (0.02, 0.94) 0.48* (0.19, 0.70) 
Identification & cross-modal 0.89* (0.43, 0.96) 0.78* (0.46, 0.95) 
Naming & cross-modal 0.62* (0.22, 0.89) 0.50* (0.18, 0.71) 

   
Between-modality correlations   

Familiarity   
Voice &  face 0.08 (-0.56, 0.50) 0.62* (0.30, 0.77) 
Voice & name  0.35 (-0.17, 0.76) 0.14 (-0.43, 0.52) 
Face & name  -0.01 (-0.52, 0.56) 0.42(-0.20, 0.74) 
Naming   
Voice & face 0.94* (0.68, 1.00)  0.62* (0.04, 0.88)  
Identification   
Voice &  face  0.72* (0.09, 0.87) 0.78* (0.55, 0.89) 
Voice &  name  0.52 (-0.02, 0.73) 0.51 (-0.02, 0.76) 
Face &  name  0.82* (0.39, 0.85) 0.75* (0.53, 0.88) 
Cross-modal   
Voice & face 0.77* (0.30, 0.96) 0.73* (0.42, 0.90) 

Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence 

intervals; *p<0.05 
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Appendix A.4.3. Associations between semantic and perceptual test 

performance and disease severity measures 

 

 tvFTLD AD 

 Associations with 

BPVS 

Associations with 

disease duration 

(years) 

 

Associations with 

MMSE 

 

Associations with 

disease duration 

(years) 

 

 n=14 n=14 n=22 n=22 

Semantic 

subtest 

    

Familiarity     

Voice  0.05 (-0.004, 0.10) -0.34 (-1.38, 0.71) -0.51 (-1.07, 0.05) 0.09 (-0.75, 0.92) 

Face 0.04 (-0.07, 0.08) 0.21 (-2.79, 3.22) -0.06 (-0.87, 0.75) 0.96 (-0.10, 1.99) 

Name  0.08* (0.02, 0.14) -3.07**(-4.67, -1.47) 0.26 (-0.12, 0.64) 0.34 (-0.13, 0.81) 

Naming     

Voice 0.02 (-0.01, 0.04) -0.35 (-0.88, 0.17) -0.05 (-0.47, 0.37) 0.52* (0.08,0.97) 

Face 0.04 (-0.01, 0.09) -0.94 (-2.32, 0.44) 0.20 (-0.32, 0.72) 0.99* (0.22, 1.75) 

Identification     

Voice  0.05 (-0.01, 0.12) -0.84 (-1.85, 0.16) -0.50 (-1.23, 0.22) 0.10 (-0.85, 1.05) 

Face  0.11** (0.04, 0.18) -1.76 (-3.89, 0.37) -0.31 (-0.86, 0.24) 0.23 (-0.71, 1.17) 

Name  0.11** (0.06, 0.16) -2.46* (-4.59, -0.33) 0.03 (-0.50, 0.56) 0.10 (-0.64, 0.84) 

Cross-modal 

Matching 

    

Voice 0.10* (0.01, 0.18) -1.22 (-3.15, 0.71) -0.51* (-1.00, -0.02) -0.08 (-1.17, 1.01) 

Face  0.10* (0.04, 0.16) -1.49 (-3.91, 0.92) -0.34 (-0.73, 0.05) 0.49 (-0.44, 1.41) 

     

Perceptual 

subtest 

    

Easy speaker 

discrimination 

0.001 (-0.02, 0.02) -0.01 (-0.54, 0.52) 0.19 (-0.09, 0.46) 0.30 (-0.14, 0.75) 

Difficult speaker 

discrimination 

0.003 (-0.01, 0.02) -0.12 (-0.39, 0.15) 

 

-0.02 (-0.19, 0.15) 0.30 (-0.05, 0.66) 

Benton facial 

recognition 

0.003 (-0.04, 0.04) 0.38 (-0.57, 1.33) 0.56 (-0.1, 1.2) -0.36 (-1.60, 0.89) 

 

Regression coefficients (95% bootstrapped confidence intervals); Significance level: *p<0.05, 

**p<0.01 

  



 

 

178 

Appendix A.4.4. Correlations between vocal semantic subtests and background 

neuropsychological performance 

 

  
tvFTLD 

N=14 

AD 

N=22 

Test Familiarity Naming Identification Cross modal Familiarity Naming Identification Cross modal 

