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Abstract

Background: Nutrient profiling (NP) aims to identify healtmiefood options
according to the content of selected ‘positive’ riauits e.g. fibre, protein, and
‘negative’ nutrients e.g. sodium, saturated fate British and French food safety
agencies developed the WXYfm and SAIN,LIM modelgspectively. Their
predictive validity in relation to chronic diseds&s yet to be demonstrated.

Aim: To test the hypothesis that ‘healthy’ diets aBnéel by NP have predictive
validity.

Methods: Between 1991-93, 7,251 participants of the Wihailieh study completed
a 127-item food frequency questionnaire (FFQ). WXYdnd SAIN,LIM scores for
each FFQ-item were used to derive energy-weighgegegate diet scores (AS) for
each participant and NP model. Validity was asskssgainst baseline factors
including dietary quality indices. Prospective asations were examined with
incident CHD, diabetes and cancer, and all-causeaiitg (318, 754, 251, and 524
events, respectively—median follow-up time was agjmately 17 years).

Results AS were weakly associated with dietary qualitdices. Cox modelling
identified U-shaped associations (p quadratic trerdb) between both AS and all
outcomes except diabetes. Participants with middlehad slightly reduced risk;
SAIN,LIM estimates were significant for CHD and -edluse mortality. Dietary
misreporting, particularly of energy-dense foodsthwhigh ‘negative’ nutrient
content, was associated with BMI, hypertension @heér risk factors, and explained
much of the unexpected U-shaped AS-outcome asgnw@atAlternative AS less
sensitive to dietary misreporting confirmed thegmbial of NP as a public health
tool. In particular, the WXYfm ‘positive’ nutrientpredicted risk reduction for all
outcomes.

Conclusions Predictive validity of the NP approach was paeyablished. The
prospective effects of AS on chronic disease oueowere confounded by the
association between vascular risk and energy nostiag. Further predictive

validity studies of NP methods ideally require fdmaked dietary assessment (e.g.

diet diaries, 24h recalls) with less reporting bias
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Chapter 1. Introduction

Consumers from most developed countries are exptusedvast array of dietary
goals which range from nutrient recommendationg. ietary Reference Values in
the UK (Department of Health, 1991)) to food-baspddelines (e.g. Dietary
Guidelines for Americans in the US (US Departmdntealth and Human Services
and US Department of Agriculture, 2005)). Theseomemendations were derived
from a considerable body of evidence linking deethealth, and particularly non-
communicable chronic disease, synthesised in dekeyareports (Department of
Health, 1994; Department of Health, 1998; World IHe®rganization, 2003; World
Health Organization, 2004; World Cancer ResearaidFand American Institute for
Cancer Research, 2007; Parleh al, 2011). They led to a commonly accepted
definition of a healthy dietary pattern well illuated by the British “Eatwell plate”
and the US ChooseMyPlate.gov schemes (National tiHegérvice, 2011; US
Department of Agriculture, 2012), i.e. high intadeunrefined carbohydrates, fruit,
and vegetables; moderate intake of dairy, medt, ind egg products; limited intake
of added fats, and sweet or salty foods.

Despite such evidence and numerous governmentssaigrogrammes promoting
healthier dietary choices (e.g. “5-a-day” in seVefairopean countries), most
individuals fail to achieve healthy diets. In th& Uindings from the latest National
Diet and Nutrition Survey indicated that adults’anantake of fruit and vegetables,
saturated fats, non-milk extrinsic sugars, and stanch polysaccharides did not
meet the recommendations (Department of Health 8dFetandards Agency, 2011).
Prevalence of diet-related risk factors is on therease, with 2.6 million cases of
diabetes diagnosed in 2009 and rising levels ofsibpdGonzalezet al, 2009;
Diabetes UK, 2010; National Obesity Observatoryl0 and could hinder the
downward trends in non-communicable diseases obdernvthe last decade (Office
for National Statistics, 2011). In 2005, diet rethtliness was estimated to cost the
NHS £6 billion per year (Rayner & Scarborough, 2005

The general public does not appear to fully embiadelic health messages, and

alternative strategies are needed to help peoplee nhaalthier dietary choices.

14



Consumers buy food instead of nutrients or foodtgsp advice on individual foods
could be very helpful to shift behaviours towardsgtér options. A tool signposting
the healthiest choices within a food basket orfstmlld help practitioners in their
day-to-day advice, and consumers in their weeklypping (Muller & Ruffieux,
2011). Such a lever could also be used by regslatmanufacturers, and large
retailers who have the power to shape a global &gaply. Public health and food
sector stakeholders could all benefit from suclod, tif objective and evidence-
based.

Nutrient profiling could be this key “missing link”between nutrient
recommendations and food-based guidelines (Dar2@®9). This quantitative tool
aims at “categorising foods according to their miotnal content” (Rayneeet al,
2004a) to derive an objective measure of the “heats” of an individual food.
Nutrient profiling is based on the principle thange foods are more likely than
other to contribute towards healthy dietary pageifhe hypothesis is that increased
consumption of such “healthier foods” would, inrtukead to reduced risk of chronic

disease.

Nutrient profiling is currently being used for mandry or voluntary food labelling.
In Denmark, Norway, and Sweden, an official “Keyiologo appears on the
packaging of healthier food options, as defined éynutrient profiling model
(Swedish National Food Administration, 2009). Theo(€es International program,
developed mainly with funding from Unilever, allowsods from participating
manufacturers to carry the “Choices logo” if witlilre appropriate nutrient content
thresholds (Choices International Foundation, 200he US, several charity logos
have been recently developed (e.g. the AmericanrtH&ssociation Nutritional
criteria for certified foods (2009)) alongside coemcial and patented labels (e.g.
NuVal, www.nuval.con). Nutrient profiling has also been used by govexnts to
regulate health claims made on food. The US FoadCxug Administration (FDA)

uses a simple model to allow access to such clétmsd and Drug Administration
(FDA), 2008). A similar application of nutrient gilong was proposed by a recent
EU regulation (n.1924/2006 (The European Parliamemd the Council of the
European Union, 2006)). The French food safety egeleveloped the SAIN,LIM

nutrient profiling model for this purpose but naegment could be reached between

15



member states (Agence francaise de sécurité genites aliments, 2008; Darmen
al., 2009). The SAIN,LIM model was further proposedb® part of the French
national diet and health program (Programme naltiouigition santé) (Bourdilloret
al., 2010). In the UK, the WXYfm model developed fbetFood Standards Agency
(FSA) (Rayner et al, 2005a) is currently being used by the regulatér o
broadcasting—Ofcom—to regulate advertising accesmgl television programmes
directed at children (Office of communications, 2BPand product placement for all
TV programmes produced under UK jurisdiction (Géfief communications, 2011).
Other potential applications include school vendieg. foods would need to pass a
nutrient profiling model criterion to be sold onhsol sites (World Health
Organization, 2006)) and fiscal and trade polickes. example, a soft-drink tax has
been proposed by many scientists (Broweekl, 2009), and has been implemented
in several US states. Such taxes need a nutriefitepomodel (if only rudimentary)
to define which soft-drinks should be taxed (Jaoob& Brownell, 2000; Chriquet
al., 2008; Sturmet al, 2010). The WHO is currently working on a manuélick
aim is to set guiding principles to help its Memi&tates in the implementation of

nutrient profiling based policies (World Health @nigzation, 2011).

If nutrient profiling is to be used as a regulattoyl, it needs to be adapted to local
cultures and production; the definition of a unicpe¢ of rules for a large region may
prove difficult as illustrated in the EU. Furthéo, be accepted by all stakeholders,
including public health practitioners and the foowustry which often have
diverging interests, it would need to be evidenased, i.e. proven to improve the
health status of individuals by promoting a popolashift towards healthier eating.
The validation of nutrient profiling has been intrgated by several authors
(Scarborougtet al, 2007b; Drewnowski & Fulgoni, 2008; Drewnowskial, 2008;
World Health Organization, 2011). It is generalyreed that several steps common
to the validation of any new scientific measuremegrd to be included (Cronbach
& Meehl, 1955).

“Criterion” validity refers to the comparison ofetmew method with a known “gold-
standard”. There is no existing gold-standard measid food quality, or food
healthiness, and criterion validipgr secannot be tested. The comparison of nutrient

profiling models to classification of foods obtaih&om “nutritional experts” has
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been considered as criterion oriented validity (Boeughet al, 2007a). Both
WXYfm and SAIN,LIM performed well against such d&gation but experts were
shown to be culturally biased (Azais-Braeseb al, 2006; Scarborougtet al,
2007a). The hypothesis beneath nutrient profiliegthat diets containing higher
amounts of healthy foods would in turn be healthHi€onstruct” validity uses this
hypothesis and relates to the ability of a nutrierdfiling model to be associated
with dietary goals (i.e. nutrient recommendationsd &ood-based guidelines).
Several measures exist to assess the integratdthihess of a whole diet (e.g.
Healthy Eating Index (McCullougbt al, 2000a; McCullougtet al, 2000b), data-
driven dietary clusters (Martikaineat al, 2003)). “Convergent” validity assesses the
association between nutrient profiling and theseasuees. The WXYfm and
SAIN,LIM models were both tested for construct aodvergent validity and related
well to dietary goals and measures of diet qudltsambepolaet al, 2008; Maillot

et al, 2011). However, the dietary recommendations usethe construct and
convergent validity testing are included in thermunt profiling models’ algorithms.
Testing nutrient profiling models against objectmeasures of health status would

avoid such loophole.

The “ideal” way of assessing nutrient profiling idibe to demonstrate “predictive”
validity (Drewnowski & Fulgoni, 2008), i.e. assoits with prospective health
outcomes (e.g. CVD or cancer). The most practipgr@ach to test for predictive
validity would be by means of prospective analysisexisting cohort study data.
Intervention studies would be too long, expensarg] impractical. To date, only one
commercial and patented nutrient profiling modeswasted for predictive validity
in two US cohorts. Individuals with diets contaigitnigher amounts of healthy
foods, as defined by the Overall Nutritional Quallndex (ONQI), had lower
prospective risk of cardiovascular and total masta{Chiuve et al, 2011). For
evidence-base policies to be effective, similaretgb studies need to be carried out
using data from other populations (and local digp@s$sible) and using other nutrient

profiling models—particularly those designed fogukatory purposes.

The Whitehall 1l cohort is well suited to test piettve validity within a British
population. 10,308 well-characterised civil sergamtere recruited in 1985 and

subsequently completed dietary assessment quesiieanin 1991; they have been
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followed until 2010 for verified incident circulatp disease, diabetes, and cause of

mortality (Marmot & Brunner, 2005).

The two nutrient profiling models mentioned aboWXYfm and SAIN,LIM, are

both government-endorsed schemes developed forrdhpective food safety
agencies. Their algorithms have been designed ghrantensive consultation
processes and are freely available. Both schemes lieen linked to healthier diets
(Arambepolaet al, 2008; Darmoret al, 2009; Maillotet al, 2011) but associations

with health outcomes have not yet been investigated

This project aimed to assess the relationship katvwebketary quality derived from
the WXYfm and SAIN,LIM nutrient profiing models dnprospective health
outcomes including coronary heart disease, diapatescancer mortality within the
Whitehall 1l cohort study. It was hypothesised thdiets containing higher
proportions of “healthier” foods, as defined bytbotodels, would be predictive of
improved health outcomes.

Individuals’ diet can depend on a variety of fastand dietary assessment methods
may be subject to bias. Hence, a further aim & pinoject was to analyse potential
sources of confounding and bias which could hafectdd the observed associations
for predictive validity. Such an investigation alled adding an additional step in the
development and validation process of nutrientifingf models: the identification of
results-led models which would be able to predotesse health outcomes with

greater sensitivity and specificity.
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Chapter 2: Literature review and background

This chapter (Chapter 2) reviews the published enagé on nutrient profiling (NP)
validation in general. The goal of the project Igeto assess the NP concept and
underlying hypothesis, i.e. diets containing moealtihy foods promote better health
status, focus is not put on the specific applicetiof individual NP models, e.g. food
labelling designed to shift consumers’ buying bebass. This review is preceded by
a short presentation of selected existing NP modets a detailed description of
WXYfm and SAIN,LIM, the two models used in this prot. The chapter then
focuses on the evidence linking diet and healthiwithe Whitehall Il study, to
assess the potential of the data with respect tgdliBation.

2.1 Nutrient profiling schemes and their validation

The idea of assessing nutritional quality of indiwal foods was first introduced in
the 1970s (Hansen, 1973; Sorensnal, 1976; Guthrie, 1977). It has attracted
interest in the last few decades when attention stéfsed from diets to foods. For
example, there were moves in many countries toweage consumers to rely on
food labels to choose the healthier option: “theeeds to be better, clearer
information on nutrition labels connecting an indival food product to a
consumer's overall diet. [...] People shouldn't needalculator or an advanced
degree in math or nutrition to calculate what makebkealthy diet” (McClellan,
2003). There is a growing interest in NP illustdaby the publication in recent years
of specific supplements on NP in three scientifigrpals (Eur J Nutr (2007) 46(S2),
J Am Coll Nutr (2009) 28(4), Am J Clin Nutr (2019).(4)).

This section contains first a short description WP parameters, i.e. the
characteristics to be determined when designing calein together with a few
selected models and the details of the WXYfm andNSIAM models. Literature

was then searched for NP validation methods.
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2.1.1 Nutrient profiling schemes characteristics

NP models are based on some specific parametenshsst developing a model
(Scarborougtet al, 2007c; Drewnowsket al, 2008). Two broad approaches have
been used to design food NP models:
» “across-the-board” schemes where all foods areedédassified according
to the same algorithm, to identify healthy foodg@mneral,
« “category-specific” designs where specific alganth are defined for a
number of food groups, to identify healthier opsamithin these categories.
In a recent study, Scarborough and colleagues tigatsd the pros and cons of each
approach (Scarborougdt al, 2010). The “category-specific’ method, with ailiea

number of categories, was considered more apptegaapromoting healthier diets.

Other features of nutrient profiling models inclutie following choices:

« The choice and number of nutrients. These can lsitiy@ (or valued)
nutrients supposed to be beneficial and/or negaiingents (to limit) which
have been shown to be detrimental. Several stuthes investigated the
effect of different sets of nutrients with the saim&sic NP model, and
conclusions supported the use of a limited numidenutrients (Agence
francaise de sécurité sanitaire des aliments, ZB@8pniet al, 2009).

* The choice of recommended values for the selectddents. These are
usually derived from national and internationalrieurit recommendation, and
can be adapted to specific applications (e.g. doreraling).

» “Reference amount” or “base” of the scheme (usualpkcal, 100g or
portion size), which indicates the amount of foad which the algorithm
calculates the nutrient content. It has been arghetl a 100kcal basis
represents better the nutrient density of positvients better, while a 100g
basis is more appropriate for negative nutrientg@\i@owskiet al, 2009).

* The choice of an algorithm to combine the nutriemttent information, and
crucially the way of balancing positive and negatiwtrients (e.g. sum or
ratio) (Fulgoniet al, 2009).

» The use of thresholds to separate “healthy” andhéaithy” foods, allowing

an easier interpretation of the foods rankings.hShcesholds have usually
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been implemented in regulatory models and categpegific models to

highlight the approved or healthy options.

Each feature needs careful consideration, and rmadaiier development usually
undergo several steps of internal validity and/eergreview before being published
in their final version (Raynest al, 2004a; Drewnowski, 2005; Raynefral, 2005b;
Rayneret al, 2005c; Agence francaise de sécurité sanitairalileents, 2008).

Selected models are presented in tables 2.1 an&@re of these adopt an across-
the board approach and some a category-specificoagip. They include the
WXYfm and SAIN,LIM models used in this project aptesented in the following
sections. These tables do not present an exhaustivaf existing NP models, but
rather a selection of published models combinirféedint aspects of the features
presented above. An exhaustive review of existingient profiling models was
published by the British Food Standards Agencyd8&y et al, 2007) and should
be updated shortly.
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Table 2.1: Summary of selected “across-the-board’dod nutrient profiling models”

Name

Base

Valued Nutrients

Nutrients to limit

References

Nutritious Food Index
(NFI @

Ratio of recommended

to restricted food
components (RRR)

Food Quality Score 1,
2,and 3 (FQS 1,2,3)

Calories for Nutrient
(CFN)©

WXYfm

SSCg3d

FSANZ

SAIN,LIM

Nutrient Rich Food
(NRF9.3}

NFI =" (WO6DV oy + WDV,

> (Nutrients,,, /6)
Z (NUtrient’estricted /5)

nl/n2/n3
0
21 A)Dvl/z/%

nl/n2/n3

v/
5

(3 %DV, ) 13

Section 2.1.2

FQS,,; =

Earlier version of WXYfm.
Adapted from WXYfm model.
Section 2.1.3

> %DV
NRF93=44""" - LIM

Serving

Serving

2000kcal

1000kcal

100g
100g
100g
100kcal /
100g

100kcal or
RACC

Fibre, calcium, iron, zinc,

Total fat, SFA,

magnesium, potassium, phosphoruscholesterol, sodium.

niacin, folate and vitamins A, C, B1

and B2.

Protein, fibre, calcium, iron and

vitamins A and C.

n,: fibre, vitamins A, C, E, D, and
B12, folate, calcium, magnesium,
iron, potassiumn,: same, but
category specifis: nl + protein,
phosphorous, zinc, copper, niacin,
pantothenic acid, vitamins B1, B2, K
and B6, manganese, selenium.
Protein, calcium, iron, zinc,
magnesium, folate, niacin and
vitamins A, C, B1, B2, B6 and B12.

Protein, fibre, fruit/vegetable/nut

content.

n-3 fatty acids, fruit/'vegetable

content, calcium, iron.

Protein, fibre, fruit/'vegetable/nut

content.

5 from protein, fibre, calcium, iron,
ALA, MUFA, vitamins C, D, and E
Protein, fibre, calcium, iron,

A, C, E and B12.

Energy, SFA, total
sugar, cholesterol,
sodium.

Denominator:
energy, SFA,
cholesterol, sodium,

and energy from fats.

SFA, sodium, total
sugars, energy.
SFA, sodium, added
sugar, energy.

SFA, sodium, total
sugars, energy.

(Gazibarich & Ricci,
1998)

(Scheidt & Daniel,
2004);

(Kennedyet al,
2008)

(Zelman & Kennedy,
2005)

(Rayneret al, 2005a)
(Rayneret al, 2005c)
(Food Standards

Australia New
Zealand)

Sodium, SFA, added (Darmonet al, 2009)

sugar.

SFA, added (or total) (Fulgoniet al, 2009)
magnesium, potassium and vitaminssugar, sodium.

*Abbreviations: %DY, percent of daily value (recommended intake) fautient in the reference amount or in amounfiASsaturated fatty acids; MUFA, Mono-unsaturataityf
acids; ALA, a-linolenic acid.w, weight given to individual nutrient8Nutrient nutrient content per servinGED, energy density.LIM, see SAIN,LIM model presentation in

section 2.1.3; RACC, reference amount customaahsamed.
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Table 2.2: Summary of selected “category-specifidood nutrient profiling models®

Number of

. Valued nutrients
categories

Name/Organisation Reference amount

Nutrients to limi

Reference

Tripartite classification modél 14 100g n-3 fatty acid, fibre, vitamin C,
and folate.
Food and Drug Administration 3 Serving N/A
American Heart Associatich 2 Serving One from protein, fibre, iron,
calcium and vitamins A and C.
Choices programme 28 Depends on Fibre (depending on category).
category and
nutrient.
Australian Heart Foundation >10 Serving or 100g
Nutrimap 7 100kcal
vitamins D, C, and e, calcium,
iron, and magnesium.
US National Heart Blood and 8 N/A
Blood Institute — Go, Slow, and
Whoa foods
Keyhole logo 25 100g + %energy Fibre (dependingatrgory).
Overall Nutritional Quality ? ?
Index (ONQI) Patented and

undisclosed zinc, n-3 fatty acids, total
flavonoids, total carotenoids,

magnesium, and iron..

SFA, sodium, sugar, and energy.

Totdl, faFA, sodium and
cholesterol.
Total fat, SFA, cholesterol, TFA,
sodium.

SFA, trans fattg aeddium,
added sugars, energy.

Both negative and positive nutsien

MUFA, PUFA, fibre, folic acid, Total carbohydrates, sugars, total

lipids, SFA, and sodium.

N/A, Foods from each category are divided iohe of the three
healthiness groups.

TFA (all products), total fat, SFA,

(Netherlands MatriCentre
(NNC), 2005)
(Food and Drug
Administration (FDA), 2008)
(American Heart association
(AHA), 2009)
(Choices International
Foundation, 2009)

(National Heart Foundation of
Australia (AHF), 2009)
(Labouzeet al, 2007)

(US Department of Health and
Human Services - National
Heart Lung and Blood
Institute)

(Swedish National Food

total or refined sugars, and sodium Administration, 2009)

(depending on the category).

Fibre, folate, vitamins A, C, D, SFA, TFA, sodium, added sugar,
E, B6, B12, potassium, calcium, cholesterol. Further includes fat

quality, protein quality, energy
density and glycemic load as
correcting factors.

(Katz et al, 2010)

SFA, saturated fatty acid; MUFA, mono-unsaturatgtyfacid; PUFA, poly-unsaturated fatty acid; TR/ans fatty acid.
*These models being category specific, the algoritaries from one food category to another, resyltindifferent reference amount and/or nutrienisgp@sed by the same
scoring systenf:3 healthiness classes are defined for each foegjoat.” 2 specific logos are defined for whole-grain andlekoats product§.10 main groups are defined, with

some further sub-categories within these main ggoup
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2.1.2 WXYfm

The WXYfm model was developed for the Food Stanslakdency (FSA) for the
regulation of food advertising on television pragseaimed at children (Raynet
al., 2005a). The model first allocates points on tagidof the nutritional content per
100g of the food or drink. Foods and drinks arentktassified into healthiness

categories.

Step 1
“A” points are calculated as follows:

Total “A” points =  (points for energy)
+ (points for saturated fats)
+ (points for total sugars)
+ (points for sodium)

A maximum of 10 points can be scored for each entritable 2.3). Individual
nutrient thresholds are derived from the Guideldely Amounts (Rayneeet al,
2004a; Rayneet al, 2004b).

Table 2.3: Thresholds for points scored by each “Athutrient of the WXYfm model

Thresholds for individual points

Nutrient(/100g) O 1 2 3 8 9 10
Energy (kJ) <335 >335 >670 >1005 >2680 >3015 >3350
Saturated fat (g) <1.0 >1.0 >2.0 >3.0 >8.0 >9.0 >10.0
Total sugars (g) <4.5 >4.5 >9.0 >13.5 >36.0 >40.0 >45.0
Sodium (mg) <90 >90 >180 >270 >720 >810 >900

Thresholds are derived from Guideline Daily Amounts

Step 2
“C” points are calculated as follows:

Total “C” points =  (points for protein)
+ (points for non-starch polysaccharide (NSP)djbr
+ (points for fruit, vegetable and nuts)
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A specific report on the definition and the cal¢wa of fruit, vegetable and nuts
content was published (Scarborougthal, 2005). A maximum of 5 points can be

scored for each nutrient/food component as indicaté¢able 2.4.

Table 2.4: Thresholds for points scored by each “Chutrient of the WXYfm model

Thresholds for individual points

Nutrient (/100g) 0 1 2 3 4 5
Protein (g) <16 >16 >32 >48 >64 >80
NSP fibre* (g) <0.7 >0.7 >14 >21 >28 >35
Fruit, vegetable and nuts (g) <40 >40 >60 - - >80

Thresholds are derived from Guideline Daily Amounts
*NSP, Non-starch polysaccharide

Step 3
The overall score is calculated with the “A” and’‘tGtal points:

Overall score = (total “A” points) — (total “C” pois)
Unless a food or drink scores 11 or more “A” poiatsl less than 5 points for fruit,
vegetable and nuts. Then the overall score is lbtmlias follows:

Overall score = (total “A” points)

— (fibre + fruit, veigble and nuts points)

Step 4
The food or drink is then assigned into one offtaalthiness categories (figure 2.1):

» Afood is classified as “less healthy” when it S04 points or more.

« Afood is classified as “healthier” when it scofepoints or less.

* Adrink is classified as “less healthy” when it s=® 1 point or more.

e Adrink is classified as “healthier” when it scof@goints or less.
The FSA and Ofcom use only the “4 points” threshfud foods: a food can be
advertised if it scores less than 4 points. Theeetlzerefore only two categories for
both foods and drinks: those that can be advertasdithose that can't.

Since the WXYfm model was designed to control asdesTV advertisement on
programmes aimed at children, alcoholic drinks werescored by the model.
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Figure 2.1: Classification into healthiness categags according to the WXYfm "overall score"

2.1.3 SAIN,LIM

The SAIN,LIM nutrient profiling model was proposéy the French food safety
agency (Anses, formerly Afssa) (Agence francaissabririté sanitaire des aliments,
2008; Darmonet al, 2009). This model is based on two previously siied

indicators: the Nutrient Density Score (NDS), basedqualifying nutrients (i.e.

positive nutrients), and the LIM score, based osqualifying nutrients (i.e. the
nutrient to be limited) (Darmoet al, 2005; Maillotet al, 2007). Thresholds are
defined for each of these sub-scores to define foemlthiness categories or

“quadrants”.

Calculation of SAIN and LIM sub-scores

The SAIN score is an un-weighted arithmetic meathefpercentage adequacy for

five positive nutrients. It is calculated for 10@kof food, as follows:

> ratio,
SAIN ==2——x100
i

With ratio, = { nutrient } N 100

RV E

Where nutrientis the quantity (g, mg, qrg) of positive nutrient in 100g of food,
RV is the daily recommended value for nutrieér{table 2.5), and is the energy
content of 100g of food (in kcal/100g).
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The five basic nutrients included in the SAIN amotpin, fibre, ascorbic acid,
calcium, and iron. In addition to these five basitrients, optional nutrients are also
used, which differ according to the lipid contewnfsindividual foods. For foods
providing less than 97% of their energy as lipatmin D is used as an optional
nutrient. This means that the vitamin D ratio ikcakated for each food by using the
ratig algorithm and, when the vitamin D ratio is higliean the lowest ratio among
the five basic ones, this lowest ratio is replabgdhe vitamin D ratio in the SAIN
algorithm. For foods providing more than 97% ofitlemergy as lipids, four optional
nutrients are used: vitamin D, vitamin &linolenic acid, and mono-unsaturated
fatty acids. The ratios calculated for these oigmtrients are compared with those
obtained for the five basic nutrients, and up to teplacements are allowed between

optional and basic nutrients in the SAIN algorithm.

Table 2.5: Recommended values (RV) and maximum recomended values (MRV) used to
calculate each SAIN and LIM sub-scores, respectivel

Sub-score  Nutrient Value (RV or MRV)
SAIN Protein (g) 65

Fibre (g) 25

Vitamin C (mg) 110

Calcium (mg) 900

Iron (mg) 12.5

Vitamin D (ug) 5

Vitamin E (mg) 12

a-linolenic acid (g) 1.8

Mono-unsaturated fatty acids (g) 44.4

LIM Saturated fatty acids (g) 22
Added sugars (§) 50
Sodium (mg)* 3,153

These values are based on French (Martin, 2001karmpean (Eurodiet Core Report, 2000)
nutritional recommendation$If added sugars are not available, “free sugas'tefined by the
WHO are used (World Health Organization, 2003).0t kcluding salt added at the table.
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The LIM score is the mean percentage of the maxis@mmended values for three
nutrients: sodium, added sugars, and saturateg daitls (SFA). The LIM score is

calculated for 1009 of food as follows:

zsratio»
LIM =&
3

) ) nutrient,
With ratio; = {—’} x100

MRV,
Where nutrientis the content (g, mg) of limited nutrignh 100g of food, and MRV
is the daily maximal recommended value for nutriprftable 2.5). The LIM is

multiplied by 2.5 for soft drinks.

Overall, the SAIN,LIM model is based on 8 basic muts (5 included in the SAIN
plus 3 included in the LIM) plus 4 optional nutrieriin the SAIN only).

Threshold values for each sub-score

On the basis of a reference daily energy intak20ffOkcal, the optimum value for
the SAIN is 100% for 2000kcal, which is equivalémt5% for 100kcal of food. A
SAIN value>5 therefore indicates a good nutrient density. Thé isl calculated for
100g and the reference value used to derive tleshbid is based on food intake
rather than on energy intake. Because the meay fimtl intake (including solid
foods only) observed in the French population wags@imately 1330g/d (Volatier,
2000), the maximal value for the LIM score is 10086 X330g, which is equivalent
to 7.5% for 100g of food. As a result, a LIM valué.5 indicates a low content of

negative nutrients.

On the basis of its SAIN and LIM values and on theesholds defined for each
score, each food is classified into one of foursgde SAIN,LIM quadrants as
displayed in figure 2.2. Quadrant 1 includes foadth the most favourable nutrient
profile (high nutrient density and low content oégative nutrients), whereas
quadrant 4 includes foods with the least favourahl&ient profile (low nutrient
density and high content of nutrients to limit).0fs from quadrants 2 and 3 are

intermediate in terms of nutritional quality.
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In regards to the European regulation n. 1924/2666claims made on food
packaging, the Anses recommended that only foottinguadrants 1 and 2 should

carry nutrient claims, and that only foods from dpaent 1 could carry health claims.

Similarly to WXYfm, alcoholic drinks were not scareby the SAIN,LIM model

since the EU regulation n. 1924/2006 excludeddaisgory from claim access.

Quadrant 1 Quadrant 3

SAIN
u

Quadrant 2 Quadrant 4

0 7.5

LIM

Figure 2.2: SAIN,LIM quadrants
Healthier foods are classified in quadrant 1; lesalthy ones in quadrant 4.

2.1.4 Validation of nutrient profiling schemes

(i) Literature searches

As mentioned above, most NP models generally goutiit an internal validation

process during their development. It was thereftgeided that the most efficient
approach to identify publications concerned with Wialidation of NP models was to
search lists and references in known publicatibas aélready included some sort of
validity testing. In addition, online searches weagried out in Pubmed and Google

Scholar including the following search algorithril farms in title or abstract):
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((nutrient OR nutritional OR food)
AND (profiles OR profile OR profiling OR profiler))
AND (validating OR validation OR valid OR validity)

Inclusion of the retrieved references was donéherbasis of title, abstract, and main
research objective. Studies which focused onlyhenapplication of NP models (e.g.

assessing the impact of a health logo supporteal¥y model) were excluded.

The search through known publications and relagéerences identified 24 studies
which aimed at validating or testing one or more IN&del(s). The Pubmed search
retrieved 193 articles, of which 15 were retaindthe Google scholar search
retrieved 17 articles, of which 5 were retained.tAé retained publications had been

previously identified.

(i) Results, approaches to validate food nutrienprofiling models

Several approaches aiming to validate one or m@&enddel have been published in
recent years. These ranged from the comparisoangings of a defined set of foods
to mathematical programming and associations witssgective health outcomes
within large scale longitudinal studies. In thistsen, five approaches are presented
from the more simple (i.e. requiring the least mateto the more complex ones (i.e.
requiring individual based data or more advanceetiod):
a. Comparison of the rankings of foods from differsifit models;
b. Comparison of the NP-derived rankings of foods wrHnkings from
“nutrition experts”;
c. Use of dietary survey data to compare NP with hests of diets and
achievement of dietary goals, to test for constamet convergent validity;
d. Use of statistical modelling to design theoretati@ks containing more or less
healthy foods, to test for construct validity;

e. Predictive validity, i.e. prospective associatiothvadverse health outcomes.

For each method, some publications compared seM&ahodels to assess the most
suited or most robust scheme; these were includebe respective sections. Most
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NP models mentioned below were presented in thiegabhl and 2.2. Table 2.6

summarises the published approaches.

a. Comparison of foods rankings by several NP nsodel

This first approach consists in the comparisonhef tankings of a selected list of
foods (usually chosen to represent well the intalkkéhe target population) derived
from two or more NP models. It has been commonlgdus the development
process of NP models, allowing scientists to asttessmodel (particularly different

versions of the same model) with minimal effort amalterial.

Both the WXYfm and the SAIN,LIM were developed ieveral steps using such a
validation method to improve the models (choicenofrients, algorithm, reference
amount, etc.) (Rayneet al, 2005a; Rayneet al, 2005c; Agence francaise de
sécurité sanitaire des aliments, 2008). The fimssion of the WXYfm was further
tested against the British Balance for Good He#@BsH, which preceded the
Eatwell plate) and the results showed good agreebetween the NP model and the
BGH classification (i.e. healthier foods were mékely to belong to food groups

which consumption was encouraged, and vice vefgantbepoleaet al, 2008).

In addition, several studies compared rankingsoofl§ from different NP models,
either to compare existing models or to assessvanmedel. The Australia and New
Zealand food safety agency developed a model dkrik@n the WXYfm, and
compared the rankings of foods from this new maed#i the rankings derived from
the WXYfm and from an early version of the Choiggegram (Food Standards
Australia New Zealand). In the US, Kennedy andeaglies (2008) proposed three
models (Food Quality Scores 1, 2, and 3) to measuteent density based on the
2005 Dietary Guidelines for Americans. Kennedy ktcancluded that all three
approaches ranked foods in a similar way and ieeagent with the guidelines.
Further, the proposed “Go, Slow, and Whoa” clasaifon of foods by the US
National Heart, Lung, and Blood Institute was tdsagainst the nutrient rich food
model (NRF9.3) and it was concluded that the pregoslassification could be
helpful in indentifying healthful food options (Dm@owski & Fulgoni, 2011). In a
French dataset, the Nutrimap model proposed by wab@nd colleagues (2007)
agreed well with the WXYfm model. The WXYfm and $MLIM models were
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included in an extensive study which compared egsNP models (Garsetét al,

2007). The researchers highlighted that while modejreed well on fruit and
vegetables or sugars and oils, food groups unlikelye the object of marketing
claims, agreement was less good with compositepamcessed foods. The WXYfm
and SAIN,LIM models were also included in an analysf bakery products
(Trichterbornet al, 2011), and classified more foods as healthy thanChoices

programme.

b. Comparison with rankings from nutrition experts

This second approach is very close to the first ereept that rankings derived from
NP models are compared with rankings derived fromtrition experts”, who are
hypothesised to give an external and true evalmatib foods healthiness. This
method has also been used during the developmadPahodels since developers
themselves assessed their model’s rankings of fod@s$, only a couple of
systematic studies including the opinion of expestternal to the development of
the NP models under investigation have been pudalish

The WXYfm model, alongside the Nutrient Rich Fotite Calorie for Nutrient, and
the Ratio of recommended to restricted food comptsenodels (table 2.1), was
included in a French study which compared the ragkifrom these four models
with the one obtained from 12 experts (Azais-Brae=ical, 2006). Each expert had
to classify into quintiles a list of 125 foods. Thathors reported that the WXYfm
model seemed to be the most consistent approadh, ovily a few “minor
inconsistencies”, e.qg. fried onions classified éetihan currants.

The WXYfm model was also included in a British studvolving 702 nutritional
professional from the British Dietetic Associatiaand the Nutrition Society
(Scarborougtet al, 2007a; Scarborougét al, 2007c). Each expert was e-mailed a
random list of 40 foods out of a 120 food mastst, bnd had to score each food on
an absolute scale (6 categories from less heaitinyore healthy). To assist with the
categorisation, the energy (kcal), protein, carlooate, total sugar, fat, saturated fat,
fibre, sodium, calcium and iron contents per 100doofds were provided. Such
“standard rankings” was then compared to rankingsvedd from the WXYfm,
SSCg3d, Nutritious Food Index, Nutrient Rich Fo#thtio of recommended to
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restricted food components, Dutch Tripartite, Aakan Heart Foundation and
American Heart Association models. The WXYfm and #SCg3d were the most

related to the “standard rankings”.

The US Overall Nutritional Quality Index (ONQI) meldwas assessed by the
experts from the committee involved in the modelade@oment (Katzt al, 2010). It
was shown that there was a good agreement overdlifa specific food groups

(except for fruit).

The use of the opinion of external experts couldcbesidered as the closest
approach to “criterion’validity (chapter 1) since it intends to be tranmepa and

replicable. However, the standard rankings derfveweh nutritional experts could not
be considered as a gold-standard. The main weakveesghe cultural bias observed
within the experts. For example, the results frdme Scarborough et al. study
showed that some words used in the descriptionad overrode the experts’
assessment of the nutritional composition of thedfd~or instance, “Take away stir
fry vegetables” with a relatively low fat and satied fat content and a relatively
high fibre content was ranked as less healthy tfiashes with a higher fat and

saturated fat content.

c. Third approach: use of dietary survey, convergahdity

NP is based on the principle that healthier dieistain a higher proportion of
healthier foods. This principle is used to testdonvergent validity: NP models are
assessed against healthiness of diets. Such awaapprwhich requires dietary
survey data with associated nutrient content ofi$ptas been implemented by four
research groups. In the first three examples, tAestébres of foods were aggregated
at the participant level. Such aggregation is eeseary step for all studies linking
food-based NP to characteristics of individualseifthwhole diet in the case of

convergent validity).

First, the approach was used during the developrokrthe Nutrient Rich Food
(NRF) model (Fulgoniet al, 2009). Diets of participants from the US NHANES
1999-2002 surveys were ranked by all the versidrtbeo NRF to be tested and by

the Healthy Eating Index (HEI, see section 2.2i2) quality score. Each version of

33



the NRF was then regressed against the HEI. The9N&Rfodel (table 2.1) which
accounted for most of the HEI variation was seldcte the final version of the NP

model (linear regression’Rvas 0.45).

Second, the HEI score was also used to assessNkE @odel using NHANES
2003-06 data (Katzt al, 2010). The authors calculated an ONQI score lier t
reported total daily intake, and good agreement @l@ained between quartiles of
this ONQI score and the HEI (with around 4% of pgyants classified in opposite
quartiles). The linear regressiorf Ras lower than for the NRF9.3 (0.29, adjusted
for age, sex, and ethnicity). Further, the ONQIrsaterived from the hypothetical
Dietary Approaches to Stop Hypertension diet ofNlagonal Heart Lung and Blood
Institute (2006) was significantly higher than tbee derived from the average
NHANES diet.

Third, the WXYfm model was tested against the @etlity Index (DQI (Patterson
et al, 1994)) among participants of the National Diedl &utrition Survey of adults
carried out in Great Britain in 2000—01 (Arambepetal, 2008). The energy intake
from less healthy foods was closely related togheartile classification of the DQlI,
whereas the trend was quite flat for healthier ®od&lch result did indicate that the
WXYfm model discriminated well dietary patterns,tlvaised concern on potential
misreporting of intakes as a clear inverse trendeaped between the DQI and

energy intake.

Fourth, the HEI was adapted to data from five Etlonal dietary surveys (Belgium,
Denmark, France, Ireland, and Italy (Volatgtral, 2007)). Participants classified in
the first and fifth quintile of the adapted-HEI wedefined as “healthy eating” and
“not healthy eating”, respectively. In a secondosteods which consumption was
statistically different between the two groups wiglentified as “indicator foods” of
the healthy or the unhealthy patterns. In a fiep sthe indicator foods were scored
by three NP models: WXYfm, Dutch Tripartite, and ADequirements for health
claims (Quinioet al, 2007). Sensitivity and specificity between thedhhy eating”

or “not healthy eating” indicator foods and the K#hkings were then assessed.

Agreement was generally good, but some discrepanegge found, especially with
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unhealthy foods consumed in conjunction with hgalttods and therefore classified

in the “healthy eating” pattern, e.g. jam and bugiesociated with bread.

d. Fourth approach, modelling theoretical diettess for construct validity

A French team used linear programming to test thitdNZIM model in two studies
using the French national dietary survey (Volatg00). First, a food database was
used to create “healthy” (or “unhealthy”) diets fililhg a set of 40 nutrient
recommendations (Darmat al, 2009). It was shown that healthy diets couldbeot
reached by choosing only unhealthy foods, while uhkealthy diets could not be
obtained with healthy foods only. Second, partictpareported consumption of
foods was included, and each patrticipant’s diet ag@snised to reach the full set of
nutrient recommendations (Maillet al, 2011). The optimised diets contained more
healthy foods and less unhealthy ones compareddordported diets. In both
studies, it was observed that unhealthy foods cbelgart of a diet fulfilling the

whole set of recommendations, if outweighed bythgdbods.

Dutch researchers used a Monte Carlo simulatiomaodetvithin the Dutch national
dietary survey to estimate the effect of introdgchealthier options carrying the
Choices programme logo (Roodenbetgal, 2009). Theoretical diets were modelled
by substituting reported foods with healthier optowhere possible. Favourable
shifts were shown for most nutrients. The sameagr was used in Greece, Spain,
the USA, Israel, China and South Africa and findingere consistent (Roodenburg
et al, 2011). This approach was further extended taidelthe potential impact of
highlighted dietary changes on blood cholesteretle (Vyth et al, 2011a). The
modelling of blood lipids changes was done usingtayg meta-analysis results, and

a slightly favourable change in the total choledteiDL ratio was predicted.

e. Fifth approach, predictive validity

To date, one study assessed the relationship betavdd¢P model and prospective
health outcomes, using the US Nurses’ Health Samdy the Health Professionals
Follow-up Study (Willettet al, 1987; Colditzet al, 1991). The ONQI NP model
(table 2.2) was applied to the dietary questiormsaof both cohorts (Chiuvet al,

2011). An aggregated diet score, ONQI-f, was caled as the average ONQI

scores weighted by portion consumption. Quintile®NQI-f were included in Cox
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proportional hazards regressions. In both cohoidg, reduction was observed for
total chronic disease, CVD, diabetes, and all causeality (p for linear trend
<0.01); no association was found for cancer. Theesamalysis using an average
ONQI weighted by energy intake did not yield sigraht results. The authors
stressed the limitations associated with the stielyign, namely misreporting of
dietary intakes, imprecision of food content fromolgl questionnaire items (vs.
specific branded foods or different types of pragian), and that ONQI was
designed to score individual foods rather thansdi€urther details are given in
chapter 10.

Table 2.6 summarises the different approacheskenthain findings.
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Table 2.6: Summary of approaches used to validateutrient profiling (NP) models

(i) (ii) (iii) (iv) (V)
Design Rankings of foods, Rankings against experts Rankings against diet Mathematical modelling  Prospective associations
comparison of models (=standard) ranking healthiness of theoretical diets with health outcomes
Type of validity Criterion-oriented Convergent Construct Predictive

Data needed

Food database with
nutrient content

(i) + ranking from experts, (i) + dietary survey

obtained via internal or
external survey

(i) (+ optional dietary
survey)

Longitudinal data (cohort
study) with dietary
assessment at baseline

Pros Easy to implement, No dietary intake data Allows testing for Allows linking NP to Allows assessing the link
requires little data needed, assess efficiency convergent validity: is the nutrient recommendations,between NP and future
of model in specified model linked to healthier construct validity. health, i.e. testing the
region/cultural settings dietary patterns? Can assess impact of foodprinciple underlying the
Could be used for substitutions. NP concept
construct validity.
Cons No external validation, Experts are biases and theRequires aggregating the Needs some programmingNeeds large longitudinal

quite limited, except if
compared with existing
and validated models

standard rankings cannot NP scores at the dietary

be considered as gold
standard.

A systematic standard
rankings needs
recruitment of many
nutritional experts and a
rigorous design for
rankings of foods.

(participant) level to
compare with a diet
quality index. Or needs
identification of ‘indicator
foods’ associated with
healthy/unhealthy
patterns.

Unhealthy foods can be
integrated to healthy
dietary patterns.

Subject to reporting bias.

skills.

dataset, or could use

Models very dependent onnested case-control

constraints and target
values (optimised

mathematical solutions).

Theoretical diets can be
too far from achievable
diets.

studies.

Scoring of items from
dietary questionnaire may
not reflect true NP scores.
Subject to reporting bias,
and diet likely to change
during follow-up.

Models included

SSCg3d, WXYfm,
SAIN,LIM, FSANZ,
NRF, “Go, Slow, and
Whoa”, Nutrimap

WXYfm, NRF, CFN,
RRR, SSCg3d, NFI,
Dutch Tripartite, AHF,
AHA, ONQI

NRF, ONQI, WXYfm,
Dutch tripartite, FDA

SAIN,LIM, Choices

ONQI

ISee tables 2.1 and 2.2 for models details.



2.1.5 Implications for research project

Many NP models have been published in the recemirsyeOnly the basic
characteristics of NP models, together with a fesaneples, were presented in this
section since the aim of the project was not taudis the features of all existing NP

models.

