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Power-law distribution of pressure fluctuations in multiphase flow
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Bubbling fluidized beds are granular systems, in which a deep layer of particles is set in motion by a vertical
gas stream, with the excess gas rising as bubbles through the bed. We show that pressure fluctuations in such
a system have non-Gaussian statistics. The probability density function has a power-law drop-off and is very
well represented by a Tsallis distribution. Its shape is explained through the folding of the Gaussian distribution
of pressure fluctuations produced by a monodisperse set of bubbles, onto the actual distribution of bubble sizes
in the bed, assuming that bubbles coalesce via a Smoluchowski-type aggregation process. Therefore, the Tsallis
statistics arise as a result of bubble polydispersity, rather than system nonextensivity.
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[. INTRODUCTION nonintrusive. The main limitation of pressure is its intrinsi-
cally nonlocal nature due to the assumption of incompress-
Fluidized beds are a common form of a chemical reactoribility of the flowing fluids. Nevertheless, pressure has been
in which a stream of gas is blowing upward through a deephown to be a useful quantity in turbulence rese@8oH. In
layer of fine solid particles, setting it in motion. At a certain the theory of multiphase flows, it is well established that
gas velocity, known as the minimum fluidization velocity local pressure fluctuations are representative of the hydrody-
Uns, balance between gravity and drag is achieved, and theamics(e.g., Ref.[5,6]). Pressure at some point in the bed
particles become suspended without being transported. Imot only reflects local dynamics in the form of passing
creasing the gas velocity abolk,  results in the excess gas bubbles, but also the combined effect of bubble coalescence
flowing through the bed as bubbles. The mixture is said to b@&nd breakup, bubble formation at the distributor plate and
“fluidized,” and behaves in a way surprisingly similar to that eruption at the surface, all taking place some distance away
of a bubbling liquid(see, e.g., Ref.1] for a primer on flu- from the probe, therefore characterizing the dynamics of the
idization). Despite this intuitive picture, the hydrodynamics bed as a whol¢7]. Pressure data are typically used to vali-
of this two-phase system are highly complex and differendate fluidization regimef8] and to measure bubble sig@].
from those of gas-liquid systents.g., there is no analog to Recently, analysis of local pressure measurements was used
surface tension, and the gas-solid interface is not well deto advocate the chaotic behavior of fluidized béti8—12
fined. The excellent mass and heat transfer properties ofnd to monitor the quality of fluidizatiof.3].
fluidized beds make them the solution of choice for applica-
tions such as combustion of solid fossil fuels and biomass, |. STATISTICS OF PRESSURE FLUCTUATION
many exothermic reactions in the chemical industry, oil re- MEASUREMENTS
finery, several metallurgical as well as biochemical and en-
vironmental cleanup processes. They are also extensively This study uses pressure measurements performed at a
used to heat, cool, dry, or coat particles such as pharmace§ampling rate of 200 Hz at different positions inside a pilot-
ticals. size fluidized bed, 80 cm in diameter, filled with sand par-
The present study uses a time series measurement of prdigles of size 0.3—0.5 mm up to a settled bed height of 93 cm.
sure to characterize the hydrodynamics. Pressure has signifiil was injected through a porous bottom plate, at superficial
cant advantages over other measurements in fluidizatiovelocity U, ranging from 0.24 m/s to 0.70 m/s, correspond-
technology. Cornerstone techniques in flow research such 49 to 1.7-5.0 times the minimum fluidization velocity.
thin-film anemometry or laser Dopp]er anemometry haveKiStler 7261 piezoelectric tranSducerS, which measure the
been used successfully to assess the velocity field, but théyfessure relative to average ambient pressure with an accu-
are rather impractical in fluidization because a fluidized bedacy of ~10 Pa, were used for the measurement of pressure.
is opaque and also because the probes sometimes haveTtge sensors, together with associated tubing, were tested for
withstand very harsh physicochemical conditions within thedistortion of pressure fluctuation amplitude and phase. No
bed. They are also intrusive as probes may distort the flow igignificant influence of the dead volume was found at fre-
their vicinity. In recent years, sophisticated nonintrusive to-quencies typical for gas-solid fluidized be@-50 H2. Dur-
mographic techniques are becoming available for the studipg acquisition, data were low-pass filtered at 50 Hz.
of flow patterns in fluidizationi2], but they carry significant ~ The probability density functioPDF) of pressure fluc-
costs and safety requirements. By contrast, pressure sensd¢étions
are both robust and relatively cheap, can be readily used in
industrial equipment, and in addition can be made virtually AP(t,At)=P(t+At)—P(t) (1)