IQ         

Verbal IQ 
0.40* 

(0.01, 0.71) 

0.50 

(-0.37, 1.0) 

0.33 

(-0.57, 0.66) 

0.51 

(-0.12, 0.90) 

-0.25 

(-0.59, 0.13) 

0.12 

(-0.39, 0.54) 

-0.28 

(-0.64, 0.12) 

-0.25 

(-0.62, 0.05) 

Performance IQ 
0.74* 

(0.40, 0.88) 

-0.16  
(-0.60, 0.32) 

0.38  
(-0.45, 0.86) 

0.31 
(-0.27, 0.78) 

-0.20  
(-0.50, 0.25) 

0.01 
(-0.45, 0.50) 

-0.24  
(-0.63, 0.30) 

-0.08  
(-0.47, 0.43) 

Reading IQ 
0.14 

(-0.34, 0.53) 
0.48* 

(0.03, 0.65) 

0.14 

(-0.35, 0.53) 
0.42* 

 (0.002, 0.73) 

 -0.22 

(-0.54, 0.18) 

0.23  

(-0.16, 0.52) 

-0.38 

(-0.69, 0.16) 

-0.23 

(-0.52, 0.13) 

Semantic tests         

BPVS 
0.51 
 (-0.05, 0.85) 

0.47* 

(0.11, 0.87) 

0.67 
(-0.31, 0.76) 

0.67* 

(0.19. 0.90) 

0.20 
(-0.13, 0.53) 

0.34* 

(0.03, 0.55) 

 0.001  
(-0.51, 0.49) 

0.19  
(-0.20, 0.70) 

Concrete synoynms
c
 

0.004 

(-0.78, 0.60) 
0.63* 

(0.00, 0.98) 

0.21  

(-0.92, 0.79) 

0.49  

(-0.28, 0.93) 

0.06  

(-0.34, 0.46) 

0.25  

(-0.18, 0.56) 

-0.02  

(-0.35, 0.42) 

-0.08  

(-0.48, 0.32) 

Abstract synonyms
 c

 
0.14  
(-0.79, 0.71) 

0.45 
(-0.29, 1.0) 

0.37 
(-0.67, 0.75) 

0.47  
(-0.31, 0.92) 

-0.10  
(-0.39, 0.27) 

0.27 
(-0.11, 0.55) 

-0.09  
(-0.51, 0.27) 

-0.07 
 (-0.42, 0.29) 

Landmark name
d
 

 -0.10  

(-0.65, 0.55) 

0.85  

(-0.03, 1.0) 

-0.003  

(-0.57, 0.85) 

0.36  

(-0.40, 0.97) 

0.14  

(-0.40, 0.58) 
0.58* 

(0.15, 0.78) 

0.22 

 (-0.13, 0.57) 

0.14  

(-0.38, 0.60) 

Landmark recogn
d
 

0.05 

 (-0.58, 0.74) 

0.54 

(-0.22, 0.97) 

-0.01  

(-0.65, 0.72) 

0.16 

(-0.40, 0.85) 

0.33  

(-0.22, 0.67) 
0.67* 

(0.45, 0.81) 

0.53* 

(0.13, 0.76) 

0.39  

(-0.09, 0.74) 

Other non-

semantic skills         

GNT 
0.13 

 (-0.70, 0.46) 
0.96* 

(0.14, 1.0) 

0.24  

(-0.43, 0.79) 
0.62* 

(0.05, 0.98) 

0.09  

(-0.27, 0.44) 
0.44* 

(0.06, 0.70) 

0.01  

(-0.38, 0.39) 

0.05  

(-0.37, 0.48) 

Object Decision task 
0.34 

 (-0.48, 0.71) 

0.11 

(-0.40, 0.43) 

0.15 

(-0.31, 0.61) 

0.27 

(-0.05, 0.57) 

0.05 

(-0.39, 0.43) 

-0.07  

(-0.45, 0.32) 

-0.19 

(-0.57, 0.29) 

-0.13 

(-0.51, 0.37) 

Digit span fwd 
-0.12 
 (-0.72, 0.51) 

0.47* 

(0.0, 0.70) 

-0.15  
(-0.68, 0.69) 

0.06  
(-0.57, 0.71) 

-0.16  
(-0.53, 0.17) 