The initial validation of a NP model usually invel¥ assessing the rankings of foods
derived from the NP model against rankings derivedh pre-existing NP models or
expert advice. Yet, relatively few studies have rbdermally carried out and
published since this step often remained internaind the development process.
Published results showed that most NP models agvesltl with each other,
especially for foods at the extremes of the headths classification (e.g. fruit and
vegetables were almost always classified as heaithile sweets or salty snacks
were considered unhealthy by most models). Someregiancies did occur with
composite or processed foods. Studies includingimgs of foods derived from
nutrition experts highlighted that such method donbt be considered as a gold-
standard since human perception is culturally loiase

The introduction of dietary survey data allowedeastng NP models against
healthiness of dietary patterns, with the necessitgggregating NP scores at the
participant level. Such aggregated scores wereceded with diet quality indices in
the expected directions but the associations waedively weak, highlighting that
healthy dietary patterns were not exclusively cosgabof healthy foods. This was
confirmed by a study carried out in five Europeaurdries which indicated that
some specific unhealthy foods were often part @fthg dietary patterns, and were

therefore considered as misclassified by the NPatsod

The use of mathematical diet optimisation furthenfocmed this finding since diets
fulfilling a full set of nutrient recommendationsudd contain some unhealthy foods,
if outweighed by the healthy foods. Such technigues also used to demonstrate

that a healthy diet could not be achieved by selgatnhealthy foods only.
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The general consensus that NP could contribute ritsvaealthier dietary intakes
was further reinforced by a prospective study whibbwed that an aggregated diet
score based on the ONQI model predicted reduck&dfiall chronic disease except

cancer.

However, all the validation methods described abesrcept predictive validity—
suffered from a major loophole: nutrient recommeiotia included in the NP
models were used in the validation process. The ONQlel used in the predictive
validity investigation by Chiuve and colleaguesaigpatented model which is not
publicly available (Chiuveet al, 2011). The results obtained for ONQI therefore
need to be confirmed using alternative NP modelslaiasets to conclude more
generally on the predictive validity of NP.

WXYfm and SAIN,LIM models have been developed fational food safety
agencies. Their algorithms are freely available #air development went through
an open peer review process. Both models have ibekrded in several validation

studies using all the methods presented aboverbdigbive validity.

Predictive validation of NP requires individual tptudinal data, with dietary
assessment at baseline. The British Whitehall dtgtwas initiated in 1985 and
participants continue to be followed-up, the phaseclinical phase being currently
underway. Dietary assessment was introduced in,J88d this could act as baseline
for a nutritional based prospective study. As nmred by Chiuve and colleagues,
such a design is not flawless and contains sontasit limitations. The next
sections of this chapter therefore focus on thieint aspects linking reported diets
to health outcomes within the Whitehall Il study,arder to assess whether the data
could be used to test for predictive validity ok thVXYfm and SAIN,LIM NP
models.
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2.2 Diet quality and health in the Whitehall Il stu  dy

Several studies linking dietary intake to diversalth conditions used the Whitehall
Il study data. Results showing protective effedthealthy dietary patterns would
confirm that the Whitehall 1l data suit the anasysf the predictive validity of NP.
Two main approaches have been used to determiterydigatterns of individuals
(Kant, 2004; Waijergt al, 2007):
e Data-driven methods using mainly factor or clusa@alysis to definea
posterioripatterns;
* Theoretically defined diet indexes or scores thesteas compliance with
priori chosen criteria.
Both methods have been implemented in the Whitdhaldlata, and this section
reviews the published evidence. Further to theditee held by the Whitehall 1I
study team, the terms “diet”, “dietary”, and “fooere searched in conjunction
with “Whitehall” and “Stress and health” (the attative name for the Whitehall I

study) in Pubmed and Google scholar.

2.2.1 Data-driven dietary patterns

With this first approach, statistical models areduso derive a specified number of
dietary patterns within a given dataset (Blaiki@02). Principal component analysis
and reduced rank regression derive dietary pattémas'factors”, which are defined

by their relative association (the “factor loadih@/ith several foods or food groups.
Cluster analysis generates mutually exclusive ggooipindividuals based on the
alikeness of their reported intake.

() Dietary clusters
This approach was first applied to the Whitehall dbhort to investigate
socioeconomic differences in dietary patterns (Mamenet al, 2003). Six dietary

clusters were derived. The “unhealthy” and “veryhealthy” clusters were

associated with lower employment grade in both et women. In contrast, the
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“French” dietary cluster was associated with higenployment grade. These
dietary intake differences accounted for about 2B—ger cent of the grade
differences in HDL cholesterol and serum triglyderilevels. Together with other
behavioural risk factors (mainly smoking), dietatysters accounted for a third of

the socioeconomic gradient in CHD incidence (Margtadl, 2008).

Dietary clusters were further associated with pecsipe risk of diabetes and fatal
and non-fatal CHD (Brunneat al, 2008). In this study, four clusters were derived
and participants in the “healthy” cluster were@tér risk compared to participants

in the “unhealthy” cluster, even after adjustmamtdocioeconomic position.

(i) Principal component analysis

The relationship between depression and diet wasstigated within the Whitehall
Il participants using principal component analyGkbaraly et al, 2009a). Two
dietary patterns were extracted: “whole foods” dpdocessed foods”. Higher
consumption of the “whole foods” pattern was assed with lower odds of
depression, while a high consumption of the “preedsfoods” pattern was

associated with increased odds. These associatenesrobust to adjustment.

Similar patterns were derived in a study invesiigathe association between diet
and cognitive function (Akbaralet al, 2009b). The “whole foods” pattern was
linked to lower cognitive function deficit while ¢h“processed foods” one was
associated with an increased deficit. Both assocstwere attenuated by education

attainment.

(iif) Reduced rank regression

The use of reduced rank regression to derive d¢igtatterns using intermediate
dependent variables was first presented by Hoffrearth colleagues (Hoffmaret

al., 2004). The method was applied twice to the Wiailleli food frequency

guestionnaire.
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In the first investigation, reduced-rank regressicas used to determine a dietary
pattern associated with insulin resistance (McN&ugbt al, 2008). Such a pattern
(characterised by high consumption of low-caloiet/coft drinks, onions, sugar-
sweetened beverages, burgers and sausages, ondpstrer snacks, and white
bread; and low consumption of medium-/high-fibredkfast cereals, jam, French
dressing/vinaigrette, and wholemeal bread) wasc#sgal with an increased risk of

type 2 diabetes.

Serum total and HDL cholesterol, and triglyceriggdls were used as dependent
variables to derive a relatively similar dietaryttpen in the second study
(McNaughtonet al, 2009). This pattern was associated with an isgeaisk of
CHD robust to adjustment.

2.2.2 Predefined dietary score, the alternative hea Ithy eating index

The Healthy Eating Index (HEI), based on the Dietauidelines for Americans and
the Food Guide Pyramid, was originally designedstore the diets of the US
NHANES dietary surveys participants (Kennegtyal, 1995). The HEI yielded only
small associations with major chronic disease (MiDgh et al, 2000a;
McCullough et al, 2000b). The alternative healthy eating index (AH&as an
attempt to improve the original score, and it wheven to reduce risk of major
chronic disease in the Nurses’ Health Study andHiba&lth Professionals Follow-up
Study (McCullougtet al, 2002). The AHEI is presented in more detailshapter 4.

The AHEI was applied to the Whitehall 1l food freicy questionnaire in three
separate studies. Adherence to the AHEI was adedciaith a reversion of the
metabolic syndrome status (Akbaraty al, 2010) and with a steeper decline in
serum LDL cholesterol over 10 years of follow-up(ilon et al, 2011). Further,
high AHEI scores were shown to be protective adgaatiscause mortality, and
especially CVD mortality, in survival analyses ugihata over 18 year of follow-up
(Akbaralyet al, 2011).
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2.2.3 Food or nutrient specific analyses

The Whitehall Il dietary data were also used talgtthe impact on health status of

specific foods and/or nutrients.

Combined consumption of tea and coffee was modesthpciated with a reduced
incidence of type 2 diabetes; the effect was mgniiBcant for separate consumption
of tea or coffee (Hameet al, 2008). Diabetes was also linked to overall dietar
glycemic index and glycemic load (Mosdet al, 2007). The former was not
associated with incident risk while an inverse asgmn was observed for glycemic
load, which did not follow the hypothesised harnfiect.

Plasma phospholipids were associated with CHD inested case-control study
conducted on men (Clarlet al, 2009): saturated fatty acids were shown to double
the risk while poly-unsaturated fats halved it. Jéeassociations were highly
attenuated by adjustment for serum lipids (HDL andL cholesterol) and

inflammatory markers.

2.2.4 Whitehall 1l and predictive validity of nutri  ent profiling

The Whitehall 1l dietary data were consistentlycassted with health outcomes in
the expected directions, except in one study fogusn glycemic index and
glycemic load. Data-driven and a priori defined sweas of dietary quality yielded
relatively similar findings, which showed the romess of the data. The Whitehall I
study data therefore appeared to suit the scopeedictive validation of NP models.

In addition, contemporary risk factors could beduse deepen the investigation of
NP validity. Cross-sectional associations betweeNRa model and risk factors

available in the Whitehall Il data could be tesfiegl testing for concurrent validity).

Most studies presented in this section (2.2) weasetl on the assumption that

reported intakes were markers of true intake. \aih of reported dietary intake is
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essential for our project since any bias concerttiegspecific level of intakes could

alter the prospective association between NP sem@é$ealth outcomes.

2.3 Validation of the Whitehall 1l food frequency
guestionnaire, energy misreporting

Food frequency questionnaires (FFQ) were widelypsetbto assess dietary intakes
in epidemiological studies (see chapter 4 for aitget description of the Whitehall
I FFQ). Their validation has been an importantpsia the development of
nutritional epidemiology. Appendix 1 describes thalidation process and the
existing dietary assessment methods. This sectish gresents the results of the
validation study conducted on the Whitehall Il FFDthen focuses on misreporting

of dietary intakes, which is the main informatiaaslinked to the FFQ tool.

2.3.1 Validity of the Whitehall Il FFQ

The Whitehall 1l FFQ was assessed against a 7-éetydiary (7DD) and several
biomarkers in a sub-sample (n=860) of the studyfadion (Brunneet al, 2001). It
was concluded that the FFQ performed well, espgciagainst the available
biomarkers (serum cholesteryl ester fatty acidssmlea-tocopherol an@-carotene).
Compared to the 7DD, the FFQ tended to over-estinvatake of plant-derived
micronutrients, and to underestimate fat intakepdRied mean energy intake from
the two dietary assessment methods was similar en, mand some 10% higher
according to the FFQ in women. Approximately 34% pdrticipants with a
completed FFQ were identified as low-energy repsrtéhis last observation
confirmed previous findings made in large scaleinobal studies. Issues regarding
total energy intake have been long debated (Peesatial, 1986; Pryeret al, 1997,
Poppitt et al, 1998; Pomerleawet al, 1999). The next section focuses on the
detection of energy misreporters and on the uswhods used to correct for this

reporting error.
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2.3.2 Detecting energy misreporting

Energy intake is highly regulated and its expenditcan be assessed quite easily,
using direct or indirect methods. It is possible dstimate the correspondence
between reported energy intake (EI) and the medsuare calculated energy
expenditure (EE).

The Goldberg cut-offs technique lies in the fundatak equation ElI = EE (at
constant body weight) to detect high and low enemporters (Goldbergt al,
1991). Total EE depends on the physical activityele(PAL) and on the basal
metabolic rate (BMR). The BMR is a measure of E& itomplete rest status; it can
be estimated using age, sex, and body weight (FAGIWUNU, 1985; Schofielat
al., 1985; Department of Health, 1991). EE is givent®yfollowing equation:

EE = BMR- PAL
This first equation can be rewritten as follows:

El/ BMR = PAL
Thus, the reported energy intake of an individul #@s respective calculated BMR
can be compared to the expected PAL for that idd&i. Measurement errors occur
in all the elements of this equation. The Goldbergthod defines the confidence
limits for the different terms in the equation irder to determine whether the mean

reported energy intake is plausible (details gimechapter 8).

Since direct measures of energy expenditure weravalable in the Whitehall I
data, the Goldberg cut-offs technique was implestkim a sub-sample of the study
population (n=865) with both FFQ and 7DD data (8ted et al, 1997). Using a
single PAL category for all individuals, 33.3% ddrficipants were defined as low
energy reporters. The use of a single PAL categ¢mrgetect low energy reporters
was a limitation of the Stallone study because viddials with high energy

expenditures may have not been detected as unplentees.
Among Whitehall Il participants, low energy misrefiag was further linked to

higher BMI and lower employment grade (Brunner, )99vhich was in line with

previous observations.
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2.3.3 Tackling dietary misreporting

Two main approaches have been used to accounhéogye misreporting:

* excluding low and high energy reporters from thalysis;

» adjusting for total energy intake.
The first approach has been used in a few stuBlige(et al, 1995; McNultyet al,
1996; Shorttet al, 1997; Drummondet al, 1998), but it introduces bias of an
unknown size into the data and may exclude the mostesting individuals. Table
2.7 summarises the four models that have been gedptw adjust for total energy
intake in the association between disease andentitintakes (Willett & Stampfer,
1998).

Table 2.7: Disease risk models for adjusting for tal energy intake
in epidemiological studies

Method Model

Residual Disease = Nutrient residual
Standard Multivariate Disease = Nutrientg
Energy partition Disease syiient + Eother
Multivariate density Disease = (Nutrientd,) + &y

“Nutrient residual™ is the residual from the regséon of a specific nutrient on total calories.
“Nutrient” is the absolute intake, is the total energy intake.
Enutrient aNdegmer are the energy intake from the specific nutrient
and from the other sources, respectively.

Stallone and colleagues tested both the exclusidovo energy reporters and the
adjustment for total energy intake within the Whé# Il data (Stallonet al, 1997).

It was concluded that the latter approach was pabfe. Exclusion of under-
reporters was not recommended by the authors doweenergy reporting was

strongly associated with employment grade.
In addition, energy misreporting is usually assmelavith differential misreporting

of foods, i.e. some foods tend to be systematicallgr-reported (e.g. fruit and

vegetables) and other systematically under-repofed. snacks and sweets),
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resulting in apparent healthier diets in low energgorters (Livingstone & Black,
2003). To address this issue, Rosner et al. (1B8&duced regression calibration
which uses diet diary reported intake to correetgpidemiological association (odds
ratio or hazard ratio) for a single nutrient or dodrhe method has been further
developed to obtain corrected estimates for allftloel items of a FFQ); details are
given in chapter 8 (Rosner & Gore, 2001). Also,nteokers have been used to
correct reported FFQ intakes (Kaaisal, 1994; Kaaks, 1997; Rosner al, 2008).
Limited biomarker data were available within the Whall Il study, and it was not

possible to apply such methods.

2.4 Conclusion

This chapter first highlighted the main gap inrbieire to be addressed: predictive
validity of publicly available and government-ensked NP models. In order to link a
NP model to global dietary intakes (i.e. convergealidity) or to prospective health
outcomes (i.e. predictive validity), researcherd @ aggregate the NP scores for
individual foods to produce an aggregate scoreittugtxed the nutritional quality of
the diet. Hence, such an “aggregate score” hag tekigned for both the WXYfm
and SAIN,LIM models prior to assess the predictiabdity of the two NP models.

The Whitehall Il data were used in several publcet showing a link between
dietary patterns and health status. Such data wereefore considered to be

appropriate to test for predictive validity of tfA&XYfm and SAIN,LIM models.

However, self-reported dietary assessment tools sareject to bias, namely
misreporting of intakes. A relevant proportion ofhMéhall Il participants were
shown to misreport their intake, which will need lie taken into account in the

subsequent analyses.
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Chapter 3: Aim and objectives

As highlighted in the previous chapter, the bodyeweidence surrounding nutrient
profiing (NP) models validation is increasing. IGtthere is a lack of studies
assessing the underlying hypothesis of the NP gince. that diets containing more
healthy foods would be protective against adversalth outcomes. Such
investigation has only been carried out on a pateand not publicly available NP

model, and this gap in the literature needs todugessed.

The main aim of this PhD thesis was to assess thdigtive validity of two
government-endorsed NP models, the British WXYfnd #me French SAIN,LIM,
using the Whitehall 1l cohort study data. It wapbthesised that diets containing
higher proportions of healthier foods, as defingdbth models, would be protective

against incident coronary events, diabetes, canoetality, and all-cause mortality.

Five specific objectives were defined to achiewephoject aim (figure 3.1):

1. To derive NP aggregate scores summarizing the fddelsscores at the diet
level. The so-defined aggregate scores will be wsednain exposures in
subsequent analyses.

2. To assess the construct, convergent, and concuvedidlity of aggregate
scores, by testing their respective associatiotis gietary intake (nutrients,
foods, and food groups), data-driven dietary chsstihe Alternative Healthy
Eating Index, and risk factors; and to identify grdtal confounders of the
association between aggregate scores and prospéetith status.

3. To build a survival analysis model using Cox prdpoal hazard
regressions, with NP-derived aggregate scores as mgposure and
including potential confounding factors identifiedobjective 2, to assess the
predictive validity of the two NP models (figure23.

4. To interpret the observed results, i.e. to exarmrdetail the role of bias and
confounding on the prospective associations betveggmegate scores and
adverse health outcomes.

5. To derive alternative NP models and/or aggregabeescbased on results of

objectives 3 and 4.
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Nutrient profiling model
aplied to individual foods Aggregate
score
Nutrient and food | Construct validity
intake )
Convergent validity
Global diet quality e
Concurrent validity
Risk factors N
Prospective health Predictive validity
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Participants’
characteristics,
confounders

Figure 3.1: Theoretical framework for objectives 1,2, and 3 (double-framed boxes)
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Timeframe

1991-93 17y Follow-up 2009-2010
[

7,251 participants
completed the 127-item
food frequency
guestionnaire

/ Covariates

Nutrient profiling:

WXYfm
SAIN-LIM
,? Outcomes :
Exposures: . ' CHD’
. Diabetes,
Aggregate scores Cancer mortality
All-cause mortality.

Figure 3.2: Framework for the predictive validity model (objective 3)
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Chapter 4. Material and methods, implementation of
nutrient profiling models to the Whitehall
|l data and design of aggregate scores

This chapter describes in details all the toolsadand statistical methods that were
used consistently throughout the thesis. Specaldos put on the Whitehall 1l data
and the design of the aggregate scores.

WXYfm and SAIN,LIM nutrient profiling (NP) models @&re presented in details in
chapter 2. All the main analyses were carried outhe British WXYfm, which was

the first model to be applied to the Whitehall éita. The second model, SAIN,LIM,
was used as a comparison tool to assess the extewhich observed results

depended on the WXYfm algorithm. Its implementat®presented in chapter 7.

4.1 The Whitehall Il study

The Whitehall Il cohort was set up in 1985 follogirthe results of the first
Whitehall study which highlighted the social gradien cardiovascular disease,
using civil service employment grade as indicatordocio-economic position. The
gradient was robust to traditional risk factorsg(esmoking, physical activity),
sparking demand for further research (Maretotl, 1978; Rose & Marmot, 1981).

This section presents briefly the whole Whitehdll population, the dietary
assessment tools, the outcome assessment variabtea|l other variables included

in the analyses.

4.1.1 The cohort

The target population of the Whitehall 1l study wals civil servants aged 35-55
years working in the London offices of 20 Whitehddipartments between 1985 and
1988. A response rate of 73% led to a final sarpl@,413 women and 6,895 men

(Marmot & Brunner, 2005). The whole cohort has biemited to a research clinic at
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5-year intervals, and a postal questionnaire was teeparticipants between clinic
phases (table 4.1). The last clinical phase, pBaseas ended in December 2009,
and data for CHD and diabetes events were availafiié this date. Follow-up of
mortality through the NHS registry provided dated avause of death (99.9 % of
participants flagged) until January 2010. Phasewa8 the last completed phase
(January to March 2011). It was modified comparegrevious questionnaire phases
since it used a sub-sample of the study populdboassess new measurements for
the future phases, subsequent to the ageing Mvtheehall 1l participants. Phase 11
started in January 2012. In this project data figmse 3 was used, together with

outcome data from phase 3 until the end of follqgw-u

The Whitehall 1l study has been funded by the MaldResearch Council, the British
Heart Foundation, the National Heart Lung and Bldostitute (USA), and the
National Institute on Ageing (USA). Ethical apprbvar the study was obtained
from the Joint University College London/UniversiBollege Hospital Committees
on the Ethics of Human Research. All participarseegwritten informed consent for

their participation at each phase of the study.

Table 4.1: Completed phases of the Whitehall Il sty

Phase Dates Type n Dietary assessment
1 1985-88 Screening/Questionnaire 10,308

2 1989-90 Questionnaire 8,133

3 1991-93 Screening/Questionnaire 8,637 FFQ + 7DD
4 1995-96 Questionnaire 8,629

5 1997-99 Screening/Questionnaire 7,830 FFQ

6 2001 Questionnaire 7,344

7 2003-04 Screening/Questionnaire 6,967 FFQ

8 2006 Questionnaire 7,180

9 2007-09 Screening/Questionnaire 6,762 FFQ

10* 2011 Screening/Questionnaire 277

FFQ, food frequency questionnaire; 7DD, 7 day diaty.
* Phase 10 was run on a sub-sample of the studylatign to test new measurements for phase 11.

52



4.1.2 Dietary assessment measures

Detailed dietary assessments were introduced atepBd1991-94). As a result, the
baseline population for this project was the remmginparticipants at phase 3.
Dietary intakes were reported in a 127-item angddi version of the Willett food
frequency questionnaire (FFQ) (Willedt al, 1985; Willett, 1998) and a 7-day diet
diary (7DD) as used in the UK arm of the EPIC st@Bmnghamet al, 1994). The
FFQ and 7DD were completed by 8,225 and 6,726 resgus, respectively. 1,350
7DD have been coded by the Whitehall 1l study teard further coding has been
done through collaboration with the MRC Centre Rartritional Epidemiology in
Cambridge (see chapter 8 for further details on Haa). FFQs were also used in
phases 5, 7 and 9, in a slightly altered versiarly @e phase 3 FFQ was used in the
present project.

For all items in the administered FFQ, participantsre asked to report their
frequency of eating a common unit or portion sigenine predefined categories
ranging from “never or less than once per month*6 per day” (figure 4.1). The
FFQ also contained a series of supplemental quesstibout representativeness of
listed items, use of added fat in cooking, usealt, £onsumption of meat fat and
regular food supplement intake. Reported intakesewten converted into
grams/day using standard portion sizes. Energynamident content of the reported
diets were derived based on tHeahd &' editions ofMicCance & Widdowson$he
composition of Foodsnd its supplementary tables, and added food csitiuo
records (Paul & Southgate, 1978; Hollagtdal, 1988; Hollandet al, 1989; Holland
et al, 1991a; Hollandet al, 1991b; Hollandet al, 1992a; Hollandet al, 1992b;
Holland et al, 1993; Charet al, 1994; Charet al, 1995).

A validation study of the FFQ was done on a subgdarof participants with both
the FFQ and the diet diary coded (Bruneerl, 2001). It was concluded that both
dietary assessment methods performed relativelly e@irelations between methods

being higher when energy-adjusted. More detailgasen in chapters 2 and 8.

Missing values were a concern as some particighdtsot report consumption of all
the items. All the following analyses only includedrticipants with less than 10
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missing items, for which the consumption was assutoebe null (Rosner & Gore,
2001).

1 Please estimate vour average food use as best vou can, and please answer every question - DO NOT
LEAVE ANY LINES BLANK.

FOODS AND AMOUNTS AVERAGE USE LAST YEAR

MEAT AND FISH Pever or 1-% Once 2.4 5.0 (noe .

(medium serving) lessthan  per i T per a per per peet
once'mih mih wirk week week day cay dlay day

Beaef: roast, steak, mince,
STCW |||'|,I‘-‘-|'|'||||

|'||'1'1'|'|II"5‘_'|L'|'-

Pork: roast, chops or stew
Lamb: roast, chops or stcw
Chicken or other poultry
Bacon

Ham

Cormned beel, Spam
luncheon mearts

Saunsages

Figure 4.1: Phase 3 food frequency questionnairexiact from the first page.

4.1.3 Outcomes

(i) Mortality follow-up

The Whitehall Il study is linked to the National &l Service (NHS) death and
electronic patient records using the NHS identifmanumber assigned to all British
citizens. A total of 10,297 participants (99.9%)revesuccessfully traced and have
been followed through these registers. Mortalittadanedian follow-up 17.7 years,
range [0.08-18.4]), including the cause of deatbrenavailable through the NHS
Central Registry until 31 January 2010. Death fieaties were coded using th8 or
10" revision of the International Classification ofsBase (ICD). In addition to all-
cause mortality, we analyzed mortality from canaxcept non-melanoma skin
cancer (ICD-9 140-209 except 173, and ICD-10 COG-&&ept C44).
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A total of 915 incident deaths were recorded witthe 171,267 person-years of
follow-up (mean (SD) was 16.8 (2.67) years per qaxs Of these, 419 were
attributable to cancer, 259 to CVD, and 143 to CHD.

(ii) Fatal CHD and non-fatal myocardial infarction

Deaths were classified as coronary if ICD-9 codB3-414 or ICD-10 codes 120-125
were present on the death certificate. Potentigegaof non-fatal myocardial
infarction (MI) up to December 30 2009, for thoskonattended phase 9, have been
ascertained by questionnaire items on chest pansgR1982), doctors’ diagnoses,
and hospitalizations (NHS Hospital Episode Statsstidatabase). 12-lead
electrocardiograms (ECG) were performed at phases, 3 and 9 and assigned
Minnesota codes (Macfarlanet al, 1990). Details of physician diagnoses and
investigation results were sought from clinicalawts for all potential cases. Based
on all available data from questionnaires, ECGHd, @ardiac enzymes, definite non-
fatal Ml was defined using the MONICA criteria (T3tall-Pedoeet al, 1994). Mi
was defined as positive if a questionnaire or chhirecord of diagnosed Ml was
obtained in the presence of an ischemic ECG, afidetkas negative when self
reported only. Classification of Ml was carried dlind to other study data by two
trained coders, with adjudication by a third in thee event of disagreement.

416 incident fatal CHD and non-fatal Ml were idéetl in the 140,641 py of
follow-up (mean (SD) was 14.5 (5.24) years per q@exs

(i) Diabetes

Incident cases of diabetes have been identifieddbyreport of doctor’s diagnosis,
diabetic medication and 2-hour 75g oral glucoseréwice test (OGTT) at phases 3,
5, 7 and 9, according to the 1999 WHO classifica{i¢/orld Health Organization,
1999). Incident diabetes was dated at the day efdimic visit for those first
identified through OGTT. For those identified byfseport, the midpoint between
the first instance of self-reported diabetes ardpttevious phase was used. For those
who had not developed diabetes up to phase 9walfpwas censored on December
30 2009 (phase 9 closing date).
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A total of 927 incident cases of diabetes weretifled with a mean (SD) follow-up
of 13.9 (4.27) years per person (total was 11409

4.1.4 Covariates

The link between diet and health can be confourmeexternal factors which need
to be taken into account in the predictive validigyalysis. The potential
confounding factors were selected on the basisttieat were associated with both

the health outcomes and dietary intake.

(i) Socio-demographic variables

Age (date of birth), sex, and ethnicity (white, golAsian, black, other) were
obtained at recruitment (phase 1). Phase 3 quesii@n included questions on
marital status (married or cohabiting, single, doeal, widowed) and occupational
position based on current (or last for retired ipgrants) British civil service
employment grade defined on the basis of salary gagndped into six categories
ranging from senior administrators to clerical aoffice support staff. The

occupational position was used a proxy for socimremic position

(ii) Health behaviours

Smoking status was assessed by questionnaire sépha 2, and 3 which allowed
deriving three categories: current, former, andenewvnoker. The questionnaire also
included hours and frequency of participation imgorous (e.g. running, hard
swimming, playing squash), moderately (e.g. danooygling, leisurely swimming)
and mildly energetic physical activity. Metaboliquavalents (METS) associated to
each level of activity were used to categoriseigggnts in three groups of activity
(High/Intermediate/Low, more details are given imapter 8). Total energy and
alcohol intake were estimated from the FFQ.
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(i) Health status at baseline (phase 3)

Prevalence of coronary heart disease (CHD) wasdbaseclinically verified events
and included non fatal myocardial infarction andirdee angina (see previous
section). Diabetes was diagnosed using the WHitiefi (see previous section).

The presence of any other “longstanding illnesss seif-reported.

Blood pressure was measured twice in the sittirgitipn after 5 minutes rest using
Hawksley random-zero sphygmomanometer (Hawkslegycing, Sussex, United
Kingdom). Hypertension was defined as systoliciastlic blood pressure 140 or

> 90mmHg, respectively, or by the use of hypertenginugs (Akbaralet al, 2011).

Serum cholesterol was determined by the cholestetidhate peroxidase colorimetric
method (BCLkit; Boehringer, Mannheim, Germany). HDtholesterol was
determined after dextran sulphate-magnesium cldoprcecipitation of non-HDL
cholesterol (Brunneret al, 1993). Serum triglycerides were measured in a
centrifugal analyser by enzymic colorimetric methodyslipidaemia was defined as
LDL cholesterok 4.1mmol/L or by the use of lipid-lowering drugski#aralyet al,
2011).

Height was measured to the closest mm using aostetier with the participant
standing completely erect with the head in the Kiah plane. Weight was
measured twice with all items of clothing removeatept underwear. A Soehnle
(Backnang, Germany3cale was used to read weight to the nearest Olikge
reading alternated between two measures (0.1kd efitér the participant standing
still) the higher reading was recorded. Body masdex (BMI) was derived as
weight (kg) divided by height-squared JmFour categories were defined as follow:
underweight, BMI <20kg/m?, normal (reference grquBM| >20-<25kg/nf;
overweight, BMI>25-<30 kg/ni; obese, BME30kg/m?) (Akbaralyet al, 2011).

Fibrinogen, factor VII, Von Willebrand’s factor,terleukin 6 and C-reactive protein

were measured at phase 3 from serum stored at {Bdt@neret al, 1997; Kumari
et al, 2000; Nabeet al, 2008; Elovainicet al, 2010).
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4.2 Deriving a participant’s aggregate score

In order to analyse the prospective associationsds NP and adverse health
outcomes, it was necessary to translate the NRsd¢or FFQ-items into one or more
variables that characterised a participant. Theltiag variable(s), the “aggregate
score(s)”, represented the exposure in the subsegnalyses. The goal was to rank
participants according to their relative consumptad FFQ-items as scored by the
NP models, which was the first research objectoleter 3). The selection of an
appropriate aggregate score was done using the WiX¥bdel. The choice of an
aggregate score for the SAIN,LIM model is presemtechapter 7. Both NP models
did not score alcoholic drinks. As a result, thggragate scores did not include

alcohol FFQ-items in their algorithms.

4.2.1 Classification of phase 3 FFQ-items by the WX  Yfm nutrient
profiling model

The WXYfm model was applied to the phase 3 FFQgu#ie corresponding nutrient
composition dataset (section 4.1). Data on Englyse content being missing,
thresholds for theAssociation of Official Analytical ChemistsAQAC) fibre
definition were used (Cho & al, 2007). Foods and drinks were then classified in
the healthiness categories (table 4.2). The complktssification of FFQ-items is

shown in appendix 2.

Table 4.2: Classification of phase 3 FFQ-items irhe WXYfm healthiness categories

n per WXYfm category “healthier” “intermediate” “le ss healthy”
Foods(n=105) 51 8 46
Drinks (n=17) 10 N/A 7

Excludes alcohol items
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4.2.2 Classification of participants: the aggregate scores

Two approaches for deriving an aggregate scoredoh participant were developed.
The first approach used the WXYfm overall scoree Téecond one used the
healthiness categories.

(i) Weight-weighted, energy-weighted and portion-wighted arithmetic mean

scores

Three weighted arithmetic means were computed @eWKXYfm overall score (OS)

(ranging from -13 to 28 in the phase 3 questiom)aif each item (except alcohol):

122

2,08 w,
* weight-weighted aggregate scol&/WS=-=

122 ’

122

2,08 &
 energy-weighted aggregate scolgWS= =

122 !

2.0S b

« portion-weighted aggregate scorBWS=-=———

;pi

With OS the WXYfm overall score of item i, whe weight of intake of item & the
energy intake from item i and fhe portion intake from item i. All these intaka®

expressed per day.
(i) Percentage of energy intake from WXYfm healthness categories

In a previous study aiming to rank individuals kwhsen their dietary quality,
Arambepola and colleagues (2008) calculated theggnaetake from each WXYfm
category, merging the healthier and intermediategmaies for foods. This resulted
in two categories for all food and drinks: thoseowdould be advertised (according

to the Food Standards Agency and Ofcom), i.e. theal and “intermediate” ones;
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and those would could not, i.e. “less healthy” fe@hd drinks. An aggregate score

was derived from this approach:

(8 WXYfm )adv
€

Percentage of Energy scor@ES=

total

With (swxvim)adv the energy intake from the “healthier” and “intextrate” foods and

drinks anckiy the total energy intake (excluding alcohol).

Distribution of all the aggregate scores is showffigure 4.2. The energy-weighted
EWS yielded unhealthier scores compared to the VEWEPWS. This was certainly
linked to the fact that most energy dense foods Unaaealthier WXYfm scores,

energy content being included in the NP model aegative component. The score
range was much narrower with the WWS than with EN€S and PWS. The PES
distribution showed that on average, participartd hround 55% of their energy

intake from healthier and intermediate foods anakdt

The rankings derived from all the aggregate scdeseribed above were compared

in order to select the most appropriate aggregateedor subsequent analyses.
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Figure 4.2: Distribution of WXYfm aggregate scoregn=8,253)
A. EWS, PWS, WWS. B. PES
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4.2.3 Rankings of participants and selection of an aggregate score
for further analyses

(i) Rankings obtained with all aggregate scores
Spearman’s rank correlation coefficients were caegbuon the raw scores. All

aggregate scores were highly correlated with edbhbrdtable 4.3). The highest
correlation was between EWS and PES, the two seweghted by energy intake.

Table 4.3: Spearman's correlations between aggregascores (n=8,253)

WWS EWS PWS PES

WWS 1

EWS 0.79 1

PWS 0.77 0.79 1

PES 0.81 0.82 0.68 1

(ii) Rationale of the two approaches

The first approach (WWS, EWS and PWS) did not cglythe arbitrary thresholds of
the healthiness categories and could be used &ssasse WXYfm overall score.
Each weighting scale had its own drawbacks. Thayhtgig by energy from each
food may have over-represented the energy densisfas illustrated in figure 4.2,
while weighting on weight intake may have put memphasis on drinks. The
weighting by portion seemed to be a good altereagat the same weight was given

to foods consumed in very different amounts.

The second approach, PES score, relied on thehimvesscategories and was an

appropriate candidate to validate the respectikastiolds.

(iii) Selection of one aggregate score

The WXYfm ranking of foods primarily depends on theerall score. Validating

this scale was considered as the main prioritys&ess the model. The thresholds
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presently used by Ofcom to determine the foodsdaimks which can be advertised

were determined arbitrarily and would also neebewalidated.

All the aggregate scores described above did wetdlar rankings of participants.
The selection of two aggregate scores was not titojuglicious as subsequent
results might be very similar and would further elegh on the divergent aggregate

scores algorithms rather than on dietary intakeistha WXYfm.

Not all existing NP models rely on healthiness gates to separate foods. Chiuve
and colleagues, in their analysis of the ONQI NRiet@pplied an aggregate score,
ONQI-f, similar to the PWS (Chiuvet al, 2011). Portion sizes are commonly
defined in the US for nutritional labelling purpesevhich is not the case in Europe.
The authors assessed an alternative to the ONaifhted by energy, but did not
present the results. Energy was retained by Fulgodicolleagues to validate their
own NP scheme (Fulgoet al, 2009), and by Arambepoé al in their study of the

WXYfm model (Arambepolat al, 2008). Weighting by weight of intake led to a
narrow distribution of participants (figure 4.2)datherefore less inter-individual

variance. As a result, the EWS aggregate scoreaetamed to validate the WXYfm

NP model in further analyses.

4.3 Statistical methods and other analysis tools

For all the statistical methods implemented in tpi®ject, significance was
calculated at the 5% leved£0.05). Quartiles of aggregate scores were useabst
cases. Most statistical analyses and data hanalia) done using the SAS 9.1

package, special mention was made otherwise.

4.3.1 Cross-sectional associations

Spearman’s rank correlation was used for comparidamvo continuous variables
(Kirkwood & Sterne, 2003). It is a non-parametrieasure calculated in a similar

way to Pearson’s correlation using the ranks imkteh the actual values. The
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correlation coefficients range from -1 to 1 witin@icating no correlation and 1 (or -

1) similar (or inverse) rankings.

Cohen’sk-statistic was used to measure agreement betweéegocal variables. It
is thought to be more robust than percentage agneems it takes into account
agreement occurring by chance. Since all compasissare made on ordered
variables (e.g. aggregate score quartiles), theghted statistic which penalises
greater disagreement was used (Cohen, 1968; LuklbP@02). Its value can range
from -1 to 1, but usually ranges from 0 (agreememtbetter than chance) to 1

(perfect agreement).

To measure heterogeneity across groups of pamitsp@.g. quartiles of aggregate
scores), one-way analysis of variance (ANOVA) wasdufor continuous variables.
Linear trends were assessed by including the alddesgegories in regression
models.y? tests were used for categorical variables. Foiakbes with only two

levels, and for which trends could be estimated,Gbchran-Armitage test was used
(SAS Institute Inc.). To assess the mean differdrat@een two continuous variables

measured in the same set of individuals, pairedtistwere used.

4.3.2 Survival analyses

The main objective of this project was to assess phedictive validity of the
WXYfm and SAIN,LIM models. This was done using sual analysis where
occurrence of the outcome and survival time (he.time between the baseline and
the event occurrence) are taken into account. &ilyilto cross-sectional
associations, heterogeneity across groups as welltrands and quantified
associations were estimated. The goal was to cantparhazardh(t), which is the

probability that the event occur at tipdetween groups.
(i) Log-rank test

Heterogeneity of survival across groups or strétmdividuals was assessed using

Log-rank (or Mantel-Cox?) test (Mantel, 1966). It is based on the compassia
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each stratum of the numberafservecevents with thexpectechumber of events if
there was no difference between groups (Kirkwoo&t&rne, 2003). This test was

mainly used to identify potential confounding fasto
(i) Cox proportional hazards regression

To quantify the prospective associations betweenattpgregate scores and health
outcomes, i.e. the ratio of hazards between twaggoCox proportional hazards
regression models were implemented (Cox, 1972; &oxDakes, 1984). The

mathematical form of the model is:
h(t) = hy()expBx + B,%, +...+ B, X,)
Whereh(t) is the hazard (risk) at time ho(t) is the baseline hazard (i.e. the hazard

for an individual in whom all exposure variable®)at timet, andxl to X are the n

exposure variables.

When there is a single binary exposure varial&iel( or xl=0), the hazard ratio

(HR) at timet is given by:

hy () exp(5,)
hy ()

The regression coefficient is therefore the logéndzatio), and the model assumes

HR(t) = =exp(5,)

proportional hazards (see below).

These models were implemented as follows:

* Follow-up time in years was used for the outcomeates; all prevalent
cases were excluded from the analysis. Date oindsig was used as event
date for CHD, cancer mortality and all-cause madaytalncident diabetes
could not be dated exactly and was therefore intazgnsored (see section
4.2). The approximation of the likelihood functialeveloped by Breslow
(1974) was used in case of tied events (i.e. ocaat the same time point).

* Quartiles of aggregate scores were used as maiosesq with the least
healthy quartile being the reference group in allgses. Linear trend was
assessed by including the raw aggregate score.tsomuartiles, as a

continuous variable. Quadratic trends were estichaieincluding both the
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continuous aggregate score and (aggregate scarajeshin the models
(Greenland, 1995).

» Covariates were included either as continuous degoaical (dummy
variables and a reference group). Interaction betvexposure and covariates
was tested by including interaction terms in theleis.

(iif) Proportional hazards assumption

Both methods presented above assume “proportioazarts”, i.e. the ratio of
hazards between two groups (0 and 1) is constanttove:

h®
hy (1)

= constant

Several methods have been described to test thmmianal hazards assumption.
Scaled Schoenfeld residuals, defined for eacmtaildividual and for all covariates
included in the model, were used in this projech&nfeld, 1982). For the covariate
X, the Schoenfeld residual of failing participasttitimet is as follows:

Residual (X,it) = Xi(t) — expected value of X(
Where the expected value of X at tiine the mean of X weighted by the likelihood
of failure for each individual in the risk set ahét. If the Schoenfeld residuals are
shown to be associated with time, then the promoati hazard assumption is
violated for covariate X. The Schoenfeld residuakye tested using the stphtest
command of Stata 11, which used the approximatereldped by Grambsch and
Therneau (1994).

4.3.3 The Alternative Healthy Eating Index

This diet quality index was used to test for cogeat validity of the WXYfm and
SAIN,LIM NP models. It was developed by McCulloughal. (McCulloughet al,
2002) to assess the Dietary Guidelines for Ameddanthe Nurses’ Health Study

and the Health Professionals Follow-up Study ($epter 2 for more details).

Within the Whitehall 1l data, the Alternative Heajt Eating Index (AHEI) was
scored on the basis of the intake levels of 9 comapts (Akbaralyet al, 2011). The
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original components of the index include vegetghiiest, nuts and soy, the ratio of
white (seafood and poultry) to red meat, cerealefiirans fat, the ratio of poly-
unsaturated fatty acids to saturated fatty aciif=@SFA), long-term multivitamin
use (<5 or=5y) and alcohol consumption. As cereal fibre wat available in our
nutrient dataset we adapted the score by replacimith total fibre. Each component
had the potential to contribute 0 to 10 pointshi® tiotal score, with the exception of
multivitamin use, which contributed either 2.5 ab points (table 4.4). All the
component scores were summed to obtain a total AddBie ranging from 2.5 to

87.5; higher scores corresponded to a healthiéer die

Table 4.4: Construction of the Alternative HealthyEating Index (AHEI)

Components Criteria Criteria Possible  AHEI scores in the
for min. for max. score participants *
scores scores range M +SD
Vegetable (serving /day) 0 5 0-10 5.6 (2.9)
Fruit (serving /day) 0 4 0-10 5.9 (3.1)
Nuts and Soy (serving /day) 0 1 0-10 3.2 (3.0)
Ratio of white to red meat 0 4 0-10 5.1 (2.8)
Total Fibre (% of energy) 0 24 0-10 7.6 (3.0)
Trans Fat (% of energy ) >4 <0.5 0-10 8.4 (2.7)
Ratio of PUFA to SFA <0.1 >1 0-10 5.2 (2.7)
Duration of multivitamin Use <Syear >5year 2.5-75 4.2 (2.4)
Alcohol serving/day Men Oor>35 1.5-2.5 0-10 s
Alcohol serving/day Women Oor>25 0.5-1.5 0-10 47 37)
Total Score 2.5-87.5 50.0 (12.0)

PUFA, Poly-unsaturated fatty acids; SAF, saturédtty acids.

*Each AHEI component contributed from O to 10 pseitd the total AHEI score, except the
multivitamin component which was dichotomous andtgbuting either 2.5 points (for non-use) or
7.5 points (fouse) A score of 10 indicates that the recommenasvere fully met, whereas a score
of O represents the least healtligtary behaviour. Intermediate intakes were scpregortionately
between 0 and 10.

¥ Mean score for men and women combined.
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4.3.4 Analysis strategy, selection bias

(i) Complete-cases analysis

To analyse independently the effect of aggregategescon health outcomes, the
survival analyses models were adjusted for varioosfounding factors. Since
several models with different levels of adjustmemtre implemented, it was
necessary to keep the same sample for comparigpogas and to assess the effect
of the confounders. Complete-cases analysis fictuding only participants with the
full-set of information) was chosen, as illustraiadfigure 4.3. Such conservative

strategy was likely to introduce some selectiors bia

(ii) Selection bias

To analyse the potential selection bias which aeclby opting for complete-cases
analysis, several baseline dietary and non-didtatprs were tabulated according to

the inclusion in the main analysis (table 4.5).

There was no difference in energy intake and forstmmacronutrients, only
carbohydrates and protein intake were differentvben included and excluded
participants. Also there was no difference in framd vegetable intake. Yet, more
participants included in the main analysis weressifeed in the healthy and
Mediterranean dietary clusters previously proverethuce chronic disease incidence

(chapters 2 and 5).