was evaluated for different time delayst, in a manner
*Electronic address: S.Gheorghiu@tnw.tudelft.nl reminiscent of the analysis of longitudinal velocity
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FIG. 1. PDF's of pressure fluctuatiort$) At=10 ms: (a) U, 10-120 ; |
=1y, probe heighti=0.84 m, 0.54 m, 0.14 nitop to bot- AP (kPa)

tom); (b) probe height 0.84 m, gas velocityy=5.0U ;, 2.8,

1.7U ¢ (top to bottom. The top row is to scale; the bottom two are FIG. 3. Decay of the PDF (o a Gau33|ad0=1.?umf, H
shifted for clarity. =0.54 m. The top set is to scale, other sets are shifted down for

clarity.
increments in a single-phase turbulence. While the use of
PDF's in the characterization and monitoring of fluidized
beds is not newe.g., Ref.[14]), previous studies only ad-
dressed the PDF of the peak-to-peak pressure difference qr. _
the PDF of the pressure itself. In both cases, no tempor ittency. Recently, several researcheI—1§ proposed a

correlations between data points were taken into cons'der—ovel explanation of this phenomenon based on nonexten-
. . W points were taken into. I%€%ive thermodynamics. Beak al. showed that velocity incre-
ation. By contrast, our present calculation implicitly includes

; ; . . ments in a high-precision measurement of Taylor-Couette
the time scale and dynamics of the variable, and is mor gn-p y

robust since it removes artifacts due to fluctuations in the ga?lé,ow can be fitted to a Tsallis PDR9]

flow and any long-time trends in the data. 1

Figure 1 shows typical PDF’s of pressure fluctuatiéhs p(u)=Z-[1+(q- 1) Bu o), 2
for time delayAt=10 ms, different gas velocities, and dif- a
ferent probe heights. The PDF’'s are non-Gaussian, and wherep(u) denotes the probability density of the longitudi-
log-log representation reveals that the tails are represented Iyl velocity incrementsg is related to the variance af,
a power law, with large events much more frequent tharwhile the so-called nonextensivity paramegeguantifies the
expected in a normal distributioFig. 2). Very long-time  departure from the Gaussian distribution, amdis a real
series(roughly 1 h of 200-Hz data were used to ensure parameter with a weak dependence ®nZ, is seen as a

It has been known for several years that PDF’s of velocity
increments in a single-phase turbulence have the same quali-
tative feature$15], a fact traditionally associated with inter-

accurate statistics. g-dependent partition function that ensures normalization,
, and the “classic” expressions fgs and Z of Boltzmann-
° 'Il?sa;?lis i Gibbs statistics are recoveredgf- 1.
- - Gauss fit Inspired by Beck’s approach, we find that with consider-

able accuracy, PDF's of pressure fluctuations in fluidized
beds are represented by

p(AP>=Zi[1+<q—1>ﬁ|AP|“]”‘1—q>. (3)
q

Numerical fits of the data using E() give a=2.0+0.05,
and a nonextensivity parametgrin the range 1.0-1.5 for
At=10 ms, for all probe heights and superficial gas veloci-
ties considered. All reported values refer to the positive side
> of the PDF. A typical dataset is shown in Fig. 2, with fitting

> c000 parameters|= 1.45(95% confidence interv4ll.446, 1.45%
. . . E and 8=1.33[1.328, 1.348 With increasing time delayt,

107 107 AP (kP2 10° 10' parameters] and 8 decrease: e.g., for measurementsJgt
=1..,;, H=0.54 m, the values decay frooq=1.45, B8

