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Abstract

Genome-wide scans of genetic variation can potentially provide detailed information on how modern humans colonized
the world but require new methods of analysis. We introduce a statistical approach that uses Single Nucleotide
Polymorphism (SNP) data to identify sharing of chromosomal segments between populations and uses the pattern of
sharing to reconstruct a detailed colonization scenario. We apply our model to the SNP data for the 53 populations of the
Human Genome Diversity Project described in Conrad et al. (Nature Genetics 38,1251-60, 2006). Our results are consistent
with the consensus view of a single ‘‘Out-of-Africa’’ bottleneck and serial dilution of diversity during global colonization,
including a prominent East Asian bottleneck. They also suggest novel details including: (1) the most northerly East Asian
population in the sample (Yakut) has received a significant genetic contribution from the ancestors of the most northerly
European one (Orcadian). (2) Native South Americans have received ancestry from a source closely related to modern North-
East Asians (Mongolians and Oroquen) that is distinct from the sources for native North Americans, implying multiple waves
of migration into the Americas. A detailed depiction of the peopling of the world is available in animated form.
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Introduction

According to current models, modern humans arose in Africa

and spread around the world, with little or no genetic contribution

from the hominid populations that they displaced [1,2,3]. Genetic

diversity decreases progressively with land distance from East

Africa [4] providing support for a ‘‘serial dilution’’ model in which

diversity was lost progressively in sequential bottlenecks associated

with small founder population sizes as new territories were

colonized [5,6]. However, the good fit of serial dilution models

might principally reflect recent admixture, which will tend to

smooth diversity clines. Numerous questions remain about how

many independent bottlenecks occurred as new continents were

colonized, the exact land routes involved, and whether there have

been genetically important migrations that do not conform to a

model of progressive outward expansion [7,8,3].

Statistical inference of colonization history represents a

considerable challenge. A reasonably detailed description would

include (1) the times of major population splits, (2) the effective

sizes of each distinct population and/or a list of major bottlenecks

and (3) times of major admixture events, when previously distinct

populations met and the contributions of the distinct populations

to the new hybrid population. Even a complex population based

history does not fully describe migration patterns, since isolation

by distance can also be important. DNA is passed down through

generations in linear segments whose boundaries are determined

by meiotic crossovers. Modeling the segment-by-segment inheri-

tance of genetic material is technically challenging even assuming

simple demographic scenarios [9]. Adding modern and ancient

population subdivision makes computations more complex and

introduces the problem of choosing amongst a very large number

of possible split and merger scenarios.

We take an approach that models the segmental pattern of

human inheritance and also allows comparison between numerous

distinct historical scenarios. The approach is predicated on

populations arising in an order that can be inferred from the

data. For any given ordering of the populations in the sample, we

use the copying-with recombination model of Li and Stephens

[10] to reconstruct all of the chromosomes. Different orderings of

the populations can be compared based on the overall likelihood

of generating the entire set of chromosomes in the sample.

Since all the data we analyze is from contemporaneous samples,

the assumption of an ordering is incorrect if interpreted literally.

However, under a serial dilution model, for example, it is natural

to think of populations arising sequentially during radiation from

Africa. Subseqent migrations and admixture have complicated this

picture but a sufficient signal of these early events remains that the

ordering our approach generates can for the most part be

interpreted reasonably easily. For example, the ‘‘Out of Africa’’

bottleneck has left a signal of greater genetic diversity in Africans,

both at the nucleotide [11] and haplotype levels [12] in the great

majority of African and non-African populations, whatever their

subsequent demographic history. One of the properties of the Li

and Stephens model is that the likelihood of an ordering will

generally be higher if the most diverse haplotypes are created first.

Our analysis finds the same strong signal that is evident in the
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summary statistics of diversity; for the dataset of Conrad et al [12]

the likelihood of generating two populations, one of which is

African, is always higher if the African population is first.

In addition to the order in which populations were founded, we

would also like to learn about patterns of ancestry. For each new

population, a subset of individuals from the previously formed

populations is designated as a ‘‘donor pool.’’ In the model, each

new haploid genome or ‘‘haploid’’ is formed by copying

chromosomal segments from the donor pool or from previously

created haploids in the same population (for notational simplicity

we assume that every individual consists of two haploids that each

contain one of the two copies of the 22 autosomes). The model

allows different donor pool combinations to be compared

according to the likelihood of generating all the chromosomes in

the new population. The number of individuals from each

population in the donor pool with the highest likelihood provides

an indication of the relative importance of different ancestral

sources. For convenience, we refer to the donors using the labels of

the modern populations they come from, but they in fact represent

surrogates for the shared common ancestors of the donor and

recipient populations. The generation of individuals from a single

population is illustrated for a hypothetical example in Figure 1.

Results

Simulated Data
We tested our inference method using data simulated under a

coalescent model [13,14], with individuals sampled from five

populations, labelled A-E, that were generated by sequential

bottlenecks (Figure 2-(a)). Parameters were guided by previous

demographic estimates [15], with the first bottleneck approxi-

mately corresponding to the ‘‘Out of Africa’’ event. In 10

independent realisations of the same scenario (5 with simulated

recombinational hotspots, 5 without), the model correctly inferred

both the order in which the populations were founded and which

populations gave rise to each new one (Figure 2-(b)) and did not

infer any additional, spurious sources of ancestry. We then

complicated the model by giving populations D and E ancestry

from two sources (Figure 2-(c)). The model continued to infer the

correct ordering for the formation of the populations and correctly

identified the single sources for populations B and C and the two

sources for population E in every case. However, in 7 of the 10

simulations, the ancestry of population D was inferred incorrectly,

with the model either failing to include population A as an

ancestor (as shown in Figure 2-(d)), mistakenly including

population B, or both (Table S1). We conclude that, at least for

relatively simple scenarios, the model provides an accurate

indication of historical relationships between populations but does

not always correctly identify minority sources of ancestry, in

particular when admixture is ancient.

One potential confounding factor in SNP data is ascertainment

bias. The SNPs that are chosen for genotyping are often

ascertained based on a limited sample of individual who come

from one or a small number of ethnic groups (typically Europeans).

