
Manycore Algorithms for Genetic
Linkage Analysis

Alan John Medlar

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London.

Division of Medicine

October 2012

I, Alan John Medlar confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

i

Abstract

Exact algorithms to perform linkage analysis scale exponentially with the size of the

input. Beyond a critical point, the amount of work that needs to be done exceeds both

available time and memory. In these circumstances, we are forced to either abbreviate

the input in some manner or else use an approximation. Approximate methods, like

Markov chain Monte Carlo (MCMC), though they make the problem tractable, can

take an immense amount of time to converge. The problem of high convergence time

is compounded by software which is single-threaded and, as computer processors are

manufactured with increasing numbers of physical processing cores, are not designed

to take advantage of the available processing power.

In this thesis, we will describe our program SwiftLink that embodies our work adapt-

ing existing Gibbs samplers to modern computer processor architectures. The proces-

sor architectures we target are: multicore processors, that currently feature between

4–8 processor cores, and computer graphics cards (GPUs) that already feature hun-

dreds of processor cores. We implemented parallel versions of the meiosis sampler,

that mixes well with tightly linked markers but suffers from irreducibility issues, and

the locus sampler which is guaranteed to be irreducible but mixes slowly with tightly

linked markers.

We evaluate SwiftLink’s performance on real-world datasets of large consanguineous

families. We demonstrate that using four processor cores for a single analysis is 3–3.2x

faster than the single-threaded implementation of SwiftLink. With respect to the exist-

ing MCMC-based programs: it achieves a 6.6–8.7x speedup compared to Morgan and

a 66.4–72.3x speedup compared to Simwalk. Utilising both a multicore processor and

a GPU concurrently performs 7–7.9x faster than the single-threaded implementation,

a 17.6–19x speedup compared to Morgan and a 145.5–192.3x speedup compared to

Simwalk.

ii

To my family

iii

Acknowledgements

This thesis began with a poorly worded job advertisement for a position I ended up

declining. However, after a few months of consulting, I was hooked! I quit my PhD in

wireless networks (I might have been kicked out as well, it was not terrifically clear at

the time) and began worrying about genes.

Foremost, I want to acknowledge Robert Kleta and Horia Stanescu, who took many

risks working with someone with a different background. Without their patience and

infectious enthusiasm for research, I would have given up long ago, let alone still be in

the field. Thanks for putting up with me! For his proof reading skills, valuable criticism

and friendship, I thank Liam McNamara. I thank Kevin Bryson for being my second

supervisor and labmates Anselm, Riko, Naina, Vaksha, Graciana, Detlef, Shazia and

everyone in Nephrology for making coming to work anything but dull.

Almost all of my writing up was done in Helsinki as a visiting researcher at HIIT. I

fear nothing would have gotten finished without this time to focus. I am thankful for

the assistance of Sami Kaski, who made my stay possible, and Petri Myllymäki whose

kindness and encyclopedic knowledge of local pubs was very much appreciated by a

Brit living in a foreign country.

Lastly, I want to thank Dorota, who has shown more patience and compassion during

the last few years than I rightly deserve. I love you.

Helsinki

June 2012

iv

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Outline . 6

1.3 Publications . 8

2 Molecular Genetics Background 9

2.1 DNA . 9

2.2 Chromosomes . 11

2.3 Heredity . 12

2.4 Molecular Markers . 14

2.5 Mendelian Inheritance . 17

2.6 Disease Mapping . 21

3 Genetic Linkage Analysis 27

3.1 Theoretical Background . 27

3.2 Elston-Stewart Algorithm . 31

3.3 Lander-Green Algorithm . 33

3.4 Bayesian Networks . 38

3.5 Stochastic Simulation . 39

4 Statistical Methods For Linkage Analysis 44

4.1 Markov Chain Monte Carlo . 44

4.2 Descent Graphs . 47

v

4.3 Whole Meiosis Gibbs Sampler . 48

4.4 Whole Locus Gibbs Sampler . 51

4.5 Starting States . 60

4.6 LOD scores . 61

4.7 Summary . 62

5 Parallel Sampler Design 64

5.1 Computing Hardware . 64

5.2 Parallel Programming . 66

5.3 Graphics Card Programming . 69

5.4 Approach . 73

5.5 Summary . 78

6 Software Implementation 79

6.1 Test Hardware . 79

6.2 Test Pedigrees . 80

6.3 Benchmarking Methods . 80

6.4 Finding a Peeling Sequence . 87

6.5 LOD scores . 91

6.6 Locus Sampler . 95

6.7 Meiosis Sampler . 101

6.8 Effect of Starting State . 103

6.9 Scalability . 104

6.10 Summary . 106

7 Case Studies 110

7.1 MCMC Parameters . 111

7.2 Data Preparation . 112

7.3 Sensorineural Deafness . 112

7.4 EAST Syndrome . 116

7.5 Benign Chorea . 123

vi

7.6 Performance of 32-bit and 64-bit Executables 130

7.7 Discussion . 130

7.8 Summary . 132

8 Conclusion 134

8.1 Summary of Thesis . 134

8.2 Critical Evaluation . 138

8.3 Application and Promotion . 141

8.4 Future Research . 142

A Appendix 158

A.1 Manual . 158

A.2 MCMC Diagnostics . 167

vii

List of Figures

2.1 Human male karyogram . 11

2.2 Phases of meiosis . 13

2.3 Autosomal segregation patterns . 19

2.4 X-linked segregation patterns . 20

3.1 Inheritance vectors . 34

4.1 Simple pedigree and descent graph . 48

4.2 Founder allele graph . 50

4.3 Pedigree irreducible by whole meiosis Gibbs sampler 52

4.4 Simple pedigree split into nuclear families 53

4.5 Inbred pedigree . 60

5.1 CPU versus GPU architecture . 70

5.2 CUDA workflow . 72

6.1 Test pedigrees . 81

6.2 Trace and density plots, locus and meiosis samplers 84

6.3 Autocorrelation plots, locus and meiosis samplers 85

6.4 Gelman–Rubin plots, locus and meiosis samplers 86

6.5 Variable number of CPU threads, LOD score performance 92

6.6 Variable number of GPU threads, LOD score performance 94

6.7 Variable number of markers per window, run-time performance 97

6.8 Trace and density plots, windowed locus sampler 99

viii

6.9 Variable number of markers per window, LOD score comparison 100

6.10 GPU windowed meiosis sampler, LOD score comparison 102

6.11 Trace and density plots, starting states 103

6.12 Theoretical speed up with different numbers of threads 106

7.1 Sensorineural deafness pedigree . 113

7.2 Single-threaded genome-wide scans, sensorineural deafness 114

7.3 Multithreaded genome-wide scans, sensorineural deafness 115

7.4 Cumulative distribution function, sensorineural deafness 117

7.5 Single-threaded genome-wide scans, EAST syndrome 118

7.6 Single-threaded chromosome 1 scan, EAST syndrome 119

7.7 Multithreaded genome-wide scans, EAST syndrome 120

7.8 Multithreaded chromosome 1 scan, EAST syndrome 121

7.9 Run-time per chromosome, EAST syndrome 122

7.10 Single-threaded genome-wide scans, benign chorea 124

7.11 Single-threaded chromosome 1 scan, benign chorea 126

7.12 Multithreaded genome-wide scans, benign chorea 127

7.13 Multithreaded chromosome 1 scan, benign chorea 128

7.14 Run-time per chromosome, benign chorea 128

7.15 Trace and density plots, benign chorea pedigree 130

A.1 Simple three generation pedigree. 163

ix

List of Tables

6.1 Test graphics card specification . 80

6.2 Greedy algorithm results, EAST syndrome pedigree 90

6.3 Greedy algorithm results, benign chorea pedigree 90

7.1 Program requirements, EAST syndrome pedigree 123

7.2 Program requirements, benign chorea pedigree 129

x

1 Introduction

For over a decade prophets have voiced the contention that the organization

of a single computer has reached its limits and that truly significant advances

can be made only by interconnection of a multiplicity of computers

Gene Amdahl (1967)

Herb Sutter’s article “The free lunch is over” from the March 2005 issue of Dr Dobb’s

journal [117], observed that the ongoing trend in computer processors (CPU) had changed

from one of ever faster single processors to ever more numerous processors of the same

speed. In order for computer programmers to fully exploit the processing power avail-

able to them, they would now need to write code that is explicitly parallel. When we

say software is “parallel” we mean that it is capable of utilising multiple processors at

the same time.

The “free lunch” Sutter referred to is that previously a computer program could be

made to run faster simply by being run on a newer processor. This was “free” because

it required no intervention from the programmer, i.e. code did not need to be ported

to a new architecture, nor did it need to be recompiled. Gains in processor speed tra-

ditionally came from concurrency-agnostic means. Processor clock speeds routinely

increased as permitted by the miniaturisation of chips; meaning more work is done in

the same time period. In addition, the increasing number of cycles were spent more in-

telligently, for example, pipe-lining multiple instructions at once, speculative execution

via branch prediction and out-of-order execution. Computer processors increasingly

manipulated the flow of instructions dynamically to better fit their underlying archi-

1

tecture, improving throughput. Finally, caching was utilised to exploit locality in the

executing program, avoiding the need to perform costly main memory accesses in oth-

erwise CPU-bound code. Processor manufacturers cannot continue with this strategy

because any gains that could theoretically be provided are overshadowed by physical

constraints. Power requirements become too high, heat dissipation is problematic with-

out advanced cooling solutions and increased current leakage affects chip stability.

Computer processors that feature multiple processor cores (multicore processors

from now on) continue the long running prediction of Moore’s law that total transistor

count continues to double approximately every 2 years 1 [87]. Unfortunately, for soft-

ware to be able to take advantage of the additional processing power, it often needs to

be reimplemented and concurrent programming is hard. Programmers are taught how

to program by thinking in logical steps, but parallel code is harder to reason about. In

concurrent programming there is no deterministic ordering that events are guaranteed

to happen in. Concurrent programming requires that the programmer understand where

the order of events is important and serialise them explicitly. This can be problematic

because in doing so the programmer may overzealously add so much overhead that a

multithreaded program runs slower than its serial equivalent. In addition, some appli-

cations are just hard to parallelise because of strong dependencies in the ordering of

events.

Many of the problems in computational biology and medicine are combinatorial in

nature and, as such, would benefit from taking advantage of the increased processing

capabilities of multi- and manycore processors. The application that is the focus of

this thesis is genetic linkage analysis which was identified as a suitable problem as

it is actively used in research and increasingly in clinical settings where it can be a

bottleneck in genetic diagnoses. The primary motivation for selecting linkage analysis

is essentially practical in nature. Our lab is involved in a bioinformatics core facility,
1The figure of 18 months is often attributed to Moore, however it was David House of Intel who stated

in 1975 that performance would double in that time. This is due to the factors we have stated, other than
transistor count, that affect processor speed [50].

2

related to the Institute of Child Health, where we provide expertise in genetic linkage

analysis to a wide group of institutes and clinicians. The service is provided to those for

whom this kind of analysis is not their main expertise and as an additional vector to filter

the results of next-generation sequencing projects focused on disease. We noticed that

whilst a majority of projects could be performed by programs that use existing exact

algorithms, the remaining larger projects were problematic due to excessive run-times.

Linkage analysis is a statistical procedure that aims to map the location of a given

trait to a genetic locus. It does this by inferring historic meiotic events in a family

based on the genotypes of a subset of the individuals. Exact algorithms exist to evaluate

this likelihood, but they all have their drawbacks. The two main families of algorithm

are the Elston-Stewart algorithm and the Lander-Green algorithm. The Elston-Stewart

algorithm can handle arbitrarily large and complex families, but does not scale beyond

a few markers. The Lander-Green algorithm can handle a large number of markers, for

example, spanning an entire chromosome, but is restricted to small-to-medium sized

families. All exact algorithms quickly become memory-bound due to the number of

intermediate results that need to be stored. Parallel processing can only aid in CPU-

bound problems, so barring an algorithmic improvement, multicore cannot be applied

to great effect. If a problem goes beyond a critical limit (this limit being data dependent)

then the analysis must be approximated instead.

There are numerous approximations that can be applied. The first class of approx-

imations still use the same exact algorithms, but abbreviate the input data in some

manner, dependent on how the problem scales. For example, if we are performing a

genome-wide linkage scan, then it is likely we are using the Lander-Green algorithm.

If there are many unaffected children in the last generation of a pedigree with a recessive

phenotype, we could remove them one at a time until the problem can be run given the

amount of computer memory and time we have. One downside of this is that we do not

know what the optimal configuration of individuals is. We could run all combinations,

but each may give a potentially contradictory result. Indeed, in the worst case scenario,

this might hide the fact someone has been misdiagnosed. Another common approach is

3

to run short windows of markers across the genome. This will be easier to run than the

entire chromosome, but may result in errors where the windows meet.

A more systematic approach is to run an algorithmic approximation without abbre-

viating the input data at all. Stochastic simulations of linkage analysis have been shown,

where possible, to be highly accurate [126] and avoid many of the problems described

above. The main downside is that they are slow to converge to an answer. Recent years

have seen an explosion in the availability of marker data, so whilst the potential work

load has increased, processor speed has not. As the work is CPU-bound, it is possible

that redesigning these particular algorithms could result in a big win, making analysis

faster and easier.

For stochastic simulations, it is not immediately obvious how they would run in par-

allel. They tend to be based on Markov chain Monte Carlo (MCMC), where the states

of the chain form a strict sequential ordering. Our ability to parallelise MCMC is highly

problem specific. Different ways this has been done in the past include: parallelising

expensive likelihood calculations [116], pre-fetching multiple next steps in the chain in

parallel [11], multiple Markov chains running in parallel on the complete state space

[72] and partitioning the state space with a single Markov chain for each partition [13].

However, it is not obvious what is the best payoff for a given problem. In this thesis,

we do not present a complete analysis of different parallelism schemes as exhaustively

covering all options would not be possible. Instead, we take an existing set of Gibbs

samplers and adapt them to two very different parallel architectures. This was achieved

by both trying to retain the serial ordering of events where possible and by using tech-

niques that afforded the most scalability with a view to running on higher numbers of

processors in the future.

The two parallel architectures we focus on are multicore processors and computer

graphics cards. Multicore processors now routinely contain four processor cores and are

starting to be released with six and eight cores. In addition, Intel CPUs can be enabled

with hyperthreading, which from the perspective of the operating system appear as two

4

logical cores per physical core. In the near future, multicore processors are predicted

to feature many tens to hundreds of cores [82]. The second architecture we focus on,

graphics cards (GPU), have in the last decade transitioned from hardware designed to

accelerate computer graphics to more general purpose architectures like that of a regular

CPU. GPUs already feature hundreds of processor cores and, as such, will be used to

test the limitations of our work at scale. GPUs in recent years have become general pur-

pose enough to be used extensively in statistical computing [72], protein folding [26],

phylogenetics [116], sequence alignment [125, 78] and are starting to be seen even in

small compute clusters. Of course, there is the caveat that future CPU architectures

will no doubt differ considerably from current GPUs, however we will use them to bet-

ter understand how future processor architectures can be better exploited by statistical

computing applications.

1.1 Contributions

This thesis details several designs for parallel Gibbs samplers for multipoint genetic

linkage analysis and presents the corresponding software implementation: SwiftLink.

SwiftLink’s sampler implementations are each focused on specific hardware platforms

and we detail how each platform influenced the design. In most cases, this affects the

accuracy of the results benignly, but in others detrimentally.

Multicore linkage analysis

We show how simple modifications to existing Gibbs samplers can produce par-

allel implementations that retain the same level of accuracy and scale beyond the

number of processor cores currently available.

GPU linkage analysis

We show that given the extensive modifications necessary to write a GPU appli-

cation capable of executing over hundreds of cores, we can achieve large speed

improvements for several of the modules necessary to perform linkage analysis.

5

We show that the degree of speedup is closely related to how well the algorithm

fits the actual hardware architecture. If it does not fit the architecture well, then

there is a trade-off between the accuracy of the results and the level of hardware

utilisation.

Heterogeneous GPU / multicore linkage analysis

We demonstrate it is possible to utilise the strengths of both multicore CPU and

GPU architectures in different aspects of the same program. This produces a

faster analysis than using either GPU or CPU alone, with a similar level of accu-

racy compared to the multicore program.

Evaluation on real-world datasets

We evaluate SwiftLink on real-world datasets of both small and large families,

genotyped with many markers. A small family is evaluated with an exact algo-

rithm, the results of which are used to assess the accuracy of our program. Large

families with many markers are beyond the reach of exact linkage algorithms, so

these datasets can only be compared with other MCMC-based applications. We

show that SwiftLink performs a complete genome-wide linkage scan as much as

19x faster compared to an existing single-threaded implementation of the same

samplers.

1.2 Thesis Outline

The thesis proceeds in a bottom-up manner, first looking at background material, de-

signing the parallel Gibbs samplers and then evaluating their efficacy.

Molecular genetics background

In Chapter 2, we will cover the background information in molecular genetics

necessary to understand the context of the analysis and give a rationale for many

of the details for why inheritance is modelled the way it is. We will look at

DNA, chromosomes, the process of meiosis and how this produces the classical

6

segregation patterns found in Mendelian traits, such as the monogenic diseases

we will be investigating.

Genetic linkage analysis

In Chapter 3, we introduce the concept of genetic linkage analysis and provide the

theoretical background for the mapping of disease traits. The chapter proceeds

to describe the main techniques that have been employed to solve the necessary

likelihood calculations and how this was motivated by the development of ever

numerous molecular markers.

Statistical methods for linkage analysis

Chapter 4 contains a formal description of the Gibbs samplers used throughout

this thesis. It covers the whole locus Gibbs sampler, the whole meiosis Gibbs

sampler and all of the relevant algorithms necessary to evaluate them.

Parallel sampler design

Chapter 5 will give a broad overview of both the different hardware and software

that is available to us, with an emphasis on how they will affect the design of

our parallel samplers. The chapter concludes by sketching the basic design of

SwiftLink, highlighting any parameters that need to be investigated.

Software implementation

Our software implementation of SwiftLink is described in Chapter 6. There are

many details about the design of the parallel samplers, identified in the previous

chapter, that must be investigated empirically. We take each issue in turn and per-

form experiments to better understand the hardware and programming paradigms

we are using, with a view to maximising performance. Where we are unable

to maintain the serial ordering of events, approximations are identified and their

effect on results investigated.

Case studies

Whilst we have optimised our software for both multicore CPUs and manycore

7

GPUs, the benchmarks from the previous chapter do not give a clear picture of

what the improved performance means for an actual linkage project nor how it

compares with currently available software. In Chapter 7, we will take several

complete projects and evaluate SwiftLink in terms of both accuracy and run-time.

Conclusions

We conclude in Chapter 8 by providing a critical evaluation of our work and the

lessons that were learnt for the field. Finally we outline the directions future

research might take from here.

1.3 Publications

A publication resulting from the work contained in this thesis is currently in preparation.

Linkage analyses for sensorineural deafness and benign chorea pedigrees in Chapter 7

will form part of future publications as well.

SwiftLink: Parallel MCMC linkage analysis utilising multicore CPU and GPU

Medlar A, Głowacka D, Stanescu H, Bryson K, Kleta R

8

2 Molecular Genetics Background

I can’t be as confident about computer science as I can about biology.

Biology easily has 500 years of exciting problems to work on.

Donald E. Knuth

This chapter is aimed towards those who do not have a background in biology,

genetics or medicine. The goal is to give the necessary context and vocabulary to un-

derstand the rest of the thesis and can safely be skipped by those already familiar with

the topics. We take a bottom-up approach, first looking at DNA and building up to the

mechanisms of inheritance.

2.1 DNA

DNA (deoxyribonucleic acid) is a linear molecule composed of nucleotides, the combi-

nation of which, encode the genetic information that constitutes the genome of the host

organism. DNA is packaged into structures called chromosomes, found in the nucleus

of eukaryotic (all organisms that are not bacteria or archea) cells.

2.1.1 Structure

Each DNA molecule is made from two long strands of nucleotides connected via hy-

drogen bonds in a double helix. Each nucleotide contains a molecule of 2-deoxyribose,

a phosphate group and a nucleobase. The alternating sugar and phosphate groups form

9

two backbones on either side of the bases being held. The possible bases are adenine,

guanine, thymine and cytosine (A, G, T and C, respectively). All adenine bases are

paired with thymine and all guanine bases are paired with cytosine. The combinations

of AT and GC on opposite strands are referred to as base pairs (bp). The complete

human reference genome contains approximately 3.3 billion base pairs of DNA.

2.1.2 Function

All of the proteins that make up our bodies are encoded in DNA as genes. Proteins

are composed of combinations of amino acids arranged in a linear sequence. These

linear sequences of amino acids fold into three dimensional structures, the conformation

of which dictates their function. Each amino acid is encoded in DNA by a triplet of

nucleotides called a codon. There is inherent redundancy within the genetic code, as

the 64 different codons map to only 20 amino acids.

There are special codons within DNA called start codons and stop codons that delin-

eate the extent of a gene. The entire gene is transcribed into a molecule called messen-

ger ribonucleic acid (mRNA). The mRNA is essentially a copy of the transcribed DNA,

but with a few differences. The sugar is ribose instead of deoxyribose and instead of

thymine, RNA uses a base called uracil (U). The mRNA then undergoes splicing to re-

move all non-coding regions from the sequence. The spliced mRNA is translated to a

protein by a ribosome.

The non-coding regions within a gene are called introns, contrasted with the coding

regions that encode the sequence of amino acids, called exons. A single gene can be

made from many exons and may have several splice variants, leading to the creation of

different proteins.

2.1.3 Nomenclature

Each strand of DNA has a polarity, one end is referred to as the 30 end and the other

as the 50 end. The numbering comes from the orientation of the carbon atoms in the

deoxyribose molecule (numbered 10 to 50). The 30 end is terminated with the hydroxyl

10

Figure 2.1: Karyogram for a male showing 23 pairs of chromosomes
(image credit: NHGRI [92]).

group of a sugar and the 50 end is terminated with a phosphate group. The two strands

lie antiparallel to one another, namely the strands sit in opposite directions.

A DNA sequence is by convention the linear sequence of nucleotides that sit on the

50 to 30 strand, also called the sense or forward strand. The opposing strand (30 to 50,

antisense or reverse strand) contains the complement sequence.

2.2 Chromosomes

DNA is packaged along with specialised proteins into structures called chromosomes.

The proteins involved provide structure, regulation and perform the reading, replication

and repair of DNA. The exact number of chromosomes will depend on the type of cell.

Haploid cells, such as unfertilised eggs and sperm, contain a single copy of each of the

23 human chromosomes, whereas diploid cells contain two copies. Each diploid cell in

the body will contain that person’s complete genome.

The chromosomes that make up a pair are called homologs. Of the 23 chromosome

pairs, 1 to 22 are autosomal chromosomes and the 23rd pair are sex-determining chro-

mosomes. The sex-determining chromosomes are called the X and Y chromosomes.

Females have a homologous pair of X chromosomes, whereas males have an X and a Y

chromosome.

During the final stages of cell division, we can artificially halt the process to inspect

11

individual chromosomes. Figure 2.1 shows a karyogram which features a complete set

of arranged and stained chromosomes. Each chromosome has a short p arm (petit) and

longer q arm (queue), connected by the centromere. Both ends of each chromosome

have a telomere. The banding pattern from staining permits us to distinguish different

regions of the chromosome. Bands are identified like 1q23.2, which is on chromosome

1, q arm, region 2, band 3, sub-band 2.

Each pair of chromosomes will feature one complete set of genes 1. The two copies

of each gene are referred to as alleles of that gene. The term allele can describe an

arbitrary genetic locus, so is not limited to genes.

2.3 Heredity

Traits, or phenotypes, are passed between generations by the fusing of genetic material

from both mother and father. The immense variability we see in people around us is

due to the process by which DNA is assorted called meiosis. Meiosis is a kind of cell

division that takes diploid cells and turns them into haploid germ cells or gametes. Ga-

metes, one from each parent, combine to form a diploid zygote containing information

from both parents.

2.3.1 Meiosis

Meiosis is the process by which a single diploid cell will subdivide into four distinct

haploid cells. Meiosis consists of three distinct phases: the meiotic S phase, meiosis I

and meiosis II, see Figure 2.2.

Meiotic S Phase

During the meiotic S phase, the paternal and maternal homologs of each chro-

mosome pair replicate themselves completely. The cell now contains twice the

original number of chromosomes.
1Unless any of those genes have been deleted or duplicated.

12

Meiosis I Meiosis II

Meiotic
S Phase

Figure 2.2: Simplified view of meiosis showing a single pair of chromosomes throughout each
phase of the process (image credit: NCBI and Wikimedia Commons, modified [79]).

Meiosis I

In meiosis I, both maternal and paternal homologs pair up forming a bivalent con-

sisting of four chromosomes. During cell division, for each bivalent, the maternal

homologs will be pulled to one end of the cell and the paternal homologs to the

other. For different chromosomes this is independent, for example, both maternal

chromosome 1 copies do not necessarily get pulled to the same end as both ma-

ternal chromosome 2 copies. Meiosis I produces two diploid daughter cells each

with a complement of 23 chromosome pairs.

Meiosis II

Meiosis II is identical to the cell division in meiosis I, except that this time the

result of the cell division is two haploid gametes from each of the two daughter

cells from meiosis I.

2.3.2 Recombination

During meiosis I, maternal and paternal homologs align with one another to form bi-

valents. These bivalents are held together with connections called chiasmata. Recom-

bination, or crossing-over, occurs at chiasma where DNA is broken and reattached in

13

such a way that chromosomes within the bivalent exchange genetic material. This pro-

cess is indicated by the bivalents in Figure 2.2 becoming multi-coloured, as they have

exchanged the whole q arm by the second half of meiosis I.

Between any two points on the genome there is a probability that a recombination

will occur. The recombination probability increases the further apart the two loca-

tions are, up to the value 0.5 which states that the two locations segregate indepen-

dently (which is the case when two loci are on different chromosomes). Recombination

probabilities are not constant for a given length of DNA as there are numerous hot

and coldspots of activity. In addition, recombination probabilities tend to be higher in

women, who have approximately 60% more recombination events compared to men

[12, 55, 16].

The recombination events that occur during meiosis, the gametes of which go on to

produce the next generation of individuals, are the key to understanding how we inherit

traits from our parents. Locating the locus on a chromosome that is responsible for a

trait is a process called mapping. In order to map traits that we care about, they must

be mapped relative to something, therefore we need genetic sign-posts or markers that

are relatively constant. Classically, this would have been done by conducting breeding

experiments and assessing the amount different traits appear together, mapping them in

relation to one another. Nowadays we use molecular markers made from DNA.

2.4 Molecular Markers

Molecular markers are variations within the DNA sequence itself of an organism. To be

useful for the purposes of mapping they must have the following properties:

Known location

Mapping exercises involve us taking something of unknown location (for exam-

ple, a disease trait) and calculating the likelihood that it is located close to differ-

ent markers of known location.

14

Co-dominance

Co-dominance implies that we are able to clearly ascertain all types of a given

marker, i.e. all possible values it could take can be distinguished from one another.

Polymorphic

There must be some degree of variation within the population from which to

infer how material was inherited. We refer to each possible form of a marker as

an allele. If there are two possible values, then the marker is said to be biallelic2

(and three values, triallelic etc). If all instances of a marker were all the same,

then all modes of inheritance will be equally likely.

Low mutation rate

We want to be sure that the marker typed in an individual was genuinely inherited

from one of their parents. Some mutations are simple to detect, for example, if a

biallelic marker becomes triallelic, but other mutations may be silent.

Hardy-Weinburg Equilibrium

Hardy-Weinburg Equilibrium is the ratio of different genotype frequencies re-

sultant from the assumption of random mating. Namely, a biallelic marker with

minor allele frequency p and q = (1 � p) will produce genotypes in the ratio

p2 : 2pq : q2.

The two most commonly used molecular markers today are short tandem repeats and

single nucleotide polymorphisms.

2.4.1 Short Tandem Repeats

Short tandem repeats (STR), also known as microsatellites, are molecular markers

where a short stretch of DNA (typically 1-3 bp) is repeated several times, contigu-

ously. They are highly polymorphic and therefore informative for mapping. STRs are

found almost exclusively in non-coding regions, due to the impact they would have on
2Curiously not called di- allelic, though in this thesis we will stick to conventions.

15

gene reading frames. STRs have largely been superseded by single nucleotide polymor-

phisms for reasons of cost and higher density.

2.4.2 Single Nucleotide Polymorphisms

Single nucleotide polymorphisms (SNP) are variations found in a single base pair of

DNA. Whilst a given SNP could have four possible values (A, T, G or C), a large

proportion of them are biallelic. This lower information content, compared to STR

markers, is made up for by their immense density. The human genome contains a SNP

approximately every 300 base pairs.

The strict definition of what constitutes a SNP places a lower bound of 1% on its

minor allele frequency, however, this is a historic definition. Current databases of vari-

ation include SNPs at far lower frequencies. This is permissible because of the high

accuracy of genotyping and large sample sizes used.

2.4.3 Marker Maps

One of the important properties of a marker is that we know its location relative to other

markers. This will allow us to map genes, polymorphisms and disease traits to specific

locations on different chromosomes. There are several types of map that we can use

to identify the location of a molecular marker, the main two being physical maps and

genetic maps.

Physical Maps

Physical maps localise points on the genome to an individual base pair resolution in the

actual DNA sequence itself. An individual base pair of DNA in the human reference

genome is identified by the chromosome and the offset with respect to the start of that

chromosome. When stating the location of a mutation in the genome, we would use a

physical map.

16

Genetic Maps

Genetic maps are a little different from physical maps. The distances between markers

are measured by their genetic distance in centiMorgans (cM). 1 cM is equal to a 0.01

chance of a recombination. Whilst this is often proportional to the physical distance,

the physical distance cannot express, for example, the differences between male and fe-

male recombination rates. Knowing genetic distances permits an accurate probabilistic

analysis of how genetic material flows from generation to generation and we will make

extensive use of it in the remainder of this thesis.

2.5 Mendelian Inheritance

We are only interested in discrete, binary traits in this thesis. We will ignore other

continuous and age-of-onset phenotypes. For a binary trait, we need to define the prob-

ability that an individual will have the disease phenotype, given the disease alleles that

were inherited from both parents. The two possible alleles are d for the normal or wild-

type and D for the mutant. Therefore, if we know a person’s disease status, Y, and we

know what disease alleles were inherited, G (where G can be dd, dD or DD), then we

must estimate P (Y | G). We refer to this as the penetrance function.

For simple Mendelian disorders, we identify the correct penetrance function by as-

sessing which of the classical segregation patterns corresponds to the observed pattern

of disease in a given family. Before we enumerate the classical segregation patterns,

we will look at the Mendelian laws of inheritance and state how a pedigree diagram is

interpreted.

