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Abstract

A large proportion of Machine Learning (ML) research focuses on designing

algorithms that require minimal input from the human. However, ML algo-

rithms are now widely used in various areas of engineering to design and build

systems that interact with the human user and thus need to “learn” from this

interaction. In this work, we concentrate on algorithms that learn from user

interaction. A significant part of the dissertation is devoted to learning in the

bandit setting. We propose a general framework for handling dependencies

across arms, based on the new assumption that the mean-reward function

is drawn from a Gaussian Process. Additionally, we propose an alternative

method for arm selection using Thompson sampling and we apply the new

algorithms to a grammar learning problem.

In the remainder of the dissertation, we consider content-based image re-

trieval in the case when the user is unable to specify the required content

through tags or other image properties and so the system must extract infor-

mation from the user through limited feedback. We present a novel Bayesian

approach that uses latent random variables to model the systems imperfect

knowledge about the users expected response to the images. An impor-

tant aspect of the algorithm is the incorporation of an explicit exploration-

exploitation strategy in the image sampling process. A second aspect of our

algorithm is the way in which its knowledge of the target image is updated



given user feedback. We considered a few algorithms to do so: variational

Bayes, Gibbs sampling and a simple uniform update. We show in experi-

ments that the simple uniform update performs best. The reason is because,

unlike the uniform update, both variational Bayes and Gibbs sampling tend

to focus on a small set of images aggressively.
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Gibbs sampler (Gibbs), näıve updates (DS) and variational

Bayes (VB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 User interface of the image search prototype system. . . . . . . 124

6.3 Comparison of the convergence of the DS algorithm in real-life

experiments and in simulations. . . . . . . . . . . . . . . . . . 125

6.4 Convergence of the DS algorithm in simulations when using

the the full dataset and sparse dataset. . . . . . . . . . . . . . 130

6.5 Convergence of the DS algorithm in real-life experiments using

full and sparse data. . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Average distance from the target of the images shown to the

user in the first 50 iterations of the DS algorithm, and distance

of the image closest to the target in each iteration. . . . . . . 133

8



List of Tables

3.1 Regret over 1000 runs of UCB-Beta, Thompson sampling and

UCB-V with maximum probability of obtaining reward = 0.01. 49

3.2 Regret over 1000 runs of UCB-Beta, Thompson sampling and

UCB-V with maximum probability of obtaining reward = 0.001. 50

6.1 Comparison of the performance of the DS algorithm with VB
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Chapter 1

Introduction

Broadly speaking, machine learning studies the principles that govern learn-

ing processes, be it in artificial systems (as used in modern technology) or

natural systems (e.g. in humans or animals). Theories and algorithms from

machine learning are relevant to understanding aspects of human learning

(e.g. Tenenbaum et al. (2011)). For example, neural networks have been a

valuable tool for psychologists as a computational model of the way brains

function (e.g. Arbib (1995)); reinforcement learning agrees well with the neu-

ral activity of dopaminergic neurons during reward-based learning (e.g. Glim-

cher (2011)); and sparse representations in computer vision predict well the

visual features found in the early visual cortex (e.g. Boureau et al. (2010)).

At the other end of the spectrum, many aspects of research conducted in the

fields of psychology, cognitive science, philosophy or even physiology can be of

great use to machine learning researchers, since people still learn languages,
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concepts, and causal relationships from far less data than any automated

system. Deeper understanding of human cognition and insights from human

learning can help us to improve machine learning systems. Most research

in the area of machine learning, or, broadly speaking, artificial intelligence,

concentrates on designing systems that mimic human behaviour. However,

as artificial systems are becoming more and more advanced and autonomous,

new challenges for machine learning arise. Thus, it is not sufficient to build

a system that is pre-programmed to mimic human behaviour or to achieve

a certain goal. Present-day artificial systems must adjust their behaviour in

accordance with the needs of the users and the surrounding environment,

e.g. employing robots in rescue operations or the health care system. Conse-

quently, machine learning researchers must design algorithms that will allow

the artificial system to be constantly “learning” through interaction with its

environment and its users.

In this work, we concentrate on algorithms and systems that learn from

user interaction. A significant portion of the dissertation is devoted to the

study of learning in the bandit setting. We propose a general framework

for handling dependencies across arms, based on a new assumption that the

mean-reward function is drawn from a Gaussian Process. Additionally, we

propose an alternative method for arm selection using Thompson sampling.

We successfully apply the new algorithms to the grammar learning problem

in the Principles and Parameters setting (Chomsky (1981)).

In the remainder of the dissertation, we consider content-based image re-

12



trieval in the case when the user is unable to specify the required content

through tags or other image properties and so the system must extract infor-

mation from the user through limited feedback. We present a novel Bayesian

approach that uses latent random variables to model the systems imperfect

knowledge about the users expected response to the images. The proposed

approach compares favourably with previous work. An important aspect

of the proposed algorithm is the incorporation of an explicit exploration-

exploitation strategy in the image sampling process, which greatly improves

the performance of the algorithm when compared to its main competitors

that do not employ exploration-exploitation strategies. A second aspect of

our algorithm is the way in which its knowledge of the target image is updated

given user feedback. We considered a few algorithms to do so: variational

Bayes, Gibbs sampling and a simple uniform update. We show in experi-

ments that the simple uniform update performs best. The reason is because,

unlike uniform updates, both variational Bayes and Gibbs sampling tend to

focus on a small set of images (which may or may not contain the target)

aggressively.

The dissertation is organised as follows: in Chapter 2, we lay out the

theoretical background necessary for understanding the algorithms and ap-

plications developed in the remainder of the thesis. The main theoretical

concepts described in Chapter 2 are Bayesian inference, the Dirichlet dis-

tribution and the related Dirichlet Process as well as the Gaussian Process.

Chapter 3 is devoted to independent bandit algorithms, where we introduce
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the concept of simple bandits and describe the UCB family of algorithms

(Auer et al. (2002a)) as well as algorithms based on empirical variance of each

arm such as UCB-V (Audibert et al. (2009)) and Thompson sampling ban-

dits (Chapelle and Li (2011)). We propose a new approach based on a Beta

prior for tuning the regret bound. The experimental results show that our

approach outperforms UCB algorithms as well as empirical variance based

bandit algorithms. In Chapter 4, we concentrate on dependent arm bandits.

Initially, we review recent literature on contextual bandits algorithms, such

as LinRel (Auer (2002)) and LinUCB (Chu et al. (2011)). The main idea of

both algorithms is to compute the expected reward of each arm by finding

a linear combination of the previous rewards of the arm. Next, we propose

a new Gaussian Process Bandits algorithm, where the mean reward function

is drawn from a Gaussian Process with a given covariance matrix, which al-

lows us to assess how similar two arms are, and, unlike LinRel and LinUCB,

does not rely on a simple linear combination of previous awards. Using the

2-dimensional Rosenbrock function, we assess the performance of the Gaus-

sian Process Bandit against LinRel and LinUCB with favourable results. In

Chapter 5, we apply Gaussian Process Bandits to a grammar learning prob-

lem. We show that the Gaussian Process Bandit can be successfully applied

to the scenario of modelling language acquisition thus combining the fields

of machine learning and cognitive science. One of the main contributions of

this chapter is applying computational techniques to modelling acquisition

of metrical stress system, while most literature on modelling language ac-
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quisition concentrates mostly on the syntax level. In Chapter 6, we consider

content-based image retrieval in the case when the user is unable to specify

the required content through tags or other image properties. We present a

novel Bayesian approach that uses latent random variables to model the sys-

tem’s imperfect knowledge about the user’s expected response to the images.

The algorithm uses a Dirichlet process over the variables θ, which are the

probabilities how likely each image is to the one that the user is looking for,

to represent the state of its knowledge. At each iteration, the system samples

k images to present to the user, from which the user selects the one closest to

the target. Thus, we call the algorithm Dirichlet Sampling algorithm. The

aim of the algorithm is to allow the user to find the target image in as few

iterations as possible. An important aspect of the proposed algorithm is the

incorporation of an explicit exploration-exploitation strategy in the image

sampling process, which greatly improves the performance of the algorithm

compared to its main competitors, such as PicHunter (Cox et al. (2000)), that

do not employ exploration-exploitation strategies. Additionally, we propose

a number of heuristics that will allow the algorithm to be incorporated into

real-life online retrieval systems that may contain databases consisting of

millions of images. The initial experiments involving 4 million Flickr images

show that when combined with heuristics, such as sparse data representa-

tion, the Dirichlet Search algorithm can be successfully applied to very large

datasets.
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Chapter 2

Theoretical Background

2.1 Introduction

The task of data modelling occurs in many areas of research. We design

a model for a particular system and when data arrives from the system,

we adapt the model in light of the data. The model provides us with a

representation of both our prior beliefs about the system and the information

about the system that the data has provided. We can then use the model to

make inferences. However, we need a consistent framework within which to

construct our model incorporating any prior knowledge and within which to

consistently compare our model with others. In this thesis, we concentrate

mostly on Bayesian modelling. The Bayesian approach is based upon the

expression of knowledge in terms of probability distributions. Given the

data and a specific model, we can deterministically make inferences using
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the rules of probability theory. In principle Bayesian theory always provides

us with a unique solution to our data modelling problems. In practice such

solutions may be difficult to find. As mentioned in the previous chapter, in

this thesis we concentrate on a number of applications based on Gaussian

Process and Dirichlet Process priors. In this chapter, we briefly introduce

the basic concepts related to Bayesian inference and their applications to

Gaussian Processes and Dirichlet Processes.

2.2 Bayesian Inference

We have constructed a model or hypothesis Hi with a set of parameters wi

which we shall use to model some data D. Within the Bayesian approach

to data modelling there are then two steps. The first step is to infer the

parameters of the model given the data. In the next step, we wish to compare

our present model with others. We start by expressing our prior beliefs about

which models are a priori most suitable for the data in terms of a probability

distribution over all possible models P (Hi). If a model has a set of parameters

wi, then we express our prior beliefs about the value of these parameters in

terms of another prior distribution P (wi | Hi). The data now arrives and

we infer the parameters of the model given the data. Each model makes

predictions about how likely the data is given that it was generated by that

model with a specific set of parameters wi. These predictions are embodied

in the distribution P (D | wi,Hi).
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Next, we need to combine the prior knowledge that we had about the

setting of the parameters P (wi | Hi), with the knowledge that we have just

gained from the data P (D | wi,Hi). We can use Bayes’ theorem to combine

the two pieces of information:

P (wi | D,Hi) =
P (D | wi,Hi)P (wi | Hi)

P (D | Hi)
. (2.1)

In other words, the total information we have about the value of the pa-

rameters, which is embodied in the posterior probability of the parameters

P (wi | D,Hi) is the product of P (D | wi,Hi) (the likelihood of the data)

and P (wi | Hi) (the prior), with P (D | Hi) (the evidence) as an appropriate

normalising constant. Given that we can calculate P (D | Hi), we can apply

Bayes’ theorem once more. P (D | Hi) embodies what the data is telling us

about the plausibility of each of the models Hi and we can combine this with

our prior beliefs:

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)
(2.2)

where P (D) is a normalising constant. The posterior distribution P (Hi | D)

allows us to rank our different models.

Applying Bayesian methods, however, is not always straightforward. There

are three principal areas of difficulty. The first one centres around the math-

ematical complexity that often occurs in Bayesian approaches - approxima-

tions often have to be made to avoid intractable integrals and awkward equa-

tions. Most commonly, problems arise in evaluating the evidence. Another
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potential problem with the Bayesian approach is the prior. The problem with

priors lies with the difficult process of assigning probabilities to our beliefs

about the priors. How do we decide what numbers truly reflect what we

believe? Finally, Bayesian model comparison has a closed hypothesis space.

If we fail to include the “true” model amongst our set of possible candidates,

then this model will never be compared with others. There exists no Bayesian

criterion for assessing whether or not our hypothesis space is correct. Thus,

in certain parts of this thesis, we will apply various approximation techniques

that will allow us to apply Bayesian inference to our problems.

2.3 Dirichlet Distribution and Dirichlet

Processes

The Dirichlet Process, and the related Dirichlet distribution, are used exten-

sively in Bayesian inference. In this section, we briefly introduce both terms

and describe how to sample from the Dirichlet distribution.

2.3.1 Dirichlet Distribution

The Dirichlet distribution (Sjolander et al. (1996); Teh (2010); Ferguson

(1973); Blackwell and MacQueen (1973); Neal (1992); Rasmussen (2000)) is

a multi-parameter generalisation of the Beta distribution and defines a distri-

bution over distributions. Let Θ = {(θ1, θ2, . . . , θn) | θi ≥ 0 ∧
∑n

i θi = 1} be a
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multinomial probability distribution on the discrete space X = {X1, . . . ,Xn}

such that P (x = Xi) = θi, where x is a random variable in the space X .

The Dirichlet distribution on Θ is given by the following formula:

P (Θ | α,M) =
Γ(α)∏n

i=1 Γ(αmi)

n∏
i=1

θαmi−1
i (2.3)

where M = {M = (m1,m2, . . . ,mn) | mi > 0 ∧
∑n

i mi = 1} is the set of

possible base measures defined on X and the selected M being the mean

value of Θ, and α the precision parameter that specifies how concentrated

the distribution is around M . α can be regarded as the number of (pseudo)

measurements observed to obtain M , i.e. the number of events relating to the

random variable x observed apriori. The greater the value of α, the more the

distribution is concentrated around M . Γ(α) denotes the Gamma function

(see Equation 2.19 below), which is a generalisation of the factorial function.

If α is a positive integer, then

Γ(α) = (α− 1)!

We describe Θ as having a Dirichlet distribution with parameters M and α,

which is denoted by

Θ ∼ Dir(α,M)
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Beta Distribution

When n = 2, the Dirichlet distribution reduces to the Beta distribution. The

Beta distribution, Beta(α, β), is defined on the (0, 1) interval and has density

function:

P (p | α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1. (2.4)

To make the connection clear, note that if

p ∼ Beta(a, b)

then

Θ = (p, 1− p) ∼ Dir(α,M)

where

M = { a

a+ b
,

a

a+ b
}

and

α = a+ b

2.3.2 Posterior Update using the Multinomial

Distribution

The multinomial distribution is characterised by two parameters: k > 0,

which is the number of trials, and p = {(p1, . . . , pn) | pi ≥ 0 ∧
∑n

i=1 pi = 1},

which indicates the probabilities of each outcome i. Thus, if we have k
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independent events, and for each event, the probability of outcome i is pi,

then the multinomial distribution specifies the probability that outcome i

occurs yi times, for i = 1, 2, . . . , c. If Y = (y1, . . . , yc) ∼ Mult(k, p), then its

probability mass function is given by:

P (y1, . . . , yc | k, p = (p1, . . . , pc)) =
k!

y1!y2!, . . . , yc!

c∏
i=1

pyii (2.5)

The Dirichlet distribution serves as a conjugate prior for the probability

parameter p of the multinomial distribution.

We can use this relationship between the Dirichlet distribution and the

multinomial distribution in order to obtain the posterior updates for Θ. Con-

sider n observations x1, . . . , xn that are multinomially distributed according

to Θ. If yi is the number of times the event i is observed in the n obser-

vations, the posterior probability of Θ can be obtained using Bayes Rule as

follows:

P (Θ | α,M, x1:n) ∝ P (x1:n | α,M,Θ)P (Θ | α,M) (2.6)

∝ (
n∏
i=1

θyii )(
n∏
i=1

θαmi−1
i ) (2.7)

∝
n∏
i=1

θαmi+yi−1
i (2.8)

∝ Dir(Θ;α?,M?) (2.9)
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where

α? = α + n (2.10)

M? =
αM + nF̂

α + n
(2.11)

where F̂ is the empirical distribution, i.e. the proportion of occurrences of

the n events in the observations. Thus, the posterior is again a Dirichlet

distribution with updated parameters.

Posterior Updates Using Binomial Distribution

When n = 2, the multinomial distribution reduces to the binomial distri-

bution. The binomial distribution is the discrete probability distribution of

the number of successes in a sequence of k independent experiments, each of

which yields success with probability p. The probability of getting exactly y

successes in k trials is given by:

P (y | k, p) =
k!

y!(k − y)!
py(1− p)k−y (2.12)

The Beta distribution can be seen as the posterior probability of the param-

eter p of a binomial distribution after observing α − 1 successes and β − 1

failures given a uniform prior. More generally, if (y | p) ∼ Bin(k, p) and
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(p | α, β) ∼ Beta(α, β), then

P (p | α, β, y) ∝ P (y | k, p)P (p | α, β) (2.13)

∝ (py(1− p)k−y)(pα−1(1− p)β−1) (2.14)

∝ py+α−1(1− p)k−y+β−1 (2.15)

∝ Beta(α?, β?) (2.16)

where

α? = y + α− 1 (2.17)

β? = k − y + β − 1 (2.18)

Thus, the posterior is a Beta distribution with updated parameters.

2.3.3 Sampling from the Dirichlet Distribution

An important aspect with regards to any distribution is how to sample from

it. There are a number of methods to sample from the Dirichlet distribution:

1. Polya’s urn (Johnson and Kotz (1977));

2. the “stick breaking” approach (Teh et al. (2007));

3. a method based on transforming Gamma distributed random variables.

