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ABSTRACT

The structure of an adduct between guanine and the carcinogen
acetylaminofluorene has been examined in the solid state by X-ray
crystallography, and in solution by NMR techniques. The observed
conformations have been compared with predictions from energy calculations
and their relevance to models of adducts with DNA has been examined.

INTRODUCTION

The powerful liver carcinogen 2-(acetylamino)fluorene (AAF1) is believed to

exert its biological effect via metabolism to various reactive species that

can bind to cellular macromolecules such as DNA2"4 . N-esterification has

been found to be an important metabolic pathway that can lead to DNA adducts

involving attachment at the C8 position of guanine residues5'6. It has been

proposed that conformational properties of the AAP-bound region in a double-

standard DNA molecule may be important factors in the biological responses

subsequent to carcinogen binding. In particular, DNA repair which governs

tumour initiation12'13 may ^g conformation dependent. These conformational

aspects are dependent on the nature of the guanine-bound adduct, with AAF and

AF (i.e. deacetylated AAF) producing very distinct lesions in DNA structure9,

which correlate with differences in consequent repairibility7'8'9'10. The

AAF adduct with the polynucleotide poly (dG-dC)- poly (dG-dC) stabilises a

Z-DNA structure12"15'19 more readily than the AF one8'9. In random sequence

DNA, solution studies suggest that AAF linked to guanine at C8 causes base-

displacement16 or insertion-denaturation17, while AF is believed to be

positioned on the exterior of the double helix18"20.

Previous studies have examined the conformational and dynamic properties of

N-substituted AAF derivatives in solution21"23, in the solid state24, and by

theoretical methods25"27. The present work describes a comparative

examination of the C8 bound guanine adduct of AAF(G-AAF), by a combination of

solution, solid-state studies and by semi-empirical energy calculations.
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MATERIALS AND METHODS

NMR Spectroscopy

^H NMR measurements were carried out at 500 MHz on a Bruker WM500

spectrometer. The sample was dissolved in methanol-d4 (400ug/ral).

Tetranethylsilane (TMS) was added as an internal reference; and chemical

shifts are reported in ppm downfield from TMS. Resonance assignments and

the barrier to rotation about the amide bond were determined by procedures

described previously21. Solubility limitations prevented 13C NMR

measurements. The mass spectrum was obtained on a Finnigan 4023 mass

spectrometer operated in a positive ion chemical ionization mode using

ammonia as the reagent gas and a source temperature of 200°C.

For the NMR study, G-AAF was synthesized by acid catalyzed hydrolysis of

the sugar moiety from the 8-(N-fluorene-2-yl-acetamido)-2'-deoxyguanosine

5'- monophosphate (dGMP-AAF) adduct. The adduct2^ (lOmg) was dissolved in a

test tube containing 5ml of 10% isopropanol/water solution. Three drops of

1 M hydrochloric acid were added to the tube which was sealed and heated at

40°C for 24 hours. The resulting precipitate was removed by centrifugation

and redissolved in lml of 0.05 M sodium hydroxide solution. The solution

was neutralized with 0.05 M hydrochloric acid and the precipitate collected.

The 1H NMR data (Table I) and the mass spectral molecular ion (M+=373 m/z)

indicated that the product was G-AAF.

X-ray Crystallography

The crystal was grown by a vapour diffusion method from a droplet

containing 0.07 mM, dGMP-AAF in 5.7% isopropanol solution. A small thin

colourless crystal of dimensions 0.07 X 0.23 X 0.03 mm appeared after ten

months. It was kept in a Lindemonn quartz capillary tube together with

mother liquid for all subsequent diffraction work. Preliminary oscillation

and Weissenberg photographs indicated monoclinic symmetry. Accurate cell

dimensions were determined from least-squares refinement of 25 8 values

measured on an Enraf-Nonius CAD4 diffractometer. Intensity data were

collected with Ni-filtered Cu Ko using an co-28 scan mode, up to 9- 50°.

