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This Letter presents a search for exclusive Z boson production in proton-antiproton collisions at
5 = 1.96 TeV, using the CDF 1II detector. No exclusive Z — [T~ candidates are observed and the
first upper limit on the exclusive Z cross section in hadron collisions is found to be o (Z) < 0.96 pb
at 95% confidence level. In addition, eight candidate exclusive dilepton events from the process

222002-3



PRL 102, 222002 (2009)

PHYSICAL REVIEW LETTERS

week ending
5 JUNE 2009

pp— pyyp — plT1” p are observed, and a measurement of the cross section for M;, > 40 GeV/c? and
|79,] <4 is found to be o = 0.24 1913 pb, which is consistent with the standard model prediction.
0.10

DOI: 10.1103/PhysRevLett.102.222002

At the Tevatron pp collider it is possible to produce Z
bosons exclusively, in association with no other particles
except the p and p: pp — pZp. The colliding hadrons
emerge intact with small transverse momenta, py [1]. The
process is predicted by the standard model (SM) to proceed
via photoproduction. A radiated virtual photon fluctuates
to a gg loop which scatters elastically by two-gluon ex-
change on the (anti)proton and materializes as a Z, as
shown in Fig. 1(a). The same mechanism gives photo-
production of the vector mesons J/ ¢, #(2S) and Y, which
have been studied in ep collisions at HERA [2] and re-
cently observed in pp collisions by CDF [3]. The SM cross
section for exclusive Z production is predicted to be
OTexa1(Z) = 0.3 fb by Ref. [4] and 0.21 fb by Ref. [5], and
is thus below the threshold for detection in the ~2 fb™!
data set used in this analysis. An observation at the
Tevatron would therefore be evidence for beyond SM
(BSM) physics. A BSM theory of the pomeron [6] predicts
a much larger cross section, possibly orders of magnitude
larger, but without a quantitative estimate. In this theory
the pomeron couples strongly to the electroweak sector
through a pair of color sextet quarks which contribute to
the quark loop shown in Fig. 1(a).

This Letter presents a search for exclusive Z production
with the Z decaying to a u*u~ or e*e” pair, and a
measurement of the cross section for exclusive utu~
and e e~ production with dilepton invariant mass M, >
40 GeV/c? and |n;| < 4. We used the CDF II detector at
the Tevatron with p p collisions at a center of mass energy
/s = 1.96 TeV. The exclusive dilepton process is ex-
pected in quantum electrodynamics (QED) through pp —
pyyp — plT1” p,as shown in Fig. 1(b). For the remainder
of this Letter this process will be referred to as yy — 71~
for convenience. We have previously observed yy —
ete” with 10<M,, <40 GeV/c? [7land yy — u" ™
with 3<M,, <4 GeV/c? [3] and measured cross sec-
tions in agreement with expectations. The final state parti-
cles in exclusive dilepton events are identical to those in
exclusive Z production with leptonic decay, the only dif-
ference in the signature being the M; distribution and other
kinematics. Agreement with the precise theoretical predic-
tion therefore gives us confidence in our sensitivity to
selecting exclusive Z bosons.

CDF Il is a general purpose detector which is described
in detail elsewhere [8]. Surrounding the collision region is
a tracking system consisting of silicon microstrips and a
cylindrical drift chamber, the central outer tracker (COT),
in a 1.4 Tesla solenoid. The tracking system tracks particles
with pr = 0.3 GeV/c and pseudorapidity |n| <2 [1].
Central and end-plug calorimeters cover the range |n| <
1.3 and 1.3 < |n| < 3.6, respectively, with separate elec-

PACS numbers: 13.85.Fb

tromagnetic (EM) and hadronic (HAD) compartments.
Outside the calorimeters, drift chambers measure muons
in the region || < 1.0. The regions 3.6 < |n| <5.2 are
covered by lead-liquid scintillator calorimeters called the
miniplugs [9]. At higher pseudorapidities, 5.4 < || < 7.4,
scintillation counters called beam shower counters (BSC)
are located along the beam pipe. Gas Cerenkov detectors
covering 3.7 < |n| < 4.7 measure the luminosity with a
6% uncertainty [10]. Tracking detectors in a Roman pot
spectrometer [11] can detect antiprotons with small p; and
0.03 = £(p) = 0.08, where £(p) is the fractional momen-
tum loss of the antiproton [12]. These detectors were
operational for approximately 30% of the data set used in
this analysis.