For example, in the data of Conrad et al., heterozygosity of the

SNPs was actually highest in the Middle East, Central and South

Asia and Europe, although these populations are known to be less

diverse than Africans. Our method reconstructs haplotypes and

therefore we expect it to depend principally on patterns of

haplotype sharing and diversity, which a priori should be less

sensitive to the ascertainment protocols of individual SNPs.

Indeed, in the data of Conrad et al., the haplotype diversity is

highest in Africans [12].
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Figure 1. Formation of a new population using its donor pool.
The donor pool for population D consists of the red, blue and green
haploids from populations A, B and C. Gray haploids are not used as
donors. Haploids within population D are created in order, and
previously created haploids from population D can be used in the
formation of each new one (magenta). For example, haploid D1a is
copied from A1a, C2b and B2b, while haploid D1b is copied from C1b,
B2b, C1a and D1a. One of the two alleles at each locus is indicated by a
black cross, with differences from the copied haploid, i.e. mutations,
indicated by a white box around the mutated nucleotide.
doi:10.1371/journal.pgen.1000078.g001

Author Summary

Humans like to tell stories. Amongst the most captivating
is the story of the global spread of modern humans from
their original homeland in Africa. Traditionally this has
been the preserve of anthropologists, but geneticists are
starting to make an important contribution. However,
genetic evidence is typically analyzed in the context of
anthropological preconceptions. For genetics to provide
an accurate and detailed history without reference to
anthropology, methods are required that translate DNA
sequence data into histories. We introduce a statistical
method that has three virtues. First, it is based on a
copying model that incorporates the block-by-block
inheritance of DNA from one generation to the next. This
allows it to capture the rich information provided by
patterns of DNA sharing across the whole genome.
Second, its parameter space includes an enormous
number of possible colonization scenarios, meaning that
inferences are correspondingly rich in detail. Third, the
inferred colonization scenario is determined algorithmical-
ly. We have applied this method to data from 53 human
populations and find that while the current consensus is
broadly supported, some populations have surprising
histories. This scenario can be viewed as a movie, making
it transparent where statistical analysis ends and where
interpretation begins.

Who Begat Whom?
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In order to test for an effect of ascertainment bias, we performed

inference in two extreme ascertainment schemes: one in which we

selected SNPs for all populations based only on those that were

heterozygous in population C, and one in which we selected SNPs

for all populations based only on those that were heterozygous in

population E. The former might represent ascertainment based

only on European or Middle Eastern populations. The latter

would represent an even more extreme and biased ascertainment,

such as ascertaining SNPs using only native Americans. We used

10 of the simulations described above (the ones without

recombination hotspots). In 9/10 cases, results were not

discernably different from those based on using all SNPs. In the

remaining simulation, population B and C were swapped in the

inferred ordering under both ascertainment schemes. We conclude

that even extremely biased ascertainment has a modest effect on

inference.

Our results might also be confounded by the incomplete nature

of the sample and by the many complexities of human population

history. We have performed additional simulations in order to

assess how complications to the scenarios shown in Figure 2 would

affect inference. We first evaluated the effect of leaving a

population out of the simulated datasets (population D). For all

four simulations (two as illustrated in Figure 2-a, one with and one

without recombination ‘‘hotspots,’’ and two as illustrated in

Figure 2-c, one with and one without recombination ‘‘hotspots’’),

population C was chosen as a significant donor population for E.

Remaining inference was correct (i.e. no other spurious donors

were detected, and for the simulations illustrated in Figure 2-c, the

model picked up the additional contribution from population B.)

This is what is expected: with the appropriate donor population

missing, our model chooses as its replacement the population that

contributed the majority of genetic material to the missing donor

population.

Complex patterns of admixture might considerably complicate

inference. We modified the scenarios shown in Figure 2-a and

Figure 2-c by adding recent admixture, either from D to C or from

A to C. Examples are shown in Figures 3-a and 3-c. A genetic

contribution from population D to C had little effect on inference

in 10 different simulations (Figure 3-d). These results show that

‘‘back admixture’’, for example migrations into Africa, will

generally not be detectable by our method. In this simulated

example at least, the back admixture did not affect the rest of the

inference. The effect of a recent contribution from population A to

population C was more substantial. In 5/10 cases (four for the

scenario shown in Figure 3-a) the inferred order of populations B

and C were swapped (Figure 3-b). The swapping of the

populations leaves the genetic connections between the popula-

tions correct but inferences on which are sources and which are

sinks are confused by the multi-layered migrational history.

Data of Conrad et al.
We used the same approach to infer the order of birth and

ancestral sources of the 53 populations in the Human Genome

Diversity Panel using the data from 2,540 linked SNPs across 32

autosomal regions genotyped by Conrad et al [12]. The highest

likelihood scenario is shown in Figure 4 and Movie S1. By visually

inspecting these results, we have identified nine phases in the

colonization of the world. This subdivision is subjective and the

Figure 2. Simulations description and results. (a) and (c) A graphical representation of the simulation parameters. The initial colonization times
for each of populations B-E are denoted with dashed lines, with the times t provided on the right in units of generations. Each rectangle represents
the demography of one of populations A-E, as labeled, with the rectangle width scaled by the population size at time t. Each arrow represents the
sources of colonization for populations B-E, pointing from source population to sink population, with arrow widths pointing into D and E roughly
proportional to the proportion of genetic material coming from that source. (b) and (d) A graphical representation of typical examples of the results
of our model applied to the simulated data, showing inferred ordering and sources for each population (black arrows). The widths of the rectangles
are proportional to the number of sampled individuals for each population, and the thickness of the arrow shafts indicate how many of those
chromosomes act as donors for subsequent populations.
doi:10.1371/journal.pgen.1000078.g002

Who Begat Whom?
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phases should not be thought of as occurring strictly in

chronological order. For example, East Asia and Europe are

peopled almost independently, making their relative position in the

ordering nearly arbitrary. Furthermore, Melanesia has multiple

sources that reflect ancient and recent migrations that introduced

very distinct genetic material (see [16] for a review). Its inferred

place in the ordering reflects the most recent of these migrations.

