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Abstract

Suburban sprawl is one of the most avidly followed urban issues in the United States
today. However, despite the level of attention that is afforded sprawl, their remains
relatively little understanding of its determinants and its constitution. Previous
attempts to measure sprawl have focused largely on costing out its impacts rather than
quantifying its characteristics. Also, the characterization of sprawl is often confused
with general suburbanization and remains, in many cases, without clear empirical
foundation. This paucity of understanding casts doubts about the effectiveness of
growth management and smart growth policies and inhibits the ability of planners to
inform public policy in a reasoned way. This paper contributes to the debate about
sprawl by offering a toolkit for characterizing its attributes in a quantifiable manner.
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1. Introduction

Suburban sprawl has several characteristics that make it, arguably, one of the most

pressing concerns facing American cities (see Peiser 1989; Ewing 1994, 1997;

Gordon and Richardson 1997a, b for a balanced debate about the various issues of

contention surrounding the sprawl problem). Sprawl is a relatively wasteful method of

urbanization, characterized by uniform low densities. It is often uncoordinated and

extends along the fringes of metropolitan areas with incredible speed. Commonly,

sprawl invades upon prime agricultural and resource land in the process. Land is often

developed in a fragmented and piecemeal fashion, with much of the intervening space

left vacant or in uses with little functionality (Ewing 1997). Sprawled areas of the city

are generally over-reliant on the automobile for access to resources and community

facilities. Aesthetically, these areas are often regarded as displeasing, commonly

applied to urban landscapes with a blandness of design that robs vast swathes of the

city of their appeal. While the character of sprawl varies across the United States,

much of these characteristics (and their associated problems) share common traits.

It could be argued that sprawl violates just about every premise of sustainability that a

city could be judged by. Disputably, sprawl has several negative impacts on urban

travel patterns. Urban sprawl also places unnecessary strains on urban service and

infrastructure provision. Sprawl has been accused of encroaching on environmentally

sensitive areas and is blamed for consuming resource lands and farmland. Suburban

sprawl has also been attributed responsibility for pollution and ecological disturbance.

Because sprawl occurs on the urban fringe and is piecemeal in its development, sites

within sprawling areas tend to be located at distances from the urban core and also

from each other; consequently, journeys for residents of these areas become

unnecessarily long and there may be associated social and environmental

consequences. In addition, it may have negative influences on urban energy

efficiency, psychological and social costs to residential populations, and contribute to

central city decline (see Ewing 1994, 1997).

Concerns about unchecked suburbanization have always featured prominently, but are

increasingly growing as the sustainability of America’s urban future—and the future

of urbanized areas in other nations—increasingly comes under question. In the United

States, the threat of sprawl has prompted cities and states to introduce growth

management legislation in an effort to curb the rapid expansion of sprawl on the
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fringes of their metropolitan expanses.  Equally indicative of the magnitude of

concern surrounding sprawl is the increasing attention to “Smart Growth.” In a series

of initiatives, the national and local governments have begun to lay the foundation for

a broad policy designed to transform the morphology of urban growth.

In academic terms sprawl is a highly contentious issue—neither its determinants nor

its characteristics are fully understood. In recent years researchers have traded

conceptual explorations of the sprawl phenomenon: its causes, characteristics, costs,

and potential controls. Without robust empirical metrics to inform the debate,

however, much of this argument remains conceptual, even speculative. The lack of

understanding and consensus does little to contribute to practical, real world problem

solving. On the contrary, it casts doubts upon the appropriateness and potential

effectiveness of proposed policy mechanisms that are designed to counter sprawl,

such as smart growth and growth management. We need robust tools that can inform

the sprawl debate in a reasonable manner and serve as a foundation of consensus

around which we can begin a discussion of the issues.

This paper seeks to contribute to a deeper understanding of sprawling urban growth

by exploring a range of techniques—a toolkit—that might be used to quantify sprawl.

The paper is organized in four sections. The next section explores several approaches

to measuring sprawl in an empirical manner using surfaces, gradients, fractal

measurements, architectural primitives, image processing, geometric measurements,

ecological approaches, and accessibility calculations. In the third section, some

important considerations regarding the operationalization of the proposed tools are

discussed and imposing barriers are explored. The fourth section draws the paper to a

close with some conclusions and suggestions for further work.
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2. Measuring sprawl

Theoretical debates about sprawl have generated a wealth of discussion around the

issue. Recalling Ewing’s (1997) comments, however, we still lack a working

definition. Sprawl is a practical, real world concern. Arguably, there is a sense of

urgency attached to the sprawl problem and in many ways it is time for the theoretical

debate to inform practice in more useful ways; after all, growth management

legislation is sweeping through the country at paces not unlike those at which sprawl

is brushing the landscape. Without a solid empirical basis for assessing the potential

outcomes of what are, in many cases, quite radical legislative measures, cities are in

danger of failing in their bid to control sprawl, as well as running the risk of

prompting knock-on effects with unforeseen consequences. With these considerations

in mind, we explore a set of methodologies that offer promise in helping us to

measure sprawl. Then we consider some of the issues that must be addressed if these

measures are to be put to use in practical contexts.

2.1.  Measuring density

While density is almost universally regarded as one of the essential components of

sprawl, the semantics of the term is hotly debated (Peiser 1989; Gordon and

Richardson 1997a, b). Before we can evaluate potential techniques for quantifying

sprawl densities, there are a number of important considerations in determining how

the relationship between density and sprawl should be evaluated. These include the

best variable to use in representing density, the density level at which a city might be

regarded as sprawling, the scale at which density should be measured, and the extent

of space over which density should be characterized.

We know that sprawl occupies lower-than-average densities of urbanization, but

many are uncertain as to what activity that density should be attributed (Peiser 1989;

Gordon and Richardson 1997a). A number of variables have been used to represent

density, most commonly density of housing units, population, and/or employment.

While each of these variables has the capacity to capture the density characteristics of

sprawl in a given city, it is unclear as to which variables work best. The Lower

Mainland Regional Planning Board of British Columbia characterized low-density
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sprawl as areas of the city with population densities of 0.3 to 0.5 people per acre. At

these densities, they argued, parts of the city are less than adequate for efficient

service provision and too high for true agricultural development (Ledermann 1967).

In their work, The Costs of Sprawl (1974), the Real Estate Research Corporation

(RERC) referred to low-density sprawl as a housing density of 1,360 units per square

mile (quoted in Gordon & Richardson, 1997, p.99).

