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1. Introduction

1.1. The ExoMars Panoramic Camera

ABSTRACT

The Panoramic Camera (PanCam) instrument will provide surface remote sensing data for the ExoMars
mission. A combination of wide-angle stereo, multispectral, and high resolution imagery will generate
contextual geological information to help inform which scientific targets should be selected for drilling and
analysis. One component of the PanCam dataset is narrowband multispectral imaging in the visible to near
infrared, which utilises a dedicated set of 12 “geology” filters of predetermined wavelength and bandwidth
to view the terrain, and provide information on composition and putative mineralogy. The centre
wavelengths and bandwidths of these filters were optimised to account for the highly diverse mineralogical
terrains the ExoMars rover will hopefully encounter. Six new alternative test filter sets were created, each
optimised for the detection of either: sulfates, phyllosilicates, ferric oxides, mafic silicates, iron absorptions,
and minor hydration absorptions. These six filter sets were cross-tested using database mineral reflectance
spectra and Mars analogue rock multispectral data to find the best performing filter set. Once selected, the
bandwidths of this filter set were also optimised. The filter set optimised to ferric oxide minerals was able
to most accurately represent rock multispectral data, as well as capture subtle spectral features of hydrated
minerals, including sulfates, phyllosilicates, and carbonates. These filters differ from those used on past
missions (e.g., Pathfinder, Mars Exploration Rover) and represent the next evolutionary stage in PanCam
instrument development. When compared to past filter sets, the updated ExoMars filters capture rock and
mineral spectral data more effectively, enhancing the ability of the ExoMars PanCam to detect lithological
and compositional variation within an outcrop.

© 2012 Elsevier Ltd. All rights reserved.

(MER) Pancam (e.g., Bell et al, 2004; Farrand et al., 2006, 2008;
Johnson et al., 2007; Schmidt et al., 2009; Rice et al., 2010). The
PanCam for ExoMars will consist of 2 wide angle cameras (WACs)
with a 34° field of view (FoV), separated by a distance of 50 cm; and

The ExoMars mission, and in particular rock or outcrop target
selection, will be heavily dependent upon data from the Panoramic
Camera (PanCam) instrument. PanCam has numerous science objec-
tives (Griffiths et al., 2006), one of which - the assessment of the
geological terrain proximal to the rover — will be crucial for identify-
ing drilling targets, and providing the geological (and therefore
palaeoenvironmental) context to any sample analysis undertaken.
In addition, assessment of the local geology will generate scientific
findings in its own right, as seen with the Mars Exploration Rover
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a single High Resolution Camera with a narrow FoV of 4°. The WACs
each have a filter wheel to allow both narrowband multispectral
imaging and broadband colour imaging. For a detailed instrument
description see Griffiths et al. (2006). PanCam science for ExoMars
will be achieved with a combination of wide-angle stereo colour
panoramas and 3D digital elevation models (DEM), high resolution
colour images/mosaics, reflectance spectra of Regions of Interest
(ROI) and 2D mapping of spectral features (e.g., band depth).
Multispectral imaging in particular is achieved via a dedicated
“geology” filter set consisting of narrowband filters of pre-deter-
mined wavelengths between 440 and 1000 nm, placed in front of the
wide-angle camera lens via a filter wheel (Fig. 1). There are 22 filters
in total, distributed across 2 filter wheels, 12 of which are assigned
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Fig. 1. ExoMars PanCam design showing the position of the filter wheel in front of
the Wide Angle Camera lens. Credit: Craig Theobald.

specifically to providing narrowband multispectral data of the
geological terrain. These 12 filters can be used to generate coarse
reflectance spectra to identify putative mineralogy and composition
of a rock or soil target, as well as providing 2D spatial multispectral
data to enable mapping of spectrally distinct (and therefore poten-
tially lithologically distinct) units within an outcrop (e.g., Farrand
et al., 2006, 2007, 2008; Rice et al., 2010). The centre wavelengths of
the geology filters for other Martian missions are summarised in
Cousins et al. (2010).

PanCam multispectral imaging is scientifically limited in its
capacity to provide visible to near infrared (Vis-NIR) spectral data
by the utilisation of a silicon detector, which is only sensitive to
wavelengths between ~400 and 1000 nm. The vast majority of
reflectance spectral features (i.e., absorption bands) occur at wave-
lengths > 1 pm, and are therefore missed by PanCam. However, the
multispectral capability of PanCam can still be exploited, firstly to
capture those spectral features that do exist <1 pm, and secondly
to provide information of spectral variability within a terrain which
can be spatially related to structural units and lithological hetero-
geneity (e.g., see Farrand et al., 2008). The two-dimensional nature
of the data allows spectral features and differences, however minor,
to be mapped and related to observable geological features seen in
the images. The application of PanCam multispectral data therefore
is two-fold: first to provide the initial tentative identification of
broad mineralogical species present in the surface rocks, and second
to map the spectral diversity and features within a scene (even if
spectra cannot be readily assigned to a known mineral).

For these applications to be successful, the geological filters
need to capture effectively the spectral shape of a wide variety of
minerals potentially present at the Martian surface. Any spectral
absorptions or features missed could lead to misleading results,
such as the mis-identification of a mineralogical/compositional or
spectral unit. The limitation of PanCam to sample the Vis-NIR
wavelength range at 12 individual wavelengths only (due to
engineering constraints) can therefore be mitigated by selecting
wavelengths that best capture the spectral morphology of miner-
als and rocks. Table 1 lists mineral species identified on Mars,
together with their absorption features within the PanCam
spectral range. Some minerals, such as calcite, albite, and magne-
site are largely featureless at these wavelengths.

1.2. Multispectral geology filters

Geology filter wavelengths were first conceived for the Imager
for Mars Pathfinder on the 1997 NASA Pathfinder mission (Smith

et al, 1997a, b), and surface/Panoramic camera instruments for
subsequent Mars rover missions have largely inherited these geol-
ogy filter wavelengths (MER, Beagle 2, and Phoenix: Bell et al., 2003;
Griffiths et al, 2005; Lemmon et al, 2008, respectively). The
Pathfinder geological filters were, as with many Pathfinder technol-
ogies, the first of their kind. They were selected with the aim to
identify and discriminate between iron-bearing minerals, including
iron oxides and iron silicates, particularly different pyroxenes (Smith
et al, 1997a, b). For the MER Pancam, these filters were largely
adopted, with the exception of the 965 nm filter which was omitted.
The scientific rationale for using the same filter wavelengths was to
allow for the direct comparison of MER results to those acquired
from Pathfinder (Bell et al., 2003). Likewise, the Pathfinder filters
were again adopted for the Beagle 2 PanCam (Griffiths et al., 2005).
ExoMars however has a distinct astrobiological focus, and it will be
especially important to locate the most likely outcrops to search for
biosignatures. It is also noted that the “geology” filter wavelengths
for the MastCam instrument (Ghaemi, 2009) on the NASA Mars
Science Laboratory (MSL) rover are also different to those of past
missions, by reducing the number of filters in the visible. However,
the scientific rationale for this has not so far been published.

Since Pathfinder there has been a multitude of orbital (e.g.,
CRISM, OMEGA) and in situ (MER) data detailing the mineralogy of
the Martian surface (Chevrier and Mathe, 2007; Murchie et al.,
2009). This information has shown Mars to be mineralogically
diverse, with an apparently complex geological history preserving
a number of different palaeoenvironmental conditions (Bibring et al.,
2006; Bishop et al., 2008; Ehlmann et al., 2008b, 2011; Poulet et al.,
2005; Wray et al,, 2009; Weitz et al, 2011). In particular, the
discovery of hydrated mineral terrains has demonstrated the
possibility for past “habitable” conditions on Mars, which are of
direct relevance to the ExoMars mission. Given that the Pathfinder
filters were devised over a decade ago, coupled with the advancing
knowledge of Mars surface mineralogy, the ExoMars filters repre-
sent the next evolutionary stage in filter wavelength selection.

This work sought to find the 12 best filter wavelengths for the
ExoMars PanCam, based on the greatly improved knowledge of
mineralogical terrains on Mars. Preliminary work by Cousins et al.
(2010) demonstrated the need to revise the filter wavelengths for
ExoMars objectives, especially in the detection of hydrated
minerals and astrobiological targets. During this previous inves-
tigation, no work was carried out to determine the effect of filter
bandwidth on the measured reflectance spectra. For this reason,
the effect of bandwidth on measured data has been assessed and
optimum bandwidths determined.

2. Materials & methods

Selecting the new geology filter wavelengths utilised reflectance
spectral data of hydrated minerals, mafic rock forming silicates, and
iron oxides. The aim was to find the 12 filter wavelengths that could
most accurately reproduce the spectra of different minerals relevant
to the astrobiological focus of the ExoMars mission, as well as be
able to detect other minerals likely to found at the Martian surface.
Table 2 summarises the considerations regarding selecting filters
based upon mineral species. It is also noted that UV-induced
fluorescence is also being developed as an additional technique to
multispectral PanCam imaging (Storrie-Lombardi et al., 2009), and
this too is in-part reliant on the narrowband geology filter wave-
lengths selected (Dartnell et al., 2010).