Individuals with no missing information were leslsely to smoke, to be obese, to
have hypertension, to have reported a longstanilimgss or a “fair” or “poor”

health over the past year. They had lower levekewgéral inflammatory markers and
HDL cholesterol, though there was no differenceeirms of dyslipidaemia status.
There was no difference between the two groupgnmg of ethnicity and physical
activity. Overall, results from table 4.5 did indie that the sample not included in

the analysis had a poorer health status than famtits with no missing information.
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Such observations followed previous findings andidated that a selection did

occur, with only the fittest participants includedhe main analysis sample.

Phase 1 (1985-88) n=10,308
Whitehall 1l study baseline
Study sample —_—
Recruitment, Screening,
Questionnaire

n=1,671 dropped out

Phase 3 (1991-93) n=8,637
Baseline for this study

Screening, Questionnaire,
Dietary asse ssment

| n=288 did not
complete the FFQ
n=8,359
Baseline project sample —| Completed phase 3 Food fre-
quency questionnaire (FFQ) n=104 had more than
10 missing items or
reported that the FFQ
r was not representative
n=8,255 of their intake.

With appropriate FFQ data

n=996 had one or
more missing

1 covariate® value
n=7,251

Main analysis sample Available for complete-cases

analysis

Missing follow-up
data

A

Follow-up data
CHD 318 events / 7,174 at risk
Diabetes 754 / 6,868
Cancer mortality 251 / 7,235
All-cause mortality 524 / 7,242

Figure 4.3: Strategy for selection of main analysisample

$ Covariates included: age, sex, and ethnicityjtalastatus, employment grade, smoking status,
physical activity level, energy and alcohol intaB®]l, hypertension and dyslipidaemia status, and
prevalence of longstanding illness.
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Table 4.5: Baseline characteristics of participantaccording to their inclusion in the complete-
cases analyses

Variable (mean and SEM, or %, as  Excluded Included
indicated n<1,108 n=7,251
Mean SEM Mean SEM ]

Energy intake (kcal/d) 2,248 244 2,242  8.07 0.80

Total fat (%en) 33.3 0.21 329 0.07 0.070
SFA (%en) 13.6 0.13 13.3 0.04 0.089
MUFA (%en) 10.1  0.07 9.93 0.02 0.024
PUFA (%en) 6.33 0.07 6.37 0.03 0.615

Total carbohydrates (%en) 48.0 0.23 48.9 0.08 0%k.0

Protein (%en) 18.0 0.12 17.6 0.04 0.001

Alcohol (%en) 4.02 0.17 3.89 0.06 0.432

Fruit and vegetables (g/d) 500 9.24 514 3.40 0.18

% Healthy and med. clusters 48.3 52.3 0.023

Age (y) 50.2 0.19 49.6 0.07 0.001

Ethnicity (% white) 91.8 91.3 0.617

Grade (% high) 14.8 17.6

Grade (% intermediate) 63.1 66.4 <.001

Grade (% low) 221 16.1

% never smoker 44.5 51.3

% ex-smoker 35.3 35.1 <.001

% current smoker 20.3 13.6

% inactive 67.6 66.0 0.350

BMI (kg/m?) 26.3 0.16 252 0.04 <.001

% underweight 3.13 4.41

% normal weight 34.0 48.9 <001

% overweight 43.8 37.6 '

% obese 19.0 9.06

Systolic blood pressure (mmHg) 122 054 121 0.16 0.001

% Hypertension 27.2 20.3 <.001

Cholesterol - HDL (mmol/L) 1.32 0.02 1.44 0.00 01

Cholesterol - LDL (mmol/L) 430 0.05 440 0.01 0405

Triglycerides (mmol/L) 272 011 1.38 0.01 <.001

% Dyslipidaemia 59.0 59.3 0.890

% longstanding illness 40.5 33.5 <.001

% fair or poor self reported health 17.1 10.7 00’

Interleukin-6 2.14 0.09 1.93 0.03 0.036

C-reactive protein 269 0.23 1.87 0.05 <.001

Fibrinogen 252 0.02 241 0.01 <.001

SEM, standard error of the mean; %en, percent@fggrintake; SFA, saturated fatty acids; MUFA,
monounsaturated FA; PUFA, polyunsaturated FA; Méediterranean® ANOVA for continuous
variablesy? for categorical ones.
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4.4 Conclusion

The selection of the EWS aggregate score was therésearch objective of the
project. The next step is to ensure that the tadsighed to assess the predictive
validity of the WXYfm model is adequate. This isngoin the next chapter using
cross-sectional data to assess the associatiore&etthe EWS and dietary intake.
Associations with non-dietary factors were alsoestigated since such variables
could act as confounders in the relationship betvike EWS and prospective health

outcomes.
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Chapter 5: Construct, convergent, and concurrent
validity of the EWS aggregate score

In this chapter, cross-sectional data are usedsess whether the EWS aggregate

score is appropriate to test for predictive vayiait WXYfm.

First, the EWS rankings of participants were asgedi with intakes of food groups,
FFQ-items, and nutrients. Construct validity woudd confirmed if participants
classified as healthier by the EWS would obtainerfawourable intakes profiles. In
particular, the EWS would need to discriminate ipgrants at the FFQ-item level to

reflect the food-based nutrient profiling (NP) cept

Second, convergent validity was assessed by linEWfS to measures of global
dietary quality previously shown to be protectigaiast adverse health outcomes.

Positive associations were expected between EW$hasd measures.

Last, associations between EWS and non-dietaryoracsuch as demographic
characteristics and health behaviours were invastth to identify potential

confounders for the predictive validity models. IRfactors of chronic disease are
markers of contemporary health status of partidgpa@Goncurrent validity of EWS

would be obtained if individuals classified as Miger would display better risk

profiles.

Most results were presented by quartile of EWShlite first quartile containing

participants with the less healthy scores, i.etaiomg the least amount of healthy

foods.
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5.1 Dietary intakes and EWS, construct validity

5.1.1 Food group intakes across EWS quatrtiles

Intakes of most food groups were significantly assted with EWS in both men and
women, with some strong trends across quartileSigtdighted in table 5.1. Fish,
dairy products, breakfast cereals, and fruit, valgles and nuts were positively
associated with EWS quartiles. On the contrary, tteed was towards reduced
intake of bread, snacks and sweets, prepared nsealses and spreads, and drinks in
the fourth (healthiest) quartile. For meat, no clessociation appeared, the

participants in the first quartile having the lowegake.

Trends displayed in table 5.1 were in line with estations and similar in both
sexes: food groups containing healthfieods were eaten in higher quantities in the
healthiestquartiles; the contrary was true for food groupshwmore unhealthy
foods. The steep increase in fruit and vegetaliBkénwas confirmed by plasnfia
carotene levels which were positively associatedhto EWS classification (table
5.2).

Yet, the increased dairy products intake amonggyaants in the fourth quartile of
EWS and the pattern of meat intake yielded the tgqpre®f increased saturated fat
intake in these healthiestdividuals. Since these two food groups contaiodfo of

diverse nutrient composition, special focus was qutintakes of meat and dairy

products.
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Table 5.1: Crude food group mean intakes across EW&uartile (4: healthier)

Men (n=5,627)

Women (n=2,522)

Group (g/d) 1 2 3 4 p* 1 2 3 4 p*
gﬂgegast products and 140 147 148 141 0008 121 127 131 127  0.108
Fish and shellfish 29.3 32.9 35.4 42.0 <001 31.0 351 376 46.7 <.001
Bread and crackers 107 107 106 985 0.00287.1 850 81.7 755  0.005
Breakfast cereals 36.2 41.1 44 .4 43.0 <.001 36.4 375 41.5 43.7 0.069
E:;?;Oes' rice and 182 201 205 201 <001 157 184 181 180 <.001
Dairy products 376 428 512 659 <.001 408 502 659 828 <.001
Meald 259 27.0 254 195 <001 220 232 200 163 <.001
Fat spreads 300 21.0 165 108 <001 246 17.4 136 87  <.001
Snacks and sweets 152 116 87.4 52.0 <.001 121 80.8 622 375 <.001
Sauces and other 495 458 407 301 <001 39.0 360 303 248 <001
spreads
Drinks® 733 723 723 685  0.007 720 720 732 692  0.343
Fruit and nuts 181 217 241 311 <001 237 284 317 429  <.001
Vegetables 212 235 250 275 <001 223 251 272 332 <.001

“Meals included quiche, pizza and lasagfcluded alcohol and milks. *Heterogeneity ANOVA@ss quartiles.

Table 5.2: Mean levels of plasm@-carotene across EWS quartiles (4: healthier)

Men (n=3,975)

Women (n=1,873)

Quartiles 1 2 3 4 p* 1 2 3 4 2
?gg;ﬁie”e 082 085 0.86 097 <.001 093 112 101 111 .02

* Heterogeneity ANOVA across quatrtiles.
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5.1.2 Meats and dairy products intakes across EWS q  uartiles

Similarly to table 5.1, intakes of almost all itenmstable 5.3 were significantly
associated with the EWS rankings. Consumption gemere clearly dependent on
the WXYfm overall score of each item. Leanest prigwvith low overall score (i.e.
“healthier”) were consumed in greater amount witthe fourth quartile, whereas
foods with high overall score (i.e. “less healthizdd their intake highest in the first
quartile. This indicated that the EWS algorithm didscriminate participants
according to their consumption of individual FF@nts, and their respective
WXYfm score.

This discrimination was well illustrated by theakée of saturated fat from meat and
dairy products, lowest in the healthiegtartile (table 5.3). Inverse trends were also
observed for sugar and sodium intake from meatywtsd They were not for dairy
products, which suggested that the positive commisneutweighed sodium and

sugar for this group.

5.1.3 Nutrient intakes across EWS quatrtiles

Consumption trends observed for meat, dairy andrdtdod groups were reflected in
the nutrient intakes (table 5.4). Lower intake dffats including cholesterol and
unsaturated fatty acids was observed in the foquhrtile. Energy intake was
strongly and inversely associated with EWS. Desgpiteh trend, crude intakes of
most micro-nutrients were higher in participan@ssified in the healthier quartiles.
The few exceptions were iron, and vitamins A, Dd &which displayed inverse or
non-significant associations. These were reverse@adsitive when intakes were
energy-adjusted (not shown). Intake of the negai@&um nutrient was lowest in
the fourth quartile.

Overall, the above results did indicate that the EE\Wbnstruct was valid. It

discriminated participants at the FFQ-item leveld aherefore appeared to be
appropriate to assess the predictive validity of YffX.
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Table 5.3: Crude meat and dairy products mean intaks across EWS quartiles (4: healthier)

WXYfm Men (n=5,627) Women (n=2,522)
FFQ-item (g/d) scoré 1 2 3 4 p* 1 2 3 4 p*
Beef 1 220 246 252 249 <001 201 214 209 .5190.494
Beefburgers 19 193 180 1.72 1.12 <.001 091 1.10.78 0.51 <.001
Pork 0 933 109 109 967 <001 861 9.45 9.30 718. 0.565
Lamb 1 980 110 11.2 11.4 0.003 112 119 11.7 639. 0.012
Chicken 1 33.3 398 455 51.0 <.001 36.0 41.0 647.57.2 <.001
Bacon 21 581 469 422 320 <001 391 336 32230 <.001
Ham 12 651 640 6.12 508 <001 511 4.60 4.99 17 4. 0.042
Corn beef, spam, 16 372 341 308 226 <001 274 191 194 1.37.00K
luncheon meats
Sausages 20 577 503 449 318 <.001 352 3.0965 2.1.69 <.001
Pies 14 128 106 829 502 <001 6.08 4.94 4.43.27 2 <.001
Liver products -3 1.61 173 1.75 1.38 0.002 1.52.461 1.39 1.40 0.804
Meat soup 3 114 115 112 115 0.986 743 894669. 946 0.181
Eggs 14 1655 155 138 112 <.001 143 138 12.7.99 8 <.001
Z;Afrom meat 605 599 573 505 <001 480 476 470 409 0K.O
(Srgg)'”mfrom meat 547 507 470 390  <.001 397 373 371 301 <.001
(Sgligars‘crom meat 052 047 042 032 <001 032 030 029 022 0kK.O

(Continued)
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Table 5.3 (continued)

WXYfm Men (n=5,627) Women (n=2,522)
FFQ-item (g/d) scoré 1 2 3 4 p* 1 2 3 4 p*
Whole milk 2 122 123 116 102  0.095 117 124 125 777.0.024
ffl’lrl?' skimmed 0 145 190 239 302  <.001 158 215 324 346 <.001
Skimmed milk 1 46.7 504 847 188  <.001 63.1 76.8124 277 <.001
%ﬂi””e' Island 2 1.95 211 413 062 0.207 1.08 425 075 6.28473.
Sterilised milk 0 377 135 7.63 140  0.002 1.88.228 7.22 369 <001
Dried milk 20 1.01 078 078 079 0.095 126 114 134 1.37 8%.6
Soya milk 1 090 1.69 275 228 0516 214 321.760 3.31 0534
Coffee whitener 20 1.96 1.57 1.17 0.60 <.001 1.31.07 0.74 0.54 <.001
Single cream 12 161 152 124 073 <001 1.84 2151.03 049 <001
Double cream 15 143 135 106 057 <.001 1.99 61.31.04 048 <.001
Yoghurt 1 266 357 371 400 <001 39.0 469 055.680 <.001
Cheese 22 216 178 150 104 <.001 185 155 12807 <.001
Cottage cheese, 2 1.77 226 252 2.88 <001 359 3.79 495 5.8300k.
fromage frais
(SQSA from dairy 110 107 106 974 <001 106 109 113 105 305
Sodium from 350 366 396 451 <001 366 401 475 546  <.001
dairy (mg)
Sugars from dairy 187 216 259 337 <001l 208 256 340 430 <001

(9)

SFA, saturated fatty acifisee chapter 2This score is calculated on 100g of powder, natomsumed dry milk.
* Heterogeneity ANOVA across quatrtiles.
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Table 5.4: Crude energy and nutrient mean intakes@oss EWS quartiles (4: healthier)

Men (n=5,627)

Women (n=2,522)

Nutrient (unit/d) 1 2 3 4 p* 1 2 3 4 p*
Energy (kcal) 2540 2,389 2,275 2,097 <.001 2185067 2,021 1,960 <.001
Total fat (%en) 376 345 321 282 <001 37.6 234.316 272 <001
SFA (%en) 158 140 128 109 <001 16.2 141271 10.6 <001
MUFA (%en) 111 105 992 868 <001 11.0 10.39.58 8.03 <.001
PUFA (%en) 717 676 628 564 <001 673 65098 533 <.001
I)Ztear'])carb"hydrates 468 482 489 506 <001 47.0 485 496 522 k.00
Protein (%en) 147 164 17.7 197 <001 16.2 18.095 21.7 <001
Alcohol (%en) 411 429 470 500 <001 246 257263 242 0742
Sodium (mg) 3,192 3,011 2875 2596 <001 2,74556%, 2,546 2,441 <.001
Potassium (mg) 3830 4,043 4205 4453 <001 3,688 4,003 4282 4783 <001
Calcium (mg) 1147 1,189 1,257 1385 <001 1,121 1215 1,394 1598 <001
Magnesium (mg) 361 379 392 408 <.001 331 353 373 408 <.001
Phosphorus (mg) 1,625 1,706 1,774 1,868 <00l 1,549 1656 1,812 1,996 <.001
Iron (mg) 13.0 133 133 129  0.002 11.8  12.0 121124  0.067

(Continued)

78



Table 5.4 (continued)

Men (n=5,627) Women (n=2,522)

Nutrient (unit/d) 1 2 3 4 p* 1 2 3 4 p*
Vitamin A (ugRE) 1,318 1,307 1,277 1,142 <.001 1,246 1,223 111,21,260 0.646
Vitamin D (ug) 468 463 4.67 482 0.445 440 447 462 5.00.009
Thiamin (mg) 190 202 204 203 <001 172 1.83 190 2.00 <.001
Riboflavin (mg) 223 2.39 252 267 <001 215 234 261 289 <001
Niacin (mgNE) 234 249 253 250 <001 216 228 233 240 <.001
Vitamin C (mg) 117 134 142 165 <.001 136 163 173 221 <.001
Vitamin E (mg) 555 564 557 529 <001 549 549550 5.70 0.297
Vitamin B6 (mg) 233 255 263 272 <001 222 245 257 277 <001
Vitamin B12 (g) 6.67 7.25 774 824 <001 662 717 790 8.86 <.001
Total folic acid (1g) 320 344 350 360 <.001 305 333 345 381 <.001
Panthothenic acid.fy) 557 6.00 6.32 677 <001 536 590 648 7.25 <.001
Biotin (ug) 425 450 464 483 <001 385 419 444 473 <001
Cholesterol (mg) 264 259 252 232 <.001 246 239 239 221 <.001
Fibre (g) 246 259 263 266 <.001 230 243 248 27.0 <.001

%en, percent of energy intake; SFA, Saturated &atigts; MUFA, Mono-unsaturated fatty acid,;
PUFA, Poly-unsaturated fatty acid; RE, retinol &gignt; NE, niacin equivalent.
* Heterogeneity ANOVA across quartiles.



5.2 Convergent validity against dietary quality ind ices

Two existing measures of dietary pattern qualigvpusly associated with reduced
risk of prospective health outcomes within the Whdll 11 population (the
Alternative Healthy Eating Index (AHEI) and dataven clusters, chapters 2 and 4)
were used to assess the convergent validity oEW& aggregate score.

5.2.1 The Alternative Healthy Eating Index

This index has been recently applied to the Whitdhaata and was shown to be

predictive of lower cardiovascular and all-causetality (Akbaralyet al, 2011).

Rank correlations between the EWS and the AHEI wendar for men and women:
-0.260 and -0.263, respectively. Such values weréhé expected direction (the
WXYfm overall score being on an inverse scale, senafalues of EWS represented
healthier foods/diets) but were relatively low. & regressions yielded® Ralues
below 0.10 (not shown), which was lower than prasicesults linking NP models to
the Healthy Eating Index (chapter 2). These weabkdaations were well illustrated
in table 5.5: significant but weak positive gradgswere observed between the EWS
guartiles and the AHEI. Quartiles cross-tabulatidngher confirmed the poor

agreement as measured by th&tatistic between the two scores (table 5.5).

Table 5.5: EWS and AHEI quartiles cross-tabulation(4: healthier)

EWS quartiles

Men (n=5,626) Women (n=2,518)
1 2 3 4 1 2 3 4

Mean AHEI* 36.9 401 417 447 39.8 433 445 488
AHEI quartiles *

1 479 344 291 195 225 155 141 98

2 422 373 353 308 154 155 146 118

3 286 389 372 376 160 182 176 145

4 218 301 391 528 91 138 167 267

AHEL: Alternative Healthy Eating Index.
*p<.001 in both sexes for heterogeneity ANOVA asrgsartiles.
"Weightedxk-statistic were 0.159 in men and 0.167 in women.
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5.2.2 Dietary clusters

The cluster approach was applied to the WhiteHallata to define four mutually
exclusive groups in which participants had simdeatary characteristics: unhealthy,
sweet, Mediterranean and healthy (Brunmgral, 2008). Compared with the
unhealthy pattern (white bread, processed megtschind whole milk), the healthy
pattern (fruit, vegetables, whole-meal bread, latvdairy, and little alcohol) was

found to reduce incident risk of CHD and diabetes.

Cross-tabulations of the clusters and the EWS temrshowed some agreement
between the two methods (table 5.6). Both the sae@tunhealthy clusters were less
represented in the third and fourth quartiles of EWith a stronger trend for the
smaller sweet cluster. In contrast, a strong pesigradient appeared for the healthy
cluster. For the Mediterranean cluster, there wamsitive trend in men, and an
inverse quadratic association in women. Yet, sonsagdeement was observed:
32.2% and 20.8% of men and women respectively itiledsn the EWS fourth
quartile were in the unhealthy cluster; and 22.28d 28.2% were respectively
classified in the healthy cluster despite beinthenEWS first quartile.

Analysis of variance confirmed the overall trenddle 5.6). According to the EWS,
participants classified in the sweet cluster hael ighest intake of less healthy
foods. Individuals from the healthy cluster did dkehealthiest aggregate scores.

Associations between the EWS and the two meastirgetary quality were in the
expected directions, which confirmed the convergattlity of the aggregate score.
The relationships were relatively weak, illustrgtihat the EWS ranked participants

differently compare to measures based on totakénéend global dietary patterns.
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Table 5.6: Cross-tabulation of clusters and EWS qudles (4: healthier) in men and women

Men (n=5,303) Women (n=2,301)
Cluster (n, Quartiles Mean Quartiles Mean
column %) 1 2 3 4 EWS 1 2 3 4 EWS
Unhealthy 531 457 475 420 6.61 253 205 172 114 6.16
40.0 341 357 322 435 352 293 208
Sweet 353 304 177 53 7.56 68 45 30 6 6.88
26.6 227 133 4.1 11.7 7.7 51 1.1
Mediterranean 148 233 287 258 6.03 97 148 112 49 5.85
11.2 174 216 19.8 16.7 254 19.1 8.9
Healthy 295 347 392 573 571 164 185 274 379 4.53
222 259 295 439 28.2 317 46.6 69.2

" p<.001 in both sexes for heterogeneity ANOVA asrdsisters.

5.3 Non-dietary characteristics

5.3.1 Socio-demographic characteristics

In both men and women, age, marital status, etiyniand employment grade were
significantly associated with the EWS quartilesbiga5.7). Age was positively
associated with the quartiles, which was coheretft previous observations. White
ethnicity was inversely associated with the aggeegaore quartiles, suggesting that
ethnic minorities had healthier diets. No cleantteould be observed for marital
status in men, whereas an inverse gradient appear@gbmen, indicating that
married women had healthier dietary patterns. Tiveas a positive association
between low employment grade and EWS; and theHogutrtile contained fewer
high graded participants. This pattern between eympént grade and dietary intakes
had been observed among Whitehall 1l participantserw using the cluster
distribution (Brunneet al, 2008), but not with the AHEI diet index (Akbaray al,
2011).
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5.3.2 Health behaviours and self-perception of heal th

Table 5.7 reveals that participants in the fourttartjle of EWS were less likely to be
current smokers, the difference was not signifiecarwvomen. Such improved health
behaviour was confirmed by answers relating toithgortance of health and the
self-control over one’s health. Indeed, particigaimt the healthier quartiles were
more likely to find health “extremely important” é@rio agree strongly that keeping
healthy depended on them.

There was no association between physical actaitg the EWS rankings. This
result was counter intuitive and against previolbiseovations made in Whitehall 11.
It confirmed that the EWS did classify individual#ferently compared to data-
driven clusters and the AHEI diet index.
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Table 5.7: Socio-demographic characteristics and laéth behaviours across EWS quartiles (4: healthier)

Variable Men Women

(mean or %) 1 2 3 4 p* 1 2 3 4 p*

Age (y) 48.5 49.1 49.6 50.2 <0.001 49.7 50.2 50.8 51.0 0.0
% living aloné 18.9 15.2 16.9 18.4 0.045 427 33.3 37.9 325 (0.0
Ethnicity (% white) 97.4 96.7 93.9 86.3 <0.001 94.7 92.0 84.5 74.5 0GD.
Grade (% high) 20.5 23.3 23.9 21.9 6.24 6.60 7.20 3.57

Grade (% intermediate) 73.9 719 70.0 68.9 <0.001 61.0 56.5 50.6 50.40.001
Grade (% low) 5.65 4.81 6.11 9.27 328 36.9 42.2 46.0

% never smoker 49.0 48.1 49.1 47.8 51.9 54.6 56.5 60.5

% ex-smoker 36.0 41.0 37.7 40.2 0.016 29.2 27.2 26.6 24.80.125

% current smoker 14.9 10.9 13.2 11.9 18.9 18.2 16.8 14.7

METs® 3.92 3.95 4.01 3.87 0.699 3.31 3.35 3.22 3.28 9.89
% inactive 63.1 63.5 60.8 64.7 0.180 73.7 727 73.7 73.2 8.97
% Agree strongly

"Keeping healthy depends 28.1 316 343 40.9 <.001 324 340 39.7 422 k.00
on me"

op .

/6 "Health is extremely 415 397 420 482 0.001 439 480 509 541 2.04

important"

# Never married/cohabiting, divorced, or widoweMetabolic equivalents. * Heterogeneity ANOVA gf



5.3.3 Concurrent validity against baseline risk fac  tors and
inflammatory markers

BMI and systolic blood pressure were higher in nagm women in the fourth
quartile of EWS, i.e. participants classified asltieest by the aggregate score had
higher levels of obesity and hypertension (tab8.5[he trend was similar for blood
lipids in men, with higher levels of total choleste LDL cholesterol, and
triglycerides among participants in the fourth dueof EWS. Associations were not
significant in women. The trends observed on infteatory markers followed
similar patterns. In men and women, levels of fibgen and Von Willebrand’s
factor were significantly higher in the fourth qgtile: In women, C-reactive protein
levels were positively associated with the EWS tjear(table 5.8). For interleukin-
6, a U-shaped association was observed in men diigre was an increased
prevalence of longstanding illnesses in participahssified in the third and fourth
quartiles of EWS.

Despite being associated with healthier dietargkatpatterns and more favourable
health behaviours, the EWS aggregate score wasiebgiassociated with a less
favourable risk profile. Therefore, the concurrealidity of the EWS could not be

established.
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Table 5.8: Risk factors and inflammatory markers levels across EWS quatrtiles (4: healthier)

Men Women
Variable (Mean or %) 1 2 3 4 p* 1 2 3 4 p*
BMI (kg/m?) 248 250 251 256 <.001 251 254 259 264 k.00
% underweight 3.85 357 417 264 9.00 7.24 3.67 4.46
% normal weight 534 50.7 486 4338 <001 474 471 452 42.0< 001
% overweight 36.3 402 395 448 316 308 355 338"
% obese 645 551 7.67 8.73 121 148 157 19.7
Systolic blood pressure
(mmHg) 121 121 122 123 <.001 116 117 119 119 <.001
% Hypertensioh 189 19.1 23.0 272 <.001 156 141 201 222 1.00
Cholesterol - Total (mmol/L) 6.47 640 6.49 6.57 0.002 6.54 6.54 6.48 6.54 5.80
Cholesterol - LDL (mmol/L) 445 439 445 450 0.044 431 431 424 431 .68
Cholesterol - HDL (mmol/L) 132 132 132 132 0.950 168 170 168 1.66 .39
Triglycerides (mmol/L) 154 154 164 1.70 0.001 1.21 1.17 1.23 125 @.34
% Dyslipidaemia 63.3 59.1 620 63.7 0.066 536 54.2 538 529 @&.97
% longstanding illness 327 312 36.1 354 0.023 329 331 354 381 ID.18
Fibrinogen (g/L) 231 231 234 240 <.001 252 259 261 265 .00
Von Willebrand's factor (IU/dl) 105 107 106 110 0.007 106 108 110 115 0.002
C-reactive protein (mg/L) 180 182 162 189 0472 1.92 2.28 2.57 224 .07
Interleukin-6 (ng/L) 191 171 174 1.89 0.037 224 216 238 227 .54

*Hypertension was defined as systolic or diastdiiot pressure 140 or> 90 mmHg, respectively, or by the use of hypertensgiugs.

* Heterogeneity ANOVA ory?
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5.4 Discussion

The EWS aggregate score was significantly assatiatgh improved dietary
intakes. Most micro-nutrients crude intakes wersitpeely associated with the
EWS, despite a strong inverse association betwlkeenEWS and energy intake.
Participants were classified based on their retaintake of FFQ-items, which
related well to the NP concept and confirmed thestoict validity of the aggregate

score.

Convergent validity was also confirmed: both thetaliy clusters and the AHEI diet
index were significantly associated with the EWSthe expected direction. The
relationships were weaker than in previous invasiogs (Fulgonket al, 2009; Katz
et al, 2010) and some disagreement appeared. Theseaeaigants indicated that
the EWS was not a simple copy of existing diet duahdices. Consistent with the
NP concept, the EWS did classify participants adiogy to their consumption of
individual FFQ-items, unlike the AHEI which usedabintake; and independently
of their global dietary pattern, unlike the dietafysters.

Associations with non-dietary factors revealed w®teral characteristics including
employment grade could act as confounder in the\salranalyses models. The risk
factors and inflammatory markers levels indicateat individuals in the healthiest
quartiles of EWS had riskier profiles. This wasexsally true for obesity levels and
hypertension. The concurrent validity of the aggtegscore was not confirmed.
These surprising results could be linked to thendigprevalence of longstanding
illnesses in the participants classified as headthiby the EWS. Such existing
condition may have encouraged individuals to haaa@thier dietary patterns and to
be more health conscious, as illustrated by thedtveith former smokers (table 5.7).

In summary, the EWS aggregate score translatedtieINP concept at diet level. It
was considered as adequate to assess the prediatigiey of the WXYfm model.
The survival analysis implemented in the next chiapteed to account for the

potential confounders highlighted in this chapthr. particular, the EWS was
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associated with energy intake, employment grade Bl which are all markers of
dietary misreporting (chapter 2). Such possibiktyaken into account in the models

of the next chapter, and is further discussed aptdr 8.
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Chapter 6: Survival analysis,
predictive validity of WXYfm

In this chapter, the first results for the maineaijve of the project, i.e. testing for
predictive validity of the WXYfm nutrient profilingNP) model, are reported. The
initial hypothesis was that diets containing higlpeoportions of healthyoods

would be protective against prospective chronieake and mortality. The EWS
aggregate score was shown to translate well the ¥WXviodel at diet level, and it
was expected to observe risk reduction of incidevents in participants with a
healthieraggregate score. The inclusion of potential confugfactors in the Cox

proportional hazards models allowed assessingritiependent effect of EWS on
fatal and non-fatal CHD, diabetes, cancer mortaéityd all-cause mortality. A brief
methods section giving the exact specificationshef models is included first. The

discussion section highlights possible explanatfonshe observed results.

6.1 Methods, Cox regressions

Survival analyses were run by fitting Cox propamab hazard regressions using
follow-up time in years as time variable. Individsiavith prevalent cases of disease
at baseline were excluded from the models (chapteParticipants were classified
in quartiles of EWS, the first and leds#althy one served as reference group. Linear
trend was assessed by including the quartiles agsncous variable in two ways,
including directly the EWS in the models did notaoge the results. Tests for
quadratic trends were done by including EWS and Bfi&re in the regressions
(Greenland, 1995). Inclusion of covariates followdte assessment of their

relationship with health outcomes using Log-rargtg€not shown).

All associations presented in chapter 5 were dygalan sex-specific quartiles. As
most trends were similar for both men and womemjai$ chosen to combine sexes
in the Cox regression models allowing for stronggimates to be obtained. Women

had healthier diets according to EWS (Cochran-Aaget trend test p-value was
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below 0.001); Cox models were adjusted accordindglpalyses by sex were

conducted and conclusions were not modified (nowst).

Base models were adjusted for age, sex, and ethfidiite, Asian, black, other). A
second model was further adjusted for marital stgtoarried/cohabiting, single,
divorced or widowed), employment grade (civil seeviscale), smoking status
(never, ex, current), physical activity level (lomtermediate, high), and energy and
alcohol intake. A last model included BMI categer{ginderweight, normal weight,
overweight, obese), hypertension and dyslipidaesta@tus, and prevalence of

longstanding illness.

The proportional hazard assumption was tested sialpd Schoenfeld residuals. It
was not met for sex with diabetes as outcome, @orgdtanding illness and
dyslipidaemia with all-cause mortality as outcoraed for BMI categories with

CHD. Analyses were stratified in such cases asaot®n tests were not significant
(not shown).

All analyses were carried out on a complete-cagasda (n=7,251, not including

outcome variables) to allow comparison betweerehfit levels of adjustment.

6.2 Results, unexpected U-shaped associations

The first observation was that the expected riskicdon was not obtained for any
outcome, with no significant estimate for indivitlgaartiles (table 6.1). Linear risk
increase of CHD was observed with models 1 andI|Rother significant values

were obtained for the quadratic trend tests, subgmedJ-shaped associations

between the EWS aggregate score and prospectilth beécomes.

More specifically, the U-shape was observed foroaticomes in model 1, and was
strongest for CHD and all-cause mortality. A sigraht linear risk increase was also
observed for CHD. The associations between EWS&ander mortality and diabetes

were very weak.
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The socio-demographic and health behaviour cowsriatcluded in model 2 did
attenuate the U-shapes, quadratic trend tests @ing Isignificant for diabetes, but

conclusions were similar to model 1.

Table 6.1: Cox regression estimates for EWS quartk (4: healthier)

Outcome  Quartile Model 1 Model 2 Model 3
(cases /n) /ftrend HR 95 % ClI HR 95 % ClI HR 95 % CI
CHD (318/ 1  Ref Ref Réf
7,174) 2 0.78 0.56 1.10 0.81 0.58 1.14 0.82 0.58 1.15
3 1.06 0.77 1.45 1.09 0.79 1.49 1.03 0.75 1.41
4 1.31 0.96 1.79 1.34 0.97 1.84 1.22 0.89 1.69
Linear 112 1.01 1.25 1.13 1.01 1.25 1.09 0.98 1.21
p quadratic <.001 0.001 0.003
Diabetes 1 Ref* Ref* Ref*
(7541 2 0.95 0.77 1.17 0.99 0.80 1.22 1.00 0.81 1.24
6,868) 3 0.89 0.72 1.10 0.93 0.75 1.15 0.89 0.72 1.10
4 1.08 0.88 1.33 1.12 0.90 1.38 1.04 0.84 1.28
Linear 1.02 0.95 1.09 1.03 0.96 1.10 1.00 0.93 1.07
p quadratic  0.042 0.085 0.401
Cancer 1 Ref Ref Ref
mortality 2 0.94 0.66 1.35 0.94 0.65 1.35 0.94 0.65 1.35
(251/ 3 1.01 0.71 1.43 0.97 0.68 1.38 0.95 0.66 1.36
7,235) 4 0.95 0.66 1.36 0.90 0.62 1.30 0.87 0.60 1.26
Linear 0.99 0.88 1.11 0.97 0.86 1.09 0.96 0.85 1.08
p quadratic 0.032 0.041 0.057
All-cause 1 Ref Ref Ref
mortality 2 0.85 0.66 1.09 0.85 0.66 1.10 0.85 0.66 1.09
(524 / 3 0.89 0.69 1.14 0.89 0.69 1.14 0.86 0.67 1.11
7,242) 4 1.04 0.81 1.33 1.02 0.79 1.30 0.97 0.76 1.25
Linear 1.02 0.94 1.10 1.01 0.93 1.10 0.99 0.92 1.08
p quadratic <.001 0.002 0.004

Model 1 adjusted for age, sex, and ethnicity. Mdatljusted for marital status, employment grade,
smoking status, physical activity level, and eneagg alcohol intake. Model 3 adjusted for BMI,
hypertension and dyslipidaemia status, and pregaleflongstanding iliness.

HR, hazard ratio; Cl, confidence intervalStratified for BMI categories. * Stratified forse

8 Stratified for longstanding illness and dyslipidaam

91



The further adjustment in model 3 did have somecefbn individuals in the fourth
quartile of EWS which obtained lower hazard ratgtireates. It resulted in non-
significant risk increase for CHD, which suggedtieat the trends in models 1 and 2
were partly due to confounding by the risk factoffie quadratic associations
remained significant for CHD and all-cause monyalthere was a slight suggestion

of an inverse linear trend for cancer mortality.

The U-shapes did indicate that EWS aggregate sease associated with health
outcomes, although not in the expected directidre Strongest risk reductions were
observed for CHD and all-cause mortality, in theddhe quartiles of EWS. These
specific estimates, especially for the second daawere less susceptible to further
adjustment than the fourth quartile estimates, esiyog that the risk reduction was
effectively due to EWS. Yet, confidence intervalerar wide and no strong

conclusions could be drawn from these individualtes.

6.3 Discussion

Predictive validity of the EWS aggregate score waisdemonstrated by the results
of table 6.1. Risk reduction was hypothesised fartippants in the healthiest
quartile of EWS, but quadratic trends were obtaifoecll outcomes, suggesting that
these were not chance findings. Participants inntiddle (e.g. second and third)
quartiles of EWS were at lower risk than the refieseand least healthy individuals;
though the estimates were not significant. The paeted results came with
participants in the fourth quartile, i.e. which oef@d diets had highest content of
healthy foods. They were at equal, or higher, ggkncident chronic disease than

individuals from the first quartile.

The above results must be taken with caution ag ¢bald not make abstraction of
several limitations (see chapter 10 for detailspsMof these limitations were
common with the investigation of the ONQI NP mobglChiuve et al. (2011). The
ONQI-f aggregate score was shown to be associatédinear risk reduction of all
chronic disease but cancer. This suggested thahotiels should be associated with

a protective effect even though they are not desigo score whole dietary patterns.
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Several factors could have explained these divgrgesults: (i) the NP models, (i)
the cohort studies, (iii) the aggregation methdog, dietary misreporting, and (v)
diet variety.

The first explanatory factor is the NP models usedooth investigations. The
WXYfm model is a relatively simple across-the-boalP algorithm which
incorporates seven nutrients in its calculatiore ONQI model is known to contain
30 nutrients and adjusting factors (Katg al, 2010). The incorporation of such
extra-nutrients could have explained the protectigsociations. Further details of
this patented model cannot be disclosed. The ON@Irithm could not be applied
to the Whitehall Il dataset since some nutrientteoninformation was missing
(chapters 2 and 10).

Second, the WXYfm and ONQI models were implemenbed different cohort
studies. The combined analysis of the US-basedddukealth Study and the Health
Professionals’ Follow-up Study yielded more thar®,000 participants and over
30,000 events, which largely exceeds the samplel usethe present project.
However, it was not possible to access the US-bdata] and no cross-comparison
could be made. The Whitehall Il FFQ was an angitisrersion of the US

guestionnaires (chapter 4); it might have been radepted to the US population.

Third, the EWS aggregate score was weighted byggrard the ONQI-f by portion
size. Analyses run with the PWS and WWS aggregaiees (respectively weighted
by portion size and weight of intake, see chapferidlded similar results for
WXYfm (not shown). Chiuve and colleagues reporté@dttan ONQI-f score

weighted on energy was implemented but did notyseynificant results.

Fourth, chapter 5 highlighted systematic relatigpstbetween EWS and energy
intake, BMI, and employment grade; all markers oisraporting of intakes
(Brunner, 1997). Such dietary misreporting couldvehded to a number of
participants with an observed EWS ranking not otibg their trueintake The
models implemented in the present chapter werestadjufor total energy intake,
employment grade, and BMI. Models excluding pgpacits at the extreme of the

energy intake distribution showed results similartable 6.1 (results not shown).
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Yet, residual confounding linked to dietary misrdgpm—and its associations with
risk factors such as BMI and hypertension (Macdidré& Blundell, 1998)—could

have occurred.

Last, NP models are designed to score individuati$p not diets. In line with this
concept, the EWS did not incorporate any infornmatom the dietary patterns of
individuals apart from total energy intake. Othkaracteristics of diets, in particular
diet variety, may have been related to EWS in a wat would confound its
association with health outcomes. One could, fangde, have obtained a very
healthy EWS score by having a diet restricted iy arfew very healthy foods. Such
dietary patterns may be detrimental (Michels & W&R02; Savyet al, 2005) and
could have explained the U-shaped associations.

The detailed investigation of these explanatorydi@shaped the reminder of this
project as the focus shifted towards the understgnof the observed prospective
associations. In order to verify whether the prégsesults were due to WXYfm
alone, an alternative NP model, SAIN,LIM (see cbaf), was applied to the
Whitehall 1l data. This across-the-board model weseloped by the French food
safety agency and has been shown to relate wallttient recommendations in the
French population (Mailloet al, 2011). Its algorithm differs from WXYfm in
several aspects (chapter 2), which makes this madgbod comparison tool. To
analyse the impact of misreporting, more refinezhtgques were implemented for
the detection of global energy reporters and foreming intake at the FFQ-item
level. Further, diet variety was related to the E¥gg§regate score and to prospective
health outcomes to assess its potential as a codifoy factor. To better understand
the relationship between the WXYfm-derived EWS anaspective health status in
the Whitehall Il population, WXYfm components (ithe nutrients incorporated in
its algorithm) were investigated separately to sss¢i) whether they predicted
prospective chronic disease as hypothesisedntake of positive nutrients would be
protective, and intake of negative nutrients wopftédict increased risk; and (ii)

whether the EWS aggregate score was evenly cardelatall its components.
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6.4 Conclusion, explaining the U-shapes

The initial hypothesis was not verified since ngngicant risk reduction of any
outcome was observed, and the predictive validityWXYfm could not be
confirmed. The results from table 6.1 were highhexpected, especially given the
prior report from Chiuve et al. Yet, such inconahasresults did not rule out the
existence of an association between WXYfm and mosge health outcomes.
Explaining the observed U-shapes became a priaityg, was used as a thread for

the reminder of the project.

95



Chapter 7: Validity of the SAIN,LIM model

The previous chapter did not fully confirm the potide validity of the WXYfm
model. The observed associations may have beetodihe NP model itself, and it
was necessary to assess an alternative modelislichtapter, the SAIN,LIM model
was tested for construct, convergent, concurred,pedictive validity; in a similar
way as WXYfm was in chapters 5 and 6, with the sdiyyigotheses and research

questions.

Similarly to the WXYfm model, the SAIN,LIM is an taoss-the-board” algorithm
using thresholds to define healthinessegories (detailed description in chapter 2).
Its specificity lies in the separation of the psitand negativescales: the SAIN and
LIM sub-scores, respectively. The algorithm is bmensional and two thresholds
are used to define four healthinesategories or “quadrants” (figure 2.2). The
selection of an aggregate score was the first rodjective of this chapter and
needed to take into account this duality of the NSAIM model. The following

analyses kept the structure of the two previouptana.

7.1 Classification of FFQ-items according to the SA  IN,LIM
nutrient profiling model

Summary statistics displayed in table 7.1 highkghthat the SAIN,LIM score could
not be calculated for the “energy-free” foods (tem, coffee, and diet fizzy drinks)
because the SAIN sub-score is calculated per 100ksm expected, the two
subscales of the SAIN,LIM model were negativelyrelated (r=-0.58). A composite
index, (LIM minus SAIN), was created to compare BAIM to WXYfm. A very
high correlation (0.9) was achieved between WXYfrmd ahis composite scale,
which indicated a high level of agreement betwéentivo NP models. WXYfm and
(LIM minus SAIN) were more associated with the Lllan with the SAIN,
suggesting that both WXYfm and SAIN,LIM models deged more on the negative
nutrients. Associations obtained with the compo@il® minus SAIN) score were

not further presented as they were very similahéoWXYfm results.
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Table 7.1: Summary statistics and rank correlationdetween WXYfm and SAIN,LIM

LIM minus
WXYfm SAIN LIM SAIN
Summary statistics
n 130 126 126 126
Mean 4.38 11.7 14.4 2.67
Standard deviation 10.4 17.8 17.8 29.0
Correlations
WXYfm 1
SAIN -0.58 1
LIM 0.90 -0.58 1
LIM minus SAIN 0.90 -0.73 0.95 1

The (LIM minus SAIN) score was created for companisvith the WXYfm algorithm

Cross-tabulation results shown in table 7.2 cordainthe correlation coefficients:
agreement between the two NP models was high buperdect. Channel Island,
whole, and dry milks were classified as “less hgéltoy WXYfm whereas they
were in the besuadrant of the SAIN,LIM model, calcium being a ipigs nutrient

in the French algorithm. On the other end, colestamed fruit, vegetable soup, and
white bread were in the fourth (and worst) quadm@SAIN,LIM despite being
“healthier” according to WXYfm. Foods like milks @rwhite bread were widely
consumed and classification differences may havesaguences on the aggregate
scores rankings of participants. Appendix 2 inchidiassification of all FFQ-items
with both NP models.

Table 7.2: WXYfm categories vs. SAIN,LIM quadrants,number of items

SAIN,LIM quadrants

WXYfm categories 1 2 3 4 Total
Healthier 44 9 3 4 60
Intermediate 2 1 6 2 11
Less healthy 3 2 17 33 55
Total 49 12 26 39 126

Merging the 2® and ¥ quadrants of SAIN,LIM, agreement using the weightestatistic was 0.60

7.2 SAIN,LIM aggregate score: PES(Q1)

The aggregate scores algorithms developed for thefvd model (chapter 4) were

applied to the SAIN,LIM model. Since the SAIN antM_sub-scores ranked items
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on separate scales, the use of an energy-weiglt@ similar to EWS (which
always referred to WXYfm) was only feasible sepalsgtand not for the whole
SAIN,LIM model. Two scores, EW(SAIN) and EW(LIM),are created.