2.5.1 Mendel’s Laws

From observations made during cross breeding experiments with garden peas, Gregor

Mendel observed common features of how traits segregate through different genera-

tions. These observations were later formalised as Mendel’s laws. They are as follows:

17

Law of Segregation:

Mendel found that if two homozygous versions of the same trait (tt and TT)

are cross-bred, then the next generation will contain only heterozygous (tT) off-

spring. If we cross-breed the new offspring with one another, we will get the ratio

1:2:1 for tt, tT and TT , respectively.

The law of segregation states that each individual has two copies of a trait (one

on each chromosome in a given pair) and we are equally likely to pass on one or

the other to one of our offspring. This is because zygotes are composed of two

gametes, both of which are haploid. One gamete is provided by each parent and

only contains half that parent’s chromosomes.

Law of Independent Assortment:

The law of independent assortment states that two different traits will segregate

independently. We know now that this is actually only true in the special case

where those traits are located on different chromosomes. Otherwise those two

traits will co-segregate to some degree relative to the genetic distance separating

them.

2.5.2 Pedigrees

Familial relationships are represented diagrammatically with a pedigree. Pedigrees are

graphs that specify individuals’ relationships to one another. Males are represented by

squares and females with circles. A pedigree contains two types of individual: founders,

those whose parents are not in the pedigree and non-founders, everyone else. If the pedi-

gree is inbred, then the graph will be cyclic and is indicated by a double line connecting

the related individuals (e.g. Figure 2.3b). We call this a consanguineous pedigree. A

pedigree without any inbreeding is called an outbred pedigree (e.g. Figure 2.3a). A

pedigree must state the affection status for all members of the pedigree. This is a state-

ment of whether each person has the phenotype or not. There are 3 possible values:

affected (coloured black), unaffected (white) and unknown (grey).

18

(a) Autosomal Dominant (b) Autosomal Recessive

Figure 2.3: Segregation patterns for autosomal dominant and autosomal recessive disease mod-
els. Autosomal dominant phenotypes are expressed by individuals who carry at least one copy
of the disease trait, whereas autosomal recessive phenotypes are only expressed by individuals
with two copies. Double lines indicate an inbreeding loop.

The complexity of a pedigree is referred to as the bit size. The bit size is equal to

2n�f , where n is the number of non-founders and f is the number of founders. The bit

size reflects the number of meiosis (2n) within the pedigree and that founder meioses

are uninformative because their parents are not present by definition (hence �f).

2.5.3 Segregation Patterns

The classical patterns of Mendelian inheritance are special cases that are fully penetrant,

i.e. P (Y = a↵ected | G) is either 0 or 1.

Autosomal Dominant

Autosomal dominant diseases are where the disease trait is located on one of the 22

autosomal chromosomes and individuals require at least one copy of the disease allele

to manifest the disease, therefore P (Y | dD) = 1 and P (Y | DD) = 1.

Figure 2.3a shows a pedigree with an autosomal dominant disease. Every affected

individuals will, by definition, have at least one affected parent. Therefore all gener-

ations will contain affected individuals. As the disease trait is found on an autosome,

males and females are equally likely to be affected and can both transmit the disease

trait to their offspring. Finally, as the disease only requires a single copy of the disease

allele, if an individual has two unaffected parents, then they cannot have the disease

19

(a) X-linked Dominant (b) X-linked Recessive

Figure 2.4: Segregation patterns for X-linked dominant and X-linked recessive disease models.
Carriers in the X-linked recessive pedigree have been indicated with stars. The key difference
in X-linked phenotypes is how many X chromosomes there are in total. So, for example, males
only require a single copy of the disease trait to manifest an X-linked recessive disease as they
have only a single X chromosome.

themselves.

Autosomal Recessive

Autosomal recessive diseases are where the disease trait is located on one of the 22

autosomal chromosomes and individuals need two copies of the disease allele to have

the disease, (P (Y | DD) = 1).

Figure 2.3b shows a pedigree with an autosomal recessive disease. Unlike an au-

tosomal dominant disease, affected individuals can be the offspring of two unaffected

parents. Whilst this is not shown in our example, the disease can appear to skip gen-

erations, the unaffected intermediate generations only being carriers. The disease is

equally likely in both males and females, again because it is located on an autosome.

Where two parents are both affected, all offspring must also be affected. Recessive

disease are more likely in consanguineous (inbred) families.

X-linked Dominant

The disease trait can be located on the X chromosome. As males and females do not

have the same number of X chromosomes, the segregation pattern will appear different

from autosomal dominant diseases.

In an X-linked dominant disease, if the father is affected, then all of his daughters

will be affected. Sons can only inherit their X chromosome from their mother, so males

20

need an affected mother to have any chance of being affected (50% if the mother has

one disease allele, 100% if she has two copies). An example is shown in Figure 2.4a.

X-linked Recessive

X-linked recessive diseases need all X chromosomes to have the disease allele in an

individual. For a daughter to be affected, her father must be affected and her mother

be at least a carrier. Sons cannot inherit the X chromosome from the father, so need a

carrier mother to be affected, so it may appear to skip generations if the mother is not

affected herself. See Figure 2.4b for an example; all of the individuals that are carriers

are indicated with a star.

2.6 Disease Mapping

Disease mapping is the process by which we identify genomic regions that either con-

tain causative mutations or risk-enhancing variants for a given phenotype. Diseases are

often categorised into “simple” Mendelian traits that segregate through a pedigree with

an identifiable pattern (described in Section 2.5.3) and “complex” traits, that, whilst

there is a clear genetic component (i.e. it has been shown to run in families), there is

no Mendelian segregation pattern that adequately describes its transmission. Whereas

Mendelian traits tend to be caused by mutations in single genes (monogenic disorders),

complex traits are multifactorial, influenced by many genes and other non-genetic fac-

tors, e.g. environment.

In this section we will give a brief overview of linkage analysis, association analysis

and high-throughput sequencing technologies.

2.6.1 Linkage Analysis

Parametric (or model-based) linkage analysis aims to identify an explicit relationship

between the phenotype and the transmission of chromosomal regions through families

containing affected individuals. The disease trait is mapped by assessing the extent

21

to which the disease trait cosegregates (is inherited together) with markers of known

location, given a genetic model. The genetic model specifies the penetrance function of

the trait together with population allele frequencies. A description of how multipoint

parametric linkage analysis is performed can be found in the next chapter.

Parametric linkage analysis has one main disadvantage: it relies on our ability to

ensure the correct genetic model is specified. In the case of traits without a clear-cut

segregation pattern, these penetrance values must be estimated based on a representative

sample of many, often small, families, which may not be informative enough to identify

more complex penetrance functions, for example, including variable age-of-onset and

other factors.

Nonparametric (or model-free) linkage analysis does not depend on a genetic model

for the disease locus and instead measures the level of allele sharing between affected

sib-pairs. Nonparametric analysis is less powerful than parametric methods and re-

quires several families to be collected, whereas parametric analysis may require only

one informative pedigree. However, as there is no need to define a genetic model, non-

parametric analysis can be more robust.

Both parametric and nonparametric linkage analysis can fail to find the disease locus

if the phenotype has genetic heterogeneity, that is, despite the disease trait having the

same transmission pattern, single mutations in different genes cause the same (or what

appears to be the same) phenotype in different families.

2.6.2 Association Analysis

Analysis of common, complex genetic traits [63], for which there is no clear segrega-

tion pattern, can be investigated in an association study. Association studies can be

used to investigate a single candidate polymorphism, the polymorphisms within one or

more candidate genes or genome-wide (referred to a genome-wide association study

or GWAS). Whereas candidate gene studies may only type a handful of SNPs, GWAS

will routinely use > 1, 000, 000 SNPs thanks to high-throughput genotyping. Genetic

association studies aim to identify correlations between the disease status of unrelated

22

(or at least distantly related) individuals and the alleles typed at genetic markers. A

genetic association exists if specific alleles are found to occur more frequently in cases

compared to controls than would be expected by chance. The size of cohort neces-

sary to achieve significance is dependant on our ability to define the phenotype. Whilst

the causes of rarer diseases (with severe phenotypes) can be identified with only a few

hundred patients (e.g. [53, 114]), common traits investigated with GWAS can involve

thousands of patients.

Care must be taken to minimise the possibility of spurious associations. In addition

to removing poor quality data evidenced by low genotype call-rates, several quality

controls should be performed prior to analysis:

Hardy–Weinburg equilibrium:

SNPs that deviate from Hardy-Weinburg equilibrium (briefly described in Sec-

tion 2.4) must be removed from the dataset as these can be an indication of

mistyped SNPs or the result of indels. Population stratification, inbreeding and

non-random mating are other possible causes of a deviation from Hardy-Weinburg

equilibrium.

Population stratification:

Both cases and controls that make up the cohort must come from a homogeneous

population as any differences in population structure may induce false-positive

association signals in the final analysis. Population stratification can be assessed

by clustering individuals with principle component analysis (PCA) and the result-

ing plot visually inspected to remove any outliers.

Single SNP associations are commonly assessed with �2 tests, but many other test

statistics, for example, the Cochran–Armitage test [5], are in common use. As many

tests are performed, the significance level must be adjusted for multiple comparisons,

for example, by Bonferroni correction [9]. Genetic associations can be caused for dif-

ferent reasons:

23

Direct causal association:

If a typed genetic marker is the disease locus itself, then the association is due

to the direct relationship between the causative mutation and the disease trait.

This will typically not be the case for GWAS as they are performed with SNP

chips that only feature common polymorphisms, but for a candidate gene study

the causative mutation might indeed have been typed.

Indirect association:

Indirect associations are where the association between the disease trait and a

specific marker allele is due to that genetic marker being close to the disease

locus. In this case, the association is due to linkage disequilibrium (LD) between

the disease locus and the associated allele.

Linkage disequilibrium is a measure of statistical association between two loci,

which can be due to linkage in tightly-linked loci that are frequently co-inherited, or

at unlinked loci as a result of selection or non-random mating. Two locus pair-wise

measures of linkage disequilibrium are D0 and r2, both of which are commonly used in

GWAS, though r2 is more robust to the presence of rare alleles [24]. Significant asso-

ciation signals are super-imposed on genome-wide LD maps provided by the HapMap

project [18]. The locus defined by the LD block containing a significant association tells

us which genes should be investigated further by fine-mapping or sequencing. The list

of genes can be prioritised by biological relevance if the genes are of known function.

It is important that the results from a given GWAS is replicated in a different popu-

lation to ensure that the association signals are not due to the structure of the population

investigated or any other effects that are difficult to control for. Ultimately, though,

the final test of an association is the detection of the causal variant (or variants) and a

biological validation determining the mechanism of risk-enhancement.

24

2.6.3 Next-generation Sequencing

Next-generation sequencing differs from traditional Sanger sequencing [106] in that it

is massively parallelised and far cheaper per base pair sequenced. The reduction in run-

time and expensive has meant that NGS techniques are starting to be applied throughout

the life sciences, not just clinical studies.

Next-generation sequencers tend to produce shorter reads than previously available

sequencing technologies, but orders of magnitude more data 3. The enormous quan-

tity of data generated means we must rely on bioinformatics techniques to automate

the process assembling the data into something meaningful, like an entire genome or

exome.

Whole Exome Sequencing

Whole exome capture and next-generation sequencing is the targeted sequencing of all

(or at least a majority of) protein coding sequence in the human genome and has be-

come a powerful tool to investigate all of the genes contained in a region of interest

identified by genetic linkage analysis, for example, in the case where the region con-

tains 100s of genes, this would be prohibitively time-consuming to tackle with Sanger

sequencing [7]. Exome sequencing is a suitable strategy as we are, in general, looking

for rare variants in the coding sequence or splice sites of a gene leading to a functional

consequence, for example, a non-synonymous coding variant or creation of a premature

stop codon.

A common approach is to align the exome data to the human reference sequence

and perform variant calling. The list of variants is annotated with structural information

to assess potential consequences. Known variants from public databases (e.g. dbSNP)

are filtered out and the remaining novel variants assessed for their severity. In the best-

case scenario, this procedure will leave at least one highly disruptive variant in a gene

of biological relevance.
3Though, at the time of writing, the Pacific Biosciences RS single molecule sequencer is one of the

exceptions, producing far fewer reads than other NGS platforms, but each read can be thousands of base
pairs long.

25

Sequencing the whole exome may seem excessive to investigate a set of perhaps

< 100 genes, but economies of scale have made the process cheaper than targeting a

specific region of interest and has the added advantage that the data can be generated

before the completion of the linkage study.

26

3 Genetic Linkage Analysis

Two years work wasted. I have been breeding those flies for

all that time and I’ve got nothing out of it!

Thomas Hunt Morgan

This chapter focuses on linkage analysis and its application in mapping disease

genes. We will cover the theoretical background that tells us how to calculate the like-

lihood that two traits are in linkage. We will then survey the major techniques that have

been employed over the years to compute this likelihood. Throughout, we hope to give

the historic context that led to the development of different methodologies.

3.1 Theoretical Background

Linkage analysis is the process by which we determine the location of a disease trait by

looking at the degree to which that trait cosegratates (is inherited together) with markers

of known location. If a disease trait cosegregates frequently with another locus, they

are said to be linked [88] and, therefore, proximate to one another [115]. In the case of

parametric linkage analysis, linkage between the disease trait and the genomic sequence

is assessed given an explicit genetic model. The genetic model states how the disease is

inherited (e.g. autosomal recessive) through a penetrance function and the frequency of

the disease allele in the general population. The standard manner of displaying results

is as a likelihood ratio called a logarithm of odds (LOD) score [90], comparing the

likelihood of two traits being linked versus otherwise.

27

Traditionally, linkage is assessed in non-humans by directly counting recombina-

tions in controlled crosses, but for humans this is impractical. Instead, we use a series

of genetic markers, ideally uniformly spaced along the genome, to infer past meiotic

events within a pedigree. This is a computational challenge because we observe the

underlying genetic sequence imperfectly due to genotypes lacking phase information

(i.e. which homologous chromosome each allele comes from) and non-typed individu-

als whose genotypes must be inferred using the genotypes of others and the underlying

family structure. The consequence being that many possible DNA sequences can cor-

respond to the same observed genotypes and we must consider many individuals and

markers jointly in order to ascertain the most likely possibilities.

In general, the assessment of linkage involves calculating the following joint likeli-

hood [100]:

L =
X

g1

. . .
X

g
n

Y

i

P (Yi | gi)
Y

j

P (gj)
Y

{k,l,m}

P (gm | gk, gl)

where gn and Yn are the genotypes and phenotypic traits of the nth individual, respec-

tively. Of the three main components, the first is the penetrance probability (P (Yi |

gi)), which states the probability of manifesting a specific phenotype, given the geno-

type. The second component is the founder probability (P (gj)), which only applies to

founders. Given the lack of parental information, we model founder genotypes on the

population as a whole. Founder genotypes are assumed to be in Hardy-Weinberg equi-

librium and linkage equilibrium. The final component is the transmission probability

(P (gm | gk, gl)), which states the probability of a non-founder’s genotypes given the

genotypes of their parents.

To calculate the likelihood of two traits (e.g. a genetic marker and a disease trait)

being linked, we not only need to perform this summation across markers, but also in-

clude a term to take into account the likelihood of genotype assignments given those

at neighbouring loci. We use Haldane’s model [40] as this does not model crossover

interference (the process by which that act of a crossover occurring prevents another

28

crossover from occurring nearby), greatly reducing the necessary computation. Hal-

dane’s model involves the use of a genetic map enabling us to calculate the recombina-

tion fraction between pairs of markers. A recombination fraction is the probability of

an odd number of crossover events occurring in-between the two markers (as an even

number of recombinations will appear the same as zero recombinations). The Haldane

map function is:

✓ =
1

2
(1� e�2d)

where ✓ is the recombination fraction and d is the genetic distance in Morgans. ✓ and

its inverse can be applied at all informative meioses, i.e. meioses from heterozygous

parents.

The LOD score is calculated as the ratio between the likelihood of the disease trait

and a marker being linked at a recombination fraction ✓̂ and the likelihood of the two

traits being unlinked, i.e. segregating independently on different chromosomes. By

convention, the LOD score is the log10 of the likelihood ratio:

LOD(✓) = log10

L(✓̂)
L(0.5)

!

A LOD score of -2 or lower is considered enough evidence to exclude that region

from linkage. Exclusion mapping can make even a weak pedigree useful. Even if it

cannot direct us towards a single locus for further investigation, it will permit us to

exclude a large proportion of the genome. Conversely, a score of 3 is considered to

have genome-wide significance and historically considered evidence of linkage (for the

X-chromosome, 2 is considered significant) [90]. In a genome-wide, multipoint setting,

3.3 is considered significant [61].

Direct calculation of the complete likelihood is intractable for all but the simplest

pedigrees. The complexity of a naı̈ve evaluation of all possible combinations of geno-

types scales exponentially with both the number of individuals in the pedigree and the

number of markers considered jointly.

29

The analytical methodology employed has changed with technological advances.

Initially, only a few phenotypic markers were available for analysis, so it was only

important for algorithms to handle many individuals connected by perhaps complex

relationships. After the landmark paper by Botstein et al. [10], common genetic poly-

morphisms were seen to be more numerous, providing both more context and improved

resolution. This provoked efforts to scale to larger numbers of markers, but as we will

see, limited analysis to smaller pedigrees. Work in the statistics literature provided

means to bridge the gap between these two extremes. All of these techniques have been

adapted over time to handle both new technological advancements in the genetics field,

e.g. SNPs, and many have enjoyed being extended to run with new software tricks and

hardware architectures.

3.1.1 Assumptions

Irrespective of the algorithm or software employed, in general, linkage analysis is based

on the following assumptions:

Linkage equilibrium between markers

The assumption of linkage equilibrium between markers removes the need to

model crossover interference, simplifying the already extensive probability cal-

culations. Markers that are really close together, and therefore in linkage disequi-

librium (LD), break this assumption and can result in an overestimation of linkage

(the end result being an inflated LOD score [44, 52, 1]), limiting the number of

markers that can be considered jointly and, in turn, the resolution of the analysis.

Known recombination fractions between markers

Historically, the need for knowing the recombination fractions between markers

limited the number of markers available because genetic maps (and hence, re-

combination fractions) need to be derived empirically. The densest genetic maps

of SNPs produced to date are a 10,000 [55] and a recent ⇠290,000 [56] marker

map both provided by deCODE genetics. If these do not cover the necessary

30

SNPs, the HapMap project [18] helpfully provides interpolated genetic distances

between an enormous number of known SNPs [31].

Correctly specified genetic model

The genetic model consisting of the penetrance function and appropriate allele

frequencies for the population in question, must be correctly specified.

Known marker order

The correct ordering of all markers in the map must be known. In practical terms,

this is less of an issue thanks to the Human Genome Project [64, 123], however,

in different builds of the human genome, the position and ordering of markers can

change.

No monozygotic twins

Monozygotic twins bias the analysis as their meioses were not independent, mak-

ing their genotypes identical.

Breaking these assumptions may adversely affect the analysis, and therefore the veracity

of the results.

3.2 Elston-Stewart Algorithm

Elston and Stewart provided the first general algorithm for the calculation of pedigree

likelihoods [27]. The Elston-Stewart algorithm considers a pedigree to be a graph where

individuals are nodes and the relationships between them edges. At its core, the algo-

rithm performs an operation called peeling, so coined by Cannings et al. [14], to recur-

sively collapse likelihood calculations onto pivots (an individual, the removal of which

would split the pedigree in two). Peeling is used in linkage analysis to calculate the

likelihood of a trait being linked to a given location on the genome.

The original algorithm could only operate on simple pedigrees. A simple pedigree

is one that can be represented as a tree with a single founder couple at its root and for

each nuclear family, one of the parents must also be a founder. The graph is constructed

31

with individuals as nodes and their relationships as edges. The tree is traversed depth

first with, at a given nuclear family, likelihoods for children and the founder parent

collapsed by performing a nested summation over all possible phased genotypes onto

the parent connecting them to the rest of the pedigree. The complexity of this procedure

is linear in the number of individuals in a pedigree, but exponential in relation to the

number of markers that are to be considered jointly.

One of the first widely available software implementations, Liped [99], addition-

ally allowed for a second founder couple. This was a prelude to the algorithm being

generalised to arbitrary, acyclic graphs [14] (sometimes called ‘zero-loop pedigrees’)

and ultimately to arbitrary graphs [15]. Further algorithmic improvements followed,

e.g. Lange and Boehnke [65] showed the likelihood could be calculated by considering

one individual at a time, instead of one nuclear family at a time. In addition, Lange

and Boehnke showed that the sequence by which individuals are peeled affects both the

run-time and the amount of memory required.

3.2.1 Scaling with Markers

The work of Botstein et al. [10] revealed the profusion of markers that could be de-

rived from common genetic polymorphisms. This concept would spawn a revolution in

genetic studies identifying the locations of disease causing mutations and gave impe-

tus to further developing linkage algorithms to handle several markers simultaneously.

Despite the limitations of the algorithm, throughout the 1980s, 1990s and early 2000s

several Elston-Stewart derived programs emerged to extend what could feasibly be han-

dled.

Linkage [69, 68] was one of the first programs to allow multiple loci to be consid-

ered jointly giving a true multipoint analysis. The popularity of the Linkage programs

resulted in them being ported to many different systems and extended numerous times.

FastLink [19] is a modified version of the original Linkage package providing faster

execution times, checkpointing / crash recovery and optional parallel execution. Its

improved execution time is a result of better programming, namely the use of appro-

32

priate caching [108] and fixed point arithmetic. Parallelism is implemented using the

TreadMarks [51] system that provides a global address space across a network of work-

stations. Distributed shared memory architectures like TreadMarks are not commonly

found on modern computer clusters, which favour message passing interfaces (e.g. MPI

[37], see Section 5.2.1).

Vitesse [96] uses a genotype recoding scheme to limit the effective number of mark-

ers that are summed over and, so-called, “fuzzy inheritance” to infer the transmission

probabilities of these recoded genotypes. At publication, Vitesse was able to analyse up

to 8 markers jointly.

3.2.2 Discussion

Despite the utility of the Elston-Stewart algorithm and its associated family of soft-

ware implementations, there remains a crucial limitation. The algorithm scales linearly

with respect to the number of individuals in a pedigree, it scales exponentially with the

number of markers in the multipoint case. This is not to suggest other algorithms have

superseded it completely, for exceptionally large pedigrees, it remains an essential tool

for providing exact LOD scores.

3.3 Lander-Green Algorithm

The use of hidden Markov models (HMM) for the purpose of genetic mapping will be

limited in this survey to those algorithms derived from the Lander-Green algorithm [62].

HMMs are a general dynamic programming approach for calculating probability distri-

butions over a set of unobserved (hidden or latent) states in a system that is assumed

to be a Markov process [104]. Dynamic programming is a term used to describe any

algorithm where the answers to smaller common subproblems are retained or cached in

memory and reused at successive stages of the algorithm, avoiding recalculation.

At its core, the Lander-Green algorithm seeks to calculate the probability distribu-

tion over all possible ways segregation could occur at each locus across a chromosome

33

Figure 3.1: For each phased genotype, the allele on the left is maternal and the allele on the
right is paternal. The pedigree in the diagram corresponds to the inheritance vector 0000. The
inheritance vector is all zeros because the alleles at persons 3 and 5 are inherited from their
grandmothers.

conditional on genotype information, whilst taking into account the probability distribu-

tions at neighbouring loci. Segregation through the pedigree is represented as a binary

vector of segregation or meiosis indicators at each locus, termed an inheritance vector.

For each non-founder, there are two segregation indicators, one maternal and one pa-

ternal. Each indicator states which grandparent that particular allele was inherited from

(see Figure 3.1).

Assuming no genetic interference, how alleles segregate through the pedigree at

each locus (corresponding to a single inheritance vector) can be modelled as a Markov

chain along a chromosome, with all possible inheritance vectors forming the hidden

variables of the HMM. It should be clear that this will affect scalability drastically as

the number of possible inheritance vectors grows exponentially with the total number

of meioses.

The original purpose of the algorithm was to infer genetic distances using sim-

ple three generation pedigrees and the Expectation-Maximisation (EM) algorithm [23].

The expectation step selecting new recombination fractions and the maximisation step

employing the HMM approach to calculate the total likelihood given both map and

genotype data.

The Lander-Green algorithm was adapted by Kruglyak et al. [57, 60] to the problem

of disease mapping by calculating LOD scores using the Elston-Stewart algorithm at

each locus, summing over all possible weights from the complete inheritance probabil-

34

ity distribution. From now on we will refer to the Lander-Green algorithm with respect

to disease mapping as the Lander-Green-Kruglyak algorithm to avoid confusion with

the map construction algorithm.

3.3.1 Scaling with Meioses

Over time, the problems associated with scalability have been ameliorated through ex-

tensive optimisation, many of which are exemplified by new software implementations.

These can be categorised under three broad headings: state space reductions, evaluation

method and compact representations.

State Space Reductions

Founder Symmetry, was the main speed-up featured in Homoz [57] and generalised in

Genehunter version 1.0 [60], which identified that inheritance vectors differing only in

the founder’s phase are equivalent. This is quite intuitive as no information with regard

to founders’ parents (by definition) are included in the pedigree.

Founder Couple Reduction, was first used in Allegro version 1.0 [38]. Given that

both members of a founder couple are untyped, then from the perspective of the analysis

they are indistinguishable from one another and any calculations related to them need

only be performed once. This might seem like a trivial reduction, however, eliminating

only a single meiosis to be summed over cuts the complexity in half.

Inheritance State Space Reduction. Genehunter version 2.1 [80] describes an iter-

ative algorithm to identify and take advantage of situations where observed genotypes

invalidate certain inheritance vectors, giving them a likelihood of zero. This is not just

time, but space efficient as these inheritance vectors do not need to be held in memory.

Evaluation Method

The Idury-Elston Algorithm [47] describes a divide and conquer algorithm to incre-

mentally work on successive bisections of the inheritance space. Divide-and-conquer

algorithms take large, perhaps otherwise intractable, problems and split them recur-

35

sively into smaller problems, the answers to which are combined to solve the original

problem. This not only provided a speed-up compared to early versions of Genehunter,

but even when it had been superseded by more efficient approaches, was employed in

the Merlin [3] software package as it could be adapted to Merlin’s internal hierarchical

representations of inheritance data. The Idury-Elston algorithm was succeeded by the

use of Fourier transforms [59], speeding up the standard forward-backwards algorithm

approach from O(n2) complexity to O(n · log(n)).

Compact Representations

Sparse Binary Trees, used in the Merlin software package [3], explicitly exploit sym-

metries in the pedigree and genotype data resulting in improved memory usage and

execution time. This is achieved by the observed genotypes invalidating whole classes

of inheritance vectors and by generalising the state space reduction heuristics described

above, making them a formal part of the data structure employed.

Multi-Terminal Binary Decision Diagrams (MTBDD) were employed in Allegro

version 2.0 [39] to hold probability distribution data. MTBDDs are graphical represen-

tations of binary functions, which make gains from exploiting uniqueness (two trees

holding the same data must be the same) and non-redundancy (no two subtrees are

unique) to achieve compression. Note, however, this does not speed up analysis, it

just makes it easier to fit in memory in situations where there is redundancy to exploit.

This is only the case when a majority of individuals are typed. Allegro 2.0 must still

explicitly use the state space reduction techniques to lower the run-time.

3.3.2 Extensions

Haplotype Reconstruction

One advantage to using a hidden Markov model for linkage analysis is that the complete

model can be used to perform haplotype reconstruction in the same run. The result

of haplotype reconstruction is the complete specification of all phased alleles for all

members of the pedigree at all markers. In this case, haplotypes are inferred from the

36

pedigree and the genotype data. The Viterbi algorithm [124] is used to find the most

likely sequence of hidden states and the most likely assignments of founder alleles for

this sequence of inheritance vectors found by enumerating all possibilities.

Special Considerations for SNPs

Special attention has recently been paid to SNPs. SNPs have special characteristics that,

when taken into account, can both improve run-time and results. The density of SNPs

allows for a shortcut when evaluating the HMM, as transitions from one inheritance

vector to the next can be safely restricted to a small number of recombinations. This

reduces the number of calculations enormously, but still provides a good approximation

[3]. Secondly, the exceptionally dense SNP sets currently available provide many SNPs

that are in strong LD with one another. If there are many small families in a given

linkage study, then SNPs in high LD with one another can be clustered into pseudo-

markers, avoiding the bias normally associated with high density markers [1].

Parallel Processing

An HMM approach, like the Lander-Green-Kruglyak algorithm, is easily applicable to

parallelism [17]. This is due to the evaluation of an HMM consisting of very many inde-

pendent substeps: the calculation of forward probabilities, backward probabilities and

finally the integration into the complete inheritance distribution all provide opportuni-

ties to exploit parallel processing (see Section 4.3).

3.3.3 Discussion

The complexity of the Lander-Green-Kruglyak algorithm scales linearly with respect

to the number of markers, but exponentially with the number of meioses, due to the

need to enumerate all inheritance vectors. Linkage programs based on the Lander-

Green-Kruglyak algorithm are the dominant methodology for genetic linkage analysis

in humans as a majority of linkage projects involve small families (larger ones are harder

to accurately collect) that use many markers to perform genome-wide analysis. Much

37

work has been done to extend its applicability to larger pedigrees, but with the number

of calculations doubling with each meiosis (therefore quadrupling with each additional

person added to the pedigree), there is still a hard limit to what is possible given the

computing power and memory available. Even with compact representations, such as

the MTBDD inspired Allegro 2.0, it is only capable of making large savings when a

large majority of the individuals in the pedigree are typed.

3.4 Bayesian Networks

Bayesian networks allow for dependencies between variables to be made explicit and

the optimal ordering of calculations identified, saving time and memory. The exis-

tence of such orderings in the Elston-Stewart algorithm were identified previously [65],

but the problem was not framed as a Bayesian network until much later [29, 70]. The

more general approach permits variables to be eliminated in a less strict order. Contrast

this with the Elston-Stewart algorithm that only eliminates variables by working up the

pedigree and the Lander-Green algorithm that does so across loci. The use of Bayesian

networks enables exact likelihood calculations to scale to larger problems than previ-

ously.

SuperLink [29] employs a Bayesian network to optimise the ordering of computa-

tions in order to run on problems outside of the capabilities of FastLink, Vitesse and

Genehunter. SuperLink has been superseded by SuperLink-Online [110] which runs as

a loosely-coupled distributed system (specifically Condor Grid Middleware [77]) across

potentially thousands of personal computers.

Both programs dynamically decide how to order calculations. In the case of large

pedigrees with few markers, an Elston-Stewart-like peeling sequence results and in the

small pedigree, many marker case, the ordering resembles the Lander-Green algorithm.

In cases not at these extremes, a greedy heuristic is used to decide the variable elimi-

nation ordering. These procedures have been extended by using simple stochastic tech-

niques that extend the permissible problem size considerably [30]. In addition, varia-

38

tional inference has been applied to reduce run-time, but the results are not as accurate

as other linkage programs [32].