Nevertheless, the phases do reflect progressive outward expansion,

analogous to that implied by serial dilution models.

1. Sub-Saharan Africa. The first population in the ordering are

the San, who are hunter gatherers that live in Southern Africa.

Before the Bantu expansion over the last 3,000 years, the ancestors

of the San occupied most of Southern Africa, but they have been

progressively displaced and currently are restricted to a few

pockets [17]. The San contributed ancestry to the next four

populations (the Biaka Pygmies, Bantu from South Africa and

Kenya, and Mbuti Pygmies) but none subsequent to that. The

Bantu are inferred to have contributed to each subsequent African

population.

2. North Africa. The Mozabites are the only African population

in the sample from above the Sahara. In our analysis, they are the

8th and final African population to arise and are also distinctive

because they represent the first population that uses less donor

individuals (46 from the Mandenka, Yoruba, and Kenyan Bantu)

than their predecessor the Mandeka, who used 64 donors from

four populations. We interpret the smaller number of donors as

evidence for a bottleneck in the history of the Mozabites, that is

not shared by the other African populations in the sample. The

small number of donor populations implies that only a subset of

the human populations present at the time of the bottleneck

contributed to the Mozabite lineage.

3. Central Eurasia. There is no clear pattern to the order of

colonization of central Eurasia, with the initial Central Asian

populations (Makrani, Uygur) interspersed with those from the

Near East (Bedouin, Palestinians) and the eastern edge of Europe

(the Adygei). All of these populations have Mozabites as donors,

with the first three populations also using Kenyan Bantu. For these

three, all 28 Mozabite individuals were used in generating each of

the three populations, making it possible that some of the Bantu

chromosomes would have been replaced by additional Mozabites

or other North or East Africans if they were present in the sample.

Overall, non-African populations can each trace approximately 3/

4 of their ancestry via the Mozabites (Movie S2, Table S4). The

total number of donors increases progressively from 39 for the

Makrani to 141 for the Adygei. The high interconnectedness of

these populations presumably reflects the absence of region-

specific bottlenecks and/or multiple episodes of gene flow between

Eurasian populations subsequent to the initial colonization

event(s).

4. Central Europe. Aside from the Adygei, the first European

populations to arise are the French, Tuscans, and Italians. These

three populations have an average of 260 donors, including those

from the Mozabites and several Near Eastern and Central Asian

populations. This is a larger number than for any non-European

population in the sample and highlights the diverse sources of

European ancestry.

5. Pre-Han East Asia. The first 8 East Asian populations

(Cambodia, Mongolia, Oroqen, Xibo, Yi, Tu, Daur, Naxi) have

50-84 donors, including all 32 individuals from two central Asian

populations, the Uygur and the Hazara (except the Tu who use

24/32). This represents an entirely distinct source of ancestry from

European populations, who each receive less than 10% of their

Figure 3. Description and results for simulations with recent admixture. (a) and (c) A graphical representation of the simulation parameters,
comparable to Figure 2-a, with the addition of recent migration from population A into C and recent back migration from population D into C,
respectively. (b) and (d) A graphical representation, as described in Figure 2, of typical examples of the results of our model applied to the simulated
data. The recent back migration from population D into C does not significantly alter inference, while recent migration from population A into C
results in mistakingly inferring that population C is a source for B in this example.
doi:10.1371/journal.pgen.1000078.g003

Who Begat Whom?
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ancestry via the Uygur and almost none via the Hazara (Movie S2,

Table S3). The only other external donors are the Pathan

(contributing 12 chromosomes to Mongolians) and the Burusho,

Sindhi and Mozabites, who contribute 23, 15, and 4 donors to the

Cambodians respectively. We interpret the paucity of donors and

the consistence of ancestry patterns as evidence for a single East

Asian bottleneck.

6. The extremities of Europe. The final four European

populations (the Sardinians, Russians, Orcadians and Basque) all

lie on the extremities of the continent. As well as having many

European donors, these populations also have a large number

from the Near East and Central Asia, consistent with Europe

absorbing multiple waves of migrants. The Russians have 375

donors, more than for any other population, including from the

Yi, Tu, and Mongolians, indicative of admixture with Far-Eastern

populations. The Basque have 4 Hezhen donors but are otherwise

similar to other Europeans.

7. The Han expansion. The Han receive their ancestry

exclusively from other East Asian populations (including the more

westerly Xibo) and represent a principal source of ancestry for

several subsequent populations that also have principally East

Asian ancestry (She, Japanese, Dai, Lahu, Han from Northern

China, and Miao).

8. The Americas. The Colombians are the first Amerind

population. 47% of their ancestry can be traced via the Hazara,

which is marginally less than typical East Asian populations such

as the Han (54%) or Xibo (59%) (Movie S2, Table S3). However,

within the descendents of the putative EastAsia bottleneck, their

Figure 4. Summary of inferred history of the peopling of the world. The formation of 53 populations has been condensed into 38 frames,
shown in full in Movie S1, by displaying the formation of each population as soon as all of its donors are present. When 2 or more populations are
formed in the same frame, the connections from their donors are shown in different colors. (A) Africa subsequent to San, (B) initial colonization of
central Eurasia, (C) initial colonization of Far East and Europe, (D) Americas and Pacific Islands. The thickness of each line is proportional to the mean
estimated number of donor individuals from each source (numerical values provided in Table S2). Solid lines indicate that all or nearly all of the
individuals in the population were used as donors. Dashed lines indicate that on average between four individuals and the number of available
individuals minus two were used.
doi:10.1371/journal.pgen.1000078.g004
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donor pool is diverse, implying that none of the populations in the

sample provides a good proxy for the original group or groups that

crossed the Bering straight. The Colombians also have French

donors, which may reflect post-Colombian admixture. The second

American population, the Pima, represents the first North

American population. As well as using all 7 Colombians as

donors, it uses 8 Mongolians and 4 Oroquen. Neither of these

populations acted as donors to the Colombians, suggesting distinct

colonization events from different sources. Subsequent American

populations did not have any non-Amerind donors, except for the

Mayans who have Bantu and Tuscan donors, presumably due to

post-Columbian admixture [18].

