PRL 107, 260503 (2011)

PHYSICAL REVIEW LETTERS

week ending
23 DECEMBER 2011

Quantum Filtering One Bit at a Time
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In this Letter we consider the purification of a quantum state using the information obtained from a
continuous measurement record, where the classical measurement record is digitized to a single bit per
measurement after the measurements have been made. Analysis indicates that efficient and reliable state
purification is achievable for one- and two-qubit systems. We also consider quantum feedback control

based on the discrete one-bit measurement sequences.
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In classical systems, filtering a sequence of measure-
ments in order to reconstruct the behavior of a classical
object is well established [1]. The measurements represent
information that has been obtained about the current state
and dynamical evolution of the system. The state con-
structed using this data represents the “‘best guess™ of
the state of the system given the measurement record.
This state-estimation process is often referred to as track-
ing [1]. In quantum systems, an equivalent approach has
been developed using continuous weak measurements
[2,3]. This approach has shown a range of interesting
results using the reconstructed (or partially reconstructed)
quantum state to apply controls to modify the subsequent
quantum evolution [4]. Of particular interest here is rapid
state purification introduced by Jacobs [5] and later studied
by other authors [6-8]. In rapid state purification, the rate
at which a state can be purified can be modified by apply-
ing simple controls.

A major difference between classical state-estimation
filters and quantum filtering is that, in quantum systems,
the act of measurement has an irreducible effect on the
system being measured. A projective (von Neumann-type)
measurement is an extreme example, leaving the quantum
system in an eigenstate of the measured operator. In con-
tinuous weak measurement models, the quantum system of
interest is considered to be coupled to an environment.
Projective measurements are taken on the environment,
which contains information on the system of interest
through the coupling. By averaging over the environmental
degrees of freedom, it is possible to form an equation for
the evolution of the quantum system of interest, which
contains Hamiltonian evolution that has been perturbed
by the effect of the environmental measurements. The
average evolution of the quantum system in the presence
of the environment is given by the master equation, and the
particular evolution for a given set of measurements (a
realization) is represented by a stochastic master equation
(SME) [3]. The conditioned evolution for a given measure-
ment record is often referred to as an ‘“‘unraveling” of the
master equation [3]. Such unravelings may be continuous
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or discontinuous (‘‘quantum jumps’’), depending on the
nature of the interaction and the measurement process.
They represent quantum filtering processes similar to a
classical tracking filter. The measurement record generated
by a continuous weak measurement is a classical analog
signal. The signal is typically very noisy (quantum noise
generated by the back action from the measurement inter-
action) and integration over discrete time steps allows the
SME to be calculated numerically to reconstruct the quan-
tum state.

This Letter is motivated by two factors. First, it has been
shown recently that for a discontinuousor jump unravelling
of the master equation, there is a minimum number of
classical states that are required to track the state of a
quantum system with D-energy levels [9]. In the case of
a qubit, it was demonstrated that a single classical bit (i.e.,
two classical states) was sufficient to track the qubit’s
state—that is, if one knew the classical state at any point
in time, one would be able to infer the state of the qubit as it
jumps between states. Second, it is known in signal pro-
cessing that if a classical signal is sent through a number of
parallel (thresholded) channels, each of which is corrupted
by Gaussian noise, then the optimum number of thresholds
that can be used to discretize this signal reduces to one as
the noise level increases (i.e., 1 bit per channel) [10]. This
is related to a classical nonlinear effect: suprathreshold
stochastic resonance [11].

In the cases considered here, parallel channels (i.e.,
multiple measurement interactions) would introduce addi-
tional noise through the measurement back action. Instead,
we use the fact that the underlying signal is slowly varying
with respect to the measurement-purification rate to per-
form an (implicit) temporal average over the noise. The
time required to complete the purification is dependent on
the coupling to the environment (the measurement
strength), which is far longer than the incremental mea-
surements (or samples) used in the SME. We show that a
single threshold (a one-bit record, OBR) in the SME is
sufficient to purify the state of one or two qubits, with or
without feedback control based on local unitary operations.
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Crucially, the thresholding of the signal is performed after
the classical measurement record is generated so it does not
add to the back action on the quantum system. We dem-
onstrate that the fidelity of one-bit filtering can be very
good, reproducing classical and quantum correlations be-
tween qubits (as measured by the quantum discord [12]).
The importance of these results rests in the potential for
experimental realization of quantum filtering—reducing a
continuous time analog signal to a discrete-time single bit
measurement sequence provides a significant reduction in
the data required to reconstruct the quantum state of the
system of interest.

In Jacobs’ rapid state purification [5], a qubit starts in a
completely mixed state (i.e., an unknown state) and under-
goes controlled rotations to rotate its Bloch vector onto the
plane orthogonal to the measurement axis. These con-
trolled rotations alter the rate of increase of the average
purity by a factor that approaches two as the purity of the
state P — 1 deterministically [where P(p) = Tr(p?)].
Alternatively, if feedback is used in the opposite manner,
to rotate the Bloch vector towards the measurement axis,
purification is stochastic and the time required to reach a
given purity can be reduced relative to Jacobs’ protocol [6].
(Jacobs considered discrete ‘‘bang-bang” controls [5], but
this is distinct from the discretized measurement and filter-
ing process discussed here).