In Polya’s urn, we start off with placing αi balls of colour i = 1, . . . , k in

an urn. At each iteration, we draw one ball uniformly at random from the
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urn, put it back in the urn and add a ball of the same colour. As the number

of iterations increases, the proportions of each type of ball will converge to

a pmf that is a sample from the distribution Dir(α).

Mathematically, the process can be described as follows:

1. Set a counter to n = 1 and draw ball x1 ∼ α
α0

.

2. Update the counter to n+1 and draw ball xn+1|x1, . . . , xn ∼ αn
αn0

, where

αn = α +
∑n

i=1 σxi and αn0 is the sum of entries of αn.

Asymptotically, the probability of drawing balls of each colour is given by a

pmf that is a realisation of the distribution Dir(α).

The “stick breaking” approach involves iteratively breaking a stick of

length 1 into k pieces in such a way that the lengths of the k pieces follow a

Dir(α) distribution. To illustrate the procedure, let us assume that k = 3.

Over the course of the stick breaking process, we will be keeping track of a

set of intermediate values {ui}, which will be used to calculate the realization

Q ∼ Dir(α). First, we generate q1 from Beta(α1, α2 + α3) and set u1 = q1.

Next, we generate ( q2
1−q1 |q1 from Beta(α2, α3), denote the result by u2, and set

q2 = (1−u1)u2. The resulting vector u = (u1, (1−u1)u2, 1−u1− (1−u1)u2)

comes from a Dirichlet distribution with parameter vector α. This procedure

can be generalised to k > 3.

In this work, we sample from the Dirichlet distribution using the third

method as this is the most computationally efficient one (Frigyik et al.

(2010)). Below, we describe how to produce Dirichlet distributed random
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variables based on transforming Gamma distributed random variables (Frigyik

et al. (2010)). This method has two steps:

• Step 1 – Generate gamma random variables, i.e. for i = 1, . . . , n, draw

a number zi from Γ(αmi, 1).

• Step 2 – Normalise z to obtain pi = zi
z

with z =
∑n

j=1 zj, then p is a

realisation of Dir(α,M).

The Gamma distribution Γ(αmi, β) is defined by the following probability

density:

P (x;αmi, β) =
βαmixαmi−1e−βx

Γ(αmi)
(2.19)

αmi > 0 is called the shape parameter, and β > 0 is called the scale parame-

ter. The Gamma distribution has the following important property: Suppose

xi ∼ Γ(αmi, β) are independent for i = 1, . . . , n, i.e. they are on the same

scale but have different shapes, then

S =
n∑
i=1

xi ∼ Γ(
n∑
i=1

αmi, β)

.

To show that the procedure described above creates Dirichlet samples, we

use the change-of-variables formula to prove that the density of p is the den-

sity corresponding to the Dir(α,M) distribution (Frigyik et al. (2010)). The

variables obtained in step 1 are {z1, . . . , zn}, and the new variables obtained

28



in step 2 are {z, p1, . . . , pn−1}. We relate them using the transformation T :

(z1, . . . , zn) = T (z, p1, . . . , pn−1) = (zp1, . . . , zpn−1, z(1−
k−1∑
i=1

pi)). (2.20)

The standard change-of-variables formula tells us that the density of

(z, p1, . . . , pn−1) is f = g ◦ T× | det(T ) |, where

g(z1, . . . , zn;αm1, . . . , αmn) =
n∏
i=1

zαmi−1
i

e−zi

Γ(αmi)
(2.21)

is the joint density of the original (independent) random variables. Substi-

tuting the above equation into the change of variables formula, we obtain the

joint density of the new random variables:

f(z, p1, . . . , pn−1) = (
n−1∏
i=1

(zpi)
αmi−1 e−zpi

Γ(αmi)
)[(z(1−

n−1∑
i=1

pi))
αmn−1 e

−z(1−
∑n−1
i=1 pi)

Γ(αmn)
]zn−1

=
(
∏n−1

i=1 p
αmi−1
i )(1−

∑n−1
i=1 pi)

αmn−1∏n
i=1 Γ(αmi)

z(
∑n
i=1 αmi)−1e−z. (2.22)

Integrating over z, the marginal distribution of {p1, . . . , pn−1} is:

f(p) = f(p1, . . . , pn−1) =

∫ ∞
0

f(z, p1, . . . , pn−1)dz (2.23)

=
(
∏n−1

i=1 p
αmi−1
i )(1−

∑n−1
i=1 pi)

αmn−1∏n
i=1 Γ(αmi)

∫ ∞
0

z(
∑n
i=1 αmi)−1e−zdz (2.24)

=
Γ(
∑n

i=1 αmi)∏n
i=1 γ(αmi)

(
n−1∏
i=1

pαmi−1
i )(1−

n−1∑
i=1

pi)
αmn−1, (2.25)

which is the same as the Dirichlet density.
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2.3.4 The Dirichlet Process

The Dirichlet dsitribution is a probability distribution over pmfs. The Dirich-

let distribution is limited in that it assumes a finite set of events. The Dirich-

let Process (DP) (Teh (2010)) is an extension of the Dirichlet distribution

to continuous spaces and enables us to work with an infinite set of events.

The set of all probability distributions over an infinite sample space is un-

manageable. To deal with this, the Dirichlet process defines the class of

distributions under consideration through the corresponding set of discrete

probability distributions over all finite partitions of the infinite sample space

that can be written as an infinite sum of weighted indicator functions.

We can think of the infinite sample space as a dartboard (Frigyik et al.

(2010)), and a realisation from a Dirichlet is a probability distribution on the

dartboard marked by an infinite set of darts of different lengths (weights).

The nth indicator δyn marks the location of the nth dart-of-probability such

that δyn(X ) = 1 if dart yn ∈X , and δyn(X ) = 0 otherwise. Each realisation

of a Dirichlet process has a different and infinite set of these dart locations.

Further, the nth dart has a corresponding probability weight pn ∈ [0, 1] and∑
n=1 pn = 1. So, for some set X of the infinite sample space, a reali-

sation of the Dirichlet process will assign probability P (X ) to X , where

P (X ) =
∑

n=1 pnδyn(X ). The locations of the darts are independent, and

the probability weight associated with the nth dart is independent of its lo-

cation. However, the weights on the darts are not independent. Instead of a

vector α with one component per event as we have in the Dirichlet distribu-
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tion, the DP is parameterised by a function α over the sample space of all

possible events X . α is a finite positive function, so it can be normalised

to be a probability distribution θ so that the locations of the darts yn are

drawn iid from θ.

The Dirichlet Process - Formal Definition

For a random distribution G to be distributed according to a DP, its marginal

distributions have to be Dirichlet distributed. Let H be a distribution over

Θ and α be a positive real number, then G is DP distributed on the space

X with base distribution H and concentration parameter α, written G ∼

DP (α,H) if

(G(X1), . . . , G(Xn)) ∼ Dir(α, (H(X1), . . . , H(Xn))) (2.26)

for every measurable partition X1, . . . ,Xn of Θ. The base distribution H is

the mean of the DP, i.e. for any measurable set X0 ⊂ Θ, we have

E[G(X0)] = H(X0)

whenever X0 forms a part of the partition. The concentration parameter α

can be understood as an inverse variance:

V [G(X0)] = H(X0)(1−H(X0))/(α + 1)
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The larger α is, the smaller the variance, and the DP will concentrate more

of its mass around the mean.

Posterior Distribution

Let G ∼ DP (α,H). Since G is a distribution, we can draw samples from

G itself. Let θ1, . . . , θn be a sequence of independent draws from G. Note

that θi takes values in Θ since G is a distribution over Θ. We are interested

in the posterior distribution of G given observed values of θ1, . . . , θn. Let

X1, . . . ,Xr be a finite measurable partition of Θ, and let nj = ]{i | θi ∈Xj}

be the number of observed values in Xj. By the conjugacy between the

Dirichlet and the multinomial distributions, we have:

(G(X1), . . . , G(Xr)) | θ1, . . . , θn ∼ Dir(αH(X1) + n1, . . . , αH(Xr) + nr)

The posterior updates for the DP parameters are therefore:

α? = α + n (2.27)

H? =
αH +

∑n
i=1 δθi

α + n
, (2.28)

where δi is a point mass located at θi and nj =
∑n

i=1 δi(Xj). Thus, the DP

provides a conjugate family of priors over distributions that is closed under
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posterior updates given observations. Rewriting the posterior DP, we obtain:

G | θ1, . . . , θn ∼ DP (α + n,
α

α + n
H +

n

α + n

∑n
i=1 δθi
n

) (2.29)

It can be seen that the posterior base distribution H is a weighted average

between the prior base distribution H and the empirical distribution
∑n
i=1 δθi
n

.

The weight associated with the prior base distribution is proportional to α,

while the empirical distribution has weight proportional to the number of

observations n.

The concepts briefly described in this section are of particular relevance

to the algorithms introduced in Chapter 6.

2.4 The Gaussian Process

Given noisy observations of n datapoints Xn = {x1, x2, . . . , xn} and the out-

puts {y1, y2, . . . , yn}, we may want to make predictions for unseen datapoints

x?. In order to do this, we need to move from the finite training data to a

function f that makes predictions for all possible input values. We need to

make assumptions about the characertistics of the underlying function. A

possible solution is to give a prior probability to every possible functions,

with functions considered to be more likely given higher probabilities. There

is, however, a problem with this approach as we need to consider an uncount-

ably infinite set of possible functions. This where we can use the Gaussian
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Process (GP). Gaussian Processes (Doob (1994); Rasmussen and Williams

(2006)) are a generalisation of finite-dimensional Gaussian distribution over

vectors (functions), which are defined by a mean vector and covariance ma-

trix. A GP is defined by a mean function and a covariance function, which

indicates how correlated the values of the function f are at locations x1 and

x2. The covariance function encodes our assumptions about the problem, e.g.

that the function is smooth and continuous, and will influence the quality of

the predictions.

To illustrate the approach, let us consider a 1-d regression problem map-

ping from an input x to an output f(x) and we draw a number of samples

drawn from the prior distribution over functions specified by a particular

Gaussian process. Suppose that we now have two observations {(x1, y1), (x2, y2)}

and we are interested in functions that pass through these data points. As

we draw more samples, the mean function adjust itself to pass through the

data points and the posterior is reduced close to the observations. An im-

portant aspect of GP inference the specification the prior as this will affect

the properties of the functions that we consider. We can obtain different

priors through manipulating the mean and variance of the functions, or the

covariance function of the GP.

2.4.1 Formal Definition

A Gaussian Process is a collection of random variables, any finite number of

which have a joint Gaussian distribution (Rasmussen and Williams (2006)).
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A GP is completely specified by its mean function

µ(x) = E[f(x)] (2.30)

and covariance function

Cx1,x2 = E[(f(x1)− µ(x1))(f(x2)− µ(x2))]. (2.31)

We write the GP as

f(x) ∼ GP (µ(x), Cx1,x2). (2.32)

The random variables in GP represent the value of the function f :

f = {f(x) : x ∈ X}

whose marginal distribution for any finite collection of points

Xn = {x1, x2, . . . , xn} ⊆ X

has Gaussian joint distribution

P (f | C, µ, {Xn}) =
1

Z
exp

(
−1

2
(f(Xn)− µ(Xn))TC−1

XnXn
(f(Xn)− µ(Xn))

)

The only constraint on the covariance function Cx1,x2 is that it should

generate a positive definite covariance matrix for any set of points X. Dif-
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ferent choices of Cx1,x2 can give rise to different priors ranging from straight

lines, as in y = w0 +w1x, to very rough sample paths associated with Brow-

nian motion. A very common covariance function is the Gaussian covariance

function:

Cx1,x2 = v0 exp

{
−

d∑
l=1

(x1,l − x2,l)
2

λ2
l

}
(2.33)

The function is the product of d squared covariance functions with differ-

ent length scales λl on each dimension. The general form of the covariance

function expresses the idea that nearby inputs will have highly correlated

outputs, and the λ parameters allow a different distance measure for each

input dimension. For irrelevant inputs, the corresponding λl will become

large and the model will effectively ignore that input.

It is typical for more realistic modelling situations that we do not have

access to function values themselves, but only noisy versions, therefore the

reward is given by f(x) + ε, where

ε ∼ N (0, σ2
noise)

is additive independent identically distributed Gaussian noise with mean 0

and variance σ2
noise. With the added noise, the prior on the noisy observation

becomes Cx1,x2+σ2
noiseδ1,2 where δ1,2 is a Kronecker delta which is 1 iff x1 = x2

and 0 otherwise.
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2.4.2 The Gaussian Process Posterior

Let us denote by D = {f(x1), f(x2), . . . , f(xn)} a data vector generated by

a GP with a covariance matrix Cn and a mean vector µ = 0. By explicitly

stating the probability of the data we have bypassed the step of assigning

individual priors on the noise and the modelling function. It is worth men-

tioning that in GP, we are not constraining the function used to model the

data to be a mixture of Gaussians, but rather to express the correlations

between outputs at different points in the input space.

Given the data D = {f(x1), f(x2), . . . , f(xn)}, we can calculate the Gaus-

sian conditional distribution over f(xn+1):

P (f(Xn+1) | D, Cn, Xn+1) =
P (f(Xn+1) | Cn, xn+1, {Xn})

P (f(Xn) | Cn, {Xn})
(2.34)

=
Zn
Zn+1

exp

[
−1

2
(f(Xn+1)C−1

n+1f(Xn+1)− f(Xn)C−1
n f(Xn))

]
(2.35)

where Zn and Zn+1 are the normalising constants. The Gaussian conditional

distribution of f(xn+1) is:

P (f(xn+1) | D, Cn, xn+1) =
1

Z
exp

(
−(f(xn+1)− µ(xn+1))2

2σ2
µ(xn+1)

)
(2.36)

where

µ(xn+1) = kN+1C
−1
n f(xn) (2.37)
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and

σ2
µ(xn+1) = κ− kn+1C

−1
n kn+1 (2.38)

with κ = C(xn+1, xn+1) and kn+1 = (C(x1, xn+1), . . . , C(xn, xn+1)). µ(xn+1)

is the mean prediction at the new point and σµ(xn+1) is the standard deviation

of this prediction.

The concepts briefly described in this section are of particular relevance

to the algorithms introduced in Chapters 4 and 5.
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Chapter 3

Bandit Algorithms

3.1 Introduction

An important aspect of the nature of learning is interaction with the envi-

ronment. Reinforcement learning (Sutton and Barto (1998); Kaelbling et al.

(1996)) is a computational approach to learning from iteraction. The main

goal of reinforcement learning is learning which actions to take in order to

maximise a reward function. The learner is not explicitly told which actions

to take in order to obtain the best reward, but instead must discover, through

trial and error, which actions will yield high rewards.

The trial and error approach to learning about one’s environment leads to

one of the main challenges in reinforcement learning – the trade-off between

exploration and exploitation. In order to obtain high rewards, the learner

must find out which actions can produce high rewards. However, in order to
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discover such actions, the learner has to try actions not tested before. Thus,

the learner has to exploit what he has already learnt from previous actions,

but he also has to explore new actions in order to make better selections in

the future. On a stochastic task, each action must be tried many times to

gain a reliable estimate of its expected reward.

3.2 Bandits

One of the simplest reinforcement learning problems is known as the multi-

armed bandit problem, which has been the subject of a great deal of study in

the statistics and applied mathematics literature (Bellman (1956); Berry and

Fristedt (1985); Narendra and Thathachar (1989); Robbins (1952); Thomp-

son (1934); Auer et al. (2002a); Gittins (1979); Gittins and Jones (1979)). In

this chapter, we propose a new extension to simple bandit algorithms, where,

we use a Beta prior to evaluate the upper confidence bound of bandits with

independent arms.

The multi-armed bandit problem is an analogy with a traditional slot

machine, known as a one-armed bandit, but with multiple arms. In the

bandit scenario, the player, after pulling (or “playing”) an arm selected from

a finite set of arms, receives a reward. It is assumed that the reward obtained

when playing arm i is a sample from a distribution Ri with mean µi, both

of which are unknown to the player. A bandit problem is characterised by

the set of probability distributions Ri,1≤i≤N . The objective of the player is
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to maximise the cumulative reward through iterative plays of the bandit.

The optimal arm selection policy S? , i.e. the policy that yields maximum

expected cumulative reward, consists in selecting arm i? = argmaxi{µi} to

play at each iteration. The expected cumulative reward of S? at time t (after

t plays) is tµi? . The performance of a policy S is assessed by the analysis of

its expected regret ρ at time t, defined as the difference between the expected

cumulative reward of S? and S at time t:

ρ = tµi? −
t∑
i=1

µi,

where µi is the reward at time t. A good policy balances the learning of

the distributions Ri and the exploitation of arms which have been learnt as

having high expected rewards. As the number of arms is finite (and usually

smaller than the number of experiments allowed), it is possible to explore

all the possible options (arms), thus building empirical estimates of µi’s, and

also exploiting the best performing ones. As the number of times we play the

same arms with the highest rewards grows, we expect our reward estimates

to improve.