3.4.1 Discussion

Whilst Bayesian networks can be used to perform exact likelihood calculations on prob-

lems outside of the range of complexity the Elston-Stewart and Lander-Green algo-

rithms are capable of handling, it is no silver bullet. Even if we knew the globally

optimal ordering for variable elimination, it would not be difficult to find an input that

would exhaust available time and/or memory.

The only algorithms currently capable of handling any size of pedigree and num-

ber of markers are stochastic in nature and provide approximations of the likelihoods

needed for assessing linkage.

3.5 Stochastic Simulation

Whilst the process of stochastic simulation has been independently developed several

times [83], it came to prominence during the Manhattan Project where Monte Carlo sim-

ulations were used to model nuclear detonations, after which it closely followed the de-

velopment of stored instruction electronic computers. The seminal work of Metropolis

et al. [84] went on to describe what we today call Markov chain Monte Carlo (MCMC)

and was later generalised by both Hastings [41] and Green [36].

Stochastic simulations are used to produce approximations to otherwise intractable

problems by sampling. The precursor to MCMC, the Monte Carlo method, produces

samples at random from a probability distribution, but, for problems with many depen-

dent variables, is inefficient, due to the large proportion of low likelihood or invalid

states generated. By utilising a Markov chain of possible states, MCMC can go from

one valid state to the next using a random walk. MCMC aims to sample a state x with

probability proportional to the distribution function ⇡(x) (the distribution function is

not a probability as we do not normalise it). MCMC tends to converge faster than the

39

Monte Carlo method as it will focus on the lowest energy (most likely) states which

have a greater impact on the results, but, despite this, MCMC can still suffer from long

convergence times. We discuss MCMC in more detail in Section 4.1.

With respect to genetic linkage analysis, whilst there was some early use of the

Monte Carlo method [101], it was not until the late 1980s through to the 2000s that

MCMC was investigated. The initial work during this period focused on optimising

a pedigree’s descent state via MCMC [66, 67, 112] and sequential imputation [49].

The descent state of a pedigree is a combination of both an inheritance vector (in this

literature called a descent graph), which states how alleles are inherited, and the set of

founder alleles, which determine what is inherited. MCMC-based linkage analysis was

later improved by optimising over descent graphs, that have a smaller state space than

descent states (as they omit the specification of founder alleles). The likelihood of a

given descent graph is the summation over all possible descent states, which must be

enumerated. The first application to use the descent graph representation was Simwalk2

[111, 113], which used the Metropolis-Hastings algorithm to perform MCMC.

3.5.1 Descent Graph Samplers

MCMC is a general framework to solve problems involving the simulation of a proba-

bility distribution. The difference between algorithms will come down to the details of

individual samplers. A sampler is a means to generate, based on the current state of the

Markov chain, the next random state to be considered. An enormous number of such

samplers are available in the literature, but here we will focus on those which sample

descent graphs and have had the greatest impact:

Simwalk2 sampler

The Simwalk2 sampler [111, 113] consists of a number of transition rules to

tweak the current descent graph at a single locus, e.g. changing the source of one

of a non-founder’s alleles from paternal to maternal (or vice-versa). To improve

mixing and to ensure irreducibility for markers with more than two alleles, the

number of these transitions performed per step of the chain is a geometrically

40

distributed random variable of mean 2. When operating on many tightly linked

markers, the Simwalk2 sampler performs badly due to poor mixing. In addition,

with many markers run-time can become prohibitive. However, for larger pedi-

grees with very few markers Simwalk produces accurate results in a short time

[126].

Whole locus Gibbs sampler

The locus sampler [42] is a block-Gibbs sampler which operates on a single lo-

cus and samples from all possible meiosis indicators at that locus, conditional

on flanking markers. The locus sampler an extension of the Elston-Stewart al-

gorithm that stores all intermediate likelihood calculations for use in a sampling

step called reverse peeling. Unfortunately, the locus sampler can get stuck in low

probability states due to the creation of highly unlikely double recombinations

and, by virtue of this, mix poorly when using tightly linked markers.

Whole meiosis Gibbs sampler

The meiosis sampler [121] operates on a single meiosis indicator running through

all loci using a scheme based on the Lander-Green-Kruglyak algorithm. The

meiosis sampler alone may not produce an irreducible chain, but this is dependent

on the actual genotype data operated on (see Section 4.3.3). The meiosis sampler

mixes well with tightly linked markers, but suffers poor mixing in larger pedigrees

with missing data.

LM-sampler

The LM-sampler [121] is not a new sampler in itself, but a combination of both

the locus and meiosis samplers. The LM-sampler features an additional parame-

ter which states the probability with which each sampler is selected at each step

of the simulation. So long as the split between samplers is not more extreme than

1:4, it mixes well, leveraging the advantages of both samplers [126].

Multiple meiosis sampler

The multiple meiosis sampler [122] is a generalisation of the meiosis sampler,

41

updating several meioses at a time across all loci, to aid mixing. The sampler is

evaluated using the factored hidden Markov model (FHMM) algorithm described

by Fishelson and Geiger [30]. A major disadvantage of the multiple meiosis sam-

pler is that it is far more computationally intensive than the single meiosis equiv-

alent and can suffer poor mixing if none of the individuals of the selected meioses

are typed.

Haplotype sampler

The haplotype sampler [122] is a special case of the multiple meiosis sampler

that requires the user to state a priori an individual for which the pedigree can be

effectively split into two smaller pedigrees that are amenable to exact calculation.

The haplotype sampler is highly accurate, but not generally applicable to all pedi-

grees, for example, in an inbred pedigree there may not exist a single individual

that can split the pedigree into two components.

All of these samplers, with the exception of the Simwalk2 sampler, are available in

the Morgan software package [120] (derived from the Loki package [42]), which com-

prises a large collection of programs where each embodies one or a mix of the sampling

techniques detailed above. Despite this, Simwalk2 is the mainstay of geneticists work-

ing with large pedigrees. Simwalk2 is popular because it is both well established and

can handle arbitrary pedigrees.

3.5.2 Discussion

While MCMC allows us to tackle problems that are intractable to evaluate precisely

they have numerous disadvantages. Firstly, long convergence times mean simulations

can be slow. Given that we do not want the starting point of the simulation to directly

bias the outcome, the chain must be “burnt-in” for sufficient time. This amounts to

running the chain to forget the seed and is essentially wasted work. Secondly, the

sequential nature of MCMC tends to restrict it to serial execution. This is less of an

42

issue for applications where the likelihood function takes a bulk of the time and could be

written to be multithreaded. For linkage analysis it is more complicated as calculating

the likelihood of an individual descent graph takes very little time, instead it will be

necessary to parallelise the samplers themselves.

43

4 Statistical Methods For

Linkage Analysis

Essentially, all models are wrong, but some are useful.

George E. P. Box

Previously in chapter 3 we touched upon all the major methods to evaluate the like-

lihoods required for multipoint genetic linkage analysis that have been used to date.

In this chapter we will detail the samplers and algorithms necessary to stochastically

simulate inheritance in pedigrees that are too large and complex to be tackled by deter-

ministic, exact methods.

We start with a review of the concept of Markov chain Monte Carlo and proceed

by describing the descent graph structure used to specify inheritance. After describing

the two main block Gibbs samplers our work is based on, we finish by describing the

procedure used to obtain LOD scores conditional on marker phenotypes.

4.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method for randomly sampling a high dimen-

sional space for which the enumeration of all states is too costly and for which direct

sampling is otherwise difficult.

MCMC works by generating samples linked by a Markov chain. The Markov chain

is constructed such that the chain spends more time in the most important regions, so

44

that the samples approximate the target distribution, ⇡ (x). ⇡ (x) cannot be sampled

directly, but can be evaluated up to a normalising constant. Each step in the chain

is selected randomly from all of the potential next steps that could be made from the

current state, specified by some proposal mechanism, q (x0 | x). The sequence of steps

form a random walk through the state space. In order to simulate the target distribution,

not all proposed steps are taken. Given the current state in the Markov chain x and the

proposed next step x0, the acceptance probability, ↵ (x, x0) in the case of the Metropolis–

Hastings algorithm, is:

↵ (x, x0) = min

✓
1,

⇡ (x0) q (x | x0)

⇡ (x) q (x0 | x)

◆

The next step in the Markov chain is set to x0 with probability ↵ (x, x0) or else it

stays as x, resulting in a transition probability of:

p (x0 | x) = q (x0 | x)↵ (x, x0)

The proposal mechanism is crucial to MCMC working correctly. If the chain gets

stuck in one part of the state space (for example, because new proposals are always

rejected), then the chain is said to mix poorly. Poorly mixing chains produce biased

simulations as they do not sample the target distribution properly.

For any starting point, the chain will converge to the target distribution so long as it

is both irreducible and aperiodic. An irreducible chain is one where, for any state in the

Markov chain, there is a positive probability of visiting all other states. An aperiodic

chain is one that does not get trapped in cycles. A Markov chain will be both irreducible

and aperiodic if we ensure that the detailed balance condition is satisfied:

⇡ (x0) p (x | x0) = ⇡ (x) p (x0 | x)

As we cannot guarantee that the starting position of the Markov chain is from the target

distribution (if it was, it would imply that we can sample from it directly), we need to

45

burn-in the chain by discarding all samples for a sufficient time. MCMC can suffer

from long convergence times due to the amount of burn-in required for some problems.

Convergence times are greatly reduced by performing an initial optimisation step to

start the chain with a high likelihood initial state (we investigate several methods for

optimisation of the initial state in Section 4.5).

4.1.1 Gibbs Sampling

Gibbs sampling [34] is another method of MCMC and a special case of the Metropolis–

Hastings algorithm. The main difference comes from the insight that where exact algo-

rithms exist, we can use these to directly sample full conditional distributions. A full

conditional distribution of ⇡ (x) is obtained by keeping all components of x constant

except one, xi, and sampling as a function of xi alone. We will refer to all components

in x apart from xi as x�i The proposal distribution is defined as:

q (x0 | x, x�i) = ⇡ (x0 | x�i)

Substituting the proposal distribution above into the Metropolis–Hastings accep-

tance probability will always output a value of 1 and is therefore always accepted:

↵ (x, x0) = min

✓
1,

⇡ (x0 | x�i) q (x | x0, x�i)

⇡ (x | x�i) q (x0 | x, x�i)

◆

= min

✓
1,

⇡ (x0 | x�i) ⇡ (x | x�i)

⇡ (x | x�i) ⇡ (x0 | x�i)

◆

= 1

This does not contradict the statements made previously as the chain can still mix poorly

because the proposed sample, x0, may be equal to x, which would be analogous to a

rejection in the Metropolis–Hastings algorithm.

Before we can go into the details of the Gibbs samplers used throughout this thesis,

we must first describe the descent graph which will serve as the state defining each step

of the Markov chain.

46

4.2 Descent Graphs

Genetic descent graphs specify the paths by which founder alleles are inherited by each

member of a pedigree [111, 58]. Much of the early work on applying stochastic tech-

niques to linkage analysis [66, 67, 112] utilised genetic descent states, which are a

combination of a descent graph coupled with concrete assignments for each founder

allele (namely, not just how alleles are inherited, but what alleles are inherited as well).

Descent graphs are preferred over descent states as the state space is smaller and they

avoid some of the irreducibility problems associated with descent states [109].

Descent graphs specify gene flow information by means of meiosis indicators. Each

non-founder in a pedigree has a set of two meiosis indicators, one from each parent. The

maternal meiosis indicator, for example, will have a value of 0 or 1 to indicate that, at

this particular locus, genetic material was inherited from the maternal grandmother or

grandfather, respectively.

A descent graph is stored in memory as a binary vector where individuals’ meiosis

indicators are found in an arbitrary, but defined, order. For a more concrete example

see Figure 4.1a, which contains a simple three generation pedigree where only the last

generation is typed. There are six non-founders (individuals 4, 5, 7, 8, 9 and 10) each

of which have two inbound arrows in the more informative descent graph representa-

tion. Figure 4.1b represents which parental allele was inherited. Assuming the ordering

of individuals specified previously, this descent graph would correspond to the binary

vector [00 11 00 00 00 01]. By convention, the maternal meiosis indicator is

stated first, followed by the paternal meiosis indicator for each individual in turn.

So far we have only used a single locus as an example, but this generalises to all

loci typed in a pedigree. Suppose we have n individuals of whom f are founders, each

single locus descent graph contains 2(n � f) meiosis indicators and therefore in order

to specify all m markers a descent graph of size 2(n� f)m is required.

As we do not specify the actual assignment for founder alleles, we need to be able

to enumerate all possible founder allele assignments for a given descent graph and cal-

47

(a) Simple pedigree (b) Descent graph

Figure 4.1: Simple pedigree in (a) composed of three generations where only the last generation
is typed and (b) shows one possible descent graph with founder alleles labelled F1–F8. If the
values of all founder alleles were specified, then this would be an example of a descent state.

culate their likelihood. We will describe such an algorithm in Section 4.3.1.

For the remainder of this chapter, we will refer to the current descent graph at any

step of the Markov chain as S. A particular meiosis indicator, for example the ith

meiosis at the lth locus, will be specified as Si,l. The wild card “⇤” will be employed to

indicate all meioses at locus l as S⇤,l and a specific meiosis across all loci as Si,⇤.

4.3 Whole Meiosis Gibbs Sampler

First proposed by Thompson and Heath [121], the whole meiosis Gibbs sampler is

based on the Lander-Green algorithm [62]. Both use the forward-backward algorithm

to evaluate a hidden Markov model. Whilst the Lander-Green algorithm efficiently

enumerates all combinations of meiosis indicators at all loci, the exponential complex-

ity prevents scaling to large numbers of meiosis. The whole meiosis sampler instead

samples realisations of Si,⇤.

For the meiosis sampler, we keep all but the meiosis being sampled fixed and sample

that meiosis across all loci. We are aiming to compute:

P (Si,⇤ | {Sk,⇤, k 6= i},Y)

The forward component of the algorithm involves calculating the cumulative proba-

48

bility for the meiosis indicator Si,l given loci up to and including locus l. The first locus

does not depend on any previous loci:

Q1(Si,1) / P (Y1 | S⇤,1)

All proceeding loci are calculated with:

Ql(Si,l) / P (Yl | S⇤,l)P (Si,l | Si,l�1)

The probability of recombination, P (Si,l | Si,l�1), is defined as follows:

P (Si,l | Si,l�1) = (Ql�1(Si,l�1)(1� ✓l�1) +Ql�1(1� Si,l�1)✓l�1)

where ✓l is the recombination fraction between locus l and l + 1.

To understand how to calculate the likelihood of the genotype data given the descent

graph, P (Y | S), we must first understand about founder allele graphs as this proba-

bility can then be calculated by enumerating all legal combinations of founder alleles

given the current descent graph and marker phenotypes.

4.3.1 Founder Allele Graphs

To calculate P (Y | S) we must enumerate all possible assignments to each founder

allele at a given locus conditional on both marker data and the current descent graph.

Whilst we could literally enumerate all possibilities, a more efficient approach is to

bound the search by iteratively constructing a founder allele graph.

At each locus we can construct a founder allele graph that is independent of all

other loci, making the assumption of linkage equilibrium. A founder allele graph is

composed of two nodes per founder in a pedigree, one per allele. Nodes are connected

by undirected edges where the descent graph passes through a typed individual and that

edge is labelled with the individual’s genotype at that locus.

These edge labels are conditions that must be satisfied. For example, if the nodes for

49

Figure 4.2: Founder allele graph corresponding to Figures 4.1a and 4.1b. Founder allele nodes
F1 and F3 are connected by genotype edge AA, implying there is only one legal founder allele
assignment for that connected component: A = A and C = A.

founder alleles X and Y are connected by an edge labelled homozygously AA, then in

all enumerations of founder allele assignments, the founder alleles X and Y must both

be A. Founder allele graphs are not necessarily connected, but instead are composed of

one or more connected components. It can be seen from the edge constraints that each

component has either one or two legal founder allele assignments, based on whether

any of the edges are labelled with a homozygous genotype or not.

The founder allele graph for our previous example in Figures 4.1a and 4.1b is given

in Figure 4.2. Nodes F2, F5 and F6 are singletons, because those founder alleles did

not pass through any typed individuals based on the descent graph. There is only one

valid assignment for the component {F1, F3}, where both are A’s. The other component

{F4, F7, F8} has two possible assignments: (A,B,B) and (B,A,A).

Now that we have a set of components, C, for each of which we have defined one

or two allele assignments, a, we can finally calculate the likelihood P (Y | S) by:

P (Y | S) =
nY

i=1

P (Ci)

where

P (Ci) =
X

i

Y

j

P (ai,j)

and for any component composed of a single founder allele node, with no edges con-

necting it to other nodes or itself, then P (Ci) = 1.

50

4.3.2 Sampling

Once we have calculated the“forward” cumulative probability, the last term can be nor-

malised to get the distribution of Si,L given marker phenotypes and meiosis indicators

at all preceding loci. Si,L is sampled from:

QL(s) = P (Si,L = s | {Sk⇤, k 6= i},Y = Y (L))

All other meiosis indicators for Si,⇤ are sampled iteratively from the right-most lo-

cus L � 1 to locus 1. This forms the “backwards” phase of the forward-backward

algorithm. If we have already sampled meiosis indicators at loci j = l, . . . , L, then all

other meioses are sampled from:

P (Si,L = s | {Sk,⇤, k 6= i}, {Si,j, j = l, . . . , L},Y) =

Ql�1(s)P (Sl,i | Sl+1,i)

Ql�1(0)P (Sl,i = 0 | Sl�1,i) +Ql�1(1)P (Sl,i = 1 | Sl�1,i)

4.3.3 Irreducibility Issues

The whole meiosis sampler is known to mix well in cases where there are many tightly-

linked loci. Unfortunately, this comes at a price; dependent on the data, the whole

meiosis sampler alone is not guaranteed to produce an irreducible Markov chain.

The canonical example of this, credited to Lin and Speed [76], is given in Figure 4.3.

Neither child has any alleles in common, any valid descent graph requires more than

one meiosis indicator to be changed to get to another valid descent graph.

4.4 Whole Locus Gibbs Sampler

To ameliorate the shortcomings of the whole meiosis sampler, while retaining its ad-

vantages, it is common practice to combine it with another sampler that is guaranteed

to produce a valid Markov chain [121, 74]. Fortunately, the whole locus Gibbs sampler,

whilst known to mix slowly with tightly-linked markers, is guaranteed to be irreducible

51

Figure 4.3: Any valid descent graph describing this pedigree and marker data will require more
than one meiosis indicator to change in order to reach another valid descent graph, thus breaking
the irreducibility assumption.

given all recombination fractions are positive.

The locus sampler was envisioned by Kong [54], but first implemented by Heath

[42] to perform QTL mapping. In much the same way as the meiosis sampler is an

adaptation of the Lander-Green algorithm, the locus sampler owes much to the Elston-

Stewart algorithm and its various improvements. The locus sampler proceeds in a for-

ward phase, that we refer to as peeling to ascertain the likelihood of the pedigree and its

associated marker phenotype data and a backwards phase (reverse peeling), where we

sample from partial likelihoods to produce a realisation of S⇤,l.

4.4.1 Pedigree Peeling

The Elston-Stewart algorithm is a method to recursively collapse the likelihood calcu-

lations of a pedigree given marker phenotype data onto pivot individuals at the intersec-

tions of nuclear families. This procedure is termed peeling.

A pivot is a node that, when removed, splits a connected graph component into two

new components. In Figure 4.4, individual 3 is the pivot separating nuclear families A

and B. Given that all the pivot’s descendants can only inherit material from the pivot’s

ancestors via the pivot, it makes sense that all descendant trait probabilities need only

be described in terms of the transmission probabilities from the pivot.

Using this intuition, we consider a pedigree in terms of its constituent nuclear fam-

ilies and peel these away one at a time until we have exhausted the pedigree. Once

we know the sequence of nuclear families to be peeled, we consider each in turn by

52

B

A

Figure 4.4: A simple three generation family, split into nuclear families A and B. The pivot of
nuclear family A is individual 3.

applying different peeling operations on individuals within the family.

To peel a simple pedigree, like the example in Figure 4.4, we must define two op-

erations; PeelChild and PeelPartner. With these two operations we can process all

individuals in the order 6, 5, 4, 3, 2, 1. In the following examples we will refer to this

peeling sequence as P and the ith individual in the sequence as Pi.

Peeling children

The goal of PeelChild is to peel a child node given its marker phenotype and replace

it with a partial likelihood in terms of the parent genotypes. Analogous to the concept

of the pivot, both parents form the cut-set of the child. We will define the cut-set of

the pivot, p, as the set of unpeeled individuals that lie on the threshold of the peeled

subset of the pedigree after p itself has been peeled. With the pedigree in Figure 4.4, if

individual 6 has the genotype AB, we need to work out the likelihood of this given all

possible combinations of parental genotypes.

Note that the genotype AB is unphased, i.e. there is no information to describe

where either allele came from. When performing these likelihood calculations, it is

simpler to deal with phased genotypes. The unphased genotype AB can correspond to

either of the phased genotypes AB (A from the mother, B from the father) and BA

(vice-versa).

53

We need to calculate two probabilities: the penetrance probability, P (Yi | gi), and

the transmission probability, P (gi | gm, gp). The penetrance is a function of whether the

phased genotype gi is legal given the unphased genotype and therefore has the value 0.0

or 1.0. If individual 6 is typed with the unphased genotype AB, the penetrance function

is:

P (Yi | gi) =

0

BBBBBB@

P (Yi | AA)

P (Yi | AB)

P (Yi | BA)

P (Yi | BB)

1

CCCCCCA
P (AB | gi) =

0

BBBBBB@

0.0

1.0

1.0

0.0

1

CCCCCCA

For the transmission probability function, we need to calculate the probability of

inheriting each phased genotype from the parents. To do this, we enumerate all pos-

sibilities for the two parental genotypes and normalise the resulting matrix. It is not

important that some of these will clearly be negated by either parents’ actual genotypes

because we have not yet got to them in the peeling sequence. Hence:

P (gi | gm, gp) =

0

BBBBBB@

P (gi | AA,AA) P (gi | AB,AA) P (gi | BA,AA) P (gi | BB,AA)

P (gi | AA,AB) P (gi | AB,AB) P (gi | BA,AB) P (gi | BB,AB)

P (gi | AA,BA) P (gi | AB,BA) P (gi | BA,BA) P (gi | BB,BA)

P (gi | AA,BB) P (gi | AB,BB) P (gi | BA,BB) P (gi | BB,BB)

1

CCCCCCA

P (AB | gm, gp) =

0

BBBBBB@

0.0 0.0 0.0 0.0

0.125 0.0625 0.0625 0.0

0.125 0.0625 0.0625 0.0

0.25 0.125 0.125 0.0

1

CCCCCCA

This is trivial to compute because the transmission of each allele is independent. So

the probability P (gi | gm, gp) = P (gi
m

| gm)P (gi
p

| gp) (where gi
m

is the maternal

allele for the ith individual and gi
p

the paternal allele). The probability of transmitting

each allele can take the values 0.0, 0.5 or 1.0, if gi
x

is the same as zero, one or both of

the parental alleles, respectively.

54

We can now peel away the child by replacing it with a probability function in terms

of its parental genotypes:

PeelChild(Pi) =
X

g
i

P (Yi | gi)P (gi | gm, gp)PreviousOp(Pi�1)

PreviousOp is defined as whatever the previous operation was on the preceding

person in the peeling sequence, which will, by definition, be a function in terms of the

genotypes of Pi or, if they are independent, in the case of siblings, just sum together

with the current function. In the case where there was no previous operation, i.e.: if this

is the first person in the peeling sequence, then the probability is 1.

Peeling partners

Assuming we have already peeled both individuals 5 and 6 using the PeelChild opera-

tion, next we need to peel individual 4, the partner of the pivot to nuclear family A. The

cut-set of this operation will just be the pivot individual. The operation PeelPartner is

similar to PeelChild, but because founders lack any parents, instead of a transmission

probability, we need to use the founder probability, P (gi). The founder probability is

the probability that such a genotype would be found in the population as a whole, which

we know because it is specified by the markers minor allele frequency. Therefore, given

a minor allele frequency, fi, the founder probability is defined as:

P (gi) =

0

BBBBBB@

P (AA)

P (AB)

P (BA)

P (BB)

1

CCCCCCA
=

0

BBBBBB@

(1� fi)2

(1� fi)fi

fi(1� fi)

f2
i

1

CCCCCCA

Finally, we must include the results from our PeelChild operations indicated again as

PreviousOp.

PeelPartner(Pi) =
X

g
i

P (Yi | gi)P (gi)PreviousOp(Pi�1)

55

We can continue applying the PeelChild and PeelPartner operations iteratively

until we only have one individual left. The likelihood function that remains is P (gI |

Yl).

4.4.2 Peeling Conditional on Flanking Loci

So far, our peeling operations have only been dependent on the marker data at the cur-

rent locus. For the locus sampler, we want to sample meiosis indicators conditionally on

the flanking loci. In order to achieve this, we must replace the single locus transmission

probability, P (gc,l | gm,l, gp,l), with:

P (gc,l, Sc
m

,l�1, Sc
m

,l+1, Sc
p

,l�1, Sc
p

,l+1 | gm,l, gp,l) =

P (gc,l | gm,l)P (Sc
m

,l�1 | gc
m

,l, gm,l)P (Sc
m

,l+1 | gc
m

,l, gm,l)

P (gc,l | gp,l)P (Sc
p

,l�1 | gc
p

,l, gp,l)P (Sc
p

,l+1 | gc
p

,l, gp,l)

Note that we now indicate which locus every meiosis indicator and genotype comes

from with the subscript l, to remove ambiguity, whereas previously everything had been

at a single locus. The new transmission probability adds four terms, but as they are all

similar, we will only expand one. As before, ✓l is the recombination fraction between

loci l and l + 1:

P (Sc
m

,l�1 | gc
m

,l, gm,l) =

8
>>>><

>>>>:

✓
S
l�1,c

m

l�1 (1� ✓l�1)1�S
l�1,c

m if gc
m

,l = gm
m

,l 6= gm
p

,l

(1� ✓l�1)Sl�1,c
m✓

1�S
l�1,c

m

l�1 if gc
m

,l = gm
p

,l 6= gm
m

,l

1
2 if gc

m

,l = gm
m

,l = gm
p

,l

Otherwise, the peeling calculations are identical.

4.4.3 Sampling

The process of sampling in the whole locus sampler takes place in two discrete steps.

First, we backtrack through the pedigree in the reverse order sampling phased genotypes

conditioning on the genotypes already sampled in a process known as reverse peeling.

56

Second, we must convert these sampled phased genotypes into meiosis indicators to

update the descent graph.

Reverse Peeling

At the final individual in the peeling sequence, PI , we obtain P (gI , Sl�1, Sl+1, Yl), from

which phased genotypes for PI can be sampled by:

P (gI | Sl�1, Sl+1, Yl) =
P (gI , Sl�1, Sl+1, Yl)P

g
I,i

P (gI,i, Sl�1, Sl+1, Yl)

To sample from a partner (the equivalent of the PeelPartner operation) we sample

from:

P (gi | gi+1, Y1, . . . , Yi) / P (Ydes(i), Sdes(i),l�1, Sdes(i),l+1 | gi, gi+1)P (gi, Yi)

And for each child from:

P (gi, Sc
m

,l�1, Sc
m

,l+1, Sc
p

,l�1, Sc
p

,l+1 | gm, gp, Y1, . . . , Yi) /

P (Yi | gi)P (gi, Sc
m

,l�1, Sc
m

,l+1, Sc
p

,l�1, Sc
p

,l+1 | gm, gp)P (Ydes(i), Sdes(i),l�1, Sdes(i),l+1 | gi)

In the above formulae, we use the notation des(i) to indicate all the descendants of indi-

vidual i, though in reality these are just the ones that precede i in the peeling sequence.

As one backtracks through the peeling sequence, the current individual’s genotypes

will be defined by a partial likelihood function conditional on the genotypes of individ-

uals that had not been peeled yet. As we have sampled all of these genotypes during

the reverse peel, they now have definite values. Using what we have sampled up to this

point, the partial function will collapse to a function conditional only on the current

individual’s genotypes. At this point it is normalised and sampled.

The complete process of reverse peeling will obtain a realisation of phased geno-

types for all individuals at locus l. In order to be complete, however, we need to convert

these phased genotypes into a realisation of S⇤,l.

57

Sampling Meiosis Indicators

To convert phased genotypes into meiosis indicators, we need to consider whether each

meiosis is informative. An informative meiosis is one where the allele was inherited

from a heterozygous parent, as the genotype contains phase information it will dictate

whether the parent’s maternal or paternal allele was inherited.

If the parental genotype is homozygous, then it is uninformative and the meiosis

indicator must be sampled conditionally on meiosis indicators at flanking loci:

P (Sl,c
m

= 0 | Sl�1,c
m

, Sl+1,c
m

) / ✓
1�S

l�1,c
m

l�1 (1� ✓l�1)
S
l�1,c

m✓
1�S

l+1,c
m

l (1� ✓l)
S
l+1,c

m

Once all meiosis indicators have been set, we have a new realisation of S⇤,l.

4.4.4 Generalising to Arbitrary Pedigrees

So far, we have only described how the locus sampler works on simple pedigrees. In

order for peeling to be generally applicable, we need to describe two further extensions

to the peeling operations, i.e. how to peel parents down to a child pivot and how to

handle inbred pedigrees. Neither of these will affect the basic methodology of reverse

peeling and sampling.

Peeling parents

It can be seen that if we limit ourselves to just the PeelChild and PeelPartner oper-

ations, we will be unable to process an arbitrary outbred pedigree. For example, if the

parents of individual 4 in Figure 4.4 were specified, then PeelPartner would not be

appropriate as it does not take into account the transmission probability of genotypes

between individual 4 and her parents. To enable peeling of arbitrary outbred pedigrees,

we need to define the operation PeelParent.

PeelParent is essentially identical to PeelPartner, however, it includes the trans-

mission probability for the child pivot it is peeling down to. This makes intuitive sense

if you think that the peeling of individuals from a pedigree is like removing them from

58

it entirely. If the parents were removed, then we would not apply the transmission

probabilities for the child because it would be a founder.

PeelParent(Pi) =
X

g
i

P (Yi | gi)P (gi)P (gc | gi, gj)

Note that the transmission probability is conditional on the genotypes of the indi-

vidual being peeled (gi) and their spouse (gj). The spouse is peeled next using the

PartnerPeel operation as usual.

PreviousOp has not been mentioned. This is because the inclusion of downwards

peeling has created a problem. Not only can PreviousOp be from the ancestors or the

descendants of the individual being peeled, but we can create peeling sequences where

there are two previous operations, one from below and one from above. Peeling be-

comes even more complicated if we want to peel arbitrary graphs like inbred pedigrees.

This is because in a graph containing a cycle, the definition of what nodes are above

and below is not clearly defined.

Inbred pedigrees

In a simple outbred pedigree, we can clearly define all of a pivot’s ancestors (nodes

above it in the graph) and all descendants (nodes below it in the graph) as two distinct

sets. In the case of an inbred pedigree, the likelihood will be affected by multiple gene

flows down the pedigree, implying that we need to peel off individuals conditional on

members of the pedigree outside of their immediate family.