In this Letter, we use two stochastic master equations:
one SME to generate a measurement record and another to
estimate the state of the system conditioned on the mea-
surement record. The first SME (SME]I) is initialized in a
pure state and remains in a pure state (p). If an experiment
were available, SME1 would be redundant, its main role is
to generate the measurement record. The secondary role of
SMEI is to provide a reference against which we can
compare our estimate of the state. SME2 generates the
estimated state. SME2 is initialized in a completely mixed
state, which will purify gradually as information is ex-
tracted. All feedback controls are based on SME2 and
the estimated state only.

Continuous weak measurements are not restricted to
Hermitian operators but—for simplicity—we will assume
that the measurement operator is Hermitian. For Hermitian

weak measurements ¢; = 4/(2k;h)9; = 6;(, where k; is the

strength of the jth measurement interaction, the stochastic
master equation (SME1) for the density matrix, p, is
given by [3],
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where H is the Hamiltonian of the system, dt is an infini-
tesimal time increment and dW; is a real Wiener increment

(such that dW; =0 and dW;dW; = 6;;dt). The corre-
sponding continuous measurement records are

dy;(1) .
S \BKG dodt + dW. 2)

To solve this problem numerically, finite time steps At are
integrated (Euler method) to find a discrete measurement
Ay;(#). This is a classical analog signal, which represents
the sampled signal that would be derived from an experi-
ment. For the one-bit measurement record, the discrete
samples are replaced with,

AY;(r) = J(nAr)sgn(Ay))

where sgn(x) = =1 depending on the sign of x. The esti-
mated state, p,., is constructed using SME2,

i ’y A A
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J

where AW, = AYj(t)/\/ﬁ — J8k;(§;).At. This is analo-
gous to the classical innovation, the difference between
the actual measurement and that predicted using the esti-
mated state [1].

Here we will consider two specific cases: one qubit with
a single measurement along the Z axis, and two coupled
qubits with a measurement of ZZ = o, ® o, (where o, is
a Pauli matrix with r = x, y, 7). In each case, we will
assume that the qubits have a background Hamiltonian,
which corresponds to a rotation about the X axis with an
oscillation frequency w,. Such Hamiltonians are common
in solid state qubits, where they correspond to tunneling
interactions. Local controls are used because they are seen
as a tractable way to preserve entanglement for quantum
processing applications [13]. We will use the fidelity
F = F(po, p.) = |Ttl\[JpcpoJpc)I* [14] to characterize
the errors in our estimate p. of the true state p,. For
the two-qubit case, we calculate classical correlations
Clp) 1121,

C(p) = S(p®) — Eﬁlf\‘}z PaS(pP1Aq1ay)

and the quantum discord D(p) = S(p?) + S(p?) —
S(p) — C(p) [12], where S(p) is the von Neumann entropy
S(p) = —Tr(plog,p) and p* and p? are the reduced den-
sity matrices for the individual qubits, and the minimum is
taken over the set of projectors on qubit A, {II4}.
S(p®|Aqay) is the entropy of qubit B under the action of
the projectors on qubit A, and p,, is the probability asso-
ciated with the result obtained for that projector on qubit A.
Orthogonal projectors are used here because, although the
minimum value that they give is not always the true
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minimum, the value of the quantum discord is very close to
the true value [15].

For the single-qubit case we have a Hamiltonian H =
hwyo,/2, an initial state p.(0) = I/2 and a single mea-
surement operator ¢; = 4/(2k;h)o,. In Fig. 1, we show the
average fidelity as a function of time for the case where no
controls are applied and the single-qubit Bloch vector
rotates freely about the X axis. The (angular) frequency
wy 1s fixed and other parameters are scaled relative to wg:
ki = 0.005w,. SME2 is integrated numerically using the
Euler method with 10000 steps per cycle and averaged
over 500 measurement records. In the limit Az — dt, the
first two moments of the OBR and the full record are
identical (mean zero, variance hidr) and it is possible to
show that the two records will purify at the same rate, on
average. The analytical results in [6] also apply for the
OBR: the average time to approach unit purity is one-
quarter of the time to reach an average purity of unity.
For finite time steps the OBR purifies slightly slower than
the full record (approximately 20%-30% longer).
However, it is clear that, although the SME using the
OBR does estimate the underlying state of the system
reasonably well, the average fidelity for the state generated
by the OBR saturates at a fixed level <1. In each run of the
SME, the fidelity approaches one but suffers from occa-
sional drops in fidelity as the errors in the state estimated
by the OBR accumulate, see Fig. 1 (inset). Approximately
five to ten thousand OBR sample points are required per
qubit cycle, longer time steps can make the filter unstable,
with purities growing significantly above one. The number
of sample points required for a stable filter is related to the
qubit frequency and the measurement strength. For larger k
values, more frequent sample points are needed but puri-
fication takes less time in total.
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FIG. 1 (color online). Average fidelity of one qubit as a func-
tion of time with no controls: full record (red dashed line) and
OBR (blue solid line). Inset: An example run, showing fidelity
for one measurement record.