3.3 Independent Arm Bandits

Lai and Robbins (1985) were the first to show that the regret for the multi-

armed bandit problem has to grow at least logarithmically in the number of
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plays. The upper confidence bound of an algorithm is obtained by maximiz-

ing the expected payoff when the parameters are varied within an appropriate

confidence set. Since then, policies which asymptotically achieve this regret

have been devised by Lai and Robbins (1985) and many others (e.g. Agrawal

(1995); Burnetas and Katehakis (1996)). Let T (j) be the number of times

arm j has been played and t be the number of times of all plays so far. In their

classic paper, Lai and Robbins (1985) found, for specific families of reward

distributions (including: normal, Bernoulli, Poisson), policies satisfying

E[T (j)] ≤
(

1

D(pj ‖ p?)
+ o(1)

)
log t (3.1)

where o(1) → 0 as t → ∞ and D(pj ‖ p?) is the Kullback-Leibler diver-

gence between the reward density pj of arm j and the reward density p? of

the arm with the highest reward expectation µ?. Under these policies, the

optimal arm is played exponentially more often than any other arm, at least

asymptotically.

Auer et al. (2002a) considered the case when the rewards come from a

bounded support, say [0, b], but otherwise the reward distributions are un-

constrained. They have studied several policies, most notably UCB1 which

maintains the number of times that each arm has been played. UCB1 con-

structs the Upper Confidence Bounds (UCB) for arm j at time t by adding
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the bias factor σ, defined as follows,

σj(t) =

√
2b2 log t

T (j)
, (3.2)

to its sample mean.

Let us denote by µj(t) the empirical mean reward for arm j. In order to

optimise the reward at each time step in the face of uncertainty, confidence

intervals [µj(t)− σj(t);µj(t) + σj(t)] are determined for the reward value we

would get for each arm j at time t, and the algorithm plays at time t the arm

which maximises the value of the upper confidence bound µj(t) + σj(t). The

bigger σj(t), the more likely it is that the reward will be in the confidence

interval. Auer et al. (2002a) have proven that the expected regret of this

algorithm is at most

8

( ∑
i:µi<µ?

b2

∆i

)
log(t) +O(1) (3.3)

where

∆i = µ? − µi (3.4)

The UCB1 arm selection strategy is summarised in Algorithm 1.

In the same paper, Auer et al. (2002a) also propose UCB1-NORMAL,

which is designed to work with normally distributed rewards only. This

algorithm estimates the variance of the arms and uses these estimates to

refine the bias factor. They show that for this algorithm when the rewards
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Algorithm 1 UCB1

play each arm (1, . . . , n) once,
set t = n+ 1
for t = 1, . . . , end do

play j = argmax{µj(t) + σj(t)}
get reward rj
T (j) = T (j) + 1,
t = t+ 1.

end for

are indeed normally distributed with means µi and variances σ2
i , the expected

regret is at most

8

( ∑
i:µi<µ?

32σ2
i

∆i

+ ∆i

)
log(t) +O(1) (3.5)

One of the major differences between the two algorithms is that the regret-

bound for UCB1 scales with b2, while the regret bound for UCB1- NORMAL

scales with the variances of the arms. Since b is typically just an a priori guess

on the size of the interval containing the rewards, which might be overly

conservative, it might be desirable to lessen the dependence on it.

Auer et al. (2002a) introduced another algorithm, UCB1-TUNED, in the

experimental section of their paper. This algorithm, similarly to UCB1-

NORMAL, uses the empirical estimates of the variance in the bias sequence.

For practical purposes, the regret bound of UCB can be tuned more finely
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by replacing the bias factor
√

2 log(t)
T (j)

of UCB1 with

√
log t

T (j)
min{1/4, V (T (j))}, (3.6)

where V (T (j)) is the variance of rewards obtained by playing arm j.

Although no theoretical guarantees were derived for UCB1-Tuned, this al-

gorithm has been shown to outperform UCB1 and UCB1-NORMAL. Intu-

itively, algorithms using variance estimates should work better than UCB1

when the variance of some suboptimal arms is much smaller than b2, since

these arms will be less often drawn: suboptimal arms are more easily spotted

by algorithms using variance estimates.

Audibert et al. (2009) consider a variant of the basic UCB algorithm

that takes into account the empirical variance of different arms. UCB-V

has a major advantage over its alternatives that do not use such estimates

provided that the variances of the payoffs of the suboptimal arms are low.

According to the UCB-V policy, at each time t, we play arm xj maximising:

Bj,T (j),t = µj(t) +

√(
2V (T (j))εt

T (j)

)
+

3bεt
T (j)

, (3.7)

where V (T (j)) is the empirical variance associated with the first T (j) draws

of arm j, and ε is the so called exploration function. A typical choice for this

function is εt = log(t).
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Let us summarise the main ideas behind UCB-V (Audibert et al. (2007)).

As long as an arm is never selected its bound is infinite. Hence, initially the

algorithm tries all the arms at least once. In future iterations, the more an

arm j has been tested, the closer Bj,T (j),t gets to the sample-mean and hence

to the expected reward µj. So the procedure will hopefully tend to draw

more often arms having the largest expected rewards. However, since the

obtained rewards are stochastic it might happen that during the first draws

the (unknown) optimal arm always gives low rewards. This might make the

sample-mean of this arm smaller than that of the other arms and hence an

algorithm that only uses sample-means might get stuck with not choosing

the optimal arm any more. The UCB-V policy uses the exploration function

ε to prevent this situation. Assuming that ε increases without bounds in t,

after a while the last term of Bj,T (j),t will start to dominate the two other

terms and will also dominate the bound associated with the arms drawn

very often. This will allow the algorithm to draw the optimal arm again,

giving it a chance to develop a better estimate of the mean. An appropriate

choice of ε encourages exploration and so it must be carefully chosen so as

to balance exploration and exploitation. The major idea of upper-confidence

bounds algorithms is that ε should be selected such that Bj,T (j),t is a high

probability upper bound on the payoff of arm j. The novelty UCB-V is that

Bj,T (j),t involves the empirical variance.
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3.4 Beta Bandits

We propose a revised approach, based on Beta prior, for tuning the regret

bound (G lowacka and Shawe-Taylor (2012)). We show that our approach

greatly outperforms the UCB-V (Audibert et al. (2009)) and Thompson

sampling (Chapelle and Li (2011)) – two bandit algorithms that have al-

ready been shown to outperform standard bandit algorithms such as UCB

and UCB-TUNED.

Chapelle and Li (2011) propose a setting where so-called Thompson sam-

pling (Thompson (1934)) is applied to the Bernoulli bandit. Thompson sam-

pling chooses the arm that is best in a random sample of arm probabilities

from the posterior distribution. It therefore selects arm j with probability

equal to it being the best arm in the posterior distribution. Algorithm 2

gives this algorithm for the case of modelling the arm probabilities with in-

dependent Beta distributions. The reward of the arm xj follows a Bernoulli

distribution with mean θj The mean reward of each arm is modelled using

the Beta distribution:

We propose a new strategy also based on Beta prior, which we term

UCB-BETA. We modify the upper confidence bound used UCB-TUNED

and replace it with:

σj(t) =
√

log t
√
V (j) (3.8)

where the term
√

log t is analogous to the first term found in UCB-

TUNED in Equation 3.3 and V (j) is Beta variance of arm j:

47



Algorithm 2 Thompson sampling for the Bernoulli bandit

Require: α and β parameters for a Beta distribution
Si = 0, Fi = 0,∀i, {Success and failure counters}
for t = 1, . . . , end do

for j = 1, . . . , n do
Draw θj according to Beta(Sj + α, Fj + β)

end for
Play arm j? = argmaxjθj and observe reward r
if r == 1 then
Sj? = Sj? + 1

else
Fj? = Fj? + 1

end if
end for

V (j) =
αjβj

(αj + βj)2(αj + βj + 1)
(3.9)

while µj is the expectation of the Beta distribution:

µj =
αj

αj + βj
(3.10)

3.4.1 Experimental Results

We compared the performance of UCB-BETA with UCB-V and Thompson

sampling. The first problem consisted of selecting one of 10 different arms

with the probability of obtaining a reward ranging from 0.0002 to 0.01. The

probabilities were as follows: 0.001, 0.003, 0.01, 0.009, 0.0011, 0.0025, 0.0006,

0.007, 0.0002, 0.005. The experiments consisted of 1000 runs, with 10,000

iterations each, of the three policies. We also tested the influence of the prior
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on the performance of UCB-BETA and Thompson sampling in two separate

experiments. We set the initial value of α in the Beta distribution to 1, 0.1

and 0.01. Table 3.1 shows the the mean and variance of the 1000 runs as

well as the maximum and minimum regret with the three Beta priors.

MEAN STD MAX MIN
UCB-BETA, α = 1 73.18 26.47 169.1 30.77

UCB-BETA, α = 0.1 71.73 66.49 307.92 6.06
UCB-BETA, α = 0.01 140.98 160.29 689.23 1.76

Thompson, α = 1 100.79 25.74 190.79 62.82
Thompson, α = 0.1 75.85 33.52 282.87 20.74
Thompson, α = 0.01 79.15 53.5 354.4 10.93

UCB-V 177.43 18.75 229.52 128.17

Table 3.1: Regret over 1000 runs of UCB-Beta, Thompson sampling and
UCB-V with maximum probability of obtaining reward = 0.01.

In the next set of experiments, we decreased the reward probability by a

factor of 10. The probabilities of the 10 arms of obtaining the reward were

as follows: 0.0001, 0.0003, 0.001, 0.0009, 0.00011, 0.00025, 0.00006, 0.0007,

0.00002, 0.0005. The results of the experiments are reported in Table 3.2.

Figure 3.1 shows average regret over 100,000 iterations of the three poli-

cies with α = 1 for UCB-BETA and Thompson sampling. As the results

show, UCB-BETA outperforms UCB-V in both sets of experiments, which

indicates that using Beta variance allows better tuning of the regret bound

than using the UCB-V variance estimates. In general, UCB-BETA per-

forms better than Thompson sampling in both sets of experiments. How-

ever, as the first set of experiments presented in Table 3.1 suggests, setting
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MEAN STD MAX MIN
UCB-BETA, α = 1 29.01 5.45 50.36 17.35

UCB-BETA, α = 0.1 17.29 10.35 65.06 4.79
UCB-BETA, α = 0.01 21.52 19.04 74 1.41

Thompson, α = 1 34.86 5.2 57.02 24.46
Thompson, α = 0.1 24.17 7.25 57.9 11.28
Thompson, α = 0.01 23.44 15.38 85.88 4.07

UCB-V 47.43 2.61 53.98 40.98

Table 3.2: Regret over 1000 runs of UCB-Beta, Thompson sampling and
UCB-V with maximum probability of obtaining reward = 0.001.
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Figure 3.1: Average regret of UCB-BETA, UCB-V and Thompson sampling
with α = 1 when the maximum probability of award is (a) 0.01 and (b) 0.001
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the wrong prior has a detrimental effect on the performance of UCB-BETA.

When α = 0.01 and the maximum probability of obtaining reward is 0.01,

UCB-BETA performs significantly worse than Thompson sampling. This re-

sult might point to the fact that when given the wrong prior, UCB-BETA

cannot balance exploration-exploitation very well. The performance of the

algorithm is highly variable depending on the initial settings of α. The α

prior affects the empirical variance of each arm, which, in turn, will affect

the algorithm’s estimate of the size of the interval containing the highest re-

wards. When our prior “guess” of α is too large or too small, the algorithm

frequently fails to detect which arms are suboptimal.

3.5 Conclusions

In this chapter, we introduced the multi-armed bandit problem and a new

bandit policy based on Beta priors. Preliminary experimental results indicate

that the proposed policy significantly outperforms existing bandit algorithms,

such as UCB-V and Thompson sampling. Further theoretical and experimen-

tal analysis are required to fully understand the strengths and weaknesses of

the proposed approach.

51



Chapter 4

Dependent Arm Bandits

As mentioned in the previous chapter, in order to obtain a good estimate

of the reward of each arm, we need to try each arm, which renders the

exploration phase very long if the number of arms is large. Modelling de-

pendencies across arms – if such dependencies exist – makes the exploration

phases shorter, since, when playing arm i, we gain knowledge not only about

this particular arm but also about similar arms. Thus, at each play, we can

update the µi estimates of several arms. There are relatively few studies of

multi-armed bandit algorithms with dependent arms and most of the liter-

ature on the subject is focused on practical applications of dependent arm

bandits. For example, the EXP4 algorithm (Auer et al. (2002b)) uses the

exponential weighting technique to achieve an O(
√
T ) regret but the compu-

tational complexity may be exponential in the number of features. Another

general contextual bandit algorithm is the epoch-greedy algorithm (Lang-
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ford and Zhang (2008)) that is similar to ε-greedy with shrinking ε. This

algorithm is computationally efficient given an oracle optimiser but has the

weaker regret guarantee of O(T 2/3). Pandey et al. (2007) have developed an

algorithm that exploits cluster structures among arms and have shown that

the accumulated reward obtained with their algorithm increases faster than

that of UCB in an application involving web advertisements. Bubeck et al.

(2008) and Kleinberg et al. (2008) focus on applications with infinitely many

arms which are indexed in a metric space. Similarly, Lu et al. (2010) also

consider metric spaces. However, the important difference between Klein-

berg et al. (2008) and Lu et al. (2010) is the non-uniformity over the payoff

function µ. Namely, Lu et al. (2010)’s bounds do not depend on µ whereas

Kleinberg et al. (2008)’s do.

Auer (2002) uses confidence bounds to deal with an exploration-exploitation

trade-off in a rather complicated model that is reminiscent of a dependent

arms situation. The paper defines a model for associative reinforcement

learning with linear value functions. In this model, a learning algorithm

has to choose an alternative j ∈ {1, . . . , K}, where K is the number of al-

ternatives. In each trial t = 1, . . . , T , the algorithm observes the reward

rj(t) of the chosen alternative j, and tries to maximize its cumulative reward∑T
t=1 rj(t). The main difference in comparison with the independent bandit

problem is that the algorithm is provided with additional information. For

each alternative j a feature vector zj ∈ Rd is given to the learning algorithm

and the algorithm chooses an alternative based on these feature vectors. This
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feature vector determines the expected reward for alternative j in trial t. It

is assumed that there is an unknown weight vector w ∈ Rd which is fixed for

all trials and alternatives, such that 〈w, zj〉 gives the expected reward E[rj]

for all j ∈ {1, . . . , K} and all t = 1, . . . , T . LinRel calculates upper confi-

dence bounds for the means E[rj] = 〈w, zj〉 and chooses the alternative with

the largest upper confidence bound, again trading-off exploitation controlled

by the estimation of the mean, and exploration controlled by the width of

the confidence interval. The main idea of the algorithm is to estimate the

mean E[rj] from a weighted sum of previous rewards. The LinRel algorithm

is summarised in Algorithm 3.

Algorithm 3 LinRel

parameters: δ ∈ [0, 1], number of trials T
inputs: indexes of selected feature vectors Ψ(t) ⊆ {1, . . . , t− 1}; new fea-
ture vectors z1(t), . . . , zK(t) ∈ Rd; matrix Z(t) of selected feature vectors;
vector r(t) of corresponding rewards
for t = 1, . . . , T do

calculate the eigenvalue decomposition
Z(t) · Z(t)′ = U(t)′ ·∆(λ1(t), . . . , λd(t)) · U(t)
for i = 1, . . . , K do
z̃i(t) = (z̃i,1(t), . . . , z̃i,d(t))

′ = U(t) · zi(t)
ũi(t) = (z̃i,1(t), . . . , z̃i,k(t), 0, . . .)

′

ṽi(t) = (0, . . . , 0, z̃i,k+1(t), . . . , z̃i,d(t))
′

ai(t) = ũi(t)
′ ·∆( 1

λ1(t)
, . . . , 1

λk(t)
, 0, . . . , 0) · U(t) · Z(t)

widthi(t) =‖ ai(t) ‖ (
√

ln(2TK/δ))+ ‖ ṽi(t) ‖
ucbi(t) = r(t) · ai(t)′ + widthi(t)

end for
play zi(t) = argmax{ucbi(t)}

end for
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Auer (2002) was not able to bound the performance of LinRel. Instead,

a master algorithm SupLinRel is used and calls LinRel as a subroutine. A

O(
√
t log(t)) regret bound was derived for SupLinRel, but none for LinRel.

However, for most practical applications, LinRel is believed to be able to

achieve the same or even better performance.

Algorithm 4 LinUCB

inputs: α ∈ R+, number of trials T ; new feature vectors z1, . . . , zK ∈ Rd

A = Id
b = 0d
for t = 1, . . . , T do
θt = A−1b
for i = 1, . . . , K do

pt,i = θTt zt,i + α
√
zTt,iA

−1zt,i

end for
choose action it = argmaxi{pt,i}
observe payoff rt ∈ {0, 1}
A = A+ zt,iz

T
t,i

b = b+ zt,irt
end for

The LinUCB algorithm (Li et al. (2010), Chu et al. (2011)) is motivated

by the UCB algorithm (Auer et al. (2002a)) and the KWIK algorithm Walsh

et al. (2009). LinUCB is also similar to the LinRel algorithm – the main

idea of both algorithms is to compute the expected reward of each arm by

finding a linear combination of the previous rewards of the arm. To do this,

LinUCB decomposes the feature vector of the current round into a linear

combination of feature vectors seen on previous rounds and uses the com-

puted coefficients and rewards on previous rounds to compute the expected
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reward on the current round. LinRel, however, is a more complicated algo-

rithm as it requires solving an SVD (or eigen decomposition) of a symmetric

matrix, while LinUCB only requires inverting the same matrix. The LinUCB

algorithm is summarised in Algorithm 4.