2.1. Filter centre wavelength optimisation

Six new alternative filter sets (consisting of 12 filters each
between 440 and 1000 nm) were created utilising mineral reflectance
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Table 1

Minerals identified on Mars as detected by oribital TES, CRISM, and OMEGA instruments (e.g., Bibring et al., 2007; Bishop et al., 2008; Ehlmann et al., 2008a, 2009; Farrand
et al., 2009; Gendrin et al., 2005; Langevin et al., 2005; Loizeau et al., 2007; Michalski and Niles 2010; Milam et al. 2010; Milliken et al., 2008; Osterloo et al., 2008; Poulet
et al.,, 2005; Mustard et al., 2008; Wray et al., 2009), and in-situ Pathfinder/MER/Phoenix instruments (e.g., Boynton et al., 2009; Hecht et al., 2009; Morris et al., 2000,
2006; Squyres et al., 2004; Squyres et al., 2008). Also see Murchie et al. (2009) and Chevrier and Mathe (2007) for reviews on Martian mineralogy. Minerals used for filter

selection are marked @ ; minerals used for testing filter sets (either as part of a heterogeneous rock, or as database mineral spectra) are marked".

Mineral group

Mineral species

Formula

Spectral features (440-1000 nm)

Phyllosilicates Chlorite @ (Mg,Fe?*)sAl(SizAl)010(OH)g 700, 900
Ilite (K,H30)(AlL,Mg,Fe),(Si,Al)4010[(OH),,H>0 720, 1000
Kaolin group minerals Al;Si,05(0H), 1000
Montmorillonite @ + (Na,Ca)o.33(AL,Mg),(Si4010)(OH), 950
Muscovite KAI>AISi3010(OH), 500
Nontronite @ 1 (Ca, Na)o3_o.5(Fe,Mg, Al), _3(Si, Al)4010(OH), (500), 650, 950
Saponite @ Caps(Mg,Fe)s((Si,Al)4010)(OH); - n(H,0) 950
Serpentine (Mg, Fe)3Si,05(0H)4 700, 900
Other hydrated silicates Prehnite Ca,Al(AlSiz019)(OH), -
Analcime (zeolite) NaAlSi,0g H,0 970
Opaline silica SiO, H,0 (950)
Carbonates Magnesite MgCO3 -
Calcium carbonate CaCOs -
Siderite @ + FeCO3 (500), 650, 900
Sulfates Fe/Mg poly- hydrated sulfates @ + (Fe,Mg)SO4 - nH,0 980
Gypsum @ 7t CaS04-2H,0 1000
Alunite ® 1 KAIl3(S04)>(OH)g 1000
Jarosite @ KFe3(S04)2(0H)s 520, 630, 900
Copiapite @ 1 Fe2*+Fe3*(S04)s (OH), - 20H,0 580, 860
Chlorides Chlorides - 1000
Perchlorates Perchlorates (Mg,Ca)(Cl04)2 1000
Fe Oxides Hematite @ Fe,03 550, 650, 880 nm
Goethite @ FeO(OH) 500, 650, 900 nm
Ferrihydrite @ 5Fe,03-9H,0 900 nm
Magnetite @ Fe304 -
Palagonite/nanophase Fe oxides 1 - -
Mafic silicates Olivine @ 1 (Mg,Fe),Si04 620, 1000
(high Ca pyroxene)Clinopyroxene @ MgCaSi,O¢ (Diopside)(Ca,Na)(Mg,Fe,Al)(Si,Al),0¢ (Augite) 800, 1000
Orthopyroxene @ (Mg,Fe)SiO3 900
(low Ca pyroxene)
Plagioclase @ NaAlSizOg -
(albite)
Plagioclase CaAl,Si;0g -
(anorthite)
Table 2
Factors affecting mineral selection for the determination and testing of alternative “geology” filters for the ExoMars PanCam.
Mineral group Relation to Mars Spectral features (440-1000 nm) Drawbacks for filter selection  Solution

Phyllosilicates

Sulfates

Carbonates
and opal

Mafic silicates

Ferric oxides

Clay-rich sediments preserve organics
(Ehlmann et al., 2008b) and are
suggestive of past habitable
environments, particularly those that
were of a neutral-alkaline pH and
relatively long-lived (Poulet et al.,
2005).

Sulfate minerals preserve organics
(Aubrey et al., 2006), and are
associated with a wide-range of
geological processes including
hydrothermal activity and evaporates.

High priority targets due to association
with neutral-alkaline aqueous
environments, hydrothermal processes,
and high preservation potential of
biosignatures (e.g., Allen et al., 2000).
Mars is predominantly basaltic
(McSween et al., 2009), and mafic
rock-forming minerals are widespread
(Bandfield, 2002).

Ferric oxides are widespread on Mars,
and have the strongest spectral
features within the PanCam range.
Additionally, iron oxides have been
shown to preserve filamentous
bacteria (Preston et al., 2011)

Fe-absorptions in iron-bearing
phyllosilicates (e.g., nontronite,
chlorite), H,O/OH™ absorptions in
other phyllosilicates (e.g., saponite)

Strong Fe-absorptions in iron-bearing
sulphates (e.g., jarosite, copiapite), and
stronger hydration bands than the
phyllosilicates (e.g., gypsum,
polyhydrated magnesium sulphates)

Iron-bearing carbonate siderite has
strong Fe-absorptions.

Strong absorptions in olivine and
pyroxene, and distinctive spectral
morphologies.

Fe** absorptions in most ferric oxides,
with the exception of magnetite which
has a comparably featureless spectrum

H,0/OH ™~ absorptions are
weak, and potentially weaker/
non-existent on the drier
Martian surface.

Sulphates are not always
indicative of habitable
environments, and therefore
may not be the best
astrobiological targets for
ExoMars.

No distinctive absorption
features within PanCam range
for all carbonates (except
siderite)

Whilst mafic silicates are likely
to be widespread, they are not
necessarily applicable to the

life detection focus of ExoMars
Ferric oxides are not the most
interesting targets for ExoMars

Use for filter selection, but be
mindful hydration bands shouldn’t
be relied upon

Use for filter selection

Broad spectral shape suggests any
reasonably-spaced filter set will re-
produce an accurate spectrum, and
therefore will not be used to
influence filter wavelengths

Use for filter selection due to strong
spectral features, but detection of
mafic silicates shouldn’t take
priority

Use for filter selection
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spectral datasets acquired from the NASA RELAB facility at Brown
University (investigators below), JPL (Baldridge et al., 2009), and USGS
(Clark et al., 2007, 1993) online spectral libraries. RELAB data were
acquired by Carle M Pieters (CMP, Brown University), Edward A
Cloutis (EAC, University of Winnipeg), Jack Mustard (JFM, Brown
University), Janice L Bishop (JLB, SETI Institute), Phoebe L. Hauff (PLH,
Spectral Research), Roger G Burns (RGB, MIT), Sue Gaffey (SJG),
Thomas G Sharp (TGS, Arizona State University), (TJM), Takahiro
Hiroi (TXH, Brown University), and Vladimir Busarev (VVB, Moscow
University).

Four of these alternative filter sets were each optimised to a
specific mineral group, e.g., the best filter set for sulfate minerals
(“SULF"), the best for phyllosilicates (“PHYL”) etc. In addition, two
other filter sets were created optimised to actual absorption
features—one for those minerals with Fe?*/Fe** absorptions,
and a second for those minerals with hydration absorptions (OH™,
H,0). The mineral input data used for each of these six filter sets
are given in Table 3, and the mean (n=8) spectra of each of these
minerals are shown Fig. 2.

Optimal filter centre wavelengths were calculated in Matlab
using the method previously devised by Cousins et al. (2010). Briefly,
a brute force algorithm was employed to identify the combination of
12 filters (with two filters fixed at 440 and 1000 nm) that repro-
duced a set of mineral spectra (Fig. 2) with the least amount of error.
This method benefits from being non-subjective, and selects filters

Table 3

based on actual mineral spectral data. Input data used for filter
selection consisted of reflectance spectra samples (n=8) of each
mineral species used within a mineral data set (see Table 3). The
reflectance data were sub-sampled to 10 nm intervals—the same
intervals used for filter assignment. In total, over 29 billion combina-
tions of filters were searched by the programme before the optimum
filter wavelengths were found for a given set of mineral input data.

The error with which a set of filters would reproduce a spectrum
was measured as an error score. A database mineral reflectance
spectrum was sampled at each filter wavelength and then inter-
mediate data points were calculated using linear interpolation.
The error score (,,) for that mineral was calculated by summing
the absolute difference between the original reflectance spectrum
and the interpolated reflectance spectrum, using the following
equation:

1000

1 )
Om= N X Z |Rm(ﬂ)_Re(A)} 1)

A =440

where R,,(1) is the reflectance of mineral m at wavelength 4, R.(1)
is the sampled and interpolated reflectance at wavelength 1 and N
is the number of data points (57 in the case of 10 nm intervals).
This is then repeated for each mineral in the dataset, and the
resulting error scores for all minerals averaged to obtain a mean

Input mineral data for the selection of the six alternative filter sets, from the USGS, RELAB, and JPL spectral databases (see text for references and PI initials). Individual

spectra of these are given in Supplementary Material 1.

