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Abstract

Here the ab-initio R-Matrix method has been used to carry out electron-molecule col-

lision calculations on the the molecules of interstellar interest C3N, C2H & CN, and

molecules found in industrial plasma applications SiBr, SiBr2 and NaI. These were car-

ried out using the UK Molecular R-Matrix codes, along with the Quantemol expert

system for running these codes. Calculations have also been carried out on electron col-

lisions with atomic oxygen using these codes, with details included about the problems

faced in running an atomic calculation with the molecular codes.

Calculations on each species include comparison of different models, including static-

exchange and close-coupling models (with different size CAS tried), various basis sets,

and for some species different initial orbitals. These different initial orbitals were either

taken from the codes themselves (for SCF orbitals), or the quantum chemistry program

MOLPRO (for natural orbitals), for the latter numerous state averaged orbitals were

tried with different weightings in order to produce good target energies for carrying into

the scattering calculation.

Results for all calculations include scattering observables such as eigenphase sums,

elastic and excitation cross-sections, bound anionic states and resonance positions and

widths.

Also a new theory has been developed for calculating rotational cross-sections which

includes the spin angular momentum of the incoming scattering electron, this has been

implemented into the already existing code ROTLIN, which can calculate rotational

cross-sections using the scattering data from an R-Matrix calculation.
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Chapter 1
Electron-Molecule Scattering and its

Applications

1.1 Overview

The electron, first identified in 1897 by J. J. Thompson, plays a fundamental role in

all the chemistry that occurs in the universe around us. Not only when bound to a

parent atom or molecule, but also when existing as a free subatomic particle. One

such type environment in which free electrons can be found are plasmas, these can be

described as a state of matter in which a certain proportion of the particles are ionized.

In other words this means a plasma is a ‘soup’ of positive and negatively charged particles

(in this case, positively charged atoms and molecules, and the negatively charged free

electrons). Plasmas can occur both naturally and artificially. To understand the nature

of the plasma it is crucial to learn how the various particles can interact with each other.

However free electrons can also exist in other environments too, and their interactions

are not limited to collisions between negatively & positively charged particles. Indeed

electron collisions with neutral molecules drive a number of significant processes, both

natural and artificial, from the etching of silicon chips (Kimura et al., 2001), where the

the ‘soup’ of ions and radicals can strip material, to causing natural phenomena such

as the Northern and Southern lights, the aurora, where the interaction of electrons and

molecules releases the energy we see (Meier, 1991). Electron molecule collisions also play

key roles in the chemistry of planetary atmospheres (Broadfoot et al., 1979, 1981), an

example being that of Saturn’s moon Titan (Vuitton et al., 2009).
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1.2 Low-Energy Processes

At low energies, defined in this case as all incident electron energies below a molecule’s

ionisation threshold, the following processes are especially important:

1. Elastic scattering

AB + e− → AB + e−. (1.1)

2. Inelastic scattering

• Rotational excitation:

AB(j) + e− → AB(j′) + e−. (1.2)

• Vibrational excitation:

AB(ν) + e− → AB(ν ′) + e−. (1.3)

• Electronic excitation:

AB + e− → AB∗ + e−. (1.4)

3. Fragmentation

• Dissociative Electron Attachment (DEA):

AB + e− → A− +B. (1.5)

• Dissociative recombination:

AB+ + e− → A+B. (1.6)

• Electron-impact dissociation

AB + e− → A+B + e−. (1.7)

At intermediate and higher energies electron-impact ionisation takes place:

AB + e− → AB+ + 2e−. (1.8)
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1.3 Industrial Plasmas

Let us consider in further detail the nature of an artificial plasma, these feature predom-

inantly in the semiconductor industry, as they can be used in a variety of different ways.

Plasma reactors can be used to either strip or deposit material onto surfaces, whether

this be etching particular shapes onto silicon wafers by stripping surface layers, cleaning

the inside of the reactor chamber by stripping away unwanted material from the walls,

or depositing layers of material onto wafers to build ‘MEMS’ (microelectromechanical

systems). Precise deposition of material is also crucial for the production of efficient solar

cells. As the world becomes more and more driven by electronic items and computers,

the semiconductor industry grows and grows, placing more and more emphasis on using

the most efficient and cost-effective tools and processes. In order to do this it is crucial

to understand in detail the precise interactions between species that occur within the

plasma chamber. In order to create the charged species within the plasma (which drive

these processes) neutral atoms and molecules must be stripped of electrons by applying

current. As this happens one may consider how many collisions can occur between these

free electrons and the remaining neutral atoms and molecules, these can drive further

ionisation and are the fundamental processes which occur in the plasma discharge. Be-

cause of this it is important to know the precise way in which electrons can interact with

neutral species, both in terms of collision energetics and reaction rate data. This is a

key requirement for the progression of industrial plasma technology (Chistophorou and

Olthoff, 2004). However there is still relatively little known about such processes, this is

predominantly due to the lack of experimental data for the wealth of interactions that

can exist in various industrial plasmas. One reason for this is simply that some species

cannot be re-created in a controlled lab setup for electron-scattering experiments, where

the species may not be stable enough to exist in any circumstance other than the plasma

itself. This places the onus onto theoretical calculations for the relevant data.

1.4 The Importance of Electron-Molecule Collisions in the

Interstellar Medium

In environments such as planetary nebulae, free electrons can interact with the atoms and

molecules of the gas clouds that exist here. Electron-molecule collisions are important in

the interstellar medium as the excitation rates caused by electron-molecule interactions
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1.4 The Importance of Electron-Molecule Collisions in the Interstellar
Medium

dominate over excitations due to neutral-neutral collisions. This becomes important

when the electron-neutral ratio is over ∼ 10−5. In this thesis I concentrate on electron

collisions with neutral, carbon-based molecules in the interstellar medium, as a precursor

to forming the molecular anions observed.

The first anion detected in space was C6H
− by McCarthy et al. (2006). Since then

C4H
− (Gupta et al., 2007), C8H

− (Brunken et al., 2007), C3N
− (Thaddeus et al., 2008)

and C5N
− (Cernicharo et al., 2008) have also all been detected. CN−, C3N

− or C4H
−,

and C5N
− have also recently been identified in the atmosphere of Titan (Vuitton et al.,

2009). CN− has also been detected in the interstellar medium (ISM) (Agundez et al.,

2010). These anions are all linear multiply-bonded carbon chains with closed shell. The

prevailing opinion is that these anions are formed by radiative attachment of an electron

to the neutral molecule with the same chemical formula (Millar et al., 2007). These

neutral precursors are all linear multiply-bonded carbon chains with significant dipole

moments which are known to exist in the interstellar medium. The corresponding anions

are closed shell molecules whose extra electron is bound by several eV.