The scale at which density is studied is also an important consideration. Depending on

the scale of observation—the metropolitan area, a district within a city, a

neighborhood—measurements of urban density will look quite different. The

geography over which densities should be measured is also contentious. Should an

analyst use the total area of a city in her density calculation (gross density), or should

she omit areas upon which people would not normally reside such as water, deserts,

parks, wetlands, cemeteries, industrialized areas, disposal sites, etc. (net density)

(Gordon and Richardson 1997a)? Excluded areas can, in aggregate, amount to a

sizeable share of the metropolitan area. The issue becomes further complicated when

we consider that the exclusion of areas such as open water and industrial areas—

because of their role in influencing housing costs—might bias measurements of

density (Gordon and Richardson 1997a). On the other hand, such bias is probably

unavoidable and the negative and positive effects of omitted land uses may balance on

the whole anyway (Zielinski 1979). In summary, we know that density is essential to

sprawl, but there is little agreement about the appropriate specification of its

measurement.

One of the most common approaches to quantifying density is using a density

gradient. The idea of measuring how the density of urban activity declines along a

gradient with growing distance from a designated center has been around for some

time. These gradients are often fitted with parameters that assume activity density at

any distance from a center to be a function of central densities and some rate of

density attenuation with distance from that core. The rate of attenuation is

parameterized differently depending on the specification of the function. Essentially,

this allows us to tailor a density calculation to different city ‘shapes’ (Figure 1).

Density gradients are potentially useful indices of sprawl for several reasons: they

permit comparisons over time and between cities, they incorporate crucial elements of

urban land use, and they overcome some traditional constraints in the measurement of
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urban densities. If a population density gradient falls over a specified period, for

example, we may say that the urban area has sprawled—in relative terms—over that

time. Likewise, the gradient measure allows us to make comparisons between cities

and to gauge the relative degree of sprawl between them. A city with a small

population (or perhaps employment or household) density gradient can be said to be

more sprawling in its relative density than a city with a comparatively larger gradient.

Density gradients are not immune to the issues of specification that we have

discussed, but they do have some advantageous properties that make them potentially

useful for measuring sprawl.

Density gradients have the convenient property of encapsulating some key ideas in

urban economics, notably input substitutions in housing (factor substitutions) and

match well with theoretical ideas about the trade-off between consumer preferences

regarding housing prices and costs of commuting to centers of activity (Mills and Tan

1980). Arguably, factor substitutions are influential in driving sprawl: they influence

the likelihood of households to locate on the urban fringe. As we will discuss later,

sprawl is a dynamic phenomenon. Because density gradients use distance from an

activity center in their calculation, their evaluation is generally independent of

dynamics in the structure of cities, such as shifts in the location of the urban periphery

and changes in its boundary over time.

A variety of models have been developed in recent years to characterize urban

densities. The main techniques for measuring density are the equilibrium function, the

inverse power function, and the negative exponential function. Innovation in this area

usually focuses on the parameters fitted to the distance decay component of the

calculation. Equilibrium functions (Amson 1972, 1973) have been formalized in a

theoretical setting, but have yet to be proven in a practical manner. Quadratic gamma

functions (a classification to which the negative exponential and inverse power

functions belong) have a better track record.

The mathematical structure of the inverse power function, popularized by Smeed

(1963), most commonly takes on the form:

D x D x( ) = −
0

α (i)
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If we are to apply this formula to the measurement of sprawl, the key components

here are D  (the activity variable, e.g., population, households, or employment; this is

expressed for a given location x , with a city center denoted as 0D ) and α , the

distance decay parameter. The value of − α  is best interpreted by analyzing the first

derivative of the above function. We can interpret − α  as an elasticity: the ratio of the

percentage change in density 
dD x

D x

( )

( )







 to the percentage change in distance from an

urban center 
dx

x




 . As you move from a city center to a periphery, density decays at

a rate of − α . In our case this represents the attenuation of density across space and

allows us to compare gradients between time points, and this could offer an indication

of the relative degree of sprawl in a city or between cities. The first derivative of

)(xD  can be found by:

dD x

dx x
D x D

( )
( )= − = − − −α

α α
0

1 (ii),

yielding: 

dD x

D x
dx

x

( )

( )
= −α (iii)

In analysis, the density gradient parameter of the above functions is usually obtained

by fitting the logarithmic form of the equations to direct observations of surface

densities in thin concentric rings around a CBD (Zielinski 1979). However, this

method has been shown to be highly sensitive to the arbitrary choice of ring thickness

(Bussière 1968; Muth 1969) and the location of the city center. Another way to fit

data to a population density function is to select a random sample of zonal population

from the city, usually by census tract. However, Alperovich and Deutsch (1992) have

argued that the way in which census tracts are bounded, with ease of data collection

by census staff as a primary concern, may introduce a level of bias and that taints their

ability to serve as robust population sampling areas.
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The negative exponential function was first introduced by Bleicher (1892), but was

popularized in a contemporary sense by Clark (1951). In its most general form, the

function is based on the premise that population density declines monotonically

(change is the same in all directions) with distance from a city center (Batty and

Kwang 1992)—and this is also the case with the inverse power function—according

to the equation:

D x D x( ) exp( )= −0 λ (iv)

In the negative exponential model, − λ  replaces − α ; in the last example, distance

decay was formulated as an inverse power, but here it appears as a negative

exponential. While essentially performing the same role, these formulations yield

radically different ‘fits’ of density attenuation. Again, the value of − λ  can be

calculated by taking the first derivative of the above function such that:

dD x

dx
D x D x

( )
exp( ) ( )= − − = −λ λ λ0 0 (v),

and thus: 
dD x

D x
dx

( )

( )
= −λ (vi)

That is, − λ , is the percentage change in density for a small change in distance from

an urban center; this could be interpreted as the density gradient of sprawl.

Recent trends appear to reinforce—or at least infer—the applicability of the gradient

approach to the relative quantification of urban activity, and suggest that the

measurement could serve as an indicator of sprawl. The majority of urbanized areas in

comparatively well-developed countries have exhibited a steady and continuous

flattening of their density gradients with time since the nineteenth century. For

example, London’s population density gradient in 1801 was 0.78, but by 1961 that

gradient had leveled out to 0.09 (Mills and Tan 1980). In the United States, density

gradients dropped by an average of 0.012 points per year from 1920 to 1963 (Mills
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1972)—a period in which many American cities began to suburbanize and ultimately

sprawled.

Figure 1. The shape of density gradient functions (after Batty and Kwang 1992).

There is real no answer to the question of which function is more appropriate to the

measurement of sprawl. Both functions do a poor job of estimating central densities.

The inverse power function has a tendency to over-predict in areas close to the CBD,

while the negative exponential function generally does a poor job of predicting central

densities (Batty and Kwang 1992). Taking these considerations into account, it would

seem that the inverse power function could best be used to model peripheral urban

densities, while the negative exponential function is perhaps best employed in

estimating intra-urban densities. This would seem to favor the inverse power function

for measuring sprawl. However, the negative exponential function has the advantage

of capturing properties of self-similarity (Batty and Kwang 1992), which, as we will

see later, also has desirable functionality for measuring suburban sprawl.