FIG. 2. Gaussian and Tsallis fits of the PDF fog=1.7U ¢, =1.33 atAt=10 ms, tog~1.0, B~0.5 at At=500 ms.
H=0.54 m, At=10 ms. Inset shows the fits in linear scale. Only Therefore, the distribution is Gaussian for long-time delays
the positive side of the PDF is shown for clarity. (Fig. 3), a feature that has also been observed in turbulence
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data. Considering the typical velocity of bubbles at given 1¢°
fluidization parameters, time scales up to 500 ms correspont
roughly to spatial separations of the order of the largest
bubbles in the bed10-20 cm. There appear to be residual é“ I
Tsallis statistics §=1) even at larger scales, but numerical q=1.21[1.20, _13-22]
fits corresponding to long-time delays are less consistent. T¢ 107} Mse=15x10
contrast the turbulence analysis, our numerical fits show & ,
rather constant value~2.0, as opposed to @dependent 10
one, and also the variation gfis more significant. .
The quality of the fit reveals another remarkable feature. 10 e '
Systematically, data for low superficial velocityU g
=1.7Un,¢) and a high probe position provide the best fits, 10}
and also the highest values. As the gas flow is increased, 2 q=1.39 [1.388, 1.395]
the PDF still features well-defined fat tails, but only these | rmse= 55x107
tails are well represented by the theoretical distributi@n 0 '
Based on this observation, we conjecture that the signal ha > — = . :
two components, only one of which satisfies E8). Indeed, 10 10 AP (Pa) 10 10
in a fluidized bed there are at least two distinct contributions
to the pressure. One is of local nature, represented by fluc- FIG. 4. Tsallis fits(solid line9 of the “raw” PDF (a) and bubble
tuations caused by bubbles passing the probe. This distucomponent PDKb). Uy=5.0U ¢, H=0.84 m,At=10 ms.q val-
bance travels at a relatively low velocity, accompanying eaclwes are accompanied by 95% confidence intervals and the root-
bubble as it rises. The other contribution is felt almost simul-mean-square error of the Tsallis fit. Gaussian(titstted are shown
taneously throughout the entire bed, and is given by comfor comparison.
pression waves generated by the formation of bubbles at the
bottom distributor plate, their coalescence, and their finaby the porous distributor plate, the fact that upward and
burst at the top of the bel¥]. The fast propagation of the downward fast traveling waves have different attenuation
nonlocal compression waves allows, in principle, the separdactors, and also to the imperfect localization of the bubble
tion of the two components by using two simultaneous prespressure fluctuations.
sure measurements at different positions in the bed. The PDF ofAPy, is analyzed in the same way as that of
The separation of the two components is typically done inthe originalAP. The Tsallis fit(3) of the bubble component
frequency spac@20]. For the purpose of analyzing PDF’s, is better than the one corresponding to the raw data, as
we devised an algorithm that uses the frequency informatiorghown by an overall drop in the fitting err@Fig. 4). Addi-
but decomposes the signal in real space. Simultaneous pre#nally, the nonextensivity parametgrof the bubble com-
sure dateP(t) from a position within the bed and a position ponent is significantly larger, indicating a more pronounced
below the distributor plat'windbox” pressureP,,(t)] were  departure from a normal distribution. Meanwhile, the analy-
used. The distributor plate transmits any fast compressiofis of the windbox fluctuationa P, yields a Gaussian fit of
waves generated in the bed, but almost no bubble-inducegpmparable qualityFig. 5. The same value of parameter
fluctuations due to their localization property. The “bubble @~2 was found in both the raw data and the bubble com-
component” of P is then computed asPy(t)=P(t) ponent data.
—CP,(t), where the constari is chosen so that the coher-

ent output power betweeR, andP,, is minimal. If P, and 10°
P, denote the power spectral density of the windbox and a oo o

bubble signals, an&byw denotes the cross spectral density of 511
the two signals, then the coherent output power is defined a:
[20]

AP (kPa)

e 00

dpam 00 o

Peon= YowPw (4)

PDF

where vy, ,,€[0,1] is the coherence between the bubble and  107¢

windbox signals, %
~ 4 o data %
”Xb W”2 10 ¢ Gauss fit °
Yow= "% & - (5 -
PbPW
. . . . . 10_5 -2 ‘—1 () 1
In other words, the algorithm tries to remove all similarities 10 10 10 10

. . AP (kP
to the windbox(bubblelesy signal from the measurement, (P2

leaving just the bubble component. Complete separation can- FIG. 5. Positive side of the PDF of the windbox signal and its
not be achieved due to distortion of the compression waveSaussian fitU,=5.0U,;, At=10 ms.
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10 . ; ; particle velocity distribution in granular systenj23—-25
° SRl may apparently be explained using the same arguifidiatt
Here we propose that a similar mechanism is producing the
Tsallis PDF of pressure fluctuations in a fluidized bed.
At any moment in time, a fluidized bed is a collection of
bubbles of various sizes. The pressure disturbance associated
with a passing bubble can be felt a certain distance away, so