9. Pacific Islands. All but two of the East Asian populations that

donate to the Colombians also donate to the Melanesians, and the

Japanese are again the most numerically important with 20

donors. However, the Melanesians have several additional sources

of ancestry. These include three populations which are products of

the East Asian bottleneck (Oroquen, Han, and Pima), in addition

to Central Asian populations (Burusho and Brahui) and Russians.

Three Mozabite donors are also estimated, which falls slightly

below our conservative threshold for significance (Methods). In

total, the Melanesians trace 38% of their ancestry via the Hazara,

which is less than East Asian or Amerind populations and implies

independent sources of ancestry. The Papuans receive ancestry

only from Melanesians and Cambodians, suggesting a shared

common bottleneck.

One concern for this dataset is that the number of individuals

varies widely among populations (from 6 to 45). We investigated

whether this might have a substantial effect on our results by

correlating the number of individuals in each population with both

its position in the inferred ordering (Figure S1) and the total

number of donors it received (Figure S2). Using simple linear

regression, no strongly significant correlation was found in either

case (p-value . 0.05).

Discussion

We have inferred a scenario for the peopling of the world using

SNP data from 53 populations (Movie S1) by maximising a single

likelihood function (Equation 4, see ‘‘Ancestry model’’ section) that

uses the extensive information on ancestry provided by linkage

between markers in the same chromosomal region. Heuristic

algorithms were needed in order to search the very large space of

possible scenarios for a high likelihood solution (Methods) but the

the scenario was generated automatically and without the use of

geographical information apart from population labels. Because

our model is simplified, this scenario should not be interpreted as a

full chronological colonization history; automatic inference of such

a history will require further methodological advances. Neverthe-

less, because the scenarios our model generates can be related to

histories in a reasonably straightforward and transparent fashion,

our method is of immediate use in independent hypothesis

generation. We describe two such hypotheses below.

These hypotheses gain plausibility because our model also

regenerates hypotheses that are already well established in the

anthropological genetics literature. First, our results suggest a

single major ‘‘out-of-Africa’’ bottleneck. The African populations

are all generated prior to all of the non-African ones. Further the

great majority of the ancestry of non-Africans goes via a single

African population, the Mozabites. The only exceptions are

Kenyan Bantu contributions to the first three non-African

populations, and South African Bantu contributions to the Sindhi

and the Maya. Admixture with descendents of the slave trade can

explain the Bantu contribution to the Maya and possibly also to

the Sindhi, who have coexisted with a small ethnically African

minority, the Sidi, for several hundred years [19]. There is no

evidence of any ancient contribution to non-African humans that

are independent of the main source populations.

Second, our results are broadly consistent with serial dilution

and the peopling of the Americas via the Bering Strait. East Asians

arise from central Asians, as do Native Americans. Melanesians

have broader ancestry pool than East Asians, suggestive of

multiple independent waves of colonization [16]. Their late

position in the ordering reflects the ancestry they have derived

from East Asians, while the Cambodians precede all other East

Asian populations consistent with earlier migrations towards the

South [8]. European populations all have a strikingly diverse set of

donors, consistent with admixture during ‘‘demic diffusion’’ of

near-Eastern DNA into Europe during the spread of agriculture

[20] and [21], and the many other documented migrations into

Europe, such as from North Africa [22]. Russians have the most

diverse sources of ancestry, including from East Asians, consistent

with admixture in the sprawling Russian empire.

Independent Sources of Ancestry for Northern and
Southern Amerinds

In our inferred scenario, Pima are the first North American

population in the ordering and receive ancestry from the first

South American population, the Colombians. The Pima have two

additional donor populations, the Oroquen and Mongolians, both

of whom reside in Mongolia and neither of which are donors to

Colombians. This result is intruiging because it suggests indepen-

dent sources for North and South Americans and hence multiple

waves of migration into the continent, contradicting the current

consensus based on available data [23].

We tested the robustness of this inference by swapping the two

populations in the ordering and re-inferring donors using the same

protocol. The Pima replaced their Colombian donors with a small

number of East Asians who were donors to the Colombians (4

donors each from Naxi and She), but the Mongolians and

Oroquen remained majority donors. This result mirrors what is

found in our simulations; if a donor population is missing (or also

present in insufficient numbers in the sample) then it will typically

be replaced by one or more of its own donors. The Colombians

gained the Pima and lost a substantial number of other donor

populations, but kept several from populations that did not

contribute to the Pima in either ordering (Daur, Hezhen, Xibo

and Burusho).

These results are consistent with substantial gene flow between

North and South America but also imply that these have not been

strong enough to overwhelm a clear signal of independent

colonization. These results also suggest a geographically and

historically very plausible scenario: The populations colonizing

North East Asia whose members crossed the Bering Strait and

whose descendents eventually reached South America were

replaced by a population more closely related to modern East

Asians (and specifically modern Mongolians). This population

subsequently also crossed the Bering Strait and contributed

substantially to the ancestry of North American Amerinds. This

second wave of migration provides an explanation for the

relationship between distance from Siberia and genetic similarity

to Siberians [23], which was previously attributed to serial dilution

[23]. It also explains why an analysis of the population structure of

the Pima and two South American populations based on genome-

wide SNP data, using the admixture model of STRUCTURE

[24], inferred that the South American populations had a single

source of ancestry but the Pima had received approximately half of

their ancestry from a second, additional source [25]. Simulation

Who Begat Whom?
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results have shown that the admixture model of STRUCTURE

can be surprisingly successful in detecting ancient admixture, even

in the absence of source populations, if the number of markers

used is sufficiently large [26].