Nevertheless, regardless of how the gradient function is ‘fitted’, variable choice,

scale, and geography remain are still important considerations that must be borne in

mind.
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2.2.  Surfaces of sprawl

The density gradient approach to measuring sprawl has several important advantages,

as we have already seen. Nevertheless, gradients remain a linear solution to what is a

two- and often three-dimensional problem. Sprawl does not occur in cross-sections

and unless density gradients are calculated for many cross sections of a city, the

spatial configuration of sprawl is essentially neglected. Perhaps a better course is to

approach the problem from a two-dimensional standpoint, looking at how urban

activity and the patterns of sprawl vary continuously over the entire spatial range of

the city. Densities of urban attributes that are important to the sprawl problem; such as

households, population, and employment; can be collected on a zonal basis (and zonal

values can be assigned to a centroid point) and then converted into ‘surfaces’ of a

quasi-continuous nature. There are some well-developed techniques in image

processing and spatial analysis that enable these sorts of analyses to be performed.

One such approach makes use of kernel density estimators.

A kernel density estimator (KDE) interpolates, or estimates, a quasi-continuous

surface (because of the constraints of geographic information systems, these surfaces

are really grids, although of a very fine resolution) from a set of sample data points.

The KDE is a form of moving window, or filter, that smoothes point data values and

‘smears’ them across a space. In essence, the KDE operates much like the

neighborhood of a cellular automaton or a finite state machine (Sipper 1997). The

kernel moves sequentially around a representation of a city landscape (a data layer in

a geographic information system, for example). The kernel acts as a tile overlayed on

several grid squares that fall within its bounds. Within the tile, the kernel looks to a

specified neighborhood of cells and takes stock of all of the values of cells that fall

within that window. The values are then summed and averaged, before being assigned

as a mean value to the central cell of the tile. In this sense, as the kernel moves

iteratively across the data layer, values are smoothed and smeared, to create an

artificial ‘surface’, interpolated from data points. As with the density gradient, there

are a number of functions that can be fitted to the KDE, for example, the inverse

distance weight, spline, kriging, and trend. The details of these functions are not of

immediate relevance to this paper, however. Also, the size of the kernel may be

varied. Importantly, the greater the size of the kernel, the more action-at-a-distance is

represented.
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There are a few reasons why surface smoothing may, in some cases, be desirable for

the measurement of sprawl. First, spatial data for sprawl will most likely be collected

in a zonal format. These data tell us that a certain level of activity has been recorded

for a zone, but they tell us little about the subzonal distribution of that activity. We

can infer information about individuals and single land parcels from aggregated data,

but to do so runs risks of ecological fallacy. Kernel approaches allow us to make a

reasoned guess at the subzonal geography of activity, based on observed activity in

neighboring zones. The kernel approach also allows us to circumnavigate (or maybe

‘dodge’ is a more appropriate term) potential modifiable areal unit problems that we

may encounter in measuring sprawl (see Openshaw 1983). In terms of sprawl, we

may well have to work with data that aggregate entity-level activity to broad

geographic zones, particularly if those data come from government sources such as

the Census, or if they carry data confidentiality provisos. Also, because we are

attempting to explore a multifaceted problem, we will frequently encounter data

across varying scales. The surface approach can help to alleviate some of those

concerns by artificially transforming data into a workable format, ‘filling-in’ the

blanks that zonal geography has left, and placing data for differing zonal geographies

on an even footing.

2.3.  The geometry of scatter

The scattered characteristics of sprawl manifest themselves in a variety of guises:

fragmentation, leapfrogging, discontinuous development, dispersal, and piecemeal

development. Essentially, these amount to the same thing—tracts of developed land

that sit in isolation from other undeveloped tracts (Lessinger 1962). The scattered

nature of sprawl can be both costly and unsustainable. Because scatter isolates

residences and opportunities, travel times in sprawled areas grow, as do associated

environmental damage and energy consumption. Also, the cost of providing essential

urban services and infrastructure—wastewater facilities, water pipes,

telecommunications networks, garbage collection, emergency services, roads, schools,

etc.—in scattered areas is much greater than would be the case in more compact

neighborhoods (Ewing 1994). Harvey and Clark (1965) assert that great capital

expenditures must be pumped into the provision of urban services in sprawled areas
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even at the initial time of development, even when much of the land may be left

vacant.

Differentiating scatter from economically efficient “discontinuous development”

(Ewing 1994) can be difficult, however. The distinction involves weighing up several

components of scatter: the quantity of land bypassed in the initial development wave,

the length of time that land is actually withheld from development, and the ultimate

use of the land (Ewing 1997). The temporal components of scatter should also be

considered, as sprawl is a dynamic phenomenon—what looks like sprawling suburb

today could well evolve into compact and sustainable development in later years as

the pace of urban extension drives developers to fill-in previously undeveloped sites

(Peiser 1989).

An examination of the geometry of scatter might be a first pass at actually measuring

these characteristics so that a judgement on the presence of sprawl in a given area

might be empirically based. One approach would be to use weighted centroids (Suen

1998). If the centroid of a geographic zone is the middle point of that area, then the

weighted centroid is a variation that displaces the center point in the direction of

concentrations of activity. We could parameterize this to reflect activities that are

important to sprawl. A weighted value could be derived such that the absolute center

of a zone relocates to a point where the density of a given activity is greatest. You can

think of this as a ‘pulling’ of the center towards the site of greatest activity—the

center point for a given area is pulled along the activity gradient in the direction of a

concentration of activity. This geometric measurement may be formulated for an area

of study using the following equation (Suen 1998):

( )
S

H E

H
i i

i

n

=
=
∑

1

(vii)

where: S is the level of scatter and Hi is the number of housing units in a residential

parcel i. Ei is the Euclidean distance between the center of residential parcel i and the

weighted center of residential development in a larger grid cell, such that:
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y
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w
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n
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i

n= =

=

∑

∑
1

1

                                                              (viii),

where: x is the x-coordinate of the weighted areal mean of a larger grid cell; y is the

y-coordinate equivalent; wi is the weight assigned to a parcel center-point i, based on

the quantity of development in that parcel; xi is the x-coordinate of a parcel center-

point i; and yi is the y-coordinate equivalent for a parcel center-point i.

The calculation of a weighted mean starts with parcels of development occupying a

larger grid tile. Once the absolute center-points of the tile have been identified, the

weighted center of the tile cell is calculated. The tile’s center is shifted according to

the level of activity present in the individual parcels that occupy it. The weighted

center is ‘pulled’ away from the unweighted center in the direction of activity (Figure

2). In this sense, the weighted center represents a skewed balance point of activity in a

tile. Once the weighted center of a tile is identified, the Euclidean distance between

the center of a given parcel within the tile and the weighted center of development of

the larger tile can be determined (Figure 3). Using those values, an ‘index of scatter’

can then be calculated for the tile. High index values correspond to greater scattering

of development within tiles. The index could, in principal, be calculated for any given

land use (e.g., employment, retailing, residential). Also we can sum values of scatter

across tiles to arrive at a composite measure of scatteration for whole areas of the city.