A periodic check on the intensities of three strong reflections showed that

no crystal decay occured during the data collection. The scan width used in

the data collection was a - 1.0 + 0.15 tan 6, with a maximum scan time of

90 s per reflection. A total of 1769 unique reflections were measured, of

which only 559 had I > 1.5 o (I). The merging index between equivalent

reflections was 0.11 prior to an absorption correction.
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Crystal datai C2o H16 N6 02, M.W. - 372.38, Monoclinic,

a - 26.179 (3), b = 9.453 (2), c ° 14.253 (1) A, B - 105.23 (1)°,

V - 3404.3 (15) A3, Dc= 1.454 g cm"
3, Z - 8, F(000) - 1552,

Space group C2/c, u(CuKQ) =7.70 cm"1 (X- 1.54051A).

The structure was solved by direct methods using the program MULTAN 8228.

The phase set with an outstandingly high combined figure of merit compared to

the other sets, of 2.78, was the correct one. This revealed the positions

of 23 atoms. Those for the remaining five nonhydrogen atoms were found from

difference Fourier syntheses, although difficulties were encountered in the

location of two fluorene ring atoms. Scattering factors were taken from

'International Tables for X-ray Crystallography'29.

The structure was refined by full-matrix least-squares techniques

minimising the function Iw( |p| - IF I )2. Unit weights w were found to
o c

produce the smoothest analysis of variance. Due to the low parameter:

observation ratio, it was not possible to simultaneously refine positional

and individual atomic anisotropic thermal parameters. Hydrogen atom

positions were not located in difference electron density maps, so their

contributions were included at calculated positions, with isotropic thermal

parameters assigned to be the same as that of the atom to which each was

bonded. Refinement did not proceed smoothly due to the high thermal motion

of several carbon atoms in the unsubstituted phenyl ring of the fluorene

group; considerable parameter oscillation was encountered, together with poor

intramolecular geometry. Refinement constraining the geometry of the guanine

and fluorene rings proved to be the only way of producing acceptable geometry

up till the final stages. The situation was improved by the application of

empirical absorption and extinction corrections, when cautious full-matrix

unconstrained refinement was used and was finally judged to have converged

at a conventional R of 0.118 and of 0.121 for the residual defined as [ i; ( IP I
' o'

- |F |)2>£|F |2] . The largest parameter shift/error at this point was 0.0b

and the average was 0.01. Atomic co-ordinates are listed in Table II. Lists

of observed and calculated structure factors are available from S.N.

Crystallographic calculations were performed with the SDP30a and SHELX3Ob

computing systems.

Conformational Energy Calculations

The energy of the G-AAF was calculated employing Van der Waals,

electrostatic and torsional contributions:
E » E + E + E

non-bonded electrostatic torsion
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Potentials and parameters arc as described previously for the d(CpG)-AAF

adduct^, with the following change: the torsion barrier for y was assigned

the measured value of 12.3 Real mole"1 reported below. H9 of G-AAP, which

replaces Cl' of the deoxy-dinucleoside monophoaphate, has a compound charge

of 0.1208 (using the INDO method), and an assigned N9-H9 bond length of

1.00A. Starting conformations (in degrees) were the following combinations:

from 0° to 360° in steps of 15*, for angles a and B; 0", 180° for y and 60°

for 6 (where { is the torsion angle about the NA2 - CA14 - CA15 - H bond).

For each of these 1152 trials, the energy was minimised as a function of the

conformation by means of the Powell algorithm31. Data for the approximately

5 Real mole"1 contours in Figure 4 were interpolated from the energies of

starting conformations.

RESULTS AND DISCUSSION

NMR

The ^H NMR spectrum of G-AAF has been recorded as a function of temperature

(Figure 1). At 50°C a conventional time-averaged spectrum is observed

(Figure la), while at -50°C a complex spectrum comprised of three detectable

subspectra of unequal intensity is observed (Figure lb). Addition of a small

amount of base simplifies the low temperature spectrum by reducing the total

number of subspectra to two as well as altering the relative intensities

(Figure lc). The spectral parameters (Table I) are characteristic of slow

cis-trana isomerism about the amide bond (y ) of AAF compounds21. The major

conformer is determined to have a trans orientation between the amide oxygen

and the fluorene ring (Y= 180°) based on the downfield shifts of the

fluorene resonances and the upfield shift of the methyl resonance compared

to the corresponding resonances of the cis conformer <Y " 0°) 2 1. The ratio

of cis and trans conformers is 23:77 in the absence of added base.