In order to combine the two sub-scores, the usthef‘quadrants” was necessary.
The French food safety agency originally recommdntteat only foods from the
first and healthiesquadrant gained access to health claims (Agencedise de
sécurité sanitaire des aliments, 2008). As a rethit PES(Q1) aggregate score,
which calculated the percentage of energy from goofl the first quadrant, was

derived.
In line with the results on food classificationgtBW(LIM) was the aggregate score

most correlated to EWS (table 7.3). The PES(Q1) wels correlated to all other
scores including EWS. The EW(SAIN) was the scoastleorrelated to EWS.

Table 7.3: Rank correlation between EWS and SAIN,LM-derived aggregate scores (n=8,149)

PES(Q1) EW(SAIN) EW(LIM) EWS

PES(Q1) 1
EW(SAIN) 0.63 1

EW(LIM) -0.67 -0.66 1

EWS -0.70 -0.62 0.91 1

EWS refers to the WXYfm aggregate score

The PES(Q1) aggregate score was the only algotithcombine the SAIN and LIM
scales in one score. It was retained for furthedyses. Using a similar protocol to
the previous chapters, participants were classifismquartiles of PES(Q1).

7.3 Dietary intakes and PES(Q1), construct validity

7.3.1 Food group intakes across PES(Q1) quartiles

Associations between food group intakes and PES(@te very similar to those

observed in chapter 5 (table 7.4). Most associatiware highly significant, except
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for breakfast cereals and drinks, and revealed reergly healthier pattern of

participants in the fourth quartile of PES(Q1).

Some differences with the EWS were noticed. Thedtfer potatoes, rice and pasta
intake was reversed and became negative. The bresd, and dairy products trends
were stronger with PES(Q1), confirming the clasatiion differences highlighted in
section 7.1. This was probably due to the inclugibonalcium and iron in the SAIN
algorithm. On the other hand, the trends were wefaikesnacks and sweets, and for
fat spreads. This last observation may have beertalthe inclusion of energy as a

negative component in the WXYfm model.

7.3.2 Meat and dairy products intakes across PES(Q1 ) quartiles

Similarly to table 7.4, levels of intake and tremtisplayed in table 7.5 followed the
results obtained with the EWS aggregate scoreicpéatly for the meat group. For
the dairy products, a few differences were obsermethbly for whole milk which
was positively associated with PES(Q1), in linehwitls classification in the first
quadrant. This resulted in higher intakes of satardats from dairy products in the
fourth quartile of PES(Q1). Despite this specifient, certainly due to the inclusion
of calcium in the SAIN algorithm, the intake prefibf participants in the fourth
guartile was generally better. Table 7.5 confirmiedt PES(Q1), like EWS, did
discriminate participants at the FFQ-item level.
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Table 7.4: Crude food group mean intakes across PESQ1) quartiles (4: healthier)

Men (n=5,627)

Women (n=2,522)

Group (g/d) 1 2 3 4 p* 2 3 4 p*
Meat products 136 145 146 148  <.001 112 127 129 137  <.001
and eggs
Fish and 303 336 358 399 <001 308 368 401 427 k.00
shellfish
Bread and 135 116 951 73.0 <.001 110 911 71.0 569 <.001
crackers
Breakfast 382 418 424 422  0.027 37.9 415 401 396 ®@.72
cereals
Potatoes, rice 208 205 196 181 <.001 194 179 173 156 <.001
and pasta
Dairy products 298 379 462 835 <.001 309 380 508 1,198 <.001
Meald 276 269 239 192 <001 246 224 201 144 k.00
Fat spreads 271 211 17.2 13.0 <.001 21.9 16.9 13.6 119 k.00
Snacks and 141 115 899 621 <001 110 814 609 495 <.001
sweets
Saucesand other o) o 457 333 207 <001 405 363 283 251 k.00
spreads
Drinks® 701 730 719 713  0.282 706 712 706 740 0.416
Fruit and nuts 165 218 261 306 <.001 217 313 351 385 <.001
Vegetables 215 239 250 267 <.001 227 263 288 298 <.001

*Meals included quiche, pizza and lasagiscluded alcohol and milks. * Heterogeneity ANOVérass quartiles
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Table 7.5: Crude meat and dairy products mean inta& across PES(Q1) quartiles

Men (n=5,627)

Women (n=2,522)

FFQ-item (g/d) 1 2 3 4 p* 1 2 3 4 p*
Beef 225 231 254 256 <.001 185 205 207 22.20.056
Beefburgers 207 183 147 120 <.001 0.98 0.78740. 0.80  0.354
Pork 948 104 10.7 102 0.031 819 9.05 845 10.40.012
Lamb 10.6 10.6 109 11.2  0.500 108 11.0 109 11.60.771
Chicken 28.5 404 459 549 <001 30.1 435 496855 <.001
Bacon 545 4.86 4.14 3.47 <001 3.63 355 3.09 425<.001
Ham 6.19 6.83 585 524 <001 494 497 443 453.323
Combeef, spam, 5 o0 343 304 233 <001 282 1.99 166 1.49 k.00
luncheon meats
Sausages 5091 498 4.10 349 <001 343 281 23121 <.001
Pies 13.0 106 7.74 530 <.001 6.36 450 3.88 2.9%.001
Liver products 167 171 155 153 0.268 1.36 1.4555 1.41  0.636
Meat soup 102 116 11.8 120 0.119 768 9.26 9.6393  0.334
Eggs 16.7 150 132 121 <.001 13.9 140 124 9.45.001
SFA from meat(g)  6.16 5.86 553 528 <.001 4.63.694 454 450  0.579
(Srgg)'”m frommeat 5,5 513 458 414 <001 382 380 353 328 <.001
Z;;gars frommeat 550 547 040 034 <001 032 029 027 024 %.00
(Continued)

101



Table 7.5 (continued)

Men (n=5,627)

Women (n=2,522)

FFQ-item (g/d) 1 2 3 4 p* 1 2 3 4 p*
Whole milk 826 964 122 163 <.001 740 830 947191  <.001
fﬁl?' skimmed 123 165 201 387 <.001 120 152 202 570
Skimmed milk 404 553 704 203 <.001 54.9 67.2 412 295  <.001
gi‘lﬁ””e' Island 071 1.19 1.83 510 0.036 042 083 262 847
Sterilised milk 161 226 488 180 <.001 219 02.6452 448 <001
Dried milk 087 086 078 084 0.840 1.06 1.23 01.41.42  0.267
Soya milk 218 068 171 3.06 0313 230 1.19 21878  0.620
Coffee whitener 1.78 158 1.17 0.77 <.001 1.20 30.80.91 0.79 0.052
Single cream 151 1.42 1.28 0.90 <.001 192 1.26021 0.69 <.001
Double cream 1.40 1.22 1.04 0.75 <.001 1.96 1.24021 0.64 <.001
Yoghurt 20.1 343 37.7 473 <.001 32.9 49.8 57.9836 <.001
Cheese 19.7 17.0 159 122 <.001 16.4 15.1 13.471 9. <.001
Cottage cheese, 216 226 229 272 0.076 348 446 510 512
fromage frais

SFAfromdairy (g)  9.05 951 103 131 <001 8.4B.76 953 166  <.001
(Sr;’g)'“m fromdairy 303 334 373 s62 <001 297 335 400 757
Sugarsfromdairy 1,5 193 233 426 <001 158 199 267 61.1 k.00

(9

<.001

@.17

0.01

<.001

SFA, Saturated fatty acids. * Heterogeneity ANOMW#ass quartiles.
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7.3.3 Nutrient intakes across PES(Q1) quartiles

The analysis of crude nutrient intakes (table TuBbher revealed some similarities
with the EWS aggregate score. Energy intake wasativady associated with

PES(Q1), as were all fat categories. Protein anst mdcro-nutrients were positively
linked to the aggregate score.

Contrary to the EWS, the energy from carbohydratas not related to PES(Q1),
neither was the intake of thiamine and vitamin A nmen. Some significant
associations were observed with the PES(Q1) whierevabsent with the EWS:
vitamin D in men, and vitamin A and alcohol in wamerhe most surprising
associations were obtained with cholesterol anck fibhich displayed positive and
negative trends, respectively. This did not follovitial expectations and was the
second result, together with the whole milk intakehich suggested that the
PES(Q1) aggregate score might not discriminatetinealietary patterns as well as
EWS.

The differences between the EWS and PES(Q1) aggregares did not change the
global conclusion that participants in the fourtmadile of PES(Q1) had improved
nutrient intakes, which was in line with observaidrom tables 7.4 and 7.5. The
construct of PES(Q1l) was deemed valid and the s was to assess its
convergent validity. The PES(Q1) aggregate scock aliassify participants with

respect to their FFQ-item intake, which made itcadee to test for predictive

validity of the SAIN,LIM model.
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Table 7.6: Crude energy and nutrient mean intakes@oss PES(Q1) quartiles (4: healthier)

Men (n=5,627)

Women (n=2,522)

Nutrient (unit/d) 1 2 3 4 p* 1 2 3 4 p*
Energy (kcal) 2,504 2,369 2,244 2,184 <001 2,136 2,029 1,9333£L, <.001
Total fat (%en) 358 338 325 303 <.001 35.6 333.31.6 301  <.001
SFA (%en) 144 135 131 124 <001 14.7 133271 12.8  <.001
MUFA (%en) 10.8 10.3 9.90 9.17 <001 10.6 1042 8.84 <001
PUFA (%en) 724 676 629 558 <001 6.80 6.4B.01 526 <001
Z)Zfr'])carb"hydrates 487 488 486 48.4  0.307 49.3 497 495 489 10.19
Protein (%en) 148 163 175 19.9 <001 159 18.09.5 221  <.001
Alcohol (%en) 421 438 478 472  0.007 2.70 24279 216  0.012
Sodium (mg) 3,248 3,032 2,776 2618 <001  277%8®@, 2,404 2,525  <.001
Potassium (mg) 3,786 3,990 4,115 4,641 <001  3,63890 4,118 5139  <.001
Calcium (mg) 1,055 1,133 1,194 1,595  <.001 1,0009a 1,223 2,012  <.001
Magnesium (mg) 370 378 382 410 <.001 334 351 35524 4 <.001
Phosphorus (mg) 1,587 1,667 1,712 2,007 <.001 11,4585 1,671 2,286  <.001
Iron (mg) 135 134 131 125 <001 122 124 12018  0.055
(Continued)
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Table 7.6 (continued)

Nutrient (unit/d)

Men (n=5,627) Women (n=2,522)

1 2 3 4 p* 1 2 3 4 p*

Vitamin A (ugRE)

1,275 1,279 1,228 1,261 0.245 1,152 1,188281,21,372 <.001

Vitamin D (ug) 448 464 470 499 <.001 409 458 4.82 4.99 .00k
Thiamin (mg) 201 203 197 198 0.062 1.82 1.84.811 2.00 <.001
Riboflavin (mg) 213 230 240 299 <.001 198 521235 3.50 <.001
Niacin (mgNE) 242 250 248 245 0.029 221 23.23.0 234 0.015
Vitamin C (mg) 111 132 148 167 <.001 131 166 186 09 2 <.001
Vitamin E (mg) 551 565 548 540 0.022 5.33 5.66.56 5.67 0.071
Vitamin B6 (mg) 235 251 259 278 <.001 222 024250 2.88 <.001
Vitamin B12 {g) 6.37 7.03 7.40 911 <.001 595 6.76 7.61 10.2 .00k
Total folic acid (19) 332 342 344 357 <.001 312 331 344 377 <.001
Panthothenic aciduf) 541 585 6.11 7.29 <.001 5,05 560 6.05 8.29 .00k
Biotin (ug) 428 439 451 505 <.001 374 402 414 53.1 .00k
Cholesterol (mg) 249 250 247 260 0.011 224 230 22262 <.001
Fibre (g) 26.6 264 258 246 <.001 245 256 24.24.1 0.074

%en: percent of energy intake; SFA, saturated fatigh; MUFA: Mono-unsaturated fatty acid; PUFA: Yrahsaturated fatty acid;
RE, retinol equivalent; NE, niacin equivalent. *telegeneity ANOVA across quatrtiles.
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7.4 Convergent validity of PES(Q1)

Intake levels from tables 7.4 to 7.6 did suggest the PES(Q1) construct was
performing almost as well as EWS, which was weaklyociated with the alternative
healthy eating index (AHEI) and the dietary clust@hapter 5). Convergent validity

of PES(Q1) was tested against the same measures.

The PES(Q1) aggregate score was poorly correlategtiee AHEI, with values of

0.181 and 0.121 for men and women, respectivelis Was well illustrated by table
7.7 in which positive and significant—but quite \Wkeagradients were observed
across quartiles of PES(Q1). Quartiles cross-taionls further strengthened this
observation, with a number of participants claedifin opposite quartiles (table 7.7),
which resulted in poor agreement between the AHEI BES(Q1). All figures

indicated that the PES(Q1) was less related to AH&h the EWS.

Table 7.7: PES(Q1) and AHEI quartiles cross-tabulabn (4: healthier)

PES(Q1) quartiles

Men (n=5,626) Women (n=2,518)
1 2 3 4 1 2 3 4

Mean AHEI” 37.6 40.7 419 43.0 40.6 453 457 449
AHEI quartiles ®

1 440 325 286 258 213 127 125 154

2 424 378 325 329 146 149 140 138

3 322 358 396 347 174 175 167 147

4 219 346 400 473 97 178 199 189

AHEI, alternative health%\?ating ind€p<.001 in both sexes for heterogeneity ANOVA across
quartiles>Weightedx-statistic: 0.118 in men, 0.077 in women.

The conclusions were similar for dietary clusteveak associations in the expected
directions, with a number of misclassified indivads (table 7.8). Mean PES(Q1)
values by dietary cluster were analogous to EW8$) lewer scores obtained in the
sweet cluster, and highestes in the healthy cluster (table 7.8).
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Table 7.8: Dietary clusters and PES(Q1) quartilesA( healthier) cross-tabulation

Men (n=5,303) Women (2,301)
Quartiles Mean Quartiles Mean
Cluster 1 2 3 4  PES(QL)* 1 2 3 4 PES(QL)*
Unhealthy 545 466 460 412 28.5 262 172 167 143 2 34.
Sweet 330 265 205 87 25.3 73 37 20 19 30.3
Med. 155 249 280 242 30.2 102 147 113 44 33.9
Healthy 298 354 394 561 32.3 149 229 275 349 40.3

Med. Mediterranean. * p<.001 in both sexes for tugfeneity ANOVA across clusters

The trends displayed in tables 7.7 and 7.8 remausey close to those observed
with the EWS aggregate score, and convergent walidf the PES(Q1l) was
confirmed. The weakest associations obtained betwB&S(Ql) and AHEI
concurred with the slight differences observedciamstruct validity between the two

aggregate scores.

7.5 Non-dietary characteristics and PES(Q1)

7.5.1 Socio-demographic characteristics

Associations between PES(Q1) and age, ethnicityeamployment grade were
almost equal to those obtained for the EWS (tal8g This was equally true for

marital status, but the association was not sicguifi in women.

7.5.2 Health behaviours and self-perception of heal th

Table 7.9 estimates were also very close to thedsreobserved with the EWS
aggregate score. The health consciousness ofipartis in the healthier quartiles of
the PES(Q1) aggregate score was well illustratedhbytwo questions relating to
health perception. Current smoking was lower inlthea men, but the association
was not significant. In women, a U-shaped assariatvas observed for current
smoking, the difference between quartiles beinggmatly significant. As for EWS,
physical activity was not related to PES(Q1).
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7.5.3 Concurrent validity against risk factors and inflammatory
markers

Consequent to observations made above, it was norisel that most trends
displayed in table 7.10 were alike those in chapteParticipants in the healthier
quartiles of the PES(Q1l) aggregate score were nhi@ety to be obese or
overweight, and to suffer from hypertension andigigaemia. In both sexes, there
was a positive but non-significant association wgirevalence of longstanding
illnesses. Associations with inflammatory markerserev slightly attenuated
compared to the EWS.

In summary, the cross-sectional associations oddafior the SAIN,LIM derived

PES(Q1) were similar those previously observed uhth EWS aggregate score.
Construct and convergent validity were confirmed{ bBssociations were weaker
than for EWS. Predictive validity was tested ndrt,assess whether these small

differences were reflected in the prospective @afions.
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Table 7.9: Socio-demographic characteristics and laéth behaviours across PES(Q1) quartiles (4: healtér)

Men Women
Variable (mean or %) 1 2 3 4 p* 1 2 3 4 p*
Age (y) 48.5 49.0 49.7 50.2 <.001 49.6 50.0 50.7 51.4 k.00
% living aloné 18.6 159 17.9 16.9 0.237 43.2 35.5 32.8 35.0 10.00
Ethnicity (% white) 96.6 95,5 94.6 87.7 <.001 95.4 90.4 83.5 76.4 k.00
Grade (% high) 20.1 221 25.6 21.8 6.27 8.47 5.93 2.92
Grade (% intermediate) 73.4 719 69.7 69.6 <.001 60.0 57.3 53.5 47.6<.001
Grade (% low) 6.50 6.03 4.67 8.62 33.8 34.2 40.5 49,5
% never smoker 47.9 48.8 485 48.9 51.9 55.2 60.5 55.8
% ex-smoker 36.8 38.7 40.0 39.4 0.067 28.2 28.0 25.8 25.80.050
% current smoker 15.2 125 115 11.7 19.9 16.8 13.7 18.4
METS" 3.93 3.92 3.97 3.94 0.975 3.37 3.37 3.36 3.06 @.20
% inactive 62.9 63.9 62.2 63.0 0.830 72.4 73.5 71.8 75.6 10.44
% Agree strongly
"Keeping healthy depends 27.1 328 34.6 404 <.001 321 36.3 40.7 393 k.00
on me"
op .
% "Healthis extremely 59 407 426 490 <001 457 442 518 551 .00

important"

$Never married/cohabiting, divorced, or widowédetabolic equivalents. * Heterogeneity ANOVA gf
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Table 7.10: Risk factors and inflammatory markers évels across PES(Q1) quartiles (4: healthier)

Men Women
Variable (Mean or %) 1 2 3 4 p* 1 2 3 4 p*
BMI (kg/m?) 248 25.0 252 256 <.001 252 252 259 265 Xx.00
% underweight 450 343 335 294 931 588 455 461
% normal weight 53.1 521 493 420 001 459 509 470 379 <001
% overweight 359 374 403 472 ° 32.3 289 316 389 °
% obese 649 7.01 7.00 7.84 125 143 16.8 18.6
Systolic blood pressure (mmHg) 121 122 122 123 0.003 117 116 119 119 <.001
% Hypertensioh 19.2 221 219 251 0.004 155 139 202 224 k.00
Cholesterol - Total (mmol/L) 6.41 643 650 6.58 <.001 6.49 6.49 650 6.62 ®.19
Cholesterol - LDL (mmol/L) 439 441 446 452 0.006 428 425 426 4.38 .15
Cholesterol - HDL (mmol/L) 1.33 132 132 1.32 0.748 169 169 169 167 4.85
Triglycerides (mmol/L) 153 159 163 1.67 0.018 118 123 122 125 D.46
% Dyslipidaemia 59.5 60.8 63.0 64.9 0.024 543 523 504 574 ®.10
% longstanding illness 31.8 333 358 346 0.136 326 352 351 365 10.54
Fibrinogen (g/L) 232 233 233 239 0.007 258 256 258 265 .08
Von Willebrand's factor (1U/dl) 105 109 106 109 0.055 106 108 110 115 0.003
C-reactive protein (mg/L) 194 166 1.67 184 0.300 212 212 243 234 8.48
Interleukin-6 (ng/L) 1.79 174 181 190 0.296 221 226 219 238 M.61

*Hypertension was defined as systolic or diastdiiot pressure 140 or> 90 mmHg, respectively, or by the use of hypertensgirugs.
* Heterogeneity ANOVA ory?
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7.6 Predictive validity of PES(Q1), similar U-shape s

The Cox regression models implemented for the PES&Qgregate score kept the
same specifications as those for the EWS aggregate. Prospective associations
between PES(Q1) quartiles and CHD, diabetes, camuetality, and all-cause
mortality were investigated with three levels ofustinent (see chapter 6 for more
details). PES(Q1) was associated with sex (CochAramtage trend test p-value was
below 0.001) and Cox models were adjusted accgigimhe reference quartile

remained the first, and least healthy, one.

Table 7.11 presents hazard ratio estimates fomatlels. Similarly to EWS, some
significant quadratic trends were observed whilke tlll-hypothesis could not be
rejected for the linear trend tests. Yet, tablel sliggested that the PES(Q1) was
more strongly related to prospective incidence edlth outcomes than the EWS.
Significant associations showed risk reduction amere relatively robust to

adjustment.

Borderline significant linear risk reduction of cam mortality, and all-cause
mortality to a lesser extent, was observed in thky-adjusted model. Despite the
non-significance, it was suggested that particpamthe fourth quartile were less at
risk than the reference group. Also, there wagaifstant risk reduction of all-cause
mortality robust to adjustment within participaiighe second quartile of PES(Q1).

No linear risk increase of CHD was observed. Thadgatic trend was highly
significant and the third quartile was associateth & significant risk reduction in

models 1 and 3.

There was a suggestion of a linear risk increaseliibetes in models 1 and 2; the

trend was attenuated and non-significant in model 3

An interesting aspect of the three models, alredzberved with the EWS, was that
the adjustment of model 3 tended to bring downeistemates, especially the fourth
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quartile ones. This led to a slight attenuatiomthef quadratic trends, which remained

significant for all outcomes except diabetes.

Table 7.11: Cox regression estimates for PES(Q1) guiles (4: healthier)

Quartile Model 1 Model 2 Model 3
Outcome /trend HR 95 % ClI HR 95 % ClI HR 95 % ClI
CHD (318/ 1 Ref Ref Réf
7,174) 2 0.80 0.58 1.09 0.83 0.60 1.13 0.79 0.58 1.09
3 0.71 0.51 0.98 0.74 0.53 1.04 0.71 0.51 0.99
4 1.23 0.91 1.67 1.27 0.94 1.73 1.21 0.89 1.64
Linear 1.06 0.95 1.17 1.07 0.96 1.19 1.05 0.95 1.17
p quadratic 0.002 0.010 0.010
Diabetes 1 Ref* Ref* Ref*
(754 / 2 0.88 0.71 1.10 0.92 0.74 1.14 0.90 0.72 1.11
6,868) 3 1.01 0.82 1.25 1.07 0.87 1.32 1.02 0.82 1.25
4 1.11 0.90 1.38 1.15 0.93 1.42 1.06 0.85 1.31
Linear 1.05 0.98 1.12 1.06 0.99 1.14 1.03 0.96 1.10
p quadratic 0.249 0.704 0.801
Cancer 1 Ref Ref Ref
mortality 2 0.80 0.56 1.13 0.78 0.55 1.11 0.79 0.55 1.11
(251/ 3 0.76 0.53 1.08 0.74 0.52 1.06 0.73 0.51 1.05
7,235) 4 0.73 0.51 1.06 0.71 0.49 1.03 0.69 0.48 1.01
Linear 0.90 0.80 1.02 0.90 0.79 1.01 0.89 0.79 1.00
p quadratic 0.029 0.022 0.027
All-cause 1 Ref Ref Ref
mortality 2 0.71 0.56 0.92 0.73 0.57 0.93 0.72 0.56 0.92
(524 / 3 0.86 0.68 1.09 0.88 0.69 1.12 0.87 0.68 1.10
7,242) 4 0.80 0.62 1.03 0.81 0.63 1.05 0.79 0.61 1.02
Linear 0.95 0.88 1.03 0.96 0.88 1.04 0.95 0.87 1.03
p quadratic 0.011 0.029 0.035

Model 1 adjusted for age, sex, and ethnicity. Mdatjusted for marital status, employment grade,
smoking status, physical activity level, and eneagg alcohol intake. Model 3 adjusted for BMI,
hypertension and dyslipidaemia status, and preealeflongstanding illness

HR, hazard ratio; Cl, confidence interval. * Stiiatl for sex.” Stratified for BMI categories.

8 Stratified for longstanding illness and dyslipidaam
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7.7 Discussion

The results from this chapter largely followed oriesm chapters 5 and 6. The
PES(Q1) construct was shown to be valid. Associatiwith existing measures of
dietary quality were significant and in the expéatiérection, but weaker than for the
EWS aggregate score. Concurrent validity could metconfirmed, with a riskier
profile for participants classified as healthiegtthe PES(Q1). Similarly to the EWS
aggregate score, survival analyses estimates gexpktrong quadratic trends and no
significant linear risk reduction. Based on the REH aggregate score results,
predictive validity of the SAIN,LIM model could nobe established despite
significant risk reduction of CHD and all-cause mabty observed for participants in
the middle quartiles of the PES(Q1).

The comparison of results obtained with EWS and (BEp were subject to a
methodology limitation. The aggregation algorithosed for the two NP models
were not exactly similar because of the dual natdithie SAIN,LIM model. Unlike
EWS, the PES(Q1) aggregate score did not takeaiotount the exact SAIN and
LIM scores obtained by each FFQ-item. In sectidhy @ composite NP score, the
“LIM minus SAIN”, was created for comparison purpss An aggregate score,
EW(LIM-SAIN), was derived from this composite NP deb. Results were very
similar to the EWS aggregate score (not shown) @mfirmed the observations
made with PES(Q1). The EW(LIM-SAIN) aggregate sca@s not retained for
further analyses.

The implementation of the SAIN,LIM model was dore dssess whether the
predictive validity results obtained for WXYfm, wdhi did not follow the hypothesis,
could be explained by the NP model itself. The \v@milar conclusions drawn with
SAIN,LIM, via the PES(Q1) aggregate score, suggettat the above assumption
could be refuted. However, the WXYfm and SAIN,LIModels ranked foods
relatively similarly and were both across-the-boaldorithms. Therefore, both
models could be similarly flawed in ways that woudhtail the U-shaped
associations. It was not possible to apply anoiférmodel within the timeframe of
the project. As highlighted in chapter 6, othertdas could have explained the

predictive validity results. The following chapfecuses on these factors.
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Chapter 8. Explaining the quadratic trends

The predictive validity hypothesis that diets camtay higher content of healthy
foods would be protective against prospective dieratisease was not fully
confirmed by the two previous chapters. Severaiofaccould have impacted and
biased the estimates obtained for WXYfm and SAIN|LIcompromising the

predictive validity results.

The goal of this chapter was to explore in detsl potential impact of such factors
to obtain a better understanding of the U-shapesdcations. Three factors were
investigated: (i) misreporting of dietary intak@s); dietary variety; and (iii) nutrient
profiling (NP) models’ components and respectivgragate scores. The analysis of
these three factors was done in three separat®orsecihe hypotheses, specific
methods, and results were all presented in theeotisp sections. A global

discussion gathered conclusions for all three facto

Given the similarity of the results obtained witte two NP models, only the results
for WXYfm and EWS are presented in the main tex¢sits for the SAIN,LIM
model and the PES(Q1) aggregate score are reporgggbendix 3.

8.1 Dietary misreporting in the Whitehall Il cohor tand
implication on health outcomes

Dietary misreporting was previously shown to beatigely common among
Whitehall 1l participants and to be related to sams& factors (chapter 2). Chapters
5 and 7 suggested that energy misreporting waersgsically associated with both
aggregate scores. Therefore, it may have confoutitegrospective associations
obtained in chapters 6 and 7. The aim of this sectvas to apply more refined
methods to detect and measure dietary misreportingrder to verify whether
misreporting could have entailed the U-shaped #st$oics.
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First, energy misreporting which relates to gloloald intake (i.e. some participants
reporting less—or more—foods than actually consymeds assumed to be
associated with the aggregate scores rankings.Gdidberg cut-off method was
used to determine whether an individual was a laeceptable, or high energy
reporter. Sensitivity analyses excluding misrepsrté.e. low and high energy
reporters) were run to assess the effect of enamgyeporting on the predictive

validity results.

Second, the direct comparison of FFQ and 7-daydilgy (7DD) intakes allowed to
verify the hypothesis that foods commonly consideas less healthy are under-
reported with the FFQ, while the healthy foods @rer-reported. If confirmed, such
differential misreporting of FFQ-items may havetlier influenced the aggregate
scores. As a result, the regression calibratiohrigwie was applied using the 7DD
data as reference measure to obtain predictedoroeated, intakes for each FFQ-
item. Corrected aggregate scores were derived flmese predicted intakes and
included in Cox models. It was assumed that theected aggregate scores would
reflect unhealthier diets as put forward by thdedéntial misreporting of foods
hypothesis. The corrected aggregate scores wouddltrén new rankings of
individuals, and potentially very different prospee associations with incident
health outcomes.

The Goldberg and regression calibration methodspegeented first as they were
specifically used for misreporting analyses. Ale thesults are presented for the
WXYfm-derived EWS aggregate score only. Appendix@udes the results for the
PES(Q1) aggregate score.
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8.1.1 Methods, Goldberg cut-off and regression cali  bration

(i) Dietary data
Detailed presentation of the Whitehall 1l data vaase in chapter 4. This section
includes a brief summary of dietary assessmens tos¢d for the Goldberg cut-offs

and regression calibration models.

a. Food frequency questionnaire

FFQ intakes were available for 8,225 participaiitse main issue regarding FFQ
data was missing values. All the following analyse$y included participants with

less than 10 missing items. For the regressiorbredion model which assumes
normality of distributions, all missing values weset to 0.001 and intakes were log-

transformed.

b. 7-day diet diary

At phase 3, participants were given a 7-day diaipy) at the clinic, with the
instruction to complete it at home and send it baitk the provided envelope. 6,726
diaries were received. To date, 1,350 diaries Hmen coded by the Whitehall i

study team.

In order to match the 7DD data with FFQ-items, ®odported in the diet diaries
were regrouped into items corresponding to the K#F®@s. Hence, some foods
recorded in the 7DD were not used in the analysabere was no FFQ equivalent
(e.g. condiments and spices). For coffee, teakimhgnchocolate and Horlicks, some
rescaling was needed in order to fit the FFQ ddtzan daily intake of each “7DD-

item” was obtained by dividing total intake by nuenlof days recorded. Participants
with less than 5 completed days were excluded flmmanalyses. For foods with no
reported consumption, intakes were set to 0.00thkés were log-transformed for

the regression calibration model.
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(ii) Detection of energy misreporters using the Galberg cut-off method

This technique is based on the fundamental equé#ti@nenergy expenditure equals
energy intake when body weight is constant (chapjerlt uses calculated basal
metabolic rate (BMR) available with anthropomemmeasurements of Whitehall I
participants and estimated physical activity dedi®m the general questionnaire.
The reported energy intake (§) of a participant is validated by defining an
acceptable range for the (&IBMR ratio (Goldberget al, 1991) given by the

equation below:

PALxexp{umm X F/lOOj < El,,/BMR < PALxexp{umaxx F/lOOj

Jn P Jn
With PAL the physical activity level category ofethindividual; wi,==-1.96 and
Umax=1.96 for the 95% confidence limit of a normal dimition; n the number of
subjects, here n=1 as the technique was appliegiduagdlly. F is the factor that
accounts for the individual variation in intake, BMuind energy requirements, and is
given by:

2
F= \/—CVWE' +CV72, +CV2
d

Where C\(g is the within-subject coefficient of variation @mergy intake, d is the
number of days of diet assessment,,g16 the coefficient of variation of estimated
versus measured BMR, and Vs the individual’'s day-to-day variation in PAL

(physical activity is assumed to vary on a dailgibpa

The Goldberg technique has been previously impleadeint the Whitehall 1l data
using a single PAL category for the definition ateaptable reporters, which might
have led to some misclassification (chapter 2)cBlavestigated the validity of the
Goldberg cut-offs at the individual level (BlackO@Db). She concluded that
misclassification of low and high energy reportees minimised when dividing the
population into three categories of PAL. This applowas retained for the present
analysis, and the terms in the Goldberg equatiae werived as follows:

* Elpwas obtained from the phase 3 FFQ.

* The BMR was calculated using 1991 Committee on Medispects of Food

Policy (COMA) equations (Department of Health, 191
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» Classification of individuals into three physicaktigity level (PAL)
categories was done using the 1991 COMA recommemdat Since
Whitehall 11 participants were all working in civitervice offices, the
occupational category “light” was used. Non-occigratl physical activity
was derived from the phase 3 questionnaire (ppdnts reported their
average hours per week of mild, moderate and vigoaativities).

e The parameters included in the F factor have bestimated in several
studies (FAO/WHO/UNU, 1985; Black, 2000a). The FB&sessing usual
dietary intake, the C)\/d term was set to 0. G¥ and C\jp were set to
8.5% and 15%, respectively, using Black’s recomraéinds.

The Goldberg cut-offs were computed for these \whfeC\,z, CVip and for each

PAL category depending on the participant’s regbrémergy expenditure. The
respective cut-off values are given in table 8.1.

Table 8.1: PAL categories and associated Goldbergiteoffs for use at phase 3

PAL category Elp/BMR cut-off values
(value)
Lower Upper
Mild (1.4) . 0.999 A b 1.96 High
Moderate (1.5) r:w energy 107 cceptable 510 igh energy
porter reporter reporter
Heavy (1.6) 1.14 2.24

El.p reported energy intake; BMR, basal metabolic; iafel, physical activity level (target value for
the El./BMR ratio).

(i) Predicting individual FFQ-items true intake, regression calibration

A case study conducted on fruit and vegetablesatéeld that regression calibration
was the most appropriate method when only oneraltiee to the FFQ was available
(appendix 7). 7DD data were used as the alternatmeasure, and the same

algorithm was applied to all FFQ-items.
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a. Terminology and notations

Let T; denote the trumtake of food i in participant j, which cannot bleserved. The
food record (7-day diaryRR; , and FFQQ; , are two surrogate measureslgfand
are measured with some error. The 7DD data is der=il as the closest measure to
true food intake and follows a simple random emadel:

Rj =Ti + erij [1]
Where the errors are independent gf and of each other and are normally
distributed with a mean of zero (is; ~ N(0,07)).

Food frequency questionnaires are likely to be dulameasures of true intake.
Therefore, FFQ measures are assumed to followrtearimodel defined below:

Qi = aqi + foiTy + &qijj [2]
Whereeg; have the same properties as aboygis the systematic bias agid; is the

scaling bias of the FFQ, for food i.

In order to estimate the systematic and scaling paameters, the FFQ variable of

interest must be regressed on another referenceuneetmllowing model [1].

b. Regression calibration, Rosner & Gore method

Regression calibration uses 7DD as this refererezsare, truetake is represented
by the diet diary reported value and equation gjdmes:
Qij = aqi + foiRy + &qi [3]

Under the strong assumption that random errorotif methods are not correlated,
I.e. errors in the FFQ and 7DD are independent:

COV(Er;,T;) =0

{cov(sR;,g;ij):O 4]

Our goal was to predict the diet diary value (reprging true intake) for all
participants, including those not in the validatisab-sample, using regression
calibration estimates from the validation sub-samplhis was achieved by
implementing a linear model between FFQ and 7DDontepl values in the

validation sub-sample.
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Our model followed the approach developed by Rosner Gore. It included non-
dietary covariatesZ and the associategregression parameters) associated to both
true and reportedintake (sex, age, BMI, physical activity, employrmegrade,
ethnicity, and smoking status) as well as all FEEB ;) as potential predictors of
the diet diary value (Rosner & Gore, 2001). Thibofwed observations that some
FFQ-items were more associated to a diet diarkéthan the respective FFQ-item
(e.g. FFQ hamburger was a better predictor ofdieaty chips than FFQ chips). The
model was, for food i and participant j:

Rj= Joi + Z ArecQj + Z 7iZj + &ij [5]

A stepwise selection of FFQ intake variables wagle@mented to retain only FFQ-
items Qj;) which contributed significantly to the model (p&0), with all non-

dietary covariatess) forced in the model. Once parameter estimates whtained
using the general least squares method, the peediaie(diet diary)intakes Rj)
could be calculated in the whole population:

FA%‘ :jonj +szEGiQij +Z}'}izij [6]

As all models were linear, variables were log-tfameed to reach distributions

closer to the normal one.

8.1.2 Results

(i) Goldberg cut-off, energy misreporting

a. Distribution of energy misreporters and assmmawith dietary patterns
The implementation of the Goldberg cut-off techmddentified 5,884 out of 8,033

(73.3%) participants who reported intake within theceptable” range (table 8.2), in
line with previous observations (chapter 2). Coradato women, more men were
low energy reporters, yet more were in the accéptednge. The almost 30% of
participants which misreported their intake mayéaad a strong influence on the

relationship between aggregate scores and heditbroes.
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Table 8.2: Energy misreporting among Whitehall 1l participants (column %)

Reporting level Men (n=5,561) Women (n=2,472)

Under 21.5 14.3
Acceptable 73.6 72.5
Over 4.9 13.2

Table 8.3 highlighted that energy reporting lewstre highly related to intake of
most food groups. Generally, there was a positbg®eiation between higher energy
reporting and energy dense groups like sweets aacks or spreads. The trend was
negative for food groups with low energy densitgmely drinks, and fruit and
vegetables; and for meat, fish, and potatoes,amckpasta. This was consistent with
previous observations in which low energy reportersded to over-report foods
commonly considered as healthy, and to under-refomtis considered as less
healthy (Macdiarmid & Blundell, 1998; LivingstoneBlack, 2003).

The associations observed in table 8.3 were tramtskt the nutrient level, as shown
in table 8.4. Overall, high energy reporters rett more energy from fats except
cholesterol, and less from protein and alcohol,lime with previous findings
(Livingstone & Black, 2003). The association withrlsohydrates was weak. Intake
of micro-nutrients was generally higher among lovergy reporters, confirming the
trends observed for fruit and vegetables, meat, featld The very strong positive
gradient observed for energy intake confirmed thadsification of participants into

energy reporting levels depended mainly on repdded intake.

Low energy reporters appeared to have healtiets (tables 8.3 and 8.4), which
resulted in a systematic inverse association betvesergy reporting level and the
EWS aggregate score (table 8.5). The reported estaik participants classified in
the fourth quartile of EWS were therefore more ljjkaot to represent their true
intake and energy misreporting would have led techassification of participants, in

line with the expectations.

Results were similar for the PES(Q1) aggregatees@nd confirmed the hypothesis
that energy misreporting could have resulted inclassification of participants

(appendix 3).
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Table 8.3: Food group intake by reporting level

Food group Men Women

(g/2,000kcal) Under  Acceptable  Over p* Under Acceptable Over p*

n 1,195 4,093 273 354 1,791 327

Meat products and eggs 142 123 107 <.001 144 128 02 1<.001
Fish and shellfish 37.3 29.4 26.0 <.001 42.5 37.6 31.8 <.001
Bread and crackers 75.2 93.7 83.0 <.001 76.5 82.4 754 0.029
Breakfast cereals 37.6 36.0 33.1 0.167 30.2 39.6 8.0 3 0.001
Potatoes, rice and pasta 194 169 154 <.001 197 175 155 <.001
Dairy products 409 410 534 <.001 453 498 842 <.001
Meald 19.7 21.3 21.1 0.068 19.7 21.0 16.1 0.001
Fat spreads 134 17.3 17.0 <.001 135 15.7 15.80040.
Snacks and sweets 67.5 88.0 107 <.001 61.2 70.8 .1 84.001
Sauces and other 29.1 36.2 38.9 <.001 26.9 32.2 324 0.001
spreads

Drinks® 751 617 502 <.001 921 731 584 <.001
Fruits and nuts 253 201 181 <.001 365 319 265 <.001
Vegetables 264 206 176  <.001 356 272 205 <.001

*Meals included quiche, pizza and lasagiecluded alcohol and milks. *Heterogeneity ANOVA@ss reporting levels.
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Table 8.4: Nutrient densities by reporting level

Nutrient Men Women

(unit/2,000kcal)’ Under Acceptable Over p* Under Acceptable Over p*
Energy (crude kcal) 1,547 2,446 3,905 <.001 1,192 1,999 3,317 <.001
Total fat (%en) 31.4 334 35.8 <.001 30.9 32.6 345 <001
SFA (%en) 12.4 135 15.2 <.001 12.2 13.3 15.2.00%
MUFA (%en) 9.71 10.1 10.7 <.001 9.29 9.75 9.96.001
PUFA (%en) 6.15 6.55 6.62 <.001 5.98 6.19 6.00.116
Z)Ztef"r'])carb"hydrates 48.2 48.8 482 0.011 49.7 49.4 49.1 0.569
Protein (%en) 18.2 16.9 16.3 <.001 19.7 18.7 184.001
Alcohol (%en) 5.59 4.32 3.00 <.001 3.17 2.62 1.33.001
Sodium (mg) 2,447 2,516 2,521 <.001 2,413 2,511 4842, 0.002
Potassium (mg) 3,942 3,525 3,389 <.001 4,422 4,0654,012 <.001
Calcium (mg) 1,061 1,055 1,182 <.001 1,161 1,212 /543 <.001
Magnesium (mg) 354 331 314 <.001 373 357 347 <.001
Phosphorus (mg) 1,551 1,490 1,520 <.001 1,673 51,66 1,808 <.001
Iron (M) 11.9 11.4 10.3 <.001 12.7 12.2 10.5 %£.00

(Continued)
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Table 8.4 (continued)

Nutrient Men Women

(unit/2,000kcaly’ Under Acceptable Over p* Under Acceptable Over p*
Vitamin A (ugRE) 1,095 1,078 1,105 0.497 1,356 1,188 1,157 0k.0
Vitamin D (ug) 4.29 4.05 3.65 0.001 4.84 4.62 3.98 0.001
Thiamin (mg) 1.80 1.72 1.63 <.001 1.88 1.83 1.75.00%
Riboflavin (mg) 2.15 2.09 2.19 0.003 2.26 2.33 12.7<.001
Niacin (mgNE) 23.2 21.2 19.0 <.001 24.9 23.0 19.4.001
Vitamin C (mg) 141 119 110 <.001 204 173 146 <.001
Vitamin E (mg) 5.07 4.72 457 <.001 5.96 5.53 4.8%.001
Vitamin B6 (mg) 2.43 2.19 2.03 <.001 2.57 2.46 32.3<.001
Vitamin B12 (g) 6.81 6.34 6.55 <.001 7.67 7.21 7.74 0.009
Total folic acid (19) 325 295 271 <.001 365 337 308 <.001
Panthothenic acidu) 5.64 5.26 5.28 <.001 6.13 5.95 6.36 <.001
Biotin (ug) 41.9 38.9 39.0 <.001 43.1 41.4 422 0.021
Cholesterol (mg) 231 214 213 <.001 246 230 220 0%k.0
Fibre (g) 23.4 22.4 20.3 <.001 26.1 25.1 212 %.00

%en, percent of energy intake; SFA, saturated atiy; MUFA, Mono-unsaturated fatty acid;
PUFA, Poly-unsaturated fatty acid; RE, retinol &gient; NE, niacin equivalent.
# Except energy intake. *Heterogeneity ANOVA acrossorting levels
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Table 8.5: Energy misreporting across EWS quartileg4: healthier)

Men Women
Column % 1 2 3 4 1 2 3 4
% Under 12.6 16.0 22.7 34.8 8.70 11.7 16.1 21.1
% Acceptable 79.5 79.4 73.2 62.3 75.0 76.9 70.3 67.3
% Over 7.87 4.60 417 2.96 16.3 11.5 13.6 11.5

¥ p<0.001 for both sexes

b. Reporting level and non-dietary characteristicgarticipants

Acceptable energy reporters were more likely to never smokers, of white
ethnicity, and of high employment grade (table 8.6) line with previous
observations (Brunner, 1997; Stalloeé al, 1997), there was a strong inverse
association between energy reporting level and IBd§H, with most obese and
overweight participants being under-reporters. €hveais an inverse association with
physical activity, significant in women only. Assations with blood pressure and
blood lipids were significant in men and suggestdxbtter profile for acceptable and
over-reporters. Low energy reporters had theretordess favourable risk profile

which was consistent with previous findings (Macaial & Blundell, 1998).