Herbst and co-workers (Petrie and Herbst, 1997; Terzieva and Herbst, 2000; Herbst

and Osamura, 2008) developed and applied a model for calculating radiative association

rates for these CnH
− and Cn+1N

− (n even) species. This model is based on the formation

of low-lying resonances in electron collisions and fairly simple phase-space arguments.

Studies suggest that although this model gives anion formation rates of approximately

the right magnitude, the rates it provides cannot actually reproduce the observations

Harada and Herbst (2008).

Although there have been a number of electronic structure studies of these anions (see

for example Woon (1995), Natterer and Koch (1995), Botschwina and Oswald (2008),

Fortenberry et al. (2010)), there appears to have been no previous study of their contin-

uum states. We have therefore performed a series of studies of electron collisions with

both CnH and Cn+1N (n even) targets. Initially this work focussed on electron collisions

with C4H and C3N as the first member of each series for which the associated anion

had been observed in the interstellar medium. However we found it difficult to establish

definitive properties for the ground state of C4H, a problem that is well-documented

(Fortenberry et al., 2010). Here we report electron collision calculations which focus on

CN, C2H and C3N as we consider the results of these calculations to be more reliable.

It is also worth noting the necessity for theoretical electron-collision studies on these
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species. All of the neutral precursors are open-shell, having a single unpaired electron in

their outermost orbital. These radicals are highly reactive and thus have a very limited

lifespan in lab environments if being created for experiments. This makes obtaining

experimental electron-collision data with these species extremely difficult.

1.5 Aims of this Thesis

1. To create accurate models of the neutral target species CN, C3N, C2H, NaI, O,

SIBr & SiBr2, with attention paid to accurately determining ground state energies

and dipole moments, and vertical excitation energies. This shall be carried out

using Hartree-Fock and configuration interaction methods with a variety of basis

sets in order to meet experimental values (if they exist).

2. Using the ab initio R-matrix method to carry out both static-exchange and close-

coupling scattering calculations on the neutral species above. From these will be

obtained the scattering R-, K- and T-matrices and scattering observables (e.g.

eigenphase sums and resonance data) and cross-sections (e.g. elastic, inelastic,

ionisation).

3. Using the scattering T-matrices for CN, calculate the spin-coupled rotational cross-

sections using the newly written program ROTLIN S.

4. Consider the role of electron-induced chemistry in both astrophysical (Lovell et al.,

2004) and industrial (Kimura et al., 2001) plasmas, considering the implications

of the found results in existing models.

There are also other, non-result orientated goals for this thesis:

• To explain a new method for calculating spin-coupled rotational cross-sections,

followed by an explanation of its computational implementation. This includes

test cases for the code and example results for CN.

• To provide an explanation for using the UK molecular R-matrix codes in order to

carry out electron-atom scattering. This includes a step-by-step methodology with

potential problems identified and explained.
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1.6 Layout of the Thesis

Chapter 2 outlines the basic principles of electron molecule scattering theory, including

discussion of the various quantum chemistry methods which can be used to approximate

the wavefunction of the target. Other theoretical pre-requisites are also explained here.

Chapter 3 discusses the R-matrix method for calculating electron-scattering data.

Here the method is divided into two sections to explain how the method is applied to

both the inner region (where the scattering target is contained) and the asymptotic

outer region. It is then shown how scattering quantities (e.g. T-matrices) are obtained

and from these the scattering observables can be determined. Then an introduction to

the UK molecular R-matrix code package is given, discussing the history, structure and

usage of the codes in order to carry out a full calculation. The work in this thesis also led

to two new contributions being made to the R-matrix suite of codes, these are explained

here.

In order to make the suite of codes easier to use for the non-expert, the Quantemol-N

software was created. This was done in order to simplify and streamline using the codes,

as to manually run the codes through a full calculation is very difficult for someone

inexperienced. This can lead to small mistakes being made in the calculation input

which propagate through to give erroneous final data. In the final part of this chapter

this streamlining of the codes is explained and the usage of Quantemol-N in this thesis

is outlined.

Chapter 4 presents the newly-developed theory for calculating spin-rotational cross-

sections. Starting with an introduction to the need for this data and the previous work

in the field, the starting point for this new theory is then explained by describing the

existing theory. This is then developed to include the spin-coupling before the infinite

order sudden approximation is applied to simplify the calculation. Finally a description

of the computational implementation of this theory is given, along with test results for

CN.

Chapters 5–10 present the results of the electron-scattering investigations undertaken

over the duration of this research. All work was carried out using the R-matrix method

and experimental comparisons have been given where available.

Chapter 5 is the results of the investigation into e-CN scattering, where a number

of scattering models and bond lengths have been analysed. Spin-coupled rotational

cross-sections have also been calculated for the first few rotational levels.
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Chapters 6 & 7 present the results for the e-C3N and e-C2H calculations respectively,

using a variety of scattering models. In these chapters emphasis is placed on investigating

low-lying resonances and bound states as potential routes for radiative attachment to

the neutral targets for anion formation.

Chapter 8 describes the theoretical calculation of the 3P–3P excitation cross-section

of atomic oxygen. This chapter is the first know ‘true’ usage of the UK molecular R-

matrix codes when applied to e-atom scattering. It contains the full methodology for

using the codes for an atom, including potential problems and pitfalls associated with

this unique usage of the codes.

Chapters 9 & 10 present electron-scattering investigations into species of industrial

plasma interest, NaI, SiBr & SiBr2. Here full sets of results and cross-section data are

presented for each for the close-coupling scattering model (NaI) and both the static-

exchange and close-coupling scattering models (SiBr & SiBr2). All calculations in these

two chapters were carried out solely using Quantemol-N.

The thesis is concluded with a brief summary of the findings of each chapter and their

potential implications in future plasma modelling (both astrophysical and industrial).