Additional NMR measurements were carried out at -35°C in order to measure

the barrier to internal rotation about the amide bond. Complete band shape

analysis indicates a barrier of 12.3 + 0.1 Real mole"1.

1H NMR measurements have also been carried out on hypoxanthine under the

same experimental conditions as those utilised for G-AAF. Two subspectra

are observed which coalesce upon addition of base. Similar studies on the

parent compound guanine were prevented by insolubility. However, the results

on hypoxanthine can be useful as a model for G-AAF since both are purines

containing a keto group at C6. Hypoxanthine is known to undergo N7:N9

tautomerism at an intermediate rate on the NMR time scale32. This was

observed in the form of resonance broadening in the 13C NMR spectrum
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Figure 1. 500 MHz NMR spectrum of G-AAF obtained (a) in methanol-d at
50°C, (b) im methanol-d at -50°C, and (c) in methanol-d with a small
amount of sodium hydroxide added at -50°C. Resonance assignments are
shown in (a). Spectra were obtained with a 6K sweep width and 32k data
points following 200-400 scans. Data were processed using exponential
filtering of 0.5 Hz.

recorded at ambient temperature32. It is reaonable to conclude that our *-H

measurements at low temperature and in the absence of base enabled detection

of both N7 and N9 tautomers of hypoxanthine in slow exchange. These results

are similar to those for G-AAF. It is concluded that the multiple sub-

spectra for G-AAF are due to tautomerism and cis-trans isomerism. In the

presence of base, the rate of tautomerism is increased such that only two

subspectra due to cis-trans isomerism are observable. Rapid rotation about

the guanyl-nitrogen (a) and the fluorenyl-nitrogen bond (6) is suggested by

the lack of additional subspectra.

The conformation and dynamics of G-AAF in methanol solution has simllar-
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TABLE I. H NMR Chemical Shifts in ppm

Temperature C

Conformation

Assignments

Ai
A3
A4
A7
A8
A9
A10
A12
A15

50a

Ave.

7.60
7.40
7.91
7.85
7.38
7.32
7.58
3.96
2.12

-50b -50b

y -0°

7.58
7.40
7.82
7.80
7.35
7.28
7.55
3.89
2.13

Y = 180

7.64
7.45
7.98
7.90
7.41
7.39
7.61
3.98
2.07

Sample dissolved in methanol-d..

Sample diasolved in methanol-d, with a small amount of sodium

hydroxide added.

CPUS,

0R1

IMZ

Figure 2. A view of the G-AAF molecular structure as determined by X-ray
crystallography.
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Figure 3. The G-AAF molecular structure viewed along the plane of the
fluorene group, (a) in ball-and-stick and (b) in Van der Waals mode. The
program PLUTO has been used to produce these figures.

itiea to that previously reported for dGMP-8-AAF. Both exhibit a preference

for the trans confonner about the amide bond ( Y - 1 8 0 ° ) , and the barrier to

internal rotation about the amide bond computed for G-AAP is in the range

previously estimated for the nucleotide adduct23. 13C NMR studies on the

nucleotide adduct as well as several other N-substituted AAF compounds have

indicated that the acetyl group is approximately orthogonal to the fluorene

ring ( Bin the vicinity of 90° or -90°) in solution when y is near 180°21'23.

This is consistent with the crystal structure and the theoretical calculation

for G-AAF, as well as the earlier prediction for d(CpG)-AAF26. The NMR data

indicate that there is less orthogonal character when yapproaches an angle

of 0° due to u conjugation from the C8 nitrogen to the fluorene ring.

X-ray Crystallography

The structure determination has unequivocally shown that the crystal

analysed is of the guanine adduct of AAF, and not of the corresponding

nucleotide adduct (Figures 2,3). It is established that acidic conditions

promote cleavage of the glycosidic bond in this adduct (see NMR experimental

section); however it appears that the prolonged period of crystallisation,

even though ostensibly under mild neutral conditions, had produced the same

effect.

Bond lengths and angles are listed in Table III. Estimated standard

deviations are large, due in large part to the poor ratio of variables to

observations, and to low crystal quality. These in turn are mainly

ascribable to the large thermal paramerers of atoms CA8 and CA12 in the un-

substituted phenyl ring of the fluorene group, indicating either high thermal

motion of this part of the molecule or positional disorder. Examination of

8225

 at U
niversity C

ollege L
ondon on D

ecem
ber 7, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Nucleic Acids Research

Table II. Unit-cell positional and thermal parameters (in k ).