Low energy reporters being more likely to besclassified in the EWS fourth
quartile (table 8.5), the association between gnargsreporting and higher
prevalence of vascular risk would have confoundwsel prospective associations
between EWS and chronic disease. In line with thecarrent validity results in
chapter 5, the increased risk factors levels amardgr-reporters classified in the
fourth quartile of EWS would have entailed the W@ystd associations. Conclusions
were similar for the PES(Q1) aggregate score (agipe3) and sensitivity analyses

were run to test such assumption.
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Table 8.6: Non-dietary characteristics of participants by energy reporting level

Men Women
Mean or % Under Acceptable Over p* Under Acceptable Over p*
Age (y) 49.5 49.3 49.1 0.513 50.4 50.2 51.3  0.020
% living alone 21.3 16.1 17.7 <.001 36.2 36.1 39.8 0.438
Ethnicity (% white) 87.3 95.5 93.0 <.001 80.0 88.2 86.7 <.001
Grade (% high) 17.3 24.2 18.8 4.49 6.65 3.06
Grade (% intermediate) 73.4 70.5 70.8 <.001 50.6 57.6 44.0 <.001
Grade (% low) 9.29 5.28 10.3 44.9 35.8 52.9
% never smoker 42.7 50.3 48.1 51.1 57.2 53.9
% ex-smoker 41.0 37.9 41.0 <.001 27.9 27.2 245 0.015
% current smoker 16.2 11.8 10.8 21.0 15.6 21.7
BMI (kg/m?) 26.4 24.8 23.7 <.001 274 25.5 24.8 <.001
% underweight 2.02 3.68 7.98 3.31 5.92 10.0
% normal weight 35.9 52.2 63.9 35.2 47.5 46.0
% overweight 47.8 38.8 255 <001 35.2 325 34,6 <001
% obese 14.22 5.27 2.66 26.2 14.0 9.39
% inactive 62.2 62.5 66.7 0.359 68.8 72.8 79.2  0.008
Mets’ 3.85 3.95 3.72 0.299 3.24 3.34 2.86  0.030

(Continued)

126



Table 8.6 (continued)

Men Women

Mean or % Under Acceptable Over p* Under Acceptable Over p*

% Hypertensioh 26.4 20.9 21.2 <.001 20.1 17.7 16.5 0.467
Systolic BP (mmHg) 123 122 121 0.002 118 118 117 0.853
% Dyslipidaemia 65.0 61.7 54.5 0.005 50.9 53.0 58.2  0.152
Cholesterol - Total (mmol/L) 6.58 6.46 6.27 <.001 6.46 6.52 6.63 0.194
Cholesterol - LDL (mmol/L)  4.51 4.44 427 0.001 4.22 4.28 441  0.086
Cholesterol - HDL (mmol/L)  1.28 1.33 1.38 <.001 1.66 1.69 1.67  0.493
Triglycerides (mmol/L) 1.76 1.56 1.42 <.001 1.32 1.20 1.21  0.029
% longstanding illness 31.8 34.3 33.7 0.267 36.0 34.5 36.1 0.765

#Hypertension was defined as systolic or diastdbo pressure 140 or> 90 mmHg, respectively, or by the use of hypertensiugs.

$Metabolic equivalents. * Heterogeneity ANOVA gf test.
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c. Reporting levels and prospective health outcosmssitivity analysis

Sensitivity analyses were conducted to assess ffeet eof misreporting on the
aggregate score—health outcome relationship. Cgression models similar to
chapters 6 and 7 ‘model 3' were run excluding eyargsreporters. Table 8.7

contains the parameter estimates for the EWS agtgagore.

Compared to the original model, the exclusion ofreporters led to attenuated and
non-significant U-shapes for CHD and all-cause alyt The linear trends
remained non-significant but with lower hazard gaéistimates. For diabetes, a
significant quadratic trend was observed. A linesk reduction was suggested for
cancer mortality. For all outcomes, hazard ratiinesgtes of the fourth quartile and
the linear trend were lower when including accelgtabporters only. This strongly
suggested that the higher proportion of low enexgporters misclassified in the
fourth quartile of EWS confounded the prospectissoaiations obtained in chapter
6. The quadratic trend would have been explainedhbyhigher risk factor levels

among low-energy reporters.

However, the exclusion of energy misreporters ted smaller sample size, slightly
wider confidence intervals, and non-significanireates. The absence of linear and
protective trends could be further explained by there homogeneous sample
obtained once energy misreporters were excludedadt therefore not possible to
conclude more categorically on the effect of enarggreporting. A method using

the full sample should allow obtaining more robestimates.
For the PES(Q1) aggregate score, most quadratiddreere also attenuated when

excluding energy misreporters (appendix 3). Est®iathanges were smaller,

suggesting that the aggregate score was lessigensimisreporting.

128



Table 8.7: Hazard ratio estimates for sensitivity aalyses excluding energy misreporters,
EWS quartiles (4: healthier)

Outcome, Model 3,
cases/total Model 3 (chapter 6) acceptable reporters
(numbers for only
acceptable 0 0
reporters only) HR 95 %ClI HR 95 %Cl
CHD, 1 Ref Ref
318/7,174 2 0.82 058 1.15 086 059 1.27
(220/5,263) 3 1.03 0.75 141 1.15 0.80 1.67
4 1.22 0.89 1.69 1.18 0.80 1.75
Linear 1.09 098 1.21 1.08 095 1.23
p quadratic trend 0.003 0.061
Diabetes, 1 Ref Ref*
754 / 6,868 2 1.00 081 1.24 088 0.69 1.12
(511/5,060) 3 089 072 1.10 0.83 0.65 1.07
4 1.04 084 1.28 1.01 0.78 131
Linear 1.00 0.93 1.07 0.99 091 1.08
p quadratic trend  0.402 0.048
Cancer 1 Ref Ref
mortality, 2 094 065 1.35 098 0.66 1.47
251 /7,235 3 095 0.66 1.36 095 0.63 1.42
(185/5,309) 4 0.87 0.60 1.26 0.75 0.48 1.19
Linear 096 0.85 1.08 0.92 0.80 1.06
p quadratic trend  0.057 0.697
All-cause 1 Ref Ret
mortality, 2 085 0.66 1.09 088 0.66 1.17
524 /7,242 3 086 0.67 1.11 0.84 0.63 1.13
(372/5,312) 4 097 076 1.25 0.92 0.68 1.24
Linear 099 092 1.08 0.97 0.88 1.07
p quadratic trend 0.004 0.137

Model 3 adjusted for age, sex, ethnicity, maritatiss, employment grade, smoking status, physical
activity level, energy and alcohol intake, BMI, leyfension and dyslipidaemia status, and prevalence
of longstanding iliness.

HR, hazard ratio; Cl, confidence interval. * Stiiati for sex.” Stratified for BMI categories.

S Stratified for longstanding illness and dyslipidaam
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(ii) Differential misreporting of FFQ-items, comparison with diet diary data

The systematic association observed between enmemrting and the aggregate
scores rankings would have been due to differentiateporting of FFQ-items. The
Whitehall 1l FFQ was shown to over-estimate plaasdd micro-nutrients compared
to the 7-day diet diary (Brunnet al, 2001), but the analysis was not conducted for
specific food items. Diet diaries represent bettee levels of intake (Willett, 1998).
Therefore, the 7-day diet diary (7DD) reported ket were compared to the FFQ
intakes to identify which food groups and FFQ-itewese under or over reported in
the FFQ. Paired t-tests were conducted for all fgp@aips and for all FFQ-items and
their 7DD equivalent.

Table 8.8 revealed that fruit and vegetable in@keeported in the FFQ was indeed
higher than the 7DD reported intake. The inverss tuge for the snacks and sweets
groups. Dairy products and starchy foods appeardzktover-reported in the FFQ,
while drinks were under-reported. The differencbsenved with dairy products and
drinks could be due to some misclassification dkrdrunk with tea or coffee. Small
but significant differences were observed in alhest food groups except fish

products and spreads.

The differential intake between the two methods whghe food item level, as
illustrated in appendix 4 which contains the tdasisults for all items. In some food
groups, the difference between FFQ and 7DD datarelated to the WXYfm score
of the items (e.g. bacon and sausages were ungerted in the FFQ, while chicken

was over-reported).

The absolute difference in reported intakes betwkerF-FQ and 7DD tools may not
be the best way to assess the relationship betwheeriwo methods since they
measure different aspects of dietary intake. Anafysnear associations or rankings
between the two methods may therefore be more aeteor this purpose, the
regression calibration method was applied in aangtt to correct FFQ reported
intakes, i.e. to predict the participant’s trueake of each FFQ-item.
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Table 8.8: Mean difference between FFQ and 7DD repied intakes (n=1,349)

Difference FFQ — 7DD in g/d

Food group Mean (95% CL) p*
Meat products and eggs -7.10 (-11.2;-3.01) 0.001
Fish and shellfish -1.55 (-3.34; 0.25) 0.091
Bread and crackers -8.62 (-12.1;-5.17) <.001
Breakfast cereals 8.66 (6.64;10.7) <.001
Potatoes, rice and pasta 40.8 (36.0; 45.6) <.001
Dairy products 277 (247; 306) <.001
Meals 7.08 (5.46;8.71) <.001
Fat spreads 0.49 (-0.35;1.33) 0.254
Snacks and sweets -17.2  (-20.7; -13.8) <.001
Sauces and other spreads 125 (10.8;14.2) <.001
Drinks -139  (-167; -111) <.001
Fruits and nuts 130 (121;139) <.001
Vegetables 90.9 (84.1;97.7) <.001

*Paired t-test“Meals include quiche, pizza and lasagne. CL, cenfié limit.

(iif) Predicted true intakes of FFQ-items, survivalanalysis including corrected
aggregate scores

a. Predicted true intakes

The regression calibration model [5] of sectionBaias implemented to each FFQ-
item, using the 7DD as reference measure. A “ptedimtakes” dataset was created
for the whole study sample by using the regressadibration parameter estimates.
Individual estimates for all FFQ-items are giverappendix 4. The validity of FFQ

reported intakes vs. 7DD ones was highest for famisumed on a regular basis
and in easily identified quantities (e.g. beverageakfast cereals, and some
spreads); it was lowest for meat, fish , eggs,\@getables. This was consistent with
previous observations (Rosner & Gore, 2001) andwsHothat the absolute

difference of reported intakes observed in tabBef&tween FFQ and 7DD data was

not necessarily a sign of non-validity.

b. Corrected aggregate score

A correctedEWS (EWS_C) aggregate score was derived from tedigied intakes
dataset, using the EWS algorithm from chapter & EWS_C yielded unhealthier
values compared to the original EWS (table 8.9)is Tlollowed the original

hypothesis of fruit and vegetable over-reportingl @macks under-reporting. The
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rank correlation between the original and corre@gdregate score was quite low
(0.25). The dispersion of observations in figurd 8llustrated well the low
correlation coefficient and indicated that the EMZSw~ould derive a very different
rankings of participants compared to the EWS. Toeected PES(Q1) aggregate

score yielded similar results (appendix 3).

Table 8.9: Summary statistics for original EWS andegression calibration derivedEWS_C

Variable n Mean Std Dev Minimum Median Maximum
EWS 7,463 6.09 2.38 -2.50 6.11 16.8
EWS_C 7,463  9.00* 4.98 -2.99 8.86 21.6

* Significantly different from originakcore (paired t-test p<0.001)

15 20

EWS_C
10

T T T T T
-5 0 5 10 15
EWS original

Figure 8.1: Regression calibration derived EWS_C vsriginal EWS
The dashed line represents the y=x function

c. Proportional hazards regressions

The corrected EWS_C aggregate score clearly yietgsd rankings of participants,
with very different estimates compared to the EW&blé 8.10). None of the
guadratic trend tests was significant but the etqueaisk reduction was not
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obtained. Instead, most individual quartile estesandicated higher risk compared
to the original aggregate score. This was partibulaoticed for cancer, with a 62%
risk increase for participants in the EWS_C fouqimartile, which resulted in a
significant positive linear trend. A linear riskchrease was also suggested for CHD,
but the estimates were not significant. No speeifisociation could be observed for

all-cause mortality and diabetes.

The results for the corrected PES(Q1) were simiath all quadratic trends not
significant, and most point estimates suggestingemsed risk or no association

(appendix 3).

In summary, the corrected FFQ-items were associaitd less healthier diets as
measured by the aggregate scores, in line witldifferential misreporting of foods
assumption. The differences observed between ijgsmalr and corrected aggregate
scores confirmed that differential misreporting urced and had an impact on the
aggregate scores rankings. However, the survivalysis models yielded highly
unexpected results and no specific conclusion cdidddrawn from table 8.10
estimates. The regression calibration method iraelseveral limitations, including

some key assumptions which could have led to tlexpected results.
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Table 8.10: Cox regression estimates across EWS aBiVS_C quatrtiles (4: healthier)

Quartile/ Original EWS EWS_C
Outcome trend HR 95 %ClI HR 95 % ClI
CHD 1 Ref Ref
(318/7,174) 2 0.82 058 1.15 1.09 0.78 1.52
3 1.03 075 141 120 0.86 1.67
4 122 0.89 1.69 126 091 1.75
Linear 1.09 098 1.21 1.08 0.97 1.20
p quadratic 0.003 0.956
Diabetes 1 Ref* Ref*
(754 / 6,868) 2 1.00 081 1.24 129 1.06 1.58
3 089 0.72 1.10 098 080 1.22
4 1.04 084 1.28 0.97 0.78 1.20
Linear 1.00 0.93 1.07 096 090 1.03
p quadratic 0.402 0.105
Cancer 1 Ref Ref
mortality 2 094 065 1.35 126 085 1.85
(251/7,235) 3 095 0.66 1.36 1.41 0.96 2.06
4 0.87 0.60 1.26 1.62 111 2.36
Linear 096 0.85 1.08 117 1.04 1.31
p quadratic 0.057 0.902
All-cause 1 Ref Ref
mortality 2 0.85 0.66 1.09 090 0.70 1.15
(524 17,242) 3 0.86 0.67 1.11 094 073 1.21
4 097 0.76 1.25 1.06 0.83 1.35
Linear 099 092 1.08 1.02 094 111
p quadratic 0.004 0.071

Models adjusted for age, sex, ethnicity, maritatust, employment grade, smoking status, physical
activity level, energy and alcohol intake, BMI, leyfension and dyslipidaemia status, and prevalence
of longstanding iliness * Stratified for séXStratified for BMI categories.Stratified for longstanding
illness and dyslipidaemia. HR, hazard ratio; Chfadence interval.

8.1.3 Misreporting and quadratic trends, limitation S

First, the regression calibration model assumetidied diary data were an unbiased
estimate of true intake. Diet diaries are also prtmreporting error and it was not
possible to verify whether the associations obthingh the corrected aggregate
scores were closer to the trepidemiological associations. Also, the regression
calibration models assumed that errors in the FR@Qthe 7DD were independent,
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which was likely to be flawed. Yet, this may novbaltered the estimates too much
(Spiegelmaret al, 1997; Rosner & Gore, 2001).

Second, the FFQ and 7DD tools do not measure the sapect of food intake. For
foods rarely consumed, the 7DD data contained mmoe-consumers than
consumers and normal distributions were not obthingh the log-transformation.
As an example, strawberries are likely not to h@oreed in a 7DD if the diary is
completed in winter. Regression calibration estemaivere therefore particularly
affected for such foods as illustrated in appertiStatistical models dealing with
such issue were recently developed for 24-hourllrelzda (Toozeet al, 2006;
Kipnis et al, 2009; Zhanget al, 2011). Implementation of these techniques would
have required considerable adaptation of the regmesalibration models and was

beyond the scope of this project.

Last, the corrected versions of EWS and PES(Q1¢ \Wweear combinations of FFQ-
items predictedntakes, all obtainetly the regression calibration model. The errors
for each item intake estimate were therefore adgedand the resulting corrected
aggregate score may not be very meaningful. Thisdddoave explained the relative
independence observed between the original anéated aggregate scores (figure
8.1 and appendix 3), and the surprising survivalyasis results.

The identification of energy misreporters with tGeldberg method also included
some limitations which was the reason to applyrégression calibration models.
The exclusion of energy misreporters led to a loisstatistical power and wider
confidence intervals. The estimates from tablevBee subject to a selectidnas
since misreporting was shown to be associated satleral non-dietary covariates
and risk factors. The definition of the Goldbergeholds was based on self-report
and estimated measures, all prone to some erro©(\WAIO/UNU, 1985; Black,
2000a; Black, 2000b). The method was not initiatlgsigned to be applied
individually and the use of three PAL categorieswane to limit the number of
misclassified individuals (Black, 2000b). Last, thiethod assumed constant body
weight for participants across time. As a resuns participants may have been
misclassified if low (or high) reported energy keavas associated with an effective

weight decrease (or increase).
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8.1.4 Conclusion

Energy under-reporting was associated with impraggtegate scores rankings and
less favourable risk factors profiles. Cox regre@ssiexcluding energy misreporters
yielded attenuated U-shapes and lower hazard esfionates for the linear trend
tests compared to the original models (chaptersd6/a. The observed risk reduction
was not significant, but the sensitivity analygsults confirmed that the association
between low energy reporting and higher prevalefceascular risk was likely to
have confounded the predictive validity resultse Tdbsence of significant linear
associations may have been due to the samplectestror to selection bias, with

acceptable energy reporters being a relatively lygmeous group.

The association between energy reporting and agtgesgores rankings was linked
to differential misreporting of FFQ-items. The caamgon with 7DD data confirmed

that participants tended to over-report healthydfoand under-report less healthy
foods when using the FFQ. Differential misreportofgoods had an impact on the
prospective associations between aggregate scocesealth outcomes. However,
the regression calibration method did not yield sistent results and it was not
possible to conclude precisely on the influenceitierential misreporting of FFQ-

items.

The two aggregate scores retained in the preseatysas were weighted by energy
intake. This certainly increased their sensitivity energy misreporting and to
differential under-reporting of the energy densedf In chapter 4, aggregating
algorithm using different weighting scales werepgweed. Compared to the EWS
and PES(Q1), these alternative aggregate scoresehvdiso relied on the exact
reported amounts of each FFQ-item—yielded similankings and comparable
survival analyses results (not shown). Aggregaatgprithms relying less on the
exact reported intake may be better suit the arsalyspredictive validity of NP

models using FFQ data.

The use of the Goldberg cut-off and regressionbrcation techniques allowed
understanding better the impact of dietary misrgpgron the predictive validity
results. Yet, both methods were associated witbngtrlimitations, and were
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therefore not used in the subsequent analysesd@thmethods, such as adjusting

for total energy intake and BMI were retained toamt for energy misreporting.

8.2 Diet variety and aggregate scores

The WXYfm and SAIN,LIM NP models are “across-theabdi’ algorithms, i.e. the
same algorithm is applied to all foods regardleisthe food category. Across-the-
board models are designed to identify healthied$quer serather than healthier
versions of foods within food groups. As a resblbth WXYfm and SAIN,LIM
categorise all foods from some food groups as galhile other food groups have
all their items classified as unhealthy. The aggregcores EWS and PES(Q1) used
in the previous chapters did not take diet variatp account, and one could have
obtained a very high (or low) ranking by havingeayrestricted diet, which may be
detrimental to health (Michels & Wolk, 2002; Saatyal, 2005). On the other hand,
an individual eating a more varied diet may haveaioled an average ranking

despite having more balanced intakes.

Hence, it was assumed that participants in theeprquartiles of both EWS and
PES(Q1) had a lower dietary variety than those hie middle quartiles; such
association would have explained part of the U-sbapTo assess such an
assumption, dietary variety was first associateth whe aggregate scores and with
prospective health outcomes. Variety was then deduas a confounding variable in
chapters 6 and 7 Cox models. Dietary variety migitithave had the same effect in
participants having less healthy or healthier di@ésdefined by the aggregate scores.
The role of diet variety as an effect modifier wawestigated by including

interaction terms in the Cox regressions.

8.2.1 The food variety score

The food variety score (FVS), or diet variety scavas used to capture diet variety
within the Whitehall 1l FFQ. It was the number oF@-items reported to be

consumed more than once a week (Drewnoveskal, 1996; Drewnowskiet al,
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1997; Hatloyet al, 1998). Within the 7,251 participants of the coetpicase
analyses (chapters 6 and 7), the FVS ranged fra;®0, with a mean of 43.1.

8.2.2 Food variety score and aggregate scores

A slight quadratic association was observed betwkerEWS aggregate score and
the food variety score (table 8.11). This firstuledollowed the initial assumption
and was confirmed by regression models using sdueggregate scores (p<.001 for
EWS). Since the relationship was highly significafite VS was considered as a
potential confounder, and associations with pra$pechealth outcomes were
investigated. Results were similar for the PES(&Jregate score (appendix 3).

Table 8.11: Mean food variety score across EWS qutles (4: healthier)

EWS
1 2 3 4 p*
FVS 429 448 437 410 <001

FVS, food variety score.
* Heterogeneity ANOVA across quartiles

8.2.3 Food variety score and health outcomes

The association between the FVS and prospectiiéhrmacomes was first analysed
using log-rank tests for heterogeneity across deardf FVS. The tests highlighted
that the FVS was associated with CHD and all-cansdality (not shown). These
results were confirmed by Cox regression modelsiwbkuggested that variety had a
protective effect on CHD, cancer and all-cause afityt(table 8.12). These trends
were robust to adjustment and confirmed the rolediet variety in preventing
prospective chronic disease. As a result, the F\&S wcluded in the survival

analysis models of chapters 6 and 7.
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Table 8.12: Cox regression estimates across the beariety score quartiles

Quartile Model 1 Model 2 Model 3
Outcome /trend HR 95 % ClI HR 95 % ClI HR 95 % ClI
CHD (318 / 1  Ref Ref Réf
7,174) 2 0.72 0.53 0.97 0.75 0.55 1.02 0.73 0.53 1.00
3 0.87 0.64 1.18 0.93 0.67 1.29 0.86 0.62 1.20
4 0.59 0.43 0.81 0.64 0.44 0.93 0.59 0.40 0.86
Linear 0.87 0.79 0.96 0.90 0.80 1.01 0.87 0.77 0.98
Diabetes 1 Ref* Ref* Ref*
(754 2 0.98 0.80 1.20 1.00 0.81 1.23 1.01 0.82 1.24
6,868) 3 0.92 0.74 1.14 0.97 0.77 1.22 0.92 0.74 1.16
4 1.03 0.84 1.26 1.07 0.85 1.36 1.01 0.80 1.29
Linear 1.01 0.94 1.07 1.02 0.95 1.10 1.00 0.92 1.07
Cancer 1 Ref Ref Ref
mortality 2 0.73 0.52 1.02 0.75 0.53 1.06 0.75 0.53 1.06
(251/ 3 0.65 0.45 0.93 0.69 0.47 1.01 0.68 0.46 1.00
7,239) 4 0.68 0.48 0.95 0.74 0.49 1.12 0.73 0.49 1.10
Linear 0.88 0.78 0.98 0.90 0.79 1.03 0.90 0.79 1.03
All-cause 1 Ref Ref Ref
mortality 2 0.75 0.60 0.95 0.80 0.63 1.02 0.80 0.63 1.02
(5241 3 0.75 0.59 0.96 0.83 0.64 1.08 0.81 0.62 1.06
7,242) 4 0.68 0.53 0.86 0.74 0.56 0.99 0.74 0.55 0.99
Linear 0.89 0.82 0.96 0.92 0.84 1.01 0.91 0.83 1.00

Model 1 adjusted for age, sex, and ethnicity. Mdatjusted for marital status, employment grade,
smoking status, physical activity level, and eneagg alcohol intake. Model 3 adjusted for BMI,
hypertension and dyslipidaemia status, and pregalefilongstanding illness

HR, hazard ratio; Cl, confidence interval. * Stiiati for sex.” Stratified for BMI categories.

S Stratified for longstanding illness and dyslipidaam

8.2.4 Diet variety, confounder or effect modifier

() Variety as a confounding factor

Cox regression models from chapters 6 and 7 wereamnd further included the food
variety score as a covariate. The hazard rationastis obtained for all the outcomes
were very similar to the original results for b&WS and PES(Q1) (appendix 5.1).
Quadratic trends were very slightly attenuated amchained significant (or
borderline significant for all-cause mortality). i¥hwas not in line with the
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expectation that adjusting for the lower diet vigrien the healthiest individuals
would result in attenuated U-shapes. The differeimceliet variety between the
aggregate score quartiles was small (table 8.1, this would explain the very
small changes compared to the original Cox regoassi

Above models assessed diet variety as a confourfdatgr assuming that the effect
would be constant across aggregate score valuegs.asbumption might have been
flawed and models including interaction terms wene to assess whether diet

variety was an effect modifier.

(i) Interaction between aggregate scores and the®d variety score

Interaction termsf) were introduced in the Cox models between eadreggte

score quartile and the food variety score (aggeegabre quartile*FVS). As an
example for EWS, the model was specified as follomith the first quartile of EWS
(EWS_QL1) as the reference group:

Outcome (event/t) =ft)exp + Bo-EWS_Q2+B:-EWS_Q3 #,-EWS_Q4
+ 0, EWS_Q2*FVS 43 EWS_Q3*FVS 0, EWS_Q4*FVS

+v-FVS + covariates (age, sex, ethnicity) }+

For EWS, interaction terms were found significamr fcancer and all-cause
mortality, and borderline significant for CHD (nehown). For PES(Q1), the
interaction was significant with cancer mortalignd almost significant for CHD
(not shown). To interpret these results, Cox modadee stratified by FVS tertiles.
Figure 8.2 displays hazard ratio estimates forBWS aggregate score and model 1
(adjusted for age, sex and ethnicity). In these ef®gpdhe reference group was the
EWS first quartile (least healthy) combined witle teecond tertile of FVS. The
PES(Q1) estimates are displayed in appendix 3.3.
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Figure 8.2: Hazard ratio estimates across EWS quaites (4: healthier), stratified by FVS tertiles
The reference group was the 1st quartile of EW8 tieé 2nd tertile of FVS. Models were adjusted
for age, sex, and ethnicity
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142



For CHD, cancer and all-cause mortality, the inteom was well illustrated by the
crossing trends between the FVS tertiles (figur2).8Prospective associations
between EWS and the outcomes were mainly observedrticipants with low diet

variety, the associations were much weaker fori@pants in FVS second and third

tertiles.

More precisely, the EWS was inversely associateth wiancer and all-cause
mortality for those participants with low diet vaty (FVS f' tertile): significant

higher risks were observed for individuals in th&/& first quartile and trends
flattened in the %, 39 and 4" quartiles. The prospective associations were tigh
positive for participants in theé'®and & tertile of FVS, risk levels were alike. For
CHD, a strong J-shape was observed within the F¥Settile. Similarly to the

mortality outcomes, trends were slightly positive participants with mid to high
diet variety. For diabetes, trends were similapssi=VS tertiles, further confirming

the non-significant interaction tests.

The associations displayed in figure 8.2 were \Wwelled to the results of chapter 6
and uncovered details on the origins of the quadraénds. The most visible
example was obtained with the CHD outcome. Thengtrd-shape obtained with
participants in the FVS first tertile, more likdly be classified in the EWS extreme
quartiles (table 8.10), related well with table 8s2imates (model 1). The protective
effect of EWS on cancer and all-cause mortalityeobsd within participants
classified in the FVS first tertile would have slanly explained the trends of table
6.2. The U-shapes would have been due to the pesttends observed for
participants in the FVS second and third tertitegether with the flattening of the
trend for participants in the FVS first tertile. ridiabetes, there was no interaction

with diet variety and the trends for all FVS tegsilsuggested a U-shape.

The results for the PES(Q1) aggregate score weéde, alith a protective effect on
cancer and all-cause mortality among participantshe FVS first tertile, and no
specific trend for the FVS second and third testilEor CHD, a similar strong J-
shape was observed whereas the associations wakgfovaliabetes (appendix 3.3).
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8.2.5 Limitations

The index chosen to measutt variety, the food variety score, may not be th
most adequate tool. It measures quite well absolateety (e.g. eating different
types of chocolate bars) but does not give informnabn food group variety (i.e.
eating foods from all food groups). We conductedhier analyses using the diet
diversity score, a measure of food group varietse@@owskiet al, 1996; Duboiset
al., 2000; Savyet al, 2005). Conclusions were similar: participantswatlower diet
diversity score were more at risk and were moresiiea to the aggregate score

classification (results not shown).

In addition, the FVS depended on the grouping ofifoin the FFQ. As an example,
Whitehall 1l participants could report in much matetails their fruit and vegetable
intake (34 items), as opposed to meat or fish ({@®s). The results obtained with
the FVS were linked to the FFQ used in this studg may not have reflected the

truevariety of participants’ diets.

8.2.6 Conclusion

The EWS and PES(Q1) aggregate scores were noneesig take into account diet
variety, but their algorithm, combined with the @&s-the-board nature of the
WXYfm and SAIN,LIM models, led to systematic asstimins between variety and
both aggregate scores. Diet variety played a druola in predicting prospective
health outcomes (table 8.12). It revealed to beféett modifier since associations
between aggregate scores and prospective chrosieast only appeared in
participants with a low diet variety. As a result) alternative aggregation method
taking more into account diet variety may reveabetter predictor of health
outcomes. Though, the inclusion of variety in agragation algorithm would go
against the food-based NP concept which aim is dterthine healthiness of

individual foods based exclusively on nutrient et
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8.3 Nutrient profiling components analysis

The two previous sections revealed that both dretaisreporting and diet variety

impacted on the predictive validity results. Thgragating algorithms used for the
WXYfm and SAIN,LIM NP models relied on the exacpoeted intake and were

weighted by energy intake. Both EWS and PES(Q1) thasefore be too sensitive
to dietary misreporting. The aggregate scores wesggned not to take into account
diet variety but were actually associated to it. 8Asesult, alternative aggregating
algorithms less related (or related in a differgay) to both energy misreporting and
diet variety could be designed.

To effectively derive new aggregating algorithmss inecessary to understand better
the link between NP models components (i.e. theenis included in the models
and the way they are computed), the aggregate sscanel health outcomes. Two
research questions arose for this section: (i)allicomponents of the NP models
predicthealth outcomes as hypothesised, i.e. were negaliivients associated with
increased risk, and positiveitrients with reduced incidence; and (ii) wereraggte
scores equally correlated to all components indudehe NP models, or were they
driven by just a few components. The related hypstl were that the U-shaped
associations observed in chapters 6 and 7 mightduse to the fact that some
components failed to predicutcomes in the expected direction, or that agdeega
scores were correlated to a few components only.cOoduct such analyses,
“component scores” were created for each compooérnhe NP models. These
“component scores” were first included in Cox regren models to assess their
relationship with the outcomes of interest. Thessariation with the aggregate

scores was then assessed.

8.3.1 Methods, component scores

To assess the crude effect of each component, \yenesgluals were estimated, i.e.
crude intake of each component was regressed agaiesgy intake and residuals

were retained for inclusion in the survival anadysiodels.
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To analyse the effect of the NP and aggregatioorittgns on each component,
“component scores” were derived in a similar wayhe EWS aggregate score, i.e.
energy-weighted means. For WXYfm, the allocatedn{®0i0 to 10 for the four

negativecomponents, and 0 to 5 for the three positwes) were used; for the
SAIN,LIM model, the content/recommendation ratiosrevused (see chapter 2 for

the NP models algorithms).

Survival analysis models were run individually feach energy residual and
component score. The Z-scores (i.e. standardisedola ~ N(0,1)) of the residuals
or the component scores were included in the Cgsession models. Hazard ratios
were estimated for an increase of one standardatien reflecting the linear trend.
The Cox regression models were adjusted for age,as®l ethnicity following the

specifications of chapters 6 and 7 “model 1”.

Rank correlations were computed between the conmpaseores, their respective
nutrient crude intake, and the NP aggregate sdnresder to assess the component
scores’ relationship with the respective componatdake and with the aggregate

score.

8.3.2 Survival analysis, energy residuals and compo  nent scores

() Nutrient energy residuals

Hazard ratio estimates for one standard deviatimnease of the nutrient energy
residuals Z-scores are displayed in figure 8.3. s\gnificant associations were
observed for the negative nutrients. Saturatedwats positively associated with all
outcomes, in line with the expectations. Similasutes were obtained for sodium,
except for a weak inverse association with CHD.sTlWwas not expected but the
hazard ratio estimate was close to 1. More surfgj sugar intake was suggested
to reduce risk of cancer and all-cause mortalisgoaiations were positive for CHD

and null for diabetes.
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Each positive component, except vitamin C, displage least one significant

association. Fruit, vegetable, and nuts (FVN) werdective against cancer and all-
cause mortality. Dietary fibres were inversely assted with diabetes and all-cause
mortality. Iron was protective against CHD, dialsetend all-cause mortality. These
results followed the hypotheses and similar tremeése suggested for the other
outcomes (except a null-association between FVN diabetes). On the contrary,

significant positive associations were obtainedvieen protein intake and diabetes,
and between calcium and CHD. These unexpectediaisnos could be explained

by the high protein and/or calcium content in satierwise less healthy foods (e.g.
red meat and full-fat dairy products rich in satedafat, luncheon meats and savoury

pies high in sodium).

Overall, most estimates obtained for the nutriediduals were in the expected
directions. Unexpected associations were weak amdsignificant, except for the

protein and calcium components of the SAIN,LIM mlode

(i) WXYfm Component scores

Hazard ratio and 95% confidence intervals estimédesZ-scores of all WXYfm
component scores are displayed in figure 8.4.

The trends previously observed in figure 8.3 foe tfbre and FVN positive
components were confirmed and strengthened. Invess®ciations were also
obtained for the protein component, with a sigaifit risk reduction of all-cause
mortality. These results suggested that taken hegethe three positive components
of the WXYfm model might yield significant inversessociations for all outcomes.
It followed the hypothesis beneath the NP model @dicated that the WXYfm
and/or the component scores algorithms did stremgtime protective effect of

positive components.

The component scores algorithms also altered tigative components estimates,
but the expected positive associations were naiodd since all estimates indicated
either null or protective effects. In particulatiD risk incidence was significantly

reduced with all components but sugar. Risk reduactivas also observed for
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diabetes and all-cause mortality, the hazard ratidsth outcomes were significant

for the sugar component. Associations for canceatatity were non-significant.

Overall, the estimates from figure 8.4 suggested tine positive components of the
WXYfm NP model predicted slightly lower risk of mective health outcomes, in
accordance with the hypothesis. On the contramy,niégative components did not
predict increased risk as expected. The observeersa associations could have
entailed the U-shapes since lower negative composeares for participants

classified in the fourth quartile of EWS would matve led to reduced risk.

Results for the SAIN,LIM negative components wamilar, especially for sodium

(appendix 3.4). In line with figure 8.3, the prot@nd calcium positive components
were associated with increased incidence of CHD diadetes, which could have
further explained the J-shaped associations obdervéable 7.11. The unexpected

results for calcium could be linked to the overertimg of dairy products (table 8.8).

Section 8.1 showed that energy-dense foods’ intakded to be under-reported.
These energy-dense foods are usually classifiddsashealthy by the WXYfm and
SAIN,LIM NP models due to their higher content aégative components. The
unexpected results obtained with the negative commoscores may therefore be
related to dietary misreporting, and more spedlficeo the association between

energy under-reporting and vascular risk.
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Figure 8.3: Hazard ratio estimates and 95% CI for eergy residuals Z-scores (n=7,251)
Models adjusted for age, sex, and ethnicity; diebetodels stratified for sex.
SFA, Saturated fatty acid; FVN, fruit, vegetabled auts content.
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Figure 8.4: Hazard ratio estimates and 95% CI for WKYfm "component scores" Z-scores (n=7,251)
Models adjusted for age, sex, and ethnicity; diebetodels stratified for sex.
SFA, Saturated fatty acid; FVN, fruit, vegetabled auts content.

FVN
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8.3.3 Component scores and energy reporting

Table 8.13 confirmed that the negative componentescof the WXYfm model
were positively associated with energy reporting @ result, these component
scores were significantly lower among low energyoréers. On the other hand, the
protein and fibre positive components were wealdyredated to reported energy
intake, and higher values of the component scomre whserved among acceptable
reporters. The fruit, vegetable, and nut componeas inversely correlated to
reported energy intake, further confirming that rgge under-reporting was

associated with higher intake of fruit and vegetabl

Results were similar for the SAIN,LIM componentpgandix 3.4), suggesting that
the survival analysis results for the negative congmts were indeed confounded by

energy misreporting and its association with vamscusk.

Table 8.13: WXYfm component scores and energy repting

Rank correlation Mean component score

with reported by reporting level
Component score energy intake Low Acceptable High p*
Energy 0.23 2.25 2.50 2.43 <.001
Saturated fat 0.25 2.59 291 3.03 <.001
Sugar 0.19 1.35 1.54 1.67 <.001
Sodium 0.20 2.40 2.68 2.54 <.001
Protein 0.01 2.52 2.59 2.50 <.001
Fibre 0.06 1.26 1.35 1.25 <.001
Fruit, vegetable and nut -0.22 0.77 0.67 0.63 0%.0

*Heterogeneity ANOVA across reporting levels.

8.3.4 Component scores and EWS aggregate score

Component scores were all positively related tar trespective nutrient intake, the
correlations were low for energy and protein arghbst for fruit, vegetable and nuts
(table 8.13). The crude intake of nutrients wasdfoge not equally reflected by the
pointing system of the WXYfm NP model and the comgr@t scores. This was in
line with figure 8.4 which showed different resuitsm figure 8.3.
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Rank correlations between component scores andWE aggregate score were
higher for the negative components (energy, sadrits, sugar, and sodium). They
were null for the protein and fibre components aeldtively high for the fruit,
vegetable, and nuts component. This indicated ttr@atEWS relied mainly on the
negative components and on fruit, vegetable, artd ocontent; both the fibre and
protein components having very little influencetbe aggregate score. This was in
accordance with the WXYfm algorithm which gave maeveight to the negative
nutrients. More importantly, it could have led keetU-shapes obtained in chapter 6
since participants in the healthiest quartile of &Wid not necessarily have
increased intake of the protein and filmemponents (shown to be protective in
figure 8.4). It further strengthened the observetionade previously with negative
components: EWS was highly correlated to these omepts which did not predict

increased risk as expected.

The PES(Q1) aggregate score was evenly correlatalll its components (appendix
3.4). This was probably due to the SAIN,LIM algbnt which used similar ratio
scales for both positive and negative componentd; iacould have entailed the
stronger risk reduction observed in chapter 7 \WHS5(Q1) compared to EWS (the
fibre, vitamin C and iron components were protectagainst prospective health

outcomes).

Table 8.14: Rank correlations between component sis, respective nutrient intake,
and the EWS aggregate score (n=7,251)

FVN
Energy SFA Sugar Sodium Protein Fibre content

Nutrient
intake 0.23 0.58 0.42 0.46 0.22 0.56 0.71
EWS 0.85 0.90 0.61 0.49 0.00 0.02 -0.45

SFA, saturated fatty acid; FVN, fruit, vegetablied auts.
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8.3.5 Limitations

First, residual confounding could have occurrethassurvival analysis models were
only adjusted for age, sex, and ethnicity. Simaaalyses were run using models 2
and 3 of chapters 6 and 7 and similar conclusicgrewrawn (not shown).

Second, the use of FFQ reported intakes might haea a stronger limitation in this
section since the content of some nutrients coaly Yaugely within the FFQ-item
categories, e.g. sugar and saturated fat contetthe@n‘yoghurt” item. Also, the
estimation of sodium intake was most probably miiable as it did not take into

account salt added at the table.

Third, energy reporting was shown to be associatgth under-reporting of

unhealthy foods high in the negative componentse hhzard ratios estimates
differences between figures 8.3 and 8.4 highligltatrong effect of the aggregation
algorithm. The Cox models estimates were thereléedy to be confounded by

differential under-reporting of the unhealthy fopegich would have particularly
affected the negative components estimates.

8.3.6 Conclusion

The component analysis gave a considerable insiglie potential origin of the U-
shaped associations obtained in chapters 6 andrst, the negativecomponent
scores did not predict increased risk as originakpected. Therefore, the reduced
dietary content of negativeomponents in participants classified as healthigghe
aggregate scores was not associated with reduskdSecond, the WXYfm and
EWS algorithms emphasised these negatm@mponents. The combined effects of
these two factors could have, alone, entailed tfa@lqatic trends for EWS.

The SAIN,LIM model was associated more evenly vathits components, which
was reflected in the associations between compauemes and PES(Q1) (appendix
3). This would have explained the stronger riskuotidns observed in chapter 7

compared to the EWS which was poorly related to pretein and fibre
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components—nboth protective for most outcomes. ¥ate positive components of
PES(Q1) were associated with increased inciden€Hd and diabetes. This would

have led to the J-shaped associations observeldese two outcomes in table 7.11.

The unexpected results obtained for the negatingpoment scores, which appeared
to have entailed the U-shapes, would have beeraieegal by the confounding effect
of the association between low energy reporting \astular risk (table 8.13). The
difference between the estimates of figures 8.3&#dndicated that the results were
linked to the component scores algorithm (i.e. BV¢S aggregate core algorithm)
and not to the crude intake of the negative nussieithis further showed the
influence of the aggregate scores algorithm onstimgival analysis estimates and
confirmed that energy-weighted aggregation algorghmay not be the best solution

when using FFQ data prone to misreporting.

8.4 Discussion

This chapter was introduced to better understaedqgtiadratic trends observed in
chapters 6 and 7. The sensitivity of the aggregatees to energy misreporting—
associated with vascular risk status—appeared esrhin potential explanatory
factor for the U-shaped associations.

Energy reporting was inversely associated with desdlthiness as measured by the
aggregate scores leading to a higher proportiodowf energy reporters in the
healthiest quartiles of EWS and PES(Q1). Low eneepprting was also linked to
low employment grade and higher BMI (associateth Wwigher energy needs), which
led to less favourable levels of vascular risk destamong low energy reporters.
Energy misreporting would have therefore confountedassociations between the
aggregate scores and prospective health outcorheswas confirmed by sensitivity
analyses excluding energy misreporters which yeeldgenuated quadratic trends.
Lower hazard ratio estimates were specifically et for the fourth quartile of
EWS and for the linear trend tests. The PES(Q1l)emgge score was slightly less
affected by energy misreporting, but conclusioeseasimilar.

154



The use of the 7DD data confirmed that the systemagsociations observed
between the aggregate scores and energy reportiag due to differential

misreporting of FFQ-items. Participants tended Yeraeport foods considered as
healthy (e.g. fruit and vegetables) while undemrépg the energy dense unhealthy
foods (e.g. snacks and sweets, some meat prodiRegyession calibration was
applied in an attempt to correct the reported iesabf each FFQ-item. The corrected
aggregate scores derived from the corrected FR@Qsitatakes indicated less healthy
diets, in line with the expectations. Cox modelsluding the corrected aggregate
scores Yyielded surprising results: most hazardsastimates indicated higher risk
when compared to the original aggregate scores.ré@mession calibration model
was subject to a range of assumptions likely toflaered, for instance normal

distribution of intakes for all FFQ and 7DD itemwhich could have entailed the

unexpected results observed with the correctedeggtg scores.

In addition, diet variety was associated with tlW¥&and PES(Q1) aggregate scores
in the expected way (i.e. participants in the |destlthy and healthiest quartiles had
a slightly lower variety) and diet variety itselaw protective against chronic disease.
Yet, diet variety did not confound the prospect@asociations observed in chapters
6 and 7. Instead, it acted as an effect modifteatified Cox regressions showed that
associations between aggregate scores and pragpettionic disease were only
observed in participants with a low diet varietyheTinteraction between aggregate
scores and diet variety highlighted the difficuttiy aggregating the food-based NP
concept at the diet level without taking into aaaoather characteristics of dietary

patterns.

Last, components of the WXYfm and SAIN,LIM NP maslelvere associated
separately with prospective health outcomes. Codaisoincluding energy adjusted
intakes (residual method) yielded weak estimatethenexpected directions, except
for the sugar and protein components. When usimgpoment scores, derived in a
similar way to the aggregate scores, the prospeetssociations between individual
components and health outcomes were changed. Tiétecpve effect of the

WXYfm positive components was confirmed and streaged, including for

proteins. On the other hand, some negative compenegre found to be inversely

associated with prospective risk, deviating frone timypothesis beneath the NP
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models. Similar results were obtained for SAIN,Li¥ough the positive protein and
calcium component scores predicted increased progperisk. Therefore, the

component scores (similar to the aggregate scdgesitams) yielded associations
not reflecting the crude intake of the NP composgehighlighting the influence of

the aggregating algorithm on the prospective aatioos. The unexpected results
obtained for the negative component scores—explayethe association between
negative component scores and energy under-rege+tiould have entailed the U-
shaped associations since participants in the thesitquartiles of the aggregate

scores would not have benefited from lower negatov@ponent scores.

The WXYfm NP model puts more weight on the negateeponents. As a result,
the derived EWS aggregate score depended mairtlyeamegative components. This
would have reinforced the unexpecteffect on prospective risk of the negative
components and would have resulted in the quadiraicls observed in chapter 6.
The SAIN,LIM model did not emphasise the negatiwgrients and the derived
PES(Q1) aggregate score was associated more ewéhlall its components. This
would have explained the stronger risk reductioseobed in chapter 7 for the
middle quartiles (some positive components weréeptive against chronic disease).
The quadratic trends would have been due to thepawted effects of the protein,

calcium, and negative components.