-0.04  
(-0.48, 0.40) 

-0.18  
(-0.51,0.18) 

-0.31  
(-0.59, 0.03) 

Digit span back 
0.29  
(-0.47, 0.68) 

0.04  
(-0.69, 0.26) 

0.05  
(-0.38, 0.46) 

0.10  
(-0.42, 0.54) 

-0.22  
(-0.54, 0.12) 

0.002  
(-0.54, 0.59) 

-0.26  
(-0.64, 0.23) 

-0.37  
(-0.70, 0.05) 

Arithmetic (GDA)   
0.38  

(-0.16, 0.84) 

0.24 

(-0.09, 0.50) 

0.07 

(-0.31, 0.42) 

0.24 

(-0.20, 0.60) 

-0.15 

(-0.52, 0.28) 

0.03  

(-0.43, 0.43) 

-0.37 

(-0.69, 0.18) 

-0.26 

(-0.62, 0.21) 

Episodic memory         

RMT words
b
 

0.28  
(-0.19, 0.58) 

0.32  
(-0.21, 0.58) 

0.25  
(-0.20, 0.54) 

0.36 
(-0.12, 0.67) 

0.09  
(-0.33, 0.48) 

0.21 
 (-0.26, 0.58) 

0.45** 

(0.12, 0.70) 

0.16  
(-0.30, 0.49) 

RMT faces
b
 

0.59 

(-0.39, 0.79) 

0.07 

(-0.30, 0.43) 

0.20  

(-0.41, 0.75) 

0.25  

(-0.23, 0.75) 
0.48* 

(0.06, 0.78) 

0.16  

(-0.34, 0.61) 

0.32  

(-0.04, 0.64) 

0.33 

 (-0.10, 0.66) 

Executive function         

Stroop Inhibition  

scaled
a
 

0.05 
(-0.71, 0.69) 

 -0.16 
(-0.53, 0.14) 

-0.33 
(-0.72, 0.27) 

-0.31 
(-0.73, 0.32) 

 -0.09 
(-0.43, 0.27) 

0.05  
(-0.37, 0.62) 

-0.38 
(-0.69, 0.13) 

-0.32 
(-0.65, 0.18) 

 
Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence intervals; 

Significant correlations are shown in bold (*p<0.05).WASI verbal and performance IQ; WMS-R digit span 

forwards and backwards;  GDA, Graded Difficulty Arithmetic;  Landmark name, London landmark naming 

and recognition tests;  RMT, Recognition Memory Tests; DKEFS Stroop test switched scaled score; WASI, 

Wechsler Abbreviated Scale of Intelligence; 
a
n=12 (2 tvFTLD subjects were unable to name colours);  

b
1 

tvFTLD subject did not perform recognition memory tasks. 
c 
2 tvFTLD and 1 AD subject did not perform 

synonyms tests.  
d
3 tvFTLD and 2AD subjects did not perform the London landmarks test.  
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Appendix A.4.5. Correlations between speaker discrimination and 

neuropsychological performance 
 

Test 

tvFTLD 

N=14 

AD 

N=22 

 Easy speaker Difficult speaker Easy speaker Difficult speaker 

Performance IQ 0.18 (-0.30, 0.61) 0.62* (0.29, 0.83) 0.30 (-0.10, 0.61) 0.04 (-0.35, 0.50) 

Digit span fwd -0.01 (-0.42, 0.46) -0.28 (-0.74, 0.28) 0.34*(0.01, 0.66) 0.24 (-0.15, 0.58) 

Digit span back -0.14 (-0.65, 0.36) 0.27 (-0.26, 0.66) 0.25 (-0.24, 0.64) 0.20 (-0.16, 0.59) 

BPVS 0.04 (-0.46, 0.46) 0.11 (-0.64, 0.67)  -0.03 (-0.28, 0.26) -0.26 (-0.47, 0.09) 

GNT -0.10 (-0.60, 0.31) -0.50 (-0.86, 0.30) 0.09 (-0.24, 0.40) 0.10 (-0.37, 0.50) 

RMT words
b
 0.32 (-0.22, 0.67) 0.15 (-0.47, 0.60) -0.06 (-0.55, 0.39) 0.12 (-0.36, 0.58) 