In Figure 4.5, if individual 9 has already been peeled as usual with PeelChild, who

is next in the peeling sequence? If we peel individuals 7 or 8 using another PeelChild

in the usual manner, then we will not include the gene flow from the other side of the

pedigree. We could peel individual 8, for example, but the cut-set of the operation would

be {5, 6, 7}, not just {5, 6} as would normally be the case. The addition of individual

7 to the cut-set will not actually affect the mechanism of PeelChild in any way, but it

will add a dimension to the probability function. When we later peel individual 7, we

59

Figure 4.5: An inbred pedigree showing a first-cousin marriage.

have already begun calculating the likelihood of its genotypes in terms of the other side

of the family and this will be accessed in the usual way through PreviousOp. When

the peeling sequence reaches the other side of the inbreeding loop, the extra dimensions

will cancel themselves out and we will have taken into account all possible gene flows.

In the case of an outbred pedigree, peeling off one nuclear family at a time is guar-

anteed to produce an optimal peeling sequence, in the sense that the dimensionality of

each probability function is minimised. In the case of an inbred pedigree, this is not

the case and we need to perform an optimisation procedure to select the best peeling

sequence to minimise the amount of work we have to do. The amount of work we have

to do is directly proportional to the size of the cut-sets during peeling operations.

We will delay describing methods for finding suitable peeling sequences until Sec-

tion 6.4. A complete rundown of the many algorithms to do this can be found in the

review by Thomas [119].

4.5 Starting States

The basic operation of a Markov chain requires that the previous state have been a legal

descent graph. Given that, it is necessary to provide a bootstrapping mechanism to

provide an initial configuration from which we can take our first step in the chain. In

addition to this, we should state that the starting point of the chain can be crucial to the

convergence time. Were we to start the chain with a low probability state, it will take

60

a long time to reach equilibrium, so we want to start with a higher probability state.

However, as we do not know anything a priori about the shape of the state space, we

might benefit from a lower probability starting state in, for example, a situation where

there are local maximum that are hard for the Markov chain to escape. This will not

improve performance, but it will at least inform us of the existence of poor mixing.

4.5.1 Single Locus Sampling

We can use the existing whole locus Gibbs sampler to generate realisations of the de-

scent graph at each locus conditional on marker phenotypes at that locus alone and

ignore the flanking markers. This will not produce the best starting state, but it will pro-

vide a suitably random one if we want to explore other parts of the space starting from

points of lower probability. We will use this as a primitive to perform a more advanced

technique called sequential imputation.

4.5.2 Sequential Imputation

In sequential imputation, we randomly select a locus, l, and run the single locus sam-

pling algorithm described above. We then iteratively work from locus l + 1 to locus

L using the regular locus sampler, but we sample with respect to the flanking locus on

the left only. Next, we work from locus l � 1 to locus 1 sampling with respect to the

flanking locus on the right only.

This will provide us with a valid descent graph to use as a starting state, however

we might have been unlucky and not produced the best we could have obtained. So, we

run the entire process n times (for some suitable value of n) and select the state with

the highest probability as the starting state of the Markov chain.

4.6 LOD scores

To generate LOD scores, we take the samples generated by the Markov chain and calcu-

late the likelihood of a disease trait at positions of interest along the chromosome. The

61

disease trait is a marker like any other, the difference being that whereas we know the

locations of SNPs, we are using likelihood calculations to estimate where the disease

trait is located. This likelihood is calculated using the standard peeling algorithm we

described in Section 4.4.1.

4.6.1 Sobel-Lange Estimator

Previously, we have used Y to denote the marker phenotypes, which up to now have

only consisted of the genotypes of typed individuals. A pedigree also defines which in-

dividuals are affected, unaffected and of unknown affection. We will label the affection

status of an individual as the trait phenotype YT in contrast to marker phenotypes, now

YM .

The Sobel-Lange estimator [67] calculates the LOD score at the current position

being considered, over the set of all sampled descent graphs Ŝ. It is calculated as

follows:

P (YT | YM) =
X

Ŝ

P (YT | Ŝ)P (Ŝ | YM) / 1

n

nX

i=1

P (YT | Ŝi)

The final LOD score at a given location is calculated by standardising and taken to

log10 as convention dictates:

LOD = log10

✓
P (YT | YM)

P (YT)

◆

where P (YT) is the likelihood of the trait ignoring the neighbouring loci in the descent

graph.

4.7 Summary

In this chapter, we described the necessary background to all the statistical techniques

employed at different stages of this thesis.

We began by describing descent graphs, an abstract representation of gene flow

62

through a pedigree and two methods to simulate this flow via a Markov chain. We de-

scribed the operation of the whole meiosis Gibbs sampler that samples a single meiosis

across all loci in a chromosome creating a realisation of Si,⇤ and the whole locus Gibbs

sampler that uses pedigree peeling at a single locus to produce a realisation of S⇤,l. We

closed by describing procedures similar to the whole locus sampler that can be used

to generate legal starting configurations for the Markov chain as well as produce LOD

scores at arbitrary locations.

The details about the relative performance of each sampler was touched upon; the

meiosis sampler mixes well with tightly linked markers, but suffers from potential irre-

ducibility issues, whereas the locus sampler mixes slowly, but guarantees irreducibility.

This issue will be investigated in more detail in the next chapters related to the imple-

mentation and evaluation of these samplers and their parallel counterparts.

63

5 Parallel Sampler Design

The way the processor industry is going, is to add more and more cores, but nobody

knows how to program those things. I mean, two, yeah; four, not really; eight, forget it.

Steve Jobs

In this chapter, we want to outline the design of SwiftLink and how our parallel

Gibbs samplers for genetic linkage analysis will work. First, we need to look at the

hardware and software techniques available to us and specifically take a closer look at

how massively parallel graphics card architectures will influence our work. We con-

clude by looking at the main system components (locus sampler, meiosis sampler and

LOD score code) in turn and sketch how parallel versions of each will function.

5.1 Computing Hardware

In search of ever increasing speed, computer processor manufacturers have turned to

ideas from parallel processing and distributed systems research. This move has forced

a paradigm shift in how software is designed and implemented. We will briefly outline

why exploiting parallelism has become a necessity.

5.1.1 Multicore Processors

Despite the exponential increase in processor speeds between 1965 (when Gordon

Moore predicted a doubling of transistor count every two years) and 2005 [117], single

64

core processors have been replaced by multicore processors. This was due to a large

number of factors, not least of which being physical limits, such as heat dissipation, and

the complexity of current single core processors.

Multicore processors feature multiple independent processors fabricated into a sin-

gle integrated chip. Each core will have its own level 1 (L1) cache, but will generally

share a common L2 or L3 cache with other cores in the same processor. Unlike previous

advances in single core processors, such as improved instruction-level parallelism or

branch prediction, existing programs are not immediately capable of taking advantage

of the extra processing power. In this way multiple processor cores are not transparent

to the programmer because they must be taken advantage of explicitly. Whilst this may

have been unfamiliar ground for programmers, hardware manufacturers had been us-

ing parallel hardware for non-general purpose processing for years. The main example

being hardware accelerated computer graphics.

5.1.2 Graphics Cards

Computer graphics co-processors have existed since the beginning of the personal com-

puting era. Graphics cards usually come in the form of a separate daughter board com-

prising discrete processing capabilities and memory dedicated to the task of accelerating

both 2D and 3D transformations. Increasingly, they are found in integrated settings as

well, on motherboards and CPUs. Throughout, we will use the terms graphics card and

GPU (graphics processing unit) interchangeably, to mean a piece of hardware, the main

purpose of which, is to perform graphics related functions. Strictly speaking, however,

a GPU is to a graphics card, what a CPU is to a computer.

Graphics cards came to prominence in the mid-1990s as real-time 3D graphics be-

came a major selling point of consumer PC hardware. One of the first true 3D games,

Quake by ID software [46], is widely credited as being instrumental in their adoption

[71, 127]. Whilst no software could rely on every PC having 3D graphics accelera-

tion until the early 2000s, standards emerged to ease their use for developers. These

included SGI’s (now Khronos group’s) OpenGL [98] and Microsoft’s DirectX [85].

65

A graphics card will be faster than performing the same operation on a standard

CPU because computer graphics operations are relatively trivial to parallelise and GPUs

are massively parallel. GPUs would originally implement these operations directly in

hardware, but increasing demands saw the introduction of programmable shaders to

both OpenGL and DirectX in the early 2000s. Shaders are small programs which per-

form additional processing to textures and geometry, e.g. adding motion blur in a post-

processing stage to a racing game. As these capabilities became more complex with the

addition of floating point arithmetic and control flow structures, GPUs began to con-

verge with more general purpose CPU architectures. How GPUs are programmed has

recently become standardised by several groups in the form of Nvidia’s CUDA (Com-

pute Unified Device Architecture) [94], Khronos group’s OpenCL [97] and Microsoft’s

DirectCompute [86]. A graphics card that can perform arbitrary computation is called a

GPGPU (general purpose graphics processing unit).

5.1.3 Manycore Processors

The current trend of increasing numbers of CPU cores will continue with the push to

more heterogeneous architectures, CPU/GPGPU combinations and different cores on

a single chip like the IBM Cell architecture [45]. Whilst GPGPU programming might

be temporary, it will probably be due to a convergence of the two architectures, i.e.

multicore leading to manycore. In this sense we want to use current GPGPU hardware

to start to address the kinds of scaling concerns that will exist in a world of hundreds of

general purpose CPU cores.

5.2 Parallel Programming

Parallel processing on general purpose CPUs is a broad topic, so we will limit ourselves

to a discussion of the most common methods in use today. In addition, we will limit

ourselves to those aspects that require explicit utilisation by the programmer.

66

5.2.1 Task Parallelism

Task parallelism is a coarse-grained parallelism where different blocks of computation

are independent and thus can be carried out simultaneously on the same or different

computers, with or without cooperation. We will focus on the main methods of task

parallelism commonly used.

Processes

The unit of execution at the level of the operating system (OS) is the process. A process

is an instantiation of a running program in memory. By default it executes instructions

sequentially in a single thread of execution and is sandboxed from other processes by

running in its own virtual address space. In the case where the programmer wants to

perform multiple actions at the same time, another process can be forked and they can be

programmed to cooperate on the same task. Unfortunately, this is not very convenient

as the virtual address space of one process is inaccessible to the other process 1 and it

is cumbersome to manually craft messages to be sent between processes, for example,

via pipes or sockets. Instead, we can spawn a new thread within the same process and

have both threads working cooperatively with access to the same address space.

Threads

Threads do not need to communicate explicitly to work cooperatively, but can do so

implicitly by interacting with shared data structures in memory. This works well in the

read-only case, but otherwise may lead to lost or corrupt data as a result of conflicting

writes. This problem is overcome by ensuring data structures are thread-safe by forc-

ing threads to contend for access. There are numerous ways to force contention among

threads: locks, mutexes, semaphores, signals, monitors, etc. All these methods are in

general quite hard to get right and incorrect use will often lead to problems such as

race conditions (where a program bug is intermittent because it only appears in certain
1Obviously, there are even ways around this limitation through shared memory, but we will ignore

these details to simplify the discussion.

67

timing scenarios) and deadlocks (lock dependencies resulting in threads unintentionally

preventing one another from running). The complexity of proper thread-based program-

ming has lead many to the conclusion that it is simply the wrong model of concurrency

to pursue [73].

Message Passing

Message passing avoids the problems associated with multithreaded applications by

forcing communication via objects called messages that are delivered to recipients via

queues. The recipient drains these messages asynchronously decoupling the communi-

cation mechanism between sender and recipient.

In the multi-process example described earlier, we mentioned using a socket to pass

packets of data between processes. One advantage of this approach is that the socket

can be identified by another process on another host on the network. In this distributed

case, threads are unsuitable as each process does not even exist in the same physical

address space. MPI (Message Passing Interface) [37] is a library that implements this

concept and simplifies inter-host communication specifically for this purpose. MPI is

found on most computer clusters. In MPI, the messages are encoded in network packets

and the senders and recipients of these messages are processes that can sit on different

computers in a cluster.

Message passing generalises to arbitrary software entities running on the same or

different computers. The Actor model of concurrency, implemented by the Scala [107]

and Erlang [28] programming languages, treat software systems as inherently concur-

rent entities that communicate with one another via message passing. Instead of mes-

sages being passed between physical hosts, they are passed between virtual entities on

the same computer.

5.2.2 Data Parallelism

When algorithms require the same calculations to be performed on multiple inputs these

are examples of data parallelism, which by their very nature are more fine-grained than

68

the units of work found in task parallelism.

SIMD

Processors that support SIMD (single instruction, multiple data) can take a single in-

struction, for example, the addition of a constant to the data at a memory location, and

apply it to multiple data elements that are specified contiguously in memory. Code

employing SIMD is said to be vectorised. Whilst many vector architectures have ex-

isted over the years, the most commonly used ones are Intel MMX [48], which was

superseded by the current SSE instructions in the x86 architecture, and the AltiVec [25]

instructions in IBM’s PowerPC architecture.

SIMD instructions can deliver an enormous boost to performance for applications

that can be vectorised, the “killer-application” being multimedia. Unfortunately, not all

code can be vectorised and its application requires quite arcane knowledge of assembler-

level instructions. Several compilers, including recent versions of GCC, have begun to

support auto-vectorisation of code [6], but the resulting binaries are unlikely to achieve

the gains of hand-coding.

SIMT

SIMT (single instruction, multiple threads) is a term coined by Nvidia to describe

CUDA. CUDA is similar to an SIMD architecture, in that each instruction is run on mul-

tiple data items held in contiguous memory, and a multithreading architecture, where

everything can be written in a high-level programming language. Whereas SIMD in-

structions can often be added at a later date or be optional extras selected at compile-

time, applications for GPGPU tend to require complete rewrites of entire modules in

order to express the problem in terms of the CUDA programming model.

5.3 Graphics Card Programming

We will explore both the GPGPU hardware architecture and how this maps to program-

ming abstractions defined by the CUDA specification to promote high performance.

69

CUDA was chosen as it is said to have a shallower learning curve compared to OpenCL,

however, OpenCL operates in much the same way as CUDA.

5.3.1 Architecture

The GPU architecture has many similarities with a modern CPU but there are some

important differences. Figure 5.1 shows single core CPU and GPU architectures in

diagrammatic form. Both have access to a large quantity of RAM, often of the same

order of magnitude. Whereas the CPU dedicates most chip space to different layers of

cache in order to perform more intelligent sequential execution and opportunistically

avoid the longer round-trip times to RAM, the GPU is specialised towards compute

intensive processing. The outcome of specialisation is not only more space devoted to

ALU (arithmetic logic unit), but less control and cache.

Figure 5.1: Diagrammatic representation of single core CPU architecture and GPU. Whereas
CPUs have layers of cache and optimised execution, GPUs favour increased compute capacity.
(image credit: Nvidia [20])

Each GPU features numerous multiprocessors (shown as rows in Figure 5.1), where

each multiprocessor has many CUDA cores. A CUDA core is different from a CPU

core as it does not have a dedicated fetch-decode unit to process incoming instructions,

instead, each multiprocessor has a single fetch-decode unit forcing all CUDA cores to

operate in lockstep on the same instruction in parallel. To facilitate programming such

a large hierarchy of compute resources, CUDA defines its own programming model.

This is different from just providing a library of functions to be used from the CPU,

but dictates a strict manner to structure code. The programming model maps down

precisely with the hardware and presents opportunities for scaling beyond the device

tested on.

70

5.3.2 Programming Model

CUDA is programmed in CUDA C, an extension of the C programming language,

which has recently started to support much of the C++ syntax [93]. CUDA C adds a

number of keywords that are used by applications programmers to explicitly use the

features of the underlying hardware.

A piece of code that runs on a GPU is called a kernel. Kernels are analogous to

C functions, but, whereas the invocation of a C function will operate on its parameters

within a single thread of execution, a CUDA kernel will implicitly create many light-

weight threads, the number and dimensionality of which is explicitly controlled by the

programmer. The presence of a host PC is central to the CUDA model of execution.

This host / device split permits a far more rigid programming model on the GPU than

would otherwise have been possible as we will see in the following sub-sections.

CUDA kernels are called synchronously (by default) from the host PC. In order for

any non-trivial kernel to function properly, memory must be dynamically allocated in

device memory from the host and any data copied from host to device memory. In

order to retrieve the results from any computation, a similar copy must be performed

from device to host memory (see Figure 5.2 for an overview). These copies must be

limited as much as possible as they are comparatively very slow operations.

Hierarchy of Thread Groups

The CUDA execution model is based on a hierarchy of thread groups. Each thread

belongs to a block and each block is the member of a grid. Sub-problems are mapped

to blocks in a task parallel fashion. Each block contains a set of threads to complete

the data parallel actions necessary to complete that sub-problem. Each thread is similar

to a CPU thread, however, they are expected to work in lock-step executing the same

instructions on different variables. Whilst thread execution paths can diverge, for ex-

ample, due to an if statement, this will slow down execution substantially as all threads

that do not take that path will stall.

71

Figure 5.2: Flow of execution between host PC and CUDA device (image credit: WikiMedia
Commons [21])

How different blocks and threads map to different elements of problems is left up

to the programmer, who is provided with two predefined variables by the CUDA envi-

ronment: blockIdx and threadIdx, that are used as offsets to index data being worked

on. Each block is run by the CUDA scheduler on a separate multiprocessor to permit

threads within the same block to communicate, which they do through shared memory.

Each thread is run by a single CUDA core in the multiprocessor assigned to that partic-

ular block. Grids describe the set of blocks that are working on similar sub-problems

and are only important if the GPU is executing multiple kernels concurrently.

Shared Memory

Threads within the same block can communicate with one another through the use of

shared memory. Shared memory is a software-defined cache where the programmer

decides what is held for quick retrieval. Access times for shared memory are much

lower than the graphics card’s main memory.

Acknowledging the complexity in multithreaded code on CPUs (see section 5.2.1),

CUDA does not have any locking mechanisms to prevent contention for shared re-

sources. Instead, it is expected that memory accesses be carefully designed around

using a different thread per memory offset so that no two threads are accessing the

72

same data. The one concurrency primitive that is provided is barrier synchronisation.

Barrier Synchronisation

As the programmer defines the number of threads to be run for each block, the hardware

must define a smaller quantum of threads that it will actually run in parallel. This

quantum is called a warp and all CUDA-enabled GPUs define it as a constant of 32

threads. This is important because the hardware will only run each warp of 32 threads in

lock-step, not all those in a block. That means that different warps require an additional

mechanism to synchronise their execution paths within the same block to permit the

serialisation of different phases of parallel events. CUDA provides a primitive called

barrier synchronisation which operates by forcing all threads within the same block to

halt execution until all threads have reached this point. A barrier is defined using a call

to the function syncthreads.

5.3.3 Compute Capability

To ensure backwards compatibility and provide a simple way to target a complete gen-

eration of CUDA GPUs, each graphics card will support a clearly defined sub-set of

features. This is referred to as the device’s compute capability and each CUDA program

must state clearly which version compute capability it has been written for. Therefore,

if a graphics card has compute capability n, it cannot run software that assumes com-

pute capability n+1. For a complete list of all CUDA compute capabilities to date, the

reader is referred to the extensive list in appendix F of the Nvidia CUDA programming

guide [93].

5.4 Approach

The goal of this thesis is to appropriately map the algorithmic elements of the different

Gibbs samplers detailed in the previous chapter with the hardware and software plat-

forms described. The key challenge will be balancing the level of hardware utilisation

73

while trying to retain the same level of accuracy as a single-threaded implementation.

Our basic approach for designing a parallel implementation of an existing sampler is to

try to retain the serial ordering of events as much as possible. We should only break

this rule if there is no other choice or it permits a far higher degree of parallelism and

we are able to show it does not impact the accuracy of the result.

The two main platforms we will be considering are multicore CPUs and current

generation GPGPUs. Any software focused on multicore CPUs should be capable of

being parallelised to the same number of threads as there are cores, or, in the case of

Intel CPUs, twice the number of cores if hyperthreading is enabled. GPUs require us to

identify substantial data parallelism as well as task parallelism in order to be effective.

The selection of hardware was essentially based on what is commonly available in an

average PC but is currently underutilised. We feel that these choices are sensible with

a view to the future as we will likely be using similar, though increasingly parallel,

hardware for many years to come. We will state where different ideas are intended for

multicore CPUs or GPUs. Here, we only state aspects of coarse-grain task and fine-

grained data parallelism that can be exploited to accelerate each individual sampler.

We do not investigate any parallelism schemes related to the Markov chain mechanism

itself, such as, parallel tempering or other multiple chain schemes that would parallelise

trivially.

Parallel tempering [118] is a method of MCMC that runs multiple Markov chains at

different temperatures. The temperature of the chain affects the acceptance probability,

i.e. the higher the temperature, the greater the acceptance probability. Pairs of chains are

coupled by performing a separate metropolis update on whether they should exchange

states. Parallel tempering increases the level of exploration as the “hotter” chains can

sample more randomly and pass on higher likelihood states to the “colder” chains. For

more details see the review article by Earl and Deem [22]. A parallel implementation

of parallel tempering could use a single thread per Markov chain. These threads would

only need to communicate to exchange states from their chains.

74

5.4.1 Libraries

For multicore CPU, we will use threads as they remain the dominant model for par-

allel processing under UNIX. For many applications, threads map directly to specific

tasks, for example, a video game may have a rendering thread, an A.I. thread and a

networking thread. This could be achieved using, for example, the pthreads library,

however, for scientific computing there is a simpler alternative in the form of OpenMP.

OpenMP works by the programmer annotating different parts of the program’s control

flow with compiler directives telling the compiler what work needs to be farmed off to

worker threads in a thread pool. This permits the same code to be used for single and

multithreaded CPU implementations as calls to the OpenMP library can set the number

of threads in the thread pool dynamically. OpenMP has been supported natively in the

GNU compiler collection (GCC) since version 4.2, so is widely available.

For random number generation on the CPU we use the GNU scientific library and

its implementation of the Mersenne Twister [81] algorithm, which is a popular random

number generator for Monte Carlo simulations and has nice C++ bindings. For GPGPU

programming, we use CUDA 4.0. For parallel random number generation, we use the

built-in cuRAND library provided by Nvidia.

5.4.2 Input files and parameters

To be backwards compatible with other linkage analysis software and data formatting

utilities, we will support the “linkage”-style input files. A user will be required to

supply a pedigree file, a map file and a data file containing the necessary input data for

the project (for further details see appendix A.1.4).

The main interface will be command-line based and the user will be required to

specify all the necessary parameters to run the Markov chain including: the number

of iterations to be discarded as burn-in, the number of iterations of simulation, how

frequently samples from the chain are to be scored, the probability of running the locus

sampler, how many threads should be spawned and whether the GPU should be used

75

at all (see appendix A.1.2 for a complete list). We give some insight into how these

parameters should be set in chapter 7, however it should be noted that, for any given

project, the optimal settings will be data dependent.

5.4.3 LOD scores

LOD score calculations offer extensive opportunities for both task and data parallelism.

With regard to task parallelism, all LOD score calculations are independent as the cal-

culation of P (YT | Ŝ) is dependent only on the descent graph, S, which is fixed. There-

fore, if we have m markers and want to calculate a LOD score at t equidistant points

between each marker, then calculating the LOD scores for a single descent graph can

be parallelised in t(m� 1) ways. This will be more than sufficient to saturate multicore

CPUs for years to come.

Data parallelism is trickier but possible if we parallelise each individual peel oper-

ation. Each peel operation involves the construction of an n dimensional matrix, where

n is the length of the cut-set for that peel operation (see Section 4.4.1 for more details).

For example, peeling a child up to two parents would have a cut-set of size 2 (both

parents) and involve 16 independent likelihood calculations. The real benefit of this

scheme will come from highly inbred pedigrees as these would require larger cut-sets

at multiple points in the peeling sequence.

One question is how to actually apply this to the GPU. Should peeling the entire

pedigree be a CUDA kernel? Perhaps not, as the number of threads required is not

constant throughout the peeling sequence. In that case, should we have a kernel per

peeling operation to ensure the number of threads is the same as the size of the matrix?

It is unclear what exactly the granularity of sub-problem assigned to each CUDA block

should be; this might result in a high degree of overhead as the host would need to make

several kernel calls per LOD score. These issues will be investigated empirically in the

next chapter related to implementation.

76

5.4.4 Locus Sampler

The locus sampler can utilise exactly the same technique for data parallelism that we

described for LOD scores. It will be additionally followed by a sequential phase per-

forming the sampling of phased genotypes and meiosis indicators.

Task parallelism has to be handled differently. Each task in question will still be the

peeling of the whole locus, but now they are no longer independent. The locus sampler

creates a realisation of S⇤,l by conditioning on marker phenotypes at locus l and meiosis

indicators at flanking loci. Therefore, when the sampler is run at locus l, the meiosis

indicators at loci l�1 and l+1 must remain fixed. At the extreme, this suggests we could

run the locus sampler in two batches: first all the even numbered loci and then all the

odd numbered loci. Unfortunately, the single-threaded locus sampler performs a scan

across all loci, not in sequential order, but in a pseudo-random order. Thus, we should

try to retain this process as much as possible as it will limit any second order effects

from the ordering of variable updates. With this in mind, we will define a window size

of w loci and permute a list of offsets into this window. For example, if the window size

was 3 and we permuted the list of offsets from (0, 1, 2) to (1, 2, 0), then we would run

three batches of the locus sampler, each batch being loci {i, w + i, 2w + i, 3w + i, . . . },

where i is the current offset. The effect of the value of w will be investigated in the next

chapter.

5.4.5 Meiosis Sampler

For the meiosis sampler, we cannot run multiple instances concurrently as we can with

the locus sampler because the sampled realisations of Si,⇤ will interfere with one an-

other’s calculations of P (Y | S). However, all calculations of P (Y | S) are inde-

pendent of one another under the assumption of linkage equilibrium, so can be run in

parallel. For the forward-backwards algorithm, we have no choice but to run it single-

threaded, but at least it is of limited complexity if P (Y | S) has already been calculated.

The meiosis sampler will be problematic to implement for the GPU. Firstly, there

77

is no real data parallelism, only the task parallelism we have identified so far. Even if

there was, there is large thread divergence as with many graph-based algorithms. What

we will do instead is take the approach mentioned in [43], which involves using one

warp of threads per locus forcing the GPU to behave like a multicore CPU.

We will investigate how well the forward-backward algorithm will perform on the

GPU. If it does not perform very well we might investigate a window approach similar

to the one used for the locus sampler, i.e. only sampling based on a shorter window of

loci.

5.5 Summary

The goal of this chapter was to investigate the design possibilities open to us to imple-

ment parallel Gibbs samplers for linkage analysis. We began by describing the different

hardware we have available to us and highlighted that current GPGPU architectures re-

semble how CPU processors might look in the future as they trend towards manycore

architectures. We then summarised the main parallel programming techniques available

to us on any UNIX-like operating system and discussed both coarse-grained task par-

allelism and fine-grained data parallelism. CUDA programming was looked at in some

detail as it differs in small, but significant ways from CPU programming that will not

only influence design, but necessitate a complete rewrite of even code intended for a

multicore processor. We then finished by outlining the design for our parallel samplers

and LOD scoring code based on properties of the analysis and observations of the plat-

forms we intend to target. In the next chapter, we will detail the complete system and

justify the values for any undefined parameters that might be necessary for parallelism.

78

6 Software Implementation

It is sort of depressing when it becomes clear that it is more

effective to do crappy parallel work than good sequential work.

John Carmack

In the previous chapter, we outlined the designs for parallel versions of both locus

and meiosis samplers as well as LOD scoring code. In addition, we highlighted specific

questions that would need to be investigated in order to create both multicore CPU and

the manycore GPU linkage analysis software. In this chapter, we will present a series

of benchmarks informing us as to the design decisions required for different hardware

platforms. We start by introducing these platforms and the datasets used for testing and

proceed to systematically look at all of the aspects involved in adapting these algorithms

to parallel hardware. By the end of the chapter, we will have a comprehensive overview

of how the software implementation of SwiftLink performs, how the platforms differ

reflected in our benchmark results and an understanding of both platforms’ and imple-

mentations’ relative merits.

6.1 Test Hardware

All of the benchmarks reported in this chapter were performed on the same computer

running Ubuntu “Lucid” 10.04.4 LTS edition with Linux kernel 2.6.32-39 for 64-bit.

The computer has an AMD Phenom II CPU with four processor cores, each clocked at

3.2 GHz and 4GB of RAM clocked at 1600 MHz. The main graphics card we used for

79

Property Nvidia
GTX 580

GPU
Multiprocessors (MP) 16
CUDA cores 512 (32/MP)
Clock rate (MHz) 795
Memory
Memory (MB) 1536
Type GDDR5
Clock rate (MHz) 2004
Bandwidth (GB/s) 192.4
Bus Width (bits) 384

Table 6.1: Table showing graphics card specification. Note that these values differ from the
Nvidia reference build as it was an “overclocked” edition.

testing is an Nvidia GTX 580, manufactured by Gigabyte. Table 6.1 states all relevant

specifications.

6.2 Test Pedigrees

Throughout this chapter, we used two main pedigrees to test and tune different param-

eters. These will be referred to as the EAST syndrome and benign chorea pedigrees,

which are described fully in chapter 7. In this chapter we will only use a subset of the

data available for these pedigrees, namely, just chromosome 1. Both are large, multi-

ply inbred pedigrees, typed with SNPs. The EAST syndrome pedigree (Figure 6.1a)

is 26-bits, featuring 28 individuals of which 6 are typed. The benign chorea pedigree

(Figure 6.1b) is 52-bits, featuring 51 individuals of which 19 are typed. These pedi-

grees are a true test of both the speedups and mixing of the software tested and are

representative of the kind of pedigree SwiftLink was designed to handle, namely large

consanguineous pedigrees.

6.3 Benchmarking Methods

Before we start analysing different aspects of our implementation, we need to explain

some of the details regarding how these measurements were made.

80

(a) EAST syndrome

(b) Benign chorea

Figure 6.1: Inbred 26-bit pedigree, EAST syndrome, in sub-figure (a) from Bockenhauer et al.
[8] and highly inbred 52-bit pedigree, benign chorea, in sub-figure (b), from Poveda et al. [102].

6.3.1 Timing

Timing measurements that are short, for example, in the millisecond range, are tricky to

make accurately on a regular CPU. The ISO C99 standard states there is no guarantee

of making an accurate measurement to any timing resolution (section 7.23.1 paragraph

4), which means that any method we use will be unportable. Fortunately, the x86 archi-

tecture provides such a method, as does the CUDA API.