8.5 Conclusion

The results from this chapter confirmed that aleéhfactors had some influence on
the U-shapes initially observed between the aggeesores and prospective health
outcomes. The WXYfm and SAIN,LIM NP models rely tre energy density of
foods since it is highly correlated to the conteftnegative nutrients and it is
inversely linked to nutrient density: energy defeseds have low NP scores. The
aggregate scores were both weighted by energy entakd were therefore
particularly sensitive to the exact reported intakkehe less healthy energy dense
foods. Section 8.1 showed that energy misreportvas linked to differential
misreporting of the energy dense foods. Low enegporters therefore obtained

higher aggregate scores rankings and were morgy like obtain low negative
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component scores (section 8.3). In parallel, loergy reporting was associated with
higher levels of several risk factors. As a resulyppeared that the strongest reason
for the U-shaped associations was energy undertregavhich over-influenced the
aggregate scores rankings and confounded the mtospassociations.

The impact of the EWS and PES(Q1) aggregate setgesithms, well illustrated in
sections 8.2 and 8.3, suggests that their algosithmy have not been the most
adequate given the Whitehall 1l data limitationsy Aggregating algorithm relying
less on the exact reported amounts, particularlgn&rgy-dense foods, may better
suit FFQ data. It was difficult to quantify the iaxg of diet variety on the quadratic
trends, but it was suggested that diet scores dirtkediet variety may be able to
better predict prospective chronic disease rislkeséhconclusions were used in the
next chapter to design alternatives to the EWSRIB8(Q1) aggregate scores with
the aim to verify the impact of dietary misrepogtiand diet variety on the U-shaped

associations.
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Chapter 9: Results-driven aggregate score models

The analyses in chapter 8 identified three potergi@lanatory factors for the
quadratic associations initially observed betweggregate scores and prospective
health outcomes. The goal of this chapter was tdiitjwthe aggregate scores and/or
the nutrient profiling (NP) models algorithms torifse the results from the previous
chapter and to obtain betteredictors of health outcomes.

First, there was a strong suggestion that the peshassociations were due to the
association between low-energy reporting and irse@avascular risk. Diet variety

was further shown to be intrinsically linked toutg health status. It was therefore
assumed that an aggregation method which wouldebgs $ensitive to absolute

reported intake and depend more on diet variety cagyure better the healthiness of
individuals’ diets. Second, differential under-refpwy of less healthy foods was

shown to particularly affect the negative composaitthe NP models. As a result,

an alternative algorithm which would put less weigh the negativautrients might

be less sensitive to such misreporting.

A brief methods section presented two new aggregatchniques based on the
above assumptions. Cox regressions were run to/sahe predicting ability of
these new algorithms. Similarly to the previous pthg the results for the

SAIN,LIM model were presented in appendix 6.

9.1 Methods

9.1.1 The “Recommended Food Score” aggregate score

The first newaggregating method was based on the recommendddstaoe (RFS)
developed by Kant et al. (2000) which had beenelihko prospective health
outcomes in various studies (Kagttal, 2000; Michels & Wolk, 2002; Kardt al,
2004; Kaluzaet al, 2009). The RFS was simply the number of healtdods and
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drinks (i.e. WXYfm overall score under 4 for fooaisd under O for drinks; quadrant
1 for SAIN,LIM) reported to be consumed more thaiwce a week. It was therefore
very similar to the food variety score (FVS) intooéd in chapter 8 but did not take
into account the less healtfyods. The threshold used for the WXYfm model was
the one recommended by the Food Standards Agencysatd by Ofcom to regulate
TV advertising (see chapter 2 for more details)e RFS(WXYfm) acronym was
used for the WXYfm derived RFS. For the SAIN,LIM d&b, the RFS(SAIN,LIM)
which counted foods in the first quadrant was ugedults presented in appendix
6.1).

9.1.2 The EWS+ aggregate score

The second aggregation method relied on an altéRedlgorithm: it did not use the
negativecomponents. The EWS+ aggregate score thus foll@&dilar algorithm
to the EWS, but depended exclusively on the pasitomponents points of the
WXYfm model (appendix 6.3 presents the classifaatof FFQ-items using the
WXYfm positive components only). A similar score svapplied to the SAIN,LIM
model, EW(SAIN) which used the SAIN sub-score (aypendix 6.1).

9.1.3 Survival analysis models

Quartiles of the two new aggregate scores were is8tdCox proportional hazards
regressions. Two models were used: chapters’ &@anddel 1 (adjusted for age, sex
and ethnicity) and model 3 (fully adjusted). Théerence group remained the first

quartile for all aggregate scores.

9.2 Results

Within the complete-cases analysis sample (n=7,26&)RFS(WXYfm) had a mean
value of 26.8 and ranged from 0 to 56. It was shgborrelated to the EWS (rank
correlation = -0.21). Similarly, the EWS+ was maxdely correlated to the EWS (r=-
0.22) highlighting that the EWS depended more emikgativeeomponents
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Table 9.1 presents Cox regressions estimates éoRES(WXYfm) aggregate score.
Significant reduced incidence of all-cause morgalis obtained for all quartiles in
model 1, and remained significant for the secondrtija in model 3. Some
significant risk reduction of cancer mortality waso observed for the third quartile
in model 1. Quadratic trend tests were significkmt both cancer and all-cause
mortality outcomes. For CHD, linear risk reductwas slightly suggested, while no
clear trend could be highlighted for diabetes. Rssior the SAIN,LIM derived
RFS(SAIN,LIM) score were very similar (appendix 6 &hich was explained by the
high correlation between RFS(WXYfm) and RFS(SAINLI(r=0.94).

Estimates for the EWS+ aggregate score are presémtéable 9.2. The results
contrasted clearly with the original EWS since mseeand significant linear trends
appeared for all outcomes in model 1. Such riskicedn confirmed the original
hypothesis that diets containing more nutrient defeods would be protective
against prospective health outcomes. When adjusiteagnodel for the full range of
confounding variables most of the trends were attad, except for the CHD
outcome. Risk reduction of diabetes, cancer anetaalbe mortality was still
suggested, with close to significant linear trefaddiabetes and all-cause mortality.
Quadratic trend tests were significant for all-eausortality in model 3, but it did
not appear clearly in the individual quartile esties. Protective trends were not
obtained with the EW(SAIN) aggregate score (appebd?), which concurred with
the results from appendix 3.4 (individual composgnlt suggested that the choice
of positive components and pointing system of th&EYivn model might be more
adequate for the Whitehall Il data.
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Table 9.1: Cox regression estimates across quarti®f the RFS(WXYfm) aggregate score
(4: healthier)

Outcome  Quartile/ Model 1 Model 3
(cases/n) trend HR 95 9% ClI HR 95 9% CI
CHD (318/ 1 Ref Ref
7,174) 2 0.90 0.65 1.23 0.91 0.66 1.25
3 0.79 0.58 1.07 0.88 0.63 1.22
4 0.83 061 1.14 0.92 0.65 1.31
Linear 0.93 0.84 1.03 0.97 0.87 1.09
p quadratic 0.410 0.457
Diabetes 1 Ref* Ref*
(754 | 2 0.89 0.72 1.10 0.90 0.73 1.12
6,868) 3 0.83 0.67 1.02 0.89 0.72 1.11
4 1.06 0.87 1.29 1.06 0.85 1.33
Linear 1.02 0.95 1.08 1.02 0.95 1.10
p quadratic 0.704 0.752
Cancer 1 Ref Ref
mortality 2 0.76 0.53 1.09 0.79 0.55 1.13
(251/ 3 0.67 0.47 0.95 0.72 0.50 1.04
7,235) 4 0.77 0.55 1.08 0.83 0.57 1.22
Linear 0.91 0.81 1.02 0.94 0.83 1.06
p quadratic 0.004 0.006
All-cause 1 Ref Ref
mortality 2 0.71 0.55 0.92 0.75 0.58 0.97
(5241 3 0.72 0.57 0.91 0.80 0.62 1.02
7,242) 4 0.77 0.61 0.97 0.86 0.66 1.12
Linear 0.92 0.85 1.00 0.96 0.88 1.05
p quadratic 0.001 0.002

Model 1 adjusted for age, sex, and ethnicity. M@&l&lirther adjusted for marital status, employment
grade, smoking status, physical activity level, andrgy and alcohol intake, BMI, hypertension and
dyslipidaemia status, and prevalence of longstanilimess.

# Stratified for BMI categories * Stratified for seXStratified for longstanding iliness and
dyslipidaemia. HR, hazard ratio; Cl, confidenceiagl.
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Table 9.2: Cox regression estimates across quarti®f the EWS+ aggregate score (4: healthier)

Outcome  Quartile/ Model 1 Model 3
(cases/n) trend HR 95 9% ClI HR 95 9% CI
CHD (318/ 1 Ref Ref
7,174) 2 0.67 0.49 0.90 0.71 0.52 0.96
3 0.66 0.48 0.89 0.70 0.51 0.96
4 0.64 0.47 0.87 0.66 0.48 0.90
Linear 0.86 0.78 0.95 0.88 0.79 0.97
p quadratic 0.333 0.462
Diabetes 1 Ref* Ref*
(754 / 2 0.80 0.66 0.98 0.84 0.68 1.03
6,868) 3 0.81 0.67 0.99 0.89 0.72 1.09
4 0.79 0.65 0.96 0.84 0.68 1.03
Linear 0.93 0.87 0.99 0.95 0.89 1.02
p quadratic 0.440 0.819
Cancer 1 Ref Ref
mortality 2 0.79 0.56 1.10 0.91 0.64 1.28
(251/ 3 0.78 0.56 1.09 0.94 0.66 1.34
7,235) 4 0.64 0.45 0.92 0.78 0.53 1.13
Linear 0.87 0.78 0.98 0.93 0.83 1.05
p quadratic 0.024 0.073
All-cause 1 Ref Ref
mortality 2 0.75 0.59 0.95 0.87 0.68 1.10
(5241 3 0.77 0.61 0.97 0.91 071 1.17
7,242) 4 0.70 0.55 0.89 0.81 0.63 1.05
Linear 0.90 0.83 0.97 0.94 0.87 1.02
p quadratic <.001 0.006

Model 1 adjusted for age, sex, and ethnicity. M@&l&lirther adjusted for marital status, employment
grade, smoking status, physical activity level, andrgy and alcohol intake, BMI, hypertension and
dyslipidaemia status, and prevalence of longstanilimess.
# Stratified for BMI categories * Stratified for seXStratified for longstanding iliness and
dyslipidaemia. HR, hazard ratio; Cl, confidenceiagl.
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9.3 Discussion

The two newaggregating algorithms were applied to verify imgtical terms the
results from chapter 8 which identified three ptisdrexplanatory factors for the U-

shaped associations obtained in chapters 6 and 7.

First, the RFS aggregate score was very similahéoFood Variety Score used in
chapter 8 but it only included healthy foods. Itl ot rely on the exact reported
amount and the energy density of each item. Ittivasefore less sensitive to dietary
misreporting than the EWS and PES(Q1) aggregatesc@ompared to EWS and
PES(Q1), the estimates for both RFS(WXYfm) and FA3,LIM) were more in
accordance with the original hypothesis: attenugteadratic trends and significant
risk reduction for some individual quartiles. Thessults confirmed that the original
aggregate scores developed in chapter 4 were twtise to dietary misreporting
and that diet variety was intrinsically linked toppective chronic disease risk. The
RFS may therefore be a more appropriate aggregatiggrithm for FFQ data.
However, the risk reduction observed in table %d appendix 6.2 was attenuated
by further adjustment, and the quadratic trendstestained significant for cancer
and all-cause mortality. The RFS algorithm did matcount for the effect of
differential under-reporting of unhealthy foods thie negative components (chapter
8), which might explain the quadratic trends obedrfor cancer and all-cause

mortality.

Second, the EWS+ aggregate score, by includingptistive components only,
aimed at removing the confounding effect of différal under-reporting of
unhealthy foods on the association between negatweponents and prospective
health status. The estimates from table 9.2 coefirithat the combination of the
WXYfm positive components alone could predict reduced incidenedl autcomes.
Model 1 results followed the original hypothesisthasignificant risk reduction for
all outcomes. Despite the attenuation in the fatijusted model, these results
showed that the NP approach could be predictivewér chronic disease risk, and
that NP could therefore represent a relevant puidiglth tool. The results further

confirmed chapter 8 observations that the weightiighegativecomponents in
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WXYfm and the derived EWS aggregate score empladise information bias
within the Whitehall 1l data, entailing the U-shapassociations of chapter 6. The
EW(SAIN) aggregate score displayed weaker assoomtand no significant linear
trends. This suggested that the positteanponents and associated target values
included in the WXYfm model might be more approfwiéor the British Whitehall

Il population. In particular, the fruit, vegetablgd nuts component which predicted

independently lower risk of adverse health outcofappendix 7).

However, the analyses conducted in this chaptee wabject to some limitations.
The WXYfm NP model had to be altered for the imptetation of the EWS+
aggregate score. This nealgorithm yielded a newlassification of foods quite
different from the original one (appendix 6.3), atirefore did not reflect the
WXYfm model. The same limitation applied to the EX¥{N) score which did not
use the full SAIN,LIM algorithm. The results foralWXYfm positive components
did indicate that a NP model could predict prospecthealth outcomes as
hypothesised without including negative nutrients.

The RFS aggregate score was essentially a diettyagtore, and it was not possible
to determine the extent to which the Cox regressresults depended either on the
selection of healthier foods or on the increasatktya The results obtained for the
Food Variety Score in chapter 8 suggest that mbshe protective effect of RFS
was linked to diet variety. Also, The RFS algorithrelied on the arbitrary
healthinessthresholds of the WXYfm and SAIN,LIM models (chapt2). For
WXYfm, the threshold used by Ofcom and the Foodn&iads Agency was
implemented, but a more or less restrictive valoiglct have been chosen. Such an
analysis was carried out using the more restricthaalthier” threshold (i.e. foods
scoring below 0 on the overall score scale—chapteand results are presented in
appendix 6.4. Such RFS(healthier) aggregate sca® wery highly correlated to
RFES(WXYfm) (r=0.99), which was translated into demni survival analysis
estimates. Stronger associations were obtaineddocer and all-cause mortality
with the RFS (healthier), suggesting that the reduaumber of healthy foods
allowed identifying better healthieietary patterns.
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9.4 Conclusion

Results from this chapter brought more evidenced tha factors identified in
chapters 8 were all explaining part of the U-shapég influence of the aggregating
method was well illustrated in tables 9.1 and 9Hcl displayed different trends
compared to the original EWS aggregate score. Torserjuences of energy
misreporting on the negative components particplaffected the WXYfm model
which put more weight on these negative componditts. estimates obtained with
the positive components of the WXYfm model confidniat the NP approach
could predict adequately future health status hecefore represent a relevant public

health tool.

The information gathered in all the results chapgave considerable insight into the
mechanisms linking the two NP models to prospechiealth outcomes. All the
elements of conclusions presented above and iprédeeding chapters were used to
discuss the potential predictive validity of the Wit and SAIN,LIM NP models.
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Chapter 10: Discussion

Food nutrient profiling (NP) aims at “categorisirfgods according to their
nutritional content” (Rayneet al, 2004a), using selected ‘positive’ nutrients e.g.
fibre, protein, and ‘negative’ nutrients e.g. sodjwsaturated fat. Applications of NP
are numerous and aim at helping consumers makthieeathoices. This food-based
concept could represent the key missing link betwgeneral dietary guidelines and
nutrient recommendations (Darmon, 2009). Yet, amlg patented and not-publicly
available model, ONQI, was related to prospectivgic disease risk (Chiuvet
al., 2011). The results obtained with the ONQI mode&d confirmation using
publicly available models if NP is to become a grueed public health tool. The
WXYfm and SAIN,LIM NP models were developed for tBatish and French food
safety agencies, respectively (chapter 2). Theweld@ment was an open peer
review process and their algorithm is publicly &adalie. British civil servants of the
Whitehall 1l cohort study have completed detailéetaly assessment questionnaires
at baseline (1991-93), and have been followed-up December 2009 for incident
CHD and diabetes, and until January 2010 for mitytal’ents (chapter 4).

The main aim of the project was therefore to assesspredictive validity, i.e.
associations with prospective health outcomes, hef WXYfm and SAIN,LIM
nutrient profiling (NP) models within the Whitehallstudy dataset. The hypothesis
was that diets containing higher proportion of treafoods as defined by the NP

models would be associated with lower incidencehobnic disease.

Five research objectives were defined to asseggrétictive validity of the two NP
models (chapter 3). Results and conclusions forh easearch objective are
summarised in this final chapter. Through the asialgf the project’s strengths and
limitations and comparisons with existing evideniteis possible to identify the
implications of the project’s results, as well s steps needed to further develop

and validate NP as a public health tool.
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10.1 Summary of results

The first step of the project consisted in the mmailon of the two NP models to the
Whitehall Il data: WXYfm and SAIN,LIM scores weralculated for all non-alcohol
items in the food frequency questionnaire (FFQ).otder to test for predictive
validity of the two models, a summary measure iidek) had to be created for each
participant since foods are not directly relatechéalth outcomes. This aggregated
NP score, referred to in this project as “aggregatae”, was meant to reflect the
food-based NP concept at the whole diet level. drtigular, the aggregate score
should discriminate individuals according to theiateons in FFQ-items intake.
Using this rationale, two energy-weighted aggregataes were designed based on
the NP score and the reported intake of each FEQ-IEWS for the WXYfm
model, and PES(Q1) for the SAIN,LIM (chapter 4).

Prior to testing for predictive validity of the twidP models, via their respective

aggregate scores, it was necessary to verify tteEWS and PES(Q1) translated
adequately the NP concept at diet level. The redlifcussed in chapters 5 and 7
showed that the two aggregate scores were positauadl significantly associated

with improved dietary patterns, with particulartyog relationships for the fruit and

vegetables. A strong positive association was attserved for dairy products, while

an inverse one was obtained for the snacks andis\iaasl group. The associations
between aggregate scores and reported intakessheren to be at the FFQ-item

level, thus confirming that EWS and PES(Q1) weregaghte to assess the predictive
validity of their respective NP model.

The improved dietary patterns observed in partidipalassified as healthiest by the
aggregate scores resulted in positive associatwitis existing dietary quality

measures (dietary clusters and Alternative Hedlsiyng Index). These associations
were relatively weak indicating that the aggregateres were not simple copies of
the existing measures. Participants classifiedhén'lhealthier’ quartiles of EWS and
PES(Q1) tended to have higher BMI, blood pressumed blood levels of

inflammatory biomarkers. These surprising resuliied attention to the need of
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carefully considering potential confounding factéinst may affect the predictive

validity testing process.

Both aggregate scores were included in multiplysidid Cox regression models to
assess the predictive validity of the WXYfm and SAIIM NP models—the main
aim of the project (chapters 6 and 7). The hypaskeesrisk reduction was observed
in participants classified in the middle quartile§ the aggregate scores. The
significant PES(Q1) estimates suggested an alm@¥ Beduced risk of incident
CHD and of all-cause mortality. Unexpected findingsre obtained for participants
classified as healthiest by the two aggregate scateose risk estimates were not
different from the least healthy individuals. Thesl to U-shaped associations well
illustrated by the quadratic trend tests that wsagaificant for all outcomes except
diabetes. Therefore, predictive validity of the WY and SAIN,LIM models was
only partly established using the energy-weightggr@gate scores. Similar results
were obtained with aggregate scores weighted biroposize or weight of intake.
These unexpected results guided the last stepsheofptoject. Three potential
explanatory factors for the observed quadratic dsewere assessed thoroughly
(chapter 8).

First, energy misreporting was detected using tbilleerg cut-off method. Almost
30% of participants were found to be energy misreps, most of them being
energy under-reporters. Because low energy regovias associated with healthier
reported intakes, low energy reporters were mdcelyli to be misclassified as
healthiest by the EWS and PES(Q1) aggregate scbogs.energy reporting was
also associated with less favourable risk factafiles, mainly high BMI and
hypertension. A strong association between BMI andrgy reporting had been
previously observed in the Whitehall 1l cohort (ftae et al, 1997; Brunneet al,
2001) and in other studies (Macdiarmid & Blundédl998; Livingstone & Black,
2003). Individuals with higher BMI necessitate heghenergy intake to maintain
their body weight, at constant physical activityde Yet, social acceptance norms
and self-perception of what constitutes a healiryusually leads to under-reporting
of food intake by over-weight or obese participafitvingstone & Black, 2003).
These individuals, with higher vascular risk, anerefore more likely to be low-

energy reporters. Further, Whitehall 1l low-energporters were more likely to be
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of low employment grade (Brunnet al, 1997; Brunneet al, 2001) which had not
been consistently observed before (Macdiarmid &nBRll, 1998). Within the
Whitehall 1l cohort, low employment grades wereoassted with higher prevalence
of vascular risk (Marmot & Brunner, 2005). This Jaufurther explain the
association between energy misreporting and vasaus& which would have
confounded the prospective associations betweeradigeegate scores and health
outcomes. This assumption was confirmed by sentgitanalyses in which energy
misreporters were excluded. Compared to the oligi@ax regressions, the
sensitivity analyses yielded attenuated U-shapéls leiver hazard ratio estimates

for the fourth quartile of both aggregate scores.

The misclassification of low energy reporters bg #iggregate scores was mainly
due to differential under-reporting of energy-deasd less healthy foods, as shown
by the diet diary data. Being energy-weighted, #&/S and PES(Ql) were
particularly sensitive to the exact reported amswfitthese energy-dense foods. It
was not possible to fully correct for this systeimdifferential misreporting of foods
since some assumptions necessary for the regresaibration model were likely to

be flawed (e.g. normal distribution of intakes floods rarely consumed).

Second, the EWS and PES(Q1) aggregate scores werdesigned to take into
account diet variety because this is a charadten$the diet, independent from the
food-based NP concept. Yet, participants with iéaitaggregate scores had slightly
lower diet variety, which could have entailed thesh&pes. Diet variety did not
confound the predictive validity results. Inste&dcted as an effect modifier since a
relationship between the aggregate scores and ichi@m®ease appeared only among
participants with low diet variety. For a separatalysis of the prospective effects
of the aggregate scores and diet variety it woudd necessary to work with
controlled environments, i.e. in which either tlggregate score or diet variety is
fixed. The Whitehall 1l is a free-living cohort, @rcontrolling for such factors was
only possible in a statistical way, further showthg difficulty of translating the NP
concept at the diet level.

Third, the nutrients or food characteristics ineddn the WXYfm and SAIN,LIM

models, referred to as components, were analygatately. For most components,
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crude intake was associated with prospective cbrdigease risk as hypothesised
(i.e. protective effect of the positive componeantsl increased risk with the negative
components). The exceptions were the protein ahduoa positive components
moderately associated with increased risk of CHD diabetes, and the negative
sugar component associated with a non-significadticed risk of cancer and all-
cause mortality. However, when applying the aggeegscores algorithms to
individual components, i.e. calculating energy-vinégl “component scores”,
protective associations were suggested betweemdbative “component scores”
and prospective chronic disease. In particular, foelium and saturated fat
component scores were protective against incidétid.CThese unexpected results
further showed the influence of the aggregatingomtign on prospective
associations between dietary intake and healthoowgs. Analyses in chapter 8 also
showed that the negative component scores weragiyrassociated with energy
under-reporting, i.e. participants with lower neégatcomponent scores were more
likely to be energy under-reporters. Therefore, tihmexpected results for the
negative component scores appeared to be artefaet$o their high sensitivity to
energy under-reporting—itself associated with iasesl vascular risk—which is

consistent with the results obtained with the CHIicome.

In addition, the aggregate scores were not cogelagvenly with all their
components. Similarly to the WXYfm algorithm thatitp more emphasis on the
negative components, the EWS relied mainly on tukusn, saturated fat, and sugar
components. It was not related to the fibre andgimocomponents, and moderately
to the fruit, vegetable, and nuts component. Hetiee unexpected results observed
above for the negative components were emphasigedebEWS aggregate score,
which would have entailed the U-shaped associati@mntrary to EWS, the
PES(Q1) relied more evenly on all its componentss Tvould have explained the
stronger risk reductions observed in chapter péosticipants in the middle quartiles
of PES(Q1). The quadratic trends for PES(Q1l) wduwdde been linked to the
unexpected results for both the negative componamisthe protein and calcium

components.

In chapter 9, the original NP models and respedygregate scores were modified

to verify the hypothesised effect of dietary mismimg, diet variety, and the
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unexpected effect of the negative components. hediternative aggregate score,
the Recommended Food Score (RFS), was very sitoilarvariety score but it only
included healthy foods as defined by the NP modeisas not weighted by energy
intake and did not rely on the exact reported arteotor each FFQ-item. It was
therefore less sensitive to dietary misreportinghew applied to WXYfm and
SAIN,LIM, the RFS suggested a linear risk reductidmll-cause mortality, but null-
associations could not be rejected. Quadratic remere not significant for CHD.
The RFS results confirmed that (i) diet varietyyeld a crucial role in the prediction
of future health status, and (ii) the original aggate scores were over-sensitive to
dietary misreporting. The second alternative, EV(8-WXYfm and EW(SAIN) for
SAIN,LIM, was similar to the EWS except that it inded only the positive
components of the NP models. For EWS+, clear ptigeetrends were observed for
all outcomes in the least adjusted Cox model. Thgo@ation was robust to
adjustment for the CHD outcome. These results ooefil that when the effect of
differential under-reporting of unhealthy foods—uaihimainly affected the negative
components—was removed, the NP approach couldgpradequately future health
status. Given such information bias within the Whéll 11 data, the EWS relied too
much on its negative components, which led to theexpected U-shaped
associations. The results were not so conclusiv&Yd(SAIN): no significant linear
trend was observed. This coincides with the resoldained for individual
components and suggested that the WXYfm positivenpoments were more

adequate to predict health outcomes in the Whitéhddta.

All the results presented above brought consideraidight into the mechanisms
linking NP to prospective health outcomes withia Whitehall Il data. The findings

were consistent with a possible protective effddiB-derived aggregate scores on
disease risk, but the ultimate hypothesis of thgegt (that consumption of healthy
foods as defined by NP models WXYfm and SAIN,LIMpi®tective against adverse
health outcomes) was only partly established. madron bias within the Whitehall

Il data, in particular the association between gyamder-reporting and vascular
risk, appeared to be the main reason for this. NRemodels which include energy
density in their calculations and the aggregatiechhiques weighted by energy

intake emphasised differential misreporting of ggerdense unhealthy foods,
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resulting in misclassification of some participaatrsd quadratic trends due to the

higher vascular risk profile of energy under-repost

10.2 Strengths and limitations

This section presents the strengths and limitatafrfeur key aspects of the project:

data, NP models, aggregate scores, and analyaisgtr

10.2.1 Whitehall Il data

(i) Cohort study and predictive validity

The Whitehall 1l data used for this project wereally suited to answer the initial
research question regarding the predictive validitNP. The study’s longitudinal
design, with dietary assessment at baseline andsallmomplete follow-up of
incident events, was its main strength. Moreovegular contact with participants
and their perceived benefit of regular health chagk kept attrition relatively low
(Marmot & Brunner, 2005). Follow-up for incident ses followed rigorous
protocols using self-reported doctors’ diagnoses @ial glucose tolerance tests for
diabetes; self-report, doctors’ diagnoses, andtreleardiograms for CHD; and the
National Health Services death and electronic patiecords for fatal events. The
study was updated recently: data for diabetes a#iD @ere censored in December
2009 and for mortality outcomes in January 2010mBious covariates were
measured using standard procedures, and the useelbpecified civil service

grades made the measure of socio-economic poséiiaile.

However, the target population of the Whitehalsthdy—middle-aged white-collar
civil servants—is not fully representative of theitBh population (Marmot &
Brunner, 2005). The Whitehall 1l is an occupatioocathort in which fitter individuals
are more likely to be over-represented, as suggdstehe healthy worker effect (Li
& Sung, 1999) and as confirmed by the selectiors maserved in chapter 4.
Therefore, the sample used in our analysis wagsylitee be more homogeneous
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compared to the general population and the gesetain of the present results
would need to be confirmed, in particular using addss prone to dietary
misreporting. Yet, previous investigations of thietdlisease relationship in the
Whitehall 1l study were in line with the vast boay evidence linking dietary
patterns to health outcomes (Brunregral, 2008; Akbaralyet al, 2011), which

suggested that the unexpected associations of #emiddels with prospective

disease risk may be replicated in alternative @#$as

(ii) Post hoc power and sample size calculations

The Cox proportional hazards regressions implendeimtechapters 6 to 9 yielded
wide confidence intervals which suggested a lowissieal power, i.e. the ability to
reject the null hypothesis when the null hypothésifalse. To assess the power of
the present analyses, the SAS power procedure g& by including the hazard
ratio estimates obtained in tables 6.1 and 7.1&, strvival rates for the four
outcomes, and the total number included in eacheind@onsidering the quartile
analysis, statistical power ranged from 0.06, far EWS aggregate score and cancer
mortality, to 0.76 for PES(Q1) and all-cause mdstaftable 10.1). Such figures
were relatively low compared to the 0.9 targetednmgt study designs and indicated
that the Whitehall Il sample used for the preseatysis was too small to detect the
hypothesized effect with sufficient power. The Sp&wer procedure was further
used to estimate the total sample size neededhievaca power of 0.9 with the
present Cox regression results. The sample sizmatsts presented in table 10.1
followed the power calculations, with the lowesjuested sample size being for all-
cause mortality and the PES(Q1) aggregate scorE0(824). Such sample size was
just above the total number of participants reediiin the Whitehall Il study
(n=10,308). Dietary assessments were only inclidgrhase 3 of the study (chapter
4) which limited the potential number of participgno those still followed-up at
phase 3. Power to detect weaker relationships nvitie Whitehall 11 data would

therefore be higher with variables measured froaspHL.
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Table 10.1: Post hoc power and sample size calcuitats

Cancer All-cause
Outcome CHD Diabetes mortality mortality
(events / n) (318/7,174) (754 / 6,868) (251 /7,235) (524 17,242)

EWS PES(Ql) EWS PES(Ql) EWS PES(Q1) EWS PES(Ql)

Power* 0.34 0.54 0.21 0.24 0.06 0.39 0.26 0.76
Samplé 32,108 17,732 54,684 45,692 610,000 26,800 43,912 10,824
* Based on the strongest hazard ratio estimate éhijdof table 6.1 for EWS and table 7.11 for
PES(Q1).

¥ Estimated sample size to achieve a power of 0.9.

(iif) Food frequency questionnaire

The most important limitation of the Whitehall lath was the dietary assessment
tool. Food frequency questionnaires (FFQ) have kbenmost commonly used
method in large scale nutritional studies for eéincy and practical reasons. They
have been validated to assess usual dietary patéewh have been shown to relate
well to alternative dietary assessment methodspfena2). Yet, for the specific
analysis of NP, the FFQ may not be the best tool.

Participants reported intake of items rather thafividual foods. Items regrouped
several foods of similar characteristics but thaitrient composition could vary
greatly, for instance, the saturated fat contenthef “Yoghurt” and “Chicken and
other poultry” items. It is therefore possible thiae calculated NP scores of the
FFQ-items did not reflect the actual foods consuilmggarticipants. In which case,
aggregate scores were likely to have high randawr.e6uch random error could
differ between NP components since the FFQ put nesng@hasis on fruit and
vegetables (34 items) compared to other groupsexample, meat and fish (16
items) or snacks and sweets (12 items). This wbakk affected particularly the
energy, saturated fat, sodium, sugar, and proténcbimponents whose content is
highly variable in the meat and snacks group. Intrast, the error for the fibre
component may have been smaller since it was mairdgent in the fruit and
vegetables or in wholemeal products, which werergdjaished more precisely in the
FFQ. In addition, there was no specific item foriXed dishes” and their reported

intake depended on the participants’ interpretati®ame individuals might have
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reported all the ingredients of a beef stew, whileers would only report the beef,
or just the vegetables. As a result, aggregateesomere likely to have a relatively

high random error, which could have led to underese some associations.

Furthermore, the uneven amount of FFQ-items indifferent food groups could be
an explanatory factor for the widespread misrepgrof intakes. The emphasis on
fruit and vegetables might have encouraged paatitgpto report a higher intake for
this food group because many individuals were yikelconsume more than once a
month all 34 fruit and vegetables items. In congmar] if a participant reported
having consumed all twelve items under snacks amets, it would have resulted in
a smaller total intake for this food group. If as®d to be constant among
participants, the aggregate scores rankings mayhawé been modified by this

systematic bias.

(iv) 7-day diary data

Misreporting of dietary intakes in the FFQ was @onéd by the use of the 7-day
diary (7DD) data (chapter 8). Results were in limgh the validation study of
Brunner et al. (2001) which indicated that the FB@er-estimated plant-based
micro-nutrients, i.e. fruit and vegetable intake.

Diet diaries have been shown to relate better ue tntake (Kipniset al, 2003;
Prenticeet al, 2011) and to be more adequate to identify exgstin non-existing
diet-disease relationships (Day al, 2001; Binghanet al, 2003; Freedmast al,
2006; Spenceet al, 2010; Hutchinsoret al, 2011; Keyet al, 2011). In addition,
dietary intakes are reported at the food leveheathan for pre-specified items,
which makes diet diaries an ideal tool for NP vaiiion. Yet, only 1,350 diet diaries
were coded by the Whitehall Il study team (apperdiand survival analysis models

could not be conducted on such a limited sample.

Instead, the 7-day diary (7DD) data were used gmession calibration models to
evaluate and correct differential misreportingdach of the FFQ-items. Most results
were coherent and in line with previous observati(ehapter 8), but the 7DD and

the FFQ are measuring different aspects of dietatgke, which led to some
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inconsistencies. In particular, many items inclutethe FFQ were not necessarily
consumed by participants within the weekly periédhe 7DD. For such items, the
7DD data included a majority of non-consumers, Itggy in non-normal

distributions. The assumptions beneath the regnegsilibration model were flawed

and the method could not be retained.

10.2.2 Nutrient profiling models WXYfm and SAIN,LIM

The two NP models used in the project were maiastrenodels designed by
national food safety agencies for regulatory puegsosThey had been previously
included in many validation studies (chapter 2)stifg their predictive validity
appeared most relevant both in terms of scierdifid public health interest.

The WXYfm and SAIN,LIM models are publicly avail&land do not require
extensive nutrient composition tables to applyshibuld be possible to apply these
models on most existing datasets, including alteres of the Whitehall Il study. As
shown in chapter 9, the two models were easily fremti The WXYfm model has
already been adapted for use in Australia and Nealahd for the regulation of

health claims, an application it was not originatitended for (chapter 2).

WXYfm and SAIN,LIM are both across-the-board NP malsd While this may
reflect general dietary guidelines, it leads toyatematic association between the
aggregate scores and diet variety (chapter 8).i#slighted in chapter 2, healthy
dietary patterns always include foods consideredeas healthy. This has been
underlined by several validation studies in whicimealthy foods were consumed in
association with healthier ones (e.g. butter aneh jaith wholemeal bread).
Therefore, category-specific NP models, which setealthieroptions within food
categories, might be a more favourable approactetatify realistic healthy dietary
patterns. Yet, the number of food categories shdngddcarefully determined. A
model with too many food groups may not be abledaectly identify healthy
foods, whereas a model with a limited number oégaties may be a realistand
practicalapproach to promote healthy and varied diets (Scadghet al, 2010).
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The developers of the SAIN,LIM model recently desid an alternative category-
specific SAIN sub-score (Lesturgeenal, 2011). Testing for predictive validity of
such a category-specific model could have confirthedabove assumption.

WXYfm and SAIN,LIM used thresholds determined audnily to define the foods
which could be advertised or could carry a claiime ZWXYfm model developers did
not explain how the healthiness categories threshulere determined. For such
reason, the thresholds were not used in the EW8:@gatg score that relied on the
“overall score” scale of WXYfm. In chapter 9, th&R aggregate score which used
the thresholds was applied to the WXYfm model. Arensystematic approach, for
instance using sensitivity analysis, could havéeteshe validity of these thresholds.
Yet, this was not prioritised considering the urestpd findings obtained with EWS.
The bi-dimensional aspect of the SAIN,LIM model raatl necessary to use the
“quadrants” thresholds to combine the SAIN and ldisb-scores. The developers of
the SAIN,LIM model did justify the thresholds (chap?2): they were based on the
assumption that if a food represented the wholtadientake, it needed to reach the
average of 100% of the recommended intake for ipesitcomponents (SAIN
threshold), and be under the maximum limit for thegative components (LIM
threshold). Such a rationale could be argued smcsingle food could realistically
represent 100% of one’s intake. Aggregate scomadasito the WXYfm-derived
EWS were applied separately to the SAIN and LIM-sabres. Their combination

would have required alteration of the original N§oaithm.

Further, the WXYfm model puts more weight on itgatve components and was
therefore more affected than SAIN,LIM by the unectpd associations obtained
with the negative components (chapter 8). Whilefedgintial misreporting of
unhealthy foods explained these artefacts, thegedaithe issue of the balance
between positive and negative nutrients in NP @lgmis. Negative nutrients have
been the focus of many NP models and associatelic gudmlth policies, but the

present results suggest that the focus cannot thenpegative nutrients alone.
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10.2.3 The EWS and PES(Q1) aggregate scores

The choice of an aggregating algorithm revealetie@ crucial step, necessary to
test the predictive validity of NP models. Therefothe validation of the WXYfm
and SAIN,LIM models was an indirect process, arafitst research objective of the
project consisted in designing aggregate scorebdtr NP models. The EWS and
PES(Ql) aggregate scores used straightforward igdgw which followed
approaches used in previous studies (Arambegiotd, 2008; Fulgoniet al, 2009;
Chiuveet al, 2011). They were shown to discriminate partictpamith respect to
their reported intake at the FFQ-item level, irelwith the NP concept. The EWS
and PES(Q1) algorithms were adaptable and coula Heeen used with many
different NP models.

However, the choice of the aggregate scores algositwas arbitrary, and these were
shown to influence the predictive validity resulis.particular, the implementation
of the variety-oriented RFS aggregate score did teavery different prospective
associations compared to the original EWS and PES(The RFS(WXYfm) and
the RFS(SAIN,LIM) were highly correlated, as werd/§ and PES(Q1); whereas
the correlations between the EWS and the RFS(WXY&ngl between the PES(Q1)
and the RFS(SAIN,LIM), were weaker. This indicatdtht the nature of the
aggregating algorithm had more influence on th&irags of participants than the

differences between the two NP models.

In addition, and as mentioned above (section 1).#h2 EWS algorithm was not
similarly applicable to the two NP models, and @ymot be possible to define a

universal aggregating method.

10.2.4 Analysis strategy and design

The analysis framework was a clear strength of pinggect, and it could serve as
basis for the subsequent investigation of NP uglidihe design of the necessary

aggregate score was presented transparently. $easpacts of the validity of
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WXYfm and SAIN,LIM were assessed. Identificationpadtential confounders was
done through a systematic approach, and informdiiaa was explored carefully.
The alternative aggregate scores of chapter 9 rooedi the results presented in
chapter 8, and showed that longitudinal data cteldery useful in designing new

models.

However, the statistical methods used throughastgtudy may have affected the
results. First, predictive validity was tested ocomplete-case sample, which led to
selection bias since participants with missing caa information were more likely
to be in poor health (chapter 4). Working with dueed size sample may have also
resulted in limited variations in the exposure &bles. While the use of imputation
models could have increased the number of obsensincluded in the analyses
(Sterneet al, 2009), this was not a priority and time constisigid not allow for a

full investigation of this method.

Second, FFQs were completed at phases 3, 5, andl dhly phase 3 (baseline for
the project) data were used. The implementatiorCok regressions with time-
varying aggregate scores reflecting the most recemiemporary diet during follow-
up may have resulted in stronger associations €Hwal, 1999). However, the
nutrient composition of foods was likely to changethe 10-year period between

phase 3 and phase 7, and no updated nutrient cdropdable was available.

Last, all the statistical methods used in the mtojgere subject to a range of
assumptions. Effort wasnade to make sure the assumptions were met (e.g.
proportional hazards for the Cox regressions),sbate were likely to be flawed. In
particular, the diabetes outcome variable was vatercensored, i.e. event
information was only available by time intervalhelSAS statistical software used
the method developed by Breslow (1974) to approtentiae likelihood function in

the presence of tied events (i.e. events occuatiiige same time).
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10.3 Comparison with existing literature

To date, only one other published study has andlyise prospective relationship
between NP and health outcomes (Chiaval, 2011). The Chiuve study used US-
based cohort data. Its study design was essentr@lysame, therefore this section
will focus on the comparison of the NP models, diagasets, and the results of the

two studies.

10.3.1 Nutrient profiling models: WXYfm, SAIN,LIM, and ONQI

The use of the government-endorsed WXYfm and SAIM,NP models is one of
the strengths of our project. Their validation witdspect to prospective health
outcomes is an essential step to ensure the phbhtth relevance of these two

regulation-oriented models.

The Overall Nutritional Quality Index (ONQI) is thenderlying NP model for the

commercial NuVal food logowww.nuval.con). It is aimed at food manufacturers

who buy the right to display the NuVal label andrec(ranging from 1 to 100) on
their food packaging. The ONQI algorithm is pat@nbtected and not publicly
available. It has been included in several valatastudies which partly described
the components of the ONQI model (chapter 2), louletails were given on several
key aspects such as the reference amount. It wpessible to assess the model
using the Whitehall 1l data without the prior consef the ONQI developers. In the
same issue in which the Chiuwg al. study was published, two commentaries
focused on this major limitation, which shows thatirnals are cautious when
publishing results obtained with patented methodaki€ic, 2011; Reedy &
Kirkpatrick, 2011). Reedy and Fitzpatrick indicatétat the proprietary nature of
ONQI meant that “the tool [could not] be consideeasda potential option for public
policy intervention” and that such an approach mhd promote further research to
improve the model. In addition, the ONQI model ud#s 30 nutrients and adjusting
factors (Katzet al, 2010). Extensive composition tables would be ireguto apply
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the ONQI algorithm to the Whitehall Il FFQ data.c8wa limitation did not apply to
WXYfm and SAIN,LIM.

10.3.2 Longitudinal data: Whitehall Il, Nurses’ Hea Ith Study, and
Health Professionals Follow-up Study

The Whitehall 1l study, the Nurses’ Health Studyndathe Health Professionals
Follow-up Study are all occupational cohorts wifletary assessment at baseline.
Therefore, these datasets shared the same streargthmitations associated with

the study design. They were particularly suitetesi for predictive validity of NP.

The Nurses’ Health Study was set up in the UnitédteS in 1976: 121,700
registered female nurses aged 30 to 55 years weodezl (Willettet al, 1987). As
for Chiuve’s study, the baseline was the FFQ asseiss made in 1986. 62,284
women were included in the study, with a total 64 chronic disease events.
1986 was also the baseline for the Health Profaad~ollow-up Study. A mailed
FFQ was returned by 51,529 men aged 40 to 75 y€aislitz et al, 1991). From
this sample, Chiuve included in her analysis 42 @&2icipants with 13,520 chronic
disease events in total. The population size oftwee US studies therefore largely
exceeds the 7,251 Whitehall 1l civil servants inigd in the analyses of our project.
Likewise, the statistical power of Chiuve’s studgsavithout comparison. The range

of confidence intervals between the two projeatsady illustrated these differences.

Additionally, the dietary assessment tools usedhm two US studies have been
thoroughly validated (appendix 1) and were usebtasss for the Whitehall 1l FFQ
(Willett, 1998; Brunneret al, 2001). The nutrient content data was more delaile
which allowed Chiuve and colleagues to apply tlimed ONQI algorithm.

Both US-based longitudinal datasets were at thet lnéshe development of chronic
disease based nutritional epidemiology. They weeglun many occasions including
the link between dietary fat and CHD (ldual, 1997), the validation of the Healthy
Eating Index (HEI) and the development of the AHMEIcCullough et al, 2000a;
McCullough et al, 2000b; McCulloughet al, 2002), the development of energy
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adjustment methods to deal with global energy mpisteng (Willett & Stampfer,

1998), and the use of repeated dietary assessifirtuntst al, 1999). The use of the
Nurses’ Health Study and the Health ProfessionaldoWw-Up study therefore
appeared as a specific strength of Chiuve’s ingasan.

10.3.3 Predictive validity results

The age of Nurses and Health professionals at #seline of both US cohorts
(between 40 and 75 years) was reasonably simildret@ge range in the Whitehall
Il sample (39 to 63 years). Despite very differemtironments, the results from both
studies could therefore be compared to some extent.