Where applicable criticisms of the work and suggestions for future investigations have

been given.
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Chapter 2
Background Theory

2.1 Electron-Molecule Scattering Theory

When considering the low-energy scattering interaction between and atom and an elec-

tron there are three possible outcomes:

1. elastic scattering

e− +A→ e− +A, (2.1)

2. inelastic scattering

e− +A→ e− +A∗, (2.2)

3. electron-impact ionisation

e− +A→ 2e− +A+. (2.3)

However electron-molecule scattering events have many more outgoing channels as

the molecule can undergo nuclear excitation (both rotational and vibrational) at very

low energies. Also fragmentation channels can open leading to dissociation. Some ex-

amples of electron-molecule scattering outcomes are (in approximate order of increasing

scattering electron impact energy):

1. elastic scattering

e− +AB → e− +AB, (2.4)

2. rotational excitation

e− +AB(j
′′

)→ e− +AB(j
′

), (2.5)

where j is the rotational state of the target.
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2.1 Electron-Molecule Scattering Theory

3. vibrational excitation

e− +AB(v
′′

= 0)→ e− +AB(v
′

), (2.6)

where v is the vibrational state of the target

4. electronic excitation

e− +AB → e− +AB∗, (2.7)

5. dissociation

e− +AB → e− +A+B, (2.8)

6. dissociative electron attachment

e− +AB → A− +B. (2.9)

All of these events can occur at low scattering energies, thus low energy electron scat-

tering can be a complex process with many subtle effects and possible outcomes.

As for all multiple-body interactions described using quantum mechanics, the scat-

tering interaction can be described using the Schrödinger equation. However it is well

established that for even the simplest three-body system no analytical solution can be

calculated, and thus numerical methods must be implemented.

Various models are routinely used for the numerical treatment of low energy electron-

molecule scattering. Some are basic and allow for rough but solid approximations, whilst

others are more detailed and computationally intensive, but allow for excellent results

to be obtained. In this work we have used the following models:

1. Static exchange (SE): In this model the target wave function is not allowed to

relax (or polarize) in response to the incoming electron. However exchange effects

between the target electrons and the projectile electron are included. In this ap-

proximation only a single wavefunction is used to describe the target, and this

is usually a Hartee-Fock wavefunction (see section 2.3.1 for more information on

HF). Because the target is ‘fixed’ in place and the electrons cannot move from their

initial orbitals, the SE method cannot treat electronic impact excitation. Conse-

quently it cannot be used to model Feshbach resonances as these are associated

with this process. Shape resonances can be found using SE but their energy is

usually too high as the polarization effects missing from this method usually act to
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2.1 Electron-Molecule Scattering Theory

lower the resonance position (see section 3.3.2 for more information on resonances).

Polarization effects can be included to create the static exchange plus polarization

(SEP) method. However this model was not used in this work.

2. Close-coupling (CC): Within the CC method the target wavefunction includes sev-

eral target states rather than a single state. This means the target is no longer

‘fixed’ as in SE and excitations of the target electrons can be included by ensuring

the target wavefunction expansion contains several electronic states. This method

is more computationally intensive than SE or SEP but in principle allows for a

complete treatment of the low-energy scattering problem, including electronic ex-

citations and detecting Feshbach resonances. It also introduces some complications

that arise from having more than a single Hartree-Fock target state. For instance

all states included in the target wavefunction expansion must be described using

the same orbital set, of which there is no best choice. A common limit on the num-

ber of target states used in the expansion is to retain all those up to the ionization

energy of the target, this is required as theoretically there is an infinite number

of target states which could be included, but this method cannot have an infinite

number of states. This limits the use of the CC method to describe scattering

events below the ionization threshold of the target molecule. The expansion of the

target wavefunction is given in terms of a complete set of unperturbed eigenstates

of the isolated molecule ψi (Lane, 1980a):

Ψε = Â
∑

i

Fi(rN+1)ψi, (2.10)

where Â is the antisymmetrisation operator and rN+1 is the position vector of

the scattering electron. The summation in equation (2.10) could also theoretically

include the continuum states of the target molecule. Fi(rN+1) is the one-electron

scattering function, which satisfies this set of coupled equations:

[

∇2
N+1 + k2n

]

Fi(rN+1) =
∑

j

[Vij +Wij ]Fj(rN+1), (2.11)

where kn is the linear momentum of the channel and ∇2
N+1 is the Laplacian opera-

tor for the scattering electron. The Fi(rN+1) corresponding to a target state i will

depend on the initial target state specified by the asymptotic boundary conditions

lim
r→∞

Ψε ∼ Ψinc +Ψscat, (2.12)
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2.1 Electron-Molecule Scattering Theory

with an incident wavefunction described by an initial target state ψ0 and wave

vector k0

Ψinc = ei〈k0,r〉ψ0, (2.13)

and a scattering wavefunction described by

Ψscat =
1

r

∑

j

eikj ·rfj0(kj ,k0)ψj . (2.14)

fj0(kj ,k0) is the scattering amplitude for a transition 0 → j. Vij is the electron-

molecule scattering potential and Wij is the exchange matrix. Using the R-matrix

method in the outer region, the exchange is considered negligible so the antisym-

metrisation operator Â is omitted and (from chapter 3) Wij = 0.

Equation (2.11) can be reduced to a set of coupled second order ordinary differential

equations by expanding Fi(rN+1) using spherical harmonics Y m
l (θ, φ).

3. Born dipole approximation for high energies: When the dipole moment of a scat-

tering target is large its long range dipole potential becomes significant and the

Born approximation can be applied (e.g. Chu and Dalgarno (1974a)).

This approximation calculates the total cross-section of the scattering event in

which the number of partial waves required to converge to an answer is very large

(this can occur when there is a long range dipole potential).

In this work a Born correction is applied to the total cross-sections calculated,

this acts to correct for all partial waves l above the threshold l0, where the par-

tial waves below this limit are treated using another scattering theory which is

more appropriate for modelling the short-range interactions (our pre-Born cor-

rected cross-sections). This correction is obtained by calculating both a total Born

cross-section for all partial waves and a another containing only the waves l ≤ l0,

the difference between the two being the Born correction for waves above l0 (Nor-

cross and Padial, 1982):

δσ(E) = σB(E)− σB,l≤l0(E), (2.15)

for an energy E, this is then added to the data from the other scattering theory

(in this work the Born correction was applied to the cross-sections we obtained by

using the CC method).
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2.2 Born-Oppenheimer Approximation

We applied the Born approximation and correction to the total cross-sections of

SiBr & SiBr2 in chapter 10, to both the total and the electronic excitation cross-

sections of CN (chapter 5), C3N (chapter 6) & C2H (chapter 7), and finally to both

the total cross-sections and the scaled BE excitation cross-sections for NaI (chap-

ter 9), in all of these calculations a value of 4 for l0 was used. These corrections

were calculated using the computer program BORNCROSS (Baluja et al., 2001),

which is regularly used as part of molecular R-matrix calculations.