T although no two bubbles coexist at the same position at the
o same time, a pressure sensor picks up a superposition of
' signals from bubbles in an area typically0.5 m around it
107" ' [48].
' The most widely used theoretical model for a bubble in a
o data T . . .
10| <= Tealis fit qet.35 [1.342, 1.360] ' f[U|d|zed bed was given by Dawdspn gnd Harrig@s]. De-.
— Gauss fit ] rived from two-phase flow theory, it gives the pressure field
J around a passing spherical bubble with respect to the pres-
10°5 = = x sure at the observer’s location:
10 10 10
AP (kPa)
3
FIG. 6. Positive side of the PDF afPg, and corresponding R_mse r=R
Tsallis and Gauss fitdJ;=5.0U s, H=0.14 m,At=10 ms. The P(r,0)=p9(1—€ns) r2 ' @)

o . . .
95% confidence interval og is shown. rcos, F<R,
To further consolidate the two-component picture, an al- ) )
ternative calculation was carried out using simultaneoud/herer and ¢ are the polar coordinates of the observer with
pressure measuremerRs and P, coming from two probes Fespect to the bupble cent®,s theT bubble radm:ps is the
placed at the same height, but some horizontal distance aw&lgnsity of the solid phase, ang,; is the void fraction cor-
from each other. The two signals were subtractBg(t) responding to minimum fluidization. Furthermore, to a good
— P, (t)— P,(t), and then the PDF ok P, was computed as approximation, the velocity of bubbles depends on their size
above. The fast-wave, coherent componenPgfand P, is ~ asu=0.7y2gR[26]. _
virtually the same and is therefore discarded, leaving a pure We assume for simplicity that the pressure sensor is
combination of “bubble signals.” The Tsallis fit of the PDF placed on the bubble path, the center of the bubble passes the
of APy is excellent(Fig. 6). observer at timég=t,, and the bubble pierces the detector
These results confirm the hypothesis that the bubble confluring the time intervalto—T<t<t,+T. We make Te
ponent of the pressure fluctuations is the sole carrier of thfansformationR=Tu and introduce new variable®
power-law characteristic. This conclusion is also supported P/[ps3(1— €mq)], andt* =0.7t/2g. This leads to
by the previous observation that Tsallis fits are better for

lower gas velocitied), and at higher positions in the bed. ( R?2

With increasing gas flow, the gas uptake of the column in- a r2’ <ty — VR
creases, together with the frequency of the phenomena that ("~

produce fast compression waves. Therefore, at higher gas P* (t*) = ¢ —(t*—tg)\ﬁ, |t*—tg|s\/§ (8
flows, the bubble component of the signal is more distorted. )

Also, since bubbles produced at the bottom of the bed grow -~ R t>t* + JR

in size as they progress upwards, the bubble component is L (t* _tS)Z’ 0 '

more pronounced at higher measurement positions.

Figure 7 shows the pressure time-trace and its derivative.
lIl. MODELING AND THEORETICAL INTERPRETATION A surrogate pressure signal consisting of bubbles of a
Several researchers have proposed that the power-la]:/'\?ed sizeR was const;ugt%(z)lnumgr;]cally das all Super pOSIthjon
form proposed by Tsallis for the probability of a microstate ' Pressure ”.a‘%e@) of bubbles with randomly positione
centersty. This is obviously not a complete model for the
of energye, ) . \
measured pressure signal since it lacks the fast-wave compo-
_ _ 1/(1-q) nent, but it is a good representation of the “bubble compo-
ple)~[17(a=1)B¢] ®) nent” that carries the power-law statistics, as discussed in the
can arise from a weighted average over the Boltzmann fad?receding section. ,
tors of ordinary statistical mechanice (?¢), provided the For short-time delaysA P*~P* At*, and by differenti-
weights are sampled from a gamma distributjd6,21,23.  ating Eq.(8) it is easy to see that the range of the variable
If the temperature or, equivalently, the energy dissipation ratés P* is proportional toyR. Since the bubbles in this surro-
B fluctuates with the required distribution, even ordinary,gate signal are identical and independent, the strong form of
conventional thermodynamic systems can display abnormathe central limit theorem guarantees that the PDF of the su-
nonextensivelike statistics. Similar observations on theperposition is Gaussian,
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FIG. 7. Davidson-Harrison bubble, as seen by the sensor: pres o
i i L . L Poo
sure tracea), derivative of the pressur@). 00 s 10 15 20 25
Bubble size (cm)
p(AP* R)= le—(c/R)AP*z (9) FIG. 8. Distribution of bubble sizes near the top of a 40 cm,
' R ' two-dimensional fluidized bed from video datdg=3.0U ;. The

solid line is the fit to Eq(10).