(a)

Nl
C2
N2
H3
C4
C5
C6
06
N7
C8
N9
NA2
CA1
CA2
CA3
CA4
CA5
CA6
CA7
CA8
CA9
CA10
CA11
CA12
CA13
CA14
CA15
0A14

(b)

HN1
HN21
HN22
HN9
HI
H3
H4
87
H8
H9
H10
U121
H122

Non-hydrogen atoms

X

0.2432
0.2349
0.2486
0.2113
0.1970
0.2053
0.2253
0.2372
0.1869
0.1698
0.1745
0.1469
0.1319
0.1117
0.0602
0.0212
0.0387
0.0048
-0.0484
-0.0674
-0.0387
0.0196
0.0365
0.0970
0.0912
0.1411
0.1195
0.1684

Hydrogen atoms

0.261
0.244
0.264
0.164
0.170
0.050
-0.016
-0.072
-0.106
-0.056
0.045
0.122
0.109

y

-0.0143
0.1021
0.0874
0.2214
0.2195
0.1175
-0.0035
-0.1221
0.1473
0.2757
0.3303
0.3724
0.6187
0.4802
0.4477
0.5480
0.6777
0.8053
0.8229
0.9588
1.0827
1.0597
0.9137
0.8767
0.7236
0.3482
0.4209
0.2288

-0.102
0.168

-0.004
0.426
0.642
0.346
0.524
0.740
0.970
1.178
1.140
0.916
0.908

z

0.2043
0.2536
0.3528
0.2147
0.1143
0.0563
0.1007
0.0603
-0.0390
-0.0311
0.0570
-0.1122
-0.0959
-0.1017
-0.1099
-0.1084
-0.1109
-0.1180
-0.1286
-0.1362
-0.1392
-0.1177
-0.1092
-0.1003
-0.0967
-0.2126
-0.2962
-0.2168

0.238
0.395
0.383
0.076
-0.092
-0.117
-0.106
-0.131
-0.140
-0.154
-O.110
-0.040
-0.158

Fourier maps did not enable a meaningful multi-site partial occupancy model

to be developed so thermal disorder may be the likeliest explanation for this

effect. Some bond lengths are either too short or too long compared to the

known structures of N-OH AAF, 1-OH AAF, 3-OH AAF27 and guanine33, and there-
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Table III. Bond lengths (A) and angles (°) and torsion angles (°) with
estimated standard deviations in parentheses.

Nl
Nl
C2
C2
N3 -
C4
C4
C5
C5 -
C6
N7
C8
C8 -

NA2 -
NA2 -
CAl -

C2
Nl
Nl
N2
C2
N3
N3
C5
C4
C4
C6
Nl
Nl
C5
C5
N7
N7
N9 -
C4
C8
C8
CA2 -
CA2 -
NA2 -

a (N9
8 (C8
Y (C8

C2
C6
N2
N3
C4
C5
N9
C6
N7
06
C8
N9
NA2
CA2
CAl 4
CA2
Nl
C2
C2
C2
N3
C4
C4
C4
C5
C5
C5
C6
C6
C6
N7
C8
C8
C8
N9
NA2
NA2
NA2
CAl
CA2

- C8
- NA2
- NA2

1.35(1)
1.43(2)
1.37(1)
1.34(2)
1.38(1)
1.32(2)
1.36(1)
1.35(2)
1.35(2)
1.34(2)
1.31(2)
1.33(1)
1.47(2)
1.41(2)
1.42(6)
1.41(2)

C6
N2
N3

- N3
C4
C5
N9
N9
C6
N7
N7
C5
06
06
C8
N9
NA2
NA2
C8
CA2
CAl 4
CA14
CAl 3
CAl

- NA2
- CA2
- CAl 4

115(1)
115(1)
126(1)
119(1)
113(1)
128(1)
125(1)
108(1)
116(1)
114(1)
130(2)
122(1)
110(2)
128(2)
98(1)
119(1)
126(1)
115(2)
101(1)
121(1)
127(2)
109(2)
112(2)
116(2)

- CA2)
- CAl)
- CA15)