To improve the fidelity of the final state estimate it is
necessary to apply feedback controls to rotate the Bloch
vector towards the measurement axis at each time step.
This is the feedback protocol studied in [6]. Figure 2 shows
the effect of adding the feedback control. The fidelity of the
final state for the OBR approaches one as the system
purifies, albeit slightly slower than for the full record.
This is true whether there is Hamiltonian evolution or
not. In the case where there is no Hamiltonian evolution,
the protocol in [6] reduces to a classical (no feedback)
measurement, but in either case, the OBR allows the state
to be purified and the fidelity of the final state approaches
one in the long time limit. The inset in Fig. 2 shows the
dependence of the final (average) fidelity on the angle
between the measurement axis and the vector towards
which the Bloch vector is rotated. This shows that the
fidelity of the final purified state is relatively insensitive
to small errors in the feedback controls—the final fidelity is
very close to 1 for all angles <20°.

For two qubits, the situation is more complex with the
need to estimate the combined state and (ideally) to
retain the ability to generate entangled states. Starting
with a two-qubit Hamiltonian, Hy 3 = hwo(o, ® I)/2 +
hwo(I ® o,)/2, there are two main ways to generate an
entangled state from a separable initial state: an entangling
Hamiltonian or an entangling measurement. An interaction
of the form H;,, = k(o ® o) can generate entanglement.
When combined with two local Z measurements and no
controls, the full record purifies the state effectively but the
OBR generates an unstable state estimate which occasion-
ally drifts away from the true state, as with the example
shown in Fig. 1. Using local controls for the individual
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FIG. 2 (color online). Average fidelity of one qubit as a func-
tion of time with controls applied to rotate the Bloch vector onto
the measurement axis: full record (red dashed line) and OBR
(blue solid line). Inset: Average fidelity after 50 cycles as a
function of the angle to the measurement axis (in X-Z plane) for
the OBR.
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FIG. 3 (color online). (a) Average fidelity of the two-qubit
state as a function of time with single ZZ measurement record
and no controls: full record (red dashed line) and OBR (blue
solid line), and (b) classical correlations (red crosses) and
quantum discord (blue circles) of the two-qubit state as a
function of time with single ZZ measurement record and no
controls: full record (dotted lines) and OBR (solid lines).

(reduced) density operators, rotating onto the respective Z
axes using either record will purify the two-qubit state with
a fidelity that tends to one in the long time limit. However,
this has the disadvantage of removing entanglement be-
tween the two qubits, because the resultant state is sepa-
rable with each qubit in an eigenstate of Z. The alternative
approach is considered here, where entanglement is gen-
erated by the measurement. This is similar to the case in
[8], where a ZZ measurement was used to purify and
entangle two qubits. In [8], the two qubits were separated
into two encoded qubits and an analogue of Jacobs’ pro-
tocol based on local operations was used to purify and to
protect entanglement by manipulating the system into a
decoherence-free subspace. Here, Jacobs’ protocol would
purify the combined state at the expense of the fidelity of

the final state—as seen in the case of the single qubit
above—and the alternative approach based on [6] is not
available with purely local operations. Instead, we opt to
use no feedback in this case, relying on the inherent X
rotations and a single (entangling) ZZ measurement.
Taking an initial state, p.(0) = (I ® I)/4, k; = 0.005w),
and using 20000 steps per cycle (the same data rate per
qubit as in the previous example—and subject to the same
requirement on data rate for a stable filter), the purity of the
estimated state approaches one for both the full record and
the OBR. The OBR purifies the state slower than the full
record, but the fidelity does tend to one in the long time
limit. The OBR also captures the classical and quantum
correlations very well [see Fig. 3(b)]. Both the full record
and the OBR reproduce the classical correlations very
rapidly, but the quantum correlations indicated by the
quantum discord, D(p), are more difficult to estimate
using the OBR.

In this Letter, we have demonstrated that quantum filter-
ing can be performed using a 1 bit measurement record.
Single-qubit states and two-qubit entangled states under-
going continuous weak measurement can be estimated
accurately from a single bit per time step. This represents
a significant reduction in the data required to use quantum
filtering methods with only minor reductions in filter per-
formance. The one-bit measurement record can provide an
accurate state estimate for one qubit when local feedback is
applied, and it has been shown that the estimates are
insensitive to small feedback errors. For two qubits, it is
possible to purify the combined state with local measure-
ments and local feedback, but this is at the expense of
entangled states. If an entangling measurement is used, it is
possible to use the one-bit record without feedback to
generate entangled states with fidelities approaching one.
The one-bit record also provides accurate estimates of the
classical and quantum correlations.
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