Filter set Mineral

RELAB, JPL, and USGS database sample numbers

Group specific minerals

SULF Gypsum HS333; SU2202; SO-2Bb; SO-2Bc; CC-JFM-016-B; SF-BFJ-003; CC-JFM-036; PG-CMP-003
Alunite GDS82; GDS84; HS295; SO-4Aa; SO-4Ab; SO-4Ac; CC-JFM-008-B; CC-JFM-009-B
Jarosite GDS100; GDS101; GDS24; GDS98; GDS99; JR2501; SJ-1; C1CY16
Copiapite CC-JFM-013; JB-JLB-620-A; SF-EAC-052-A; SF-EAC-031-A; LH-JFM-043; PC-RGB-030; GDS21
Magnesium sulfate CC-JFM-015; KIEDE1a; KIEDE1b; GDS149; Epsomite; Epsomite2; Hexahydrite1; SF-EAC-056
PHYL Chlorite CL-TXH-014; CY-PLH-006; SR-JFM-068; HS197; PS-12A_Medium; PS-12C_Medium; PS-12E_Coarse; PS-12_Fine
Nontronite NG-1a; NG-1b; Swa-1a; Swa-1b; PS-6Ba; PS-6Bb; PS-6Da; PS-6Bc
Montmorillonite CM26; CM27; Saz-1; Sca-2a; Sca-2b; STx-1; Swy-1; PS-2B
Saponite JB-JLB-260; SA-EAC-057; SA-EAC-058; SA-EAC-059; SA-TXH; 051; JM-TGS-075; PS24A_Fine; SapCal
MAFIC Olivine GDS71a; GDS71b; KI3005; KI3054; KI3189; KI3291; KI4143; NMNH137044
CPX JB-JLB-471; PA-RGB-024; IN15A; PA-CMP-011; PD-CMP-008; HS15; NMNH18685; IN9B_Coarse
OPX JB-JLB-236; PP-EAC-047A; PP-EAC-047B; PP-EAC-052; JB-JLB-238; PP-EAC-013; PP-EAC-043; PP-EAC-057
Albite GDS30; HS66; HS143; HS324; PA-CMP-005-C; SR-JFM-047; TS6A_Coarse; TS6A_medium
FERRIC Hematite CC-JFM-017; CY-PLH-011; JA-JLB-257; JC-JLB-129; GDS27; HS45; WS161
Goethite CY-PLH-008; GO-TXH-001; HO-EAC-003; JB-CMP-047; GDS134; MPCMA2b; WS222; OH-02A_Fine
Magnetite FE-RGB-003; JA-JLB-307; ]B-JLB-307; MG-EAC-002; MG-EAC-004; PM-CMP-012; SC-EAC-025

Ferrihydrite

All Fe-absorption minerals

GDS75; JB-CMP-045; JB-JLB-564; JB-JLB-251; JB-JLB-252; JB-JLB-253; JB-JLB-254; |B-JLB-255

All_Fe Jarosite GDS100; GDS101; GDS24; GDS98; GDS99; JR2501; SJ-1; C1CY16
Copiapite CC-JFM-013; JB-JLB-620-A; SF-EAC-052-A; SF-EAC-031-A; LH-JFM-043; PC-RGB-030; GDS21
Chlorite CL-TXH-014; CY-PLH-006; SR-JFM-068; HS197; PS-12A_Medium; PS-12C_Medium; PS-12E_Coarse; PS-12_Fine
Nontronite NG-1a; NG-1b; Swa-1a; Swa-1b; PS-6Ba; PS-6Bb; PS-6Da; PS-6Bc
Saponite JB-JLB-260; SA-EAC-057; SA-EAC-058; SA-EAC-059; SA-TXH; 051; JM-TGS-075; PS24A_Fine; SapCal
Siderite CB-EAC-008-A; CB-EAC-008-B; CC-JFM-007-B; CY-PLH-024; GR-CMP-003; JB-JLB-287; SH-SJG-005; C-9A
Olivine GDS71a; GDS71b; KI3005; KI3054; KI3189; KI3291; KI4143; NMNH137044
CPX JB-JLB-471; PA-RGB-024; IN15A; PA-CMP-011; PD-CMP-008; HS15; NMNH18685; IN9B_Coarse
OPX JB-JLB-236; PP-EAC-047A; PP-EAC-047B; PP-EAC-052; JB-JLB-238; PP-EAC-013; PP-EAC-043; PP-EAC-057
Hematite CC-JFM-017; CY-PLH-011; JA-JLB-257; JC-JLB-129; GDS27; HS45; WS161
Goethite CY-PLH-008; GO-TXH-001; HO-EAC-003; JB-CMP-047; GDS134; MPCMA2b; WS222; OH-02A_Fine
Magnetite FE-RGB-003; JA-JLB-307; JB-JLB-307; MG-EAC-002; MG-EAC-004; PM-CMP-012; SC-EAC-025

Ferrihydrite

All hydration absorption minerals

HYDRA Gypsum
Alunite
Magnesium sulfate
Montmorillonite
Saponite

GDS75; JB-CMP-045; JB-JLB-564; JB-JLB-251; JB-JLB-252; JB-JLB-253; JB-JLB-254; |B-JLB-255

HS333; SU2202; SO-2Bb; SO-2Bc; CC-JFM-016-B; SF-BFJ-003; CC-JFM-036; PG-CMP-003

GDS82; GDS84; HS295; SO-4Aa; SO-4Ab; SO-4Ac; CC-JFM-008-B; CC-JFM-009-B

CC-JFM-015; KIEDE1a; KIEDE1b; GDS149; Epsomite; Epsomite2; Hexahydrite1; SF-EAC-056

CM26; CM27; Saz-1; Sca-2a; Sca-2b; STx-1; Swy-1; PS-2B

JB-JLB-260; SA-EAC-057; SA-EAC-058; SA-EAC-059; SA-TXH; 051; JM-TGS-075; PS24A_Fine; SapCal
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Fig. 2. Mean (n=38) reflectance spectra of the minerals used for the selection of filter wavelengths in each of the 6 alternative filter sets: (A) PHYL; (B) SULF; (C) MAFIC;

(D) FERRIC; (E) ALL_Fe and (F) HYDRA.

error score (o) for each filter set:

1 M-1
=M Om 2)

m=0

g

where M is the total number of mineral reflectance spectra in the
dataset.

2.2. Filter testing and assessment

2.2.1. Test samples

The six alternative filter sets were tested on both the database
mineral reflectance data (Table 3), and also on regions of interest
(ROI) within Mars analogue geological samples to evaluate their
ability to detect mineral targets within an unprocessed, heterogenous
rock surface. Geological samples (Fig. 3) are sourced from Iceland,
Kenya, and the Department of Earth Sciences geology collections at
University College London. The samples contain a variety of sulfate,
iron oxide, zeolite, carbonate, smectite/palagonite, and mafic miner-
als. These geological samples were left untreated/unprocessed so as
to represent a natural rock or outcrop surface. A brief description of
these samples is as follows (unless stated, all are from Iceland):

o NBO: Acid-weathered basaltic lava with jarosite deposits
within vesicles and on the surface (Cousins et al., 2010).

o NAL: Acid-weathered basaltic lava with jarosite, sulphur, and
haematite on the surface (Cousins et al., 2010).

e MAG: Magnesite (magnesium carbonate) sample from the UCL
Earth Science Geology Collections.

e SKAFTA: Amygdaloidal basalt with vesicle infillings of quartz,
clinoptilolite (zeolite), and haematite.

e HYALO: Palagonite-rich hyaloclastite with clasts of basaltic
scoria.

e KH: Hyaloclastite with surface (1-3 mm) coating of opaline
silica (Cousins et al., 2010).

e GY2: Silica sinter deposit, preserving filamentous biomat
textures (Cousins et al., 2010).

e TRONA: sample of trona (sodium carbonate) from Kenya.

e XEN: crushed mantle xenolith rich in olivine and with acces-
sory spinel and pyroxene (Weider et al., 2011). Grain-size
<1 mm.

e KRAF: pahoehoe lava with hydrothermal deposits of haema-
tite, sulphur and zeolites.

e HH: Fine-grained buff-coloured hyalotuff, with small ~1 mm
basaltic clasts (Cousins et al., 2010).

The majority of samples are from volcanic environments and
result from the hydrothermal alteration of basaltic lavas and
volcaniclastic deposits. The exceptions are the sample TRONA, which
is from an evaporitic environment, and samples XEN and MAG. To
confirm mineralogical composition and Vis-NIR reflectance spectra,
the ROIs on the rock surface were analysed with Vis—NIR reflectance
spectroscopy, Raman spectroscopy, and/or X-ray diffraction (XRD)
following multispectral imaging of the samples. This contextual
analysis was conducted at Aberystwyth University, using a Bruker
D8 Advance XRD with a Vantec 1 detector, Ocean Optics Jaz
spectrometer with an ISP-REF integrating sphere probe (used in 8°
incident/total hemispherical reflectance geometry) with a fibre
coupled external lamp, and a Horiba Jobin Yvon LabRam HR Raman
spectrometer with a 632.8 nm laser. Additional Raman spectra were
acquired at University College London using a Renishaw InVia
Raman Spectrometer with a 785 nm laser.