Gene Flow from Europe to East Asia around the Arctic
Circle

In our inferred scenario there is little gene flow between East

Asian and Europeans and the Yakut is the only East Asian

population to have two European donors; the Russians and the

Orcadians. The Russian contribution is not surprising because the

Yakut live in North East Russia. The Orcadian contribution is

particularly noteworthy because removing these donors reduces

the log-likelihood of generating the Yakut chromosomes by 2.5

times more than removing donors from any other population

(Table S2). The Orcadians are also the only other European

population to donate to other East Asians, namely the Han from

Northern China and the Hezhen, who are also amongst the most

Northerly East Asian populations in the sample. On this basis we

hypothesize that there has been an episode of gene flow from

Europe to East Asia. We tested the robustness of this inference by

putting Orcadians last in the ordering. The Yakut replaced the

Orcadians with Sardinians, who are a major donor to the

Orcadians. The Hezhen and the Han from Northern China did

not acquire new European donors, consistent with the gene flow

from Europe being less quantitatively important to these two

populations than to the more Northerly Yakut. Orcadians did not

gain any East Asian donors by being placed last in the ordering,

strengthening the inference that the direction of the gene flow was

from Europe to East Asia.

Our results provide evidence for two continent-scale bottle-

necks, the first affecting non-Africans and the second affecting East

Asians, with both groups having a small number of donors from

outside the region. Unfortunately, the limitation of both our

method and the sampled populations make it difficult for us to

make detailed inferences about the nature of these bottlenecks.

Most of the ancestry of non-Africans comes via the only only

North African population in the sample, the Mozabites, who are

also the last African population to be formed. However, their

intermediate position might reflect back migration from the

Middle East and/or Europe[27,28,29]. Simulation results suggest

that our method is likely to miss this type of back admixture.

Indeed, if Mozabites are allowed to receive ancestry from any

populations and not only those that precede them in the ordering,

they get approximately 70% from these two regions, consistent

with the results of STRUCTURE for the same populations [30].

In any case, a much better sample of East and North African

populations would be required to elucidate the nature of the

bottleneck.

A similar problem of interpretation occurs for the East Asian

bottleneck. A majority of the ancestry of East Asians comes via two

central East Asian populations, the Uygur and the Hazara.

However these populations could have come to resemble East

Asians through back migration. Indeed, if these populations are

placed last in the ordering, then more than 40% of their donors

are East Asian. If donors for the East Asian populations are

inferred while excluding the Uygur and the Hazara from the

dataset, the first populations have a somewhat larger number of

donors from a wider range of Central or West Asian populations

(Brahui, Makrani, Balochi, Sindhi and Adygei) than shown in

Movie S1, but populations later in the ordering revert to having

predominantly East Asian donors, supporting a strong East Asian

bottleneck that contrasts with the wide sources of ancestry of

Europeans.

The major simplification of our model is to assume that the

populations were founded in an order. Since the DNA samples

came from living humans, the ordering does not reflect age, but

instead bottlenecks and admixture events that distinguish more

recently formed populations from older ones. Complexities in

human history make this ordering somewhat arbitrary. For

example, the Melanesians have been founded by multiple waves

of migrations. Their position late in our ordering reflects the

substantial proportion of their ancestry that comes from East

Asians. However they also have other, independent sources of

ancestry that reflect migrations that are likely to predate those that

gave rise to the modern East Asian populations. Information on

the timing of different waves of migration could potentially be

obtained from more extensive DNA sequence datasets by

examining the sizes of the blocks of DNA that are inherited from

different donor populations. Recent admixture would result in

individuals sharing large contiguous segments from particular

donor populations [26,31]. Recent shared ancestry would result in

individuals receiving large contiguous segments from particular

donor haploids.

A fully realistic history would avoid any ordering of the modern

populations. One potential avenue for extending the current

approach to achieve this goal would be to impute chromosomes

from ‘‘ancestral populations,’’ which would both represent

populations that existed in the past and also act as efficient donors

for the modern haplotypes. Generation of such populations poses a

number of statistical and computational challenges but could

potentially allow a chronological, multi-layered history to be

inferred. Accurate reconstruction of historical migrations depends

crucially on the use of appropriate samples and any geographical

interpretation can be confounded by major population move-

ments. Further, it should ideally be demonstrated that the results

are robust to which parts of the genome are used in analysis.

Further methodological innovation and genome-wide SNP

datasets from diverse human populations [25,32] should allow

unprecedented detail in the reconstruction of the ancestry of

extant humans.

Materials and Methods

Genotype Data
We used the 32 autosomal regions in Conrad et al [12], each of

which consisted of approximately 80 biallelic SNPs across 330

kilobases of the genome. SNP data were collected for a total of 927

individuals sampled from 53 different populations, with sample

sizes ranging from 6 to 45 individuals per population. Data were

kindly provided to us as haplotypes, which were phased using

fastPHASE [33] on each region as previously described [12].

Ancestry Model
Li and Stephens [10] described a likelihood based model that

captures the principal features of the genealogical process with

recombination while remaining computationally tractable for large

datasets. Under the model, the chromosomes are generated in

order, with chromosomes being copied segment-by-segment from

those earlier in the ordering. In our notation, every individual

consists of two haploids, each consisting of a single phased

haplotype per genotyped region. The L total SNPs in each haploid

are listed one region at a time, in order within each region.

Suppose that we wish to generate a particular haploid h*, using j

pre-existing donor haploids h1,…,hj. Let r represent the crossover

recombination rate per unit physical distance across the genome,

assumed fixed. The conditional probability Pr(h* | h1,…,hj; r) is

structured as a Hidden Markov model, where the hidden state Xl
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represents the existing haploid from the set h1,…,hj that haploid h*

copies from at each site l = 1,…,L. The switches in copied-from

haplotype are modelled as a Poisson process with rate r/j. The

transition probabilities for X between sites l and l+1 are as follows:

Pr(Xlz1 ~ xlz1jXl ~ xl) ~

exp({rdl=j) z 1 { exp({rdl=j)ð Þ(1=j) if xlz1 ~ xl ;

1 { exp({rdl=j)ð Þ(1=j) otherwise,

� ð1Þ

where dl is the physical distance between SNPs l and l+1. If l and

l+1 are on separate genetic regions, we set dl = ‘. The observed

state sequence component of the Hidden Markov Chain, the

probability of observing a particular allele given the haploid that h*

is copying from at a given SNP, allows for ‘‘imperfect’’ copying

that depends on a per site mutation parameter
~
h:

Pr h�,l ~ ajXl ~ x,h1,:::,hj

� �
~

1=2ð Þ ~
h= j z

~
h

� �h i
zj= j z

~
h

� �
hx,l ~ a;

1=2ð Þ ~
h

,
j z

~
h

� �" #
hx,l = a:

8>>><>>>:
ð2Þ

Here hj,l refers to the allelic type of haploid j at SNP l. The

mutation parameter
~
h is fixed, as in [10], as Watterson’s estimate

with one expected mutation event per site, i.e.
~
h ~

XJ { 1

m ~ 1
1
.

m
� �{1

[34] for J total haploids. To calculate

Pr(h* | h1,…,hj; r), a summation is performed over all permuations

of the copying process, i.e. a summation over all possible x, which

can be accomplished efficiently using the forward algorithm (e.g.