81

CPU Timing with RDTSC

On the x86 architecture, the RDTSC instruction allows us to read the value of the time

stamp counter (TSC) used by the processor. On old single core CPUs, this was the

most accurate timing measure available. Multicore processors are more complicated as

each core has its own TSC and are not guaranteed to be in sync with one another. If a

process were migrated from one processor core to another between two readings being

taken, then the timing measurement may be inaccurate. Further complications come

from processors being capable of dynamically scaling their frequency and suspending

execution altogether, so precisely what one tick of the TSC means can change between

readings. To get around these problems we use two techniques. We use the POSIX

standard function clock gettime requesting the CLOCK MONOTONIC clock. The

only aspect it does not correct for is the effect of NTP 1 adjustments which we eliminate

by turning NTP off.

Secondly, we implemented a special benchmarking mode that repeats the action we

are timing 1,000 times and calculates the average. This ensures we are timing something

in the range of seconds and dampen any poor measurements that might occur from

ambient CPU load.

GPU Timing with CUDA Events

CUDA provides a method to asynchronously record events during application lifetime

and later query when those events were completed. Events are created using the cud-

aEventCreate function, recordings made with the cudaEventRecord function for later

inspection. The utility function cudaEventElapsedTime returns a float of the time be-

tween two events in milliseconds. CUDA events have a resolution of 0.5 microseconds.
1Network Time Protocol (NTP) automatically synchronises a computer clock despite variable net-

work latency.

82

6.3.2 MCMC Diagnostics

For the most part, our parallel implementations of Gibbs samplers aim to retain the

relative ordering of events from the single-threaded implementations. Where that is not

possible, because doing so was too slow, we need to be able to understand the impact

parallelism has on the quality of the simulation.

We use several MCMC diagnostics for analysis. In this section we will give an

overview which is expanded on in appendix A.2. All diagnostics were performed using

the R implementation of the CODA package [103]. The downside of MCMC diagnos-

tics is that they can only help diagnose the non-convergence of a Markov chain, there is

no test to state that convergence has definitely been achieved.

For each of the diagnostics, below, we ran the locus sampler, the meiosis sampler

and the combined locus and meiosis sampler (where in each iteration we selected which

sampler to run uniformly at random). For each run, we ran chromosome 1 of the EAST

syndrome pedigree, with 780 SNPs. Each run of the Markov chain was 30,000 iterations

and we did not perform any thinning of the chain.

Trace and Density Plots

Trace and density plots are time series and histograms, respectively, of the likelihoods

of samples from the Markov chain. We use these to see if, in running the chain, there are

any obvious places where it gets “stuck” and also to compare two chains from different

starting states to see if they sample parts of the space with the same range of likelihoods.

Of course, this method can only show us where a chain did not converge compared to

another run of the chain. If none of the chains sampled correctly, then the test will be

inconclusive.

We plotted the likelihoods generated by different samplers running on the EAST

syndrome pedigree. Figure 6.2a shows the slow mixing of the locus sampler. Fig-

ure 6.2b shows the meiosis sampler appearing to have converged before shifting to a

higher likelihood at around iteration 10,000, perhaps due to the documented irreducibil-

ity issues, and finally, Figure 6.2c of the hybrid sampler running the locus or meiosis

83

0 5000 10000 15000 20000 25000 30000

−3
40

0
−3

35
0

−3
30

0
−3

25
0

Iterations

Trace of likelihood

−3400 −3350 −3300 −3250

0.
00

0
0.

00
4

0.
00

8
0.

01
2

N = 30000 Bandwidth = 4.097

Density of likelihood

(a) Locus Sampler

0 5000 10000 15000 20000 25000 30000

−3
40

0
−3

30
0

−3
20

0
−3

10
0

−3
00

0

Iterations

Trace of likelihood

−3400 −3300 −3200 −3100 −3000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

N = 30000 Bandwidth = 7.708

Density of likelihood

(b) Meiosis Sampler

0 5000 10000 15000 20000 25000 30000

−3
25

0
−3

15
0

−3
05

0
−2

95
0

Iterations

Trace of likelihood

−3300 −3200 −3100 −3000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

N = 30000 Bandwidth = 5.521

Density of likelihood

(c) Locus and Meiosis Sampler

Figure 6.2: Trace and density plots of different samplers running on the EAST syndrome
pedigree. Whilst the locus sampler in (a) and the meiosis sampler in (b) both appear to suffer
mixing problems, using a combination of the two in (c) does not.

sampler with equal probability appears far more consistent, and appears to have con-

verged. Multiple runs of the chain sampled the same range of likelihoods (trace plots

84

0 10 20 30 40

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

likelihood

(a) Locus Sampler

0 10 20 30 40

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

likelihood

(b) Meiosis Sampler

0 10 20 30 40

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

likelihood

(c) Locus and Meiosis Sampler

Figure 6.3: Autocorrelation plots of different samplers running on the EAST syndrome pedi-
gree. Using both the locus and meiosis samplers together show a random spatial pattern, unlike
individually.

not shown).

Autocorrelation

Convergence can be assessed by looking at the level of autocorrelation between samples

from the Markov chain. The lag k autocorrelation is the correlation between every

sample and its kth lag. We would expect the level of autocorrelation to become smaller

as the value of k increases, if it does not, then samples are correlated and indicate slow

mixing of the chain.

Autocorrelation statistics for the different samplers on the EAST syndrome pedigree

help us to understand the results of the trace and density plots. We plotted autocorre-

lation up to a lag of 50 without any thinning of the chain. Figures 6.3a and 6.3b of the

85

0 5000 10000 15000 20000 25000 30000

4
6

8
10

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

likelihood

(a) Locus Sampler

0 5000 10000 15000 20000 25000 30000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

likelihood

(b) Meiosis Sampler

0 5000 10000 15000 20000 25000 30000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

likelihood

(c) Locus and Meiosis Sampler

Figure 6.4: Gelman–Rubin plots of different samplers running on the EAST syndrome pedi-
gree.

locus sampler and meiosis sampler, respectively, show significant correlation compared

to the combined locus and meiosis sampler, even up to a lag of 50 (Figure 6.3c).

Gelman–Rubin Diagnostic

The Gelman–Rubin diagnostic [33] involves running the Markov chain several times

from different starting positions. The chains should all behave in much the same way,

so the variance within each chain should be the same as the variance in different chains.

This is measured by the shrink factor, where, if the value is 1, it indicates that the

variance within and between the chains is equal. As a rule of thumb, a value of lower

than 1.05 is an indication of convergence.

Figure 6.4c shows that the combined locus and meiosis samplers only appear to

converge half the time with a chain of length of 30,000 iterations, the median shrink

86

factor being 1.05. Rerunning with 100,000 iterations did not change the result (figure

not shown). Figure 6.4a of the locus sampler appears to show that it did not converge.

Figure 6.4b shows the meiosis sampler does not quite converge as often as the hybrid

sampler (median shrink factor 1.11), but we know from the previous autocorrelation

and trace plots that there can be times when it has problems mixing, possibly due to

irreducibility. Another negative sign is that the graph is actually diverging slightly from

iteration 15,000. For each of these experiments we calculated the Gelman–Rubin diag-

nostic across four separate runs of the Markov chain.

6.4 Finding a Peeling Sequence

Finding an optimal peeling sequence is important in inbred pedigrees in order to limit

the amount of work necessary to calculate the pedigree likelihood. A good peeling

sequence will directly impact the run-time of both single and multithreaded versions of

the locus sampler and LOD scoring code. Below, we will describe two algorithms to

find a peeling sequence: a greedy algorithm and random downhill search, evaluating

the results of both on our test pedigrees.

Both optimisation algorithms require us to define a cost to each potential peeling

sequence. We define the cost of a peeling sequence as:

CalculateCost(P) =
X

i

4len(ci)

where P is the peeling sequence, ci is the cut-set of the ith individual in P , the function

len(ci) returns the size of the cut-set, ci.

6.4.1 Greedy Algorithm

We present a simple greedy approach to constructing a peeling sequence in algorithm 1.

It proceeds in an iterative manner, always adding the individual from U (unprocessed

individuals) with the lowest cost to the current peeling sequence, P . This greedy ap-

proach is non-deterministic because of the randomness involved when multiple indi-

87

begin
P {}
U pedigree

while U 6= {} do
for i 2 U do

costs[i] CalculateCost(P [{i})
end

mincost Min(costs)
minset {}

for i 2 U do
if costs[i] = mincost then

minset minset [{i}
end

end

P P [Random(minset)
U pedigree \ P

end
end

Algorithm 1: Greedy algorithm to find a peeling sequence given a pedigree. Each iteration
adds the individual with the lowest cost cut-set to the peeling sequence, where there is more
than one, a random individual is selected.

viduals have the same cost at the current iteration. Greedy algorithms are simple, fast

and tend to give good enough results for simpler problems, but as the complexity of the

problem increases the range of answers increases.

6.4.2 Random Downhill Search

Random downhill search is an optimisation procedure that starts from a random point

in the state space, i.e. a complete peeling sequence, and makes iterative improvements.

The algorithm runs for n iterations. In each iteration, we swap a randomly selected pair

of individuals in the peeling sequence and assess the cost of this new sequence. If this

is an improvement (a lower cost), then we keep the change, otherwise the change is

reversed. It is described more formally in algorithm 2.

88

begin
P random sequence(pedigree)
current cost CalculateCost(P)

for i 1 to n do
x random(len(P))
y random(len(P))

swap(P, x, y)

tmp cost CalculateCost(P)

if tmp cost < current cost then
current cost tmp cost

else
swap(P , x, y)

end
end

end

Algorithm 2: Random downhill optimisation of peeling sequences. The peeling sequence
is permuted by swapping randomly selected indices in the sequence and the new peeling
sequence accepted if it is of a lower cost.

6.4.3 Evaluation

Greedy Algorithm

We ran the greedy algorithm 20,000 times on both EAST syndrome and benign chorea

pedigrees. The results are summarised in tables 6.2 and 6.3. For the EAST syndrome

pedigree, whilst almost a quarter of the runs produced the lowest cost, the range was

quite high and ⇠50% of the time produced a peeling sequence 10% more costly.

For the benign chorea pedigree, despite producing the optimal peeling sequence of

cost 2145 ⇠3.5% of the time, the range was completely unacceptable, producing se-

quences greater than one and a half times that,⇠10% of the time. The greater complex-

ity of the benign chorea pedigree has uncovered the weakness of the greedy algorithm,

which is that for problems of high complexity, it struggles to find a good solution.

89

Cost Freq
625 4461
673 5553
685 2754
733 5637
745 151
781 787
793 519
841 138

Table 6.2: Results of
20,000 runs of the greedy al-
gorithm on the EAST syn-
drome pedigree.

Cost Freq Cost Freq
2145 699 2445 550
2193 2453 2481 328
2205 240 2493 914
2241 1621 2541 994
2253 1128 3105 235
2289 684 3153 909
2301 2058 3165 68
2337 319 3201 564
2349 2166 3213 386
2385 1187 3249 232
2397 92 3261 686
2433 706 3309 781

Table 6.3: Results of 20,000 runs of the greedy algo-
rithm on the benign chorea pedigree.

Random Downhill Search

The random downhill algorithm was run for 1,000,000 iterations for both EAST syn-

drome and benign chorea pedigrees. The number of iterations was chosen arbitrarily. A

single run of 1,000,000 iterations took 27 seconds for the EAST syndrome pedigree and

49 seconds for the benign chorea pedigree. This experiment was repeated 100 times for

each pedigree.

Random downhill search performed considerably better than the greedy algorithm

on both the EAST syndrome and benign chorea pedigrees. All runs found the optimal

peeling sequences of 625 and 2145, respectively. In the worst case, the optimal se-

quence was found at iteration 3,096 for the EAST syndrome pedigree and at iteration

299,425 for the benign chorea pedigree.

Summary

For the pedigrees we have tested, random downhill search appears to be an appropriate

method for generating a good peeling sequence. It is possible that for larger, more

complex pedigrees, it will not perform as well. In this situation, a more advanced

method like the simulated annealing algorithm detailed in Thomas’ review [119] would

be necessary. As the peeling sequence needs only be calculated once and read from a

90

file for the actual simulation runs, we did not investigate parallelism options. However,

for larger pedigrees this might be warranted.

6.5 LOD scores

For LOD scores, we are concerned with measuring several quantities; these will be of

use with the locus sampler as well. The first is to identify the granularity of parallelism

possible on the CPU; we would prefer to parallelise the likelihood calculations them-

selves in a data parallel fashion, but would require this to be comparable in speed to

the more task parallel workload of assigning one locus per thread. Secondly, we must

answer the question posed in section 5.4.3 as to how much work should be done by each

CUDA kernel.

6.5.1 CPU Thread Granularity

Questions

To make LOD score calculations multithreaded, there are two possibilities open to us:

each thread could compute a complete LOD score (task parallelism) or each thread

could compute a single genotype likelihood in each peel operation (data parallelism).

If we could parallelise each individual peel operation, then this would be of enormous

benefit to the locus sampler. The single-threaded locus sampler performs a scan of all

loci in a pseudo-random order. If we need to run the locus sampler at different loci

concurrently, then strictly retaining this order will be difficult.

We used the data from chromosome 1 of the EAST syndrome pedigree for this

experiment. We calculated a single LOD score located halfway between each pair of

markers. As chromosome 1 was typed with 780 SNPs, each measurement involved the

calculation of 779 LOD scores. Measurements were taken as described in section 6.3.1.

Experiments were performed using 1–4 threads as that was the number of CPU cores

available on the test machine. Each data point is the average over 1,000 trials.

91

0

20

40

60

80

100

120

140

160

1 2 3 4

Ti
m

e
(m

s)

Number of Threads

Task Parallel
Data Parallel

Figure 6.5: Timing measurements from calculating LOD scores for the EAST syndrome pedi-
gree with varying numbers of threads. As the number of threads increase, finer granularity tasks
(data parallelism) suffer slowdown from the overhead involved in keeping the threads busy.

Results

A graph of the results is shown in Figure 6.5. A single thread running either task or data

parallel method are equivalent. From 2–4 threads, the overhead of keeping just two

threads busy is apparent in the green data parallel experiments, with each additional

thread providing less and less improvement.

The task parallel threads scale almost linearly. The work to do is coarse-grained

enough that the overhead of distributing work to threads is negligible. There will be a

limit to its ability to scale in this manner, but we did not have access to a processor with

more than four cores to discover the asymptote in the graph.

Conclusions

For the CPU, tasks must be kept as coarse-grain as possible. If we do this, then compute-

intensive tasks can achieve near linear scaling, at least across the narrow range of

threads investigated. It might be possible to improve these results with the addition

of SIMD instructions, providing practical fine-grain instruction-level data parallelism

within threads. However, this would require an unknown level of code restructuring

and we consider it outside of the scope of this thesis.

92

6.5.2 GPU Block Dimensions

Despite the results for CPU parallelism, the situation will be very different for the GPU,

where we have custom hardware developed for the purpose of data parallel processing.

Questions

The main question we have to answer is: what is the granularity of tasks to give to

each CUDA kernel? We could write a separate kernel per peel operation and ensure we

use the same number of threads as there is work to do. This sounds like it would be

efficient as we would never have any threads sitting idle. But this would require many

round-trips to the CPU to call the next kernel and could create a non-negligible amount

of overhead.

There is another reason this might not be the most efficient method and it is related

to a concept we have not covered, occupancy. A graphics card is an embedded system

with a finite amount of RAM. Whilst regular PCs only have a finite amount of RAM,

this is abstracted away from the programmer with virtual memory. Virtual memory

allows us to pretend we have the maximum possible amount of RAM, i.e. the complete

address space. If we use more memory than the amount of physical RAM, it is swapped

to the hard disk (albeit at a massive performance penalty). A GPU does not have the

luxury of swap space, but even if it did we would not use it because we are focused on

performance. Instead, the exact number of blocks and threads that can be supported by

the total number of registers and shared memory are run at once and will cause an error

if the block/thread dimensions exceed these constraints. Therefore, we may need 512

threads for a peel operation, but if the maximum number of threads that can be run is

768, then we will not be permitted to use the remaining 256. It would be more efficient

to run three blocks of 256 threads or some other factor of 768.

For the above reasons, it may be more efficient to use a constant number of threads

per block, but as each peel operation requires a different number, we need to ascertain

what the correct number to use is without hurting efficiency.

To experiment with these ideas, we used the EAST syndrome pedigree to measure

93

0

2

4

6

8

10

12

14

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544

Ti
m

e
(m

s)

Number of Threads

Fixed Number of Threads

Exact Number of Threads

Figure 6.6: Timing measurements from calculating LOD scores for the EAST syndrome pedi-
gree with varying numbers of GPU threads per block. As the number of threads increase, the
overhead of threads idling causes slow down.

the time it took to compute LOD scores for the whole of chromosome 1. We calculated

a single LOD score located halfway between each pair of markers. As chromosome

1 was typed with 780 SNPs, each measurement involved the calculation of 779 LOD

scores.

Results

The graph in Figure 6.6 shows the results. All timing was performed using CUDA

events and each data point is an average over 10,000 measurements. Standard devia-

tion bars, omitted from the graph, were in the range of 0.02–0.08 ms. The green line

indicates the time it took to run an independent kernel per peel operation, where each

kernel was given the precise number of threads as there was work to do. As the EAST

syndrome pedigree is composed of 27 individuals, this involved 27 separate kernel in-

vocations for each set of 779 LOD score calculations. The blue line shows the timing

measurements from using a fixed number of threads per kernel, where each kernel cal-

culates a single LOD score which involves peeling the complete pedigree at a single

location. Experiments were performed at increments of 32 threads, ranging from 32–

512. The increment of 32 is necessary because, as we stated in Section 5.3.2 threads

are run in quanta, called warps, of 32 threads. From the graph it is apparent that it is

more efficient to perform the entire pedigree peel in a single CUDA kernel. The most

94

efficient number of threads to use for peeling the EAST syndrome pedigree is 96.

Conclusions

The optimal peeling sequence for the EAST syndrome pedigree has a maximum cutset

size of 3, meaning there will be a maximum of 64 operations to be performed per peel

operation. Selecting the precise number of threads as there is work to do performs

comparatively poorly, due to it requesting 4, 16 or 64 threads per operation, which

is always rounded up by the hardware to a multiple of 32, so what we see is mostly

overhead.

Setting a fixed number of threads is more nuanced. High numbers of threads are

slow because most of the threads are sitting idle. For middling numbers of threads, the

graph has plateaus, e.g. 224–256 threads, which is due to the occupancy. Whilst there

are more threads, the number of blocks resident in a multiprocessor is the same. The

optimal number of threads is 96, but if the largest peel operation requires 64 calcula-

tions, then a minimum of 32 threads are sitting idle. What we believe is happening

here is a side-effect: by forcing the scheduler to juggle more warps than necessary, it

may reduce contention on the bus, increasing total throughput. The implication being,

that even if we calculate the occupancy we expect from a given kernel, this is only a

guide for its performance. The difference may be small, but it is in fact 10% faster to

use 96 threads, rather than 64. The optimum number of threads will be highly data and

hardware dependent. Therefore, pre-simulation, the application should always perform

these tests, which are cheap in terms of time, in order to dynamically optimise itself for

the rest of the simulation.

6.6 Locus Sampler

We have seen from the results in the previous section that the CPU code must be capable

of running multiple loci concurrently to scale and the GPU code must do the same. For

LOD scores, the calculation of each score was independent as it was only dependent on

95

begin
window length N
locusOrdering {}
descentGraph current graph

for i 1 to window length do
locusOrdering = locusOrdering [{i}

end

random shu✏e(locusOrdering)

for i 2 locusOrdering do
for j = i; j < number markers; j+=window length do

run locus sampler(descentGraph, j)
end

end
end

Algorithm 3: Algorithm for the windowed locus sampler. If the window length is set to
the number of markers then this degenerates down to a non-windowed (default) locus sam-
pler. A parallel implementation of this sampler would involve parallelising the inner for loop,
containing the call to run locus sampler.

the descent graph being scored. The locus sampler is creating new realisations of the

descent graph based on flanking loci, so we need a way to run this in parallel without

affecting the properties of the Markov chain.

6.6.1 Windowed Locus Sampler

Algorithm 3 shows the pseudo-code for the windowed locus sampler. A normal scan

of the descent graph by the locus sampler involves all loci being sampled in a pseudo-

random order. The windowed version proceeds in the same way, however, this time

we only randomise the ordering of a single window and apply this to all windows in

parallel. The windowed version of the locus sampler with a single window degenerates

to the non-windowed original locus sampler.

96

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(m

s)

Window Length (markers)

Figure 6.7: Variable numbers of markers per window affect the run-time performance of run-
ning a complete scan of the GPU version of the locus sampler.

6.6.2 Effect of Window Size on GPU Performance

Questions

Before we look at how the window size affects the performance of our sampling, we

will look at how having a window will impact the GPU run-time performance of the

locus sampler. A CPU parallel version should run with the number of windows set to

the number of processor cores, but with the GPU we cannot be so coarse-grained and

maintain high performance. This section investigates how small the window of markers

need to be to achieve maximum performance.

Results

Figure 6.7 is a graph of the time required to perform a single scan of chromosome 1 of

the EAST syndrome pedigree using the GPU version of the locus sampler. Each data

point is the result of 10,000 repeated measurements. Standard deviations were omitted

due to being uniformly small (largest being 0.2 ms).

From a window length of 7 markers the run-time rises linearly. Prior to 7 markers,

these timing results are artefacts from the way CUDA schedules work to be done on our

test graphics card. For example, for 780 markers, a window of 6 markers would incur

6 locus sampler kernel invocations of 130 markers, and a window of 7 markers would

97

incur 7 locus sampler kernel invocations of 112 markers. The GTX 580 graphics card

that this test was run on has 16 multiprocessors and the locus sampler runs 8 concurrent

blocks on each multiprocessor, i.e. 128 in total. Therefore, running 130 markers per

invocation is wasteful because we run the first 128 concurrently and then need to wait

for the last two before returning, resulting in this bump in the graph.

Conclusions

Even the current generation of GPU would require us to run exceptionally small win-

dows of markers to be able to scale, between 2 and 10 markers. We have to investi-

gate the effect this has on the mixing and convergence properties of the Markov chain.

Longer runs of the chain might still permit convergence, but this would force us to make

a parallelism / chain length compromise beyond which we could only get a speed-up

with faster hardware. Despite potentially impacting the quality of the simulation, there

is hope that the meiosis sampler will still be able to compensate.

6.6.3 Effect of Window Size on MCMC Performance

Questions

We know that to fully utilise even current generation GPUs, we need the window size

to be small. In this section we have to investigate the effect this will have on the mixing

and convergence properties of the Markov chain.

Diagnostics

Taking our running example of chromosome 1 of the EAST syndrome pedigree, we

looked at three different windowing scenarios to assess their impact on the Markov

chain. A single window of 780 markers, which is identical to the default locus sampler,

eight windows of 98 markers, which is how a modern multicore CPU with eight cores

would run the simulation, and, finally, 390 windows of 2 markers, which is how a GPU

would be forced to run to achieve high utilisation. Using 2 marker windows is the

98

0 10000 20000 30000 40000 50000

−3
40

0
−3

30
0

−3
20

0
−3

10
0

−3
00

0

Iterations

Trace of likelihood

−3400 −3300 −3200 −3100 −3000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

N = 50000 Bandwidth = 5.831

Density of likelihood

(a) 390 Windows, 2 Markers

0 10000 20000 30000 40000 50000

−3
40

0
−3

30
0

−3
20

0
−3

10
0

−3
00

0

Iterations

Trace of likelihood

−3400 −3300 −3200 −3100 −3000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

N = 50000 Bandwidth = 4.942

Density of likelihood

(b) 1 Window, 780 Markers

Figure 6.8: Trace and density plots of windowed locus sampler running on the EAST syn-
drome pedigree. Running the locus sampler with many short windows appears to affect mixing
detrimentally.

most extreme level of windowing and would be the equivalent of running every odd

numbered marker, followed by every even numbered marker.

We ran each experiment for 50,000 iterations. At each iteration, either the locus

sampler or the meiosis sampler was selected at random with equal probability. At each

iteration a complete scan was performed of either all loci or all meioses. Each exper-

iment was repeated 4 times. Unless otherwise stated, the 8 window experiment pro-

duced results indiscernible from the single window. Figure 6.8a is a trace of a typical

390 window experiment. Mixing is slower than with a single window (Figure 6.8b), but

eventually converges to the target distribution.

The Gelman–Rubin diagnostic across the four repeated chains showed median val-

99

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 50 100 150 200 250

LO
D

Sc
or

e

Genetic Distance (cM)

1 Window, 780 Markers

390 Windows, 2 Markers

Figure 6.9: Linkage analysis of chromosome 1 of the EAST syndrome pedigree. Despite being
shown to affect mixing, running 390 windows of two markers does not appear to affect the LOD
curve versus the default locus sampler.

ues of 1.04, 1.13, 1.20 for the single window, 8 window and 390 window experiments

respectively. Whilst the single window experiment appears to have converged, as the

number of windows increase in number, this degrades.

Results

Despite some of the poor results from the diagnostics, what we are really interested

in is the impact of multiple windows on the LOD curve. Figure 6.9 shows a graph of

two anecdotal linkage analyses from the previous diagnostic runs. To generate these

scores, the first 5,000 iterations were discarded as burn-in and the chain was thinned by

scoring every 10th iteration. All runs of the chain appeared similar to the one shown.

The blue curve was run without any windowing (the standard locus sampler), whereas

the green curve was run with 390 windows of 2 markers. The differences between the

two runs are minor. Despite the problems suggested by the MCMC diagnostics, this did

not translate into any real differences in the final result.

100

Conclusions

The MCMC diagnostics show the windowed locus sampler is less likely to converge

than the original locus sampler. However, the results of the linkage analysis remained

largely unaffected. Whilst we can see the point in maximising the size of the window,

the smallest windows possible ensure a higher level of hardware utilisation and, at least

from the perspective of the LOD scores, appears not to be detrimental.

6.7 Meiosis Sampler

Unlike the locus sampler, we cannot run multiple instances of the meiosis sampler si-

multaneously. Instead, we parallelise each meiosis sampler by exploiting the indepen-

dence of P (Y | S) at different markers, then perform the sampling in a single thread.

This works well on the CPU, where each processor core is fast, but is too slow on the

GPU.

6.7.1 Poor GPU Performance

In 10,000 measurements of the time taken by the GPU to perform a complete scan of all

meioses on the EAST syndrome pedigree using the meiosis sampler, the mean time was

69.9 ms (standard deviation ± 0.83 ms). This makes the time taken to scan 36 meioses

over 16 times greater than performing 780 complete pedigree peels. The relative ease of

converting the locus sampler to the GPU architecture has now changed which sampler

is the most time consuming on a large inbred pedigree. We have two options: split

responsibilities for the different samplers between the GPU, for the locus sampler, and

the CPU, for the meiosis sampler; or else use an approximation of the meiosis sampler

to better fit the GPU architecture.

6.7.2 Window-based Approximation

In order to achieve similar run-time performance to the GPU locus sampler, we use

a simple window-based approximation. Instead of sampling across all markers in the

101

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 50 100 150 200 250

LO
D

Sc
or

e

Genetic Distance (cM)

Baseline (single-threaded)

GPU with Windowed Meiosis Sampler

Figure 6.10: Linkage analysis of chromosome 1 of the EAST syndrome pedigree. The win-
dowed meiosis sampler for the GPU appears to detrimentally inflate LOD scores compared to
the single-threaded implementation.

chromosome for each meiosis, we sample across a shorter window of n markers. To try

to mitigate the errors at the points where windows meet, we shift the window completely

out of phase by n
2 markers every other meiosis being sampled. As during each scan, the

meioses are sampled in a pseudo-random order, so which meioses are run in and out of

phase is not fixed.

Setting n = 32, the meiosis sampler took 7.2 ms averaged over 10,000 scans (stan-

dard deviation ± 0.06 ms) per complete scan on chromosome 1 of the EAST syndrome

pedigree. This puts the time taken for a complete scan of the meiosis sampler in the

same range as the locus sampler on the GPU. As an example, we present a LOD curve

in Figure 6.10 superimposed on the result from the single-threaded implementation.

Additionally, we tried setting n to 64 and 128 markers. All these configurations pro-

duced similar results but with increasing run-times. Whilst the broad morphology of

the LOD curve was maintained, the LOD scores are incorrect by several orders of mag-

nitude throughout the chromosome. In the region of interest, however, where the LOD

score is highest, the LOD curves are very similar. The impact this has on the results of

several case studies is investigated in depth in the next chapter.

Several other windowing schemes were tried: with static windows of markers and

partially overlapping windows, however, the results were inferior to the method de-

102

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−6
00

0
−5

00
0

−4
00

0
−3

00
0

Iterations

Trace of likelihood

−6000 −5500 −5000 −4500 −4000 −3500 −3000

0.
00

00
0.

00
10

0.
00

20

N = 9990 Bandwidth = 72.32

Density of likelihood

Figure 6.11: Trace and density plots of two long chain runs of 1,000,000 iterations The first
1,000 iterations were omitted for clarity and only every 100th data point used. The black plot
shows the single locus sampling method. The red plot shows the sequential imputation method.

scribed above.

6.8 Effect of Starting State

Questions

We have two main mechanisms to generate a legal starting state for the Markov chain:

a single locus sampler and sequential imputation. Sequential imputation produces more

likely starting states because it can take into account the probabilities of recombinations

with flanking loci. More likely starting states, may help speed convergence, however,

this might be counter-productive if we are unlucky enough to produce a state in a local

minimum and the data is such that it always results in the chain getting stuck there.

Single locus sampling produces highly dispersed points in the state space and could

in principle avoid the potential problems of sequential imputation, but the cost of the

additional convergence time may be prohibitive.

Results

Using chromosome 1 of the EAST syndrome pedigree, we ran two chains for 1,000,000

iterations, where each iteration is a complete scan of all loci or all meioses dependent on

the sampler. At each iteration the probability that the locus or the meiosis sampler was

103

run is equal. Each chain was run in single-threaded mode on the CPU. We tested two

methods for generating a legal starting state: the single locus sampler and sequential

imputation. Each method is run 1,000 times with the state with the highest likelihood

selected as the starting state.

The graph in Figure 6.11 shows both trace and density plots of the two runs; single

locus sampling in black and sequential imputation in red. For the sake of clarity, the

first 1,000 iterations were discarded as the likelihoods were so low that they made both

graphs hard to read. Of the 999,000 remaining iterations, every 100th likelihood was

plotted.

It is clear from these results that even after a chain run of 1,000,000 iterations, the

chain initialised with the single locus sampler had not converged. This plot gives us

additional confidence in sequential imputation, as it clearly shows no additional modes

were found in this example. The experiment was repeated several times, and these

results were typical.

Conclusions

Past work has suggested that the single locus peeling approach has some merit where

similar starting states are considered a problem, but for practical scenarios the additional

convergence time required is so long we have not been able to successfully measure it.

Subsequently, we use sequential imputation to generate a legal starting state for the

Markov chain.

6.9 Scalability

We want to better understand the performance improvements parallelism achieves and

how this scales with the number of processors we allocate to run a single analysis.