4.1 The Gaussian Process Bandits Algorithm

We propose a general framework for handling dependencies across arms,

based on a new assumption that the mean-reward function is drawn from

a Gaussian Process (GP), with a given arm covariance matrix (Dorard et al.

(2009))1. We assume in our model that the reward of an arm j is determined

by a function f applied at point j to which Gaussian noise is added. The

variance of the noise corresponds to the variability of the reward when al-

ways playing the same arm. Our assumption is that the rewards of arms are

correlated, i.e. the more similar two arms are, the more similar the rewards

obtained by playing them will be. Thus, playing an arm “close” to j gives

information on the expected gain of playing j. These correlations can be

modelled by assuming that f is a function drawn from a GP. By default, we

take the mean of the GP prior to be 0, and we incorporate prior knowledge

on how correlated arms are in the GP covariance matrix. Each entry (i, j) of

this matrix specifies how “close” or “similar” arms i and j are. We consider

arms indexed by any type of structured data as long as a kernel can be de-

1The experimental work reported in this chapter is joint work with Louis Dorard.
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fined between the data points. Hence, whereas Pandey et al. (2007)’s model

of dependencies is based on a clustering of arms, our model is based on a

covariance/kernel matrix between the arms. Using GPs permits an approach

similar to arm selection in UCB, where we look for the arm which maximises

an upper confidence function. This function is a sum of a mean-reward esti-

mate µj(t) and an uncertainty term σj(t). In our case, the estimated reward

is given by the mean of the GP posterior, and the uncertainty term given by

the posterior standard deviation.

We consider a space X whose elements will be referred to as arms. Let κ

denote a kernel defined on pairs of elements of X . The reward after playing

arm x ∈X is given by f(x) + ε as defined in Section 2.4.1. Arms played up

to time t are x1, . . . , xt with rewards y1, . . . , yt. The GP posterior at time t

after seeing data (x1, y1), . . . , (xt, yt) has mean µt(x) with variance σ2
t (x) as

defined as follows (see Section 2.4.1 for more details):

µt(x) = kt(x)TC−1
t yt (4.1)

σ2
t (x) = κ(x, x)− kt(x)TC−1

t kt(x) (4.2)

4.1.1 Arm Selection

The algorithm plays a sequence of arms and aims to optimally balance ex-

ploration and exploitation. We select arms iteratively according to a UCB-
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inspired formula:

xt+1 = argmaxx∈X {ft(x) = µt(x) +B(t)σt(x)} (4.3)

This can be seen as active learning where we want to learn accurately in

regions where the function looks good, while ignoring other areas. The B(t)

term balances exploration and exploitation: the bigger it gets, the more it

favours points with high σt(x). In the original UCB formula, B(t) ∼
√

log t.

The objective of the bandit algorithm is to minimise the regret over time,

i.e. to find as quickly as possible a good approximation f(x?) of the maximum

of f . Let us define ft(x) as:

ft(x) = µt(x) +B(t)σt(x) (4.4)

= kt(x)TC−1
t yt +B(t)

√
κ(x, x)− kt(x)TC−1

t kt(x) (4.5)

Our approximation of f(x?) at time t is f(xt+1), where xt+1 = argmaxx∈X {ft(x)}.

The argmax is found by exhaustive search of X when the space is finite.

Here, we replace the problem of finding the maximum of the function f by

a simpler one, i.e. by maximising the function ft, which is known. At each

iteration, we learn new information which enables us to improve our approx-

imation of f(x?) over time.
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4.1.2 Complexity of Iteration t of GPB

There are n arms for which we need to compute ft. The cost of computing

ft is equal to the cost of multiplying and adding the terms of Equation 4.3,

which is of the order of O(t2), and the cost of computing the inverse of the

covariance matrix Ct, which is in the order of O(t3). However, If we consider

the following representation of Ct:

Ct =

 Ct−1 kt−1(xt)

kt−1(xt)
T κ(xt, xt) + σ2

noise

 (4.6)

then we can apply the block inversion lemma (Banachiewicz (1937)), which

allows us to invert the matrix iteratively, reducing the cost from O(t3) to

O(t2). Thus, the total cost of iteration t of GPB is:

O(t2) · n+O(t2) = O(t2n). (4.7)

In comparison, the cost of iteration t of UCB is O(d), which is equal to d

times the cost of computing the upper confidence function on a given arm.

Thus, UCB is more efficient per iteration because its cost is constant over

time.
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4.2 Optimisation

As mentioned earlier, the cost of iteration t of GPB is O(| T (t) |2 n), where

T (t) is the set of visited arms at time t containing t elements. We can reduce

the computational cost by reducing the size of set T (t). At each iteration

we add an arm to T , which increases the cost of future iterations. However,

we can remove the “oldest” arm in T if T (t) reaches a certain size S(t). The

intuition behind this approach is that as the training progresses, the impact

of the “oldest” observed datapoints on f(x?) become less and less relevant. A

sensible choice for S(t) may vary depending on the particular type of problem

considered. In our experiments, we consider S(t) =
√
n so that the amount of

computation that GPB uses is in the order of O(
√
n2) = O(n) and is thus of

the same order as UCB. The cost of iteration t of GPB becomes O(n2) plus,

possibly, the cost of removing an element from the set T (t). Two operations

are required in order to remove an element from the T (t) set:

• remove an element from the list of arms that have been tried so far,

which is in the order of O(1);

• update C−1
t by using the block inversion formula, which is of the order

of O(| T (t) |2)

Thus, the cost of iteration t of GPB is:

O(n2) +O(n) +O(1) = O(n2). (4.8)
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By limiting the size of the training set to a fixed value, the cost of iteration

t of GPB becomes constant over time (although the cost is still bigger than

that of UCB). We will refer to the modified version of GPB as GPB-red. It

is worth mentioning that when removing a data point from the training set,

we increase the GP posterior variance at this point and points close to it and

therefore we give them a bigger chance of being selected (as increasing the

variance increases ft). Thus, at each iteration of the algorithm, we discard the

“oldest” datapoint (arm) in the training set and replace it with the datapoint

(arm) just “played” by the algorithm. Effectively, the size of the training set

remains constant and consists only of arms tried in the latest n iterations.

4.3 Experimental Results

In order to test the performance of GBP, we devised a toy problem where

rewards are given as values of a function f plus Gaussian noise. We selected

as f the 2-dimensional Rosenbrock function, defined in [−1, 1]× [−1, 1] and

scaled so that its values are in [0, 1] range and its maximum is 1. Knowing

the maximum of f will allow us to determine the regret of arm selection

policies. We selected the Rosenbrock function as it is frequently used as a

test function in optimisation algorithms as it has a shallow minimum inside

a deeply curved valley. f is defined as follows on the unit disk (see Figure

4.1):

f(x) = (−100(x2 − x2
1)2 + (1− x1)2 + 161)/161 (4.9)
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This can be extended to x ∈ [−1, 1]× [−1, 1] by setting x:

f(x) = f

(
x

‖ x ‖

)
(4.10)
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Figure 4.1: The Rosenbrock function as defined in Equation 4.9

In our experiments, arms are elements of a grid of [−1; 1]2 of size n. In

the experiments reported below, there are n = 81 arms obtained by taking

intervals of 0.25 on the [−1, 1] × [−1, 1] space. We set the value of σ in the

Gaussian kernel to 0.5, and the value of the added Gaussian noise standard

deviation σnoise = 0.3. We use a Gaussian kernel in R2 between the elements

of the grid to build the covariance matrix:

κ(xi, xj) = exp

(
−‖ xi − xj ‖

2σ2

)
(4.11)

The regrets reported here are averaged over 100 runs of each algorithm.

62



We experimented with three b functions: b(t) = t, b(t) =
√

log t and b(t) =

1 and three S functions: S(t) = t (Figure 4.2a), S(t) = n (Figure 4.2b)

and S(t) =
√
n (Figure 4.2b). As mentioned in the previouse chapter, b

is a “guess” on the size of the interval containing the rewards. When the

interval is large, it may contain a large number of suboptimal arms and

so the algorithm will concentrate too much trying out these subptimal arms,

which will harm the performance of the algorithm. The b function also allows

us to control the exploration/exploitation trade-off, i.e. the large the value of

b, the more the algorithm explores. As Figure 4.2a shows, the regret of UCB

is similar to that of the random policy. We can clearly see that GPB with

b(t) = t performs too much exploration and chooses arms quasi randomly.

GPB with a smaller emphasis on exploration, such as b(t) =
√

log t and

b(t) = 1, performs much better than UCB from the very start. Its regret

curves are also smoother than the ones produced by UCB.

In the next set of experiments (Figure 4.2b), we tested the influence of

the size of GPB’s training set on the performance of the algorithm. GPB-

red(n), where n indicates the size of the training set, with b(t) =
√

log t and

b(t) = 1 performs better than UCB. However, further reduction in the size

of the training set to
√
n adds exploration to the arm selection policy as a

result of which GPB- red(
√
n) with b(t) =

√
log t now performs similarly to

a random selection policy. As expected, the regret of GPB with fixed b(t)

becomes worse when the size of the T (t) set is reduced (Figure 4.3a).

In the last set of experiments, we compared the performance of GPB with
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Figure 4.2: Comparison of regrets of (a) UCB and GPB, and (b) GPB-red(n)
and GPB-red(sqrt(n)) .
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Figure 4.3: (a) Comparison of regrets of GPB-red(S(t)) for different functions
of S; (b) Comparison of GPB with LinRel and LinUCB.

LinRel and LinUCB (Figure 4.3b). As mentioned earlier, the performance

of LinRel and LinUCB is very similar, however, GPB outperforms both the

algorithms. Given the similarities between the three algorithms, one might
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expect similar performance. The better-than-expected performance of GPB

might be explained by the fact that GPB uses a kernel function to assess the

similarities between the arms. An appropriately selected kernel function will

allow a better estimation of arms similarities than the linear combination of

feature vectors of the arms, which the method applied in LinRel and LinUCB.

4.4 Bayesian Arm Selection

Although the arm selection method described in Section 4.1.1 seems quite

natural, in some cases, finding the maximum of the upper confidence func-

tion ft may prove costly, particularly as we would expect the function to

become flatter as iterations proceed, as the algorithm aims to explore re-

gions only as our uncertainty about their reward offsets the difference in

our estimated reward. In this section, we propose an alternative method for

selecting the next arm rather than choosing the point that maximises the

upper confidence function based on the sampling of functions from the GP

posterior (G lowacka et al. (2009)). Our strategy for selecting arms is to per-

form Thompson sampling, that is to sample a function f from the posterior

distribution and then select xt = argmaxx∈Xf(x). This implements sam-

pling an arm with the probability that it is the maximum in the posterior

distribution, and so implements a Bayesian approach to trading exploration

and exploitation. We can interpolate between these methods by sampling a

variable number K of functions f1, . . . , fK from the posterior and selecting
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xt = argmax x∈X
1≤k≤K

{
fk(x)

}
.

A naive sampling from the posterior distribution would require inverting

a matrix indexed by the full grid. We avoid this by iteratively unveiling

the posterior sample f(x) only sampling points that are likely to lead to a

maximal value. Since the function f(x) is not expected to be flat, only a

small number of samples should be required in practice. We would envisage

selecting these samples by simple hill climbing heuristics that could work

efficiently on the non-flat f .

Below, we briefly describe the arm selection method:

1. Initialisation (t=1): x1 chosen randomly in X . y1 is the reward ob-

tained when “playing” x1. The GP posterior after seeing the data

(x1, y1) is sampled (f1) to give iteration at time t and x2 = argmax
{
f1(x)

}
.

2. Iteration at time t: we have played x1, . . . , xt−1 and have obtained

rewards y1, . . . , yt−1. The GP posterior is sampled to give ft at the

point xt = argmax
{
ft−1(x)

}
.

In Algorithm 5 below, we describe the sampling method in detail, which

returns the next selected arm xt. The method is Thompson sampling applied

to the GP bandit setting. After seeing only the data ((x1, y1)) , . . . , (xt=1, yt−1)),

the posterior has mean µ
(1)
t=1 and variance σ

(1)2

t=1 .

In Figure 4.4, we compare the performance of GPB with and without

the inclusion of the Bayesian arm selection method. The results show that

combining GPB with the sampling method improves the performance of the
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Algorithm 5 Bayesian arm selection

1: input: T number of iterations, n number of arms,
x1, . . . , xt−1 arms played up to time t− 1,
y1, . . . , yt−1 rewards obtained up to time t− 1

2: for t = 1, . . . , T do
3: S = {x1, . . . , xt−1}, V = {y1, . . . , yt−1}
4: for j = 1, . . . , n do
5: if µ

(j)
t (ft(xt,j)) +B(t)σ

(j)
t (ft(xt,j)) ≥ max(V ) then

6: vj = N (µ
(j)
t (ft(xt,j)), σ

(j)2

t (ft(xt,j)))
7: V = V ∪ vj
8: S = S ∪ xt,j
9: the GP posterior after seeing the data (x1, y1), . . . , (xt−1, yt−1) with

observation noise σ2
noise and (xt,1, v1), . . . , (xt,j, vj) without noise

has mean µ
(j+1)
t and variance σ

(j+1)
t

10: end if
11: end for
12: play arm xk where vk = max(V )
13: obtain reward yt
14: end for
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algorithm, confirming our intuition that our Bayesian sampling approach is

more likely to lead to choosing the most optimal arm than simply selecting

the point that maximises the upper confidence bound. The sampling method

relies on the fact the function f(x) becomes flatter as the iterations proceed.

It would be interesting to see whether the sampling method would perform

equally well for functions that are far more complicated than the Rosenbrock

function that we tested it on.
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Figure 4.4: Comparison of the GPB with and without the inclusion of the
Bayesian arm selection method.

In the next chapter, we consider a problem of grammar learning, where we

apply the GP bandit setting combined with the sampling method described

in Algorithm 5 with favourable results.
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4.5 Conclusions

Exploiting arm dependencies allows GPB and GPB − red to achieve better

regrets than UCB, however, GPB − red is more costly than UCB in the

number of arms. Using GPB−red would be beneficial in applications where

error costs are high enough to warrant the extra computational cost of ex-

ploiting arm dependencies. One particular advantage of our approach is that

we model dependencies with kernel functions. Consequently, we can consider

applications where arms are characterised by sets of features, but also where

arms represent objects such as text, images, music, or any structured data

for which kernels exist. Thus, our framework can be applied to the web ad-

vertisement problem presented by Pandey et al. (2007) by defining a kernel

between ads. Deciding which ads to put on which webpage can be considered

a content matching problem, and such problems can be modelled as multi-

armed bandit problems with dependent arms. Another possible application

is product recommendation, where we want to match elements from a set of

products with elements from a set of consumers.

Kocsis and Szepesvari (2006) used UCB to devise the UCT (Upper Con-

fidence Trees) tree search algorithm, which was successfully applied to Go

game playing (Gelly and Wang (2006)). The UCT algorithm selects paths

to explore in the tree in a depth-first manner. At each node, the next node

is selected by applying the UCB formula, where each child of that particular

node is considered to be an arm with µj(t) calculated as the average of the re-
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wards obtained by all tree paths containing node j. In the case of Go, nodes

are labelled with Go boards and the reward of a game tree path is given

by a Monte-Carlo simulation starting from the deepest node in the path: 1

if at the end of the simulation the game is won and 0 otherwise. It would

be interesting to see whether UCT for Go can be improved by using GPB

with a Go board kernel instead of UCB. In this particular case, arms are

not independent since similar Go boards are likely to lead to similar rewards

(Dorard and Shawe-Taylor (2010)).

70



Chapter 5

Grammar Learning and

Gaussian Process Bandits

5.1 Introduction

A major aspect of linguistic theory is to provide an explanation as to how

children, after being exposed to limited data, acquire the language of their

environment1. The rise of “principles and parameters” (Chomsky (1981))

provided a new context for the study of language acquisition. In this ap-

proach, a class of languages can be viewed as fixed by parametric variation

of a finite number of variables. Thus, acquisition of language (grammar)2

amounts to fixing correctly the parameters of the grammar that the child is

1This chapter is largely based on (G lowacka et al. (2009)).
2In the remainder of this chapter, we will use the terms language and grammar inter-

changeably
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trying to learn. The notion of finite parametrisation of grammar can be ap-

plied to syntax (Chomsky (1981)), phonological stress systems (Dresher and

Kaye (1990)) or even lexical knowledge (Hale and Keyser (1993)). In this

chapter, we will concentrate on the analysis of the “principles and parame-

ters” framework as applied to stress systems (Dresher and Kaye (1990)). This

choice has been prompted mainly by two considerations. Firstly, stress sys-

tems can be studied in relative independence of other aspects of grammars,

i.e. syntax or semantics. Secondly, the parameters of metrical theory exhibit

intricate interactions that exceed in complexity the syntactic parameters.

Starting with Gold’s seminal paper (Gold (1967)), most research on learn-

ability concentrates on the issue of convergence in the limit. The learner re-

ceives a sequence of positive examples from the target language. After each

example, the learner either stays in the same state (does not change any of

the parameters) or moves to a new state (changes its parameter setting).