2.2 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is the scheme in which the motions of electrons

and nuclei in the same molecule can be separated. This approximation is valid as the

electron is so much lighter than a nucleon (and so moves much faster), thus the electrons

are seen to instantaneously ‘relax’ to any movement of the nuclei. Mathematically one

can separate the electronic and nuclear parts of the molecular wavefunction, enabling

the electronic part to be considered separately at each position of the nuclei. By starting

with the non-relativistic Hamiltonian for a molecule of Nn nuclei and Ne electrons (in

atomic units):

Ĥt = −
∑

A=1

1

2MA
∇2

A−
∑

i=1

1

2
∇2

i −
∑

A,i

ZA

|ri −RA|
+
∑

A>B

ZAZB

|RA −RB|
+
∑

i>j

1

|ri − rj |
. (2.16)

Because the electrons move so much faster than the nuclei, it is assumed that they move

in the Coulomb field of the nuclei. Within this approximation the first term (nuclear

kinetic energy) in (2.16) may be removed and the nuclear repulsion term is simply a

constant which does not effect the eigenkets associated with this equation, as constant

operators only effect the resulting eigenvalue as opposed to changing the eigenket itself.

After implementing these changes to (2.16) we are left with the electronic Hamiltonian

Ĥe describing the motion of Ne electrons in the Coulomb field of Nn nuclei:

Ĥe = −
∑

i=1

1

2
∇2

i −
∑

A,i

ZA

|ri −RA|
+
∑

A>B

ZAZB

|RA −RB|
+
∑

i>j

1

|ri − rj |
. (2.17)

So from the standard Schrödinger equation used to obtain the energy of the system:

Ĥψ = Eψ. (2.18)

The Schrödinger equation for the electronic motion is then

Ĥeψe({ri}Ne

i=1; {RA}Nn

A=1) = Ee({RA}Nn

A=1)ψe({ri}Ne

i=1; {RA}Nn

A=1). (2.19)
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2.2 Born-Oppenheimer Approximation

The solutions of which depend explicitly on {ri}Ne

i=1 and parametrically on {RA}Nn

A=1, the

nuclear co-ordinates. So for each set of nuclear coordinates there will be a set of solutions

and energy eigenvalues Ee({RA}Nn

A=1). This equation is initially solved excluding the

nuclear repulsion term to give the electronic energy eigenvalue εe({RA}Nn

A=1), this is then

modified by adding the nuclear repulsion to it to obtain the Hamiltonian eigenvalue Ee,

Ee({RA}Nn

A=1) = εe({RA}Nn

A=1) +
∑

A>B

ZAZB

|RA −RB|
. (2.20)

We now have a complete description of the electronic part of the molecular system.

In order to do the same for the nuclear motion we make the same assumptions as

before: As the electrons relax ‘instantly’ to any nuclear movement, the nuclei see the

electrons smeared out into an average. Thus the electronic co-ordinates of equation (2.16)

can be replaced by their averaged values, averaged over the electronic wavefunctions.

Thus the nuclear motion Hamiltonian, which averages the electronic motion, is defined

as:

Ĥn = −
∑

A=1

1

2MA
∇2

A +

〈

−
∑

i=1

1

2
∇2

i −
∑

A,i

ZA

|ri −RA|
+
∑

i>j

1

|ri − rj |

〉

+
∑

A>B

ZAZB

|RA −RB|
(2.21)

= −
∑

A=1

1

2MA
∇2

A + εe({RA}Nn

A=1) +
∑

A>B

ZAZB

|RA −RB|
(2.22)

= −
∑

A=1

1

2MA
∇2

A + Ee({RA}Nn

A=1), (2.23)

where Ee({RA}Nn

A=1) is the molecule’s potential energy surface (PES) and provides a

potential which determines the nuclear motion. This means in the BO approximation

the PES can only be found once the electronic problem has been solved. The nuclear

Schrödinger equation

ĤnΦn({RA}Nn

A=1) = εnΦn({RA}Nn

A=1). (2.24)

has solutions which describe the movement of the nuclei along the PES, thus giving

information on the vibration, rotation and translation of a molecule, where εn is the

Born-Oppenheimer approximation to the total energy, including the electron, vibra-

tional, rotational and translation energies. The total wavefunction solution of equation

(2.16) is then

Φ({ri}Ne

i=1; {RA}Nn

A=1) = ψe({ri}Ne

i=1; {RA}Nn

A=1)Φn({RA}Nn

A=1). (2.25)
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2.3 Molecular Orbitals

2.3.1 Hartree-Fock Approximation

The Hartree-Fock method is an approximation used for determining the ground state

wavefunction of a quantum system.

One can equate Hartree-Fock theory to single (Slater) determinant theory (Szabo

and Ostlund, 1996). By applying the variational principle a set of spin-orbitals χa can

be formed such that the single determinant formed from these:

|Ψ0〉 = |χ1χ2 . . . χaχb . . . χNe〉, (2.26)

is an approximation of the ground state of an Ne-electron system described by an elec-

tronic Hamiltonian, determining both the ground state wavefunction and energy. From

the variational principle, the best spin-orbital set is that which minimises the electronic

energy functional

E0(Ψ0) = 〈Ψ0|Ĥelec|Ψ0〉 =
∑

a

〈a|ĥ|a〉+ 1

2

∑

ab

〈aa|bb〉 − 〈ab|ba〉, (2.27)

where

〈ij|kl〉 =
∫

dτ1dτ2χ
∗
i (x1)χj(x1)r

−1
12 χ

∗
k(x2)χl(x2), (2.28)

and the one-particle Hamiltonian is

ĥ(1) = −1

2
∇2

1 −
∑

A

ZA

r1A
, (2.29)

with the constraint that the spin-orbitals be orthogonal:

〈χi|χj〉 = δij . (2.30)

The spin-orbitals are then varied until E0 is minimised. The equation for obtaining the

best possible spin-orbitals set is the Hartree-Fock eigenvalue equation:



ĥ(1) +
∑

b 6=a

Jb(1)−
∑

b 6=a

Kb(1)



χa(1) = εaχa(1) (2.31)

and where the exchange and Coulomb operator are defined using

Kb(1)χa(1) =

[∫

dτ2χb(2)
∗ 1

r12
χa(2)

]

χb(1), (2.32)

Jb(1)χa(1) =

[∫

dτ2χb(2)
∗ 1

r12
χb(2)

]

χa(1). (2.33)
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2.3 Molecular Orbitals

respectively. From the restricted summation, the operator in the square brackets is

different for every spin-orbital χa. However, if one lets b = a it is clear, from equations

(2.32) and (2.33), that [Jb(1)−Kb(1)]χa(1) = 0 and therefore it is quite possible to add

this term to equation (2.31) with no major effect on the spin-orbitals. Now, we define a

Fock operator f̂

f̂(1) = ĥ(1) +
∑

b

Jb(1)−Kb(1). (2.34)

The Hartree-Fock equation is simplified to

f̂ |χa〉 = εa|χa〉. (2.35)

This method is normally computed using a self-consistent algorithm, iteratively cy-

cling through the variational optimization of spin-orbitals until the value of the ground

state energy has converged to a suitably defined accuracy.