With the ONQI-f (the ONQI aggregate score weightad portions of intake),
protective and linear trends were obtained in botten and women for
cardiovascular disease, diabetes, and total miyrtalut not for cancer. The size of
the protective effect was modest but significanithwthe hazard ratios point
estimates for the fifth quintile of the ONQI-f rang from 0.77 to 0.91 for all
outcomes except cancer. Such point estimates wetlgei range of those observed
for the middle quartiles of EWS and PES(Ql), thougiv estimates were
significant. When using an aggregate score weighyeenergy intake, and therefore
more similar to EWS and PES(Q1), Chiuve and colleaglid not obtain significant
results (results were not shown by the authorspldmenting an aggregate score
weighted by portion size did not change our reqults shown).

Significant or borderline significant risk reduati@f total mortality was observed
for all the middle quintiles (i.e. second to foughintiles) of ONQI-f, replicating the
second and third quartiles results of the EWS dB8(R1) aggregate scores for all-
cause mortality. Point estimates obtained in thesqmt analyses indicated greater
risk reduction, but the smaller number of events tie wider confidence intervals

and non-significant results.

Results for diabetes and cancer did not convertyedas the two studies. This could

be due to the definition of cases which were shgtiifferent. For cancer, our project
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included fatal events only whereas Chiuve and aglies included all diagnosed
cancers; both excluded non-melanoma skin cancercé®ning diabetes, the present
project used the 1999 WHO classification while MNetional Diabetes Data Group
and the American Diabetes Association definitiomsewsed in the US study.

Overall the power of the data used by Chiuve arldagues was a strength of their
project which enabled obtaining robust estimates.tBe tested ONQI model did not
allow for full comparison and remained a strongtiation of Chiuve’s study.

10.4 Implications and meanings of project’s results

The unexpected results and their explanation lggkdid that testing for predictive
validity of NP was not a straightforward proceshisTsection presents the possible
implications of the project’s results for all thetars linked to the development,

validation, and application of NP.

10.4.1 Implications for scientists and model develo  pers

The main task for scientists and NP model deveketo verify the present results
(see “Areas for further research” section), ideally alternative data less prone to
dietary misreporting. For this purpose, the framdwgsed in the project signposted

the aspects which need to be given particular tdten

First, an aggregation method must be determinedr gd testing for predictive
validity. As shown in chapters 8 and 9, the aggieegaore algorithm can influence
the final results, and scientists need to be tramsp on the chosen algorithms to
allow comparisons with other studies. Section I0ctther suggested that there might
not be a universal aggregation method, and compahe results obtained with
different aggregation algorithms could enable ust@deding better the impact of the

aggregate scores in the relationship between NP aospective health status.
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Second, reporting the associations between aggresgares and food intake (i.e.
construct validity) could also be necessary, toficonthat the aggregation methods

do reflect the food-based NP concept.

Third, scientists interested in the predictive diéi of NP must identify the potential
factors that could confound and/or bias the pradpe@ssociations. In particular,
the aggregation methods should not be systematiadbociated with energy
misreporting which is quite common in large scal&itional studies.

Fourth, analysing the effects of each one of thechiiRponents may be very helpful
to design more efficient NP models. Results fromapter 9 confirmed the
observations made in chapter 8 and indicated Heathoice of components was an

essential aspect of NP models.

In summary, testing for predictive validity entadggregating the food-based NP
concept at diet level which is a challenging taBke aggregation method further
needs to circumvent the potential information bidathin the dietary assessment
data. The use of “results-driven” models (chaplewfs shown to be an effective
way of deriving alternative aggregate scores an®dBr models. Scientists and
developers should therefore be encouraged to nggudinal data when possible.

10.4.2 Implications for regulators and public healt  h policies

NP is currently used as a regulatory tool in sdvayantries including the UK. In the
project, the construct and convergent validity lssdid show that both WXYfm and
SAIN,LIM were associated with healthier dietary ™es, confirming that NP could
contribute towards better intake for key public [tteanutrients. The predictive
validity results previously obtained with the ON@obdel further confirmed that NP
could be a relevant public health lever to help dowhronic disease health

outcomes.
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NP is a food-based concept whose rationale ligisanmelationship between intake of
individual foods and healthiness of the diet astwle. Global dietary intake has
been consistently shown to be related to healtlustand the definition of healthy
dietary patterns were derived from a consideratlldybof evidence (chapter 1),
including the results of the Whitehall 1l study é&gter 2). Therefore, the findings of
this project do not undermine the validity of tledationship between NP and health
outcomes as confirmed by the results obtained apten 9 and for the ONQI NP
model (Chiuveet al, 2011). They do reveal inherent methodologicdidalifties in
translating the food-based concept at a diet leMgyiregate scores algorithms were
shown to influence the predictive validity resuli®tably via their association with
energy misreporting. The NP concept, and the WX m SAIN,LIM NP models
which were shown to reduce risk of prospective glralisease for participants in
middle quartiles, could therefore not be invalidateased on the present results.
Rather, testing for their predictive validity shddde done in alternative datasets less

prone to misreporting of dietary intakes.

Regulators also need to take into consideratiorptpilation’s perception of public
health messages. Enforcing NP models which wereprmted to predict chronic
disease as expected may raise scepticism towarllkc plealth policies. The
implementation of a regulatory NP model would reguhat its predictive validity

were confirmed to ensure coherent guidelines andpance by the general public.

10.4.3 Implications for the food industry

The food industry is likely to be interested in #@ygplications of NP, in particular
those concerning consumers’ behaviours with resfmeébod labelling using NP-
based criteria. This project has shown that lamgdesepidemiological studies with
semi-quantitative dietary assessment may not bbdketool to validate NP models.
As a result, smaller scale studies with more peedistary assessment methods (e.g.
diet diaries or 24h recalls) may be more effectiesmd- less costly than large
cohorts—to validate NP-based applications. Theal fmlustry should therefore be
encouraged to promote the application of NP-basdidips via such small scale and
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more affordable studies, directly linked to the laggtion of a NP model. Since
small-scale studies would not have sufficient powerelation to disease events,
case-control designs or alternative markers ofthdgalg. contemporary risk factor
status) could be used to further investigate tls@ation between NP and health

outcomes.

Similarities in the results obtained for the two W®dels suggest that other across-
the-board models could produce similar resultss Mould need to be confirmed,
but could indicate that category-specific models/ha more effective than across-
the-board models to promote healthier dietary ie$aksee section 10.2). Food
manufacturers often produce a range of productenbeig to the same food
category, and category-specific NP models may letbsuited to their portfolios.
Therefore, these results should be used by foodpanies to promote predictive

validity research focusing on such category-spedif models.

10.4.4 Implications for the general public

The general population may be confused by the giigdivalidity results which did
not concur completely with a vast body of evidersnel associated messages
concerning diet and chronic disease. NP is aimethasifying foods, not diets, and
the communication of the project’'s results need$ottus on this key difference.
Existing public health advice on healthy eatinghat invalidated, and consumers
must not take these new results as totally conaugilso, the two NP models under
investigation were not designed to be consumenfacand the implications with

respect to consumers would be more linked to tipfiGgtions of the models.

10.5 Areas for further research

Testing for predictive validity is a new step iretassessment of NP models. Hence,
further investigations are needed to fully estdbpsgedictive validity of the WXYfm
and SAIN,LIM models. Specific limitations identilehroughout the project need to
be addressed by future research.
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10.5.1 Data

First, reproducibility of the present results neddsbe assessed in alternative
longitudinal datasets. An ideal option would beun similar analyses in the Nurses’
Health Study and the Health Professionals Followsipdy, for cross-comparison
with ONQI and for increased statistical power. Qtdatasets could include the
European Prospective Investigation into Cancer Muatlition (EPIC) that gathered
more than half a million participants across terrdpaan countries (International
Agency for Research on Cancer), or the UK WomermhkdZt Study which includes
more than 30,000 middle-aged women (Cadeal, 2004). The assessment of
predictive validity in particular regions or coues should ideally be done using

local longitudinal data.

Second, the FFQ used in the present project arithbwe and colleagues was prone
to dietary misreporting and was shown to be a édhitool in the context of NP
validation. Contrary to FFQs, diet diaries or 2éhballs provide detailed information
on specific foods. If NP models were applied tohstype of data, the random error
linked to the scoring of FFQ-items by NP modelslddae limited. Diet diaries are
further thought to be less prone to misreportinghtdkes than FFQs. However, due
to the coding burden, only limited longitudinal aawith diet diary or 24h recall
assessments are available. Some possible datasegscreated by the UK dietary
cohort consortium which regrouped data from sevéh ddhorts with diet diary
assessment (Dahrat al, 2010). Nested case-control datasets were prodteed
assess relationship between diet and breast, ctdreand prostate cancers, and

could be used to assess predictive validity of Nfelefs with respect to these events.

Third, in the absence of biomarker data, more eefitechniques such as structural
equation modelling could not be used to correctdietary misreporting (appendix
7). The availability of a wider range of nutrienbimarkers, and more specifically of
recovery biomarkers such as urinary nitrogen orbtiolabelled water, could allow
recalibrating the reported dietary intakes to obtprospective associations less
confounded by misreporting of intakes (Kaaks, 19ubaret al, 2003; Rosneet

al., 2008). Yet, suitable biomarkers do not exist &ir nutrients or food groups
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(Prentice, 2003), and cannot be considered as msadfethe intake of individual
foods. Testing for predictive validity of NP usirexisting biomarker data could
therefore reduce the random and systematic errsoceged with self-reported
intakes, but it would not replace the use of foaddu diet diary or 24h recall data.

In addition, the concurrent validity results of ptexrs 5 and 7 did indicate that the
WXYfm and SAIN,LIM models were not associated withproved risk factors
profiles, in line with the predictive validity colusions. If testing for predictive
validity is not feasible due to lack of data oraeces, the assessment of NP against
biological risk factors should therefore be invgated, though this would not replace
the “ideal” predictive validity (Drewnowski & Fulgw, 2008). Notably, many
national dietary surveys now include some crostiesel measurements, e.g. the
“Etude nationale nutrition santé” in France, thetidlaal Dietary and Nutrition
Survey in the UK, and the NHANES studies in the (UBité de surveillance et
d’épidémiologie nutritionnelle, 2007; Batesal, 2010; Centers for Disease Control
and Prevention & National Center for Health Stat$st2012). If such cross-sectional
associations were to be investigated, potentiadrination bias and confounding

factors would need to be given particular attention

10.5.2 Nutrient profiling models

Both WXYfm and SAIN,LIM models were clearly relevan terms of public health
implications and potential applications, but moesearch is needed to assess other
algorithms. In particular, the assessment of categpecific models would allow
testing the hypothesis that such models would ptemmore effectively varied diets.
The Whitehall Il data could be used for such ang)yfer cross-comparison with the
present project. Implementation of category-spectiodels must be cautious given
that the definition of food categories may not algvde easily translated at dataset
level. Also, the use of a FFQ may not be approprifasome food categories contain
too few items (or no items since FFQs do not nesdgsnclude the full range of

available foods).
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The construct validity results for the EWS and REB(aggregate scores confirmed
that NP models did not need including many nutsdatbe associated with healthier
nutrient intakes overall. The ONQI contains 30 comgnts and such increased
complexity may have explained the diverging predecvalidity results. A detailed
investigation into the impacts of different aspea$ NP algorithms (e.g.
components, reference amount, thresholds for heatth categories) would allow
understanding better which type of model may beeneffective to predict health
outcomes. A model containing more nutrients woddniore costly to implement,
but it may be preferable for regulators to havestlg model proven to be linked to
prospective health status rather than a non-valiaimple model. Optimising the
efficiency of a model (i.e. simplicity of the algibhm in conjunction with prediction
of prospective health status) would be an intengsitep in the development of NP.

10.5.3 Statistical analysis and study design

Chapter 9 showed that results from prospectivecastsons could serve as a basis
for model improvement. The development of such Itegiriven models must be

conducted in several cohort studies for generadisgiurposes.

Also, the use of repeated dietary assessments cshaldw obtaining stronger
prospective associations (Hat al, 1999). Yet, the food market being in constant
evolution—especially for the manufactured goodsjaied nutrient content tables

would be necessary to calculate updated NP scackassociated aggregate scores.

Chapters 8 and 9 showed that diet variety actecaraseffect modifier in the
associations between aggregate scores and he#dtimees, playing a crucial role in
the prediction of future health status. As a restiie relationship between diet
variety and NP needs further investigation. In ipafar, the impact of across-the-
board vs. category-specific NP models on diet as@ould indicate which type of
algorithm would be more likely to promote healthgestary patterns, without the use
of longitudinal data.
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10.5.4 Validity of nutrient profiling models

In the project, the definition of “predictive valig’ was limited to prospective
associations between a NP model and health outcomésh may have appeared as
the best possible validation (chapters 1 and 2)t, ¥eme scientists did not
necessarily consider such step as essential betass®t related to the application
of NP models (Reedy & Kirkpatrick, 2011).

Potential applications of NP are numerous and aifvetp consumers adopt healthier
diets. For predictive validity to be complete, het research would need to assess
the impact of the use of a NP model on the intendgplication. For example,
Ofcom did assess the impact of introducing WXYfmrégulate TV advertising
though WXYfm itself was not validated (Office ofroounications, 2007a); and the
analysis of the effect on consumers’ behavioura &fP model appearing on food
labels should be considered (Epsteiral, 2010; Katzet al, 2010; Vythet al, 2010;
Muller & Ruffieux, 2011; Templeet al, 2011; Vyth et al, 2011b). Such an

investigation would require behavioural data naible in the Whitehall Il study.

The present project considered that the first stgmedictive validity was to verify
whether diets with a higher content of healthy fodds defined by the NP model)
were beneficial. The following step in predictivalidity research should be to

analyse how NP could facilitate such shifts in eonption in the general population.

10.6 Concluding remarks

This project aimed at assessing the predictiveditgliof WXYfm and SAIN,LIM
nutrient profiling models. A protective effect ofets containing higher amounts of
healthy foods was hypothesised. Aggregate scorese vaefined to classify
participants according to their relative consumptid healthy and unhealthy foods.
The aggregate scores were associated with betber ifiake profiles, associations

were weaker with diet quality indices. Survival Bsas yielded U-shaped
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associations; risk reduction was observed for @pents with middle aggregate

scores rankings, significant for the SAIN,LIM model

The unexpected quadratic trends were better exgaaby misreporting of dietary
intakes. Low-energy reporters differentially undeported the energy-dense
unhealthy foods, and were therefore more likelyo¢oclassified as healthy by the
energy-weighted aggregate scores. Low-energy riegostas further associated with
increased vascular risk, and this association eomfed the predictive validity
results. The role of misreporting was confirmedligy implementation of alternative

aggregating method and the modification of theinagNP models.

Aggregation of NP scores for individual foods tmguce an aggregate score that
indexes the nutritional quality of the diet is piehatic, particularly as a
consequence of information bias. The analysis pteden this thesis indicates that
methods of dietary assessment that more accunaidyt true intake would further
confirm the predictive validity of NP.
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Appendices

Appendix 1: Validation of food-frequency questionna ires

(i) Dietary assessment in nutritional epidemiology24-hour recalls, diet diaries,
and FFQ

Two common methods were developed based on repodcent intake: 24-hour
recalls and diet diaries. The first method, 24-h@aalls, is based on an interview
conducted by a trained dietary interviewer. Theip@ant is asked to recall all foods
and drinks consumed in the last 24 hours, or indag preceding the interview
(Pekkarinen, 1970; Burk & Pao, 1976). The seconthatk diet diaries, relies on the
listing of all foods and drinks consumed on a dedirperiod of time (usually less
than a week) (Pekkarinen, 1970; Block, 1982). Theigpant is asked to report
consumption at the time the foods are eaten, posdires being directly weighted or
estimated. Both methods are open-ended and partisipcan therefore describe
precisely the composition of their diets. Howevbecause of the burden on
participants and scientists and the difficulty stirmate actual intake, 24h recalls and
diet diaries are not the most convenient methodddime scale epidemiological

studies.

Food-frequency methods, which measure the usuatenbver a longer past period
(e.g. last month/6 months/year), were mainly dgwetbduring the 1950s and 60s
(Wiehl & Reed, 1960; Stefanik & Trulson, 1962; Mart971). The basic

questionnaire consists of two parts: a food lisl @anfrequency response section
where participants indicate the frequency of consion of each food. Some

guestionnaires may also include a section on thalymrtion size consumed of the
relative foods. The underlying principle of the defsequency approach is that long-
term average diet is more important than intakea tew specific days in relation to

health outcomes. Since these questionnaires amdap@d in order to be machine-
readable, the burden on the scientists is condiieraduced, and raw data can be

available very quickly. Food-frequency questionesir (FFQs) require less
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investment from the participants and the list adde can be adapted to the research

question and/or the population of interest.

FFQs have therefore become the primary method feasoring dietary intakes in
epidemiological studies, and the Whitehall Il stutys been using an anglicised
version of the Willett food-frequency questionngWéillett et al, 1985). More detalil
on this questionnaire is given in chapter 4. Adsgsthe criterionvalidity of FFQs
would require an independent measure of true int@kserving or measuring true
dietary intake in free living individuals is prazily impossible and another gold-

standard was necessary.

(i) Validity of FFQs against alternative dietary assessment methods

The comparison of intakes derived from a FFQ wittiakes derived from
independent dietary assessment methods has besrath@pproach used to validate
FFQ data. Reporting errors associated with FFQsdaeeto a variety of factors
including memory, perception of portion sizes, bal of foods in the FFQ,
calculation of mean intake of seasonally varialbledf, interpretation of questions,
conscious and unconscious bias related to percdieatth desirability, BMI, and
socio-economic position (Willett, 1998). Diet desi are the dietary assessment
method most different to FFQs: they are open-endedgs are recorded when
consumed—hence no memory reliance and direct assasf portion size; and
interpretation errors are usually made by coderid @aot participants. Reporting
errors are therefore more likely to be independremh the FFQ ones. An alternative
to diet diaries may be 24h recalls, but the rekame memory may cause errors to be
more correlated with the FFQ. In both cases, dacefit number of days is needed to
represent average intake. A detailed investigatiotine 1980 Nurses’ Health Study
dietary assessment tools combined the use of muidasiFFQ and four 1-week diet
diaries. It showed that the relatively cheap qoestaire could capture almost as
much information as the diet diary (Willett al, 1985).

Diet diaries and 24h recalls have further been usedorrect the risk estimates
between FFQ derived intakes and outcomes (Rosnal, 1989). However, it has
been observed that errors in FFQs and other dietssgssment methods are often

correlated (Michelgt al, 2004), and more independent measures are needed.
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(iii) Validity of FFQs against biomarkers

Biomarkers are another alternative for an independeeasure of dietary intake.
They have been considered as the gold-standaidtimsasurement errors associated
with the estimation of their concentrations arepmged to be uncorrelated with
errors of any dietary questionnaire (Bingham & Da997; Livingstone & Black,
2003).

Plasmap-carotene which was shown to be well related tdadyeintakes (Willett,
1998) was measured in almost all Whitehall Il papaants. It was used in an attempt

to validate fruit and vegetable reported intakepéamlix 7).

Nonetheless, not all nutrients have a marker irodlor other tissue, and the
measured concentrations are not necessarily mdahimg regards to long-term
intakes. Also, levels of biomarkers can be linkedother non-dietary covariates

(Schectmaret al, 1989), and their collection can be prohibitivekpensive.
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Appendix 2: Classification of all FFQ-items accordi
WXYfm and SAIN,LIM nutrient profiling models

ng to

Table A0.1: WXYfm and SAIN,LIM scores for phase 3 FFQ-items

WXYfm SAIN,LIM
FFQ-item Score Category SAIN LIM Q
Beer, lager or cider N/A N/A
Liqueurs N/A N/A
Port, cherry, vermouth N/A N/A
Spirits N/A N/A
Wine N/A N/A
Peas -13  Healthy 14.62 056 1
Green beans, broad beans,
runner beans -9 Healthy 32.86 0.20 1
Spring greens, kale -9 Healthy 106.06 029 1
Dried lentils, beans, peas -9 Healthy 8.38 024 1
Garlic -8 Healthy 9.17 0.27 1
Mushrooms -8 Healthy 28.22 025 1
Parsnips, turnips, swedes -8 Healthy 11.97 045 1
Spinach -8 Healthy 56.46 144 1
Brussels sprouts -8 Healthy 43.22 055 1
Cabbage -7 Healthy 43.73 024 1
Cauliflower -7 Healthy 28.93 039 1
Leeks -7 Healthy 24.41 0.28 1
Tofu or soya bean curd -7 Healthy 17.79 0.13 1
Baked beans -6 Healthy 12.54 9.69 3
Broccoli -6 Healthy 47.68 049 1
Carrots -6 Healthy 16.51 073 1
Marrow, courgettes -6 Healthy 21.55 001 1
Peaches, plums, apricots -6 Healthy 26.00 001 1
Sweet peppers -6 Healthy 126.49 038 1
Green salad -6 Healthy 28.12 023 1
Strawberries, raspberries -6 Healthy 62.38 0.06 1
Tomatoes -6 Healthy 31.19 020 1
Apples -5 Healthy 6.52 003 1
Coffee, regular -5 Healthy N/A
Coffee, decaffeinated -5 Healthy N/A
Grapefruit -5 Healthy 29.14 003 1
Melon -5 Healthy 34.51 0.08 1
Onions -5 Healthy 9.76 003 1
Oranges, satsuma, mandarins -5 Healthy 34.60 0.05
Wholemeal pasta -5 Healthy 6.31 157 1
Crisp bread -4 Healthy 5.85 510 1
Other white fish, fresh or frozen -4 Healthy 736 099 1
Bananas -3 Healthy 5.75 018 1
Brown bread/rolls -3 Healthy 6.00 8.65 3
Chips or French fries -3 Healthy 3.58 150 2
Real fruit juice -3 Healthy 7.61 6.62 1
Liver, liver pate, sausage -3 Healthy 13.64 0.87
Pears -3 Healthy 4.37 0.03 2

(Continued)
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WXYfm SAIN,LIM
FFQ-item Score  Category SAIN LIM Q
Tinned fruit -3 Healthy 3.93 990 4
Grapes -2 Healthy 3.46 0.02 2
Oily fish, fresh or canned -2 Healthy 42.01 1.69
White or green pasta -2 Healthy 3.37 055 2
Roast potatoes -2 Healthy 3.73 1.15 2
White bread/rolls -2 Healthy 4,52 784 4
Wholemeal bread/rolls -2 Healthy 6.64 783 3
Brown rice -1 Healthy 2.05 084 2
Chicken or other poultry -1 Healthy 6.09 472 1
Pork: roast, chops or stéw -1 Healthy 7.80 403 1
Skimmed milk -1 Healthy 12.00 072 1
Soya milk -1 Healthy 5.69 124 1
White rice -1 Healthy 1.68 054 2
Yoghurt -1 Healthy 8.48 3.74 1
Fried fish in batter 0 Healthy 3.09 412 2
Beef: roast, steak étc 0 Healthy 8.44 587 1
Boiled, mashed, instant or jacket
potatoes 0 Healthy 3.87 246 2
Cocoa, hot chocolate 0 Healthy 7.73 709 1
Coleslaw 0 Healthy 2.58 10.20 4
Lamb: roast, chops or stéw 0 Healthy 8.40 6.42 1
Low calorie or diet fizzy drinks 0 Healthy N/A
Pork: roast, chops or stéw 0 Healthy 6.60 6.57 1
Semi-skimmed milk 0 Healthy 8.66 220 1
Sterilized milk 0 Healthy 6.29 421 1
Tea 0 Healthy N/A
Vegetable soup 0 Healthy 2.79 795 4
Beef: roast, steak étc 1 Inter. 7.61 6.85 1
Fizzy soft drinks 1 Less heal. 0.51 985 4
Lamb: roast, chops or stéw 1 Inter. 9.43 784 3
Lamb: roast, chops or stéw 1 Inter. 10.85 9.25 3
Fruit squash or cordial 1 Less heal. 4.90 335 2
Beef: roast, steak étc 2 Inter. 6.67 861 3
Channel Islands milk 2 Less heal. 5.61 6.00 1
Cottage cheese, low fat soft
cheese 2 Inter. 6.27 777 3
Dried fruit, e.g. raisins, prunes 2 Inter. 4.71 63D 2
Full cream milk 2 Less heal. 5.97 452 1
Horlicks, Ovaltine 2 Less heal. 7.50 784 3
Lasagne 3 Inter. 3.95 10.24 4
Meat soup 3 Inter. 7.33 6.16 1
Milk puddings 3 Inter. 3.56 12.04 4
Pork: roast, chops or stéw 3 Inter. 5.74 9.12 3
Soya meat, TVP, vegeburger 3 Inter. 6.09 988 3
Fish fingers, fish cakes 4 Less heal. 3.24 10.24
Potato salad 4 Less heal. 1.47 6.65 2
Fruit pies, tarts, crumbles 5 Less heal. 3.12 40Q7. 4
Peanuts and other nuts 6 Less heal. 2.65 19.43 4
Peanut butter 6 Less heal. 2.66 2753 4

(Continued)
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WXYfm SAIN,LIM
FFQ-item Score Category SAIN LIM Q
Sauces, e.g. white/cheese sauce,
gravy 6 Less heal. 4.35 11.30 4
Porridge, Readybrek 7 Less heal. 4.78 10.06 4
Shredded wheat, Weetabix etc 7 Less heal. 519 .02133
Muesli, Fruit'n' Fibre, etc 9 Less heal. 5.85 9%1. 3
All-Bran, Bran Flakes etc 11 Less heal. 21.24 0323. 3
Cream crackers, cheese biscuits 11 Less heal. 5 29 1466 4
Ice cream, choc ices 11 Less heal. 2.48 23.14 4
Jam, marmalade, honey 11 Less heal. 1.30 46.31
Shellfish 11 Less heal. 14.80 41.20 3
Corn Flakes, Rice Krispies,
Special K 12 Less heal. 6.83 1757 3
Ham 12 Less heal. 6.48 1499 3
Tomato ketchup 12 Less heal. 1.41 3557 4
Marmite, Bouvril 12 Less heal. 10.40 46.53 3
Pizza 12 Less heal. 4.70 1563 4
Single cream 12 Less heal. 1.88 1893 4
Buns and pastries 13 Less heal. 2.57 2441 4
Eggs 14 Less heal. 7.90 16.03 3
Savoury pies 14 Less heal. 2.88 1597 4
Sweets, toffees, mints 14 Less heal. 0.23 58.06 4
Double or clotted cream 15 Less heal. 0.72 50.98
Sponge puddings 15 Less heal. 3.76 2395 4
Sugar added to tea, coffee,
cereal 15 Less heal. 0.14 70.05 4
Corned beef, spam, luncheon
meats 16 Less heal. 8.59 18.02 3
Quiche 16 Less heal. 4,94 2156 4
Pickles, chutney 17 Less heal. 1.90 39.62 4
Beef burgers 19 Less heal. 6.42 20.60 3
Bacor 20 Less heal. 4.19 3551 4
Coffee whitener 20 Less heal. 0.17 59.77 4
Dried milk 20 Less heal. 14.58 6.42 1
Frosties, Ricicles, Sugar Puffs,
Coco Pops 20 Less heal. 5.82 3659 3
Salad cream 20 Less heal. 0.71 2711 4
Sausages 20 Less heal. 3.17 2435 4
Bacorf 21 Less heal. 3.61 35.03 4
Biscuits 21 Less heal. 2.19 36.82 4
Crisps or other packet snacks 21 Less heal. 3.4628.63 4
Low fat spread 21 Less heal. 8.88 2496 3
Cheese, e.g. Cheddar, Brie,
Edam 22 Less heal. 6.16 36.25 3
Bacorf 23 Less heal. 3.13 3454 4
Cakes 23 Less heal. 1.37 41.12 4
Chocolates, chocolate bars 26 Less heal. 1.27 7969.4
Butter 28 Less heal. 1.93 86.85 4
Hard margarine 28 Less heal. 8.68 61.65 3
Polyunsaturated margarine 28 Less heal. 8.68 434.8
Other soft margarine 28 Less heal. 8.68 50.34 3
French dressing, vinaigrette 28 Less heal. 483 568 4

consumed all, some, or none of the visible fat.

4

Q, quadrant; Inter., intermediate; Less heal., hesdthy.” For meats, participants were asked if they
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Appendix 3: Chapter 8 results for the PES(Q1) aggre  gate
score

Appendix 3.1: Goldberg cut-off, energy misreportingand PES(Q1)

Table A0.2: Mean PES(Q1) by reporting level

Men Women
Under Acceptable Over p* Under Acceptable Over p*
PES(Q1) 32.9 28.5 28.9 <.001 38.9 35.9 39.0 <.001

*Heterogeneity ANOVA across reporting levels

Table A0.3: Distribution of reporting levels acrossPES(Q1) quartiles (4: healthier)

Men Women
Column % 1 2 3 4 1 2 3 4
% Under 14.1 15.4 23.4 33.2 11.0 12.1 16.8 17.8
% Acceptable 79.4 79.7 72.8 62.4 73.5 78.3 74.8 62.9
% Over 6.50 4.89 3.74 4.49 15.5 9.66 8.39 19.4

¥ p<0.001 for both sexes
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Table A0.4: Hazard ratio estimates for sensitivityanalyses excluding energy misreporters,
PES(QL1) quartiles (4: healthier)

Outcome, Model 3,
cases/total Model 3 acceptable reporters only
(numbers for
acceptable HR 95 % ClI HR 95 % ClI
reporters only).
CHD,318/ 1 Ref Ref
7,174 2 0.79 0.58 1.09 0.87 0.60 1.27
(220 /5,263) 3 0.71 0.51 0.99 0.79 0.53 1.17
4 1.21 0.89 1.64 1.41 0.96 2.06
Linear 1.05 095 1.17 1.09 096 1.24
p quadratic trend 0.010 0.042
Diabetes, 754 1 Ref* Ref*
/ 6,868
(511 /5,060) 2 090 072 111 0.85 0.66 1.10
3 1.02 0.82 1.25 1.00 0.78 1.28
4 1.06 0.85 1.31 1.10 0.84 1.43
Linear 1.03 0.96 1.10 1.04 0.96 1.14
p quadratic trend  0.803 0.278
Cancer 1 Ref Ref
/7,235 3 073 051 1.05 0.73 0.48 1.11
(185/5,309) 4 0.69 0.48 1.01 0.69 0.44 1.09
Linear 0.89 0.79 1.00 0.88 0.77 1.02
p quadratic trend 0.027 0.288
All-cause 1 Ref Ref
17,242 3 0.87 0.68 1.10 094 0.70 1.25
(372/5,312) 4 0.79 0.61 1.02 0.82 0.60 1.12
Linear 0.95 0.87 1.03 0.97 0.87 1.07
p quadratic trend 0.035 0.559

Model 3 adjusted for age, sex, ethnicity, maritatiss, employment grade, smoking status, physical
activity level, energy and alcohol intake, BMI, leyfension and dyslipidaemia status, and prevalence
of longstanding illness * Stratified for s€XStratified for BMI categories.Stratified for longstanding
illness and dyslipidaemia. HR, hazard ratio; Chfatence interval
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Appendix 3.2: Differential misreporting of foods ard PES(Q1)

Table A0.5: Summary statistics for original PES(Q21)and regression calibration derived PES_C

Variable N Mean Std Dev Minimum Median Maximum
PES(Q1) 7,463 31.6 11.4 2.48 30.1 92.9
PES_C 7,463  16.1* 12.4 0.04 13.0 90.2

* Significantly different from originakcore (paired t-test p<0.001)

80 100
! !

60
!

PES_C

T
0 20 40 60 80 100
PES(Q1) original

Figure Al: Regression calibration derived PES_C vriginal PES(Q1)
The dashed line represents the y=x function.

212



Table A0.6: Cox regression estimates across PES(Qd PES_C quartiles (4: healthier)

Outcome  Quartile/ Original PES(Q1) Corrected PES C
(cases/n) trend HR 95 % ClI HR 95 % Cl
CHD (318/ 1 Ref Ref
7,174) 2 0.79 0.58 1.09 130 0.95 1.76
3 0.71 0.51 0.99 1.01 0.72 143
4 1.21 0.89 1.64 1.24 0.87 1.75
Linear 1.05 095 1.17 1.04 0.93 1.16
p quadratic 0.010 0.746
Diabetes 1 Ref* Ref*
(754 | 2 090 0.72 111 1.18 0.96 1.44
6,868) 3 1.02 0.82 1.25 093 0.74 1.16
4 1.06 0.85 1.31 0.99 0.79 1.23
Linear 1.03 096 1.10 0.97 091 1.04
p quadratic 0.803 0.096
Cancer 1 Ref Ref
mortality 2 079 055 1.11 0.98 0.68 1.43
(251 / 3 0.73 051 1.05 1.19 0.82 1.72
7,235) 4 0.69 048 1.01 1.19 0.81 1.74
Linear 0.89 0.79 1.00 1.07 095 1.21
p quadratic 0.027 0.618
All-cause 1 Ref Ret
mortality 2 0.71 056 0.92 103 081 131
(524 / 3 0.87 0.68 1.10 0.87 0.67 1.13
7,242) 4 0.79 0.61 1.02 0.96 0.74 1.25
Linear 0.95 0.87 1.03 0.97 0.89 1.06
p quadratic 0.035 0.641

Models adjusted for age, sex, ethnicity, maritatust, employment grade, smoking status, physical
activity level, energy and alcohol intake, BMI, leyfension and dyslipidaemia status, and prevalence
of longstanding iliness * Stratified for séXStratified for BMI categories.Stratified for longstanding
illness and dyslipidaemia. HR, hazard ratio; Chfatence interval

Appendix 3.3: Food variety score and PES(Q1) aggratg score

Table A0.7: Mean food variety score (FVS) across FEQ1) quartiles (4=healthier)

Men Women
1 2 3 4 1 2 3 4

FVS 43.6 449 439 411 39.0 438 434 413
p<.001 in both sexes for heterogeneity ANOVA acrpsartiles
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Figure A2: Hazard ratio estimates across PES(Q1) qutiles (4: healthier),
stratified by FVS tertiles
The reference group was th&duartile of PES(Q1) with the"®tertile of FVS. Models were adjusted
for age, sex, and ethnicity. FVS, Food variety scor
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Figure A2(continued): Hazard ratio estimates acros®ES(Q1) quartiles (4: healthier),
stratified FVS tertiles
The reference group was th& duartile of PES(Q1) with the"®tertile of FVS. Models were adjusted
fir age, sex, and ethnicity. FVS, Food variety scor
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Appendix 3.4: SAIN,LIM component analysis

1.3
N
® 4
o
< =+
[0
j -
(]
-—
(O] 4
It
I ‘ T 1 ‘
N L 1 il
: '] | I
= 4
O —+
EK T ——
xej 140 + 1
C
O
N
O
T

0.7

SFA Sodium Free sugar Protein Fibre Vit. € Calcium Iron Vit. D
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Figure A3: Hazard ratio estimates and 95% CI for SAN,LIM "component score" Z-scores
(n=7251)
Models adjusted for age, sex, and ethnicity. Diebetodels were stratified for sex.
SFA, Saturated fatty acid.

The results for the SAIN,LIM components presentetigure A3 were similar to the

WXYfm ones (figure 8.4) for sodium, saturated fatsgars, and fibre. Indeed, the
negative components were not associated with mslease, and fibre was protective
for all outcomes. In addition, the protein and tatt positive components were
associated with increased incidence of CHD andedésh The unexpected results for
the negative components appeared to be explaindtiebgssociation between lox

energy reporting and vascular risk (table A8).

Table A9 showed that the PES(Q1) aggregate scosenveanly correlated with the
negative components and with the protein and aalcpositive components.
Likewise EWS, the U-shaped associations obtaingd RES(Q1) could have been
explained by the unexpected results obtained fer rtgative components. The
associations observed for protein and calcium wbakk strengthened the quadratic
trend, particularly for CHD and diabetes, resultingthe J-shapes of table 7.11.
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Table A9 also showed that the other positive corepts (vitamins C and D, iron,

and fibre) were more associated with PES(Q1) tharptotein and fibre components
were with EWS (table 8.14). The SAIN,LIM model appsd to be more associated
with the positive components than WXYfm. These ragier correlations could have

explained the stronger risk reduction observed dome individual quartiles of

PES(Q1) in table 7.11.

Table A0.8: SAIN,LIM component scores and energy fgorting

Mean component score

Rank correlation
by reporting level

with reported

Component energy intake Low Acceptable  High p*

Saturated fat 0.20 194 22.5 23.4 <.001
Sodium 0.18 8.66 9.44 9.07 <.001
Sugar 0.20 13.9 16.1 16.5 <.001
Protein -0.21 7.09 6.69 6.70 <.001
Fibre -0.16 4.79 4.65 4.21 <.001
Vitamin C -0.22 7.05 6.14 5.99 <.001
Calcium -0.03 6.00 6.09 7.62 <.001
Iron -0.22 4.80 4.64 4.19 <.001

*Heterogeneity ANOVA across reporting level

Table A0.9: Rank correlations between SAIN,LIM commnent scores, nutrient intake and
PES(Q1)

Free

SFA Na sugars Protein Fibre Vit.C Ca Fe Vit. D

Nutrient
intake 0.59 0.44 0.71 0.37 0.64 0.82 0.67 0.40 0.86

PES(Q1) -0.52 -0.64 -0.46 0.65 0.11 0.45 058 0.140.08*
SFA, saturated fatty acids; Vit. Vitamin. Na, sadiuCa, calcium; Fe, iron. *Vitamin D was an
optional nutrient, hence the low correlation.

217



Appendix 4: T-tests and regression calibration esti mates
between FFQ and diet diaries food items

Table A0.10: T-tests and regression calibration eishates for all food items, by food group

T-test Regression calibration estimates
Mean Intercept 2

FFQ/7DDitem difference® P (M) bees  R® - n.param
Apples 25.0 <.001 -0.18 0.710 0.343 19
Bananas 8.26 <.001 -2.61 0.628 0.324 19
Grapefruit 1.86 <.001 -5.17 0.392 0.236 16
Oranges 33.4 <.001 -3.61 0.544 0.227 17
Pears 11.7 <.001 -6.06 0.325 0.189 18
Dried fruit -2.06 <.001 -3.36  0.366 0.158 16
Grapes 9.39 <.001 555 0.309 0.162 17
Nuts -0.62 0.020 -2.64 0.360 0.157 17
Tinned fruit 3.77 <.001 -7.98 0.198 0.095 16
Peaches 10.6 <.001 -5.30 0.120 0.084 19
Melon 5.29 <.001 -5.09 0.116 0.072 16
Strawberries 23.6 <.001 -4.50 0 0.045 15
Tomatoes 12.0 <.001 0.65 0.569 0.188 17
Soya meat 0.56 <.001 -3.06 0.213 0.201 18
Green salad -1.72 <.001 0.03 0.455 0.186 18
Baked beans 5.76 <.001 -5.17 0.383 0.169 19
Peppers 3.41 <.001 -2.27 0.255 0.188 20
Parsnips 1.65 <.001 -3.71 0.290 0.139 17
Mushrooms -2.78 <.001 -3.07 0.463 0.128 16
Coleslaw 1.15 <.001 -4.39 0.252 0.114 17
Vegetable soup -0.24 0.864 -3.00 0.324 0.157 21
Broccoli 2.79 <.001 -1.43 0.330 0.113 17
Peas 5.98 <.001 -1.98 0.423 0.138 19
Carrots 5.80 <.001 -0.68 0.490 0.111 18
Marrow 2.97 <.001 -3.44 0.192 0.106 16
Onions 12.3 <.001 -2.15 0.333 0.100 17
Spinach 2.78 <.001 -3.39 0.156 0.086 16
Leeks 2.67 <.001 -4.36 0.141 0.092 17
Sprouts 8.17 <.001 -7.65 0.232 0.090 17
Cauliflower 3.38 <.001 -3.35 0.336 0.087 17
Lentils -1.38 <.001 -2.48 0.154 0.105 16
Garlic 0.50 <.001 -3.87 0.154 0.098 16
Green beans 11.0 <.001 -3.36 0.358 0.088 16
Cabbage 6.87 <.001 -4.20 0.264 0.072 17
Spring greens 6.98 <.001 -6.33 0.080 0.057 17
Tofu 0.18 0.019 -5.99 0.056 0.041 17

n. param: Number of independent variables includdgde model after stepwise selection (p=0.01).
*Mean (FFQ — 7DD) difference in g/d.
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Table (continued)

T-test Regression calibration estimates

Mean Intercept 2
FFQ/7DDitem difference’ P (g  'eee RO n-param
Eggs -2.66 <.001 -3.72  0.603 0.220 16
Poultry 6.28 <.001 0.78 0.654 0.194 17
Luncheon
meats -0.34 0.166 -452 0.339 0.180 17
Ham -1.34 <.001 -1.09 0435 0.169 18
Pork 1.43 0.002 -3.08 0.387 0.148 16
Bacon -4.25 <.001 -5.568 0.354 0.197 20
Sausages -3.36 <.001 -3.85 0.321 0.170 19
Savoury pies -11.2 <.001 -2.72 0.281 0.166 20
Beef 2.00 0.021 -4.01 0.466 0.136 19
Liver -1.72 <.001 -5.71 0.291 0.117 17
Lamb 1.31 0.009 -2.29 0.344 0.110 17
Beef burgers -0.27 0.095 -4.35 0.187 0.089 16
Meat soup 6.98 <.001 -6.00 0.060 0.030 16
Oily fish -4.85 <.001 -4.21 0.439 0.190 17
Shellfish -2.42 <.001 -0.90 0.400 0.203 17
Fish fingers 0.23 0.134 -6.36  0.190 0.089 16
White fish 415 <.001 -499 0.284 0.100 18
Fried fish 1.34 0.002 -3.83 0.186 0.093 19
Muesli -1.05 0.024 -1.16  0.704 0.532 17
Shredded
cereals 2.68 <.001 -1.42 0.608 0.472 17
Brans 2.94 <.001 -1.27 0.550 0.417 18
Corn flakes 0.10 0.655 -3.21 0.564 0.370 17
Porridge 3.85 <.001 -3.16 0.455 0.325 15
Wholemeal
bread 8.37 <.001 -0.08 0.472 0.277 18
Frosties 0.14 0.167 -3.79 0.333 0.199 15
Crispbread 0.22 0.201 -3.93 0.403 0.208 17
White bread -17.8 <.001 3.07 0.365 0.223 18
Chips 0.96 0.234 -3.24 0.354 0.244 22
Roast potatoes 5.03 <.001 -2.67 0.384 0.179 18
Brown rice 6.09 <.001 -2.87 0.215 0.189 21
Boiled potatoes 14.4 <.001 211 0.458 0.175 18
Crackers -0.75 <.001 -6.81 0.330 0.147 18
Pasta 9.39 <.001 -0.66 0.294 0.126 18
White rice -1.60 0.045 -0.56 0.298 0.169 20
Brown bread 1.37 0.267 -1.80 0.269 0.120 20
Wholemeal
pasta 453 <.001 -5.69 0.099 0.074 17
Potato salad 1.96 <.001 -5.95 0.088 0.039 16

n. param: Number of independent variables includdabde model after stepwise selection (p=0.01).
*Mean (FFQ — 7DD) difference in g/d.
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Table (continued)