RMT faces
b
 -0.01 (-0.60, 0.64) 0.09 (-0.33, 0.69) 0.20 (-0.32, 0.71) 0.24 (-0.20, 0.59) 

Arithmetic (GDA) -0.25 (-0.66, 0.26) 0.004 (-0.43, 0.44) 0.23 (-0.28, 0.58) 0.18 (-0.22, 0.54) 

 

Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence 

intervals; Significant correlations are shown in bold (*p<0.05). WASI Performance IQ; WMS-R digit 

span; GDA, Graded Difficulty Arithmetic; RMT, Recognition Memory Tests; WASI, Wechsler 

Abbreviated Scale of Intelligence; 
a
n=12 (2 tvFTLD subjects were unable to name colours);  

b
1 tvFTLD 

subject did not perform recognition memory tasks. 
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Appendix A.4.6. Number of patients (and proportion of each patient group) 

impaired at 0, 1, 2 & 3 modalities of presentation on familiarity, identification, naming 

and cross-modal recognition semantic tasks 

 
 Familiarity  

 

Identification  

 

Naming  Cross-modal 

recognition  

 

 FTLD  AD FTLD  ADs FTLD  AD FTLD AD 

n=14 n=22 n=14 n=22 n=14 n=22 n=14 n=22 

Number of 

modalities 

impaired No. of patients No. of patients No. of patients No. of patients 

 % of patient group % of patient group % of patient group % of patient group 

0 modalities 0 9 0 5 0 1 0 5 
 0.00% 40.9% 0.00% 22.7% 0% 4.5% 0% 22.7% 

1 modality         

Voice only 1 0 0 1 0 1 0 0 
 7.1% 0.00% 0.00% 4.6% 0% 4.5% 0% 0% 

Face only 1 5 0 0 0 0 1 3 
 7.1% 22.7% 0.00% 0.00% 0% 0% 7.1% 13.6% 

Name only 0 0 1 1 - - - - 
 0.00% 0.00% 7.1% 4.6% 

2 modalities         

Voice & face 1 6 0 2 14 20 13 14 
 7.1% 27.3% 0.00% 9.1% 

100% 90.9% 92.9% 63.6% 

Voice & name 1 0 0 1  - 
- 

 - 
 - 

 - 
- 

 - 
-  7.1% 0.00% 0.00% 4.6% 

Face & name 0 0 0 2 - 

- 
 - 
 - 

- 
- 

- 
 -  0.00% 0.00% 0.00% 9.1% 

All 3 modalities 10 2 13 10  -  -  -  - 
 71.4% 9.1% 92.9% 45.5% 

 

    - Cross modal and naming tasks were not performed in the name modality 
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Appendix A.4.7. Comparison of right-sided versus left-sided tvFTLD subgroups 

 
 Right-sided 

tvFTLD 

N=4 

Left-sided 

tvFTLD 

N=9 

 

Right - left sided: Right – Left 

Direction  

of difference 

in means 

 Mean (SD) Mean (SD) Difference in means 

(95% CI) 

 

Demographics     

Age (years) 63.0 (6.2) 63.9 (6.4) -0.9 (-8.0, 6.3) - 

Years of education 13.0 (3.8) 13.0 (3.9) 0.0 (-2.9, 10.4)  

Disease duration (years) 5.0 (2.2) 5.3 (1.3) 0.4 (-2.2, 3.0) + 

     

General neuropsychological 

Test (max score) 

   
 

MMSE score (/30) 25.3 (3.8) 18.9 (8.0) 6.1* (0.1, 12.1) + 

Verbal IQ 75.8 (25.7) 59.2 (13.1) 30.5* (3.6, 57.5) + 

Performance IQ 98.5 (7.1) 98.6 (23.1) 3.7 (-14.9, 22.3) + 

Reading IQ 94.8 (19.6) 82.5 (24.3) 20.8 (-5.9, 47.4) + 

GNT (/30) 5.8 (11.5) 0.2 (0.7) 6.3 (-4.0, 16.7) + 

BPVS (/150) 84.3 (47.9) 61.1 (47.5) 45.6 (-12.5, 103.8) + 

Object decision task (/20) 13.5 (3.9) 17.7 (5.4) -1.7 (-5.4, 2.1) - 

RMT words (/50) 37.0 (7.1) 34.5 (7.7) 2.8 (-5.3, 10.8) + 

RMT faces (/50) 27.5 (2.6) 29.6 (4.9) -0.9 (-4.3, 2.5) - 

     