In addition to the geological samples and mineral data, soil/
mixture samples available from the RELAB spectral database (see
Section 2.1 above for PI initials) were also used (Fig. 4):

o XT-CMP-030 (25% olivine, 75% bronzite)

o XT-CMP-012 (50% calcite, 50% chlorite)

o MX-EAC-018 (60% pyroxene, 40% haematite)
e MX-EAC-002 (80% pyroxene, 20% palagonite)
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C

Fig. 3. Mars analogue geological samples used to test the 6 alternative filter sets and bandwidths: (A) NBO; (B) NAL; (C) MAG; (D) SKAFTA; (E) HYALO; (F) KH; (G) GY2; (H)
TRONA,; (I) XEN; (J) KRAF. Scale bar=1 cm, unless otherwise stated. Region of Interest (ROI) footprints are indicated in red. (For interpretation of the references to color in

this figure legend, the reader is reffered to the web version of this article.)

e JB-JLB-364 (iron oxide+silica+sulfate soil simulant)
e CC-JFM-039-B (JSC Mars-1+23.1 wt% gypsum)

e BKR1BE133 (50% olivine, 50% basaltic glass)

e ER-TGS-010 (90% augite, 10% opal-a)

2.2.2. Assessing the performance of filter sets

Filters were assessed based on the following 3 criteria:

Criterion 1. Capturing spectral features (absorptions, peaks):
Firstly, a simple assessment of identifying positive or negative
capturing of spectral features (e.g., absorptions, reflectance maxima)
was conducted on both the database mineral reflectance data, and
the Mars analogue sample data. The filter set with the least number
of ‘spectral misses’ is then deemed the best optimised.

Criterion 2. Error score: calculated using Eq. (1) as outlined in
Section 2.1. This directly represents how well the filter set
reproduces a sample spectrum-the lower the error, the better a
filter set captures the sample spectral morphology.

Criterion 3. Discrimination between lithological groups using
spectral parameters: different band depths and band slopes were
used to classify and group the rock sample ROIs and database
minerals based on their spectral morphologies, on the basis that
samples/minerals with a similar geochemistry (e.g., iron oxide rich)
will cluster into the same group. The parameters used vary slightly
between the different filter sets depending on which specific filter
wavelengths cover a particular spectral feature, and are detailed in
Table 4. These subtle differences can produce notably different results
when grouping samples together, which on the Martian surface will
be of unknown geochemistry and composition. Five spectral para-
meter measurements were used: 440-700 nm slope, 950-1000 nm
slope, 600 nm band depth, 900 nm band depth, and 950 nm band
depth. K-means cluster analysis was carried out in Matlab using these
five parameters, to identify how the six filter sets group samples of
known mineralogy.

The results of these three criteria combined were used to
identify which of the six filter sets performed best. This filter set
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was then modified further through optimisation of the band-
widths for each of the 12 individual filters within that filter set.

2.3. Multispectral imaging of Mars analogue rocks

Multispectral imaging of the rock samples was conducted
using the same set up as described in Cousins et al. (2010), using

0.6
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— XT-CMP-030 — XT-CMP-012
MX-EAC-018 — MX-EAC-002
JB-JLB-364 — CC-JFM-039-B
— BKRI1BE133 = ER-TGS-010

Fig. 4. Mars analogue ‘soil’ particulate mixtures spectra from the RELAB spectral
database.

Table 4

a 1392 x 1040 Foculus FO432SB camera (CCD detection 400-
1000 nm) interfaced with one of two CRI liquid crystal tunable
filters (LCTF)-one covering 440-720 nm, the other 650-1010 nm.
Imaging of the samples was carried out at a distance of 1.5 m
along a horizontal plane. Samples were illuminated with a Solex
solar lamp, and a Spectralon reflectance standard was placed in
the background of each image for calibration. Multispectral
images were processed as described in Cousins et al. (2010) using
Image ]. Spectra of the ROIs represent the mean of all the pixels
within the ROL

2.4. Filter bandwidth determination

Once a filter set had been chosen, bandwidths for each of the
12 individual filter wavelengths were determined. The method
used is based closely on the method used to determine the
optimum centre wavelengths, and the same mineral reflectance
input data sets were used. Calculations and optimisation were
carried out in Mathcad 8. Several factors have to be considered
when optimising bandwidths, and these are detailed below.

2.4.1. Filter transmission

The multispectral filters will be thin film interference filters,
and the exact transmission profile of the flight filters will not be
known until they are manufactured. However, previous measure-
ments made on the Beagle 2 flight spare and other interference
filters have indicated that their transmission profile can be
simulated as a Gaussian distribution with reasonable accuracy,
and so a Gaussian function was used to simulate the bandwidths.
The bandwidth of filters is given as the Full Width at Half Maximum

Spectral parameters used to assess the different filter sets (adapted from Farrand et al., 2008). All data are in nm; ‘R’ denotes reflectance.

Filter

Representative filter

Parameter set centre wavelengths Description
PHYL 440-680 (Reso-Ra40)/(680-440)
SULF 440-700 (R700-Ra40)/(700-440)
MAFIC 440-690 (Reso—Raa0)/(690-440)
440-700 slope FERRIC 440-670 (Rs70-Raa0)/(670-440)
ALL_Fe 440-700 (R700-Ras0)/(700-440)
HYDRA 440-710 (R710-Ra40)/(710-440)
PHYL 960-1000 (R1000-Ros0)/(1000-960)
SULF 950-1000 (R1000-Ros0)/(1000-950)
! MAFIC 950-1000 (R1000-Ros0)/(1000-950)
950-1000 slope FERRIC 950-1000 (Ri000-Ro50)/(1000-950)
ALL_Fe 950-1000 (R1000-Ros0)/(1000-950)
HYDRA 940-1000 (R1000-Ro40)/(1000-940)
PHYL 900 1-(Ro0o/[(0.400%Rg10) + (0.600%R9s0)])
SULF 890 1=(Rsa0/[(0.462%Rs30) + (0.538%Ros0)])
MAFIC 900 1~(R900/[(0.500:Rgs50)+(0.500:R950)])
900 band depth FERRIC 900 1=(Rono/[(0.455%Rg 10+ (0.545Ros0)])
ALL_Fe 890 1-(Rgs0/[(0.545%Rs40) +(0.455%Rg50)])
HYDRA 890 1-(Rgoo/[(0.385%Rs10) +(0.615%Ro40)])
PHYL 590 1-(Rs90/[(0.6675Rs60) +(0.333%Res50)])
SULF 610 1-(Re10/[(0.500%Rs60)+ (0.500%Rs60)])
MAFIC 560 1-(Rs0/[(0.385%Rs30) +(0.615%Rs40)])
600 band depth FERRIC 610 1-(R610/[(0.600%Rs70)+(0.400:Rg70)])
ALL_Fe 570 1=(Rs70/[(0.615%Rs20) +(0.385%Re50)])
HYDRA 590 1-(Rs90/[(0.500%Rss50) +(0.500%Rs30)])
PHYL 960 1=(Ros0/[(0.400%Rg00) + (0.600%R1 000)])
SULF 950 1-(Ro50/[(0.455%Rs00) -+ (0.545%R1000)])
MAFIC 950 1-(Ros0/[(0.500%R900)+ (0.500%R1 000)])
950 band depth FERRIC 950 1=(Roso/[(0.500%Re0) + (0.500R1000)])
ALL_Fe 950 1-(Ros0/[(0.455%Rs00) +(0.545%R1000)])
HYDRA 940 1-(Ro40/[(0.375%Rs00) +(0.625%Rg70)])
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(FWHM) of the transmission curve:

2.35 < e—(5A52><‘()L—F)2/2><FWHM,%) 3)
2 x m x FWHMFE

where Tr is the transmission of the filter at wavelength F, / is the
wavelength, and FWHME is the FWHM of the filter at wavelength F.

Tr() =

2.4.2. Determining the effects of bandwidth on error score

The reflectance spectra for the 160 database mineral samples
were interpolated at 1 nm intervals over the range 370-1100 nm for
the optimisation. The extended wavelength range is required as the
tail of the Gaussian profile extends some distance either side of the
centre. In some cases the reflectance data did not extend far enough
into the UV and so additional data was extrapolated. A set of
transmission values were calculated for each of the 12 filters at
1 nm intervals over the range 370-1100 nm. For each filter, the
transmission at each wavelength interval was multiplied by a
mineral reflectance at each wavelength interval and the resulting
dataset was summed to obtain a simulated reflectivity measurement
for that filter. This was repeated for each filter (F) and mineral
reflectance spectrum (m) in the dataset to obtain simulated reflec-
tance values (Rp,,) for all filter wavelengths and all minerals:

1100
Rem=_ Rm(2) x Te(2) 4)
2 =370
where R;,(1) is the reflectance of mineral m at wavelength 1 and
THA) is the transmission of filter F at wavelength /.

As with the filter wavelength optimisation, intermediate data
points were calculated using linear interpolation and an error
score for each mineral reflectance spectrum was calculated using
Eq. (1) (with N=561 for 1 nm intervals). An average reflectance
spectrum for the filter set over all mineral reflectance spectra in
the dataset was then calculated as before using Eq. (2).

2.4.3. Exposure times

The main aim of this work was to develop a filter set with the
optimal science output i.e., one which most accurately reproduces
the reflectance of the scene. However the filter bandwidth also
has significant engineering implications as it affects the sensitiv-
ity of the camera system. Although narrow band filters may most
accurately reproduce the original spectrum as they do not average
out spectral features to the same extent as wide band filters, their
low light throughput may have detrimental effects on the
captured image which could directly affect the science output.
In order to assess the effects the bandwidths may have on the
camera sensitivity, typical exposure times for the camera system
on the Martian surface were estimated.

Typical exposure times for the wide angle cameras were deter-
mined from NASA PDS data from the MER Spirit Pancam instrument,
with compensations made for the difference in lens aperture, camera
quantum efficiency, filter wavelengths, bandwidths and maximum
transmission. Images of the calibration target taken during the first
30 Sols (before the calibration target was contaminated significantly
with dust), taken with the full set of filters were analysed. Average
exposure values for the 60% reflectance region of the calibration
target along with the exposure time were determined for each image.
A camera independent exposure factor (Ip)-a factor dependent only
on the incident solar illumination and atmospheric absorption—was
then calculated from:

1) x F?