104

6.9.1 Amdahl’s law

Amdahl’s law helps us quantify how much we can improve the performance of a given

system when only part of that system can be parallelised. Amdahl’s law is stated as:

speedup =
1

(1� P) + P
S

where P is the proportion of program run-time that can be parallelised and S is the

speedup that can be achieved to the proportion P . An example of how this operates is

that if a program takes 10 minutes to run, but 1 minute of that is sequential, then this

is the limiting factor that dictates the best possible run-time (which would be 1 minute,

assuming the work contained in the other 9 minutes is infinitely parallelisable).

6.9.2 Diminishing Returns

We used Amdahl’s law to calculate what proportion of the programs run-time was re-

duced due to parallelism. Given that the speedup can also be calculated as

speedup =
t1
t2

where t1 is the time taken with 1 thread and t2 is the time taken with 2 threads. We can

calculate P with:

P = 2 ·
✓
1� t2

t1

◆

We calculated that the proportion of the locus sampler to be parallelised was 0.93 and

the parallel portion of the meiosis sampler is 0.9 (these numbers were calculated for

EAST syndrome chromosome 1 and will be a function of the complexity of the pedigree

and the number of markers considered jointly). Assuming no additional overhead from

distributing work to threads, we used Amdahl’s law again to understand the diminishing

returns of using more and more threads with different proportions of the two samplers

(Figure 6.12).

Whilst there is some return all the way up to 128 processors, all the curves start to

105

0

2

4

6

8

10

12

14

0 50 100 150 200 250

Sp
ee

d
U

p

Number of Threads

Locus Sampler Prob = 0.2
Locus Sampler Prob = 0.5
Locus Sampler Prob = 0.8

Figure 6.12: Theoretical speed up with different numbers of threads using Amdahl’s law. The
probability of using the locus sampler at each iteration affects the maximum speedup at the limit
between 10x and 12x.

level off after that. We have shown 0.2, 0.5 and 0.8 probabilities of selecting the locus

sampler at each iteration as these are the published extremes that will not affect the

outcome of the results [35].

As linkage analysis is not trivially parallel, it is most efficient to use only a single

thread. However, if we have an excess of processing power or really care about getting

a particular result as quickly as possible, then we can use multithreading to achieve

slightly greater than an order of magnitude speed improvement in the limit.

6.10 Summary

In this chapter, we looked at a series of benchmarks related to efficiently implementing

Gibbs samplers for multipoint linkage analysis on parallel hardware. We will sum-

marise them all below categorised by whether they are generic, related to multicore

CPU or GPU implementations.

Generic

We showed that a random downhill search procedure greatly outperformed a simpler

greedy algorithm, by always finding what seems to be the optimal peeling sequence.

Generating a good peeling sequence can dramatically reduce the total amount of work

106

to be done by the locus sampler and calculating LOD scores. Whilst random down-

hill search proved suitable for both the EAST syndrome and benign chorea pedigrees,

larger and more complex examples may require something that can more adequately ex-

plore the state space, for example, simulated annealing or other stochastic optimisation

method. However, as the benign chorea pedigree is at the upper bound of the pedigree

size a majority of practitioners would ever see in their career, we did not explore this

further.

We investigated using different methods to generate the initial state for the Markov

chain and found the single locus sampler unsuitable for the task at hand, i.e. consan-

guineous pedigrees with many markers. For this size of problem we can only rec-

ommend sequential imputation, which, for a small increase in complexity, permits far

shorter simulation runs.

Multicore CPU

We showed that the multicore CPU versions of both the LOD scoring code and the

locus sampler need to be run at concurrent loci as the overhead of parallelising the

matrix computations did not scale even with the small number of threads used. We

detailed a modified locus sampler called the windowed locus sampler and, based on

multiple MCMC diagnostics, performed similarly to the default, non-windowed locus

sampler.

Whilst we tested the smallest windows possible (2 markers) for the GPU, this also

has implications for future multicore CPUs. Namely, the ability for the windowed locus

sampler to scale to hundreds of processor cores will be limited by the asymptotic returns

of parallelism (related to Amdahl’s law) and thread-related overheads, not the number

of loci in a window.

GPU

The parallel Gibbs samplers for the GPU were much harder to design. It is a very

different architecture compared to a multicore CPU, intended for massively data parallel

107

applications. Therefore, we sought to understand the impact different design decisions

had on the level of hardware utilisation and its interplay with the actual execution time.

We identified, counter-intuitively, that CUDA kernels for pedigree peeling should

use a fixed number of threads per block, and that the optimum number of threads may

be greater than the number of calculations to be performed. To facilitate the highest

throughput, these parameters should be discovered empirically before the actual simu-

lation is run.

Quite severe changes needed to be made to both locus and meiosis samplers, involv-

ing running different windows of markers, to get the most performance out of the GPU.

For the locus sampler, this slowed the convergence of the Markov chain, but it contin-

ued to produce almost identical LOD score results. The changes needed for the meiosis

sampler adversely affected the correctness of the LOD scores. Whilst we present results

from the GPU implementation in the next chapter, we additionally present a hybrid ap-

plication that utilises the GPU only for the locus sampler and calculation of LOD scores,

which is not only competitive in terms of speed, but provides a level of accuracy that

the pure GPU application is incapable of at the present time.

Conclusion

We now have an application for performing linkage analysis on large, consanguineous

pedigrees with many markers that can use multiple threads on the CPU and/or a separate

GPU. The multicore CPU code runs a user-specified number of threads and produces

the same results as a single-threaded implementation. The manycore GPU code dynam-

ically works out suitable parameters to best utilise the hardware at its disposal and gives

more approximate results. We can also utilise both multicore CPU and manycore GPU

concurrently to gain the advantages of both platforms running different aspects of the

simulation.

These benchmarks have informed the design of how different modules function on

different hardware platforms, but we do not have a feel for how this will translate to

the complete analysis time. In the next chapter, we will take several complete linkage

108

projects and present not just analysis results, but end-to-end performance measurements

of the total run-time.

109

7 Case Studies

I’d lay down my life for two brothers or eight cousins.

J.B.S. Haldane

The previous chapter was concerned with benchmarks related to the level of hard-

ware utilisation different modules of SwiftLink achieves. In this chapter, we want to

explore the impact our parallel Gibbs samplers have on both the run-time and the accu-

racy of linkage studies performed on real-world datasets.

We will look at three case studies: sensorineural deafness, EAST syndrome and be-

nign chorea. Sensorineural deafness is an autosomal recessive phenotype, in this case,

found in a small pedigree typed with many markers. Smaller pedigrees would normally

be analysed with an implementation of the Lander-Green algorithm, i.e. Genehunter,

Merlin or Allegro, and not an MCMC-based program, however, doing so permits us to

see whether the accuracy of a trivial analysis is affected by increasing levels of paral-

lelism and allow us to compare our results to the exact answer. The families with EAST

syndrome and benign chorea are two large consanguineous pedigrees. For EAST syn-

drome, the causative mutation has already been identified, whereas in benign chorea,

no analysis has yet been performed. Both are autosomal recessive phenotypes. With

these larger pedigrees, we will look at the run-time performance and the LOD scores

generated by SwiftLink as compared to the existing MCMC-based programs, Morgan

and Simwalk. We will test three versions of SwiftLink: a CPU version that is capable

of scaling to an arbitrary number of threads (CPU SwiftLink), a pure GPU version that

we already know produces less accurate results (GPU SwiftLink), and a hybrid GPU

110

/ CPU version (hybrid SwiftLink). Hybrid SwiftLink leverages both platforms, taking

advantage of whichever platform is faster for each sampler, running the locus sampler

and LOD scoring code on the GPU and the meiosis sampler on the CPU. The chapter

will end with a brief note comparing 32-bit and 64-bit performance of SwiftLink before

a final discussion about all the case studies.

7.1 MCMC Parameters

One of the major drawbacks of MCMC, from a usability perspective, is that there are

several parameters that must be set by the user or else the program must use overly

conservative default values. There tends to be very little guidance as to how to set these

parameters because they are data dependent and, even if they are set correctly, we can

still be unlucky with non-deterministic algorithms.

In the experiments reported in this chapter, Simwalk (version 2.91) is always run

with default parameters. As Simwalk can be very slow for large numbers of markers,

we instead ran each chromosome in multiple batches of 50 markers, the size of which

was chosen based on our experiences with several past projects. Further details are

given for each individual case study.

For Morgan (version 3.03) and SwiftLink, we ran each simulation for a total of

100,000 iterations as recommended [89], comprising 10,000 iterations of burn-in and

90,000 iterations of simulation. At each iteration, either the locus sampler or the meiosis

sampler was selected at random with equal probability. A single iteration comprised of

a complete scan of all markers, in the case of the locus sampler; or all meioses, in

the case of the meiosis sampler. We scored every 10th iteration of the Markov chain.

LOD scores were calculated halfway between each consecutive pair of markers. For

initialisation of the chain, 1,000 runs of sequential imputation was performed, with the

highest likelihood result used as the starting state. All analyses were performed on our

test machine described in Section 6.1 that was otherwise idle. For CPU SwiftLink, we

will always state the number of threads that were used. Hybrid SwiftLink was always

111

run with 4 CPU threads in addition to the GPU.

7.2 Data Preparation

In each of the reported case studies, datasets were preprocessed and formatted using

Alohomora [105] (version 0.3) and Mega2 [91] (version 4.0). Mendelian inconsisten-

cies were checked with PedCheck [95] (version 1.1) and familial relationships were

checked by visualising them with GRR [2] (latest version 08/2003). GRR plots the

mean and standard deviation of the proportion of genotypes that are identical-by-state

between individuals. Pairs of individuals of a given relatedness cluster together, pro-

viding a check for the correctness of the pedigree. The gender of typed individuals was

checked by looking at the level of hemizygosity in the X chromosome.

Modern SNP chips have many more markers than linkage analysis is capable of

analysing without breaking the assumption of linkage equilibrium. To trim down the

marker map for analysis, we use a python script called SNP-butcher. SNP-butcher

reads in the marker map, minor allele frequencies and genotype data and outputs a

sparser map containing SNPs that are no less than a user-specified genetic distance

apart. It ignores SNPs with a minor allele frequency of 0.0 (at the population level) and

SNPs where all genotypes are uniformly homozygous for the same allele and, therefore,

uninformative.

7.3 Sensorineural Deafness

Sensorineural deafness is a kind of hearing loss that is most often caused by abnor-

malities in the hair cells found in the inner ear. It can be caused by damage incurred

throughout the lifetime of the patient or can be inherited. Different patients can experi-

ence varying levels of severity from mild to total deafness.

Figure 7.1 shows a pedigree which is a single nuclear family containing eight sib-

lings: three boys and five girls. Four of the children were affected (individuals 32,

34, 139 and 142). As there is not any gender bias and neither parent is affected, it is

112

suggestive of an autosomal recessive phenotype.

Figure 7.1: 14-bit pedigree with four affected children with sensorineural deafness. The segre-
gation pattern of the affected individuals suggests this disease is an autosomal recessive pheno-
type.

For this case study, we are not concerned with any of the run-time characteristics

of MCMC-based simulations. It is clear that where exact methods are applicable they

should be employed. Not only are the results deterministic, but the analysis time will

probably be shorter as well. Instead, we focus on the actual values of the LOD scores

obtained and see how different approaches to parallelism affect accuracy.

7.3.1 Methods

Genotyping was performed with Illumina human CytoSNP-12 300K SNP chips. All in-

dividuals, apart from individual 111, were typed. A genetic map for this SNP chip was

unavailable, so inferred genetic distances from the HapMap project were used instead.

Using SNP-butcher, 31,328 SNPs were selected that were no more than 0.05 cM apart

and recombination fractions were sex averaged. The family was from Romania, so Cau-

casian allele frequencies were used. 14 SNPs were removed due to Mendelian errors

detected by PedCheck. For parametric linkage analysis, a fully penetrant, autosomal

recessive disease trait with an allele frequency of 0.001 was assumed.

For analysis we used the Lander-Green-Kruglyak-derived program Allegro (version

2.0f) [39], written by researchers at deCODE genetics. Allegro calculates exact LOD

scores and scales better than Genehunter in terms of the complexity of the pedigree and

the number of markers that the program can analyse jointly. We ran CPU SwiftLink

with 1 and 4 threads, GPU SwiftLink and hybrid SwiftLink. All versions were run with

the parameters described in Section 7.1.

113

-2

-1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(a) Allegro

-2

-1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(b) CPU SwiftLink (x1 thread)

Figure 7.2: Genome-wide linkage scans for the sensorineural deafness pedigree performed by
single-threaded applications.

7.3.2 Results

For this case study, the main aspects we wish to investigate centre around the accuracy

of the MCMC-based simulations versus the exact LOD calculations calculated by Alle-

gro. We first look at the LOD curves produced to compare the LOD scores and extent

of the regions of interest identified by all programs before looking at the cumulative

distribution of LOD scores.

LOD Scores

Allegro and single-threaded CPU SwiftLink produce much the same LOD curves (Fig-

ures 7.2a and 7.2b, respectively). The LOD scores of the most significant regions are the

same (2.3059). Both programs found three identical loci of interest: chromosome 1 be-

tween rs7533652 and rs2769685, chromosome 7 between rs17302032 and rs2519637,

and chromosome 8 between rs12541486 and rs7822888. The only differences between

the two analyses are at LOD scores of -1 or lower, but, as LOD scores are on a log scale,

these are relatively minor differences.

114

-2

-1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(a) CPU SwiftLink (x4 threads)

-2

-1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(b) GPU SwiftLink

-2

-1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(c) Hybrid SwiftLink (GPU / CPU x4 threads)

Figure 7.3: Genome-wide linkage scans for the sensorineural deafness pedigree performed by
three parallel implementations of SwiftLink.

The three parallel implementations: CPU SwiftLink with 4 CPU threads, GPU

SwiftLink and hybrid SwiftLink, are shown in Figures 7.3a, 7.3b and 7.3c, respec-

tively. The multithreaded CPU SwiftLink performed almost identically to the single-

threaded run. Both versions that utilised the GPU had additional false positives. For

GPU SwiftLink, the number of false positives was extreme as it shows an additional

peak on chromosome 10 with the same LOD score as the true regions of interest and

a peak on chromosome 12 that is almost as high. Clearly, even for such a simple ex-

ample, GPU SwiftLink can produce misleading results. Hybrid SwiftLink fared much

better, but still produced many additional peaks on chromosomes 14, 15 and 19 with

115

LOD scores just greater than 1.

All three parallel implementations found what were considered the most signifi-

cant regions by the single-threaded programs. The LOD scores of the most significant

regions were either the same as Allegro (2.3059), in the case of CPU SwiftLink, or

slightly different (2.3098), in the case of the two GPU applications. Minor differences

in LOD score might be due to floating point representations being defined differently

on the two architectures or even the order of operations not being quite the same.

Accuracy

So far we have only considered the regions of interest with the highest LOD scores

and made a few statements broadly comparing the results. However, if we look at the

cumulative distribution of LOD scores for each of the genome-wide scans (Figure 7.4),

then we see some features that have been missed so far. The differences in the 90th

percentile are the most important from the perspective of the results shown in the LOD

score graphs. All versions, including Allegro, are similar apart from GPU SwiftLink,

which shows a large deviation from the others.

Excluding GPU SwiftLink, all other versions of SwiftLink are highly consistent

throughout the cumulative distribution despite varying degrees of parallelism. This

consistency is important because it tells us that, for the most part, parallelism had little

impact on the results.

7.4 EAST Syndrome

EAST syndrome, described by Bockenhauer et al. [8], is a monogenic disorder related

to improper renal tubular salt handling. Patients also have the following symptoms:

infantile-onset seizures, ataxia and sensorineural deafness. Causative mutations were

found in the gene KCNJ10 that encodes a potassium channel expressed in the brain, in-

ner ear and kidney. The locus containing KCNJ10 was identified using linkage analysis

and further narrowed down with haplotype reconstruction.

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-35 -30 -25 -20 -15 -10 -5 0 5

C
um

ul
at

iv
e

Fr
eq

ue
nc

y
D

is
tri

bu
tio

n

LOD score

Allegro
CPU x1
CPU x4

GPU
GPU / CPU x4

Figure 7.4: Cumulative distribution of LOD scores for the sensorineural deafness pedigree.
Despite increasing levels of parallelism most of the versions of SwiftLink produce similar dis-
tributions.

The pedigree, previously shown in Figure 6.1a, contains 4 children all of whom pre-

sented with a similar phenotype. All other members of the pedigree were unaffected.

All affected offspring are the result of first cousin marriages and share a common an-

cestor five generations earlier.

7.4.1 Methods

All 4 affected children and the parents of the 3 affected siblings were genotyped using

GeneChip Human Mapping 10K SNP arrays from Affymetrix (individuals 821, 823,

824, 825, 1345 and 1347 in Figure 6.1a). Of the 10,204 autosomal SNPs typed, 14

were removed due to Mendelian errors detected by PedCheck. For parametric linkage

analysis, a fully penetrant, autosomal recessive disease trait with an allele frequency of

0.001 was assumed. The family was of Pakistani origin, so the Asian allele frequencies

from the deCODE 10K SNP map were used. Genetic distances were used from the

deCODE map, the recombination fractions were sex averaged.

Whilst the original study utilised just Simwalk (version 2.91) to perform linkage

analysis, here, we also ran Morgan (version 3.03) using the lm linkage program (pre-

viously called lm markers in older versions), CPU SwiftLink with 1, 2 and 4 threads,

GPU SwiftLink and hybrid SwiftLink. Running Simwalk on the whole of chromosome

117

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(a) Simwalk

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(b) Morgan

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(c) CPU SwiftLink (x1 thread)

Figure 7.5: Genome-wide linkage scans for the EAST syndrome pedigree performed by single
threaded applications.

1 had a run-time of ⇠42 days (60,935 minutes) on a 3.0 GHz Intel Xeon (results not

shown). To make the run-time practical, we ran Simwalk in 212 independent fragments

of 50 markers on UCL Legion, a computer cluster. Each fragment took ⇠90 minutes,

but total run-time was affected by the load on the scheduler and any cluster node fail-

ures. Therefore, the run-time of the Simwalk analysis is really a lower-bound. Morgan

and SwiftLink were run with the parameters described in Section 7.1.

118

-2
-1
0
1
2
3
4
5

150 160 170 180 190

LO
D

Sc
or

e

cM

Simwalk
Morgan

SwiftLink CPU

Figure 7.6: Region of interest from chromosome 1 of the EAST pedigree from all three single
threaded applications.

7.4.2 Results

Comparing the output of different MCMC simulations is difficult because, whilst they

should all converge to the same result in theory, there will be some variation between

LOD scores even between multiple runs of the same program. Previous studies compar-

ing MCMC linkage programs [126] are unsatisfying because they are compared only

using examples that can be calculated exactly using either the Lander-Green or Elston-

Stewart algorithm. What we want to know is whether our new parallel implementations

give similar results to Simwalk and Morgan.

LOD Scores

First, we will look at the single-threaded implementations. The genome-wide results for

Simwalk (Figure 7.5a), Morgan (Figure 7.5b) and CPU SwiftLink (Figure 7.5c) have

broadly the same morphology. Common across all three genome-wide scans, the most

significant locus is on chromosome 1, with three less significant loci on chromosome

6. Each result has its own additional peaks, but these have at most a LOD score of ⇠1

and do not affect what we would classify as a region of interest. For chromosome 1, the

highest LOD score was 4.863, 4.874 and 4.875 for Simwalk, Morgan and SwiftLink,

respectively. The region between 145 and 195 cM on chromosome 1 is shown in Fig-

ure 7.6. The most significant locus is at approximately 156 cM between flanking SNPs

rs1891187 and rs1268524. The curves for each of the three programs are consistent

with one another, with Simwalk showing some differences compared to Morgan and

119

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(a) CPU SwiftLink (x4 threads)

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(b) GPU SwiftLink

-2
-1
0
1
2
3
4
5

0 500 1000 1500 2000 2500 3000

LO
D

Sc
or

e

cM

.

11 2105 170402 221803 08 16130601 12 2014 1507 191009

(c) Hybrid SwiftLink (GPU / CPU x4 threads)

Figure 7.7: Genome-wide linkage scans for the EAST pedigree performed by three parallel
implementations of SwiftLink

SwiftLink, which are almost the same.

We present the results of three parallel versions of SwiftLink: CPU SwiftLink us-

ing 4 CPU threads (Figure 7.7a), GPU SwiftLink (Figure 7.7b) and hybrid SwiftLink

(Figure 7.7c). The results of the multithreaded CPU SwiftLink are almost indistinguish-

able from the original single-threaded version, aside from an additional peak at the end

of chromosome 2, however, artefacts such as these are routinely ignored as they can

arise due to the lack of context at the ends of chromosomes. The similarity is further

reflected in the finer details of the region of interest on chromosome 1 as well in Fig-

ure 7.8. GPU SwiftLink gives the messiest result, with the largest number of additional

120

-2
-1
0
1
2
3
4
5

150 160 170 180 190

LO
D

Sc
or

e

cM

GPU
GPU / CPU x4

CPU x1
CPU x4

Figure 7.8: Region of interest from chromosome 1 of the EAST pedigree from all parallel
applications.

peaks distributed all the way across the genome. The difference is even more obvious

in Figure 7.8, where we just show the extended region of interest. The LOD scores

frequently do not concur with the other programs. From ⇠165 cM the LOD scores

produced by different programs differed by more than an order of magnitude. This is

due to the compromises that were necessary to improve the performance of the meio-

sis sampler. Hybrid SwiftLink appears to perform almost identically to single-threaded

CPU SwiftLink, without the extraneous peaks genome-wide of GPU SwiftLink.

Irrespective of which application was chosen to run the EAST syndrome analysis,

it would have resulted in the same outcome as all programs identified the correct locus

containing the gene KCNJ10.

Performance

Table 7.1 summarises each complete analysis for all programs and Figure 7.9 shows the

run-time for the analysis of each of the 22 chromosomes for all versions of SwiftLink.

Simwalk and Morgan were omitted from Figure 7.9 as their run-times were so long as

to obscure the differences between the different versions of SwiftLink.

Firstly, even the single-threaded version of SwiftLink ran 2.7x faster than Morgan

for the complete analysis of all chromosomes and 20.8x faster than Simwalk, if we

assume each fragment was run sequentially. For SwiftLink, the improvement from

adding threads is sub-linear. Doubling the number of threads from 1 to 2 results in a

82% speedup, whereas 2 to 4 threads provides a 76% speedup. This is due to parts of the

samplers that cannot be parallelised, which, for the CPU code, is mainly the sampling

121

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ti
m

e
(m

in
)

Chromosome

CPU x1

CPU x2

CPU x4

GPU

GPU / CPU x4

Figure 7.9: Run-time comparison of all versions of SwiftLink for each of the 22 chromosomes
from the EAST syndrome pedigree.

phase of the meiosis sampler. These results concur with our theoretical analysis using

Amdahl’s law (Section 6.9).

GPU SwiftLink is, at best, 6.2x faster than the single-threaded CPU version. The

level of improvement is proportional to the number of markers, the worst being chro-

mosome 22 having the least markers, which is only 1.3x faster. The improvement from

parallelism was almost uniform for the CPU code as the tasks involved were relatively

coarse-grain, contrasted with the GPU that requires many markers to keep hundreds

of CUDA cores occupied. However, taking the total run-time into account for all 22

chromosomes, the GPU was still 4.5x faster overall than the single-threaded CPU im-

plementation.

The version with the best performance was hybrid SwiftLink. This is not surprising

as we showed that the locus sampler was more amenable to being parallelised due to

the large numbers of markers on the GPU, whereas the meiosis sampler functions best

where there is still considerable individual processor speed. Hybrid SwiftLink takes

advantage of both platforms to achieve high performance. Hybrid SwiftLink, similar to

GPU SwiftLink, provides a greater speedup for longer chromosomes and is overall 7x

faster than single-threaded CPU SwiftLink, the equivalent speedup of 16 CPU threads

according to the theoretical analysis in Figure 6.12.

SwiftLink uses far more RAM than Morgan and Simwalk (see Table 7.1). SwiftLink’s

122

Program Max RAM Total
Usage (MB) Run-time (hours)

Simwalk 5.0 305.6
Morgan 10.0 39.9
CPU SwiftLink (x1 thread) 239.0 14.7
CPU SwiftLink (x2 threads) 239.0 8.1
CPU SwiftLink (x4 threads) 239.0 4.6
GPU SwiftLink 92.9 (+249.7*) 3.3
Hybrid SwiftLink 92.9 (+249.7*) 2.1

Table 7.1: Table of different program requirements for performing genome-wide linkage scans
on the EAST pedigree. RAM measurements were made using the ps command.
(* RAM required in device memory of GPU, in addition to host PC RAM requirements)

high RAM requirements are due to it making extensive use of caching and requiring

multiple copies of working data to avoid clashes from multiple threads. For exam-

ple, the locus sampler maintains a copy of all of the intermediate peeling matrices for

each and every marker, whereas Morgan will only have a single working copy. This is

wasteful because we only ever need the number of working copies as there are active

threads and, whilst not a major concern given the amount of RAM commonly found in

a desktop PC, will be fixed in future versions.

7.5 Benign Chorea

Chorea is a hyperkinetic movement disorder characterised by the presence of insup-

pressible involuntary movements. These spontaneous movements are predominantly

distal (affecting head, face, tongue and distal extremities) and can range in severity

from mild to disabling. Whereas Huntington’s Chorea is a late onset neurodegenerative

disorder marked by neurological decline and choreatic movements, so-called benign

chorea is early onset and does not involve dementia. There are two known transmis-

sion patterns for benign chorea: autosomal dominant, with additional thyroid and lung

problems; and autosomal recessive, without.

The pedigree, previously shown in Figure 6.1b, was first published by Poveda et

al. [102]. There are 6 affected individuals in a 6 generation, 51 member, highly con-

sanguineous pedigree originating from 3 founder couples. The mode of inheritance is

123

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(a) Simwalk

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(b) Morgan

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(c) SwiftLink (CPU x1 thread)

Figure 7.10: Genome-wide linkage scans for the benign chorea pedigree performed by single
threaded applications.

autosomal recessive.

7.5.1 Methods

Genotyping was performed with Illumina human CytoSNP-12 300K SNP chips on 19

individuals including all 6 affected patients. A genetic map for this SNP chip was un-

available, so inferred genetic distances from the HapMap project were used instead.

Using SNP-butcher, 23,331 SNPs were selected that were no more than 0.05 cM apart

and recombination fractions were sex averaged. Note that this is much lower than the

number of SNPs used to analyse sensorineural deafness, despite using the same SNP

124

selection criteria. This is due to consanguineous pedigrees being more likely to contain

uninformative SNPs. The family was from Columbia, so the Caucasian allele frequen-

cies were used. 45 SNPs were removed due to Mendelian errors detected by PedCheck.

For parametric linkage analysis, a fully penetrant, autosomal recessive disease trait with

an allele frequency of 0.001 was assumed.

In the same way as we did for EAST syndrome, we ran genome-wide linkage scans

using Simwalk, Morgan and SwiftLink. Simwalk was run in 487 independent fragments

of 50 markers on UCL Legion. Each fragment took just over 4.5 hours to run once it

had been scheduled. Morgan and SwiftLink were run with the parameters described in

section 7.1. We ran CPU SwiftLink using 1, 2 and 4 CPU threads, in addition to GPU

SwiftLink and hybrid SwiftLink.

7.5.2 Results

Similar to our investigation of EAST syndrome, we want to compare the results and

performance of SwiftLink at increasing levels of parallelism with Morgan and Simwalk.

Unlike previously, we do not have the ground truth, i.e. we do not know a priori what

gene the causative mutation is located in.

LOD Scores

The three single-threaded genome-wide linkage scans in Figure 7.10 appear to be al-

most the same. There is significant linkage on chromosome 1 only, with maximum

LOD scores of 5.820, 5.757 and 5.699 for Simwalk, Morgan and CPU SwiftLink, re-

spectively. Looking at just the region of interest on chromosome 1 in Figure 7.11,

some of the differences between the three programs become apparent. Firstly, all three

programs have identified the 194 Kbase region at ⇠53 cM bounded by the markers

rs2007451 and rs396648. SwiftLink and Morgan have identified a wider 691 Kbase

region to the left of the leading peak with a maximum LOD score of 4.7 bounded by

markers rs12759173 and rs448357. Simwalk did not find this region, this may have

been due to the boundary between independent marker fragments being at ⇠52.5 cM.

125

-2
-1
0
1
2
3
4
5
6

40 45 50 55 60 65 70

LO
D

Sc
or

e

cM

Simwalk
Morgan

SwiftLink CPU

Figure 7.11: Region of interest from chromosome 1 of the benign chorea pedigree from all
three single-threaded applications.

Neither of these regions contain any RefSeq genes, however, both contain spliced ESTs

indicating the presence of, as yet, unnamed genes.

From the perspective of the genome-wide scans, all parallel implementations of

SwiftLink produce similar results. Multithreaded CPU SwiftLink (Figure 7.12a), GPU

SwiftLink (Figure 7.12b) and hybrid SwiftLink (Figure 7.12c) appear similar to the

single-threaded analyses, with the most significant peak on chromosome 1. The max-

imum LOD scores were 5.806, 5.291 and 5.812 for CPU, GPU and hybrid SwiftLink,

respectively. The region of interest is shown in Figure 7.13 comparing the LOD curves

with the results from single-threaded CPU SwiftLink. Using multiple CPU threads pro-

duced much the same results as the single-threaded implementation. There are some

differences upstream where the LOD score varies by two orders of magnitude, but these

are limited and even at their peak are still three orders of magnitude lower than the maxi-

mum LOD score. This does not seem like an important difference because Morgan gave

similar results (Figure 7.11). Hybrid SwiftLink showed several more extreme examples

of this, such that the two highest peaks now have the same LOD score. GPU SwiftLink

underestimates the LOD score for the leading peak and comes to the conclusion that the

most likely location of the disease trait is elsewhere.

Performance

Figure 7.14 shows the run-time for the analysis of each of the 22 chromosomes and

Table 7.2 summarises each complete analysis. The single-threaded version of CPU

SwiftLink ran 2.2x faster than Morgan and 24.3x faster than Simwalk for the complete

126

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(a) SwiftLink (CPU x4 threads)

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(b) SwiftLink (GPU)

-2
-1
0
1
2
3
4
5
6

0 500 1000 1500 2000 2500 3000 3500

LO
D

Sc
or

e

cM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 202122

(c) SwiftLink (GPU / CPU x4 threads)

Figure 7.12: Genome-wide linkage scans for the benign chorea pedigree performed by three
parallel implementations of SwiftLink

genome-wide analysis. Doubling the number of threads from 1 to 2 results in a 79%

speedup, and from 2 to 4 threads, a 66% speedup. These results are not the same as

the EAST syndrome analysis because the impact of the sequential sampling code is

greater, due to us using more markers and the pedigree being larger. Despite these

issues, hybrid SwiftLink is actually faster relative to the single-threaded version than it

was analysing the EAST syndrome pedigree at 7.9x faster (compared to 7x faster for

the EAST syndrome case study).