[35]). In the analyses presented here, we used an alteration of (1)

above, using the ‘‘PAC-B’’ version described in [10].

Note that the probability of recombination events (i.e. switches)

and mutations goes down as the number of haploids j increases.

This mirrors a key property of data generated under the

coalescent, that the probability that a segment from an additional

chromosome will be identical by descent with a segment from

chromosomes 1…j increases with j. This property also means that

different orderings will have different likelihoods that at least in

part reflect the demographic history of the individuals in the

sample. For example, if a subset of individuals in the sample have a

particularly high level of diversity, then the overall likelihood will

generally be higher if these individuals are generated early rather

than late in the ordering.

In previous implementations of the Li and Stephens algorithm,

it has been assumed that each new haplotype is made using all

previous haplotypes. This leads to the formula for the probability

of observing J haploids, conditional on r:

Pr(h1,:::,hJ jr) ~ Pr(h1jr)Pr(h2jh1; r):::Pr(hJ jh1,:::,hJ{1; r), ð3Þ

where Pr(h1jr) ~
1

2L
as in [10].

However, in the context where individuals come from

differentiated populations, a higher likelihood may be obtained

by using only a subset of the pre-existing individuals as donors. In

order for a donor individual to increase the likelihood of

generating h*, there needs to be chromosomal segments, whether

large or small, that are more similar to h* than any of the others in

the donor pool. Individuals from populations that are more

differentiated from h* than others in the donor pool are likely to

contain few such segments. Further, every individual increases the

value of j by 2, and for each segment that is copied a 1/j term

appears in the likelihood, corresponding to choosing amongst the j

donor haploids. Thus the presence of differentiated individuals in

the donor pool can decrease the overall likelihood.

Here we are interested in investigating ancestry at the

population level. We therefore make some assumptions about

orderings and donors that are justifiable if the individuals within

each population share the same demographic history. In practice,

population labels are initially defined based on geographic and

ethnic criteria, and the degree of homogeneity within the labelled

populations can be assessed on multilocus genetic data [18]. These

assumptions considerably reduce the computational complexity of

the problem. Within each population, haploids are assumed to be

generated – and donors are used in generating them – in the order

they appear in the input file. In generating a set of haploids H

across K populations, we further assume that:

1. The K populations are generated in sequence according to an

order of colonization U = (u1,…,uK), where uk denotes the kth

population in the order. To simpify notation, we subscript each

population by its position in the ordering, with 1 representing the

initial population and K the final population to be colonized.

2. Each population k has a fixed set of donor individuals from

previous populations in the order, Dk. The membership of Dk is

determined by k21 integers, mk
1,:::,mk

k{1, reflecting the number of

individuals from previous populations 1,…, k21 that donate

genetic material to population k.

3. Within a population k, haploids are made in order using the

previous haploids as donors, i.e. for hk
i , the ith haploid genome of

population k, the total donor pool Dk
i ~ Dk,hk

1,:::,hk
i{1

� �
.

4. The formation of each population k involves a single genome-

wide recombination rate, rk.

Let M ~ (D2,:::,DK ) ~ m2
1,m3

1,m3
2,::::,mK

1 ,:::,mK
K{1

� �
repre-

sent the number of donor individuals from populations

1,…,K21 for each of populations 2 to K, and let W = (r1,…,rK)

denote the set of recombination rates involved in forming all

populations K. Then the probability of the haploid data of all

populations, H, conditional on U, M, and W, is:

Pr HjU ,M,Wð Þ~ P
k~1

K

P
i~1

2nk

Pr hk
i jDk

i ,rk

� �� �
, ð4Þ

where nk denotes the number of individuals in population k.

We want to maximise (4) across all possible orderings of

populations, donor sets and recombination rates. This represents a

very large search space. We used a hill climbing approach and

some MCMC updates to find a good solution.

We first set out to generate an inital order of colonization, U(0),

using a pairwise analysis. For each of the K(K21) permutations of

pairs of populations, we calculated the probability of forming all

haploids in both populations using (3). Specifically, for each

pairwise combination, we calculated (3) twice, once using a

haploid ordering where all of one population’s haploids are formed

first and the other where they are formed last. For each

calculation, we maximized over r using 200 iterations of Markov

Chain Monte Carlo (MCMC). In particular, for each MCMC

iteration r, a new proposal of log10 r, log10r(r), was selected from a

uniform(21,1) distribution shifted to be centered on the previous

value of log10 r. This new value of r was then accepted or rejected

via a Metropolis-Hastings step, i.e. r(r) was accepted with
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probability min(a1), where a ~
Pr h1,:::,hnjr(r)
� �

Pr h1,:::,hnjr(r{1)ð Þ , or otherwise

rejected. (Here we take a uniform prior on log10 r between 27

and 3.) We compared the final probability values at r = 200 for

each of the two orderings, awarding 1 point to the population that

was first in the highest likelihood ordering. Our initial ordering

U(0) was based on the number of points received by each

population, with the highest scoring population considered the first

population formed. Ties were broken randomly; in the data of

Conrad et al [12], there were nine instances where two

populations had the same number of points and two instances

where three populations had the same number of points (Table

S5).