104) = FR) < T0) x BWG2) = QECD)

®)

where I(1) is the exposure achieved (as a fraction of the maximum
dynamic range) for the region of interest of the image with the filter
at wavelength 4, F is the lens F number (f/20 for MER cameras), t is
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Fig. 5. Camera independent exposure factor calculated from NASA PDS data for
the Spirit rover over 5 sols. The average is for the data from sols 5 to 30.

the exposure time of the image taken with the filter at wavelength
2, R(1) is the reflectance of the region of interest (ROI) at wavelength
2 (60% throughout the spectrum), T(1) is the maximum transmission
of the filter at wavelength A (assumed to be 90% for all filters), BW(1)
is the bandwidth of the filter at wavelength A and QE(/) is the
Quantum Efficiency of the MER PanCam CCD at wavelength A (from
Bell et al., 2003).

Images from 5 sols were processed and the resultant exposure
factors are plotted in Fig. 5. It is apparent from the graph that four of
the five datasets match closely whilst the data from sol 2 gives values
of approximately half those of the other data. Images from sols 5 to
30 were taken between 10:30 and 13:30 h local true solar time,
whilst the sun was near zenith, whilst images from sol 2 were taken
around 15:50 with the sun lower in the sky. An average was calcu-
lated from the data from sols 5 to 30 which is also shown in Fig. 5.

This averaged exposure factor for sols 5 to 30 was interpolated to
the proposed ExoMars PanCam wavelengths and used to calculate
exposure times from:

FZ

b= 1o 00 x T x BW(A) < QEG) ©)

where Ip(/) is the average exposure factor calculated above, Fis the F
number (f/10 for ExoMars PanCam WACs), T(4) is the maximum
transmission of the filter at wavelength A (assumed to be 85% based
on measurements from Beagle 2 filters), QE(4) is the Quantum
Efficiency of the Star 1000 sensor at wavelength A (calculated from
data in the Star 1000 datasheet; Uwaerts, 2006) and other variables
are as above. The achieved exposure level I(1) from Eq. (5) is
substituted for the target exposure level for the ROL. It was assumed
that the target exposure level (as a fraction of its maximum range)
would be equal to the reflectance of the ROI in order to make used of
the full dynamic range of the camera. In this way a target exposure
of 50% would be expected for an ROI with a reflectance of 50%, and
so these parameters cancel out.

3. Results and discussion
3.1. Filter wavelengths

Table 5 gives the centre wavelengths generated for the six
alternative filter sets by the method outlined in Section 2.1. There

are a few similarities between these sets, such as the placement of
filters at both 950 nm and around 900 nm, and the generally
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equal distribution of filters between the visible and NIR (i.e., there
is no concentration of multiple filters to any particular region, for
any of the filter sets). All filter sets have 7 filters within the visible

Table 5

Alternative filter set centre wavelengths (nm) for the 6 new filter sets.
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(<750 nm), with the exception of filter set “HYDRA” which has
6 filters in this region. This suggests that whilst mineral reflec-
tance spectra in general has most diagnostic absorption bands
> 1 pm, in the specific case of 440-1000 nm multispectral ima-
ging, the visible spectrum is necessary for the Vis-NIR spectral
distinction of different mineral targets. It is noted that whilst the
filter wavelengths were selected to a resolution of 10 nm, man-

PHYL SULF FERRIC MAFIC ALL Fe HYDRA ufacturing requirements may lead filters to have a centre wave-
440 440 440 440 440 440 length within a few nanometers gf their specified wavelength,
510 470 500 470 490 500 and that the actual wavelength will vary by a few nanometers
560 500 530 520 520 550 over the Martian temperature range (Smith et al., 1997a, b).

590 560 570 560 570 590

650 610 610 640 650 630

680 660 670 690 700 710 ; .

730 200 240 210 240 760 3.2. Testing on mineral spectral datasets

770 730 780 800 780 810 ) ) )

810 820 840 850 840 890 Filter sets were cross-tested on all the mineral spectra in the
900 890 900 900 890 940 dataset (Table 3) to see if, for example, the phyllosilicate-opti-
960 950 950 950 950 970 mised (PHYL) filter set could detect iron oxides, and so forth.

1000 1000 1000 1000 1000 1000 . . . .
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Fig. 6. Minerals with missed spectral features using the 6 alternative filter sets. (A) Nontronite; (B) Haematite; (C) Goethite; (D) Olivine; (E) Jarosite; (F) Ferrihydrite;

(G) Copiapite; (H) Chlorite and (I) Orthopyroxene.
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by each of the six different filter sets. All positive/negative
detections for these filter sets, and also those for past filter sets
(MER PanCam and Beagle 2 PanCam), are summarised in Table 6.
Filter set FERRIC performs best as its filter wavelengths capture all
key absorption and reflectance features of all minerals except the
sulfate mineral jarosite, where the filters miss the very top part of
the reflectance maximum at ~720 nm. Likewise, filter set F2-12
previously devised by Cousins et al. (2010) also performs well,
only missing spectral features in two minerals (haematite and
olivine). HYDRA has the most negative detections, failing to
capture key features of 6 minerals, most likely due to the bias
of the filters towards the 900-1000 nm region. For comparison,
the Beagle 2 and MER Pancam filter wavelengths (and therefore
by association those for the IMP) perform worst with this dataset,
missing spectral features from copiapite, jarosite, nontronite,
chlorite, haematite, goethite, olivine, orthopyroxene, and siderite.

3.3. Testing on Mars analogue rocks and soil mixtures

3.3.1. Sample mineralogy

Raman spectroscopy and XRD were used to identify surface
and bulk mineralogy of the rock sample ROIs, respectively. As
expected for natural samples, most ROIs were found to be
heterogeneous, comprising of several mineral components.
Fig. 7 shows the Raman spectra for samples NBO, NAL, SKAFTA,
KRAF, MAG, TRONA, and XEN, and Table 7 summarises the
mineral species identified from both Raman and/or XRD analysis.
Collectively, sample ROIs contain: jarosite (sulphate); clinoptilo-
lite, heulandite, analcime, and philipsite (zeolites); haematite
(iron oxide); magnesite, calcite, and trona (carbonates); opaline
silica; smectite/palagonite; and forsterite, anorthite, albite, and
enstatite. Samples HYALO and HH are comprised almost
entirely of palagonite, and as such are an undefined mixture of
poorly crystallised/microcrystalline smectite clays, nano-crystalline

Table 6

ferric oxides, and zeolites (Bishop et al., 2002; Stroncik and
Schmincke, 2002).

3.3.2. Sample ROI reflectance spectra

Sample ROIs used for testing the filter sets are shown in Fig. 3.
ROIs were chosen based on visible colour and structural differ-
ences observed on the rock surface. Fig. 8 shows the ROI spectra
obtained from the multispectral images, along with measured
Vis-NIR spectra of both spot points within the ROI’s, and/or
powdered ( <500 pum) ROI samples where possible. Even within
the limited spectral range of PanCam (440-1000 nm), there are a
variety of spectral morphologies observed in these rocks, and
generally sample ROI reflectance profiles are consistent with their
mineralogy. Samples NBO and NAL are rich in the iron sulfate
jarosite, and as such display a strong absorbance at ~900 nm,
typical of Fe3*, as well as smaller absorptions at ~670 and
~500 nm. NAL ROI_1 also has an absorption at ~550 nm, due to
the additional presence of haematite. Similarly SKAFTA ROI_5 is
consistent with its haematite composition.

Samples HYALO and HH are both Icelandic hyaloclastites/
hyalotuffs comprising almost entirely of palagonite. Palagonite
is a generic term used to describe the poorly-crystalline alteration
products of basalt glass (sideromelane), and is common amongst
volcanic regions such as Iceland and Hawaii. It is thought to be
similar to the altered basaltic fines on Mars (Bishop et al., 2002),
and is commonly used as a Vis-NIR spectral analogue for Martian
dust. Specifically, nanophase ferric oxides are an important
component of palagonite, particularly those that exhibit a red
slope in their reflectance profile. Both samples exhibit a steep
ferric absorption edge (Fig. 8), and their spectra also contain a
noticeable absorption at ~680 nm, most likely due to small
quantities of crystalline iron oxides or smectites (not detected
by XRD or Raman). Fe/Mg smectites are the most common
alteration mineral on Mars, especially throughout Noachian

Positive (+) or negative (— ) representation of database mineral spectra. Features missed are given in italics-wavelengths for absorption features (abs.), shoulders (sh.), and

maxima (max.) are in nm.