To do this the Hartree-Fock method makes some simplification to the complete prob-

lem:

1. Born-Oppenheimer approximation is assumed, thus only the coordinates of the

electrons are included in the wavefunction.

2. Relativistic effects are neglected and the momentum operator used is entirely non-

relativistic.

3. The variational solution is assumed to be a linear combination of basis functions,

normally orthogonal, this finite basis is assumed to approximately be complete.

4. Each energy eigenfunction can be described by a single Slater determinant (which

is the antisymmetrical product of the one electron orbitals in the system).

5. A mean field approximation is implied, whereby all the individual effects of each

electron upon a single electron is replaced by an average field effect.

6. One consequence from this assumption is that electron correlation is taken into

account for same-spin pairs of electrons, however it is omitted for pairs of different

spins.

A full derivation of the Hartree-Fock (HF) equations is presented in Szabo and

Ostlund (1996).
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2.3 Molecular Orbitals

2.3.2 Basis Sets

Spin-orbitals describing the electrons contain both a spatial and spin component:

χi(x) =







ψi(r)|α〉,
ψi(r)|β〉.

(2.36)

By eliminating spin, the calculation of the molecular orbitals is equivalent to solving the

f̂(ri)ψi(ri) = εiψi(ri) (2.37)

eigenvalue equation (Szabo and Ostlund, 1996). By introducing a known spatial ba-

sis set (Roothan, 1951) the equations (2.37) may be transformed to a set of algebraic

equations which may be solved by techniques of linear algebra.

In solving for the spatial part of the spin-orbitals one expands the molecular orbitals

as a linear combination of known (atomic) ones:

ψi =
∑

j=1

Cijφj . (2.38)

These atomic orbitals, {φi}Bi=1, are traditionally described using one of two ways:

1. Slater-type orbitals (STOs) (Slater, 1960)

φsnlm =

√

(2ζ)2n+1

(2n)!
rn−1α e−ζrαY m

l (θα, φα), (2.39)

with ζ a constant.

2. Gaussian-type orbitals (GTOs) (Boys, 1950)

φgnlm = Nrn−1α e−ζr
2
αY m

l (θα, φα), (2.40)

where rα is the distance of the electron from a nuclear centre α, ζ is again a

constant and N is a normalisation constant.

Slater-type orbitals are capable of describing the best possible representation of the

molecular orbitals ψi with the least number of terms required in the expansion (2.38).

However Gaussian-type orbitals have the advantage that two-electron integrals can be

evaluated very fast and very accurately due to the way in which Gaussian functions can

combine to form another Gaussian, this means the computation of the spin-orbitals is
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2.3 Molecular Orbitals

much more efficient with this method. One can combine the advantages of both types

of orbital to form contracted Gaussian functions. These have the form

φcgi (rα) =
L
∑

p=1

dpigp(αpi, rp), (2.41)

where αpi and dpi are the contraction exponents and coefficients and L is the length

of the contraction. Integrals involving these reduce to sums of integrals involving the

primitive Gaussians gp, where these are described by (2.40). Although there may be

many primitive integrals to be evaluated for each basis function, the basis function

integrals will be rapidly calculated provided the method of computing primitive integrals

is very fast (Szabo and Ostlund, 1996).

The calculations in this work have commonly used both the Dunning ‘Double Zeta

Polarised’ (DZP) basis set (Dunning, 1970), or the ‘correlation consistent polarized va-

lence’ (cc-pVnZ) basis sets of Dunning (1989). A library of contracted GTO basis sets

may be found in the EMSL online database (Schuchardt et al., 2007).

2.3.3 Configuration Interaction Methods

Whilst the Hartree-Fock method is extremely quick to carry out using modern quantum

chemistry computer programs, it will only ever give an approximation to the true ground

state of a system. Furthermore this method does not include the short range correlation

between electrons, a consequence of assuming the mean field approximation. Another

problem with using the HF method is that the calculated dipole moment of the ground

state is often far removed from the accepted value, this can have a negative influence

when performing electron-scattering calculations of polar molecules, such as in this work.

The configuration interaction (CI) method is one of many ‘post-HF’ methods to exist,

so called as they use the molecular orbitals initially created using the HF method and

implement them in the resulting calculation. The underlying principle of the CI method

is to obtain a diagonalised representation of the Ne-electron Hamiltonian operator in the

basis of Ne-electron functions or Slater determinants. As opposed to the HF method, in

which a single Slater determinant is used to represent the ground state wavefunction of a

system, the CI method creates a wavefunction of the system using a linear combination

of Slater determinants. This means that as well as the ground state, excited states

are also described if the relevant electron configurations Slater determinant, these are

commonly known as configuration state functions, or CSFs.
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2.3 Molecular Orbitals

Theoretically the CI method can yield an exact solution to the Ne-electron problem

but due to the long CPU time and the large hardware requirements needed by this

method, one can only handle a finite set of Ne-electron trial functions so the method

only provides upper bounds on the exact eigenenergies.

In order to account for the electron correlation, the CI method uses a linear combi-

nation of CSFs

|Φ0〉 = |Ψ0〉+
∑

ar

cra|Ψr
a〉+

1

2!

∑

a<b,r<s

crsab|Ψrs
ab〉+ · · · , (2.42)

where a,b are spin-orbitals occupied and r,s are virtual spin-orbitals in the reference de-

terminant, |Ψ0〉. This is normally the HF Slater determinant describing the ground state

(lowest energy set of spin-orbitals). The higher terms in this expansion can be charac-

terised by how they compare to this first term. Firstly we have the single excitations,

|Ψr
a〉, configurations where a single electron has been promoted into one of the virtual

orbitals of the reference determinant (thus all these single excitation terms differ from

the reference by one spin-orbital). Similarly the next set of terms, |Ψrs
ab〉, are known as

double excitations, whereby two spin-orbitals in the reference determinant are swapped

with virtual orbitals.