This could also be converted into a surface of scatter, for comparison with other

information layers.
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Figure 2. Diagram illustrating the relative positioning of parcel center-points, the

weighting of parcels by units of development, unweighted tile centers, and weighted

tile centers for a hypothetical area of study (adapted from Suen 1998).

Figure 3. Diagram illustrating two cases of scatteration (adapted from Suen 1998).

2.4.  Fractal dimensions of sprawl

Batty and Kwang’s comments about self-similarity, in relation to density gradients,

suggest another line of exploration in our search for measurements of sprawl: fractals.

The fractional or fractal dimension of a city provides a measure of the extent to which

a city fills its two-dimensional area (fractal measurments have several other properties
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that are useful for describing cities, see Batty and Longley (1994)). If we consider the

traditional integer dimensions of an urban area, we might imagine a city with a

dimension of zero (a city existing on a point). A city with a dimension of one (a city

existing as a line) might correspond to something like Soria Y Mata’s ‘La Cuidad

Lineal’ or Frank Lloyd Wright’s ‘Mile-High Skyscraper City’. A city with a

dimension of two (one that fully occupies a two-dimensional plane) might also be

conceived of, such as Wright’s ‘Broadacre City’. Indeed, we might imagine a city that

fully occupies three dimensions, such as Dantzig and Saaty’s ‘Compact City’ (Batty

and Longley 1997). While the existence of one-, two-, and three-dimensional cities

might easily be conceptualized in a theoretical context, in a practical setting such

forms are unlikely to exist; cities are not that orderly! Most cities do not occupy a

single or multiple-dimensions fully; their dimensionality does not fit neatly into whole

number classifications. On the contrary, cities are more ‘fuzzy’; their dimensions

usually form real numbers, occupying fractions of a dimension.

Fractals hold much promise as an indicator of the level of scattering in urban

development and thus as a measure of sprawl-like leapfrogging. Sprawl is about space

filling  (or at least an inefficiency or an unsustainability in space filling). Fractals offer

ways in which we can measure the extent to which phenomena such as sprawl

manifest themselves at levels between dimensions. Sprawl lies somewhere between

well-developed compact built environments and the countryside, which for the most

part lacks any urban development per se (Figure 4). Also, like fractals, sprawl is self-

similar in its spatial pattern (Figure 5). Scatter is evident at an urban scale, intra-urban

scale, and also at the neighborhood level. Fractals are a powerful tool for capturing

those properties. In its most general form, a fractal dimension may be calculated as:

F
l

a
ij

ij

=
2 ln

ln
(ix),

where: F  is the fractal dimension of the space under examination (usually ranging in

value between 1 and 2), l  is the perimeter of the space being studied at a particular

length scale, and a  is the two-dimensional area of the space under investigation. The
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closer the value of the fractal dimension approximates two, the more compact—

perhaps even sustainable—the development contained within the space may be

considered. As the fractal dimension nears one, development becomes less compact

and may be understood to be scattered and sprawl-like. Also, we can associate certain

morphologies of development, such as sprawl, with specific signatures; these

signatures can be calculated as fractals. For example, Mesev, Longley, Batty et al.

(1995) have calculated signatures for density using fractal-based power functions.

Figure 4. A fractal from the Mandlebrot Set, illustrating how fringe urbanization

might be conceptualized in a fractal manner (source: author).
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Figure 5. A fractal from the Mandlebrot Set, demonstrating self-similarity (source:

author).

2.5. Measuring the built environment of sprawl

The aesthetic characteristics of sprawl—images that it conjures in the mind’s eye—

are one of the less tangible qualities of the phenomenon, yet they are also amongst its

key components. Sprawl is as much an aesthetic architectural and design-based

problem as it is an issue of urban structure. Urban sprawl is widely regarded as a lazy

and undisciplined expression of urbanization (Gordon and Richardson 1997a), almost

universally met with criticism and distaste: “Urban sprawl, roller-painted across the

countryside is often without form, grace, or a sense of community. Planning

philosophies aimed to strike down this amorphous creature should only gladden our

hearts” (Lessinger 1962, p.159). The aesthetic qualities of sprawl certainly provoke a

level of eloquence in commentary, but the subjective nature of aesthetic sensitivities

leave us with little room for quantification.

One of the often-vocalized criticisms of sprawl, apart from a widespread dislike of

low density and scatter, is “ribbon sprawl,” generic fast-food–lined alleys of car parks

and neon signs that burn phosphorously, long into the night. The phenomena of

ribbon sprawl, or “retailscape” (Gordon and Richardson 1997a) is closely related to
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scatter, although it is radial rather than planar in form. Ribbon sprawl generally

manifests itself as strips of commercial development (normally retail outlets and

related premises) that flank the sides of highways and main thoroughfares. Exit-

parisitic retail development is an associated component: the clustering of retail

establishments (hotels, gas stations, fast food restaurants, etc.) close to highway exit

ramps (see Torrens 1998). Ribbon sprawl is composed of segments of developed land

that are compact in themselves but which extend axially and leave the intervening

space undeveloped (Harvey and Clark 1965). This creates walls of commercial

development (often buffered by large ‘seas’ of car parking) that restrict access to

much of the space around them.

Because the aesthetic concerns about sprawl are almost all design-based, we need to

examine the built environment of sprawl to measure its aesthetic qualities. Ideally, to

do this we would (and probably should) interview a representative sample of residents

and generalize our findings on aesthetics to the urban population as a whole.

However, such surveys would undoubtedly be both costly and time consuming.

Alternatively, we could follow in the tradition of automated analyses of built

environments (Ward, Phinn and Murray 2000 is one such recent work) and devise an

automated approach to measuring aesthetics. The idea here would be to derive a

“mathematical characterisation of urban patterns” (Webster 1995). There are two

main routes that can be taken. Both rely on digital imagery of urban environments,

usually aerial photographs or scenes captured from remote sensing platforms.

Architectural techniques relate images to known primitives—or marker points—for

the built environment. Photogrammetric techniques associate the spectral signature of

an image with typologies and characteristics of urban land covers or uses.

Examination of the architectural configuration of the built environment relies on a set

of architectural and design primitives such as those primitives presented by Steadman

(Steadman, Bruhns, Holtier et al. 2000). The primitives approach could be extended

by automation—digital imagery of cities could be analyzed, pixel-by-pixel, using

image processing techniques that reference pixel configurations in the image with

known architectural or morphological primitives, or ‘building blocks’,  that an analyst

understands to be associated with certain developments styles or types. Of course, this

relies on the assumption that such primitives exist (Webster 1995), but work in

architectural studies would seem to suggest that this may well be the case, and that
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such primitives are useful in characterizing urban built form (see Steadman, Bruhns

and Gakovic 2000). With reference to the interests of this paper, we may be able to

discern key primitives associated with sprawl: architectural configurations, the spatial

structure of phenomena such as ribbon sprawl, lot configurations, or arrangements of

buildings and land parcels on the urban fringe; and perhaps we could relate these to

digital imagery for automated analysis and measurement.