Target Mineral PHYL SULF MAFIC FERRIC HYDRA ALLFe B2 F2-12
Sulfate Alunite + + + + + + + +
Gypsum + + + + + + + +
Copiapite + + + + —(680 max.) + —(510 sh. & +
680 max.)
Jarosite + + + -(710 + —+ -(580 sh. & 710 +
max.) max.)
Mg sulfate + + + + + + +
Phyllosilicate Nontronite —(580 sh. & 780 —(580 sh.) + —(650 abs.) —(580 sh. & +
max.) 650 abs.)
Chlorite + + + + + + —(560 max. & +
700 abs.)
Montmorillonite + + + + + + + +
Saponite + + + + - + + +
Iron oxide Haematite —(610 sh., —(750 max.) —(610 sh..) + —(610 sh., 670 abs., —(610 sh.) —(560 abs.) —(610 sh.)
850 abs.) 850 abs.)
Ferrihydrite + —(780 max.) + + + + + +
Magnetite + + + + + + + +
Goethite + —(510 abs., 580 sh., —(580 sh., + —(510 & 650 abs.) —(580 sh.) —(580 sh.) +
760 max.) 760 max.)
Mafic silicate Olivine —(620 abs.) + + + —(670 max.) —(620 abs., —(570 sh., 620 —(620 abs.,
670 max.) abs.) 670 max.)
CPX + + + + + + + +
OPX + + + + + + —(700 max.) +
Albite + + + + + + + +
Carbonate Calcite + + + + + + + +
Magnesite + + + + + + + +
Siderite + + + + + + —(700 max.) +
Other Opal-a + + + + + + + +
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Fig. 7. Raman spectra of selected Mars analogue rock sample ROIs. Reference mineral spectra are also shown (available from the RRUFF online database).

terrains (Ehlmann et al., 2009), and as such are likely targets to be
encountered by the ExoMars rover.

There were a variety of zeolites present within these samples,
typical for low-temperature hydrothermal alteration of basalts
(Warner and Farmer, 2010). Target SKAFTA ROI_3 contains
heulandite and clinoptilolite (see Fig. 7 and Table 7) as vesicle
deposits within a basaltic lava, and the spectrum of this target is
consistent with that of heulandite with an absorption at
~720 nm. Target KRAF ROI_3 consists of analcime and phillipsite
(Fig. 7), and its broad spectral shape is again consistent with this,
save for the possible Fe-absorption at 680 nm (Fig. 8). Similarly,
carbonate samples typically have featureless spectral profiles in

the PanCam spectral range, and samples MAG and TRONA are
consistent with this. TRONA displays a slight absorption at
1000 nm, likely echoing water absorptions further into the infra-
red. Samples GY2 and KH also exhibit featureless spectra, again
consistent with opaline silica. This absence of spectral features
mean rock targets such as these could not be distinguished from
each other with PanCam multispectral data alone, regardless of
the filter wavelengths chosen. Given the importance of these
minerals and lithologies as astrobiological targets (i.e., indicative
of a potentially habitable palaeoenvironment), more work should
be conducted to explore the remote identification/discrimination
of these targets with multispectral data.
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Table 7
Mineral species present in Mars analogue rock samples as identified with either
Raman and/or XRD.

Sample ROI Mineralogy
GY2 ROI_1 Opaline silica, calcite
HH ROI_1 Smectite, Montmorillonite (?)
HYALO ROI_1 Amorphous
ROI_4 Anorthite, Augite®
ROL_5 Albite, Forsterite®
ROI_6 Labradorite, Diopside/ Augite®
KH ROI_1 Opaline silica, calcite
KRAF ROI_1 Haematite
ROI_3 Analcime, Ca-phillipsite, Sulfur
ROI_4 Haematite
ROI_5 Hematite, Anorthite, Augite/ Diopside
MAG ROI_1 Magnesite, dolomite
NAL ROI_1 Haematite
ROI_2 Natrojarosite
NBO ROI_1 Natrojarosite
SKAFTA ROI_2 Quartz, Hematite, Heulandite, Clinoptilolite
ROI_3 Clinoptilolite, Heulandite
ROL5 Haematite
TRONA ROI_1 Trona
XEN ROI_4 Forsterite, Enstatite
ROI_5 Forsterite

% Residual, unaltered basaltic component amongst the largely amorphous
palagonite matrix.

Finally, peridotite sample XEN shows characteristic absorption
features indicative of both olivine (630 nm absorption) and
orthopyroxene (900 nm absorption). XRD data indicates these
components are forsterite (Mg-rich olivine) and enstatite (Mg-
rich pyroxene), respectively. Whilst not necessarily astrobiologi-
cal targets in their own right, the identification of olivine
especially can be used to deduce the level of aqueous alteration
(Hausrath et al., 2008a, b), thus providing constraints on the
presence of liquid water within the area.

3.3.3. Filter set sub-sampling of rock ROIs and soil spectra

The rock sample ROI multispectral data and RELAB soil spectra
were sub-sampled to match the centre wavelengths of the 6 different
filter sets (examples shown in Fig. 9). As with the mineral dataset,
filters were assessed in their positive/negative capturing of spectral
features, such as absorption bands and reflectance maxima. These
results are given in Table 8, and again show filter set FERRIC to
perform best out of all the filter sets. Three out of four sample
spectra that were not captured by the FERRIC filter set were RELAB
soil spectrum XT-CMP-030 (25% olivine+75% bronzite), and rock
samples XEN ROI_4 and ROI_5. This is due to the filters missing the
small, but well defined, 630 nm olivine absorption, which falls
between filters at 610 and 670 nm. Filter set PHYL also performs
well, but misses spectral features of a wider range of lithological
targets, including those that contain zeolites, haematite, smectite,
and pyroxene-all minerals common to Mars (except perhaps zeolite)
and also with strong spectral features in the PanCam range. Filter set
SULF commonly misses absorptions in iron-bearing minerals and
targets, such as those containing haematite (Fig. 9A), jarosite, olivine,
pyroxene, and palagonite. This is also largely true of the original
Beagle 2 filter wavelengths, and also filter sets HYDRA and ALLFe.
The inability of ALLFe to capture spectral features within iron-
bearing minerals and rock ROIs is unexpected, given that the input
data to calculate this filter set consisted of minerals with Fe
absorptions. However, this filter set also had the largest input
dataset (13 mineral species), and this could have led to the filter
set being too generic.

Astrobiologically interesting but featureless spectra such as
carbonates and opaline silica are reproduced by all filter sets. As
such, whilst this lack of spectral features mean discrimination
between them using PanCam data is unlikely, the lithologies
dominated by these minerals will be equally well-represented
regardless of the filter set chosen. Conversely the spectrum of
zeolite mineral heulandite (which has relatively well-defined
spectral features) within rock target SKAFTA ROI_3 is missed by
filter sets PHYL, SULF, and HYDRA. These three filter sets all miss
the reflectance maximum at 840 nm, due to a gap of 70-90 nm
(depending on filter set) between filters 800/810 nm and 890/
900 nm (Fig. 9B).

3.3.4. Error scores

The absolute measured differences between filter-generated
spectra and the original rock ROI or soil spectra were calculated.
Table 9 summarises these results, showing those filters with both
the lowest error scores (i.e., the best filter set), and also the
second lowest error scores to account for the fact that often there
is little difference between these two. Filter set FERRIC has either
the lowest or second lowest error for 24 out of 32 rock ROI and
soil targets. Fig. 10 shows both the total error score from all
targets for each filter set (Fig. 10A), as well as the frequency of
lowest error score (Fig. 10B). There is little difference between
PHYL, SULF, MAFIC, ALLFe, and HYDRA filter sets in their total
error score, with FERRIC being noticeably lower by comparison.
Likewise, FERRIC has the highest frequency of the lowest calcu-
lated error score across the rock ROI/soil targets.

3.4. Sample discrimination

Spectral parameters such as band depth and slope can be used
to group PanCam targets based on their spectral properties (e.g.,
Farrand et al. 2006; 2007). In particular, such parameters can
sometimes be linked to particular geochemical qualities, such as
the presence of iron (900 nm band depth), level of oxidation
(440-700 nm slope) and hydration (950-1000 nm slope, Rice
et al. 2010). The selection of filter centre wavelengths will affect
how PanCam targets are represented by these spectral para-
meters, and ultimately their interpretation. Fig. 11 shows 950-
1000 nm slope plotted against 900 nm band depth for all six filter
sets. These two parameters should correlate to each other, in that
if a spectrum has a band centred at 900 nm, it will have a lower
absorption at 1000 nm (i.e., forming a slope between 950 and
1000 nm). Fig. 11 shows the correlation between these two
parameters. Additionally, samples plot within quadrants specific
to their broad geochemical composition. The top right quadrant
(grey in Fig. 11) is characterised by an absorption at 900 nm
coupled with no absorption at 1000 nm. As such, this space is
populated by the iron-rich sulfates (jarosite, copiapite), ferric
oxides (haematite, goethite, ferrihydriate) and iron-rich phyllosi-
licates (nontronite). Conversely, the lower left quadrant is char-
acterised by absorption at 1000 nm combined with no absorption
at 900 nm. As such, this space is populated by pale coloured
carbonates and sulfates with hydration features. This region
(highlighted in blue in these plots, Fig. 11) could tentatively be
used to identify astrobiological targets amongst outcrops imaged
on Mars by PanCam. In the case of this sample set, this would
include the carbonates magnesite and trona, sulfates gypsum and
magnesium sulfate, and (depending on the filter set) silica sinter
sample GY2. Likewise, the grey region in these plots can be used
to identify those targets that are iron rich. However, the lack of
hydration features until further into the infrared means there is
no way of telling with PanCam data alone if these minerals are
hydrated (e.g., jarosite) or not (e.g., haematite).
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Fig. 8. Rock sample ROI multispectral (“MS”), surface, & powdered Vis—-NIR spectra, together with selected database mineral spectra for comparison. Blue arrows highlight
an IR absorption that is only seen in the multispectral data, and not the reflectance spectral data (powdered or spot target), and therefore may be an artefact. Reflectance is
given as a % of the calibration target. (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)

There are several differences in where samples plot between
the different filter sets. One notable difference is that filter set
PHYL incorrectly plots rock target Skafta_ROI_3 (clinoptilolite and
heulandite) as having no 900 nm iron absorption-an issue that is
also reflected in the incomplete capturing of the sample spectrum
by filter set PHYL (Fig. 9). Additionally, the correlation between
these two parameters is greatest using the FERRIC filter set.