whereN is the normalization factor and depends on the | .t real parametera, 7>0, and normalization constaf

number of bubbles that coexist at one moment in the bed. Apjg conjecture is based on the assumption that bubbles grow
similar, slightly more involved calculation allows the exten- oo they progress upwards by coalescence of smaller bubbles,
sion of this reasoning to bubbles traveling on paths that dg, o process of aggregation described by a Smoluchowski-

not intersect the detector. Any random spatial distribution o ype equatione.g., Refs|33—35). The place of time in the

|dent|cal bubbles can be shown to produce a normgl .d'st”élassical treatment of aggregation is taken here by the verti-
bution of pressure fluctuationts), with a standard deviation 5| measurement position. Under fairly general conditions on
propor'tlon'al toyR. . ) the “coagulation kernel'136,37], Eq. (10) would be an ac-
Taking into account that in a freely bubbling bed, bubblesg,rate representation of the skewed, bell-shaped distribution
come in various sizes, an actual pressure measurement Oy, moderate bubble sizes, high enough in the bed for coa-
samples the marginal probability distributiop(AP*)  jescence to be fully developed. The power-law decay has an
=/p(AP*,R)f(R)dR, wheref(R) is the probability den-  eyponential cutoff at smaR due to the fact that although
sity function of bubble sizes in the fluidized bed. To assesgnly small bubbles are injected at the bottom of the bed, they
the validity of the hypothesis that this weighted average ISorogressively disappear by merging to form bigger bubbles
responsible for transforming the Gaussian RBFof a one- higher up in the bed. The proposed distributiti®) was

size bubble signal into the Tsallis P8) of the actual data, fitted on bubble size data extracted from video recordings of
accurate statistics of bubble sizes are therefore needed. 5 two-dimensional bed with satisfactory resufesg. 8).

A direct, accurate, real-time measurement of bubble size opserving that Eq(10) is a gamma distribution in vari-
in a three-dimensional fluidized bed is very difficult to carry gpje 1R, we obtain for the PDF of pressure fluctuations
out. Tomographic techniques using x-rays,radiation, or
electrical capacitance either do not have enough temporal .1
resolution or have enough spatial resolution because of prob- ;A p*)NJ e (c/RAP*’ n-ro-alRyR
lems with the image reconstruction. Alternatively, simulta- o VR
neous pressure measurements with multiple sensors can be r—3/2
used to assess bubble size in multiphase flp&7]. Al- _ Jme(aJrcAP*z)/R(E) d(i)
though leading to more reliable data, these methods are still 0 R R
ill-conditioned in the language of inverse problems, and typi-

1/2)—7
cally need some priori assumption about the bubble shape =F( ,— } )( )
2

C
a(1’2>f( 1+ _AP*? , (1D

and size distribution. Due to these difficulties and the lack of
a solid theoretical basis for understanding the process of
bubble creation and growth in fluidized beds, measureds long asr>3/2. This expression is precisely of the form
bubble size data have so far been empirically fitted tp a (3), with «a=2,
[28-31], Rayleigh[29,30, or log-normal distribution func-
tion [32].

Here we propose an expression for the bubble size distri- q=1+ —1/2' (12)
bution in the form

and c/a=B(q—1)[ pg(1—en) 1. Parametery is related
f(R)=CR e ¥R, (100  through7 to the details of the bubble growth mechanism.
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To accurately capture the full bubble size distribution, Eq.some space-time correlations. Fluidized beds are also known
(100 must be amended by an exponential decay at I&ge to have episodes dpseudgperiodicity, but all these effects
since in agglomeration phenomena the cluster size distribiare minimal and do not characterize the hydrodynamics. It is
tion typically drops faster than any power law at larBe therefore appropriate to consider that bubbles follow each
[35-37. Also at largeR, bubble breakup combined with Other in a stochastic manner, a conclusion that is supported
finite-size effects become significant, so that bubbles canndly various statistical tests on the distribution of interbubble
grow without limit. Consequently, the PDF of pressure fluc-time intervals[49)].

tuations in fluidized beds will typically fall slightlpelowthe . The Tsallis form of the distribution of pressure fluctua-
theoretical PDF of Eq(11) in the range of very largd P. tions arises purely through the polydispersity of the bubble

The departure of the bubble size distribution from thePopulation. The assumed distribution of bubble sizes is the
sideal” form (10) may be slow to set in, especially in large result of an agglomeration process, in which |n_d|V|duaI
systems, so the departure of the PDF from Egsand (11) bubbles grow by coalescence of smaller ones. Judging by the