For the yy — I*1™ event selection a sample of [T/~
pairs was selected in a kinematic region where this process
has not previously been observed, with M;; > 40 GeV/c?
and lepton transverse momenta plT > 20 GeV/c. For the
exclusive Z search a subsample was selected with an
invariant mass close to the Z mass, 82 <M, <
98 GeV/c?, and ph >25GeV/c. The u*u~ events
were collected with a trigger requiring one muon with
pr > 18 GeV/c. Offline two candidate muons were re-
quired. One muon was required to have been detected in
the COT, the central calorimeter, and the muon chambers,
and therefore to have |y MI < 1.0. To increase the accep-
tance the second muon was only required to be detected in
the COT and therefore to have |7 Ml < 1.5. Events consis-
tent with cosmic rays were eliminated with an identifica-
tion algorithm [13] that used the timing of the COT drift
chamber hits. The muon kinematics were found from the
COT track momentum measurement. The e*e™ events
were collected with a trigger requiring one central electron
with py > 18 GeV/c. Offline we required one candidate
electron to be reconstructed in the central EM calorimeter
and matched to a COT track, and a second electron to be
reconstructed either in the same way or in the end-plug EM
calorimeter where no matching COT track was required,
since the tracking efficiency is lower in this region. The
central electrons have |n,| < 1.3 and the end-plug elec-

|y p p p
y q %+l
z +
q
gag y
G
(a) (b)
FIG. 1. (a) Exclusive photoproduction of a Z boson and

(b) exclusive dilepton production via two-photon exchange.
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trons have 1.3 < |7,| < 3.6. The electron kinematics were
found from the calorimeter energy measurement, but if a
track was matched to the calorimeter cluster it was used to
determine the electron direction. If no track was matched
the z position of the interaction was measured from the
other electron track, and was used to determine the kine-
matics. With an integrated luminosity of 2.20(2.03) fb~!in
the electron (muon) channels we found a total of 317712
candidate dileptons with M, > 40 GeV/c?, of which
183332 were in the Z region 82 < M;; < 98 GeV/c>.

Starting with the dilepton samples, events that were
consistent with arising from exclusive production were
selected by requiring that no other particles were produced
in the collision. We vetoed events with any additional
tracks reconstructed in the COT or the silicon tracker, or
in which any of the calorimeters had a total energy depo-
sition above that expected from noise. For this purpose the
calorimeters were divided into five subdetectors (the cen-
tral EM, the plug EM, the plug HAD, and the East and
West miniplug) and the energy of all towers was summed,
excluding those traversed by and surrounding the charged
leptons, to give five S E values. Each 3 F was required to
be less than a threshold, which was determined by studying
two control samples: (1) events selected with a random
bunch-crossing (zero bias) trigger with no tracks in the
event, which should give distributions dominated by noise
and (2) W — [v events with no detected tracks other than
that of the charged lepton, which should give the distribu-
tions expected for nonexclusive Z — [*[~ events with no
additional tracks. The production mechanism for nonex-
clusive W bosons is very similar to that for Z bosons and
the cross section for exclusive W production (pp — nWp)
is negligible, making them an excellent control sample.

These exclusivity cuts rejected exclusive events that
were in coincidence with additional inelastic p p collisions.
It was therefore necessary to define an effective integrated
luminosity [ L, for single interactions. The fraction of
bunch crossings, selected from the zero bias trigger, that
passed the exclusivity cuts was used to establish that
J Lt =20.6% of the total integrated luminosity. The
fraction was found from distributions reweighted to ac-
count for the difference in the instantaneous luminosity
profiles between the zero bias events and the Z events. This
method properly accounts for events with no interactions
that failed the cuts due to noise in the calorimeters and fake
reconstructed tracks, and events with a very soft interaction
that passed the exclusivity cuts. We found [ L. = (403 =
45) pb~! and (467 = 50) pb~! for the u* ™ and ee”
samples, respectively. The uncertainty includes a contribu-
tion of 9% obtained from an independent determination of
J Lt (to be 18.7% of the total integrated luminosity)
using Poisson statistics and the mean number of expected
interactions per bunch crossing as a function of instanta-
neous luminosity, and a contribution of 6% from the un-
certainty on the CDF luminosity measurement.