Finally, K-means cluster analysis was used to group all data-
base mineral spectra and sample ROI multispectral data into three
categories based on the sample/mineral chemistry and identifi-
able spectral signatures (Appendix A). Minerals were categorised
as follows:

e Fe-containing minerals and those samples with Fe-absorptions.
e Non-Fe containing hydrated minerals and those samples/
minerals with a hydration absorption at 1000 nm.

e All other samples that do not fit into either of the above two
groups.

K-means clustering into three groups was conducted to represent
these three categories. Input data for the cluster analysis consisted of
the values calculated using the six filter sets for the following
parameters: 440-700 nm slope, 950-1000 nm slope, 900 nm band
depth, 950 nm band depth, and 600 nm band depth. Fig. 12 shows
the plots of these groups for the different filter sets. Filter set PHYL
exhibits poor differentiation between the non-Fe hydrated mineral/
sample spectra and those with strong Fe absorptions. Likewise, filter
sets MAFIC and ALL_Fe produce groups that are not represented by
any clear spectral morphology, with the exception of the last group
that consists of just one sample. SULF, FERRIC, and HYDRA all produce
the most effective groupings with a consistent spectral morphology
present in all three groups, and with a clear discrimination between
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Fig. 9. Examples of three ROI targets within Mars analogue rock samples, showing the missing of spectral features by particular filter sets, and the capturing of spectral
features by the FERRIC filter set; (A) haematite target SKAFTA_ROI5; (B) heulandite target SKAFTA_ROI3; (C) smectite target HH. Black spectra are the complete spectrum
for each ROI as acquired with multispectral imaging. Grey lines show where spectral features (absorptions, maxima) are missed. NB: spectra are separated for clarity.

Reflectance is given as a % of the calibration target.

Table 8

Positive (+) or negative (—) representation of minerals in Mars analogue rock sample ROIs, and RELAB soil mixture spectra.

Target Broad mineralogy PHYL SULF MAFIC FERRIC HYDRA ALLFe B2 F2-12
XEN_ROI4 Olivine + pyroxene + — _

XEN_ROI5 Olivine + pyroxene + — — - - — _ _
Skafta_ROI2 Quartz + + + + + + + +
Skafta_ROI3 Clinoptilolite + heulandite - - + + — + + +
Skafta_ROI5 Haematite - - — + — - — _
NBO Jarosite + + - + + - - +
NAL_ROI1 Haematite+ jarosite + + + + + + + +
NAL_ROI2 Jarosite + + — + — - — +
MAG Magnesite + + + + + + + +
KH Opaline silica+calcite + + + + + + + +
HH Palagonite/smectite — — + — — + — _
GY2 Opaline silica + + + + + + + +
HYALO_ROI1 Palagonite + + - + - - + +
HYALO_ROI4 Basalt + + + + + + + +
HYALO_ROI5 Palagonite + + - + - - + +
HYALO_ROI6 Basalt+ palagonite + + + + + + + +
KRAF_ROI1 Basalt + + - + - - + _
KRAF_ROI3 Analcime+ phillipsite + - - + — - + +
KRAF_ROI4 Basalt+haematite + - + + _
KRAF_ROI5 Basalt+haematite - — — + - — _ _
Trona Sodium carbonate + + + + + + + +
XT-CMP-030 Olivine + bronzite + + + - + + - +
XT-CMP-012 Calcite+chlorite + + + + + + + +
MX-EAC-018 Pyroxene + haematite — + + + — - — _
MX-EAC-002 Pyroxene+ palagonite + — + + + + + +
JB-JLB-364 Iron oxide +silica+sulfate + — + + + + + +
CC-JFM-039-B Mars 1+gypsum + + + + + + + +
BKR1BE133 Olivine +basalt glass + + + + + + + +
ER-TGS-010 Augite+opal a + + + + + + + +

non-Fe hydrated minerals/samples and those with strong Fe absorp-
tions. Regardless of filter set, iron oxide mineral magnetite was
misclassified and grouped with the hydrated minerals such as
carbonates, and non-Fe containing sulfates/phyllosilicates. This is
due to the lack of significant Fe-absorptions, and so producing a flat,
featureless spectrum. Similarly, nontronite was also commonly
grouped with these hydrated minerals, despite the Fe-absorptions
in its reflectance. It is groupings such as this that will provide initial
division of broad lithological groups based on spectral differences.

3.5. Selection of the FERRIC filter set

Overall, the FERRIC filter set captured the spectral features
of more minerals and rock ROI targets than any other filter set.

The consistent ability of the FERRIC filter set to out-perform the
other filter sets lies firstly in the dominance of iron-bearing
mineral species (including both sulphates and phyllosilicates)
within the Mars analogue rock targets themselves, but also in
the presence of strong Fe?*/>* absorptions within the wave-
length range visible to PanCam. Importantly, other non-Fe con-
taining mineral targets within the rock ROIs were effectively
captured with the FERRIC filter set (Table 9). For example, rock
target KRAF_ROI3 comprises of the zeolite minerals analcime and
Ca-bearing phillipsite, and is reproduced with the lowest error by
the FERRIC filter set. Likewise, the featureless nature of the
carbonate and opaline silica samples mean the FERRIC filter
wavelengths (and indeed those of the other five filter sets) could
easily capture their spectral morphology.
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The FERRIC filter set also provided well defined K-means
groups, producing a clear division between broad spectral groups.
This, combined with its ability to effectively capture mineral and
rock ROI spectral features with the lowest degree of error, leads to
the recommendation of the centre wavelengths of this filter set as
the replacement to the baseline Beagle 2 filter wavelengths for
the ExoMars PanCam.

3.6. Bandwidth optimisation of the FERRIC filter set

As with the six alternative filter sets, bandwidths were tested
by calculating an error score to determine the accuracy with
which the filter set reproduced reflectance spectra. In order to
assess the overall effect of the bandwidth on the error score, mean
error scores were calculated using 160 database reflectance

Table 9
Filter sets with the lowest calculated error scores. The associated plot (Fig. 10)
shows “FERRIC” to have the lowest error scores overall.

Target Broad mineralogy Lowest error Second lowest error
XEN_ROI4 Olivine + pyroxene SULF PHYL
XEN_ROI5 Olivine PHYL MAFIC
Skafta_ROI2  Quartz FERRIC MAFIC
Skafta_ROI3  Clinoptilolite+ heulandite MAFIC FERRIC
Skafta_ROI5  Haematite FERRIC HYDRA
NBO Jarosite FERRIC HYDRA
NAL_ROI1 Alunite +jarosite HYDRA SULF
NAL_ROI2 Jarosite SULF FERRIC
MAG Magnesite SULF FERRIC
TRONA Carbonate HYDRA SULF
GY2 Opal-a HYDRA SULF
KH Opal-a SULF FERRIC
HH Smectite/palagonite ALLFe MAFIC
HYALO_ROI1 Palagonite FERRIC SULF
HYALO_ROI4 Basalt FERRIC SULF
HYALO_ROI5 Palagonite FERRIC SULF
HYALO_ROI6 Basalt+ palagonite All_Fe SULF
KRAF_ROI1 Basalt SULF FERRIC
KRAF_ROI3 Zeolite FERRIC SULF
KRAF_ROI4 Basalt+haematite FERRIC MAFIC
KRAF_ROI5 Basalt+haematite FERRIC MAFIC
XT-CMP-030 Olivine+bronzite All_Fe MAFIC
XT-CMP-012  Calcite+chlorite All_Fe HYDRA
MX-EAC-018 Pyroxene+haematite FERRIC SULF
MX-EAC-002 Pyroxene+ palagonite FERRIC ALLFe
JB-JLB-364 Iron oxide +silica+sulfate FERRIC HYDRA
CC-JFM-039-B Mars 1+gypsum All_Fe MAFIC
BKR1BE133  Olivine+basalt glass SULF FERRIC
ER-TGS-010  Augite+opal a PHYL FERRIC

>

Total Error Score
~

PHYL SULF MAFIC FERRIC HYDRA All Fe
Filter Set

spectra (all spectra used to develop filter sets PHYL, SULF, FERRIC
and MAFIC-see Table 3-and additional carbonate and opal
minerals) over a range of uniform bandwidths. For comparison
the mean error scores for the same reflectance data and band-
widths were calculated for the MER, Beagle 2 and F2-12 filter sets,
and are plotted in Fig. 13. It can be seen that the error score
increases with bandwidth as would be expected, but it is also
clear that the FERRIC filter set performs better for all bandwidths
than either the MER of Beagle 2 filter sets with the same
bandwidths. F2-12 performs similarly well. For all filter sets, the
minimum error is achieved for bandwidths between 5 and 10 nm.
Notably, the FERRIC filter bandwidths could be uniformly
increased to 30 nm and still achieve a lower error score than
the Beagle 2 filter set at its best. The most likely reason that the
MER cameras show a large error score is that the MER Pancam
instruments feature only 11 geology filters instead of the 12 used
in other previous missions.