CAl
CA2
CA3
CA4
CA5
CA5
CA6
CA6
CA7
CA8
CA9
CA10
CA11
CAl 2
CA14
CAl 4

NA2
CAl
CA2
CA3
CA4
CA4
CA6
CA5
CAS
CA7
CA6
CA7
CA8
CA9
CA6
CA6
CA10
CA11
CAl
CAl
CA5
NA2
NA2
CA15

-28(3)
108(3)
178(4)

CA13
CA3
CA4

- CA5
CA6
CA13
CA7
CA11
CA8
CA9
CA10
CA11
CA12
CAl 3
CA15
0A14

CA2
CA2
CA3
CA4
CA5
CA5
CA5
CA6
CA6
CA6
CA7
CA8
CA9
CA10 -
CA11 -
CA11 -
CA11 -
CAl 2 -
CA13 -
CA13 -
CA13 -
CAl 4 -
CAl 4 -
CA14 -

1.45(3)
1.36(2)
1.40(2)
1.31(3)
1.49(3)
1.41(3)
1.37(2)
1.30(3)
1.37(3)
1.40(4)
1.49(4)
1.45(4)
1.59(3)
1.46(3)
1.36(6)
1.35(3)

CA3 119(2)
CA3 124(2)
CA4 124(2)
CA5 112(2)
CA6 124(3)
CA13 128(2)
CA13 108(3)
CA7 133(3)
CA11 106(3)
CA11 121(3)
CA8 117(2)
CA9 127(3)
CA10 114(4)
CA11 116(4)
CA10 125(4)
CA12 116(3)
CA12 120(3)
CA13 96(2)
CA5 118(2)
CA12 127(3)
CA12 114(3)
CA15 135(2)
OA14 105(4)
OA14 119(4)

fore are not of sufficient accuracy to be discussed in detail. The compound

also adopts a trans conformations (Y> about the amide bond.

Both AAP and guanine moieties are planar, within experimental error, and

the dihedral angle between the two planes is 95°. A near perpendicular

orientation between the fluorene group and guanine was predicted for the

d(CpG)-AAF adduct26. The acetyl torsion angles are listed in Table II; this
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Table IV Minimum Energy Conformations of G-AAF

Conformer

1
2
3
4
5
6
7
8

Conformer

9
10
11
12
13
14
15
16
17
18
19
20
21
22

a

142
-143
144

-144
-32
32
-33
33

a

-39
39

-131
131
-39
39

-133
133
-48
48

-124
124
125
-125

B

118
-118
-62
62
121
-121
-61
61

8

127
-127
-125
125
-58
58
56
-56
-97
97
-77
77

-104
104

y - 180°

Y

159
-159
158
-158
157
-157
157
-157

Region

6

87
-87
88
-88
90
-90
89
-89

Y = 0° Region

Y

-23
23
21
-21
-23
23
23
-23
-15
15
13
-13
-14
14

6

90
-90
-90
90
90
-90
28
-28
84
-84
-83
83
84
-84

AEa

0
0
0.08
0.08
0.66
0.66
0.71
0.71

AE

0.14
0.14
0.17
0.17
0.23
0.23
0.31
0.31
0.48
0.48
0.60
0.60
0.63
0.63

aThe difference between the given and the global minimum, in kcaL/mole

group aa a whole is virtually coplanar with the guanine base (dihedral angle

of 14°), and perpendicular to the fluorene chromophore, with a dihedral angle

of 87°. The oarbonyl oxygen atom 0A14 is cis to the guanine base, and

coplanar with it. This together with the short OA14 N7 distance of 2.57

(DA suggest that the observed conformation may be stabilised by a weak

electrostatic interaction between these two atoms due to the N7:N9

tautomerism, although a formal full hydrogen bond is not involved.