Experimental perceptual tasks     

Easy speaker discrimination (/28) 24.5 (1.9) 24.7 (1.7) 0.8 (-0.6, 2.2) + 

Hard speaker discrimination (/12) 9.0 (1.4) 9.2 (1.2) 0.0 (-1.6, 1.6)  

Gender (/24) 24.0 (0.0) 24.0 (0.0) 0.0 (-, -)
 a
  

Size (/20) 17.8 (3.2) 16.0 (2.6) 1.8 (-1.7, 5.2) + 

Benton (/56) 47.3 (2.2) 41.0 (3.2) 4.0* (0.6, 7.4) + 

     

Experimental semantic tasks     

Voice      

Voice familiarity (/48) 27.7 (6.0) 27.0 (1.8) -0.7 (-4.8, 3.4) - 

Voice naming (/24) 1.5 (3.0) 0.2 (0.4) 1.3 (-1.6, 4.2) + 

Voice identification (/24) 2.5 (3.0) 3.0 (6.1) -0.5 ( -5.2, 4.2) - 

Voice cross-modal (/24) 6.5 (9.7) 6.7 (6.8) 0.3 (-9.7, 10.3) + 

Face     

Face familiarity (/48) 30.3 (9.9) 36.9 (5.2) -5.9 (-15.9, 4.1) - 

Face naming (/24) 4.0 (6.7) 1.3 (2.1) 2.9 (-3.5, 9.3) + 

Face identification (/24) 7.5 (7.9) 8.2 (8.1) -0.7 (-9.9, 8.4) - 

Cross-modal matching (/24) 8.3 (9.3) 10.9 (7.7) -1.4 (-11.4, 8.7) - 

Name     

Name familiarity (/48) 35.5 (6.8) 34.4 (8.1) 0.3 ( -8.0, 8.6) + 

Name identification (/24) 7.3 (8.8) 7.1 (7.5) 1.4 (-7.9, 10.7) + 

 
CI represents 95% bootstrapped confidence intervals;  *Significant results are shown in bold, and indicate 

where left-sided group significantly worse than right-sided group at p<0.05  
a
All subjects performed at 

ceiling on this test, therefore bootstrapped CI could not be calculated. WASI verbal and performance IQ;  

RMT, Recognition Memory Tests. 
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Appendix A.5.1. Spoken sentences in question comprehension test 
 

 Questions Examples of accepted answers 

1 What is the opposite of young? Old 

2 What is rain made of? Water 

3 What hand do you write with? right /left 

4 What is the hottest time of the year? summer/July 

5 What colour is butter? yellow/golden 

6 What shape is the earth? round/spherical 

7 How many inches in a foot? Twelve 

8 What is 3 times 10? Thirty 

9 Can a bird fly? Yes 

10 What does a bell do? rings/clangs 

11 What is the opposite of good? bad/evil 

12 What do you sleep in? bed/pyjamas 

13 What room do you cook in? kitchen 

14 From what animal do we get milk? cow 

15 What does a key open? door/lock 

16 Where do you wear a ring? finger 

17 What are windows made of? glass 

18 What is the opposite of white? black 

19 What colour is the sky? blue/grey 

20 What do girls grow up to be? women/ladies 

21 What is the opposite of long? short 

22 What colour is blood? red 

23 Where does a picture hang? wall/gallery 

24 What is a rose? flower 

25 What's another word for cash? money/dosh 

26 What does a chicken lay? egg(s) 

27 What do we hear with? ears 

28 What are nails made of? metal/keratin 

29 Who goes to school? children/pupils 

30 What does an honest man always tell? truth 

31 What does a watch tell you? time 

32 What do you burn on an open fire? wood/coal 

33 How many legs does a dog have? 4 

34 What do you find in a library? books/computers 

35 What does a bird build? nest 

36 Who do you see when you're ill? doctor/nurse 

37 How many pennies in the pound? 100/240 

38 What city are we in? London 

39 What is a very young child called? baby/ infant 

40 When can you see the moon? night/evening 
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Appendix A.5.2. Stimuli used in the word verification task 

 