In order to reduce the background from yy — [T1~
events where the proton dissociates into forward-going
hadrons, we also made cuts on hits in the BSC detectors.
An event was vetoed if any photomultiplier had hits above
threshold. The inefficiency of this requirement was in-
cluded in the acceptance.

A total of eight events passed the yy — [T1~ selection
criteria and no events passed the tighter exclusive Z —
I*1~ criteria. We used these events to measure the cross
section for the yy — [*1~ process and we set an upper
limit on the cross section for exclusive Z production. To do
this it was necessary to determine the acceptance for
reconstructing the events, and the expected number of
background events.

We calculated the acceptance for reconstructing yy —
["1~ events using the LPAIR [14] Monte Carlo (MC) event
generator together with a GEANT [15] simulation of the
CDF detector. We applied corrections to account for
changes in the acceptance due to internal bremsstrahlung
from the leptons, using the PHOTOS [16] MC event genera-
tor. The acceptance for the exclusive Z search was found
from the PYTHIA [17] MC event generator, which simulates
nonexclusive Z/y* — [T~ events. Corrections were ap-
plied to account for the difference in kinematics between
nonexclusive and exclusive production. We considered the
Z pr distribution, which was assumed to be between 0 and
2 GeV/c for exclusive Z production, the Z rapidity y,
distribution, obtained from Ref. [4], and the angular dis-
tribution of the leptons.

The backgrounds to the yy — [*]~ events were non-
exclusive Z/y* — [T1~ events that pass the exclusivity
cuts, and yy — [~ events where the proton or antiproton
dissociates and the products were not detected in the for-
ward detectors. The former was found to be 0.28 * 0.19
events by assuming the fraction of nonexclusive Z/y* —
I"1~ events passing the exclusivity cuts to be the same as
that for nonexclusive W — [v events. This fraction was
found from W — [v data samples, selected by requiring a
high p; lepton and large missing transverse energy, to be
(9 = 6) X 1077, where the uncertainty is from the statistics
of the samples. The latter was found from the LPAIR event
generator, which also simulates yy — [*/~ events where
either the proton or antiproton or both dissociate. We used
the minimum bias Rockefeller MC [18], which fragments
the excited (anti)proton into a nucleon and pions, to predict
the fraction of dissociation events that failed our exclusiv-
ity cuts due to particles in the region || < 7.4, which is the
edge of the BSC acceptance. We predicted a total back-
ground of 1.45 = 0.61 events, where the uncertainty came
from varying the exclusivity cuts and observing how the
number of events changes.

The backgrounds to exclusive Z events were nonexclu-
sive Z/y* — "1~ events that passed the exclusivity cuts
and exclusive yy — [*[~ events with M/, in the Z mass
window. The former was found to be 0.163 = 0.099 events
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TABLE 1. Properties of the eight exclusive dilepton events, in order of M.

Final state M, (GeV/c?) ph(1) (GeV/c) ph(2) (GeV/c) 180° — A ¢ (degrees) pr(ll) (GeV/c)
ete” 40.9 204 20.1 0.38 0.26
ete” 49.3 24.5 24.6 0.37 0.21
ete” 50.4 20.5 20.2 0.05 0.31
ete” 56.3 24.8 24.9 0.48 0.24
utu” 58.6 24.1 24.4 0.17 0.32
AT 66.0 31.8 31.3 0.75 0.65
ete” 67.1 24.1 24.0 0.51 0.24
ete” 75.6 34.1 33.1 0.23 1.01

using the method described above, and the latter was found
from the LPAIR MC samples to be 0.492 = 0.061 events.
We did not include a dissociation background for the
exclusive Z search; instead we quote an upper limit on
the cross section for a Z produced with no other particles
with || < 7.4.