The photogrammetric approach is a little less straightforward, simply because there

are a wide variety of techniques that we might employ. Broadly speaking, there are

two main approaches, both based on pattern recognition in the digital image:

techniques that deal with raw imagery and methods that are applied on transformed

images (Webster 1995). Amongst the techniques that deal with raw images, perhaps

the most basic approach would be to look at the standard deviation of individual

pixels from average values (reflectance, corresponding to the albedo value of a given

urban surface, for example) for the entire scene (Webster 1995).

Mathematically, this standard deviation can be calculated using the following

equation:
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The standard deviation (2σ ) of individual pixels from the average value of the entire

scene  is a summation of the difference between the values of individual pixels (iX )

and the mean pixel value for the whole image (X ). (The notation N  refers to the

number of pixels in the image.) Using this measurement, a low variance value might

be thought of as relating to a level of uniformity in the albedo, or reflective, properties

of an urban environment. In this way, we might be able to compare cities, or perhaps

parts of cities, in relative terms. Obviously, the reliance on albedo values as a proxy

for urban form—or sprawl—is problematic. Also, because the measurement is

holistic, comparing individual values to a mean for the image scene, the measurement

tends can be sensitive to the spatial pattern of pixels (Webster 1995). For example, the

two scenes illustrated below (Figure 6) may well yield the same standard deviation
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values, despite being radically different in their spatial structure and their inference of

sprawl. Nevertheless, the statistic may be a useful starting point for building relatively

more solid measurements of the built environment of sprawl.

Figure 6. Two images of differing spatial character yield similar standard deviation

values.

Proceeding from this approach, it is possible to generate a number of measures of the

condition of an urban landscape: entropy (the ‘sameness’ of built form), homogeneity

in pixel value, and relative contrast value for urban features (a proxy for building

materials) (see Webster 1995 for details).

The frequency domain approach differs somewhat from the ‘raw’ imagery approach.

In the frequency domain an image is transformed from Cartesian (X- and Y-

coordinate) space into a space in which the axes now correspond to the frequency with

which certain pixel values in the original image repeat themselves. One method for

transforming images in this fashion in the discrete Fourier transform. Fourier

transforms allow us to capture details such as wavelengths, amplitudes, phases, and

orientations from digital images (Webster 1995). Some of these features have

potential for offering a relative understanding of the built environment of sprawl.

Certainly, the frequency approach, with its emphasis on repetition, may have uses in

detecting some of the sameness of sprawl-type development.
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2.6.  Ecology of sprawl

In many cases, sprawl can have a profound influence upon ecological systems. It can

interfere with habitats by fragmenting faunal and floral habitat ranges and

deforestation can destroy habitats altogether. Urbanization, particularly sprawl can

have negative influences on hydrological systems, principally by reducing the

permeability of land and increasing surface runoff, with implications for the

introduction of pollutants into ecosystems (Ewing 1994). There are a number of

metrics that we can use to quantify these effects, particularly their spatial distribution.

Many of the metrics also serve as good indices of other sprawl characteristics outside

of ecology.

We can measure the effect of urban sprawl on ecology by looking at its effects on the

composition and spatial distribution of habitat patches. Several ecological studies

have demonstrated that the ecological conditions of any patch are related to ecological

pattern at the landscape scale (Turner 1989; McDonnell, Pickett, Groffman et al.

1997). Numerous metrics in landscape ecology have been developed to quantify such

pattern and its effects on disturbance regimes (O'Neill, Krummel, Gardner et al. 1988;

Turner 1989; Li and Reynolds 1994; McGarigal and Marks 1995; Gustafson 1998).

Based on an empirical study recently conducted by Alberti and Botsford (2000) in the

Puget Sound area, we propose a set of metrics to quantify characteristics of sprawl

that we hypothesize are relevant to ecological conditions. Many of these metrics can

be extended to measure other characteristics of sprawl.

Landscape ecology defines landscapes as mosaics of patches. Patches represent

relatively discrete areas (spatial) or periods (temporal) of relatively homogeneous

environmental conditions that are perceived by or relevant to the organism or

ecological phenomenon under consideration e.g., the geographical extent of a

particular type of vegetation within a larger forest that contains several species of

plant (McGarigal and Marks 1995). This concept can be applied in an urbanizing

environment to represent discrete areas of land cover and land use classes relevant to

both ecological and socio-economic processes. We can identify and measure patches

of different land cover (e.g., an urban forest) and patch of land use (e.g., single family

residential) with a broader urban area (e.g., a neighborhood) composed of a mosaic of

such patches.
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Metrics of landscape patterns aim to measure two major characteristics of the

landscape: its composition and its spatial configuration (Turner 1989). Landscape

composition refers to the presence and amount of different patch types within the

landscape, without explicitly describing its spatial features. Two common metrics of

landscape composition are the Shannon Diversity Index, which measures the degree

of diversity in a given landscape and the Shannon Evenness Index, which measures

the distribution of area among patch types. Landscape configuration refers to the

spatial distribution of patches within the landscape. Examples of configuration

metrics are patch size, edge-to-interior-ratio, nearest-neighbor, fractal dimension, and

contagion. In landscape ecology these metrics are good predictors of the ecosystem's

ability to support important ecosystem functions (Turner and Gardner 1991).

Ecological studies have shown, for example, that patch size is positively correlated to

species and habitat diversity. Edge-to-interior ratio and nearest-neighbor probabilities

reflect the degree of landscape fragmentation. Fractal dimension reflects the extent of

human impacts. Contagion is an important measure of contiguous habitat types

(O'Neill, Krummel, Gardner et al. 1988; Turner and Gardner 1991).

These metrics allow us to measure the pattern and configuration of ecological

disturbances in the natural and built environments caused by sprawl; additionally

urban sprawl patterns—and important characteristics such as scatter, fragmentation,

homegeneity, connectivity, etc.—can be quantified using a variety of these metrics

(Alberti 2001). However as Webster (1995) points out “the choice of the metrics in

measuring patterns should aim to achieve the best discrimination between categories

within a particular category scheme used to describe a specific phenomenon.” For

example, different pattern metrics of urban sprawl will best discriminate building

density, development scatter, and habitat fragmentation. Furthermore, the choice of

scale at which the metric is measured, both the resolution and the geographic extent

will be relevant to the ability of a metric to represent these phenomena (Webster

1995).