Furthermore this expansion can continue up to the nth excitation described by n-

tuply excited determinants. This allows a limit to be placed of the number of deter-

minants in the expansion, called the CI-space. The coefficients cra and crsab in (2.42) are

determined by the variational principle, and the summations for the excited determinants

ensure that each excitation is only included once in the expansion.

If no limit is placed on the CI-space, a full CI (FCI) wavefunction can be created,

which provides exact Energy solutions to the Ne-electron Hamiltonian eigenvalue prob-

lem for the given basis set. However the CI method is computationally intensive and

the size of the Hamiltonian matrix increases as more CSFs are included, hence the FCI

method is only possible for small systems. Restrictions on the CI-space can however

be made in order to carry out calculations on larger systems. Within this work two

variations of CI were employed.

2.3.4 Complete Active Space-CI

The CASCI method restricts the full CI expansion by defining which orbitals in the

reference determinant are core (always doubly occupied), active (vary in occupancy), and
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2.3 Molecular Orbitals

virtual (always remain unoccupied). The active orbitals of the reference determinant are

open for excitations subject only to the limit that all the core spin-orbitals must remain

doubly occupied. This limits the CI-space of the calculation. This method is easy to

balance with an extra scattering electron, with the resultant energies favouring neither

a better ground state nor excitations.

2.3.5 Multi Reference-CI

As opposed to the CI method, in which only one reference determinant was used, the

HF ground state Slater determinant, in the MRCI method more than one reference

state is used. All excitations (within the CI-space limit imposed) from all reference

determinants are then included in the CI expansion. The MRCI method helps to balance

the correlation between the ground and excited states, thus improving the excitation

energies. It also helps to give a better correlation for the ground state, which is important

if it has more than one dominant determinant.

2.3.6 Natural Orbitals

It is normally the convention to use HF spin-orbitals in the CI method to produce

the ground state reference determinant, and doing so will result in the CI expansion

becoming slowly convergent. However other spin-orbitals may instead be used which

may result in the CI expansion converging more quickly. Löwdin (1955) introduced

natural orbitals (NOs) as one possibility.

To understand how these are related to HF orbitals we take the first-order reduced

density matrix of an Ne-electron system

ρ(x1,x
′
1) = N

∫ Ne
∏

i=2

dτiΦ(x1,x2, . . . ,xNe)Φ
∗(x′1,x2, . . . ,xNe), (2.43)

which can be expressed in the basis of orthonormal Hartree-Fock spin-orbitals,χi, as an

expansion:

ρ(x1,x
′
1) =

∑

i,j

χi(x1)γijχj(x
′
1)
∗. (2.44)

It can be shown (Szabo and Ostlund, 1996) that if Φ is the Hartree-Fock ground state

wavefunction Ψ0,

γ(x1,x
′
1) =

∑

i

χi(x1)χi(x
′
1)
∗, (2.45)
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γ is Hermitian so it is possible to define an orthonormal basis {ui}, which can be related

by a unitary transformation to the HF spin-orbitals, such that γ is diagonalised. The

elements ui are the natural spin-orbitals. The new matrix is then expressed as

γdiag =
∑

i

λiui(x1)ui(x
′
1)
∗, (2.46)

where λi is the occupation number of ui. Because of the way in which the equation is

defined (with the occupation number as part of the summation), NOs which have a large

occupation number will contribute much more to the eigen-energy solution than NOs

with only a very small occupation number. Therefore the NOs with low occupations can

be removed from the calculation without affecting the results in a significant way.

In this work the MRCI method employed produced NOs for use in scattering calcu-

lations, the details of these can be found in (see chapters 5, 6 & 7).

2.3.7 Multi-Configuration Self-Consistent Field Orbitals

It is finally worth noting another type of orbital which may be used in the CI method, the

MCSCF variant. Consider a multideterminantal wavefunction which has been restricted

to only contain a small number of configurations. In the MCSCF method the orbitals are

varied in order to minimize the energy of the configurations they are used to construct.

The MCSCF wavefunction is a reduced CI expansion

|ΨMCSCF 〉 =
∑

I

cI |ΨI〉, (2.47)

where both the orbitals contained in |ΨI〉 and the cI coefficients are optimized. If a

single determinant is retained in the expansion, the MCSCF and HF methods become

identical (Szabo and Ostlund, 1996). It is finally worth noting that the equations which

require solving in order to carry out this method are much more complex than those

used to carry out the HF method. The MCSCF method has not been used to produce

final results in this thesis, however this method provided the initial orbitals used as input

for the MRCI method outlined above.
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2.4 Co-ordinate Systems for Theoretical Scattering Calcu-

lations

2.4.1 The Fixed Nuclei Approximation

Consider a molecule which follows the Born-Oppenheimer approximation and all its

nuclei are fixed in position, thus solving the system’s Hamiltonian reduces down to

finding the energy eigenvalues and partnering eigenvectors for the electronic Hamiltonian

only. When considering a scattering interaction with an incoming electron, one can define

a co-ordinate system which simplifies the collision between static target molecule and

an electron. Lane (1980a) outlined this method.

2.4.2 Definition

A BODY co-ordinate frame is defined so that the principal axis of the molecule lies along

the z-axis (where the principal axis of the molecule is the vector direction of its dipole

moment. In this work, where the majority of the molecules were linear, this means the

z-axis lay along the molecule’s length.

A LAB co-ordinate frame can be defined such that the z-axis lies along the momentum

vector of the incoming scattering electron. In both co-ordinate frames the origin lies at

the center of mass of the target molecule.