From a study of the acolinearity and timing of the tracks
it was deduced that none of the candidate events were
consistent with being induced by cosmic rays.

We calculated a cross section for each final state using
the formula

o =N~ Mok

a f L’
where N is the number of candidate events, Ny is the
expected number of background events, and « is the ac-
ceptance. Assuming equal rates for the u*u~ and e*e™
processes, a combined cross section was found by forming
a joint likelihood for the final states, which is the product of
the Poisson probabilities to observe N events in each final
state. The method is described in Ref. [19]; a prior that is
flat for positive cross sections was assumed. The combined
cross section for one lepton flavor was found to be o(pp —
pyyp— pl™l"p) = 0247013 pb for M, > 40 GeV/c?
and |7;| <4, which is in good agreement with the LPAIR
prediction of 0.256 pb.

Some of the kinematic properties of the candidate events
are given in Table I, where p’(1) and p’(2) are the lepton
transverse momenta, A, is the difference in the azimu-
thal lepton angles (i.e., 180° minus A, is the deviation
from back-to-back in the transverse plane) and p(/l) is the
pr of the lepton pair. The resolution of the lepton trans-
verse momenta is approximately 3.5 (1.4)% for electrons
(muons). All of the events have lepton pairs that are back-
to-back in azimuth with low py(ll) values, which is ex-
pected for yy — [*1~ events. Figures 2(a) and 2(b) show
the dilepton invariant mass and 180° minus A ¢, distribu-
tions for the data together with the QED spectrum from
LPAIR and the GEANT detector simulation. A good agree-
ment with the data is observed.

No events passed our exclusive Z — [*[~ selection cri-
teria, therefore we place an upper limit on the cross section
of exclusive Z production at the Tevatron. We summed the

final states to give > N =0, > Nyy = 0.66 = 0.11, and
a [ L X BR(ITI7) = 3.22 = 0.38 pb~!. Here we have
used BR(I"17) = 3.37% as the branching fraction of the Z
to decay to one lepton flavor pair. We used a Bayesian limit
technique to set an upper limit on the exclusive Z cross
section of ¢, (Z) < 0.96 pb at 95% confidence level. We
also set an upper limit on the differential cross section with
respect to y; at y, = 0(‘;—3 ly=0) using the theoretical pre-
diction of the y, distribution [4]. We took 0.257 as the ratio
of @—glyzo t0 Tey(Z) and find %|3,:0 < 0.25 pb at 95%
confidence level.

At hadron colliders the lepton kinematics in yy — [T~
events determine the momenta of the forward (anti)protons
through the relation £(p,(;)) = ﬁzizl'zp[feﬂ_)”[’ [1,12],
where &(py(y) is the fractional momentum loss of the
forward (backward) hadron. In principle this relation could
be used to calibrate both the momentum scale and resolu-
tion of forward proton spectrometers. In our eight candi-
date events, only one—that with M, , = 66.0 GeV/ —
was from a period when the Roman pot spectrometer was
operational and with £(p) in its acceptance; a track is
observed, as expected for exclusive dilepton production.
This is an encouraging sign that exclusive dilepton events
at the large hadron collider (LHC) may be used to calibrate
forward proton spectrometers [20].

In conclusion, we have observed exclusive production of
high mass (M;; > 40 GeV/c?) e*e™ and u* u~ pairs and

- data

Events/10 GeV/c?
Events/0.2 deg

l]41.) 60 80 100
(a) M, (GeV/c?) (b)

180 A0, [deg]

FIG. 2 (color online). (a) The dilepton invariant mass distri-
bution, and (b) the distribution of 180° minus the difference in
the azimuthal lepton angles for the data and the LPAIR prediction
with the GEANT detector simulation, scaled to account for
acceptance and luminosity.
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measured a cross section that agrees with QED expecta-
tions. We observed no candidates for exclusive Z produc-
tion and put an upper limit on the photoproduction of Z at a
level =3, 000 times higher than SM predictions.
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