Before we can select appropriate spatial metrics for measuring the ecology of sprawl

we need both to specify what aspect of the sprawl phenomena we intend to measure

and to investigate the limitations of each metric; this applies to all of our tools for

measuring sprawl. There are countless variations of landscape patterns assuming a

fixed number of classes that can arise from a number of phenomena: the degree of
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evenness across the classes, the level of aggregation of each class into patches, the

frequency distribution of patch size, and the spatial distribution of these patches in the

landscape. A careful interpretation of spatial metrics is possible when the ability of

each measure to quantify a single component of pattern is fully understood.

Sprawl results in greater landscape heterogeneity and fragmentation (compared with

more compact forms of development).  Several patch metrics can be applied to

measure these patterns on an urban to rural gradient. The number of patches of a

specific land use and land cover type is a useful index of the urban landscape

heterogeneity (sameness of design and use). In addition patch density provides a

measure of landscape structure that can facilitate comparisons among landscapes of

varying size. Patch density in the entire landscape mosaic could serve as a good

heterogeneity index. Measured as the number of patches on a per-unit-area basis for a

particular patch type, patch density could serve also as a good fragmentation index

(perhaps a proxy for scatter). Similarly Mean Patch Size (MPS) can serve as a

fragmentation index:
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MPS equals the sum of the areas of all patches of the corresponding patch type,

divided by the number of patches of the same type, divided by 10,000 (to convert to

hectares) (McGarigal and Marks 1995). A landscape with a smaller mean patch size

for the target patch type than another landscape might be considered more

fragmented. Similarly, within a single landscape, a patch type with a smaller mean

patch size might be considered more fragmented. Variability in patch size can be

measured with Patch Size Standard Deviation.

Two important dimensions of sprawl that can be described with landscape metrics are

measures of dispersion and juxtaposition. Dispersion can be measured by the

Contagion (C) index (Turner 1989; Li and Reynolds 1994). Contagion is the

probability that two randomly chosen adjacent cells belong to the same class. This is

calculated by the product of two probabilities: the probability that a randomly chosen

cell belongs to category type i, and the conditional probability that given a cell is of

category type i, one of its neighboring cells will belong to category type j. Although
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the Contagion index was designed to measure habitat characteristics, it can readily be

applied to quantify urban phenomena by measuring parcels or patches of land with

associated land use in lieu of patches. The common specification of a Contagion index

takes the form (Li and Reynolds 1994):
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 (xii),

where: C  is the contagion, iP  is the proportional abundance of category type i, ijg  is

the number of adjacencies between cells of category type i and all other category

types, and m  is the total number of category types. Contagion is based on cell

adjacencies as opposed to patch adjacencies. It measures both patch dispersion and

interspersion. Landscapes consisting of large patches of similar land cover or land use

category have a greater number of adjacent cells. Where contagion is low, urban areas

can be said to be comprised of many small and dispersed patches of various land

cover or land uses categories (they are fragmented or ‘leapfrogged’). However,

Contagion indices do not offer any indication of the degree of connectivity between

patches or land use and in this respect they may fall short as indicator of the urban

structure. Furthermore since Contagion is related to pixel aggregation both patch size

and shape influence this measure. Simpler patch configurations and larger patch sizes

result in higher Contagion values for landscapes of the same composition.

The Interspersion and Juxtaposition Index (IJI) is a measure of adjacencies of each

patch type with other patch types (a surrogate measurement of landscape connectivity,

and perhaps of accessibility).
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It can be applied to the landscape and class level. When applied to land use it

measures the degree of interspersion of land uses. Contrary to Contagion, this index

measures patch adjacencies, not cell adjacencies and can be more appropriate in

representing the urban structure. However the interspersion index only measures

interspersion and it is not affected by the size, contiguity, or dispersion of patches;

thus it captures only one aspect of sprawl.

Another important aspect of sprawl is the proximity of land uses, as this has important

implications for landscape homogeneity (sameness of design; homogeneity), land-use

mixing, and accessibility. Again, we can use some techniques from landscape ecology

to measure these characteristics. The landscape metric, Proximity, can be calculated

as the sum of patch area divided by the nearest edge-to-edge distance squared

between the patch and the corresponding patch type within a specified radius

(McGarigal and Marks 1995):
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The proximity metric could be modified to estimate the proximity of two different

patch types within a specified radius. The Mean Proximity Index (MPI) for patches

within a specified class measures the degree of isolation and fragmentation of the

corresponding patch type (perhaps a substitute for accessibility) but it is difficult to

interpret when patches occur in high density or span the entire landscape (Gustafson

1998).

One of the greatest challenges for of measuring sprawl patterns with landscape

metrics is the ability to differentiate the spatial patterns of patch dispersion. Using

simulated landscape patterns, it has been shown that even if pattern metrics provide

useful information on the size, shape and distance relationship on a landscape, none of

a selected list of pattern metrics including Contagion, MPI and fractal dimension is
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able to distinguish overall landscape pattern caused by a unique spatial distribution of

patches. Each of the measures presented here quantifies an important component of

the landscape that needs to be considered in monitoring sprawl.

These metrics offer much promise as practical tools for quantifying the spatial

heterogeneity of the urban landscape and help gauge the ecological effects of urban

sprawl. Their operationalization is relatively straightforward. Identifying and

quantifying patches of activity or use can be done with the parcel-level geographic

information system databases now available in many metropolitan areas. A cursory

approach would be to use spatial analysis techniques to rasterize a cityscape into a

tessellation of grid cells based on an attribute or attributes of the landscape. That

tessellation can then be filtered such that the cells that comprise it are generalized and

smoothed recursively, yielding aggregated patches of cohesive activity. A suite of

spatial analysis techniques are also available that will enable analysts to classify a

layer of a geographic information system by attribute and dissolve polygon

boundaries, leaving behind cohesive spatial units—patches—of activity. Several

software packages (e.g., Fragstats, Path Analyst and the Geographic Resource

Analysis Support System (GRASS)) are also available to evaluate these metrics on

large data sets.

2.7.  Accessibility

Sprawl impedes urban accessibility in two important ways. First, sprawl exhibits poor

residential accessibility because residents are often distanced from opportunities

(work, shopping, recreation). Second, sprawl can be characterized by poor destination

accessibility because opportunities are themselves spatially separated from other

opportunities (Ewing 1997). Examining the problem on a structural level reveals some

key factors that deprive suburban environments of accessibility. The scattered nature

of sprawl certainly contributes. Residents must navigate undeveloped tracts of land in

order to orient themselves in sprawled areas of the city. Motorists must traverse a

plurality of linearly configured commercial uses along radially scattered ribbon

developments (usually on crowded arterials) on their way from one establishment to

the next—the opposite of one-stop shopping (Ewing 1997). Retail ribbon sprawl is

perhaps unique as a singular instance of higher densities (albeit it in limited linear
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tracts) in sprawling areas; for the generic low-density residential landscape everything

is dispersed, making all trips longer. Looking at the issue of accessibility from the

perspective of a metropolitan area, it is also worth noting that sprawl, as a fringe

phenomenon, situates areas of the city at great distance from central cities, and

distances residents from the resources they offer (central transport stations and

cultural amenities, for example).