The conformation of the acetylamino group in G-AAF is at variance with

that observed in the crystal structures of hydroxylated AAFs^1*. in these,

torsion angles equivalent to 8 are in the range 172-220°, and those

equivalent to y lie between -5* and 17°. It may be concluded that the

conformations observed in these structures, even though they are consistently
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Figure 4. The approximate 5 kcal mole contour for G-AAF is indicated by
a solid line ( ) for y = 0° and by a broken line ( ) for y = 180°.
(•) designates a,6 values of fluorene-cytidine stacked conformers, and
(-O-) designates these values^in the Z forms, both computed for the
guanine C-8—d(CpG) AAF adduct ' . Z-type conformers in regions 11 and
IV were not previously reported.

similar, are not directly relevant to the confermation of AAF when bound to

nucleobase. In particular, it is notable that the requirement of coplanarity

of acetylamino and fluorene groups in the hydroxylated AAFs, which

corresponds to a low energy state, is over-ridden when the side-chain

nitrogen atom is bonded to a bulky guanine group. The coplanarity of at

least part of a C8-substituted group with the guanine ring has also been

observed in the crystal structure of 9-0-D-arabinofuranosyl-8-n-

butylaminoadeninf>34_

Conformatlonal Energy Calculations

Prom the 1152 starting conformations, only 22 discrete minima were found,

eight for the Y-180° region and fifteen for the Y=0° region. These are listed

in Table IV. The conformers occur in pairs of equal energy. The difference

in energy between the global minimum and the highest energy conformer is

only 0.8 Kcal mole"1, indicating that these forms are all accessible. The

actual crystal conformation, with 6 set at 60°, is at 2.0 Kcal mole"1, and
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(9)

Figure 5. (a)-(h) are conformers 1-8 of Table IV.
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Figure 6. The crystal structure of G-AAF, incorporated into the Z-ll DNA
conformation of d(CpG).

the minimum closest to it, namely 5, has an energy of 0.66 Kcal mole"1.

Figure 4 shows approximate 5 Kcal mole"1 contours for each domain of y.

With Y^0°, four discrete, nearly symmetrical low energy domains are apparent.

These are centered in the vicinity of a = 90°, S - 90° and span about 60° in

each direction. With y^l80°, 6 is again centered near 90°, but with a span

of about 40°. Within these narrower limits of 6, however, a can adopt the

entire range of values between about +160° and -160°. Figure 5 illustrates

conformers 1-8 of Table IV.

A comparison of these results of G-AAF with those previously computed for

the guanine C8 AAF adduct to d(CpG)26'27, is illuminating. Two types of low

energy conformations calculated for deoxydinucleoside monophosphate adducts

have been observed in solution. These are forms with fluorene-base stacking
16'17, and Z DNA type conformers9'12, which place the AAF at the Z helix

exterior26, in a flexible position. The preferred a, 6 combinations computed

for these conformers26'27 are also shown in Figure 4. The y = 0° region was

slightly favoured in both types of conformations, although the energy

differency between the two domains was usually less than 1 Kcal mole"1. As

may be seen in Figure 4, the d(CpG) adduct prefers regions I and III for a, 6.

The chiral d-deoxyribose interacts differently with the equi-energy G-AAF

conformers ao that their energies are no longer equal in the larger structure.

Furthermore, the constraints of fluorene-cytidine stacking are such that

regions II and IV, with a centered near -90° are ruled out. With a near

-90° the carcinogen is orientated so that it is swung away from guanine.
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instead of being stacked with it, when the DNA backbone conformations are

like those reported for fluorene-cytidine stacked forms26'2'. However, in

the Z form the externally located carcinogen can occupy all four domains.

Z type confonners in domains II and IV have a, B minima at -102°, -118°;

-102°, 64°: and -58°, 116° (data not previously reported). These minima are

of somewhat higher energy at the dinucleoside level than the Z type conformers

reported earlier26, but they are entirely feasible forms. The observed

crystal structure of G-AAF, with a and f? in domain IV is thus a possible

fragment of Z-DNA modified at the C8 position of guanine. Figure 6 shows

d(CpG) in the Z-II DNA conformation35, incorporating the crystal structure.

CONCLUSIONS

This study, together with earlier NMR findings on dGMP-AAF23 and semi-

empirical energy calculations for d(CpG)-AAF26, provides a molecular view

of the carcinogen-DNA linkage. The fluorene ring is nearly perpendicular

to the base. This crystal structure shows a carcinogen-base orientation that

represents one of the possible (though energetically not the most favoured)

Z form adduct conformations, with the carcinogen situated in a flexible

position at the helix exterior. Thus, the Z form of AAF-bound DNA can be said

to arise not merely from a syn glycosidic angle, but from the fundamental

features of carcinogen-base orientation.
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