SwiftLink’s memory requirements to analyse the benign chorea pedigree massively

outstrip what was required in the EAST syndrome analysis (Table 7.2). Despite hav-

127

-2
-1
0
1
2
3
4
5
6

40 45 50 55 60 65 70

LO
D

Sc
or

e

cM

GPU
GPU / CPU x4

CPU x1
CPU x4

Figure 7.13: Region of interest from chromosome 1 of the benign chorea pedigree from all
parallel implementations of SwiftLink.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ti
m

e
(m

in
)

Chromosome

CPU x1

CPU x2

CPU x4

GPU

GPU / CPU x4

Figure 7.14: Run-time comparison of all versions of SwiftLink for each of the 22 chromosomes
from the benign chorea pedigree.

ing the largest memory requirements previously, they did not seem unreasonable for a

modern desktop PC, however it is now clear that it does not scale well. This will be

addressed in future work. The GPU version should use as much memory as possible to

keep the occupancy high and it is less of an issue because we assume the simulation is

the only thing the GPU is running.

Caveat

Figure 7.15 shows a trace plot for CPU SwiftLink running single-threaded on the be-

nign chorea pedigree. The simulation parameters were the same as in all previous ex-

periments (see Section 7.1). Clearly, even the single-threaded analysis did not con-

verge properly. This explains some of the differences in Figure 7.11 between Morgan

and CPU SwiftLink. Whilst this does not excuse the worse performance of hybrid

128

Program Max RAM Total
Usage (MB) Run-time (hours)

Simwalk 5.2 2249.8
Morgan 27.4 205.9
CPU SwiftLink (x1 thread) 2380.8 92.4
CPU SwiftLink (x2 threads) 2380.8 51.6
CPU SwiftLink (x4 threads) 2380.8 31.1
GPU SwiftLink 369.8 (+551.2*) 13.1
Hybrid SwiftLink 369.8 (+551.2*) 11.7

Table 7.2: Table of different program requirements for performing genome-wide linkage scans
on the benign chorea pedigree. RAM measurements were made using the ps command.
(* RAM required in device memory of GPU, in addition to host PC RAM requirements)

SwiftLink, it suggests there is more work to be done to improve the mixing of the

Markov chain at least in this example. The benign chorea pedigree thwarts both sam-

plers’ abilities to mix in different ways. Recall, the locus sampler mixes poorly with

tightly linked markers, which we certainly have in this situation, and the meiosis sam-

pler has mixing problems when there are many untyped pedigree members. We cannot

reduce the number of untyped members of the pedigree, but we can reduce the num-

ber of markers. Unfortunately, reducing the number of markers does not help as much

as we had hoped, ⇠10, 000 markers (asking SNP-butcher for a marker every 0.25 cM)

suffers from the same problems and ⇠6, 000 markers (every 0.5 cM) only appeared to

converge half of the time.

Possible solutions to poor mixing include better samplers or multiple chain schemes

like parallel tempering. Morgan implements the multiple meiosis sampler, but does not

output the necessary information to diagnose non-convergence as SwiftLink does, so

we did not test it. Parallel tempering may offer a suitable solution to improve the mix-

ing of the existing samplers that we use and creates an alternative vector for employing

parallel processing. A third idea, is that maybe the initial optimisation procedure needs

to be improved. Previously, with the EAST pedigree, we saw that initialising the chain

with single locus peeling produced a similar looking trace plot to Figure 7.15 (see Fig-

ure 6.11), but that initialising the chain using sequential imputation sped convergence.

A better optimisation procedure for generating the initial state of the chain may be nec-

essary to speed convergence in larger pedigrees such as the benign chorea pedigree.

129

2e+04 4e+04 6e+04 8e+04 1e+05

−2
57

00
−2

55
00

−2
53

00

Iterations

Trace of likelihood

−25700 −25600 −25500 −25400 −25300 −25200

0.
00

0
0.

00
2

0.
00

4

N = 9001 Bandwidth = 12.8

Density of likelihood

Figure 7.15: Trace and density plots for the benign chorea case study, with 10,000 iterations
omitted as burn-in and thinned by only plotting every 10th iteration. This is from the single-
threaded implementation of SwiftLink, showing that even without parallelism being used the
chain has not converged.

7.6 Performance of 32-bit and 64-bit Executables

An important detail that has not been mentioned is that in all the experiments that used

just the CPU, SwiftLink was compiled into a 64-bit executable and in all experiments

that used the GPU it was compiled into a 32-bit executable. SwiftLink can be com-

piled for either word length, but both had different performance characteristics. With

the CPU, the 64-bit version is 15% faster than the 32-bit version because it permits the

compiler to take advantage of longer instructions and additional registers. The GPU

code, however, performs better in 32-bit mode because being able to use 32-bit pointers

instead of 64-bit ones reduces register utilisation and increases occupancy. Additionally,

there appears to be a bug in CUDA version 4.0 that makes large memory allocations far

slower in 64-bit mode than 32-bit mode (at times dwarfing the run-time of the simula-

tion). Unfortunately, the 64-bit CPU code cannot be linked with 32-bit CUDA code,

therefore for hybrid SwiftLink, a 32-bit executable was used.

7.7 Discussion

From the case studies we have run, we have gained a feeling for how SwiftLink behaves

in the real world, allowing us to better understand how parallel linkage analysis can

130

best be used. We can see from running the multithreaded version of SwiftLink, that

parallelism has little effect on the accuracy of the LOD curves up to four CPU threads.

However, it is clear from the hybrid GPU / CPU version that at the limit (i.e. many

windows containing two markers each for the locus sampler) it starts to have an impact

on accuracy in the form of inflated LOD scores in the EAST syndrome pedigree.

Even though we have demonstrated that SwiftLink scales across different numbers

of CPU threads, it is clear that adding threads yields diminishing returns. This is not

unexpected, as we know there are aspects of the simulation that could not be parallelised

and Amdahl’s law shows that this results in increasing underutilisation as we use greater

numbers of resources. This means that we could analyse both EAST and benign chorea

pedigrees quicker by running four instances of the single-threaded CPU SwiftLink on

four different chromosomes. However, in the case that a single chromosome needs to

be analysed or where we have a large excess of processors, multithreading is beneficial.

Whilst the results from the EAST pedigree (Figure 7.5) showed no benefit from

running the entire chromosome in a single analysis compared to the windowed approach

necessary with Simwalk, the benign chorea pedigree (Figure 7.10) exposed the worst-

case scenario where a LOD score peak of 4.7 was missed because it was at the boundary

between two windows. As a result, we do not recommend using Simwalk for any

analyses with a large number of markers. Of course, Simwalk has one advantage over

Morgan and SwiftLink, in that it is also capable of performing haplotype reconstruction.

We recommend that linkage analysis be performed with SwiftLink and Simwalk used

to narrow down a much smaller targeted region with haplotype reconstruction. Even

though windows of markers makes Simwalk capable of utilising many processors with

each window being independent, the time for each fragment (⇠1.5 hours in the case

of EAST, ⇠4.6 hours for benign chorea) means you would need a massive number of

spare processors to achieve high performance.

We hoped that the windowed meiosis sampler on the GPU would have performed

better than it did, but it produced poor results in all the cases studied. This did not

matter too much, as the parallel CPU implementation of the meiosis sampler was faster

131

anyway, and hybrid SwiftLink, despite having problems with the complexity of the

benign chorea pedigree, performed better in terms of accuracy and speed. At the start of

this project, we felt that it was important to have as much code running on the graphics

card as possible in order to achieve the highest performance. However, it is clear that,

whilst certain algorithms can be successfully accelerated, others cannot. Contrast the

meiosis sampler with the LOD scoring code that can exploit both coarse task parallelism

and fine-grain data parallelism simultaneously. The lesson that can be learnt is that a

combination of heterogeneous computer architectures can benefit run-time, trading off

different characteristics in different situations.

From these experiments, the main conclusion we have come to is that, to ensure

the accuracy of the analysis, the Markov chain should only be run on the CPU. Whilst

multiple threads do not have an impact on the results up to four threads, we should

investigate what the limit is with respect to the complexity of the pedigree and the

number of markers used in an analysis. The GPU, however, should not be completely

discounted as it performs exceptionally well calculating LOD scores. In our current

application the Markov chain is thinned by only scoring every 10th iteration and LOD

scores are only calculated at a single point between each consecutive pair of markers.

The next version of SwiftLink will be able to calculate LOD scores at an arbitrary

number of points in between each marker. If this is performed at every iteration, then

it is potentially many times more work than the actual simulation being run. SwiftLink

will offload all LOD score calculations to the GPU which can then be handled at the

same time as the CPU calculates the next state in the chain. We predict this will be

even faster compared to a single-threaded implementation and improve the accuracy of

results as more samples will be taken into consideration.

7.8 Summary

In this chapter, we took three complete linkage studies: sensorineural deafness, EAST

syndrome and benign chorea. The sensorineural deafness case study was used to inves-

132

tigate the accuracy of our MCMC-based linkage analysis compared to the exact LOD

scores calculated by the Lander-Green algorithm. We showed that all versions of our

program, with the exception of GPU SwiftLink, produced accurate LOD scores and the

same regions of interest. We saw that the parallel versions of our samplers either expe-

rienced little (hybrid SwiftLink) or no difference (multithreaded CPU SwiftLink) in the

overall LOD curves generated at increasing levels of parallelism.

The two larger case studies: EAST syndrome and benign chorea, were run in

Simwalk, Morgan and SwiftLink. For SwiftLink, we ran it with varying numbers of

CPU threads, the GPU and both platforms combined. We showed that the multithreaded

CPU version produced very similar results to the single-threaded programs and achieved

a significant speedup, however, the sequential parts of the program made the gains of

adding more threads sub-linear. In terms of performance, the greatest speedups were

achieved by utilising both CPU and GPU thus leveraging the strengths of both platforms

by running the samplers on whichever platform was best suited to the nature of the cal-

culations required. Unfortunately, this is at the expense of accuracy in the regions of

interest in a pedigree the size and complexity of the benign chorea example.

In the final chapter, we will conclude, making a critical appraisal of the thesis as a

whole and outlining directions future research might take from here.

133

8 Conclusion

Good judgment comes from experience, and experience comes from bad judgment.

Frederick P. Brooks

In this final chapter, we will conclude by summarising the thesis, offer a critical

evaluation of our work and outline the future research that can be carried out from here.

8.1 Summary of Thesis

The core motivation for this thesis was practical in nature, related to our involvement

with a bioinformatics core facility providing expertise in genetic linkage analysis to in-

stitutes and clinicians throughout University College London. We noticed that, whilst

a majority of projects could be performed by programs that used exact algorithms, e.g.

Genehunter, Allegro and Merlin, the remainder either had to be abbreviated by remov-

ing siblings or inbreeding loops (occasionally with disastrous results) or else had to

be run using MCMC-based programs like Simwalk or Morgan. Our experiences with

Simwalk and Morgan were generally quite poor. Whenever Simwalk was used for a

project, it would block all other work on the meagre resources we had locally. Morgan

was always a pain to use as there was no readily available software to automatically

create input files, which might be due to the specification of those input files chang-

ing with every release 1 and the number of markers it was capable of analysing jointly

had previously been hard-coded to quite a low number. Our experiences with cluster
1Or at least it did during this thesis for versions 2.9, 3.0, 3.02 and 3.03!

134

computing had been mixed as well. Using a cluster requires an advanced knowledge of

UNIX and running jobs can be frustrating. You do not get any results from jobs when

the nodes they are running on fail and the scheduler exhibits bursty behaviour due to

jobs that request a large number of resources. Our main frustration was that even if

we invested in more hardware, we could not use more than 22 processors for a single

genome-wide linkage analysis (this assumes we are not using Simwalk, which has to be

run in many batches of markers to ensure the run-time is tractable, but then this suffers

from the opposite problem in that we could never get enough processors all batches

concurrently). What we wanted was the option to use an arbitrary number of processors

for a single analysis. Namely, if we had analyses to perform, then no available computer

processors should be sitting idle. As CPUs gain more processor cores in the future this

problem will become more acute. To these ends, it was clear that we would need to

fully understand the process by which Markov chain Monte Carlo was used to perform

linkage analysis and to identify, within this process, independent calculations that could

be performed in parallel.

In this thesis, we summarised the basic details of molecular genetics that someone

with a background in computer science, for example, would find necessary in order to

understand why we model inheritance the way we do. The hope was to promote an in-

tuitive understanding of the samplers by detailing the biological processes involved. We

stated the necessary likelihood calculations to assess whether two traits are in linkage

and identified that naı̈ve solutions would scale exponentially in terms of both the num-

ber of meiosis in the pedigree and the number of markers considered jointly. The main

algorithms used to evaluate this likelihood and the basic scaling properties they exhibit

were investigated. The Elston-Stewart algorithm scales exponentially with the num-

ber of markers, but linearly with the number of meioses in an outbred pedigree. Hidden

Markov models in the form of the Lander-Green algorithm scale in the opposite manner,

i.e. linearly with the number of markers, but exponentially with the number of meioses

in a pedigree. Whilst the Lander-Green algorithm cannot analyse large families, the

135

amount of work that went into incrementally increasing the size of problem it could

analyse speaks volumes for how important it is to gene mapping efforts. Outside of the

historical context, the reasons for developing these different algorithms are not obvious,

but when one considers that early studies would have only needed to assess linkage be-

tween two or three traits, the Elston-Stewart algorithm is clearly sufficient. Not until

the seminal work of Botstein et al. on the potential of molecular polymorphisms for

mapping, did the Elston-Stewart algorithm start to exhibit scaling difficulties.

Outside of the capabilities of exact algorithms for linkage analysis are algorithmic

approximations that employ MCMC to simulate the flow of genetic material through

the pedigree. Whilst these scale to larger problems than exact algorithms, they take a

long time to converge. This can be because of the long length of the Markov chain, like

with Simwalk, or because of the complexity of the sampling techniques employed, like

with Morgan. In a separate chapter, we detailed how two Gibbs samplers for linkage

analysis operated. Both samplers use the representation of the descent graph to capture

how genetic material flows from the founders down the pedigree. The locus sampler is

based on the Elston-Stewart algorithm and was first implemented in the Loki software

package. It samples ordered genotypes conditioned on flanking markers, which are

converted into meiosis indicators. The meiosis sampler is based on the Lander-Green

algorithm and was first implemented in the Morgan package. It samples the meiosis

indicators at a given meiosis across all loci. Additional details like the Sobel-Lange

estimator for calculating LOD scores between markers and how the Markov chain is

initialised using sequential imputation were also detailed.

Across two chapters, we discussed the different hardware platforms and supporting

software techniques that could be employed to implement parallel versions of the locus

and meiosis samplers. We then went on to flesh out the details empirically in a series

of benchmarks that informed us as to the right design decisions to make. In strictly

abstract terms, there is not any difference between multicore processors and GPUs.

Multicore processors contain several processor cores that can each work on indepen-

136

dent coarse-grained problems. Each core contains elements that can achieve fine-grain

parallelism as well, e.g. hyperthreading and SIMD instructions. GPUs work on coarse-

grain problems by defining them as blocks, which run on multiprocessors, and threads,

which run on CUDA cores. The overlapping terminology is unfortunate, as a CUDA

core, whilst general purpose, is not equivalent to the complexity or speed of a regu-

lar CPU core. From the perspective of the programmer, the main difference between

the two platforms is the programming model used to develop software. On the GPU,

Nvidia enforce a strict programming model that maps directly to hardware, forcing the

programmer to structure the program in the correct way. This makes it clear how the

system should be coded, but unfortunately requires a lot of work to port existing code.

Programming on the CPU is more free-form and, whilst software informs microproces-

sor design, programming techniques are normally invented first with specific hardware

support coming later. Our main techniques to parallelise the locus and meiosis sam-

plers on the CPU were to identify independent coarse-grained tasks that could be run in

different threads on different processor cores. In the case of the meiosis sampler, this

was the likelihood of all possible founder allele assignments for a given descent graph.

With the locus sampler, all markers were divided into n windows, with each window

being run on a different processor core. With the graphics card, we counter-intuitively

found that using the same number of threads as there were likelihood calculations in

each peeling operation resulted in so much overhead that it was more efficient to use

a fixed number of GPU threads for the entire peel. The complexity of the platform

means that there is no way to tell what number of threads will run the fastest outside

of testing them empirically. We discovered that higher numbers of threads, in excess

of the work there is to do, can improve performance considerably probably due to the

interplay between memory accesses and bus contention. The performance of the meio-

sis sampler was exceptionally poor on the GPU, prompting us to use an approximation,

which proved to give inaccurate results in our later case studies.

We ran three case studies to empirically test both the accuracy and performance of

137

our software that we named SwiftLink. In the first case study, sensorineural deafness,

we compared the results from SwiftLink with the Lander-Green algorithm-based Alle-

gro program. The results were found to be accurate, identifying the correct regions of

interest with an appropriate LOD score at varying degrees of parallelism. The second

two case studies: EAST syndrome and benign chorea, were used to compare the perfor-

mance of SwiftLink with Simwalk and Morgan. All versions of our program were faster

and scaled well across multiple processor cores, given the limitations of Amdahl’s law.

Both case studies exposed how inaccurate using just the GPU was, due to the approx-

imate windowed meiosis sampler. Fortunately, we were able to demonstrate that the

GPU could still be put to use by using a hybrid approach, leveraging the advantages of

both platforms by running the meiosis sampler on the CPU and the locus sampler on

the GPU. This proved to be the fastest approach on the hardware we had available, but

for the highly complex benign chorea pedigree suffered from a lower level of accuracy.

Our experiences suggest that for pedigrees of the approximate size and complexity of

the EAST syndrome case study, the hybrid approach works well. The final conclusions

we came to, was that, in order to ensure the veracity of the results without the user need-

ing to second guess whether the pedigree was too complicated or not, we should only

use the GPU for performing LOD score calculations. We identified that if you want

to sample at every iteration of the Markov chain and calculate LOD scores at multiple

points between each consecutive pair of markers, then the computation required would

actually outstrip running the Gibbs samplers for the simulation itself.

8.2 Critical Evaluation

The primary contributions of this thesis centred around three versions of our multipoint

linkage analysis program, SwiftLink.

• We developed multithreaded versions of both the locus Gibbs sampler and the

meiosis Gibbs sampler that, with the number of processor cores commonly avail-

able in current generation CPUs, scales well without any noticeable impact to the

138

accuracy of the analysis compared to single threaded implementations.

• We looked at a second parallel computing architecture: graphics processing units

(GPUs) and discovered that, whilst some algorithms fit the massively parallel ar-

chitecture well, others could not be implemented in a performant manner, as was

the case with the meiosis sampler. It was poorly suited to the GPU because it had

a particularly long sequential component proportional to the number of markers

in a chromosome. Approximations attempting to alleviate this were harmful to

the accuracy of results.

• Despite the failings of the GPU to perform all aspects of linkage analysis with

high performance, we can leverage the fact that modern computers are increas-

ingly heterogeneous and use both GPU and CPU in a single application. The

locus sampler and LOD score code performed best on the GPU, whereas the

meiosis sampler clearly only worked well on the CPU. All CUDA-based GPU

applications already involve the CPU, to copy data and to orchestrate the order-

ing of different CUDA kernel invocations. Utilising the CPU to perform a part of

the analysis it is better suited to is a natural extension.

• Finally, all our software was evaluated empirically on case studies that investi-

gated the accuracy, run-time performance and memory requirements in scenarios

of varying size. These case studies allowed us to identify where different ap-

proaches could not be applied without affecting results.

Whilst we broadly succeeded at what we set out to do, i.e. parallel linkage analysis

on two different parallel computer architectures, we do not really know how much better

we could do, even on the same hardware. The CPU architecture was only used in the

coarsest manner possible, spreading work across multiple threads. We did not exploit

139

some of the finer-grain possibilities, for example, SIMD instructions could be used to

accelerate the work in each thread [75]. However, it is not clear to what extent this

could be exploited in our application domain nor is it clear how much time it would

take to reorganise the existing code base to permit vectorisation. Similarly, our hybrid

CPU / GPU application only operated in a crude manner, using either the CPU or GPU

at any given time. The locus sampler and LOD scoring code runs on both platforms

and at least this work could be divided evenly between the two. This is described in

greater detail in the next section about future research. Even though the locus sampler

and LOD score code performed well on the GPU, it could be better. For example,

when performing the sampling phase of the locus sampler, many resources are idle

because the sampling itself is run in a single thread. CUDA provides an interface to

permit multiple streams of execution to be run concurrently. If we had two copies of

the current descent graph, where one is always read-only and the other is write-only at

any given time (similar to back-buffering in computer graphics), then the LOD scores

could be calculated at the same time as the sampling process is performed in the locus

sampler. In this way, we would utilise more of the hardware more of the time, though

at the expense of additional complexity. One argument why it might be unwise to try

to gain as much speed as possible is that to date we have only tested a single model of

graphics card. We do not really know what the impact of such changes will be on other

GPUs, which would have to be considered. The same argument can be made about

the current version of the code. The problem is broken down in a simple manner and

before each simulation short experiments are performed by the application to ensure

that it is using the optimum number of threads for LOD scoring and the locus sampler

individually.

One of the most obvious criticisms is that we do not provide many modes of anal-

ysis for the user, the only one being parametric linkage analysis. We had considered

extending pre-existing linkage analysis software and offering the changes either as a

patch-set to be applied to the source code of the other project or directly to the authors

of the software. This idea was rejected in the case of Simwalk because it was written

140

in Fortran 77, a language that does not feature dynamic memory, making it measurably

more complicated. Morgan, on the other hand, is written in C, but parts of it date back

to the original Loki implementation of pedigree peeling, clearly written when memory

was not as abundant as today and would have required an enormous amount of work

to refine for our purposes. In addition, there are very many code paths for multiple

analysis programs which we may have broken inadvertently. The final nail in the coffin

was our wish to investigate GPU programming which we knew would require extensive

rewriting. As it was, porting our own code, which we understood completely, was im-

mensely difficult. Other missing features that are available in many linkage programs

are: the ability to use a different genetic map for each sex to take into account the dif-

ferences in recombination fractions, the ability to analyse X-linked traits, to be able

to use polymorphic markers instead of SNPs and finally to calculate LOD scores at a

user-defined number of positions between markers.

A criticism of all linkage analysis software is its poor ease of use. Outside of en-

suring that input files are formatted correctly, SwiftLink does not prevent the user from

making the wrong decisions. For example, if the user runs twice the number of threads

as there are processor cores, the application will be slowed down by the needless over-

head. There is not a neat solution to this outside of some system-wide oracle that

understands what the computer is being used for and how many resources to allocate.

As our focus is really on a single desktop PC, we default to using a single thread and

otherwise make the user select the number of threads to use with a command line flag.

8.3 Application and Promotion

A majority of linkage analysis projects involving large consanguineous pedigrees with

many markers either rely on the Simwalk software package or abbreviate the input

data so it can be run by a Lander–Green algorithm-based program. The potential role

SwiftLink can play in future genetic research will be in projects of this kind, greatly

reducing analysis time. As we have shown in this thesis, SwiftLink excels at analysing

141

pedigrees that are similar in size to the EAST pedigree (Figure 6.1a), which is a 26-

bit pedigree, but suffers with convergence problems in larger pedigrees. Certainly, any

pedigree that just exceeds the capabilities of Allegro would be well suited to analysis

with SwiftLink. SwiftLink has been carefully designed to slot into existing linkage

analysis workflows as it accepts classical “Linkage” input files, in a similar fashion

to Allegro and Merlin. SwiftLink is currently being used for projects from several

research groups within University College London. As it is currently in a “beta” version,

Simwalk is run at the same time and the results compared.

SwiftLink will be promoted in several ways. A manuscript is currently in the pro-

cess of being written and will be submitted to a suitable journal once complete. Once

the publication is in press, details will be submitted to an online directory of genetic

analysis software (for example [4]).

8.4 Future Research

The biggest improvements in performance came from utilising whichever platform best

suited the particular algorithm. The locus sampler and LOD scoring code ran well on

the graphics card, whereas the accuracy of the meiosis sampler suffered in that situation

and ran better in multiple threads on the CPU. Despite the fact this hybrid approach is

already the fastest MCMC linkage analysis program, there are clear ways that it could

be extended. For example, whilst both CPU and GPU platforms were used, only one

was being used at any given time. When the GPU was running, the CPU was idle and

vice-versa. The LOD scoring code can be run independently of the Markov chain, as-

suming that the underlying descent graph does not change. This could be an enormous

speedup in the case where more than one LOD needs to be calculated between each

pair of markers. This could even be investigated for the meiosis sampler, by performing

the likelihood calculations on the GPU and copying the results to the host PC where

the sampling is performed on the CPU. In a similar vein to distributing work efficiently

between the CPU and GPU in the same computer, we did not address how this would be

142

done across multiple computers. Even with the limitations imposed by Amdahl’s law, if

there is available hardware, there is no reason why this cannot be used in the same anal-

ysis across a network, using, for example, MPI or MapReduce. An additional problem

is that if these networked PCs had a mixture of different graphics cards with different

capabilities, then how best they could be utilised would have to be dynamically decided

by the running system.

There is a more abstract framework that encompasses all of these problems. Given

a finite set of computing resources, where the time to complete a unit of work is de-

fined as a function of the total run-time and the latency involved in memory copies and

network signalling, what is the best way to utilise these resources to perform the task

at hand? The work here is not a single linkage analysis (Amdahl’s law clearly prevents

us from scaling a single analysis infinitely), but it may be an entire genome-wide scan

or many of them in different projects. Clearly, if we have fewer resources than jobs,

then each job that gets to run should do so in the most efficient way, which is with a

single thread. But as resources become idle, a currently running simulation could be

signalled to expand into these resources as well. Maybe our cost function could be more

complex than maximising throughput. It could involve all work being done in the most

energy-efficient way possible, actively preventing hardware being utilised if the total

gain in throughput is lower than a certain threshold. For example, doubling the number

of processors to finish a few minutes faster is probably not worth it. In addition, such a

system might take into account the earliest time that a user might actually use the results

of the analysis, running on fewer processors overnight to finish at 9am when a user gets

to their desk in the morning.

Another facet of the problem of how best to utilise available resources is how this is

presented to the user. Whilst a few simple front-ends exist to format input files and run

programs in preset pipelines, it is clear that a thorough investigation of human/computer

interaction (HCI) is necessary to both manage the expectations of the user and promote

143

more accurate analysis. To make a case in point, there are no restrictions on running

enormous numbers of SNPs in a single analysis, even though this breaks the assump-

tion of linkage equilibrium that almost all programs implicitly make. There is a growing

body of work focused on interactive design in the field of machine learning that seeks

to better involve the user in the details of an algorithm, so they develop an abstract un-

derstanding of what is happening in an otherwise black box. This research would be an

excellent starting point to understand how we can better present genetic analysis.

We did not investigate other MCMC schemes, such as using multiple chains, simu-

lated tempering or parallel tempering. Our work to date on parallel samplers will be of

use to any of these schemes. Multiple independent Markov chains suffer from scaling

limitations due to the overhead of getting to the equilibrium distribution. Essentially,

each chain must perform a suitable amount of burn-in to ensure it is sampling from the

equilibrium distribution and this will dictate the length of the chain. For example, if

you want to run the equivalent of 100,000 iterations of a single chain with 10% burn-in,

then each chain will still need to run the same amount of burn-in followed by whatever

proportion of the chain it has been assigned to run. In the case of requiring 10% of the

total Markov chain iterations to be discarded as burn-in, then a 10x speedup would be

the maximum possible.

Simulated and parallel tempering have an additional parameter of temperature that

relaxes the model and therefore increases the acceptance rates of the Markov chain/s.

Simulated tempering alters the temperature of a single chain up and down during the

simulation, whereas parallel tempering has one Markov chain per temperature and ex-

changes states between chains. This would be one possible way to use multiple net-

worked computers, each running their own chain at a given temperature, but each chain

utilises all local processor cores. The advantages are meant to be that chains converge

faster due to their being able to better explore the state space, but further experiments

would be required to see if this is a large enough pay-off to invest the necessary time,

especially now most genome-wide scans take only a few hours.

144

The final issue we have overlooked throughout this thesis is the subject of haplotype

reconstruction. Haplotype reconstruction is similar to linkage analysis but whereas

linkage is run as a simulation over possible descent graphs, haplotype reconstruction is

an optimisation process that aims to find the most likely descent state. Simwalk uses

simulated annealing to find both the initial descent graph of the Markov chain and to

find the most likely descent state for haplotype reconstruction. Unfortunately, we are

unaware of any approaches that use Gibbs samplers in a similar way. One possibility

that we did not have time to investigate is using the temperature parameter in annealing

to alter the values of the genetic model itself (i.e. the recombination fractions between

markers) to find the most likely descent graph and then enumerate all possible founder

alleles for that descent graph to find the most likely combination.

145

Bibliography

[1] G R Abecasis and J E Wigginton. “Handling marker-marker linkage disequi-

librium: pedigree analysis with clustered markers”. In: American Journal of

Human Genetics 77.5 (2005), pp. 754–767.

[2] G R Abecasis et al. “GRR: graphical representation of relationship errors”. In:

Bioinformatics 17.8 (2001), pp. 742–743.

[3] G R Abecasis et al. “Merlin–rapid analysis of dense genetic maps using sparse

gene flow trees”. In: Nature Genetics 30.1 (2002), pp. 97–101.

[4] An alphabetic list of genetic analysis software. URL: http://www.nslij-

genetics.org/soft/.

[5] P Armitage. “Tests for linear trends in proportions and frequencies”. In: Bio-

metrics 11.3 (1955), pp. 375–386.

[6] Auto-vectorization in GCC. URL: http://gcc.gnu.org/projects/tree-

ssa/vectorization.html.

[7] M J Bamshad et al. “Exome sequencing as a tool for Mendelian disease gene

discovery”. In: Nature Reviews Genetics 12.11 (2011), pp. 745–755.

[8] D Bockenhauer et al. “Epilepsy, ataxia, sensorineural deafness, tubulopathy, and

KCNJ10 mutations”. In: The New England Journal of Medicine 360.19 (2009),

pp. 1960–1970.

[9] C E Bonferroni. “Teoria statistica delle classi e calcolo delle probabilità”. In:

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di

Firenze 1.8 (1936), pp. 3–62.

146

[10] D Botstein et al. “Construction of a genetic linkage map in man using restric-

tion fragment length polymorphisms”. In: American Journal of Human Genet-

ics 32.3 (1980), pp. 314–331.

[11] A E Brockwell. “Parallel Markov chain Monte Carlo simulation by pre-fetching”.

In: Journal of Computational and Graphical Statistics 15.1 (2006), pp. 246–

261.

[12] K W Broman et al. “Comprehensive human genetic maps: Individual and sex-

specific variation in recombination”. In: American Journal of Human Genetics

63.3 (1998), pp. 861–869.