The traditional methods by which accessibility might be quantified derive from

transportation, economics, and regional science and may be summarized into three

broad groups: cumulative opportunities measures, gravity-based measures, and utility-

based measures (Handy and Niemeier 1997). Cumulative opportunities measures

generally count the number of opportunities that can be visited within a given travel

time. These measures therefore provide an indication of the volume of potential

destinations or activities available to trip-makers in a given area, rather than distance

to those opportunities (Handy and Niemeier 1997).

Gravity-based measures follow in the tradition of the spatial interaction model (see

Torrens (2000)). A spatial interaction model is generally employed to predict the size

and direction of spatial flows using independent variables that measure some

structural properties of the area in question. In the context of measuring accessibility

as an indicator of sprawl, the spatial pattern of trips could be calculated using

structural variables such as the distribution of workers’ homes, the distribution of

employment locations, and the costs—in monetary terms, or perhaps in units of

traveling time—of navigating the city.

Essentially, the gravity formula is conceptually based on ideas from Newtonian

physics. The gravity model scheme is not at all unlike the idea of satellites orbiting

around a central center of gravity, which influences the gravitational pull on each

satellite with a force proportional to the mass of bodies in the system. The gravity

accessibility calculation is premised on the idea that the accessibility (trip) between an

origin and a destination )( ijA  is the summation of several components: the capacity of

an origin to generate trips )( iW , the ability of activities at a destination to attract

those trips )( jW , the distance over which the trips must be traversed )( α
ijd , and some

weighting mechanism that discourages trips over long distances (the alpha term in the

distance calculation). To this formula, we can add a scaling parameter )(k  that
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normalizes the calculation to take account of the fact that )( iW  and )( jW  are not

expressed in units of flow (Thomas and Huggett 1980). Mathematically, this can be

expressed as:
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Utility-based measures of accessibility derive from spatial choice models and decision

theory. They have the advantage of being more behaviorally rooted than gravity

models. Broadly speaking, utility measures determine the utility of adopting one

decision from a set of available choices. In terms of accessibility, a utility measure

can be devised that weighs up the utility value of trip choices available within a given

distance from a location. We can use the utility value as a proxy for accessibility.

Areas of a city with large utility values for transportation may be considered to be

more accessible, in relative terms, than areas with comparatively low utility values.

The more accessible an area is, the greater the likelihood that the development is

compact and sustainable. As accessibility wavers, we may suggest that an area has

sprawled.

Mathematically, utility-based measures are commonly calculated as logit models. In

our case, accessibility may be calculated as the denominator of a multinomial logit

model such that:
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In the above equation, An is the accessibility measure for an individual (or perhaps a

household), n  and Cn  is the available choice set of opportunities that can be visited

for any given person, n . In a sprawled area, opportunities would be comparitively

less than in more compact urban areas. The term ( )Vn C  is the observable temporal and

spatial transportation components of the utility of choice C  for person n  (for
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example, travel time and distance) (Handy and Niemeier 1997). The logsum, ln∑ ,

indicates the desirability of the full choice set C . We can include variables that

represent the attributes of available transport choices in the city to expand the utility

calculation: the attractiveness of the destination, any barriers that might delay trips

(such as fragmented development), and the socioeconomic characteristics of the

individual or household making the trip (reflecting individual tastes and preferences).

Of course, utilities that cannot be expressed in distance or financial terms are

notoriously difficult to measure (see Torrens 2000).

Isochronic accessibility measures (also known as cumulative opportunities measures)

deal with accessibility in terms of the amount of time it takes to reach a given location

from any place within a city (see Lee and Goulias 1997; O'Sullivan 2000). They

perform the same functions, in terms of measuring sprawl, as our other measures: they

give us an idea of the relative dispersal of opportunities in a city. In this case,

however, impedence is measured in terms of time, rather than distance (in a Euclidean

or weighted sense). They answer questions of the form: given a time budget of X

hours, how far can I get in the city? They may be expressed, for example, in the

following form:

∑
=

=
0,1

1 5.0n

n
i

n

R
A  (xvii)

Where iA  is the isochronic accessibility of an origin zone i, nR  is the number of

destinations that can be reached within the nth annulus (i.e., in this example, between

0.5n km and 0.5*(n–1 km) from the origin zone i), and 0.5n represents a 5 km

opportunity.

As with most of the sprawl measurements that we have seen, there are a number of

considerations that must be borne in mind before these measures can be put to use in

quantifying levels of sprawl. Handy and Niemeier (1997) review a number of

specification considerations for measuring accessibility, including the level of

aggregation used in measuring accessibility (zonal aggregation, socioeconomic

aggregation, and trip purpose aggregation), the definition of origins and destinations,

measurement of travel impedance, and the attractiveness of opportunities. Several
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limits are also proposed in calibrating these accessibility measures: the choice of a

cut-off point or value for travel distance or time, representation of the travel

impedance function, and whether to use revealed (actual) or preferred (ideal) behavior

in calibrating utility-based measures.

However, these measures do show a great deal of promise in calculating the relative

accessibility of destinations for different areas of the city. In this way, the relative

level of residential accessibility (as defined by Ewing) might be measured. Equally,

the level of accessibility between homes could be calculated by any of the above

measures, serving as an indicator of destination accessibility. Both of these

characteristics can give us an empirical idea of the relative degree of compactness and

sprawl in a city, with inferences to scatter, spatial structure, and density of activity.

3. Issues of concern

We have discussed several potential measurements for quantifying suburban sprawl.

Each of these measurements has advantages for capturing unique characteristics of

sprawl (or even several such characteristics): density, scatter, the built environment,

ecology, and accessibility. However, there are a number of important concerns that

must be considered in applying these metrics to the evaluation of sprawl, including

data availability, dynamics, pattern and process, scale, and agency.

3.1.  Data

A lot of the tools that we have discussed so far are incredibly data-hungry. Some

require quite detailed data, often at the scale of the building parcel; others require

multi-spectral remotely sensed data sets. Many of these data sets (particularly parcel-

level information) may simply be unavailable for a particular study area, and others

(remotely sensed imagery) may be difficult to obtain without enduring great expense.

This is a concern of many forms of spatial analysis and geographic research and is not

limited to the study of sprawl. There is no fixed solution to the problem, save to offer

a broad range of tools—as we have tried to do in this paper—with which to tackle a

problem and hope that data concerns can be accommodated.
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3.2.  Sprawl as a dynamic phenomenon

It is notable that sprawl is commonly treated as a static phenomenon. This is a

misconception; sprawling areas of the city are at the forefront of dynamic urban

growth. By misinterpreting sprawl as static, planners and policy-makers risk making

incorrect judgements, and researchers are neglecting elementary components of the

problem. It is important that measures of sprawl recognize and treat the phenomenon

as a dynamic.