We calculated the likelihood for U(0) and for subsequent

orderings using a greedy algorithm for each k to obtain values of

M and W. For each k, first (4) was evaluated using all possible

individuals as donors, i.e. Dk ~ mk
1,:::,mk

k{1

� �
~ n1,:::,nk{1ð Þ,

maximizing over rk using 200 iterations of MCMC as described

above, giving r̂rk. Next, the change in the likelihood obtained by

setting mk
p ~ 0, fixing rk ~r̂k, was evaluated for each

p [ ½1,k { 1� for which mk
pw0. If each of these changes decreased

the likelihood, the algorithm stopped. Otherwise, for the p which

resulted in the highest increase in likelihood, mk
p was set to 0 and

rk was re-maximised conditional on this new value of Dk using a

further 200 MCMC iterations, and the algorithm continued.

We used an iterative procedure to obtain orderings with

progressively higher overall likelihood. Specifically, for each

k [ 1,K { 1½ �, we calculated the likelihood of the ordering U*

= (u1…,uk+1,uk,…,uK). In each iteration, we accepted all changes

in ordering that increased the likelihood or left it the same, the

only exeptions being where two or more such changes were

incompatable with each other. In these cases, we accepted those

changes that improved the likelihood the most. This procedure

was repeated until the changes either decreased the likelihood or

reversed a change that had previously been made. For the data of

Conrad et al [12], 13 such iterations were performed, providing

the ordering U(13) (Table S5). The overall log-likelihood improved

by 344 in these 13 iterations. For the simulated data, no changes in

ordering were accepted. For the data of Conrad et al [12] but not

the simulated data, we performed an analogous procedure to

generate U(14) but comparing all possible conFigure urations of

triplets of orderings, i.e. U* = (u1,…,uk,uk+1,uk+2,…,uK), U* =

(u1,…,uk,uk+2,uk+1,…,uK), U* = (u1,…,uk+1,uk+2,uk,…,uK), U* =

(u1,…,uk+1,uk,uk+2,…,uK), U* = (u1,…,uk+2,uk,uk+1,…,uK), and U*

= (u1,…,uk+2,uk+1,uk,…,uK). We accepted 4 such changes, improv-

ing the log-likelihood by a further 67. We then recalculated new

optimal values of rk for this ordering, which improved the log-

likelihood by a further 60, and checked pairwise population swaps

based on these new values. None of the proposed swaps increased the

likelihood further, so this gave us our final ordering Û (Table S5).

The greedy algorithm assumes that for each population k, the

preceeding populations contribute either all or none of their

chromosomes to the donor pool Dk. In order to find a solution

which allowed fractional contributions from donor populations, we

used an MCMC approach, conditional on this final ordering Û
and final values of rk, Ŵ. Let M (r) ~ m

2(r)
1 ,:::,mK(r)

K{1

� �
be the

donor pool at iteration r, with mk(r)
p the number of donor haploids

from population p to population k at iteration r. Initially, we set

mk(0)
p ~ 3 for all p [ 1,K { 1½ � and k [ ½2,K �. We then performed

the following steps at each iteration r = 1,…,R:

1. randomly choose one of k’s donor populations 1,…,(k21)

with uniform probability; call this population p

2. randomly choose x [ 1,2,3,4,5,6 with uniform probability

3. if r is an even number, set mk(r)
p ~ mk(r{1)

p z x

4. if r is an odd number, set mk(r)
p ~ mk(r{1)

p { x
5. if mk(r)

p v 0 or mk(r)
p w np then reject the change, i.e.

mk(r)
p ~ mk(r{1)

p .

6. Otherwise, accept the change with probability min(a,1),

where a ~
Pr HjbUU ,M (r),bWW� �

Pr HjbUU ,M (r{1),bWW� � :
For both the simulated data and our application to the data of

Conrad et al [12], contributions were deemed significant if the

average number of donors exceeded 2. For our simulated data, we

used the results of a single MCMC run with 5,000 iterations,

including 1,000 Burn-in iterations. For the data of Conrad et al

[12], different MCMC runs converged on slightly different local

optima, as a result of the complexity of the search space. We

therefore used a consensus of the results of the greedy solution and

two independent MCMC solutions. For each MCMC run, we

initially ran the algorithm for 10,000 iterations, including 2,000

iterations of burn-in. In 17 cases (both runs of Japanese, Lahu,

Maya, Pima and Papuan and one run of Dai, Italian, Sardinian,

Surui, Tujia, Karitiana and She) the algorithm initially got stuck in

a local optimum but then jumped to a significantly better solution

(.30 improvement in log-likelihood) after the burn-in was

complete. We therefore continued the run for a further 10,000

iterations, using the last 8,000 to estimate the posterior. In each of

these 17 instances no further large improvement in likelihood

occurred during these 10,000 iterations, indicating convergence on

a local optimum. The consensus (Table S2) included donor

populations that were significant in at least two of the three

solutions and for which the number of donor individuals, averaged

across the three solutions, was also greater than 4.

Simulations

To test our method’s performance under simple demographic

scenarios, we performed several sets of simulations using the

coalescent-based simulation software msHOT [14,13]. In partic-

ular, we performed simulations under a sequential bottleneck

model, using five populations and four bottleneck events (Figure 2).

We performed simulations for two different scenarios, as shown in

Figure 2-a and Figure 2-c. For both scenarios, the population size

of A beyond t = 3500 generations is 10,000 chromosomes,

bottleneck size is 2,000 for the initial colonizations of each of B-E,

and present-day population size is 25,000 for A-E. In the

simulatons with admixture, D has 75% contribution from C and

25% from A; E has 75% contribution from D and 25% from B.

The number of sampled individuals ranged between 6 (for

population A) and 45 (for population B). This range was chosen

to match that found in the data of Conrad et al [12].

For each scenario, we performed ten independent simulations.