If, after a finite number of examples, the learner converges to the target

language and never changes his guess, then the target language has been

identified in the limit. In the Triggering Learning Algorithm (TLA) (Gibson

and Wexler (1994)) two additional constraints were added: the single-value

constraint, i.e. the learner can change only one parameter value at a time,

and the greediness constraint, i.e. if, after receiving an example he cannot

recognise, the learner changes one parameter and now can accept the new

data, the learner retains the new parameter setting. The TLA is an online

learning algorithm that performs local hill climbing. This algorithm, how-
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ever, is problematic as positive-only examples can lead to local maxima, i.e.

an incorrect hypothesis from which the learner cannot move, thus rendering

the parameter space under consideration unlearnable. In order to acquire

the target grammar, the learner has to start from very specific points in the

parameter space.

Niyogi and Berwick (1996) and Niyogi (2006) model the TLA as a Markov

chain and modify the TLA by replacing the local single-step hill climbing

procedure with a simple Random Walk Algorithm (RWA). RWA renders the

learning process faster and always converges to the correct target language

irrespective of the initialisation of the algorithm. Niyogi and Berwick (1996)

tested the algorithm on a very small three-parameter system that produced 8

grammars, where each grammar consisted of only up to 18 acceptable exam-

ples. Following Niyogi and Berwick (1996) and Niyogi (2006)’s observation

that a RWA greatly improves the accuracy and speed of the learning process,

we propose a new computational analysis of language acquisition within the

“principles and parameters” setting. Our algorithm is set within the general

framework of multi-armed bandit problems. The proposed prior knowledge

multi-armed bandit problem abstracts the idea of a casino of slot machines

in which a player has to play machines in order to find out how good they

are, but where he has some prior knowledge that some machines are likely

to have similar rates of reward. Each grammar is represented as “an arm

of a bandit machine” with the mean-reward function drawn from a Gaus-

sian Process specified by a covariance function between grammars. We test
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our algorithm on the metrical stress ten-parameter space (Dresher and Kaye

(1990)), which gives rise to 216 possible stress systems (as not all parameters

are independent). The use of the algorithm, however, can be easily extended

to much larger systems. We also compare the performance of our algorithm

to that of TLA and RWA and show that it “learns” the correct grammar

faster than both TLA and RWA.

As emphasised by Gibson and Wexler (1994) and Niyogi and Berwick

(1996), arriving at the correct parameter setting is only one aspect of the

language acquisition problem. As noted by Chomsky (1965), an equally

important point is how the space of possible grammars is “scattered” with

respect to the primary language data. It is possible for two grammars to

be so close to each other that it is almost impossible to separate them by

psychologically realistic input data. This leads to the question of sample

complexity (Niyogi and Berwick (1996)), i.e. how many examples it will take

to identify the target grammar. It is of not much use to the learner to be able

to arrive at the correct target grammar within the limit if the time required

to do so is exponentially long, which renders the learning process psycholog-

ically implausible. Thus, rather than concern ourselves with identifying the

correct grammar, we will measure the number of errors made by the learner

in acquiring the correct grammar. We will give experimental evidence that

the number of iterations required to reach a state where the learner makes

virtually no mistakes is smaller than the number of grammars to be explored.

We will also consider the impact of variations in data distribution and the
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presence of noise in the data on the performance of the algorithm.

5.2 Metrical Stress Parameters and the Learn-

ing Problem

In this section, we describe the syllable structure and its relevance to stress as-

signment. Further, we present the stress parameters that we refer to through-

out the rest of this chapter. Lastly, we discuss how the data is presented to

and assessed by the learner in our system.

5.2.1 Syllable Structure and Stress Assignment

We assume that the input to the learning process are words. One of the

principles shared by most theories of stress systems is that stress is sensi-

tive to representations built on projections from syllable structure. In many

languages, stress is sensitive to syllable weight, or quantity. Thus, we also

assume the prior operation of rules that convert the speech signal into words

and smaller word segments, such as syllables.

In general, syllables can be divided into two parts: an onset (O) and a

rhyme (R). The onset consists of the consonant(s) before the syllable peak,

which is usually a vowel. The rhyme consists of the vowel, i.e. the nu-

cleus(N), and the consonant(s) following the nucleus, i.e. the coda (C). It

is generally agreed that the onset plays no part in stress assignment. How-
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ever, in quantity-sensitive languages, the structure of the rhyme plays an

important role in stress assignment (see (Davies (1988)) for possible counter

examples). Syllables that have only one element in the nucleus position and

no coda are classified as light (Figure 5.1a) and as such do not attract stress.

Syllables with two elements in the nucleus position count as heavy (Figure

5.1c, d) and attract stress, while syllables with one element in the nucleus

and at least one element in the coda position can count as either light or

heavy (depending on the setting of parameter 6 below) (Figure 5.1b).

Furthermore, we also assume that various acoustic cues that indicate

phonological stress are mapped into one of three degrees of stress. The three

levels of stress are primary stress (marked as 2), secondary stress (marked

as 1), and lack of stress (marked as 0). For the purpose of our analysis, we

assume that every word must have a primary stress.

(a) /ta/ (b) /tat/ (c) /taa/ (d) /taat/

Figure 5.1: Four examples of syllable with different rhyme structure. δ signi-
fies a syllable node; O, R, N and C represent the constituents of the syllable
to which the segmental material is attached.
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5.2.2 The Stress System Parameters

In metrical theory, stress patterns, and the corresponding differences between

languages, are due to metrical structures built on the rhyme of the syllable.

The various possibilities of metrical structure construction can be expressed

in terms of a series of binary parameters. In our analysis, we consider a 10-

parameter model with the following parameters (Dresher and Kaye (1990)):

• P1: The word-tree is strong on the left/right;

• P2: Feet (see definition below) are binary/unbounded;

• P3: Feet are built from left/right;

• P4: Feet are strong on the left/right;

• P5: Feet are quantity sensitive/insensitive;

• P6: Feet are quantity sensitive to the rhyme/nucleus;

• P7: A strong branch of the foot must/must not itself branch;

• P8: There is/is not an extrametrical syllable;

• P9: It is extrametrical on the left/right;

• P10: Feet are/are not non-iterative.

If all the parameters were independent, then we would have 210 = 1024

possible grammars. However, due to built-in dependencies, there only 216

distinct stress systems (see Dresher and Kaye (1990) for more details).
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Let us consider the effect that different parameter settings can have on

language structure. For example, P1 tells us where in the word the main

stress should fall. If P1 is set to left, then the main stress will fall on the

initial syllable, as in Latvian or Hungarian, if, however, we set P1 to right,

then the main stress will fall on the final syllable, as in French or Farsi. In

many languages, secondary stress can also be observed. In such languages,

syllables are first grouped together into feet and every foot receives a stress.

If a language has feet, a number of other parameters come into play. P2

allows feet to be at most binary or else unbounded. Selecting binary feet will

give an alternating pattern of weak (with stress level 0) and strong (stress

level 1 or 2) syllables. We must also set P3, which will trigger the direction

of construction from left to right or from right to left. Further, we must also

set P4, which allows each foot to be left dominated or right dominated. For

example, Maranungku, spoken in Australia, (Hayes (1995)) has the following

setting P1[left], P2[binary], P3[left], P4[left], which gives rise to the following

alternating pattern of stresses: 201, 2010, etc. On the other hand, Warao,

spoken in Venezuela, (Hayes (1995)) has the following setting: P1[right],

P2[binary], P3[right], P4[left], which results in the following stress pattern:

020, 01020, 10101020, 010101020.

5.2.3 Inclusion of Prior Knowledge

In Gibson and Wexler (1994) and Niyogi and Berwick (1996), the transition

probabilities from one parameter setting state to another are calculated by
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counting the number of overlapping input data between each grammar cor-

responding to each parameter setting. We consider this to be an unrealistic

model in that it is not clear how the learner would be able to assess this

overlap without knowledge of the grammars and the sentence frequencies.

We prefer to work with a weaker assumption of the prior knowledge that

learners are equipped with, namely that learners are able to assess similar-

ity of grammars by the Hamming distance (Hamming (1950)) between their

parameter vectors. This accords with the expectation that the entries in the

parameter vector control aspects of the production of sentences that involve

varying levels of processing by the learner. Hence, our conjecture is that the

parameter settings described above have cognitive correlates that enable the

learner to compute the Hamming distance between the grammars. One of

the questions addressed by the experiments reported below (and answered in

the affirmative) is whether this prior knowledge will be sufficient to enable

subjects to learn to identify the correct grammar.

5.2.4 The Learning Procedure

Our learning procedure is inspired by the TLA (Gibson and Wexler (1994)).

However, contrary to Gibson and Wexler (1994), we do not obey the single-

value constraint or the greediness constraint. Our learning procedure is sum-

marised below. In the next section, we describe in more detail how the

grammar learning process can be analysed in the GP setting.
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• Step 1 [Initialise]: Select a random grammar as your starting point.

• Step 2 [Process input data]: Receive n positive example words from

the target grammar (gtarget). The words are drawn at random from a

fixed probability distribution.

• Step 3 [Learnability on error detection]: Check if the currently hypoth-

esised grammar (gh) can generate the input data and receive a reward

r ranging from 0 to 1. r = 0 corresponds to a situation, where none of

the n words can be found in the hypothesis grammar, while if r = 1,

all the n words are analysable in the currently hypothesised grammar.

The reward function has expected value

r =

∑
w∈gh pr(w)∑

w∈gh pr(w) +
∑

w/∈gh∩w∈gtarget pr(w)
, (5.1)

where pr(w) indicates the probability of word w. In the bandit setting

applied in this chapter, each grammar corresponds to a bandit arm.

Thus, the currently hypothesised grammar can be thought of as a ban-

dit arm that is currently being “played”. After testing the hypothesised

grammar, or “playing” the bandit arm, the learner receives a reward

(as described above).

• Step 4 [Update] After observing a hypothesis grammar, i.e. a ban-

dit arm, and the corresponding reward r, update the GP posterior as

described in Section 4.1.
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• Step 5 [Grammar selection]: Select a new grammar hypothesis, i.e. a

new bandit arm to “play”. The new grammar selection procedure is

described in detail in Sections 5.3 and 4.4. The newly hypothesised

grammar does not necessarily have to allow the learner to analyse all

or any of the n input examples.

5.3 The Grammar Learning Problem

As suggested earlier, the problem of grammar learning can be considered

as a many-armed bandit problem and the Gaussian Process approach can

be used with a covariance function/kernel which applies to different gram-

mars. Learning consists in looking for the “best” grammar, i.e. the one that

maximises the reward function.

We assume in our model that the reward of an arm x is determined

by a function f applied at point x to which Gaussian noise is added. The

variance of the noise corresponds to the variability of the reward when always

playing the same arm. In order to cope with large numbers of arms, our

assumption will be that the rewards of arms are correlated. This can be

modelled with a Gaussian Process: by default, we take the mean of the

Gaussian Process prior to be 0, and we can incorporate prior knowledge

on how correlated the arms are in the covariance function between arms.

We assume that f is a function drawn from a GP. If arms are indexed in

Rd, for example, the covariance function can be chosen to be a Gaussian
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kernel κ(x,x′) = exp
(
−‖x−x

′‖2
2σ2

)
, whose smoothness σ is adjusted to fit the

characteristic length scale which is assumed for f . In the parametric grammar

learning problem, each grammar can be associated with an arm, so that

looking for the optimal arm corresponds to looking for the optimal grammar

given a certain criterion which is incorporated into the reward function.

Let us denote by X the set of parametrised grammars. In the “principles

and parameters” framework, a grammar x is a binary vector of length d,

where d is the number of parameters under consideration. In our case, d = 10.

We need to define a kernel κ(x,x′)/covariance function between grammars.

In our experiments, we consider a Gaussian kernel that takes the form:

κ(x,x′) = exp

(
−‖ x− x′ ‖2

2σ2

)
(5.2)

where ‖ x − x′ ‖2 is the Hamming distance between the two grammars3.

In our case, we consider the 216 grammars described earlier. The algorithm

plays a sequence of arms and aims at optimally balancing exploration and

exploitation. The method for arm (grammar) selection is described in more

detail in Section 4.4.

3Note that in this formulation, all parameters have equal effect on the produced data.
As (Dresher and Kaye, 1990, p. 155, ft. 11) point out, theoretically, it is possible for
a small change in the parameter setting to have large effects on the produced data and
small changes to have small effects. This problem is not studied in Dresher and Kaye
(1990). However, if the parameters have a non-uniform effect on the output data, we
could incorporate this information in the covariance function. Our experiments show that
in spite of these inaccuracies in the link between the parameters and their effects, our
approach is able to learn a correct grammar reliably and quickly.
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5.4 Experiments

The aim of the experiments is to investigate the following issues:

1. Whether the learning process can be completed in fewer iterations than

the number of grammars under consideration.

2. Whether the learning process can be successful irrespective of the initial

grammar selected in Step 1 of the learning algorithm.

3. Whether the learning can take place in an on-line fashion, i.e. the

number of errors made as the learning process progresses is gradually

being reduced until it reaches 0.

4. Is the algorithm robust with respect to the presence of noise and the

input data distribution.

5.4.1 The Data

In our experiments, every input word consists of two parts: syllable repre-

sentation followed by its stress assignment. In our analysis, we represent

light syllables as L, syllables with a branching nucleus as N, and syllables

with a branching rhyme as R. For example, a string of the form RLRL2010

represents a four-syllable word with primary stress on the initial syllable and

secondary stress on the penultimate syllable; a pattern that can be found in,

e.g. Icelandic or Czech. We consider words of up to a length of 7 syllables.

This results from 2901 to 3279 words for each of the 216 possible grammars.
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Needless to say, a given word can belong to more than one grammar. The

number of overlapping words between grammars ranges from 3 to 3189. The

average number of overlapping words is 262.

As mentioned earlier, in our stress systems analysis, we follow the princi-

ples of metrical stress theory (Hayes (1995) and further developed by Dresher

and Kaye (1990)). Hayes (1995) set the standard for much subsequent re-

search in this field by bringing together data from around 400 natural lan-

guages and dialects and incorporating them into a unified metrical frame-

work. The 216 grammars discussed here represent stress patterns of a wide

range of natural languages from ancient languages (e.g. Latin) through well-

known Indo-European languages (e.g. French or Czech) to native Australian

or native America languages (e.g. Maranungku or Warao). A more exhaus-

tive list of natural languages corresponding to each of the 216 grammars can

be found in Hayes (1995) and Dresher and Kaye (1990).

5.4.2 The Experiment Design and General Results

All the experiments reported below are averaged over 600 runs with a random

starting point. This random initialisation allowed us to study the influence

of the initialisation step of the learning process. Each run consisted of 400

iterations of the algorithm which we described in detail in Section 4.4. At

each iteration the learner is presented with 5 words selected from the target

grammar. The frequency with which each word is presented to the learner

corresponds to the probability distribution of this word. Note that the learner
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is not allowed to use the particular words to inform his learning but only the

average error of the currently hypothesised grammar on these words.

Below, we report results for the target grammar with the following pa-

rameter setting: P1[right], P2[binary], P3[right], P4[left], P5[QI], P6[rhyme],

P7[no], P8[yes], P9[right], P10[yes], although the simulation experimental

show that similar results can be reported for the remaining 215 grammars.

The data is drawn from a uniform distribution. As mentioned earlier, the

error convergence to 0 corresponds to identifying the target grammar. As

illustrated in Figure 5.2, the target grammar is identified within 30 - 50

iterations, irrespective of the initialisation step and assuming a uniform dis-

tribution over all the input data. Note that an exhaustive search would

require “trying” all the 216 possible grammars, thus lengthening the learn-

ing process. The faster error convergence results from online nature of our

learning algorithm and the incorporation of prior knowledge in our learning

scenario. The algorithm is more efficient than one where at each iteration a

new grammar was selected completely at random which results in a larger

number of errors and a slower convergence rate.

5.4.3 Varying the Probability Distributions

In the second set of experiments, we test the convergence time in two sce-

narios: (1) when the input data is presented to the learner from a uniform

distribution, i.e. the probability to see every word is 1/n, where n is the

number of possible words produced by a given grammar; (2) certain words
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Figure 5.2: Error convergence rate (with standard deviation) of the Prior
Knowledge Multi-armed Bandit algorithm when the data is drawn from (a)
a uniform distribution and (b) the probability distribution is correlated with
the word length and compared to the uniform probability distribution (non-
uniform distribution).

are more likely to occur than others. In case (2), the probability distribu-

tion is correlated with the word-length, i.e. the shorter a given word is, the

higher its probability of occurrence. As can be seen in Figure 5.2, varying

the probability distribution affects the convergence rate. When the data is

drawn from a non-uniform distribution, the convergence rate is slower, i.e.

the target grammar is identified within 80 - 150 iterations, which is still lower

than the number of all the 216 possible grammars. As mentioned earlier, the

number of overlapping words between the target grammar and the remaining

candidate grammars. In certain cases, the overlap between the vocabulary of

the target grammar and the hypothesised grammar is over 90%, which means

that the grammars can be distinguished by a small number of words and the
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user has to be presented with one of these words in order to reject the hypoth-

esised grammar. If the probabilities of occurrence of the non-overlapping are

very low, then the learner might have to wait longer to “come across” them,

i.e. it takes more iterations to be presented with a non-overlapping word and

thus reject the candidate grammar.