If we now consider the system as a whole, with N nuclei and N+1 electrons in

total, and define {ri}Ne

i=1 and {RA}Nn

i=1 to be the vectors describing the positions of the

molecular electrons and nuclei respectively, and also let rN+1 be the position of the

scattering electron in the BODY frame. We can then express the total electron-molecule

system’s Hamiltonian as

ĤN+1,elec = −
1

2
∇2

N+1 + ĤN,elec + V̂e−mol, (2.48)

where ∇2
N+1 is the electron kinetic energy operator and the other terms are defined as

follows:

ĤN,elec is the electronic target Hamiltonian

ĤN,elec = −
Ne
∑

j=1

1

2
∇2

j −
Ne
∑

i

Nn
∑

A=1

ZA

|r′i −RA|
+

Ne
∑

i=1

Ne
∑

j>i

1

|r′i − r′j |
, (2.49)

and V̂e−mol is the operator of the electron-molecule interaction potential

V̂e−mol = −
Nn
∑

A=1

ZA

|r′N+1 −RA|
+

Ne
∑

j=1

1

|r′N+1 − r′j |
. (2.50)
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2.4.3 Limitations

These equations, which define the fixed-nuclei (FN) approximation, only hold in con-

junction with the BO approximation, in that the collision must happen in a much shorter

period of time than the time it would take for the nuclei to move e.g. molecular rotation

or vibration. This means the target molecule appears to be fixed in space in respect to

the incident electron.

However if the collision time is long, for instance if the incident electron scatters at

an energy close to a narrow resonance, the FN approximation will not be applicable.

This is also the case if the scattering system has strong long-range interactions e.g. if

the target molecule is strongly polar. This leads to the scattering electron being under

the influence of the target field for a longer period (thus the collision lifetime is larger).

2.4.4 Frame Transformation

In order to obtain scattering variables such as cross-sections, the FN approximation can

be used in conjunction with other methods. The R-matrix scattering method makes

use of one such method, frame transformation (Fano, 1970; Chang and Fano, 1972).

When using this method, the BODY frame can only be applied in the region close to

the nuclei, within some boundary radius. This radius is chosen specifically so that at

this boundary the nuclear Hamiltonian is not relevant and the dominant interactions are

electron correlation and exchange. However out beyond this boundary region these can

also be ignored. Instead, at the boundary a frame transformation takes places changing

into the LAB co-ordinate system and asymptotic solutions for the problem are found for

the outer region.

2.5 Adiabatic Nuclei Approximation

There are certain conditions in which the boundary of the frame-transformation may be

extended to infinity.

• The scattering electron energy is far from the threshold energy.

• No resonances are present.

• There are no significant long range interaction in the system.
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2.5 Adiabatic Nuclei Approximation

If these conditions are met then the extension of the boundary allows the entire problem

to be solved within this region. This frame transformation is implemented at the end

of a calculation where it is applied to the computed scattering quantities, matrices, and

observables.
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Chapter 3
Ab-initio R-matrix Theory

3.1 Introduction

The development of the R-Matrix theory began with the work of Wigner (1946) and

Wigner and Eisenbud (1947). Initially this was to study nuclear reactions in which a

compound state is formed. 30 years later this method was extended for electron-atom

scattering in a number of papers (Burke et al., 1971; Robb, 1972; Burke, 1973). Followed

shortly after by its application to electron-molecule scattering systems (Schneider, 1975;

Schneider and Hay, 1976).

Over the last 30 years the UK R-matrix package has been developed between a num-

ber of institutes. This package now exists as the open-source UK Molecular R-Matrix

codes (Carr et al., 2012), in both diatomic (Burke et al., 1977) and polyatomic (Mor-

gan et al., 1997) variants, where the former makes use of Slater-type orbitals (STOs),

and the latter uses Gaussian-type orbitals (GTOs). These codes have been used to

investigate a number of electron scattering problems. Some examples include the SiO

close-coupling (CC) studies of Varambhia et al. (2009), the PH3 static-exchange-plus-

polarisation (SEP) study of (Munjal and Baluja, 2007), and the BeH+ cation (Chakra-

bati and Tennyson, 2012). Water dimer R-Matrix calculations have also been car-

ried out (Bouchiha et al., 2008; Caprasecca et al., 2009). Much larger systems of the

DNA/RNA purine bases (Dora et al., 2012), intermediate-energy scattering on C−2 us-

ing pseudo states (MRMPS) (Halmová et al., 2008) and positron scattering on water

(Zhang et al., 2009). Finally there have been recent calculations on positron scattering

with C2H2 also using MRMPS (Zhang et al., 2011). A comprehensive review article has

recently been published (Tennyson, 2010).
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3.1 Introduction

Figure 3.1: Partition of configuration space in fixed-nuclei R-matrix theory

The basis of R-matrix theory is the division of co-ordinate space into inner and

outer regions, separated by a boundary of radius a. Fig 3.1 displays this division, where

the origin of the co-ordinate system lies at the centre-of-mass of the target. Within

the inner region the short-range electron interactions, exchange and correlation, are

the dominant effects between the N electrons of the target molecule and the incoming

scattering electron. Due to this the N + 1-electron system is analogous to a bound

state, and the configuration interaction method can be used to produce the N +1 inner

region eigenkets. Beyond the R-matrix boundary in the outer region all short-range

interactions are assumed to be negligible in comparison to multipole potential created

by the N -electron target, hence a single centre expansion of the scattering wavefunction

is used in this region. Because of this the problem is reduced into a set of coupled

differential equations. These are far easier to solve using mathematical methods.
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3.2 The Inner Region Method

3.2.1 The Inner Region Hamiltonian and the Bloch Operator

Within the inner region the N + 1-electron scattering problem is defined by the time-

independent Schrödinger equation (TISE)

ĤN+1|Ψ〉 = E|Ψ〉, (3.1)

where ĤN+1 is the molecular Hamiltonian operator:

ĤN+1 =

N+1
∑

i=1

(

−1

2
∇2

i −
∑

A

ZA

riA

)

+

N+1
∑

i>j=1

1

rij
+
∑

A>B

ZAZB

| ~rA − ~rB|
. (3.2)

The solution of which is a complete set of basis eigenkets, |ψk〉 :

|Ψ〉 =
∑

k

AEk|ψk〉. (3.3)

However non-Hermitian surface terms will be present at the r = a surface. See ap-

pendix A for more details of this. In order to keep the operator Hermitian it must be

modified with the addition of the Bloch operator:

L̂N+1 =
N+1
∑

i=1

δ(ri − a)
(

d

dri
− b

ri

)

. (3.4)

Where the spherical boundary a is chosen so that the electron cloud of the target is

completely contained within. The eigenbases |ψ∆
k 〉 are now defined so that the following

holds:

〈ψ∆
k |ĤN+1 + L̂N+1|ψ∆

k′〉 = Ekδkk′ , (3.5)

where ∆ represents the values of angular momenta corresponding to a particular irre-

ducible representation of the molecule’s point group.