[13] J Byrd, S Jarvis, and A Bhalerao. “On the parallelisation of MCMC-based im-

age processing”. In: In Proceedings of IEEE International Workshop on High

Performance Computational Biology (HiCOMB) (2010).

[14] C Cannings, E A Thompson, and H H Skolnick. “The recursive derivation of

likelihoods on complex pedigrees”. In: Advances in Applied Probability 8.4

(1976), pp. 622–625.

[15] C Cannings, E A Thompson, and M H Skolnick. “Probability functions on com-

plex pedigrees”. In: Advances in Applied Probability 10.1 (1978), pp. 26–61.

[16] V G Cheung et al. “Polymorphic variation in human meiotic recombination”.

In: American Journal of Human Genetics 80.3 (2007), pp. 526–530.

[17] G Conant et al. “Parallel Genehunter: Implementation of a linkage analysis

package for distributed-memory architectures”. In: IEEE workshop on high per-

formance computational biology 16 (2002).

[18] The International HapMap Consortium. “A haplotype map of the human genome”.

In: Nature 437.7063 (2005), pp. 1299–1320.

[19] R W Cottingham, R M Idury, and A A Schäffer. “Faster sequential genetic

linkage computations”. In: American Journal of Human Genetics 53.1 (1993),

pp. 252–263.

147

[20] CPU/GPU architecture comparison. URL: http://commons.wikimedia.

org/wiki/File:Cpu-gpu.svg.

[21] CUDA processing flow. URL: http://commons.wikimedia.org/wiki/

File:CUDA_processing_flow_(En).PNG.

[22] D J Earl and M W Deem. “Parallel tempering: theory, applications, and new

perspectives”. In: Physical Chemistry Chemical Physics 7.23 (2005), pp. 3910–

3916.

[23] A P Dempster, N M Laird, and D B Rubin. “Maximum likelihood from incom-

plete data via the EM algorithm”. In: Journal of the Royal Statistical Society.

Series B (Methodological) 39.1 (1977), pp. 1–38.

[24] B Devlin and N Risch. “A comparison of linkage disequilibrium measures for

fine-scale mapping”. In: Genomics 29.2 (1995), pp. 311–322.

[25] K Diefendorff et al. “AltiVec extension to PowerPC accelerates media process-

ing”. In: IEEE Micro 20.2 (2000), pp. 85–95.

[26] P Eastman and V Pande. “OpenMM: a hardware-independent framework for

molecular simulations”. In: Computing in Science and Engineering 12.4 (2010),

pp. 34–39.

[27] R C Elston and J Stewart. “A general model for the genetic analysis of pedigree

data”. In: Human Heredity 21.6 (1971), pp. 523–542.

[28] Erlang website. URL: http://www.erlang.org/.

[29] M Fishelson and D Geiger. “Exact genetic linkage computations for general

pedigrees”. In: Bioinformatics 18 Suppl 1 (2002), S189–198.

[30] M Fishelson and D Geiger. “Optimizing exact genetic linkage computations”.

In: Journal of Computational Biology 11.2-3 (2004), pp. 263–275.

[31] K A Frazer et al. “A second generation human haplotype map of over 3.1 mil-

lion SNPs”. In: Nature 449.7164 (2007), pp. 851–861.

148

[32] D Geiger, C Meek, and Y Wexler. “A variational inference procedure allow-

ing internal structure for overlapping clusters and deterministic constraints”. In:

Journal of Artificial Intelligence Research 27.1 (2006).

[33] A Gelman and D Rubin. “Inference from iterative simulation using multiple

sequences”. In: Statistical Science 7.4 (1992), pp. 457–472.

[34] S Geman and D Geman. “Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 6.6 (1984), pp. 721–741.

[35] A W George et al. “Markov chain Monte Carlo methods for the calculation of

likelihoods in genetic linkage studies”. In: American Journal of Human Genet-

ics 69 (2001), A1337.

[36] P J Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination”. In: Biometrika 82.4 (1995), pp. 711 –732.

[37] W Gropp. “A high-performance, portable implementation of the MPI message

passing interface standard”. In: Parallel Computing 22.6 (1996), pp. 789–828.

[38] D F Gudbjartsson et al. “Allegro, a new computer program for multipoint link-

age analysis”. In: Nature Genetics 25.1 (2000), pp. 12–13.

[39] D F Gudbjartsson et al. “Allegro version 2”. In: Nature Genetics 37.10 (2005),

pp. 1015–1016.

[40] J B S Haldane. “The combination of linkage values, and the calculation of dis-

tance between the loci of linked factors”. In: Journal of Genetics 8.4 (1919),

pp. 291–297.

[41] W K Hastings. “Monte Carlo sampling methods using Markov chains and their

applications”. In: Biometrika 57.1 (1970), pp. 97–109.

[42] S C Heath. “Markov chain Monte Carlo segregation and linkage analysis for

oligogenic models”. In: American Journal of Human Genetics 61.3 (1997),

pp. 748–760.

149

[43] S Hong et al. “Accelerating CUDA graph algorithms at maximum warp”. In:

Proceedings of the 16th Annual Symposium on Principles and Practice of Par-

allel Programming (2011).

[44] Q Huang, S Shete, and C I Amos. “Ignoring linkage disequilibrium among

tightly linked markers induces false-positive evidence of linkage for affected sib

pair analysis”. In: American Journal of Human Genetics 75.6 (2004), pp. 1106–

1112.

[45] IBM Corporation. The Cell Architecture. URL: http://domino.research.

ibm.com/comm/research.nsf/pages/r.arch.innovation.html.

[46] Id Software, Quake website. URL: http://www.idsoftware.com/games/

quake/quake.

[47] R M Idury and R C Elston. “A faster and more general hidden Markov model al-

gorithm for multipoint likelihood calculations”. In: Human Heredity 47.4 (1997),

pp. 197–202.

[48] Intel Corporation. Pentium processors with MMX technology. URL: http://

www.intel.com/p/en_US/embedded/hwsw/hardware/pentium-mmx.

[49] M Irwin, N Cox, and A Kong. “Sequential imputation for multilocus linkage

analysis”. In: Proceedings of the National Academy of Sciences 91.24 (1994),

pp. 11684–11688.

[50] M Kanellos. Moore’s law to roll on for another decade. URL: http://news.

cnet.com/2100-1001-984051.html.

[51] P Keleher et al. “TreadMarks: distributed shared memory on standard worksta-

tions and operating systems”. In: In proceedings of the 1994 winter USENIX

conference (1994), pp. 115–131.

[52] A P Klein et al. “Investigation of altering single-nucleotide polymorphism den-

sity on the power to detect trait loci and frequency of false positive in non-

parametric linkage analyses of qualitative traits”. In: BMC Genetics 6.Suppl 1

(2005), S20–S20.

150

[53] R J Klein et al. “Complement factor H polymorphism in age-related macular

degeneration”. In: Science 308.5720 (2005), pp. 385–389.

[54] A Kong. “Analysis of pedigree data using methods combining peeling and Gibbs

sampling”. In: Computer Science and Statistics: Proceedings of the 23rd Sym-

posium on the Interface (1991), pp. 379–385.

[55] A Kong et al. “A high-resolution recombination map of the human genome”.

In: Nature Genetics 31.3 (2002), pp. 241–247.

[56] A Kong et al. “Fine-scale recombination rate differences between sexes, popu-

lations and individuals”. In: Nature 467.7319 (2010), pp. 1099–1103.

[57] L Kruglyak, M J Daly, and E S Lander. “Rapid multipoint linkage analysis

of recessive traits in nuclear families, including homozygosity mapping”. In:

American Journal of Human Genetics 56.2 (1995), pp. 519–527.

[58] L Kruglyak and E S Lander. “Complete multipoint sib-pair analysis of quali-

tative and quantitative traits”. In: American Journal of Human Genetics 57.2

(1995), pp. 439–454.

[59] L Kruglyak and E S Lander. “Faster multipoint linkage analysis using Fourier

transforms”. In: Journal of Computational Biology 5.1 (1998), pp. 1–7.

[60] L Kruglyak et al. “Parametric and nonparametric linkage analysis: a unified

multipoint approach”. In: American Journal of Human Genetics 58.6 (1996),

pp. 1347–1363.

[61] E Lander and L Kruglyak. “Genetic dissection of complex traits: guidelines

for interpreting and reporting linkage results”. In: Nature Genetics 11.3 (1995),

pp. 241–247.

[62] E S Lander and P Green. “Construction of multilocus genetic linkage maps in

humans”. In: Proceedings of the National Academy of Sciences 84.8 (1987),

pp. 2363–2367.

[63] E S Lander and N J Schork. “Genetic dissection of complex traits”. In: Science

265.5181 (1994), pp. 2037–2048.

151

[64] E S Lander et al. “Initial sequencing and analysis of the human genome”. In:

Nature 409.6822 (2001), pp. 860–921.

[65] K Lange and M Boehnke. “Extensions to pedigree analysis. V. Optimal calcu-

lation of Mendelian likelihoods”. In: Human Heredity 33.5 (1983), pp. 291–

301.

[66] K Lange and S Matthysse. “Simulation of pedigree genotypes by random walks”.

In: American Journal of Human Genetics 45.6 (1989), pp. 959–970.

[67] K Lange and E Sobel. “A random walk method for computing genetic location

scores.” In: American Journal of Human Genetics 49.6 (1991), pp. 1320–1334.

[68] G M Lathrop et al. “Multilocus linkage analysis in humans: detection of linkage

and estimation of recombination”. In: American Journal of Human Genetics

37.3 (1985), pp. 482–498.

[69] G M Lathrop et al. “Strategies for multilocus linkage analysis in humans”. In:

Proceedings of the National Academy of Sciences 81.11 (1984), pp. 3443–3446.

[70] S L Lauritzen and N A Sheehan. “Graphical models for genetic analysis”. In:

Statistical Science 18.4 (2003), pp. 489–514.

[71] R Leadbetter. The legacy of id software. URL: http://www.gamesindustry.

biz/articles/digitalfoundry-the-legacy-of-id-software.

[72] A Lee et al. “On the utility of graphics cards to perform massively parallel

simulation of advanced Monte Carlo methods”. In: Journal of Computational

and Graphical Statistics 19.4 (2009).

[73] E A Lee. “The Problem with Threads”. In: IEEE Computer 39.5 (2006), pp. 33–

42.

[74] S H Lee, J H J Van der Werf, and B Tier. “Combining the meiosis Gibbs sam-

pler with the random walk approach for linkage and association studies with

a general complex pedigree and multimarker loci”. In: Genetics 171.4 (2005),

pp. 2063–2072.

152

[75] V Lee et al. “Debunking the 100x GPU vs. CPU myth: an evaluation of through-

put computing on CPU and GPU”. In: ACM SIGARCH Computer Architecture

News, ISCA ’10 38.3 (2010), pp. 451–460.

[76] S Lin and T P Speed. “Incorporating crossover interference into pedigree anal-

ysis using the �2 model”. In: Human Heredity 46.6 (1996), pp. 315–322.

[77] M J Litzkow, M Livny, and M W Mutka. “Condor: a hunter of idle worksta-

tions”. In: Distributed Computing Systems. 1988, pp. 104–111.

[78] C Liu et al. “SOAP3: ultra-fast GPU-based parallel alignment tool for short

reads”. In: Bioinformatics 28.6 (2012), pp. 878–879.

[79] Major events in meiosis. URL: http://commons.wikimedia.org/wiki/

File:MajorEventsInMeiosis_variant.svg?uselang=en-gb.

[80] K Markianos, M J Daly, and L Kruglyak. “Efficient multipoint linkage anal-

ysis through reduction of inheritance space”. In: American Journal of Human

Genetics 68.4 (2001), pp. 963–977.

[81] M Matsumoto and T Nishimura. “Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator”. In: ACM Transactions on

Modeling and Computer Simulation 8.1 (1998), pp. 3–30.

[82] R Merritt. CPU designers debate multi-core future. URL: http://eetimes.

com/electronics-news/4076123/CPU-designers-debate-multi-

core-future.

[83] N Metropolis. “The beginning of the Monte Carlo method”. In: Los Alamos

Science 15 (1987), pp. 125–130.

[84] N Metropolis et al. “Equation of state calculations by fast computing machines”.

In: The Journal of Chemical Physics 21.6 (1953), p. 1087.

[85] Microsoft Direct X website. URL: http://www.microsoft.com/games/

en-gb/aboutGFW/pages/directx.aspx.

153

[86] Microsoft DirectCompute website. URL: http://msdn.microsoft.com/

en-us/library/windows/desktop/ff476331(v=vs.85).aspx.

[87] G E Moore. “Cramming more components onto integrated circuits”. In: Elec-

tronics 38.8 (Apr. 1965), p. 114.

[88] T H Morgan. “Sex limited inheritance in drosophila”. In: Science 32.812 (1910),

pp. 120–122.

[89] Morgan 3 Tutorial. URL: http://www.stat.washington.edu/thompson/

Genepi / MORGAN / morgan303 - tut - html / morgan - tut \ _8 . html \

#SEC57.

[90] N E Morton. “Sequential tests for the detection of linkage”. In: American Jour-

nal of Human Genetics 7.3 (1955), pp. 277–318.

[91] N Mukhopadhyay et al. “Mega2: data-handling for facilitating genetic linkage

and association analyses”. In: Bioinformatics 21.10 (2005), pp. 2556–2557.

[92] NHGRI Karyogram. URL: http : / / commons . wikimedia . org / wiki /

File:NHGRI_human_male_karyotype.png.

[93] Nvidia CUDA C programming guide, version 4.0. URL: http://developer.

nvidia.com/nvidia-gpu-computing-documentation.

[94] Nvidia CUDA website. URL: http://www.nvidia.com/object/cuda_

home_new.html.

[95] J R O’Connell and D E Weeks. “PedCheck: a program for identification of

genotype incompatibilities in linkage analysis”. In: American Journal of Human

Genetics 63.1 (1998), pp. 259–266.

[96] J R O’Connell and D E Weeks. “The VITESSE algorithm for rapid exact mul-

tilocus linkage analysis via genotype set-recoding and fuzzy inheritance”. In:

Nature Genetics 11.4 (1995), pp. 402–408.

[97] OpenCL website. URL: http://www.khronos.org/opencl/.

[98] OpenGL website. URL: http://www.opengl.org/.

154

[99] J Ott. “A computer program for linkage analysis of general human pedigrees”.

In: American Journal of Human Genetics 28.5 (1976), pp. 528–529.

[100] J Ott. “Estimation of the recombination fraction in human pedigrees: efficient

computation of the likelihood for human linkage studies.” In: American Journal

of Human Genetics 26.5 (1974), pp. 588–597.

[101] J Ott. “Maximum likelihood estimation by counting methods under polygenic

and mixed models in human pedigrees.” In: American Journal of Human Ge-

netics 31.2 (1979), pp. 161–175.

[102] J C Pérez-Póveda, L G Palacio, and M Arcos-Burgos. “Description of an endog-

amous, multigenerational and extensive family with benign hereditary chorea

from the Paisa community”. In: Revista de Neurologia 41.2 (2005), pp. 95–98.

[103] M Plummer et al. “CODA: convergence diagnosis and output analysis for MCMC”.

In: R News 6.1 (2006), pp. 7–11.

[104] L R Rabiner. “A tutorial on hidden Markov models and selected applications in

speech recognition”. In: Proceedings of the IEEE 77 (1989), pp. 257–286.

[105] F Rüschendorf and P Nürnberg. “ALOHOMORA: a tool for linkage analysis

using 10K SNP array data”. In: Bioinformatics 21.9 (2005), pp. 2123–2125.

[106] F Sanger, S Nicklen, and A R Coulson. “DNA sequencing with chain-terminating

inhibitors”. In: Proceedings of the National Academy of Sciences 74.12 (1977),

pp. 5463–5467.

[107] Scala website. URL: http://www.scala-lang.org/.

[108] A A Schäffer et al. “Avoiding recomputation in linkage analysis”. In: Human

Heredity 44.4 (1994), pp. 225–237.

[109] N Sheehan and A Thomas. “On the irreducibility of a Markov chain defined on

a space of genotype configurations by a sampling scheme”. In: Biometrics 49.1

(1993), pp. 163–175.

155

[110] M Silberstein et al. “Online system for faster multipoint linkage analysis via

parallel execution on thousands of personal computers”. In: American Journal

of Human Genetics 78.6 (2006), pp. 922–935.

[111] E Sobel and K Lange. “Descent graphs in pedigree analysis: applications to hap-

lotyping, location scores, and marker-sharing statistics”. In: American Journal

of Human Genetics 58.6 (1996), pp. 1323–1337.

[112] E Sobel and K Lange. “Metropolis sampling in pedigree analysis”. In: Statisti-

cal Methods in Medical Research 2.3 (1993), pp. 263–282.

[113] E Sobel, H Sengul, and D E Weeks. “Multipoint estimation of identity-by-

descent probabilities at arbitrary positions among marker loci on general pedi-

grees”. In: Human Heredity 52.3 (2001), pp. 121–131.

[114] H C Stanescu et al. “Risk HLA-DQA1 and PLA2R1 alleles in idiopathic mem-

branous nephropathy”. In: The New England Journal of Medicine 364.7 (2011),

pp. 616–626.

[115] A H Sturtevant. “The linear arrangement of six sex-linked factors in drosophila,

as shown by their mode of association”. In: Journal of Experimental Zoology

14.1 (1913), pp. 43–59.

[116] M A Suchard and A Rambaut. “Many-core algorithms for statistical phyloge-

netics”. In: Bioinformatics 25.11 (2009), pp. 1370–1376.

[117] H Sutter. “The free lunch is over”. In: Dr Dobb’s Journal 30.3 (2005).

[118] R H Swendsen and J Wang. “Replica Monte Carlo simulation of spin-glasses”.

In: Physics Review Letters 57 (21 1986), pp. 2607–2609.

[119] A Thomas. “Optimal computation of probability functions for pedigree analy-

sis”. In: Mathematical Medicine and Biology 3.3 (1986), pp. 167–178.

[120] E A Thompson. Morgan. URL: http://www.stat.washington.edu/

thompson/Genepi/MORGAN/Morgan.shtml.

156

[121] E A Thompson and S C Heath. “Estimation of conditional multilocus gene iden-

tity among relatives”. In: Lecture Notes-Monograph Series 33 (1999), pp. 95–

113.

[122] L Tong and E A Thompson. “Multilocus LOD scores in large pedigrees: combi-

nation of exact and approximate calculations”. In: Human Heredity 65.3 (2008),

pp. 142–153.

[123] J C Venter et al. “The sequence of the human genome”. In: Science 291.5507

(2001), pp. 1304–1351.

[124] A Viterbi. “Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm”. In: IEEE Transactions on Information Theory 13.2

(1967), pp. 260–269.

[125] P D Vouzis and N V Sahinidis. “GPU-BLAST: using graphics processors to ac-

celerate protein sequence alignment”. In: Bioinformatics 27.2 (2011), pp. 182–

188.

[126] E M Wijsman, J H Rothstein, and E A Thompson. “Multipoint linkage anal-

ysis with many multiallelic or dense diallelic markers: Markov chain-Monte

Carlo provides practical approaches for genome scans on general pedigrees”.

In: American Journal of Human Genetics 79.5 (2006), pp. 846–858.

[127] R Winterhalter. Why Quake changed games forever. URL: http://www.1up.

com/features/why-quake-changed-games-forever.

157

A Appendix

A.1 Manual

SwiftLink is a program for multipoint linkage analysis on large pedigrees using Gibbs

sampling written in C++ for Linux and distributed under the GNU Public License

version 3 (GPL3) with no warranty. For more details about the licence see http:

//www.gnu.org/licenses/gpl-3.0.html.

A.1.1 Installation

SwiftLink requires that the following software and libraries be installed: gcc (at least

version 4.2 to use OpenMP, tested with version 4.4.3), git, make, GNU scientific library

(version 1.13 tested) and CUDA 4.0 development kit. SwiftLink has only been tested

on Nvidia graphics cards that had compute capacity 2.0 or better. The additional tools

require python (version 2.6.5 tested) and gnuplot (version 4.2 tested). SwiftLink has

only been tested on Ubuntu GNU/Linux 64-bit using the 2.6.32-39-server kernel.

The current version of SwiftLink is available from the author’s GitHub repository

at: https://github.com/ajm/swiftlink. A copy of the complete repository can

be downloaded using Github’s web interface or from the command line with:

git clone git://github.com/ajm/swiftlink.git

All versions are compiled with:

make

158

It is possible (almost approaching certain) that you will have to edit the Makefile, just

a little, to indicate the locations of different libraries. In addition, all binaries must be

manually copied to a directory in your PATH. The build system will be improved at a

later date.

A.1.2 Options

SwiftLink contains options to tell it the locations of input files and how to run the

simulation. There are two binaries: swift32 and swift64, both have the same options,

but we recommend that swift32 be used with a graphics card and swift64 used on the

CPU.

SwiftLink has the following options:

-p pedfile --pedigree=pedfile

Indicates the location of the pedigree file. See Section A.1.4 for more details.

This option is mandatory.

-m mapfile --map=mapfile

Indicates the location of the map file. See Section A.1.4 for more details. This

option is mandatory.

-d datfile --dat=datfile

Indicates the location of the linkage-style data file. See Section A.1.4 for more

details. This option is mandatory.

-o outfile --output=outfile

Sets the name of the output file for the linkage analysis results. The default output

file is called “linkage.out” in the current working directory.

-i NUM --iterations=NUM

Sets the number of iterations that the Markov chain will be run for. Note that this

number does not include any burn-in, which is set separately. The default number

of iteration is 90,000.

159

-b NUM --burnin=NUM

Sets the number of burn-in iterations that are run before the simulation starts. The

default number of burn-in iterations is 10,000.

-s NUM --sequentialimputation=NUM

Sets the number of iterations of sequential imputation that are performed to find

a good starting state for the Markov chain. The default number of sequential

imputation iterations is 1,000.

-x NUM --scoringperiod=NUM

Sets the scoring period, which states how often to sample from the Markov chain

to calculate LOD scores. For example, setting the scoring period to 10 will score

every 10th iteration. The default scoring period is 1.

-l FLOAT --lsamplerprobability=FLOAT

Sets the probability that the locus sampler is selected at each iteration of the

Markov chain. The default locus sampler probability is 0.5.

-c NUM --cores=NUM

Sets the number of threads that will be spawned in parallel. The default number

of threads is 1. This should not be set higher than the number of processor cores,

as it will just result in wasted overhead.

-g --gpu

If set, then SwiftLink will use the primary GPU.

-v --verbose

Increasing verbosity provides additional information as the program is running,

such as how it has interpretted the input files and various warnings.

-h --help

Displays information about options for SwiftLink.

160

A.1.3 Examples

A basic run of SwiftLink using 100 iterations of sequential imputation and 30,000 iter-

ations of MCMC, of which 10% are burn-in, and run in a single thread:

swift64 -p pedin.01 -m map.01 -d datain.01

-s 100 -i 27000 -b 3000

The same as before, but now running in four CPU threads and specifying an results file

called “results.01”:

swift64 -p pedin.01 -m map.01 -d datain.01

-s 100 -i 27000 -b 3000 -c 4 -o results.01

Using the 32-bit version of SwiftLink with the GPU and four CPU threads on the same

analysis:

swift32 -p pedin.01 -m map.01 -d datain.01

-s 100 -i 27000 -b 3000 -c 4 -g

A.1.4 File Formats

All input files are currently identical to the Linkage program. Whilst we could have

designed some more intuitive file formats, many modern programs, e.g. Allegro and

several others, do the same thing. The main advantage of supporting the Linkage for-

mat of input files, is that user can already use existing tools to format their data, e.g.

Alohomora. Merlin currently supports both the original Linkage format and its own

custom format. In the future, it is likely that we will either support the Merlin format,

or try to design something better.

All files can include comments by using the hash (#) symbol. All characters after

the hash are ignored by SwiftLink.

161

Pedigree File

The pedigree file contains information about the individuals that will be analysed. Each

line corresponds to an individual. An individual is described using six fields followed

by two fields per genotype. The first six fields are identifiers of: pedigree, individuals

id, fathers id, mothers id, gender and affection status.

All columns must be positive numeric values. The pedigree field is an identifier to

state which pedigree the individual belongs to. A pedigree file can contain an arbitrary

number of pedigrees, they will each be examined in turn. The id field uniquely identi-

fiers the individual, this can be any positive integer with the exception of zero, as zero is

reserved to indicate individuals not found in the pedigree, like the parents of founders.

The next two columns are the identifiers of the individuals father and mother, respec-

tively. If the individual is a founder, then their parents are both 0. Individuals can be put

in any order in a pedigree file, so individuals can forward reference parents that have

not been defined so far in the file. The last two columns are sex and affection status.

Sex has three possible values: 0 for unknown, 1 for male and 2 for female. Affections

status has three possible values as well: 0 for unknown affection, 1 for unaffected and

2 for affected.

As an example, take the pedigree in Figure A.1. There are six individuals in the

pedigree, so each will get its own line. There is only a single pedigree so we have made

everyone belong to pedigree 1 by setting that as the value in the pedigree column. Each

individual is numbered 1–6 in column 2 (it does not matter that we have pedigree 1

and individual 1, in fact, if there was a second pedigree, we can safely reuse all the

identifiers from the first pedigree). In columns 3 and 4, the founders parents are both

defined as 0 and all non-founders are the offspring of other individuals in the pedigree.

Column 5, sex, shows that individuals 1,3,5 and 6 are male and the rest are female and

the final column, shows that individuals 4 and 6 are unaffected, 2,3 and 5 are affected

and 1 is of unknown affection.

After the six fields describing the individuals, each line must contain a further 2n

columns, where n is the number of markers from genotyping. The markers are assumed

162

Figure A.1: Simple three generation pedigree.

pedigree id father mother sex affection

1 1 0 0 1 0
1 2 0 0 2 2
1 3 1 2 1 2
1 4 0 0 2 1
1 5 3 4 1 2
1 6 3 4 1 1

to be in the same order as those found in the map and data files. The value of each allele

can be encoded as 0 for untyped and 1 or 2 for each of the alleles of that marker. At the

present time we only support biallelic SNPs.

Map File

The map file contains 5 columns for the chromosome, genetic position, marker name,

physical position and an index. Genetic position is measured in centiMorgans and phys-

ical position is in basepairs.

chromosome genetic marker physical index
position name position

1 3.456 rs1 3088998 1
1 5.697 rs2 4215064 2
1 8.056 rs3 5034491 3

163

Data File

The data file from the original Linkage program provided the control options for each

analysis, stating which program should be run and how. We actually ignore most of the

information contained in this file and rely on command line flags to tell SwiftLink what

to do, but some of it is very important, for example, the map file did not contain any

information about the allele frequencies of each marker.

There are three sections in the data file: loci information, marker descriptions and re-

combination information. We will only describe the details of the fields actually used by

SwiftLink, for further details about the specification please see Section 2.6 of the Link-

age manual: http://linkage.rockefeller.edu/soft/linkage/sec2.6.html

Loci information is the first three lines of the data line. The first line contains four

fields: number of loci, risk locus, sex linked and program number. The only two that

are important for SwiftLink is the number of loci, that should be set to the number of

SNPs +1 (for the disease trait) and sex linked, that must be set to 0 as we have only

implemented autosomal analysis so far. The second line contains another four fields:

mutant locus, male mutation rate, female mutation rate and linkage disequilibrium. All

of these must be set to 0. The third line is the ordering of markers in the analysis,

SwiftLink assumes that the order of markers in the file is already correct. An example

of the loci information for the map file example from the last section is as follows:

4 0 0 5

0 0.0 0.0 0

1 2 3

The marker descriptions contain the details of the allele frequencies of the disease

trait and SNPs. Each marker has at least two lines. The first line contains two fields: the

marker type and the number of alleles. The only marker types we support are affection

status (1) and numbered alleles (3). The second line must have the number of fields as

there were alleles stated in the first line. For both affection status and numbered alleles,

this will always be two, as SwiftLink only supports SNPs. Affection status contains two

164

extra lines that markers do not, the third line must be a 1 (this is the number of liability

classes). The fourth line contains a description of that liability class, which is basically

a probability for each combination of alleles, the number of which were stated in the

first line. In the case of the affection status, the liability class is actually the penetrance

function. For a fully penetrant dominant trait you would use ”0 1 1” and for a fully

penetrant recessive trait ”0 0 1”.

An example of a fully penetrant recessive trait with a minor allele frequency of

0.0001 is as follows:

1 2 # TRAIT

0.9999 0.0001

1

0.0 0.0 1.0

The three markers in the map file we described previously, can be described:

3 2 # rs1

0.875 0.125

3 2 # rs2

0.225 0.775

3 2 # rs3

0.01 0.99

The final section is for recombination information. It has three lines, the first line

has two fields: sex difference and interference, which must both be set to 0. The second

line states the recombination fractions between each pair of markers as it appeared

in the file. The first recombination fraction is for the trait, SwiftLink ignores it. All

other recombination fractions are for each pair of consecutive markers, therefore there

should be n� 1 recombination fractions for n markers. The third line states values for

the difference in recombination fractions for males and females, but it is unused. The

recombination information for our running example is given as:

165

0 0

0.1 0.021913 0.023040

1 2.0 1.0

166

A.2 MCMC Diagnostics

In section 6.3.2 we used both the autocorrelation statistic and the Gelman–Rubin diag-

nostic to aid us in assessing the convergence of different Markov chains.

A.2.1 Autocorrelation Statistic

To assess the degree of correlation between successive approximations ⇠, we use the

following autocorrelation function to calculate the kth order (lag) correlation:

⇢k =

Pn�k
i=1 (⇠i � ⇠̄)(⇠i+k � ⇠̄)Pn

i=1(⇠i � ⇠̄)2

Autocorrelation is essentially a correlation coefficient between two values of the same

variable at points i and i + k in the series. An autocorrelation plot is used to display

autocorrelations at varying time lags.

A.2.2 Gelman–Rubin Diagnostic

The Gelman–Rubin diagnostic is calculated over multiple chains that began from dif-

ferent starting states. Each chain is run for 2n iterations and the first n iterations are

discarded. The goal is to calculate the in-chain variance and the between-chain variance,

if the chains converge then the variance should be low. This is assessed by calculating

the potential scale reduction factor.

We calculate the in-chain variance, W , as:

W =
1

m

mX

j=1

s2j

here W is the mean of the variances of m chains and the variance of the jth chain s is

s2j =
1

n� 1

nX

i=1

(✓ij � ✓̄j)
2

The between-chain variance is defined as

167

B =
n

m� 1

mX

j=1

(✓̄j � ¯̄✓)2

where

¯̄✓ =
1

m

mX

j=1

✓̄j

The variance of the equilibrium distribution is estimated as

dV ar(✓) = (1� 1

n
)W +

1

n
B

The potential scale reduction factor is

R̂ =

s
dV ar(✓)

W

where R̂ has a high value, we use greater than 1.05, it is suggestive that the chain may

not have converged and therefore needs to be run for longer.

168