5.4.4 The Impact of Noise

In the third set of experiments, we added noise (ω) to the input data, or, to

be more precise to the reward function. Thus, the reward was r + ω, where

ω = randn∗0.05. randn is a random value drawn from a normal distribution

with mean = 0 and standard deviation = 1. We tested the influence of noise

when the noise was added to varying percentage of data ranging from 0%

to 100%. Figure 5.3 compares the error rate convergence for cases where

noise was added to 0%, 50% and 100% of data, where the data was drawn

from a non-uniform distribution. The algorithm performs best with no noise

present. However, even with the addition of noise, the correct grammar is

identified within 110 – 170 iterations.

5.4.5 Comparison with TLA and RWA

In the last set of experiments, we compared the performance of the “prior

knowledge multi-armed bandit” algorithm with that of TLA and RWA. Fol-

lowing Niyogi (2006), we implemented TLA as a Markov chain. Both in
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Figure 5.3: (a) Error convergence rates with noise added to 0%, 50% and
100% of data. (b) expansion of Figure 5.3a in the critical region.

TLA and RWA, the words are drawn from a uniform distribution. The tar-

get grammar is the same as the one used in the previous experiments. As

discussed earlier, it takes on average 30 - 50 iterations to learn the correct

grammar with the prior knowledge multi-arm bandit algorithm. As can be

seen in Figure 5.4a, it takes 311 iterations of TLA and 1071 iterations of

RWA to learn the target grammar. It must be noted that at each iteration of

our algorithm the learner is given a set of 5 words, while in the case of TLA

and RWA the learner is given only one word at a time. However, even if we

assume the worst-case scenario, where the learner needs 50 iterations of the

prior knowledge multi-arm bandit algorithm to acquire the target grammar,

we still require only 250 words to learn the language. Learning with TLA

and RWA requires 311 and 1071 words, respectively. The prior knowledge

multi-arm bandit algorithm converges faster than TLA and RWA in spite
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of the fact that TLA and RWA provide the learner with additional infor-

mation of transition probabilities. Note that the prior knowledge multi-arm

bandit algorithm does not take into account this type of extensional informa-

tion. In particular, it does not have any information about the correctness

or otherwise of the grammar for specific words.
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Figure 5.4: (a) Probability of convergence of the Triggering Learning Algo-
rithm (TLA) and the Random Walk Algorithm (RWA). (b) Average number
of iterations required to learn the correct grammar with the prior knowledge
multi-armed bandit algorithm as the size of the learning space increases.

Niyogi and Berwick (1996) and Niyogi (2006) showed that in a three-

parameter setting with 8 grammars, RWA converges faster than TLA. How-

ever, our experiments on a 10-parameter space show that the convergence

rate of RWA is much slower than that of TLA. We further compared the con-

vergence rate of the three algorithms as the size of the parameter space, and

consequently the number of grammars, increases. We looked at a scenario,

where the number of possible grammars was: 8, 24, 72, 108, 144 and 216.
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As can be seen in Figures 5.4b and 5.5b, in the case of the prior knowledge

multi-arm bandit algorithm and RWA, the complexity of the learning error

is affected by the size of the learning space, i.e. the smaller the number of

grammars the faster the learning process. The size of the learning space does

not have the same effect on the TLA, i.e. there is no correlation between the

number of parameters/grammars and the probability of convergence (Figure

5.5a).
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Figure 5.5: (a) Number of iterations required to learn the correct grammar
with TLA as the size of the learning space increases. (b) Number of iterations
required to learn the correct grammar with RWA as the size of the learning
space increases.

5.5 Discussion and Future Directions

The problem of learning parametrised grammars can be approached from

many different perspectives. In this chapter, we concentrated on the prob-
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lem of error convergence, i.e. how many examples it will take the learner

to reach a stage where he can parse correctly all the incoming words. We

have presented a new algorithm “prior knowledge multi-armed bandit” and

have shown that the algorithm can successfully tackle the problem of sample

complexity. The algorithm enables the learner to acquire the target language

in an online fashion without the need to resort to searching the entire param-

eter space and without the danger of getting stuck in a local maximum. We

have also shown that the learner can “discover” the parameter setting of the

target grammar without direct access to the set difference of words belonging

to different grammars, but from the more cognitively realistic access to the

Hamming distance between the grammars parameter vectors.

A number of directions for future research arise. As the number of param-

eters increases, so does the complexity of the learning process. It is worth

investigating how the error convergence rate will change as the parameter

space grows/decreases. Further, we also need to conduct a more extensive

empirical analysis of the impact of noise and data distribution on the con-

vergence rate, i.e. how increasing the level of noise or a very unfavourable

data distribution will affect the learning process.

Another possible direction is the derivation of a language change model

from the current language acquisition model as well as a language acquisition

model where the learner is exposed to data coming from different languages

or dialects. The procedure discussed in this chapter concentrates on mod-

elling the language acquisition process of a single child. Needless to say, a
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language change model would require scaling up the present model to an

entire population.
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Chapter 6

Image Search with Dirichlet

Prior

6.1 Introduction

We consider content-based image retrieval in the case when the user is unable

to specify the required content through tags or other image properties. In

this type of scenario, the system must extract information from the user

through limited feedback. We consider a protocol that operates through a

sequence of rounds. In each round, a set of images is displayed and the user

must indicate which image is closest to their ideal target. Note that we do

not always assume that the target is in the database but rather that there is a

hypothetical target image in the user’s mind and that the user’s likelihood of

choosing an image is proportional to a polynomially decaying function of the
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distance between the displayed images and this target. While this problem

has been studied before (e.g. Cox et al. (2000); Auer and Leung (2009)),

we present a novel Bayesian approach that uses latent random variables to

model the system’s imperfect knowledge about the user’s expected response

to the images. The proposed approach compares favourably with previous

work.

Suppose we are given a database D of images. For each image xi ∈ D ,

we use a latent variable θi taking values in [0, 1] to represent the probability

that xi is an image the user is searching for. Supposing that the user has a

single ideal target, the variables have to sum to one:

∑
xi∈D

θi = 1.

Since the system has incomplete knowledge about the user’s target image, it

uses a Dirichlet process over the variables (θi) to represent the state of its

knowledge. At each iteration, the system samples k images to present to the

user, from which the user selects the one closest to the target. Thus, we call

our algorithm Dirichlet Sampling (DS). The aim of the algorithm is to allow

the user to find the target image in as few iterations as possible. Thus, at each

iteration based on the user selection, the algorithm updates the probabilities

of all the images in the databse with the aim of increasing the probabilities of

images that are most likely to be the target and decreasing the probabilities

of those that are least likely to be the target. As the iterations progress, the
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user is most likely to be presented with images that have high probability

(and hence are highly relevant). Thus, the objective of the algorithm is to

increase the probabilities of the images in the region of interest to the user

thus giving them a better chance to be sampled.

An important aspect of our DS algorithm is the incorporation of an ex-

plicit exploration-exploitation strategy in the image sampling process, which

greatly improves the performance of the algorithm compared to its main

competitors that do not employ exploration-exploitation strategies. Our ap-

proach is similar to Thompson sampling (Chapelle and Li (2011)): A sample

is drawn from the Dirichlet distribution which represents the knowledge state

of the system, adjusted using a temperature to trade-off exploration and ex-

ploitation, and the image with the largest probability (in the sample) of

being the target is selected; this is repeated k times to obtain the k images

presented.

A second aspect of our DS algorithm is the way in which its knowledge of

the target is updated given user feedback (selection of one of the k images).

We considered a few algorithms to do so: variational Bayes, Gibbs sampling

and a simple uniform update. We show in experiments that the simple

uniform update performs best. The reason is because both variational Bayes

and Gibbs sampling tend to focus on a small set of images (which may or

may not contain the target) aggressively, while the uniform update is less

aggressive. We discuss this issue further in Section 6.4.1.

Performance of the algorithm is assessed by (1) the number of rounds
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needed before the target image is presented to the user or an image is pre-

sented that is among the t nearest neighbours of the target in the database,

where t ≥ 1 is a parameter of the problem; (2) the average distance of the

k images presented to the user at each iteration from the target (where each

presented image is unique). Finally, performance is compared against earlier

solutions with favourable results.

An important aspect of the chapter is an attempt to incorporate the algo-

rithm into a real-life online system, where real users are involved and speed

is of high importance. In order to account for these factors, we introduced

a number of heuristics into the system, such as updating the probabilities

of the images or sampling the k images presented to the user. Additionally,

in order to be able to cope with very large datasets of images in a timely

fashion, we propose a sparse representation for large datasets, which will al-

low us to roughly approximate the distribution of the images in these large

datasets using only a small subset at a time.

6.2 Previous Work

One of the main research problems in content-based image retrieval with rel-

evance feedback is finding a suitable image in as few iterations as possible. In

previous research (Zhang and Chen (2002); Tong and Chang (2001); Gosselin

et al. (2008); Chang et al. (2005)), active learning was used to select images

around the decision boundary for user feedback to speed up the search pro-
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cess. However, the user might find it difficult to label images lying close to the

decision boundary, which results in noise being present in the user feedback.

Recent work by Auer and Leung (2009) explicitly models noisy user feedback

by incorporating an exploration-exploitation strategy into their system. In

this model, after obtaining the user feedback, the algorithm can efficiently

search for suitable images by eliminating the ones that do not match the

user’s query (see Section 6.7.4). Cox et al. (2000) apply a Bayesian approach

to model the system’s knowledge about the user’s search interest (see Section

6.7.4).

Traditionally, in content-based image retrieval with user feedback, it is

assumed that the images in the dataset are not labelled (Chen et al. (2001);

Rui and Huang (2000); Rocchio (1971); Tong and Chang (2001)). Metric

functions measuring similarity based on low-level visual features can be ob-

tained by discriminative methods. Long-term learning is used with training

datasets from the feedback of different users (He et al. (2002); Fournier and

Cord (2002); Tao et al. (2006); Koskela and Laaksonen (2003); Tao et al.

(2007); Linenthal and Qi (2008); Wacht et al. (2006); Tao and Tang (2004)).

However, because of different perceptions about the same object, different

users may give different kinds of feedback for the same query target. Short-

term learning using feedback from a single user in a single search session can

be used to deal with different perceptions of objects.

Recently, a large amount of work (Veltkamp and Tanase (1999); Smeul-

ders et al. (2000); Lew et al. (2006); Crucianu et al. (2004); Datta et al.
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(2008)) explored the use of user feedback as training data. Feedback is used

to label data points as positive or negative for the training purposes. The

problem with this approach is that at each iteration, the user selects the most

relevant image, which may not necessarily be very similar to the ideal target

image. Images predicted to be positive examples by discriminative meth-

ods are usually selected for presentation in each round. This might hinder

progress in the search significantly as parts of the search space with images

incorrectly predicted as negative are ignored.

6.3 Comparative Feedback

As mentioned earlier, the aim of the content-based image retrieval algorithm

proposed in this chapter is to find an image that is close to the user’s ideal

target image within a small number of query iterations. In this case, the

user’s feedback is comparative, indicating which images among the ones pre-

sented to the user are more similar to the ideal target image. Auer and

Leung (2009) and Auer et al. (2011) describe a formal user model for this

search scenario and provide some results of initial experiments, indicating

that the model captures the issue of delayed feedback very well. The pro-

posed model predicts that the user selects an image from a set of k images

with some probability that increases with the similarity between the image

and the ideal target image. In the off-line experiments (simulations), we will

rely on the user model proposed by Auer and Leung (2009). Additionally, we
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will compare the predictions of the user model with the actual user behaviour

in order to validate the results of the off-line experiments.

6.3.1 The User Model

Auer and Leung (2009)’s distance based user model specifies the probability

of the user choosing a particular image in a given collage of images, assuming

that the user has an ideal target image in mind. Let xj be the jth image

in a set (collage) of k images and let t be the ideal target image, then the

probability of choosing image xj is given by:

D{x∗ = xj | x1, . . . ,xk; t} = (1− λ)
S(xj, t)∑k
j′=1 S(xj′ , t)

+
λ

k
(6.1)

where S is a similarity measure between images and 0 ≤ λ ≤ 1 accounts

for uniform random noise.

Assuming a distance function d(·, ·) between images, a possible choice for

the similarity measure S(·, ·) is:

S(x, t) = d(x, t)−a (6.2)

This particular measure decreases polynomially with increasing distance.

The parameter a > 0 indicates the user ”sharpness”. Large a implies that

the user favours images closer to the target image. With the polynomial

similarity measure, the user’s response depends on the relative size of the
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image distances to the ideal target image1. In all the experiments reported

below, the values of a and λ in the user model were kept constant at 2 and

0.1, respectively.

In the user model considered here, the search engine supports the user in

finding an image that matches their query sufficiently well. In each iteration,

the search engine presents a set of k images from a database D to the user

and the user selects the most relevant image from this set. The protocol is

described below:

For each iteration z = 1, 2, . . . of the search:

• The search engine calculates a set of images xz,1, . . . ,xz,k ∈ D and

presents them to the user.

• If one of the presented images matches the user’s query, then the search

terminates.

• Otherwise, the user chooses one of the images xz,1, . . . ,xz,k as most

relevant x∗z according to a given distribution (see equation 6.1 above) .

6.3.2 The User Model and the Image Selection

Problem

As mentioned earlier, the image search algorithm proposed in this chapter is

based on Dirichlet Process, however, we are not only interested in developing

1We also conducted experiments with exponential similarity measure exp{−ad(xj , t)},
where the user’s response depends on the absolute difference of the distances between
images, but obtained inferior experimental results.
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a new algorithm that can be applied to image retrieval; we are also interested

in building a practical application, which inevitably involves a trade-off be-

tween algorithm design, available computer architecture and usability, just

to name of few requirements that need to be taken into consideration when

designing a new system, in particular one that needs to in online and be

highly responsive to the user needs. One of the assumptions of our system is

that at each iteration, the user is presented with a fixed number of k images

and selects one of them, after which we want to be able to divide our dataset

into k partitions and treat all the images close to the selected by the user as

if they have been selected as well. However, these requirements are not fully

compatible with the assumptions behind the DP. On one hand, we would like

to be able to work with the assumption that our image database consists of a

number of partitions, as in DP, but on the other hand, we want to treat our

database as simply consisting of a set of individual images, particularly when

it comes to sampling individual images. In this and the following sections,

we introduce a number of techniques, some based on heuristics, as to how to

combine these two issues.

Let D be a dataset of n images D = {xi, . . . ,xn}. LetM = m1,m2, . . . ,mn

be the base measure defined on D . Initially, we set mi = 1
n

for i = 1, . . . , n.

Let x∗z ∈ {xz,1,xz,2, . . . ,xz,k} be the image chosen by the user at iteration z

from among the k presented images {xi,1,xi,2, . . . ,xi,k}. In the remainder of

this section, we suppress the index i to simplify the exposition. In our model,

the user only sees k images at each iteration and so we can only observe user’s
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preference with respect to the k displayed images. However, we want to be

able to model the user’s preferences with respect to the entire dataset of

images. Thus, we view the set of images {x1, . . . ,xk} as partitioning the

complete space of images into sets X1,X2, . . . ,Xk with

Xj = {x : d(xj,x) < d(xj′ ,x), j′ 6= j}. (6.3)

In the initial set of experiments, we simulate the user behaviour, thus we

need to define how the image x∗z is chosen by the user model. If we take the

“true” response probability as

m∗i ∝ d(xi, t)−a (6.4)

where t is the target image, then the user model should choose partition Xj

with probability

P (Xj) =
∑

i:xi∈Xj

m∗i (6.5)

In order to be able to update the base measures of all images in a given

partition at each iteration and be able to approximate the true DP posterior,

we derive the base measure updates using Variational Bayes (VB) (Attias

(2000); Beal (2003); Jaakkola (2001); Jordan et al. (1999)).
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6.4 Variational Bayes

The Bayesian inference problem is one where we have a series of observations

X = {x1, . . . , xn} and we wish to use them to determine the parameters W

of our model:

P (W |X) =
P (X|W )P (W )

P (X)
, (6.6)

We are not too concerned with the correct normalisation of the posterior

probability and so we can omit the evidence term to obtain:

P (W |X) ∝ P (X|W )P (W ) (6.7)

For a general model it may not be possible to evaluate the posterior

analytically, in which case it may be necessary to approximate the posterior

with a simpler form q(W ). We can measure the fit between the approximate

distribution and the true one by the Kullback-Leibler divergence:

F =

∫
q(W ) log[

P (X|W )P (W )

q(W )
]dW (6.8)

Inferring the posterior distribution P (W |X) is now a matter of maximising

the free energy over q(W ). The maximisation of F is equivalent to minimising

the Kullback-Leibler (KL) divergence between q(W ) and the true posterior:

KL(q|p) = −
∫
q(W ) log

p(W |X)

q(W )
dW (6.9)
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Thus, the log marginal probability is:

log p(X) = F (q) + KL(q|p) (6.10)

If we allow any choice of q(W ), then the maximum of the lower bound occurs

when the KL divergence disappears, which occurs when q(W ) equals the

posterior distribution p(W |X). However, computing the true posterior may

not be tractable, in which case we might consider a family of distributions

q(W ) and then look for a member of this family for which the KL divergence

is smallest. Thus, it is important to restrict the family membership only to

tractable distributions that can also provide a good approximation to the

true posterior. A possible family in which to restrict the distributions q(W )

is to use a factorised approximation to the true posterior (Attias (2000)). We

partition W into groups:

q(W ) =
M∏
i=1

qi(Wi) (6.11)

and then, amongst all the distributions q(W ), we seek the one for which the

lower bound F (q) is the largest.