“The sprawl of the 1950s is frequently the greatly admired compact

urban area of the early 1960’s. An important question on sprawl

maybe, “How long is required for compaction?” as opposed to whether

or not compaction occurs at all…The concept of time span is important

in the identification and measurement of sprawl. The application of

static measures to dynamic areas can easily result in the

misidentification of an area as sprawl when it is really a viable,

expanding, compacting portion of the city” (Harvey and Clark 1965,

p.6).

Part of the problem is that many of the measurements we have proposed are

themselves static—they capture properties of sprawl in a snapshot of time. In order to

examine sprawl in a truly dynamic fashion it may be necessary to employ a simulation

model. These metrics could still be used, to calibrate the model against observed

conditions in the real world. The essential dynamics of the problem would be captured

in the simulation though. With this in mind, there are a number of approaches that

might be followed.

Focusing on the urban fringe we could model land transformation as the result of

dynamic interactions between socio-economic and biophysical processes. Drawing

again on the ecological literature one could employ plant dispersal and competition

models or transition probability models to represent the dynamic of sprawl. Waddell

and Alberti (2000) have recently developed a high-resolution urban development and

land cover change model for the Puget Sound region that explicitly represents human

behavior and biophysical processes. The hybrid model structure represents the
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dynamics inherent in land use and land cover change by combining a microsimulation

of actor choices (location, housing, travel, production consumption and land

development) and a Monte Carlo simulation of the land cover change on a 30 meter

grid cell structure (Waddell and Alberti 2000). This represents one possible approach

to capturing the dynamics of the sprawl problem.

The challenge in modeling sprawl dynamics stems from the fact that metropolitan

areas exhibit some fundamental features of complex and self-organizing systems.

Cellular automata (CA) models have been used successfully to simulate a wide range

of environmental systems including fire spread and forest dynamic (Green 1989,

1994) as well as urban systems simulation (White 1998; O'Sullivan and Torrens

2000). Additionally, more recent development of multi-agent systems (Minar,

Burkhart, Langton et al. 1996; Batty, Jiang and Thurstain-Goodwin 1998; Terna 1998;

Batty 1999; Batty and Jiang 1999; Schelhorn, O'Sullivan, Haklay et al. 1999) and

agent-based CA (Portugali, Benenson and Omer 1997; Portugali 2000) provide a

useful framework for modeling the aggregate effects that results from numerous

locally made decisions of many intelligent and adaptive agents in an interactive and

dynamically adaptive environment.

3.3.  Pattern versus process

The issue of using static measurements to quantify a dynamic phenomenon is

essentially one of pattern versus process. Many of the measurements that we have

seen thus far seek to capture some qualities that are intrinsic in the patterns that

sprawl generates. This is wholly appropriate in many instances, as sprawl is in many

senses a pattern-based phenomenon. However, it does neglect many of the processes

that drive sprawl. To really understand how sprawl works—to better inform policies

to mitigate its negative effects—it is necessary to look at both pattern and process in

an interactive (and dynamic) fashion. Again, modeling is one way in which this might

be achieved. Also, CA and agent-based models offer much promise in allowing both

form and function to be represented and studied in a closely-coupled and adaptive

manner.
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3.4.  Scale-dependency and sensitivity

Perhaps the choice of measurement scale is one of the most critical issues in defining

appropriate indices for measuring sprawl. The choice ultimately depends upon the

relevant scale at which the hypothesized socio-economic and biophysical processes

that drive or are affected by sprawl operate. However the sensitivity of spatial metrics

to scale should be considered before applying any spatial statistics. None of the

metrics that we have discussed here (save perhaps fractal dimension) are scale-

independent. There is a vast literature that examines the effect of scale both in terms

of resolution and geographic extent on pattern analysis (Turner 1990). Most landscape

metrics are scale dependent and are relevant to processes operating only at specific

spatial scales (O'Neill 1988). Since almost all the metrics proposed here to measure

sprawl are affected by scale an exploratory pattern analysis of the landscape would be

critical to detect the range of scales over which spatial metrics are relatively

insensitive to pixel size or spatial extent. Within the range detected the metrics value

will then depend on the actual pattern and provide a useful measure for comparison

across landscapes and scales. Rather than allowing scale-sensitivity to foreshadow

any attempt to measure sprawl, this is simply a matter of learning to live with the

inadequacies of the tools and being aware of their limitations.

3.5.  Weaving agency into the equation

The tools that we describe in this paper largely shy away from one very important

component of the sprawl problem: the human component. After all, sprawl is about

people! We have described some tools that may help to achieve this: population

density measurements that examine the distribution of people around the urban

environment and measures of the built environment in which people live, work, and

play. Nevertheless, these measurements remain a few steps removed from the actual

agency of the sprawl problem. Weaving agency into the measurement of sprawl is a

difficult problem. Again, the solution is most likely to come through simulation:

through the interactive engagement of users with the model and the introduction of

their input and ideas into the simulation. Also, emerging ideas in simulation—

particularly developments with multi-agent simulations—allow for the explicit

representation of agents in the model. There are some barriers to the development of
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these models, however, both conceptual and technical. Importantly, it is unsure how

best to represent institutions such as planning regimes, businesses, and the

government in multi-agent systems. The agent-based simulation approach is

notoriously biased towards individualism (O'Sullivan and Haklay 2000). Equally, the

question of designing agents that fulfill multiple roles—head of household, employee,

neighborhood activist—is a tricky one. Nevertheless, the potential for exploring the

causes and manifestations of sprawl with these simulations is rich.

4. Conclusions

We have reviewed several techniques for evaluating suburban sprawl in an empirical

manner. Sprawl is a multifaceted problem with several related characteristics that we

can attempt to measure: density, scatter, the built environment, and accessibility. We

have proposed a set of metrics for quantifying these attributes, including density

gradients, surface-based approaches, geometrical techniques, fractal dimension,

architectural and photogrammetric techniques, measurements of landscape

composition and spatial configuration, and accessibility calculations.

Each of these techniques captures an essential component of the sprawl problem, and

some can be used quite widely to measure multiple characteristics. Nevertheless, each

suffers from a common set of limitations, notably data concerns, a lack of dynamism,

an emphasis on pattern at the expense of process, a dependency on scale, and a weak

treatment of agency. Perhaps the best way to mediate these limitations is to weave the

metrics—in a validatory sense—into dynamic and interactive simulation

environments for exploring sprawl. This is the focus of ongoing research work by the

authors, but an essential first step will be to operationalize the metrics discussed in

this paper in a real world context so that their applicability to the study of sprawl can

be assessed in practice.
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