Whilst the FERRIC filter wavelengths successfully captured
nearly all the rock target ROIs and RELAB soils tested, those
targets containing olivine and therefore exhibited an absorption
feature at 630 nm, were poorly reproduced. The closest filter to
this absorption is the one placed at 610 nm, but this filter has a
very narrow optimised bandwidth of 10 nm. Fig. 14 shows how
this filter set and respective bandwidths would miss this absorp-
tion. Therefore with this filter set, the remote detection of olivine
using PanCam multispectral data is potentially compromised, and
demonstrates the difficulty in reproducing a range of spectral
morphologies when limited to 12 wavelengths.

It is evident from Fig. 13 that bandwidths can be increased
within a limited range without having too detrimental an effect
on the error score and therefore the accuracy of the measured
spectrum. The bandwidths can therefore be used to optimise the
exposure times of the cameras. Exposure times for the FERRIC
filter set with a 10 nm bandwidth for all filters were calculated as
outlined in Section 2.3.3 and are plotted in Fig. 15. It can be seen
that at either end of the spectral range where both the QE of the
detector and incident solar spectrum are lower, the exposure
times are considerably longer than for the centre of the spectrum.
In particular the 1000 nm filter may require an exposure time
almost 30 times longer than for the 610 nm filter.

The estimated exposure times are likely to be the shortest
when the sun is near zenith and when imaging a high reflectance
scene. If the camera were set to correctly expose a darker scene
(maximum reflectance 50%-typical for many rocks, minerals and
soils) then the exposure times could be double those shown. If
images are taken later in the day (as for the sol 2 data in Fig. 5)
then exposure times could double again. Calculations for the
Imager for Mars Pathfinder indicated that light intensity could

B 14 -
12 -

10 1

Frequency

PHYL SULF MAFIC FERRIC HYDRA AllFe
Filter Set

Fig. 10. (A) Total measured error between filter set—generated spectra and complete spectra, for each of the filter sets and (B) frequency of each filter set having the

lowest error when tested on all Mars analogue rock ROIs and RELAB soil spectra.
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Fig. 11. Spectral parameter plot of 950-1000 nm Slope vs. 900 nm Band Depth, for all Mars analogue rock ROIs and mean mineral spectra (Fig. 2); (A) PHYL; (B) SULF; (C) MAFIC;
(D) FERRIC; (E) ALLFe; (F) HYDRA. Blue quadrant represents those minerals with a ‘hydrated’ signature (negative 950-1000 nm slope), grey quadrant represents those minerals
with an Fe-rich composition (900 nm Band Depth). (For interpretation of the references to color in this figure legend, the reader is reffered to the web version of this article.)
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Fig. 12. K-means classification for the 6 alternative filter sets, based upon the following spectral parameters: 440-700 nm Slope, 950-1000 nm Slope, 900 nm Band Depth,
950 nm Band Depth, and 600 nm Band Depth; using 100 iterations. Three groups were used to represent: 1- Fe-containing minerals and those with Fe absorptions (black);
2- non-Fe containing hydrated minerals and those with a hydration signature (blue); 3-all other samples which were neither (grey). (For interpretation of the references to
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Fig. 15. Calculated exposure times at each filter wavelength for uniform (10 nm)
and optimised bandwidths for the FERRIC filter set.

drop by a factor of 30 (Smith et al., 1997a, b) near sunset requiring
exposure times approaching 4 min for the 1000 nm filter. This is
clearly a very long exposure time and so would likely result in
increased image noise. It is therefore believed that it is justifiable
to increase the bandwidth of some filters to reduce exposure time
at the expense of error score.

Filter bandwidths were determined which provide more uni-
form exposure times without compromising the effectiveness of
the filter set. The exposure times with these optimised band-
widths are shown in Fig. 15. The optimised filter wavelengths and
bandwidths are presented in Table 10 and the modelled filter
transmission profiles are shown in Fig. 16. When compared to the
filter sets from previous missions, the proposed filters generally
have narrower bandwidths in the visible spectrum and wider in
the NIR. The increased bandwidth in the NIR is attributable to the
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Table 10
Filter characteristics for the FERRIC filter set for the ExoMars Panoramic Camera.

Filter number Centre wavelength (nm) Bandwidth (nm)

1 440 25
2 500 20
3 530 15
4 570 12
5 610 10
6 670 12
7 740 15
8 780 20
9 840 25

10 900 30

11 950 50

12 1000 50
=

2

£
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£
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Fig. 16. Modelled transmission profiles for the proposed ExoMars PanCam
geology filter set.

lower QE of the Star 1000 in this region as compared to the CCD
detectors used for previous missions.

It should be noted that in the exposure time model, the
transmission of optical elements in the camera other than the
filters were not considered. For many space applications, radia-
tion hardened optical glass is used for optical elements to reduce
radiation induced damage and yellowing in the glass. Such glass
usually contains Cerium to provide the radiation resistance
properties, but this also causes some yellowing of the glass and
so can significantly reduce the transmission at short wavelength.
Some basic simulations have indicated that if radiation hardened
optical glass were used for the lenses, light transmission at
440 nm could be reduced by 75%, increasing exposure time by a
factor of 4 for this filter. For this reason it may be necessary to re-
optimise the bandwidths of some filters once the specification of
the optical elements are known.

4. Conclusions
4.1. Recommendation of the “FERRIC” filter set

The correct identification of putative Martian palaeoenviron-
ments using in situ PanCam data, including multispectral data,
will be imperative to site selection and identification of drilling
targets. Maximising information return using limited resources
(in this case, sampling just 12 wavelengths in the Vis-NIR) will
further the ability of the PanCam instrument to achieve this goal.

Testing of the alternative filter sets on both mineral and rock
spectral data has shown an improved performance of the new filter
sets FERRIC, PHYL, and ALLFe, and also of the earlier devised (and
more generic) filter set F2-12. Whilst filter sets FERRIC and PHYL are
highly specific with regards to their design, testing on minerals and

rock targets has shown them to capture spectral features that they
were not in theory optimised to detect. Conversely, the other filter
sets (SULPH, MAFIC, and HYDRA) often poorly represented mineral
and rock spectra. HYDRA especially was formulated based on mineral
spectral with very few absorption features other than specific
hydration absorptions in the NIR, and it is unsurprising this filter
set performed the worst. Ideally, significantly more work would
further clarify the performance of the best filter sets (especially in the
case of FERRIC and PHYL), particularly with regard to the discrimina-
tion of a far wider sample set. However, the basic ability of FERRIC to
identify nearly all the minerals tested, along with being designed to
capture the main absorption bands within the PanCam spectral
range, results in this filter set being recommended as the wave-
lengths of the geological filters for ExoMars.

4.2. Bandwidth selection

The effects of both bandwidth and exposure time on the
accuracy with which a spectrum can be reproduced have been
considered. A set of bandwidths which will allow the camera to
work effectively with as short an exposure time as possible whilst
keeping the error low has been proposed. In spite of the fact that
some of the bandwidths (50 nm) are wider than have been used
in the PanCam instruments on previous missions, simulations
indicate that this will not have a detrimental effect in perfor-
mance of the filter set, with the error score still being lower for
the FERRIC filter set than those calculated for the other missions.

4.3. Wider implications

One of the many scientific roles PanCam data will be required
for is the remote selection of rock/soil or outcrop targets proximal
to the rover. The ability of the FERRIC filter set to reproduce the
reflectance spectral profile (between 440 and 1000 nm) of nearly
all the hydrated minerals, iron oxides, and mafic silicates tested
demonstrates that the multispectral aspect of PanCam imaging is
well equipped to deal with the Martian surface geology. Taking
some of the MSL landing site candidates as example terrains,
mineralogical assemblages that the ExoMars rover may encounter
include:

e Fe-smectite/nontronite + mono/poly-hydrated sulphate+
haematite + olivine + pyroxene (Gale Crater, Milliken et al., 2010).

e Fe/Mg phyllosilicates+high Ca-pyroxene (clinopyroxene)+
olivine+other hydrated minerals (Eberswalde crater, McKeown
and Rice, 2011).

e Fe/Mg smectites+ hydrated silica+ montmorillonite + kaolinite +
haematite (Mawrth Vallis, Wray et al., 2008).

e Fe/Mg smectites+ chlorite + prehnite + serpentine + kaolinite +
illite/muscovite opaline silica+ analcime+ magnesite +olivine
(Nili Fossae, Ehlmann et al., 2009).

The FERRIC filter wavelengths are well placed to capture the
spectral features of these mineral species, with the exception of
the small 630 nm absorption in olivine. As mentioned, multi-
spectral imaging with the PanCam filters is not necessarily going
to provide identification of specific mineral species. However, as
seen with the candidate MSL landing sites, the Martian surface
geology is diverse, and the increased ability of the FERRIC filter set
to capture both absorption bands and subtle spectral morpholo-
gies mean the ExoMars PanCam will be optimised to distinguish
between compositional units observable within outcrops.

A downside to changing the geology filters on ExoMars from
those used on the MERs will be that any ExoMars PanCam results
will not be directly comparable to those of MER. Likewise, there has
been several years of MER Pancam data processing/interpreting
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experience that will not be completely applicable to ExoMars
PanCam data if the filters change (e.g., identical band parameters
and stretching cannot always be employed). However, these new
geology filters will provide different observations to the MERs,
which ultimately will expand our in-situ multispectral observations
of Martian terrain. Additionally, new band parameters and ratios can
be explored, and may lead to new discoveries that would otherwise
be missed by the old filters.
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