6.4.1 VB Parameter Updates

Below we illustrate the factorized variational approximation for the Dirichlet

Sampling algorithm. As mentioned earlier, Dirichlet distributions Dir(α) are
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probability distributions over multinomial parameter vectors. The distribu-

tion is parametrised by a vector α = {α1, . . . , αn}, where α = (α1, . . . , αn) =

α0(m1, . . . ,mn), where (m1, . . . ,mn) has 1-norm 1 and α0 > 1. The Dirichlet

distribution is conjugate to the Multinomial distribution, which gives us the

following generative model:

θ|α v Dir(α)

βi|θ vMult(θ)

At each iteration of the DS algorithm, the user is presented with k images

and selects one of them as being “most similar” to the ideal target image they

have in mind. The selected image is a “proxy” for similar images, which we

also consider to be selected by the user. Thus, we want to apply different

updates depending on whether a given image was in a partition π selected by

the user. Given a set {x1, . . . , xk} of observed images, the user selects image

x?j , which is the proxy for the partition containing that particular image. We

denote the partition containing image x?j as πx?j . Our generative model looks
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as follows:

P (θ|α) ∝
N∏
i

θαi−1
i (6.12)

P (β|θ) =
N∏
i

θβii (6.13)

P (x?j | β, π) = δ


1 if βi ∈ πx?j

0 otherwise

(6.14)

Given our variables θ and β, and the selected image x?j , we wish to obtain

p(θ, β)|x?j . For most models, this is intractable and so we consider distribu-

tion q(θ, β), which can be factorised as:

q(θ, β) = qθ(θ)qβ(β) (6.15)

which gives us the following definition of F (q):

F (q) =

∫
qθ(θ)qβ(β) log

p(x?j , θ, β)

qθ(θ)qβ(β)
dθdβ (6.16)

The computation of q(θ) proceeds by its maximisation of F (q):

log qθ(θ) =

∫
qβ(β) log p(x?j , θ, β)dβ (6.17)
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We can rewrite Equation 6.17 in terms of an expectation:

log qθ(θ) = Eq(β)[log p(x?j , θ, β)dβ] (6.18)

qθ(θ) ∝ exp(Eq(β)[log p(x?j , θ, β)dβ]) (6.19)

Applying the same procedure with respect to q(β) will give us:

qβ(β) ∝ exp(Eq(θ)[log p(x?j , θ, β)dβ]) (6.20)

We apply the result (6.18) to find the expression for the optimal factor qθ(θ).

We only need to retain those terms that have functional dependency on θ as

all the remaining terms are absorbed into the normalising constant. Thus,

we have:

log qθ(θi) = Eq(βi)[log p(θi) + log p(βi)] + C (6.21)

= Eq(βi)[log(θαi−1
i ) + log(θβii )] + C (6.22)

= Eq(βi)[(αi − 1 + βi) log θi] + C (6.23)

= αi − 1 + E[βi log θi] + C (6.24)

We can identify that

qθ(θi) = Dir(θ|αi) (6.25)

where

α?i = αi + E[βi] (6.26)

107



Similarly, we can obtain the expression for the optimal qβ(β):

log qβ(βi) = Eq(θi)[log(βi) + log(x?j)] + C (6.27)

= Eq(θi)[log(θβii ) + log δ] + C (6.28)

= Eq(θi)[βi log θi + log δ(xi)] + C (6.29)

= βiE[log θi] + log δ(xi) + C (6.30)

We can see that

qβ(βi) = Mult(βi|γi) (6.31)

where

γi ∝


0 if xi /∈ πx?j

eE[log θi] otherwise

(6.32)

Note that for Dirichlet distributions, eE[log θi] ≈ max(0, αi− .5) (Asuncion

et al. (2009)), so that the update for αi is approximately:

α∗i ≈ αi +


max(0,αi−.5)∑

i:xi∈Xj
max(0,αi−.5)

if xi ∈Xj

0 otherwise

(6.33)

In other words, the parameters of images in the chosen partition are incre-

mented, with the total increment equal to 1. Further, images xi whose pa-

rameter αi is already large tends to get a larger share of the increment, while

those with small αi will not get much increment at all. This effect, where the
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“rich-gets-richer” can easily force the VB algorithm into a situation where

the parameters for a small set of images dominate, even though they are

not the true image. The resulting image search algorithm will then never

converge to the true image since it will always show one of these dominating

images.

To address this problem of premature (and incorrect) convergence, we

propose a simple “näıve” change to the parameter update where all images

in the chosen partition get incremented by an equal amount.

6.5 Näıve Parameter Update

We consider all images in a given partition as if seen by the user and as being

of equal relevance to the user. The intuition behind the algorithm is that each

sample is a proxy for the entire partition which comprises it. Thus, when we

consider the user’s choice, we need to update the base measures (weights)

accordingly. Since we are not able to distinguish between the images in a

partition, we use the update described in Algorithm 6.

Algorithm 6 Updates of parameters of the DS algorithm

if xi ∈Xj then
mi ← αmi+1

α+|Xj |
else

if xi /∈Xj then
mi ← αmi

α+|Xj |
end if

end if
α← α+ |Xj |
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In Section 6.7.2, we compare the performance of the DS algorithm using

the two types of base measure updates.

6.6 Balancing Exploration versus Exploitation

The final ingredient of the algorithm is how the images presented to the user

should be chosen. This involves a trade-off between presenting images that

appear promising based on best current estimates of the mean given by the

posterior measure {m1, . . . ,mn} (exploitation), and trying areas where our

current estimate could be too pessimistic (exploration). The strategy we

adopt to solve this problem is to draw k samples from the posterior distribu-

tion, where each sample corresponds to distribution over all the images, and

select the images xj, where j = 1, . . . , k, that have the highest probability in

each of these samples.

There is a slight problem with this selection. If we use the individual base

measures of the images when drawing the k samples, we will sample from

the underlying DP rather than the Dirichlet distribution corresponding to the

partition defined by the chosen images. The k selected images are effectively

proxies for the approximately n/k images in their respective partitions as

the these are the only images that the user can see and give a response

to. However, our assumption is that the user is interested not only in the

particular image that he selected but also in similar images. Effectively, it is

the partition that we wish to choose rather than individual images, i.e. at the
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next iteration of the search, we want to present the user with images that

are similar (i.e. in the same partiton) to the one selected at the previous

iteration. This problem is overcome by multiplying each of the mj base

measures by n/k before drawing each sample, which will allow us to select

images with probability that the partition they define contains the target.

The n/k multiplier is a very crude measure of the size of each partition - after

each iteration of the search algorithm, we cluster the entire dataset based on

the distance of each image in the dataset from each of the k presented images

and so at each iteration the size and membership of each cluster can change

drastically. The experimental data show that the n/k multiplier leads to

good experimental results.

We obtain the k images to display by sampling from the Dirichlet distribu-

tion. A fast method to sample a random vector from a n-dimensional Dirich-

let distribution with parameters m = {αm1, . . . , αmn} is to draw n indepen-

dent random samples from the Gamma distribution: ri ∼ Gamma(αmi, 1) =

r
αmi−1
i e−ri

Γ(αmi)
and normalise the resulting vector (see Section 2.3.3 for more de-

tails). Since we are interested only in the maximum, we can omit the nor-

malisation step. The image selection procedure is described in Algorithm

7.
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Algorithm 7 Image selection algorithm.

for j = 1, . . . , k do
for i = 1, . . . , n do
ri ← randg(αmi ∗ n/k)

end for
[valuej, indexj]← max(r); imagesj ← indexj

end for
Return: array images with indices of selected images

6.7 Experiments

In this section, we report experimental results involving the Dirichlet Sam-

pling algorithm. The aim of the experiments was to investigate the following

issues:

1. comparison between VB parameter updates and näıve parameter up-

dates;

2. scaling properties of the algorithm;

3. comparison with previous work;

4. real-world performance of the algorithm to compare the fit between our

user model and real users’ performance.

6.7.1 Simulation Experiments

For the initial set of experiments, we used a subset of the Tiny Images Dataset

(Torralba et al. (2008)). The subset that we used consisted of 37900 images
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comprising 758 categories. We used the Basic Image Features (BIFs) tech-

nique (Crosier and Griffin (2010)) to extract the image features. All reported

results are averaged over 1000 searches for randomly selected target images.

In the simulation experiments, we used the user model introduced in Section

6.3.1 above. In the first set of experiments we controlled the value of the k

parameter, i.e. how many images are presented to the user at each iteration.

We ran 1000 experiments where the user was presented with 2, 5, 10 images,

respectively. The search terminated when the user was presented with the

target image or after 500 iterations of the algorithm.

In the second set of experiments, we introduced an additional parame-

ter, i.e. the size of the image target set. The assumption behind this set

of experiments is that the user may not necessarily look for the ideal image

but instead terminate the search when presented with an image that is close

enough to the ideal image. Thus, the search terminates if the user is pre-

sented with at least one of the r images closest to the target. We tested the

algorithms when r = 1, i.e. the search terminates when the user is presented

with the ideal target image, r = 5, i.e. the user is presented either with the

ideal target image or one of the 4 images closest to the target, r = 10, i.e.

the search terminates when the user is presented with either the target image

or one of the 9 closest images.
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6.7.2 VB vs Näıve Parameter Updates

We compared the performance of the DS algorithm using the updates de-

scribed in Section 6.5 as well as the updates obtained through variational

Bayes. Table 6.1 shows the average number of iterations to find the target

image with the DS algorithm with both type of updates. The results are

averaged over 1000 searches using the dataset mentioned above.

k = 2 k = 5 k = 10
Target Size näıve VB näıve VB näıve VB

1 69 (32) 450 (70) 24 (10) 198 (158) 17 (7) 86 (142)
5 53 (31) 431 (135) 19 (8) 89 (141) 13 (5) 38 (89)
10 45 (25) 39 (120) 17 (7) 60 (145) 12 (3) 24 (69)

Table 6.1: Comparison of the performance of the DS algorithm with VB and
näıve updates. Standard deviation included in parenthesis

As the experimental results show, the DS algorithm with the “näıve”

base measure updates proposed in Algorithm 6 significantly outperform the

DS algorithm when combined with the VB updates. A possible explanation

might be the value of the updates, which are smaller in case of VB updates. In

case of the DS algorithm with non-VB updates, the weights of more promising

images are increased by a higher value, which allows the algorithm to sample

more relevant images early on in the search. The other possibility is that

due to the variable value of each parameter update obtained through VB, as

opposed to uniform updated by 1 in non-VB DS, VB zooms in on a particular

image too quickly and through future updates cannot easily recover from the

initial wrong choices by the user. This conclusion could be supported by the
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fact that the inclusion of VB updates leads to a greater increase of standard

deviation. A closer analysis of the experimental data shows that in up to 10%

of VB experiments, the user fails to find the target image and the simulation

run goes through the 500 iterations before it terminates. The data also shows

that a large number of VB-updates experiments end after very few iterations,

i.e. fewer than 10 iterations, in particular with a larger target size and larger

k. However, the 10% of cases when the search fails to lead to the target

image increase the mean and the standard deviation, and, from the user

perspective, make the algorithm unreliable. In the case of the DS algorithm

with näıve updates, there was not a single instance of a search where the

target image could not be found within the first 500 iterations of the search

session; both the mean and the standard deviation scale with the target size

and the size of k.

6.7.3 Gibbs Sampling and Dirichlet Search Algorithm

As the experimental results reported in the previous section show, param-

eter updates obtained through VB do not improve the performance of the

search algorithm. VB provides only an approximation of the “true” poste-

rior. In the next set of experiments, we apply Gibbs sampling (Geman and

Geman (1984)) to obtain a better approximation of the posterior. Gibbs

sampling is applicable when the joint distribution is not known explicitly or

is difficult to sample from directly, but the conditional distribution of each

variable is known and is easy to sample from. Gibbs sampling generates an

115



instance from the distribution of each variable in turn, conditional on the

current values of the other variables. The sequence of samples constitutes

a Markov chain, and the stationary distribution of that Markov chain is

the sought–after joint distribution that we try to approximate, which makes

the approximation of the joint distribution derived through Gibbs sampling

usually more accurate than that provided by VB.

The Gibbs sampler that we used in our experiments is summarised in

Algorithm 8 below. We run the algorithm for only 100 steps as the initial

simulations indicate that in the specific application 100 is sufficient for the

Markov chain to mix.

Algorithm 8 Gibbs sampler for the DS algorithm

input: base measures m1,...,n = 1
n
;

matrix C z × k with k images presented at iterations 1, . . . , z
for j = 1, . . . , k do

for i = 1, . . . , 100 do
for l = 1, . . . , z do
s =

∑n
h∈Olm

i−1
i , where Ol is partition containing image Cy,l

rh = mh
s

h ∈ Ol

vl ∼Mult((rh)h∈Ol)
end for
bh = mi−1

h +
∑z

l=1 1(vl = h)
ms
h ∼ Dir(bh)

end for
gj = Gamma(ms)
[value, index] = max(gj)

end for
return: array images with indices of selected images

Figure 6.1 shows the average distance from the target of 10 images pre-

116



0 5 10 15 20 25 30 35 40 45 50
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of iterations

Av
er

ag
e 

di
st

an
ce

 

 
Gibbs
VB
DS

Figure 6.1: Comparison of the convergence of the DS algorithm with a Gibbs
sampler (Gibbs), näıve updates (DS) and variational Bayes (VB).

sented to the user over first 50 iterations of the algorithm. The results are

averaged over 1000 runs of the search algorithm with a random target im-

age selected in each run. As the results show, incorporating Gibbs sampling

into the search procedure does not improve the performance of the search

algorithm, indicating that the poor performance is not as a result of the ap-

proximate inference but of a poor model, i.e. the correct Bayesian model is

inferior to our somewhat ad-hc model proposed in Algorithm 6. The Bayesian

model assumes that the user has a single target image in mind and it tries
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to get to it from the very beginning of the search, i.e. it zooms in on a small

region very quickly by giving the images in that region much higher weights

than the rest of the dataset. As a result of these updates, the images in

this small region are more likely to be sampled in future iterations. How-

ever, the experimental data indicate that this not how the users behave - the

users spent the first couple of iterations of the search trying to “familiarise”

themselves with the dataset sometimes making suboptimal choices. It’s only

after a few initial iterations, and after having a better understanding of what

type of images the database contains, that the users really try to zoom in

on a more specific region. This behaviour, however, is not compatible with

the model assumed in VB. Thus, if in the first few iterations the user selects

an image in the area where the final target image is placed, then the search

with VB updates produces the desired results very quickly and after a small

number of iterations the user is presented with the target image. If, however,

after the first couple of iterations, the user wishes to steer the search into a

slightly different area, it may take the algorithm a few iterations to recover

from the suboptimal weight updates from the initial iterations. However,

due to the non-uniform weight updates, it takes the DS algorithm with with

the VB updates longer converge (since there is a large difference in weights

of various images) when compared to the DS algorithm with näıve updates.
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6.7.4 Related Image Retrieval Algorithms

In the next set of experiments, we compare the DS algorithm with näıve

parameter update against two alternatives: the search algorithm proposed

by Auer and Leung (2009) (AL algorithm) and PicHunter (Cox et al. (2000)).

We selected these two algorithms as a benchmark due to the similarity of the

updates between these two approaches and ours. Below, we briefly describe

the two systems.

The AL Algorithm

The AL algorithm maintains weights w = {w1, w2, . . . , wn} on all the images

in a given database D . Initially, all wj = 1. At each iteration, k images

are presented to the user and the user selects one of the k images as being

most relevant to their search. The images presented to the user are randomly

selected (without repetition) from the database according to their weights.

Let x∗i ∈ {xi,1, . . . ,xi,k} be the image chosen by the user as the most rel-

evant at iteration i. If the search has not terminated, then all the images

xi,1, . . . ,xi,k are not sufficiently relevant and thus their weights are set to 0.

All the remaining images are divided into k sets based on their proximity to

the k images presented to the user. Weights of the images closest to x∗i re-

main unchanged, while the weights of all the remaining images are demoted

by a constant discount factor 0 ≤ β < 1 so that xi = xi ∗ β. In all the

experiments reported below, β = 0.5 as this was the value that gave the best

experimental results.
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The PicHunter Algorithm

The PicHunter image retrieval system (Cox et al. (2000)) uses Bayes’ rule

to predict the user’s target image based on the user’s actions. The system

maintains a set of probabilities p = {p1, p2, . . . , pn} for every image xj in a

dataset. Initially, all the probabilities pi = 1
n
. During each iteration i, the

search engine displays a set of images {x1, . . . , xk} and the user selects2 an

image xi,∗. After each iteration, the system estimates the probability that

image xj is the user’s target image given the session history, and k images

with the highest probability are presented to the user. The probabilities are

updated as follows:

pi+1,j = pi,j ·G(d(xj, xi,∗)) (6.34)

d(xj, xi,z) =‖ xj − xi,∗ ‖ is the distance between an image xj and the image

xi,∗ selected by the user in iteration i. In all the experiments reported in this

section, we used the Euclidean distance. G is the similarity function and is

defined as:

G = exp

(
−d(xj, xi,∗)

σ2

)
(6.35)

In all the experiments reported in this section, σ = 0.3 as that was the

value that lead to the best experimental results. After the update, all the

2PicHunter allows the user to select more than one image. For the sake of comparison,
the user was allowed to select only one image in every iteration. We also performed
experiments where the user was allowed to select more than one image but this fact did
not significantly affect the performance of PicHunter
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probabilities pj are normalised.