 Target  Distractor Change 

1 dame name 1
st
 Consonant 

2 neat meat 1
st
 Consonant 

3 night might 1
st
 Consonant 

4 nip lip 1
st
 Consonant 

5 pail tail 1
st
 Consonant 

6 pill bill 1
st
 Consonant 

7 tack sack 1
st
 Consonant 

8 bag back Last consonant 

9 bean beam Last consonant 

10 cab cap Last consonant 

11 code coat Last consonant 

12 maid main Last consonant 

13 bad bed Vowel 

14 bat bit Vowel 

15 cat cut Vowel 

16 deed dead Vowel 

17 fall full Vowel 

18 gut get Vowel 

19 mat met Vowel 

20 pit pet Vowel 

21 rice race Vowel 

22 slap slip Vowel 

23 tap tip Vowel 

24 tape type Vowel 

 

Word pairs derived from the PALPA Minimal Pairs test 
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Appendix A.5.3. Stimulus trials in the regional accent recognition tests 

 

 

Regional British accents 

  

Regional English accents 

 

Trial 

 

Answer 

 

Region 

  

Answer 

 

Region 

 
1 Wales Glamorgan 1 North Lancashire 

2 England Merseyside 2 North Merseyside 

3 Ireland Londonderry 3 South Essex 

4 Scotland Scottish borders 4 South Oxfordshire 

5 England Essex 5 South Hackney 

6 England Yorkshire 6 South Devon 

7 Scotland Edinburgh 7 North Lancashire 

8 Wales Port Talbot 8 South Wiltshire 

9 England Standard English 9 South Norfolk 

10 Ireland Limerick 10 North Northumberland 

11 Ireland Belfast 11 South Gloucestershire 

12 Wales Glamorgan 12 North Merseyside 

13 Scotland Glasgow 13 North Yorkshire 

14 Wales Swansea 14 North Merseyside 

15 Scotland North Ayrshire 15 South Kent 

16 Ireland Cork 16 North Yorkshire 

17 Wales Pembrokeshire 17 North Yorkshire 

18 Ireland County Antrim 18 South Bristol 

19 Scotland Glasgow 19 North Durham 

20 England Standard English 20 South East Sussex 

21 England Yorkshire 21 South Oxfordshire 

22 Scotland Aberdeenshire 22 North Cheshire 

23 Wales Powys 23 North Tyne and Wear 

24 Ireland  Armagh 24 South East Sussex 
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Appendix A.5.4. Stimuli used in the test of naming of countries from verbal 

description 

 

 Country Stimulus 

1 Wales What country does a leek represent? 

2 Ireland Which country does Guinness come from? 

3 India Which country did Ghandi come from? 

4 Germany Which country did Hitler lead? 

5 Spain Which country is famous for flamenco and bullfighting? 

6 France Of what country was De Gaulle the president? 

7 England In which country are London and Birmingham? 

8 Scotland From which country does the haggis come? 

9 America/USA The stars and stripes is the flag of which country? 

10 Italy Spaghetti comes from which country? 
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Appendix A.5.5. Correlations between accent comprehension tests and phoneme 

discrimination, and between tests of accent recognition and country knowledge tests 

within the AD group (N=20) 

 

 Accent comprehension Accent recognition 

 Questions Foreign 

– English 
difference score  

Verification 

Foreign – English 
difference score 

British regions English regions England versus 

Foreign  
(Block 1) 

Phoneme 

discrimination 

     

Minimal pair word 

verification  

0.22 (-0.18, 0.77) -0.21 (-0.74, 0.13) - - - 

      

Country 

knowledge tests 

     

Country naming 

from description 

- - 0.52 (0.09, 0.84)* 0.18 (-0.26, 0.52) 0.22  (-0.18, 0.68) 

Map naming - - 0.36 (-0.27, 0.72) -0.13 (-0.52 0.27) 0.0 (-0.50, 0.42) 

Map 

comprehension 

- - 0.44 (-0.11, 0.77) -0.20 (-0.59, 0.26) 0.03  (-0.38, 0.44) 

Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence  

intervals; *p<0.05 
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Appendix A.5.6. Correlations between accent processing tests and subset of 

background neuropsychological tests, and apperceptive and semantic voice processing 

tests within the AD group (N=20) 

 

 Accent comprehension Accent recognition 

 Questions Foreign 

– English 
difference score  

Verification 

Foreign – English 
difference score 

British regions English regions England versus 

Foreign  
(Block 1) 