FFQ/7DD item T-test Regression calibration estimates
Mean Intercept 2

difference’ P (ho) hrec R n. param
Channel Island
milk 1.25 0.008 -3.19 0.527 0.513 16
Skimmed milk 63.1 <.001 -1.47 0.629 0.494 20
Semi-skimmed
milk 137 <.001 -1.33 0.559 0.490 22
Soya milk 1.74 0.115 -3.67 0.433 0.396 15
Coffee whitener 0.63 <.001 -3.17 0.478 0.366 16
Yoghurt 16.4 <.001 -2.04 0.630 0.379 18
Dried milk 0.12 0.188 -3.48 0.552 0.367 18
Whole milk 57.6 <.001 0.24 0.441 0.389 18
Cheese -5.69 <.001 156 0515 0.247 20
Cottage cheese -0.78 0.033 -4.66 0.220 0.169 19
Single cream -1.70 <.001 -2.86 0.253 0.137 18
Sterilised milk 7.23 0.018 -6.23 0.112 0.078 15
Double cream 0.00 0.994 -5.37 0.152 0.074 16
Jam 1.98 <.001 152 0.652 0.377 17
Polyunsaturated
margarine 3.17 <.001 -0.65 0.544 0.386 21
Low-fat spread -0.40 0.041 -3.71  0.547 0.345 17
Marmite 0.01 0.822 -4.68 0.492 0.334 17
Butter -1.65 <.001 -1.06 0.499 0.363 20
Peanut butter 0.28 0.002 -2.58 0.403 0.273 15
Vinaigrette 0.80 <.001 -3.30 0.260 0.159 18
Pizza 1.68 <.001 -3.57 0.272 0.146 16
Pickles 3.15 <.001 -4.63 0.254 0.145 19
Mayonnaise 1.20 <.001 -0.63 0.269 0.127 16
Sauces 3.20 <.001 0.93 0.194 0.105 19
Ketchup 1.90 <.001 -6.34 0.107 0.069 17
Quiche 1.35 <.001 -4.92 0.156 0.062 15
Soft margarine -0.42 0.001 -5.91 0.215 0.062 16
Lasagne 405 <.001 -5.06 0.132 0.060 17
Hard margarine -0.20 0.086 -6.31 0.111 0.019 16
Sugar (in drinks,
cereals) -2.30 <.001 -0.04 0.656 0.484 19
Crisps 2.14 <.001 -1.53 0.408 0.202 15
Biscuits -4.32 <.001 -0.18 0.506 0.211 17
Chocolate 2.62 <.001 0.50 0.382 0.216 19
Ice cream -2.57 <.001 -5.05 0.410 0.149 15
Sweets -0.33 0.120 -6.20 0.366 0.156 17
Cakes -1.08 0.105 -3.08 0.422 0.144 17
Tarts 1.90 0.002 -3.09 0.311 0.165 18
Milk pudding -8.39 <.001 -2.44  0.222 0.117 19
Buns & pastries -4.62 <.001 0.44 0.139 0.127 20
Sponge puddings -0.28 0.489 -454 0.138 0.060 16

n. param: Number of independent variables includddle model after stepwise selection (p=0.01).
*Mean (FFQ — 7DD) difference in g/d.
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Table (continued)

FFQ/7DD item T-test Regression calibration estimates
Mean Intercept 2
difference’ P (ho) hrec R n. param

Tea -12.0 0.097 1.62 0.839 0.660 18
Beer -44.9 0.000 3.24 0.603 0.436 17
Horlicks -4.05 0.002 -5.29 0.619 0.429 18
Wine -13.7 0.000 3.04 0.594 0.445 20
Spirits -0.81 0.005 -5.24  0.559 0.351 18
Cocoa 2.02 0.192 -4.71  0.444 0.308 18
Coffee -96.9 0.000 413 0.471 0.418 21
Fruit juice 25.2 0.000 -1.75 0.576 0.308 16
Port 0.11 0.692 -5.00 0.347 0.210 18
Squash 11.9 0.000 -2.00 0.321 0.182 18
Fizzy drinks -6.66 0.000 -5.82 0.301 0.132 18
Ligueurs 0.07 0.139 -5.96 0.118 0.055 15

n. param: Number of independent variables includdabde model after stepwise selection (p=0.01).
*Mean (FFQ — 7DD) difference in g/d
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Appendix 5: Food variety score as a confounding var lable

Table All estimates revealed that additional anjast for diet variety changed
very slightly the original estimates. No new treraggoeared and conclusions from
chapters 6 and 7 were not altered. Results foretigbwere equally similar to the
original models (not shown).
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Table A0.11: Cox regressions estimates across EWBMPES(Q1) quartiles (4: healthier)

Outcome, Model 1 Model 1 + FVS
quartile/trend HR 95 % Cl HR 95 % ClI
EWS
CHD 1 Ref Ref
2 0.78 056 1.10 0.80 0.57 1.12
3 1.06 0.77 1.45 1.08 0.79 1.48
4 1.31 0.96 1.79 1.29 0.95 1.76
Linear 1.12 1.01 1.25 1.12 101 1.24
Quadratic <.001 0.001
Cancer 1 Ref Ref
mortality 2 0.94 066 1.35 0.97 0.68 1.39
3 1.01 0.71 1.43 1.03 0.72 1.46
4 0.95 0.66 1.36 0.94 065 1.36
Linear 0.99 0.88 1.11 0.99 0.88 1.11
Quadratic 0.032 0.075
All-cause 1 Ref Ref
mortality 2 0.85 0.66 1.09 0.86 0.67 1.11
3 0.89 069 1.14 091 0.71 1.16
4 1.04 0.81 1.33 1.03 0.81 1.32
Linear 1.02 094 1.10 1.02 0.94 1.10
Quadratic <.001 0.002
PES(Q1)
CHD 1 Ref Ref
2 0.80 0.58 1.09 0.81 059 1.12
3 0.71 051 0.98 0.72 052 1.00
4 1.23 091 1.67 1.22 0.90 1.65
Linear 1.06 0.95 1.17 1.05 0.95 1.17
Quadratic 0.002 0.008
Cancer 1 Ref Ref
mortality 2 0.80 056 1.13 0.82 058 1.17
3 0.76 0.53 1.08 0.78 055 1.11
4 0.73 051 1.06 0.74 051 1.06
Linear 0.90 0.80 1.02 0.91 0.81 1.02
Quadratic 0.029 0.081
All-cause 1 Ref Ref
mortality 2 071 056 0.92 0.73 057 0.94
3 0.86 0.68 1.09 0.88 0.69 1.12
4 0.80 0.62 1.03 0.80 0.63 1.03
Linear 0.95 0.88 1.03 0.95 0.88 1.03
Quadratic 0.011 0.042

Model 1 adjusted for age, sex, and ethnicity. H&and ratio; Cl, confidence interval; FVS, food
variety score. The diabetes estimates not showlmisrtable were also very slightly influence by FVS
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Appendix 6: Chapter 9 results for SAIN,LIM nutrient profiling
model, and alternative WXYfm algorithms

Appendix 6.1 SAIN,LIM alternative aggregating algoiithms

As for WXYfm, two newaggregate score were implemented:

*  EW(SAIN) which was the energy weighted score fa 8AIN sub-score. It
therefore counted positiveutrients only and was comparable to the EWS+
algorithm presented in chapter 9. It was quite Iyigblated to the PES(Q1)
aggregate score used previously (rank correlati6&)0

* RFS(Q1) which counted the number of foods and drifitkm quadrant 1
reported to be consumed once a week or more. Tihersity and semi-
quantitative score was moderately linked to PES(@ith a rank correlation
of 0.29.
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Appendix 6.2 Survival analyses results for EW(SAINand RFS(Q1)

Table A0.12: Cox regression estimates across qudets of the EW(SAIN) aggregate score
(4: healthier)

Outcome  Quartile/ Model 1 Model 3
(cases/n) trend HR 95 % ClI HR 95 % Cl
CHD (318 / 1 Ref Ref
7,174) 2 0.65 0.47 0.89 0.68 0.49 0.94
3 0.84 062 1.13 0.89 066 1.21
4 090 0.67 1.23 0.94 069 1.30
Linear 0.99 0.89 1.09 1.00 0.90 1.11
p quadratic 0.056 0.242
Diabetes 1 Ref* Ref*
(7541 2 092 0.76 1.13 0.98 0.80 1.20
6,868) 3 0.80 0.65 0.99 0.82 0.66 1.01
4 095 0.78 1.17 098 079 1.21
Linear 0.97 091 1.04 098 0091 1.05
p quadratic 0.098 0.247
Cance_r 1 Ref Ref
mortality 2 094 066 1.34 1.00 0.70 1.42
(251/ 3 083 058 1.18 084 058 1.21
7,235) 4 085 059 1.22 084 058 1.22
Linear 0.94 0.84 1.05 093 0.83 1.05
p quadratic <.001 0.003
All-cause 1 Ref Ref
mortality 2 0.80 0.63 1.02 0.84 066 1.08
(75222/ 3 0.77 0.60 0.98 081 063 1.03
242) 4 0.82 0.64 1.04 0.85 0.66 1.09
Linear 094 0.86 1.01 0.95 0.87 1.03
p quadratic 0.008 0.025

Model 1 adjusted for age, sex, and ethnicity. M@&l&lirther adjusted for marital status, employment
grade, smoking status, physical activity level, andrgy and alcohol intake, BMI, hypertension and
dyslipidaemia status, and prevalence of longstanilimess.

# Stratified for BMI categories * Stratified for seXStratified for longstanding iliness and
dyslipidaemia. HR, hazard ratio; Cl, confidenceiagl
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Table A0.13: Cox regression estimates across qudets of the RFS(Q1) aggregate score
(4: healthier)

Quartile/ Model 1 Model 3
Outcome trend HR 95 % CI HR 95 % CI
CHD (318 / 1 Ref Ref
7,174) 2 091 0.67 1.24 096 0.70 1.32
3 090 0.65 1.24 1.00 0.72 1.40
4 0.77 0.56 1.07 0.89 0.62 1.27
Linear 092 0.84 1.02 097 0.87 1.08
p quadratic 0.703 0.715
Diabetes 1 Ref* Ref*
(7541 2 1.03 0.84 1.27 1.07 0.87 1.33
6,868) 3 092 074 115 1.00 0.80 1.26
4 111 090 1.37 1.18 094 1.49
Linear 1.02 096 1.09 1.05 097 1.12
p quadratic 0.611 0.953
Cance_r 1 Ref Ref
mortality 2 0.71 0.50 1.00 0.75 0.53 1.07
(251/ 3 073 051 1.04 078 054 1.14
7,235) 4 069 048 0.98 0.74 050 1.09
Linear 090 0.80 1.01 092 0.81 1.04
p quadratic 0.020 0.048
All-cause 1 Ref Ref
mortality 2 0.76 0.60 0.97 0.81 0.64 1.04
(524 / 3 074 057 095 082 063 1.07
7.242) 4 075 059 0.96 084 065 1.10
Linear 0.92 0.85 0.99 096 0.88 1.04
p quadratic 0.055 0.079

Model 1 adjusted for age, sex, and ethnicity. M@&l&lirther adjusted for marital status, employment
grade, smoking status, physical activity level, andrgy and alcohol intake, BMI, hypertension and
dyslipidaemia status, and prevalence of longstanilimess.

# Stratified for BMI categories * Stratified for seXStratified for longstanding iliness and
dyslipidaemia. HR, hazard ratio; Cl, confidenceiagl
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Appendix 6.3: FFQ-items classification

using WXYfm positive components

only

Item Score*

Salad cream

French dressing, vinaigrette
Butter

Hard margarine
Polyunsaturated margarine
Other soft margarine

Sweets, toffees, mints

Sugar added to tea, coffee, cereal
Tea

Fizzy soft drinks

Low calorie or diet fizzy drinks
Fruit squash or cordial
Porridge, Readybrek

Potato salad

Full cream milk

Soya milk

Coffee whitener

Single cream

Double or clotted cream

Meat soup

Pickles, chutney

Boiled, mashed, instant or jacket
potatoes

White rice

Brown rice

Semi-skimmed milk

Skimmed milk

Channel Islands milk
Sterilized milk

Milk puddings

Ice cream, choc ices
Chocolates, chocolate bars
Sauces, e.g. white/cheese sauce,
gravy

Jam, marmalade, honey
Cocoa, hot chocolate
Horlicks, Ovaltine

Roast potatoes

White or green pasta

Yoghurt

Low fat spread

Frosties, Ricicles, Sugar Puffs,
Coco Pops

Lasagne

Cakes

Fruit pies, tarts, crumbles
Sponge puddings

ININ
IS N

Item

Beef: roast, steak etc
Beefburgers

Pork: roast, chops or stew
Lamb: roast, chops or stew
Chicken or other poultry
Bacon

Ham

Corned beef, spam, luncheon
meats

Sausages

Savoury pies

Liver, liver pate, sausage
Fried fish in batter

Fish fingers, fish cakes
Other white fish, fresh or frozen
Oily fish, fresh or canned
Shellfish

Chips or French fries

Dried milk

Cheese, e.g. Cheddar, Brie,
Edam

Cottage cheese, low fat soft
cheese

Eggs

Quiche

Vegetable soup

Tomato ketchup

Marmite, Bovril

Coffee, regular

Coffee, decaffeinated

Real fruit juice

Pears

Grapes

Melon

Soya meat, TVP, vegeburger
Wholemeal pasta

Pizza

Biscuits

Buns and pastries
Oranges, satsumas, mandarins
Grapefruit

Tinned fruit

Broccoli

Marrow, courgettes

Onions

Sweet peppers

Green salad

Tomatoes

Coleslaw

Corn Flakes, Rice Krispies,
Special K

Apples

Peaches, plums, apricots

Score*
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Item Score*

Strawberries, raspberries
Carrots

Cabbage

Cauliflower

Leeks

Crisps or other packet snacks
Bananas

Brussels sprouts

Mushrooms

White bread/rolls

Spinach

Spring greens, kale

Green beans, broad beans, runner
beans

Parsnips, turnips, swedes
Garlic

Brown bread/rolls

Wholemeal bread/rolls

Cream crackers, cheese biscuits
Crispbread

Shredded wheat, Weetabix etc
Muesli, Fruit'n' Fibre, etc
All-Bran, Bran Flakes etc
Dried lentils, beans, peas
Tofu or soya bean curd

Dried fruit, e.g. raisins, prunes
Peas

Baked beans

Peanuts and other nuts
Peanut butter

9
10
10
10
10
10
10
10
10
10
11
13
13
15
15

*score = protein points + fibre points + fruit,

vegetable and nuts points
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Appendix 6.4: RFSealthier) results

In order to assess the influence of the healthiteeshold value chosen for the
WXYfm model, an alternative RFS selecting “healthi®ods only (i.e. threshold of
0 on the overall score scale) was implemented. fiéwg RFSiiealthier) was highly
related to the RFS(WXYfm), with a rank correlatioh0.99. This was reflected in
the Cox regression estimates which displayed vienylas trends (table Al4). Yet,

the associations observed for cancer and all-cawestlity were stronger.
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Table A0.14: Cox regression estimates across qudes of the RFSKealthier) aggregate score
(4: healthier)

Quartile/ Model 1 Model 3
Outcome  trend HR 95 %Cl HR 95 % Cl
CHD (318 / 1 Ref Ref
7,174) 2 0.76 0.55 1.05 0.79 057 1.09
3 0.76 056 1.03 085 061 1.17
4 0.86 0.63 1.17 098 0.69 1.39
Linear 095 0.86 1.06 1.00 0.90 1.12
Diabetes 1 Ref* Ref*
(7541 2 090 0.73 1.12 092 0.74 1.15
6,868) 3 0.83 0.67 1.02 0.88 0.71 1.09
4 1.01 083 1.24 1.02 082 1.28
Linear 1.00 0.93 1.07 1.01 093 1.08
Cance_r 1 Ref Ref
mortality 2 0.62 0.43 0.89 0.65 0.45 0.94
(2517 3 060 043 0.85 0.64 045 0.92
7,235) 4 072 051 1.01 078 053 1.14
Linear 090 0.80 1.01 092 0.81 1.05
All-cause 1 Ref Ref
mortality 2 0.66 051 0.84 0.70 054 0.91
(524 / 3 065 051 0.82 072 056 0.92
7.242) 4 076 060 0.97 086 066 1.12
Linear 0.92 0.85 0.99 096 0.87 1.04

Model 1 adjusted for age, sex, and ethnicity. M@&l&lirther adjusted for marital status, employment
grade, smoking status, physical activity level, andrgy and alcohol intake, BMI, hypertension and
dyslipidaemia status, and prevalence of longstanilimess.

# Stratified for BMI categories * Stratified for seXStratified for longstanding iliness and
dyslipidaemia. HR, hazard ratio; Cl, confidenceiagl

230



Appendix 7: Fruit and vegetable case study for
implementation of measurement error models

This appendix presents the case study conductethdoselection of the regression
calibration model of chapter 8. Several measurermsemtr models were tested on
fruit and vegetable intake derived from both fooebfiency questionnaire (FFQ) and
diet diary data. Total intake of fruit and vegetahlas considered so that plaspaa
carotene could be used as biomarker of dietarkénth this case study, diet diary
data coded in Cambridge using the DINER programondhfe UK Dietary Cohort
Consortium could also be used. It was further reteto as CNC-coded data. Diet
diary data coded by the Whitehall Il study team vedsrred to as UCL-coded data.

Appendix 7.1: Material and Methods

(i) Measures of fruit and vegetable intake

Table A15 presents the summary statistics of @lrttain variables: food frequency
questionnaire (FFQ), 7-day diary (7DD, UCL and CN@ded), andp-carotene
measurements (main sample and repeats). All treasables were positively skewed
and log-transformations were applied to obtainritistion closer to normality.

Distributions of log-transformed variables weresgdo normal (figure A4).

Table A0.15: Summary statistics for fruit and vegeable reported intake and beta-carotene
measurements

N Mean SD Min Med Max

Fruit & Vegetable (g/d) FFQ 8225 513 291 0 458 5503
7DD - UCL* 1350 284 146 0 257 1071
7DD — CNC* 570 340 159 46.5 309 1181
B -carotene (mmol/L) Main sample 6418 0.84 0.58 0.02 0.75 7.34
Repeats 397 0.85 0.58 0.02 0.74 6.57

* Centre of coding using different programs: WFOQECL) and DINER (CNC). SD, standard
deviation; Med, median value.
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Figure A4: Log-transformed distribution of fruit an d vegetable intake

Table A15 and figure A4 illustrated well the diféeice in reported intake between
the two dietary assessment methods, with highesrteg values for the FFQ. This
followed the expectations that participants tendedover-report their fruit and

vegetable consumption with the FFQ. Repedtezhrotene measurements yielded

similar results to the main sample ones (not shown)

(i) Measurement error models

Two sets of correcting techniques were implementdek first one was based on
regression calibration and its derivative and usely one alternative for dietary
intake, the 7DD data. The second method was deriv@a the Triads model
(structural equation modelling) and included biokeas as another external measure
of food intake. Both models are presented in theegd case, for implementation of

a full set of foods. There were applied on totaitfand vegetable intake only.

Terminology and notations

Let considerT; as thetrue intake of food i in participant j, which cannot be
observed. The food record (7-day diari, , and FFQ,Q; , are two surrogate

measures of;; and are measured with some error.
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The 7DD data was considered as the closest meadsuteie food intake and
followed a simple random error model:

Rj = Tj + erj [1]
Where the errors are independenTpfnd of each other and; ~ N(0,5?).

FFQ data were likely to be biased measures ofitiaée. Therefore, FFQ measures
were assumed to follow the linear model definedwel

Qi = aqi *+ faiTi + &qi [2]
Whereegjj has the same properties as aboygis the systematic bias agd; is the

scaling bias of the FFQ, for food i.

In order to estimate the systematic and scaling paameters, the FFQ variable of
interest must be regressed on another “refereneeisare following model [1]. The
first method presented here, regression calibratimed 7DD as this reference
measure; and relied on the strong assumption thgt tespective errors were
independent. The inclusion of a third variable]daing measurement error model
[2] and having errors independent of the two otlgpes of measurement (FFQ and
7DD), allowed considering truatake as a latent and unobserved variable. The
second method, the method of triads, used biomaudg) as the third measure:

Mij = omi + Sui Ty + emij [3]
All measurement error models implemented were fimeadels assuming normality
of all variables. As a result, all intake and biokess variables were log-

transformed.

Both methods allowed for the introduction of noetdry covariatesZ) associated

with true intake. Categorical variables were recbds dummy variables for the
linear models. The inclusion of the covariates mémeassumptions related to the
different models more plausible as they were comdi on the covariates (e.g.

reporting error was related to BMI when BMI is indéd in the model).
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Regression calibration and “Rosner & Gore” method

a. General model

With this method, truentake was represented by the diet diary reportddey and
equation [2] became:
Qi = aqi + foiRy + &qij [4]
Under the assumption that random errors of botthaust are not correlated:
{cov(gRij T,)=0
COV(Egj €qy) =0

[5]

i
The goal was to predict the diet diary value forpaliticipants, including those not in
the validation sub-sample. This was achieved by emehting a linear model
between FFQ and 7DD reported values in the vabdagub-sample:

Rij = Aoi + AreciQj + &j [6]
WhereAgegiis often referred to as the regression dilutidiorgRDR).

The regression parameters would then be used immiia study population to
calculate predicted diet diary intake—assumed fresent the truéntake. The
inclusion of different covariates in the model aled for three models to be

designed, resulting in three sets of prediaakes.

b. Model 1

The base model included only the FFQ and 7DD messarel was similar to the
single imputation method introduced by Rosner et(E89). Assuming a linear
relationship, the following model was fitted withime validation sub-sample:

Rj = Ao1i + Arec1iQj + & [7]

WhereQ; andR; represent intake of item i in participant j frometFFQ and the
7DD, respectively. Once parameter estimates wetair@d using general least
square method, the trydiet diary)intakes Rj) could be calculated in the whole
population:

A A

R = Aoy + ArewQ [8]
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c. Model 2
The second model further included non-dietary dates Z; and the associateg;
regression parameters) associated with bothangereportedntake: sex, age, BMI,
physical activity, employment grade, ethnicity, aschoking status. The model
became:

Rij = Zo2i + ARec2Qy + X y2iZy + &ij [9]
The following steps were similar to model 1.

d. Model 3
The third and final model used Rosner and Gorefsagrh by further including all
FFQ-items as potential predictors of the diet diemjue (Rosner & Gore, 2001).
This was done since it was observed that some Egr@siwere more associated to a
diet diary food then the respective FFQ-item (¢&-Q hamburger was a better
predictor of diet diary chips than FFQ chips). Thedel was:

Rj = Zosi + X ArecaQjj + Z y3iZj + ¢ [10]
The large number of predictors due to the inclusiball non-dietary covariates and
all FFQ-items may have led to poor predicting pow&s a result, a stepwise
selection of FFQ-items variables was done to retalg variables which contributed
significantly to the model (p<0.01), with all norethry covariates forced in the

model.

The regression calibration method was quite sttioghard and suited well the goal

of correcting individual intakes. However, it ralien the fundamental assumptions
that errors in the FFQ and the 7DD were independedtthat 7DD represented true
intake. Such assumptions were likely to be flanatj a method that could relax

such assumptions was investigated.

Structural equation modelling: method of triads

Structural equation modelling treats trurtkake as an unobserved latent variable.
This is assumed to be more accurate because dregsican be subject to systematic
and scaling bias. Yet, with FFQ and diet recordsa @aly, models are unidentifiable
and parameters of interest cannot be estimatedinmakthird variable necessary

(Kaaks et al, 1994). The additional variable can be a repeathef reference
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measure, i.e. the diet diary, or any other measissociated with truentake.

“Recovery” biomarkers such as urinary nitrogen oullly labelled water have
usually been used in the “method of triads” sinoeytare good markers of usual
intake. None of these being available in the Wiailieh data,-carotene was used as

the third variable, as a biomarker of fruit and etdple intake.

The original method of triads which used threealales (FFQ, 7DD and biomarker)
is first presented. Similarly to the regressiornbration method, a model including

non-dietary covariates was also implemented.

a. Model 1
Kaaks and colleagues introduced a structural eguathodelling approach to
investigate the error structure of the FFQ (Kaekal, 1994). For participant j and
considering a single nutrient or food the strudterpation model is as follows:

Q) =0 *+ LT + ¢4

R =T, +&g [11]

M, =ay +BuT, +&y
Wheree,; ~ N(0; 6:x) are assumed to be independent of the true irftedezar model
assumption) and of each other; all variables aserasd to be normally distributed

(Xi ~ N(ux, oex)); diet records are assumed to follow measuremeat model [1].

The model parameteys, aq, om, 6:0, Gem, Ger, fo, @and Sy could be estimated with

the moments approach using the following covariana#ix:

Covariance matrix Means
R| o7 +0o5 My
2 2 2
Q ﬁQO-T ﬂQO-T t 0 %q +'BQluT
2 2 2 2
M| Byor ﬁQﬁMO'T Buor toeu O+ Py

The estimation of all parameters allowed obtair@ngstimate for true intake:
Ti=/Jo+ig1Qi +& Whereg ~N(0,0%) [12]

Wherelqr, the regression dilution ratio (RDR), is the e@l@nt of Arec1, Areca and
Arecsparameters of the regression calibration models.
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The RDR being the slope parameter of model [1&]e#timate was:

o =0 i 13

Which is:

Computation of this model was done using the CAlpi®cedure of the SAS

software.

In Kaaks’ model, the additional measurement—themigiker—allows for all
parameters to be identified. However, as stated/ggbiv is still assumed that the
random errors of each measurement method are indepe In order to relax this
independence assumption, an alternative constraudt be set (e.g. fixing some
other parameters) or another measure must be a@ldisdneasure can be a repeated
biomarker measurement. At phase 3, repeated measoreof f-carotene was
available on 406 participants. However, completeecanalysis including FFQ and
7DD data yielded only 86 participants, which wad eaough to obtain robust

estimates for these extended models, and resutesvat presented.

b. Model 2
Model [11] was extended to include non-dietary ciates.
Let Z, denote the covariates associated with true dietaigke. The structural

equation model is given by:

T; = Hrpz, +2) Ll ey

Q =a,+B, T +ZyoZ +&5  [19]
R =T, +2)rZ + &g
M, =ay, + BT +ZpyZ + &y

Model [15] is bound to the same assumptions thadeainfi1]. It was fitted in the
same way as model [11], but including the residdedsn linear regressions of

dietary measurements on the covariates in platieeadietary measurements.
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Survival analysis

Once parameter estimates were obtained for all mpderrected fruit and vegetable
intakes were derived for the whole study samplee brrected intakes were then
included in Cox proportional hazards regressionmais exposures and compared to
non-corrected intakes and energy adjusted intaketuding either energy in the
model as a covariate, or using energy residual®}. r8odels were adjusted for age,
sex, and ethnicity. Participants were classifieb iquartiles of corrected or non-
corrected fruit and vegetable intake, the firstrgleawith lowest intake was the
reference group. Outcomes included CHD, diabetscer mortality, and all-cause
mortality. For the regression calibration and dtited equation models, results using
both the UCL and the CNC coded 7DD data were pteden

Appendix 7.2 Results

a. Regression calibration methods

Table A16 summarises parameter estimates fronn@etmodels [7], [8], and [10].
Results from the first model indicated that FFQerégd fruit and vegetables intake
explained more variance of CNC-coded diaries tHdd@L-coded ones, though the
scaling effect was stronger as the slope parantgte) was closer to 0. This was
balanced by a higher intercept with the CNC datae inclusion of non-dietary
covariates in the™ model resulted in higher?Ror both coding centres. All non-
dietary covariates with significant parameter eates predicted lower 7DD reported
intake; these were current smoking, low employnggatle, and Asian ethnicity for
UCL-coded data, and BMI and current smoking for @NC fitted model (not
shown). Model 3 confirmed that fruit and vegetatb@msumption as reported in the
FFQ contributed more towards the modéltRan all other dietary and non-dietary
covariates (results not shown). The inclusion of wéetary predictors increased the
R? with battered fish, white rice, margarine, ketchwarrots, beans, and tofu
retained by the stepwise selection for the UCL ;data roast potatoes, apples, soft
drinks, and tomatoes retained with CNC data. Oljemaddels fitted with both the

UCL and the CNC data delivered the same conclusithrese was a scaling bias
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between the two dietary assessment methods, witQ BWer-estimating the

reference 7DD intake data.

Table A0.16: Parameters estimates from the regresi calibration models

Data* Model n R? n Intercept (4q) Slope freg)
[equation] pred. Est 95% CI Est 95% ClI
UCL 1[7] 1328 0.188 1 1.83 142 225 0.600 0.538.668

2[8] 1328 0.233 15 232 177 287 0.577 0.507.64D
3[10] 1328 0.286 23 195 137 253 0.568 0.49B641

CNC 1[7] 560 0.298 1 253 212 294 0.513 0.440.578
2 [8] 560 0.365 15 290 234 347 0.512 0.44857D.
3[10] 560 0.425 19 332 276 3.88 0.410 0.33848D

* Centre of coding using different programs: WFOQICL) and DINER (CNC). n pred. number of
predictors included in the model, more FFQ foodsewesed with UCL data than CNC for model 3.

b. Structural equation modelling: Method of triads

Table A17 summarises the parameter estimates tbrrhodels and both 7DD data
coding centres. Compared to the previous apprasstimates for the RDRs and the
intercepts were in the same ranges. The includianbacomarker did not dramatically
change the results. The further inclusion of a atg beta-carotene measure would
have allowed relaxing more assumption and obtagneater insight into the error
structure of the two dietary assessment technigoes.the lack of observations

prevented from doing so.

c. Application to survival analysis

Tables A18-A to Al18-D present all hazard ratiosinestes together with their
confidence intervals for the four outcomes. The ehaging non-corrected intakes
(model 1) is displayed first, followed by energyjumiing methods and the

measurement error models.

The non-corrected intakes were significantly assted with linear risk reduction of
cancer and all-cause mortality, confirming the gahe public health
recommendations made on fruit and vegetable inta@cduding total energy intake
in the model or using energy residuals slightlgmitated these trends which became

borderline significant. The trends were not modifier CHD and diabetes, but
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individual quartiles estimates were affected. ONetlae use of energy residuals had

more effect on the estimates than the inclusioenefgy intake in the model.

The use of correctadtakes using either regression calibration orcstnal equation
modelling (SEM) did not always modify the estimatbsstead, there were exactly
similar to the non-corrected ones for all regressialibration models 1 and SEM
models. This was explained by the fact that theeobedintakes for these models
were proportional, except for the intercept, to th@inal FFQ reported intakes
(Corrected =g + Arecior FFQ). As a result, the ranking of participants \aémost

not modified and the resulting Cox models gave tixdltge same estimates.

Regression models 2 and 3 did include further gates, and the resulting corrected
intakes did not follow proportionally the originahes. Hazard ratio estimates for
such models did differ and some new trends appedirezhr risk reduction was

observed for all outcomes, including CHD and diabdsignificant only with CNC

data). These trends were mainly due to changdseimtividual quartiles estimates
for CHD and diabetes, suggesting that the reporimgr was strongly linked to the
non-dietary covariates included in the regressaib@tion models. The effect was
smaller on the cancer and all-cause mortality aueand the linear risk reduction

was confirmed.
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Table A0.17: Parameters estimates for all structurbequations models

UCL CNC
Model 1 2 1 2
Est. SE Est. SE Est. SE Est. SE

n 1033 1033 462 462
6 6.13 0.016 6.13 0.016 6.23 0.024 6.23 0.024
,BQ 0.841 0.210 0.754 0.258 0.878 0.243 1.10 0.332
My = R 554 0.024 5.54 0.023 5.74 0.023 5.74 0.021
ﬂM 0.282 0.058 0.206 0.060 0.299 0.096 0.300 0.099
UT2 0.193 0.052 0.189 0.067 0.162 0.046 0.120 0.038
UezQ 0.139 0.034 0.144 0.037 0.137 0.035 0.108 0.044
UezR 0.421 0.051 0.379 0.067 0.069 0.044 0.085 0.037
JezM 0.295 0.014 0.283 0.013 0.313 0.021 0.300 0.020
aq 1.47 1.16 -0.004 0.019 1.19 1.40 0.028 0.022
a, -1.77 0.320 0.012 0.017 -1.84 0.550 0.037 0.026
Slope
(/] ) 0.590 0.568 0.542 0.523

QT
Intercept

1.92 2.06 2.37 2.49

(Ao)

See covariance matrix in the methods section fprificance of parameters symbols.
Est. Parameter estimate; SE. Standard error ahdamn.
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Table A0.18: Cox regression estimates for fruit andegetables measurement error models, by quartilef intake

Table A: CHD
Quartile 1 Quartile 2 Quartile 3 Quartile 4 emnd

Model (7DD data) HR 95 % ClI HR 95 % ClI HR 95 Cho HR 95 % ClI
Model 1 Ref 085 059 1.22 0.75 051 1.09 0.83.570 1.20 0.93 0.83 1.05
Model 1 + energy Ref 084 058 121 0.74 051 91.0 0.82 0.56 1.20 0.93 0.82 1.05
Energy residuals Ref 0.61 0.42 0.89 0.66 0.46 0.96 0.74 051 1.06 0.91 0.81 1.03
RegCal 1 (UCL) Ref 085 059 1.22 0.75 051 1.09 0.83 0.57 1.20 0.93 0.83 1.05
RegCal 1 (CNC) Ref 085 059 1.22 0.75 051 1.09 0.83 0.57 1.20 0.93 0.83 1.05
RegCal 2 (UCL) Ref 053 0.36 0.77 0.68 0.48 0.97 0.60 0.41 0.86 0.86 0.76 0.98
RegCal 2 (CNC) Ref 053 0.36 0.77 0.68 0.48 0.97 0.60 0.41 0.86 0.86 0.76 0.98
RegCal 3 (UCL) Ref 060 0.42 0.88 079 056 112 0.57 0.39 0.84 0.86 0.77 0.97
RegCal 3 (CNC) Ref 0.60 0.42 0.88 0.54 0.38 0.77 0.57 0.39 0.84 0.86 0.77 0.97
SEM 1 (UCL) Ref 085 059 1.22 075 051 1.09 830. 0.57 1.20 093 0.83 1.05
SEM 1 (CNC) Ref 085 059 1.22 0.75 051 1.09 830. 0.57 1.20 093 0.83 1.05
SEM 2 (UCL) Ref 085 059 1.22 0.75 051 1.09 830. 0.57 1.20 093 0.83 1.05
SEM 2 (CNC) Ref 085 059 1.22 0.75 051 1.09 830. 0.57 1.20 0.93 0.83 1.05

Model 1 included In(fruit and vegetables) adjudmdage, sex and ethnicity. The energy residualdehimcluded fruit and vegetables energy residaalexposure. RegCal
1/2/3 Exposures derived from regression calibratimaels 1, 2, and 3. SEM 1/2 Exposures derived woctural equation models 1 and 2 (see methad®edor more
details). HR, hazard ratio; Cl, confidence interval
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Table B: Diabetes

Quartile 1 Quartile 2 Quartile 3 Quartile 4 emnd

Model (7DD data) HR 95 % ClI HR 95 % ClI HR 95 Cho HR 95 % ClI
Model 1 Ref 1.00 081 1.23 092 0.75 114 1.10.900 1.35 1.03 0.96 1.09
Model 1 + energy Ref 099 0.80 1.22 091 0.73 31.1 1.07 0.87 1.33 1.02 0.95 1.09
Energy residuals Ref 094 0.76 1.16 093 0.76 51.1 1.02 0.83 1.26 1.01 0.94 1.08
RegCal 1 (UCL) Ref 1.00 081 1.23 092 0.75 1.14 1.10 0.90 1.35 1.03 0.96 1.09
RegCal 1 (CNC) Ref 1.00 081 1.23 092 0.75 114 1.10 0.90 1.35 1.03 0.96 1.09
RegCal 2 (UCL) Ref 098 0.81 1.19 0.75 0.61 0.93 0.89 0.73 1.09 0.94 0.88 1.01
RegCal 2 (CNC) Ref 093 0.77 1.13 0.75 0.61 0.93 0.76  0.62 0.93 0.90 0.84 0.96
RegCal 3 (UCL) Ref 086 0.70 1.05 086 0.71 1.05 0.82 0.67 1.00 0.94 0.88 1.00
RegCal 3 (CNC) Ref 0.87 0.72 1.06 0.76 0.62 0.92 0.73 0.60 0.90 0.90 0.84 0.96
SEM 1 (UCL) Ref 1.00 081 1.23 092 0.75 1.14 101. 0.90 1.35 1.03 0.96 1.09
SEM 1 (CNC) Ref 1.00 081 1.23 092 0.75 114 101. 0.90 1.35 1.03 0.96 1.09
SEM 2 (UCL) Ref 1.00 081 1.23 092 0.75 1.14 101. 0.90 1.35 1.03 0.96 1.09
SEM 2 (CNC) Ref 1.00 081 1.23 092 0.75 114 101. 0.90 1.35 1.03 0.96 1.09

Model 1 included In(fruit and vegetables) adjudmdage, sex and ethnicity. The energy residualdehimcluded fruit and vegetables energy residaalexposure. RegCal
1/2/3 Exposures derived from regression calibratimaels 1, 2, and 3. SEM 1/2 Exposures derived woctural equation models 1 and 2 (see methad®edor more

details). HR, hazard ratio; Cl, confidence interval
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Table C: Cancer mortality

Quartile 1 Quartile 2 Quartile 3 Quartile 4 emnd

Model (7DD data) HR 95 % ClI HR 95 % ClI HR 95 Cho HR 95 % ClI
Model 1 Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
Model 1 + energy Ref 0.67 0.47 0.96 0.80 057 112 0.66 0.46 0.96 0.90 0.79 1.01
Energy residuals Ref 083 059 1.18 084 060 91.1 0.69 0.48 1.00 0.90 0.80 1.01
RegCal 1 (UCL) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
RegCal 1 (CNC) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
RegCal 2 (UCL) Ref 0.66 0.48 0.92 0.46 0.32 0.67 0.64 0.46 0.89 0.84 0.75 0.94
RegCal 2 (CNC) Ref 0.66 0.48 0.92 0.46 0.32 0.67 0.64 0.46 0.89 0.84 0.75 0.94
RegCal 3 (UCL) Ref 0.88 0.63 1.22 0.71 050 1.01 0.71  0.50 1.00 0.88 0.79 0.99
RegCal 3 (CNC) Ref 085 0.61 1.17 0.61 0.43 0.87 0.65 0.46 0.92 0.88 0.79 0.99
SEM 1 (UCL) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
SEM 1 (CNC) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
SEM 2 (UCL) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98
SEM 2 (CNC) Ref 0.65 0.46 0.93 0.76 055 1.07 0.62 0.43 0.88 0.87 0.78 0.98

Model 1 included In(fruit and vegetables) adjudmdage, sex and ethnicity. The energy residualdehimcluded fruit and vegetables energy residaalexposure. RegCal
1/2/3 Exposures derived from regression calibratimaels 1, 2, and 3. SEM 1/2 Exposures derived woctural equation models 1 and 2 (see methad®edor more
details). HR, hazard ratio; Cl, confidence interval
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Table D: All-cause mortality

Quartile 1 Quartile 2 Quartile 3 Quartile 4 emnd

Model (7DD data) HR 95 % ClI HR 95 % ClI HR 95 Cho HR 95 % ClI

Model 1 Ref 0.67 053 0.86 0.80 0.63 1.01 0.70 0.55 0.89 0.91 0.84 0.99
Model 1 + energy Ref 0.68 0.53 0.87 081 064 1.03 0.72 0.56 0.92 0.92 0.85 1.00
Energy residuals Ref 069 054 0.88 0.79 0.63 1.00 0.76  0.59 0.96 0.93 0.86 1.01
RegCal 1 (UCL) Ref 0.67 053 0.86 0.80 0.63 1.01 0.70 0.55 0.89 0.91 0.84 0.99
RegCal 1 (CNC) Ref 0.67 0.53 0.86 0.80 0.63 1.01 0.70 0.55 0.89 0.91 0.84 0.99
RegCal 2 (UCL) Ref 0.67 053 0.84 0.54 0.42 0.69 0.66 0.52 0.83 0.85 0.79 0.92
RegCal 2 (CNC) Ref 0.67 053 0.84 0.54 0.42 0.69 0.66 0.52 0.83 0.85 0.79 0.92
RegCal 3 (UCL) Ref 092 0.73 1.15 0.73 057 0.93 0.68 0.53 0.87 0.87 0.80 0.94
RegCal 3 (CNC) Ref 0.77 0.61 0.96 0.73 057 0.93 0.68 0.53 0.87 0.87 0.80 0.94
SEM 1 (UCL) Ref 0.67 053 0.86 0.80 0.63 1.01 0.70 0.55 0.89 0.91 0.84 0.99
SEM 1 (CNC) Ref 0.67 053 0.86 0.80 0.63 1.01 0.70 0.55 0.89 0.91 0.84 0.99
SEM 2 (UCL) Ref 0.67 053 0.86 0.80 063 1.01 0.70 0.55 0.89 0.91 0.84 0.99
SEM 2 (CNC) Ref 0.67 053 0.86 080 063 101 0.70 055 0.89 0.91 0.84 0.99

Model 1 included In(fruit and vegetables) adjudmdage, sex and ethnicity. The energy residualdehimcluded fruit and vegetables energy residaalexposure. RegCal
1/2/3 Exposures derived from regression calibratimaels 1, 2, and 3. SEM 1/2 Exposures derived woctural equation models 1 and 2 (see methad®edor more
details). HR, hazard ratio; Cl, confidence interval
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Appendix 7.3: Discussion

This fruit and vegetable case study was implemetdedssess the feasibility and
relevance of two measurement error methods: ragressilibration and structural

equation modelling (SEM). The implementation of bhotethods was done using
published models and adapting them to the Whitdhdita. Due to the number of
participants who attended a repeated clinic vis#, SEM models could only be run
with a singleB-carotene measurement. This did not allow relatiregassumption of

independence of FFQ and 7DD errors, but it didvaligaining more insight on the
relationship between the two measures. The two sktsoded 7DD were used

separately to verify whether a centre effect canddietected.

Overall, measurement error models results wereistem$ with both approaches and
both centres of 7DD coding, suggesting that frad saegetable intake, as reported in
the FFQ, was overestimating trurtkake assumed to be closer to the 7DD estimates.
It was not possible to say which model performesdt ks no trueeference was
available. Slope estimates (or “regression diluti@tio”) were in line with
previously published results and suggested thastlaéing bias was lower than in
Keogh’s study (Kaakst al, 1994; Ocke & Kaaks, 1997; Rosredral, 2008; Keogh

et al, 2010). For the regression calibration modelsented R between FFQ and
7DD were in the range of’Robtained for individual fruit and vegetables (Res&
Gore, 2001).

Corrected(i.e. predicted true) intakes were then include€ox regression models
and results were compared with non-corrected istaked two usual ways of
adjusting for total energy intake. The first regiea calibration model and the SEM
method yielded exactly the same estimates as theowected intakes, highlighting
that the proportional correction of fruit and ved#ée intake did not modify the
rankings of participants. This illustrated well theed to estimate correctly the
standard errors of the new parameters when implengensuch regression
calibration or SEM methods to one variable onlyal#o showed that these methods

would be more efficient if a dose-effect relatioipsivas investigated.
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When the correcteohtakes depended on other covariates (non-dietadydsetary),
as in regression calibration models 2 and 3, hazdiol estimates were modified for
all outcomes. Linear risk reduction of CHD and @#@s was suggested, and similar
trends for cancer and all-cause mortality were icored.

The survival analysis results therefore indicateal ffruit and vegetables may be
protective against all the outcomes considerechis @nalysis, and mainly cancer
and all-cause mortality. For CHD and diabetes,ghleas an indication that the true

and protective association may be biased by reqgpetiror on the FFQ items.

The implementation of the two approaches for coimamf individual FFQ items, to
derive correctedaggregate scores, must take into account the tiont that
appeared in this case study. Of the two methodsstiuctural equation modelling
was initially thought to be the better option asnitluded an external measure of
food intake and considered trigake as a latent and unobserved variable. With
repeated biomarker measurement, it would allow meliable estimates by relaxing
the assumption that errors in the FFQ and 7DD adepgendent. However, few
participants went twice to the clinic at phaserg] anly few repeated measurements
of B-carotene were obtained. As a result, the SEM moaolgld only be applied with

a single p-carotene measure for each participant, and ther endependence
assumption could not be relaxed. The use of a esibghmarker measure led to
parameter estimates close to the regression cadibnaodels. Further, the use of the
B-carotene biomarker was feasible for fruit and valges as a food group.
Conducting SEM models individually for each frurtveegetable may not be possible
as the relationship witp-carotene may not be shown. Also, no other biomaskes
available for the whole Whitehall 1l population. Asresult, the implementation of

SEM models on other food groups, let alone indigldtems, was not feasible.

The regression calibration approach, despite itstdiions was therefore the sole
technique which could be applied uniformly acroBsF&Q items. The algorithms
implemented in this case study are easily trangferéo any FFQ item, at the
condition that an equivalent “7DD item” exists. Ttaaking issue observed with the
first model and the SEM approach was not a majocem as correctedggregate

scores would rely on the correctiedakes of all FFQ items. The precise estimation
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of the regression calibration parameters varianas therefore not investigated in

further details.

Regression calibration relied on two fundamentatiagtions: (i) that random errors
in the 7DD and FFQ tools were independent; andtli@ 7DD reported intakes
represented true intakes. As a result, the implémtien of such method using 7DD
as referenceneasure did not allow concluding that the correestitmates reflected
better the trueelationship. They have to be used as an indicahah misreporting

may bias the observed results, but must be takéénextreme caution.
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