Experimental Results

The results of the experiments are presented in Table 6.2. We report the

average number of iterations required to terminate the search and compare

the performance of our algorithm against the AL algorithm and PicHunter.

k = 2 k = 5 k = 10
Target Size AL DS PH AL DS PH AL DS PH

1 227(38) 69(32) 482(15) 117(31) 24(10) 422(44) 92(36) 17(7) 374(58)
5 167(34) 53(31) 461(35) 81(34) 19(8) 390(70) 59(28) 13(5) 328(66)
10 139(35) 45(25) 454(38) 64(30) 17(7) 370(57) 48(24) 12(3) 308(68)

Table 6.2: Comparison of the performance of the AL algorithm, the DS
algorithm and PicHunter (PH)

The DS algorithm significantly outperforms the AL algorithm and PicHunter

in all the experiments reported above, which is rather surprising given the

similarities of the three algorithms. The disappointing performance of the

AL algorithm might be attributed to downgrading the weights by a constant

value. If during the initial couple of iterations the user is presented with

images that are far away from the target and picks one of these as most

relevant, then consequently the weights of the images close to the target

will be demoted early on in the search thus making them less likely to be

sampled in the following iterations, while the weights of those further away

from the target will remain unaffected and thus more likely to be sampled

in the future. In this scenario, the lower the value of β, the worse the search

results. However, if the user was “lucky” enough to be randomly presented
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with an image not far away from the target during the first iteration, then

the weights of the more relevant images would not be demoted and the search

will terminate within a relatively small number of iterations. By comparison,

the weight updates of the DS algorithm are more gradual, where the images

close to the one selected by the user are gradually increased, while all the

remaining ones are gradually decreased. Thus, in the DS algorithm, although

the images that are close to the target may have their weights demoted dur-

ing the initial few iterations of the search algorithm, they still stand a good

chance of being sampled later on, thus giving the user an opportunity to

pick more relevant images in future iterations. The DS algorithm and the

AL algorithm treat the image selected by the user as a proxy for the entire

partition of images. Both algorithms aim to identify an area containing im-

ages that are most likely to be of interest rather than one particular target

image. In the case of PicHunter, the probabilities of all the images in the

dataset are updated with respect to their distance from the image selected

by the user. The algorithm tries to identify a particular image rather than

an area from where to sample. Further, PicHunter does not really have an

exploration stage – rather than sampling images that are most likely to be

of interest to the user, at each iteration only the k images with the highest

probabilities are displayed. Thus, if all the images displayed initially are far

away from the target and all the probabilities are updated with respect to

one of these images, then there is little hope for the algorithm to “recover”

from the initial bad probability updates as the search progresses. It can ob-
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served that the number of iterations required for PicHunter to complete the

search uniformly large irrespective of the target size and the value of k

6.7.5 Real-life Experiments

In order to assess the compatibility between our user model and the real-

life performance of the algorithm, we tested the DS algorithm on real users

using the same Tiny Images subset as in our simulation experiments. For

this purpose, we built a prototype search engine based on the DS algorithm.

The system uses a simple user interface designed to search for target images

with minimum training. The user interface is shown in Figure 6.2. At the

start of the session, the user is shown the target image that he is expected

to search for. The user clicks the start button and is taken to the next page

where he is presented with k images. In the example shown in Figure 6.2, 6

images are displayed at each iteration. The target image is always present in

the top left corner of the display to avoid possible interference from memory

problems. The user selects the image that is most similar to the target image

by clicking “next” on that particular image. The process is repeated until

the desired image is found, at which point the user clicks “this one!” on the

selected image.

The system was tested on 15 users who performed 4 searches each using

the DS algorithm. At each iteration, 10 images were displayed. The users

were instructed to terminate the search when they found the target image.

If after 50 iterations, the target still has not been found, the user was asked
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(a) (b)

Figure 6.2: User interface of the image search prototype system.

to select the image most similar to the target and the search terminated.

The average number of iterations that was required to find the target image

was 20. We expect the results to improve if a larger number of images are

displayed at each iteration.

In spite of the fact that the target image was always on display during

the search process, some of the users continued with the search even though

the target had already been presented at an earlier iteration, while others

terminated the search when presented with an image similar to the target

image. For this reason, at each iteration we calculated the average distance

of the currently displayed images from the target image. Our expectation

was that at each iteration the average distance would be getting smaller

until eventually it flattens out. In order to assess the compatibility of our
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user model with real-life performance of the system, we plotted the average

distance of the displayed images from the target image for the simulations as

well as real-life experiments. As Figure 6.3 shows, in both cases the algorithm

displays a similar convergence patterns.
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Figure 6.3: Comparison of the convergence of the DS algorithm in real-life
experiments and in simulations.

6.8 Sparse Data Representation

Although the performance of the DS algorithm is encouraging, when the im-

age dataset is very large, calculating the distances of all the data points from

the k images displayed at each iteration becomes computationally expensive.

Assuming that the user is presented with k images and each datapoint is rep-
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resented as a d-dimensional feature vector, then each iteration of the search

with n images is of the order O(k · n · d). Thus, scaling the algorithm to

searches based on datasets consisting of millions of images may be infeasi-

ble. We propose a revised version of the DS algorithm, where we work only

with a subset, or with a sparse representation, of a given dataset of images.

The revised version of the algorithm will allow us to reduce the number of

calculations required in this step of the search thus enhancing the scaling

properties of the algorithm.

Assuming that we have an image dataset D consisting of n images, we

initially create a small dataset A = {y1, y2, . . . , yl : yi ∈ D : l � n} by

randomly selecting l images from D and we run the algorithm using only

this small dataset. At each suscessive iteration t, we replace f , where f < l,

images with the lowest base measures from A with new images taken from D .

The new f images selected from D must be different from the ones contained

in A . The procedure can be briefly described as follows:

1. Randomly select f images {z1, z2, . . . , zf : zj ∈ D ∧ zj /∈ A }.

2. Assign base measure (weight) values to the newly selected images using

the subsampling algorithm described in Algorithm 9.

3. Order the f selected images as well as the images contained in the

dataset A according to the value of their base measures.

4. Remove f datapoints with the lowest base measures from the combined

dataset. Thus, the size of A at iteration t is the same as it was at
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iteration t− 1

Algorithm 9 Subsampling of replacement images.

for j = 1, . . . , f do
for i = 1, . . . , l do
bi = d(yi, zj)

end for
[val, ind] = min(b)
sj = mind

end for
return: array {s1, . . . , sf} with base measures for images {z1, . . . , zf}

The base measure sj of a newly added image zj takes the value of the base

measure of the closest point in A . In all the experiments reported in this

section, we used the Euclidean distance to calculate the distance between

images yi and zj. It should be noted that selecting f images for replacement

does not necessarily mean that f new images will be added to A . After the

weights of the f images have been calculated, it is possible that some of the

newly selected images will be discarded without being added to A .

The intuition behind the algorithm is that in each iteration we remove

images with the lowest weights, and consequently the lowest probability of

being in the proximity of the target image, and replace them with images

with higher weights and hence being of more interest to the user. Thus,

although the dataset A is much smaller than the original image dataset D ,

as the search progresses, A contains more and more images close to the

target image with fewer and fewer images of little interest to the user. In

this way, we can scale up the application of the DS algorithm to very large
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datasets as we can still explore the dataset without the need to calculate the

weights of all the images at each iteration. The sparse data representation is

mainly aimed at applications where a large number of images are involved.

In this type of scenario, it is reasonable to expect tens or even hundreds of

images to be a very good proxy for the user’s idealised target image. Thus, it

is not necessary to search the entire dataset to find the target image as long

as a subset of the images that are in the proximity of the idealised target are

captured by the sparse data representation.

6.8.1 Experimental Results

We tested the performance of the DS algorithm using this sparse data repre-

sentation and compared it against its performance with a full dataset. The

size of the subset A was 1000 and in each iteration we replaced 200 images

with the lowest base measures with new images sampled randomly from the

remaining set. We applied the user model described earlier. In the first

set of experiments we used the subset of the Tiny Images dataset. As in

the earlier simulation experiments, the search terminated when the user was

presented with the target image (or an image close to the target). All the

results are averaged over 1000 runs of the search algorithm. We report the

average number of iterations required to terminate the search. The results

of the experiments, summarised in Table 6.3, indicate that even this simple

subsampling procedure allows the DS algorithm to find the target image,

although the number of iterations required to terminate the search might be
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larger than using the entire dataset of images.

Target Size k=2 k=5 k=10
1 178(38), 69(32) 102(44), 24(10) 64(46), 17(7)
5 145(52), 53(31) 79(52), 19(8) 50(34), 13(5)
10 115(38), 45(25) 67(42), 17(7) 39(23), 12(3)

Table 6.3: Performance of the DS algorithm with sparse data representation.
Standard deviation included in parenthesis. Results of experiments with full
dataset included in italics.

In Figure 6.4, we plot the average distance between the target image and

the k images presented to the user at each iteration using the full dataset and

the subsampling algorithm. The results are averaged over 1000 searches for

a randomly selected target image. Not surprisingly, the DS algorithm per-

forms better when the entire dataset is available at each iteration, however,

the average distance decreases at each iteration for both type of experiments

indicating that more relevant images are being presented as the search pro-

gresses. The results show that the subsampling technique allows the user to

find images close/similar to the target but does not guarantee finding the

exact target image in as few iterations as using the entire dataset. However,

when working with image databases consisting of millions of images, it is

highly likely that a large number (hundreds or even thousands) of images

will be virtually indistinguishible to the user and so, from the user prespec-

tive, being presented with an image very similar to the ideal target will not

adversely affect their experience.

In the next set of experiments, we compared the performance of the DS
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Figure 6.4: Convergence of the DS algorithm in simulations when using the
the full dataset and sparse dataset.

algorithm with full and sparse data in real life using the same dataset as

before. The experiments included the same setting and the same 15 sub-

jects that took part in the experiments described in Section 6.7.5. Each

subject performed 4 searches. The average number of searches using the

sparse dataset representation was 29, while the average number of iterations

using the full dataset was 20. The averages of the first 20 iterations of the

two search strategies are presented in Figure 6.5. The algorithm displays

a similar convergence pattern when used with full as well as sparse dataset

although in the case of sparse data representation the average distance from

the target is slightly higher.
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Figure 6.5: Convergence of the DS algorithm in real-life experiments using
full and sparse data.

6.8.2 Sparse Data Representation and 4 Million

Images Dataset

In order to test the efficiency of the subsampling algorithm on a large dataset,

we conducted a set of experiments on a collection of 4 million Flickr images.

For every image in the dataset, we used scale-invariant feature transform

(SIFT) (Lowe (1999)) to extract the features. We used the PicSOM system

(Laaksonen et al. (2000)) to obtain the features. We tested the DS algorithm

using sparse data representation with 1000 subset of the 4 million dataset

and replacing 200 images at each iteration. Due to the large size of the

dataset, we only tested a scenario where the search terminates when the user
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is presented with an image that is within 0.01%, 0.1%, 0.5% and 1% distance

from the target image. The results, summarised in Table 6.4, are averaged

over 1000 searches for randomly selected target image using the user model

introduced earlier. The search terminated when the user found, or got closely

enough to, the target image or after 500 iterations of the search algorithm.

Target Size k=5 k=10 k=20
0.01% 251(52) 143(35) 157(42)
0.1% 151(44) 86(39) 50(23)
0.5% 36(22) 20(21) 12(6)
1% 20(23) 11(7) 7(4)

Table 6.4: DS algorithm with sparse data representation using a subset of
1000 and replacing 200 images at each iteration.

The initial results indicate that even when using only 1000 subset of a 4

million dataset, the algorithm preserves its scaling properties with respect to

the size of the target set and the number of images displayed at each iteration.

It is worth noting that we used only a very small subset consisting of less

than 1 % of the entire dataset. Further testing and analysis are required to

determine the optimal size of the subset used at each iteration of the search.

As in the experiments involving the Tiny Images subset, both the mean and

the standard deviation increase with the target size and the size of k. When

the target size is 1, there is a sharp increase in the standard deviation as

compared to larger target sizes, indicating that the algorithm allows the user

to get to the general area of interest, however the number of iterations to

find the precise target image may vary considerably.
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Figure 6.6 shows the average distance from the target of the k images

presented to the user at each iteration as well as the distance of the closest

image to the target. As in the previous set of experiments, as the search

progresses, more relevant images are displayed.
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Figure 6.6: Average distance from the target of the images shown to the
user in the first 50 iterations of the DS algorithm, and distance of the image
closest to the target in each iteration.

6.9 Conclusions and Future Research

We have presented a new approach to content-based image retrieval based

on multinomial relevance feedback. We model the knowledge of the system

using a Dirichlet process. The model suggests an algorithm for generating
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images for presentation that trades exploration and exploitation. The ex-

periments confirm that the new approach outperforms earlier work using a

more heuristic strategy. In spite of the encouraging results, further analysis

of the algorithm might still lead to further performance enhancements. For

example, additional aspects that might be taken into consideration are:

• developing the model so that the user can select more than one image

at each iteration. This might be particularly useful when the number

of the k displayed images are very similar to each other and the user

has difficulties choosing between them, or when the user is interested

in an image with a number of features each of which are present in a

different image in the k ones on display.

• using different manners of calculating image distances. In all the exper-

iments reported in this chapter we used Euclidean distance, which may

not be the best way to assess the similarity between images. In future

research, it might be worth investigating other similarity measures.

• subsampling the images for the sparse data representation. Again, we

used a very crude and simple way to subsample the images. Further

analysis is required to determine the optimal size of the sparse dataset

as well as the optimal number of images that should be replaced at

each iteration.

• allowing the user to select only a specific part (or parts) of an image

thus indicating which aspects of an image are most relevent.
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Chapter 7

Summary and Conclusions

In this dissertation, we proposed a number of algorithms that “learn” through

interaction with the environment and presented empirical assessments of the

proposed methods. We concentrate on algorithms that that trade off exlo-

ration/exploitation. In Chapter 3, we introduced a simple bandit algorithm

with a beta prior. The algorithm is easy to implement and it has been shown

to outperform other alternatives. In its simplest form, the algorithm does

not have any parameters to tune, however, the experimental results show

that adjusting the prior to reduce exploration can improve the performance.

In Chapter 4, we introduced Gaussian Process Bandit and showed that it

can be successfully applied in a setting where the bandit arms are not inde-

pendent. Chapter 5 describes the application of Gaussian Process Bandits to

the grammar learning problem. In Chapter 6, we propose an image retrieval

algorithm that uses a Dirichlet process over the images to represent the state
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of its knowledge. An important aspect of the algorithm is the incorpora-

tion of an explicit exploration – exploitation strategy in the image sampling

process, which greatly improves the performance.

The dissertation starts off with simple bandit algorithms that assume

that the bandit arms under consideration are independent. In the following

two chapters, we proceed to more complex settings, where “similar” bandit

arms give similar rewards. These type of algorithms can be very useful in

scenarios where, unlike in the independent bandit arm setting, it may not

always be possible to try every arm in order to gain some information about

the reward that it can provide. The application of the Gaussian Process

Bandit to modelling the acquisition of metrical structure indeed shows that

it possible to find the correct grammar setting without having to try all

the possible grammars. The last part of the dissertation was an attempt to

apply an exploration-exploitation strategy in an information retrieval setting,

where we need to optimise not only accuracy of the algorithms but also

speed and, indirectly, the user experience. In theory, we could simply use

GP bandits in this setting as well. However, the latter two constraints, i.e.

the online nature of information retrieval systems, made the application of

GP bandits to the problem described in Chapter 6 impractical. That is

why we proposed a new exploration/exploitation strategy based on Dirichlet

Process, which is computationally more efficient than GP bandits and, when

combined with heuristics such as sparse data representation, can be applied

to very large datasets. However, one can expect that with the development
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of new and faster computer architectures, e.g. graphics cards, even such

computationally complex algorithms as GP bandits could form a part of

online retrieval systems with millions of images or documents.

Most current theoretical guarantees do not accurately represent the real-

world performance of reinforcement learning algorithms, hence we concen-

trated mostly on possible applications of the algorithms and their perfor-

mance. The experimental evaluation carried out in this dissertation reveals

that the proposed algorithms provide very effective heuristics for addressing

the exploration/exploitation trade-off. In fact, the experimental evaluation

of the Dirichlet Search Algorithm shows that the suggested heuristic for the

algorithm’s parameter updates performs better than the more “principled”

approach obtained through Variational Bayes or Gibbs sampling.

An important issue, which we briefly touched upon in Chapter 6, is the

scalability of the algorithms. The experimental results show that the heuristic

approach with sparse data representation allows the algorithm to scale up to

a dataset with 4 million images. We will address the issue of scalability in

more detail in future research.

Another important direction for future research is the incorporation of

human-computer interaction into machine learning (or, depending on the

point of view, incorporation of machine learning into human-computer in-

teraction). Machine learning researchers concentrate mostly on creating new

ways to define or approximate the learning process. However, in an era where

machine learning tries to make itself “useful” in real-life applications, the ac-
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curacy of the algorithms is as important as presenting the results to the user

in a user-friendly fashion, being able to obtain an input from the user or

making the user interaction with the system easy and intuitive.
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