Neuropsychological tests      

Performance IQ 0.34 (-0.12, 0.70)  -0.05 (-0.49, 0.32) 0.42 (0.01, 0.72)*  -0.32 (-0.67, 0.15) 0.15 (-0.22, 0.50) 

BPVS 0.70 (0.19, 0.93)* 0.19 (-0.20, 0.45) 0.39 (0.03, 0.80)* 0.07 (-0.23, 0.39) 0.09 (-0.23, 0.44) 

Digit span fwd 0.55 (0.14, 0.81)*  -0.02 (-0.53, 0.45) 0.21 (-0.32, 0.47) -0.14 (-0.54, 0.33) 0.06 (-0.34, 0.38) 

Digit span back 0.15 (-0.28, 0.50)  -0.06 (-0.64, 0.37) 0.08 (-0.50, 0.62) -0.47 (-0.79, 0.03) 0.19 (-0.21, 0.44) 

RMT words -0.09 (-0.51, 0.47)  -0.02 (-0.54, 0.55) 0.44 (0.14, 0.63)* 0.22 (-0.36, 0.69) 0.29 (-0.13, 0.59) 

RMT faces 0.01 (-0.29, 0.43)  -0.17 (-0.69, 0.46) 0.43 (-0.09, 0.75) 0.30 (-0.31, 0.69) 0.64 (0.10, 0.85)* 

Stroop Switching Scaled   0.34 (-0.08, 0.56)  -0.07 (-0.48, 0.40) 0.13 (-0.27, 0.58) -0.16 (-0.61, 0.32) 0.39 (-0.02, 0.65) 

 

 

Voice perception      

Easy speaker 

discrimination 

0.06 (-0.27, 0.45) -0.72 (-0.89, -

0.37)* 

0.36 (-0.13, 0.75) -0.17 (-0.75, 0.57) 0.35 (-0.20, 0.83) 

Hard speaker 

discrimination 

-0.09 (-0.45, 0.41) -0.16 (-0.66, 0.40) 0.004 (-0.37, 

0.35) 

0.16 (-0.43, 0.61) 0.50 (0.167, 0.77)* 

      

Familiar voice 

recognition 

     

Familiarity -0.16 (-0.46, 0.20) -0.17 (-0.68, 0.28) 0.53 (0.24, 0.77)* 0.61 (0.32, 0.82)* 0.72 (0.37, 0.89)* 

Naming -0.38 (-0.68, 0.05) 0.36 (-0.18, 0.72) 0.58 (0.17, 0.84)* 0.61 (0.30, 0.82)* 0.52 (0.24, 0.72)* 

Identification 0.26 (-0.23, 0.65) -0.13 (-0.48, 0.25) 0.62 (0.31, 0.81)* 0.52 (0.16, 0.76)* 0.34 (-0.07, 0.65) 

Cross-modal matching 0.04 (-0.46, 0.40) -0.15 (-0.59, 0.29) 0.66 (0.36, 0.86)* 0.56 (0.23, 0.78)* 0.44 (-0.03, 0.77) 

Correlation coefficients are shown with 95% bias-corrected and accelerated bootstrap confidence    

intervals; * Significant correlations are shown in bold (*p<0.05); WASI Performance IQ; WMS-R digit 

span: forwards, backwards; GDA, Graded Difficulty Arithmetic; RMT, Recognition Memory Tests; 

DKEFs Stroop switching scaled. 
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Appendix A.6. Publications arising from this Thesis 

 

1. Hailstone JC, Crutch SJ, Vestergaard MD, Patterson RD, Warren JD. Progressive 

associative phonagnosia: a neuropsychological analysis. Neuropsychologia, 48: 

1104-1114, 2010. 

2. Hailstone JC, Crutch SJ, Warren JD. Voice recognition in dementia. Behavioural 

Neurology, 23: 163-164, 2010. 

3. Hailstone JC, Ridgway GR, Bartlett JW, Goll JC, Buckley AH, Crutch SJ, Warren 

JD. Voice processing in dementia: a neuropsychological and neuroanatomical 

analysis. Brain, 134: 2535-2547, 2011. 

4. Hailstone JC, Ridgway GR, Bartlett JW, Goll JC, Crutch SJ, Warren JD. Accent 

processing in dementia. Neuropsychologia 50: 2233-2244, 2012. 
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