Lo ubiquity of aggregation phenomena in the physical world,
may not be actually visible in measured data. spanning from aerosol science to polymers, astrophysics, and

even to the dynamics of human populations, the mechanism
IV. RELEVANCE TO “NONEXTENSIVE outlined here may be a very prolific way of producing the
THERMOSTATISTICS” Tsallis distributions in systems that are neither far from equi-

In recent years, we are witnessing an increasing interest iIIbrIum NOr POSSess Iong-ran_ge Interactions, nor are subject
’ anomalous diffusion. This intriguing fact and the growing

the LOrma"SffT‘ and appl:jcino_ll_’]s c&nonsx;ensu(;e Stlat'St('jcaLbumber of experimental observatiof] of the Tsallis sta-
mechanics, first proposed by Tsallé8] and since developed igjics call for a careful review of the principles, applicability

by many others. The creators of this field argue that & gefrange  and nomenclature of nonextensive thermodynamics
eralized version of classical statistical mechanics may bgsg],

more appropriate to describe the physics of systems operat-

ing far from equilibrium, many-body systems with long- V. CONCLUDING REMARKS
range interactiong39,40, systems displaying anomalous
diffusion[41—43, or operating at the edge of chdakl,45.
Central to the theory is the postulate that a power-law for
as given by Eq(6) should replace the classic exponentia
Boltzmann factoe™ #¢. The conceptual framework of statis-
tical mechanics is preserved if the expression for entropy i
also altered,

We have shown that pressure fluctuations in bubbling flu-
rT{'dized beds are very well fitted by a probability density func-
Ition with power-law tails, typically used in the context of the
Tsallis statistics. Although these experimental observations
are reminiscent of intermittency in fully developed single-
phase turbulence, we must point out that turbulena®isa
likely explanation for the observed behavior of fluidized
1 beds. In the bubbling regime, the gas-particle mixture is
Sq=T1(1—Z Piq), (13)  much too dense and viscous for multiphase turbulence to
g ' develop (it most certainly plays a role at much higher gas
flow rates. Also, the magnitude of pressure fluctuations ana-

Indeed, the Tsallis probability distribution maximizes the'¥zed here(typically up to 20 kParules out the possibility
that they are produced by air turbulence within individual

Tsallis entropy(13), just like the Boltzmann-Gibbs probabil-
ity maximizes the Shannon-Gibbs entropy in classical statisPUbPles. o _ ,
tical mechanics. The striking feature of the new entropy is its 1 N€ Proposed representation is particularly accurate in

nonextensivity. IfA andB are two independent systems, then large-size fluidized beds, which make it readily applicable to
industrial equipment. By separating the different contribu-

Sy(A+B)=Sy(A) +Sy(B) + (1) S;(A)S4(B). (19 tions to the pressure signal, it was shown that the remarkable
statistics are contained in the localized pressure signal of the
All features of the ordinary, extensive thermostatistics aresequence of bubbles passing close to the detector. The shape
recovered in the limig—1. of the PDF is explained through the folding of a Gaussian
It is important to point out that although the relevant vari- distribution (corresponding to a set of bubbles of the same
ables in the present study fit remarkably well in the contexsize onto a gamma distribution of variableRL,/ whereR is
of Tsallis statistics, and although the PDF of pressure maxithe bubble radius. The proposed bubble size distribution is
mizes its associated Tsallis entropy, there is no reason teeen as the result of an agglomeration process.
expect fluidized beds to be nonextensive in the strict sense or Fluidized beds appear as a prototype of a larger class of
anomalous in any other way. The observed statistics wergystems which may display Tsallis-like statistics in the rel-
explained under the explicit assumption that there mwe evant variables, without being intrinsically nonextensive. In-
spatial or temporal correlations between individual bubblegerestingly, the fact that the Tsallis expression of entropy is
in the fluidized bed, as required by the central limit theoremthe analog of the Shannon-Gibbs entropy for systems with a
This assumption is accurate in the bubbling regime of fluidi-Tsallis PDF makes its formalism useful for the information-
zation, for large enough beds, and away from reactor wallsheoretic descriptioicharacterization, validatiorand moni-
so as to limit correlations induced by finite-size effects. Passtoring of multiphase flow regimes, understanding, neverthe-
ing bubbles sometimes create local paths of low voidage thdéss, that the observed phenomena share no fundamental
influence the movement of nearby bubbles, thus inducingelationship with nonextensive thermodynamics.

where p; is the probability of a microstate of the system.
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