In each we simulated 32 genetic regions of size <330kb and 80

SNPs for each population. We considered two different models of

recombination (five simulations under each model). The first

model consisted of a constant recombination rate rsim across all 32

regions, with rsim = 1.0/kb. Here rsim = 4N0c, where c is the rate

of crossover recombination as before and N0 is the present-day

population size of each population, i.e. N0 = 25000. This rate

closely matches the observed average rate of recombination in

humans, assuming a present-day population size of 25,000. The

second model included recombination hotspots, or narrow areas of

the genome with intense recombination activity relative to the

surrounding region. For the latter recombination model, hotspot

parameters were chosen to mimic current observations on typical

hotspot characteristics [36,37,38,39]. The number of hotspots was

selected from a Poisson distribution such that they occured
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genomewide every 40kb on average. Each hotspot’s width in

kilobases was sampled from a uniform(1,2). Its intensity l, or relative

rate of recombination compared to regions outside of hotspots, was

sampled such that log10
l,Uniform(1.0,2.5). This intensity distri-

bution restricts hotspots to have recombination rates between 10-

316 times that of background rates, with 50% of hotspots expected

to have intensities between 10 and 32. Outside of hotspots, the rate

of recombination in all regions was fixed at rsim = 0.2325/kb.

Finally, we imposed an additional restriction that hotspots had to be

at least 5kb apart in a region. These parameters resulted in a

genomewide average recombination rate of <1.0/kb, with 15

maximum hotspots per region and roughly 78% of the total

recombination occuring in the 3.7% of the sequence genomewide

designated as hotspots. These numbers match – or are slightly more

extreme than – current observations [38].

After simulating the haplotypes for each region based on the

above parameters using msHOT, SNPs were randomly chosen to

mimic allele frequencies present in the data of Conrad et al [12] in

the following manner. The 0th, 10th, … , 90th, and 100th quantile

values of SNP allele frequencies for all populations combined were

found for the Conrad et al [12] data across all regions. SNPs were

then selected in the simulated data such that, for 80 total SNPs per

region, <10% were between the 0 and 10th quantile values of the

real data, <10% were between the 10th and 20th quantile values of

the real data, etc. Histograms of the allele frequencies of our

simulated data after ascertaining in this manner were roughly

comparable to that of the data of Conrad et al [12] (data not shown).

The data we analyzed consisted of haplotypes estimated by the

authors of Conrad et al [12] using the program fastPHASE [33].

Therefore we used fastPHASE to estimate the haplotypes of our

simulated data after selecting SNPs based on the ascertainment

strategy described above. That is, we pretended the haplotype

information from the msHOT simulations was unknown and

phased the genotype data using fastPHASE v.1.2.0 on each region,

for each of the five simulated populations separately. We used

roughly the same fastPHASE parameters as [12], using H = 500, T

= 20, and C = 25, with K = 20 clusters for populations with more

than 40 haplotypes and K = 10 clusters otherwise (see the

fastPHASE documentation for a full description of these parameters

and [12] for a full description of their phasing strategy).

For the scenarios with recent forwards or backwards admixture,

recent admixture was added such that 0.25% of the ‘‘sink’’

population was comprised of new migrants from the donor

population each generation, starting 20 generations ago and

continuing until present-day. Otherwise the simulations were the

same as those based on Figure 2-a and Figure 2-c described above

(five for each under each recent admixture scenario), without

recombination hotspots.

Supporting Information

Figure S1 Number of individuals per population versus our

model’s inferred ordering. Note that there is no clear correlation

between the two.

Found at: doi:10.1371/journal.pgen.1000078.s001 (0.003 MB

PDF)

Figure S2 Number of individuals per population versus our

model’s inferred total number of donors. Note that there is no

clear correlation between the two.

Found at: doi:10.1371/journal.pgen.1000078.s002 (0.003 MB

PDF)

Table S1 Results of simulations shown. Shows inferred order

and mean number of donor individuals contributed from donor to

recipient. Contributions are treated as significant if more than two

individuals on average are inferred as donors. Red indicates

inference of a genuine source, orange indicates inference of a

genuine source that highlights the recent admixture, blue indicates

a genuine source that is not inferred, green indicates an incorrect

source that is inferred, and purple indicates an incorrect swap in

the ordering.

Found at: doi:10.1371/journal.pgen.1000078.s003 (0.06 MB

XLS)

Table S2 Summary of results for Conrad et al [12] dataset.

Shows the mean number of donors for each of the sources shown

in Movie S1 and also totals. The last column shows the reduction

in log-likelihood by excluding the population in the greedy

solution.

Found at: doi:10.1371/journal.pgen.1000078.s004 (0.06 MB

XLS)

Table S3 Ancestry of particular populations. For each recipient

population, gives proportion of donor chromosomes that went via

each existing population. Values were estimated recursively,

working backwards from the labelled population to the first

(San) by assuming that the amount of genetic material passed on

by each population was proportional to the number of donor

individuals it contributed.

Found at: doi:10.1371/journal.pgen.1000078.s005 (0.09 MB

XLS)

Table S4 Ancestral routes for particular populations. Shows

values for particular lines as shown in Movie S2.

Found at: doi:10.1371/journal.pgen.1000078.s006 (0.68 MB

XLS)

Table S5 Inference of ordering. First column gives score for

each population based on pairwise comparisons. The second to

fifth columns give details of the initial ordering chosen based on

those scores (U(0)), including the inferred value of the recombi-

nation rate r and the likelihood of generating the haploids for each

population, both of which are calculated based on the greedy

approach. For subsequent iterations, r is kept fixed, but the

likelihoods for particular populations change. After the final

iteration, new r values are calculated for each population, shown

in the final column of the table.

Found at: doi:10.1371/journal.pgen.1000078.s007 (0.04 MB

XLS)

Movie S1 Inferred history of the peopling of the world. Donors

are listed at the bottom in order according to the mean number of

individuals that are used. See Figure 4 for further details.

Numerical values are given in Table S2.

Found at: doi:10.1371/journal.pgen.1000078.s008 (0.94 MB

CDR)

Movie S2 Inferred history of chromosomes for individual

populations. Each frame shows the path that chromosomes took

from their origin in Southern Africa in reaching the population

labelled in each frame. The width of each line indicates the

proportion of the chromosomes that travelled by that route, with

the diameter of the circle indicating the total proportion of

chromosomes that went via that location (diameter of San = 1.0).

Values were estimated recursively, working backwards from the

labelled population to the first by assuming that the amount of

genetic material passed on by each population was proportional to

the number of donor individuals it contributed. Numerical values

are given in Table S3 and Table S4.

Found at: doi:10.1371/journal.pgen.1000078.s009 (1.23 MB

CDR)
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