3.2.2 The Creation and Definition of the R-Matrix

By introducing the Bloch operator and re-writing, Equation (3.1) can be defined as

(ĤN+1 + L̂N+1 − E1̂)|Ψ∆〉 = L̂N+1|Ψ∆〉, (3.6)

re-arranging this to give the formal solution

|Ψ∆〉 = (ĤN+1 + L̂N+1 − E1̂)−1L̂N+1|Ψ∆〉. (3.7)
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3.2 The Inner Region Method

We can then use the eigenket completeness theorem:

∑

k

|ψ∆
k 〉〈ψ∆

k | = 1̂, (3.8)

in order to expand equation (3.7):

|Ψ∆〉 =
∑

k,k′

|ψ∆
k 〉〈ψ∆

k |(ĤN+1 + L̂N+1 − E1̂)−1|ψ∆
k′〉〈ψ∆

k′ |L̂N+1|Ψ∆〉 (3.9)

=
∑

k,k′

|ψ∆
k 〉〈ψ∆

k′ |L̂N+1|Ψ∆〉
Ek − E

δkk′ (3.10)

=
∑

k

|ψ∆
k 〉〈ψ∆

k |L̂N+1|Ψ∆〉
Ek − E

. (3.11)

Comparing this to equation (3.3) we can see

AEk =
〈ψ∆

k |L̂N+1|Ψ∆〉
Ek − E

. (3.12)

3.2.3 Expansion of the Bloch Operator

The Bloch operator may be expanded by a complete basis set, thus we can express it in

terms of the channel basis functions |ψN
i Y

mi

li
〉:

1

2

N+1
∑

i=1

∑

j=1

|ψN
j Y

mj

lj
〉δ(ri − a)

(

d

dri
− b

ri

)

〈ψN
j Y

mj

lj
|. (3.13)

If we define the ‘ reduced radial function’

Fj(a) = 〈ψN
j Y

mj

lj
|Ψ∆〉, (3.14)

and the energy-independent ‘surface amplitudes’,

w∆
jk(a) = 〈ψN

j Y
mj

lj
|ψ∆

k 〉, (3.15)

and

w∆
jk(a)

† = 〈ψ∆
k |ψN

j Y
mj

lj
〉. (3.16)

By substituting (3.13) into (3.12), and applying our new definitions, we can state

AEk =
1

2

∑

j=1

(w∆
jk(a))

†
(

F ′j(a)− ba−1Fj(a)
)

Ek − E
(3.17)

where the integrations are carried out across all N +1 electronic spin-space co-ordinates

in the inner region, excluding the radial co-ordinate of the scattering electron.
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Substituting this into equation (3.3), The total wavefunction Ψ∆ can be expressed

as

Ψ∆ =
1

2

∑

k,j

w∆
jk(a)

†
(

F ′j(a)− ba−1Fj(a)
)

Ek − E
ψ∆
k . (3.18)

From this the R-matrix can be calculated, this is done by projecting (3.18) onto a

channel |ψN
i Y

mi

li
〉 and evaluating the term on the R-matrix boundary, where r = a:

R∆
ij (E) =

1

2a

∑

k

w∆
ik(a)(w

∆
jk(a))

†

Ek − E
. (3.19)

The R-matrix supplies the boundary condition for applying the Schrödinger equation

to the outer region correctly. Within it is contained the surface value of the scattering

wavefunction and the its derivative-matching surface boundary condition.

3.2.4 The Trial Inner Region Scattering Wavefunction

In the inner region the close-coupling trial wavefunction

ψ∆
k (XN+1;R) = Â

∑

i=1

∑

j=1

a∆ijkΦ
∆
i (XN ; r̂N+1σN+1)η

0
ij(xN+1)+

∑

l=1

χ∆
l (XN+1)b

∆
lk, (3.20)

is used to represent |ψ∆
k 〉 where XN+1 = {xi}N+1

i=1 and xi = riσi is the spin-space co-

ordinate of the ith electron. Φ∆
i is the wave function of the ith target state, and it along

with the continuum orbitals η0ij (which represent the scattering electron) and square

integrable functions χ∆
i depend parametrically on the geometry R. Â is the antisym-

metrisation operation which is applied to ensure that the wavefunction is antisymmetric

with respect to interchange of any two electrons.

Φ∆
i are formed from fixed-nuclei electronic target states spin-coupled to the angular

and spin functions of the scattering electron (see above). In the polyatomic suite these

channel functions and the quadratically integrable functions χ∆
i are constructed from

GTOs (Gaussian-type orbitals) centred on the nuclei. The target electronic wavefunc-

tions can be created using either the Hartree-Fock or configuration-interaction method

previously discussed.

The first summation runs over the electronic target states. It represents a situa-

tion where one electron exists in the continuum states, with the remaining N electrons

remaining in the target state, and is known as a ‘target+continuum’ configuration.

Continuum basis functions, of the form fili(r) =
1
ruil(r)Y

mi

li
(θ, φ), and target molec-

ular virtual orbitals are combined to produce the continuum orbitals. The radial part of
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3.2 The Inner Region Method

the wavefunction, uil, is numerically generated as a solution of a second order ordinary

differential equation:

[

d2

dr2
− l(l + 1)

r2
+ 2V0(r) + k2i

]

uil(r) = 0, (3.21)

where uil is based on the expansion of GTOs (Faure et al., 2002a).

Finally, to construct the continuum orbitals, η0ili(rN+1), the continuum basis func-

tions {fil} are firstly orthogonalised to the target orbitals using the Schmidt orthogonal-

isation procedure. Then, to remove linear dependence problems between the functions

a Löwdin orthogonalisation is used (Tennyson, 2010). This problems can arise as two

independent basis sets are being used to describe both the target and the continuum.

As basis sets increase in size they will increasingly cover the same (function) space and

therefore become linearly dependent.

These continuum orbitals are used to create the R-Matrix boundary amplitudes, w,

described previously in equation (3.15):

w∆
ik(a) =

∑

j=1

η0ij(a)a
∆
ijk. (3.22)

The second term of equation (3.20) sums over χ∆
i configurations in which all the

electrons are contained only within the target molecular orbitals. In order to include

correlation effects, such as excitations to higher states not included in the first terms

summation, the L2 functions are introduced. This is to ensure that important parts of

the configuration space are not excluded.

Diagonalisation of ĤN+1 + L̂N+1 using the |ψ∆
k 〉 inner region basis (as found in

equation (3.5)) provides the a∆ijk and b∆lk co-efficients. The evaluation of the matrix

elements in equation (3.5) can be carried out using adapted quantum chemistry methods.

This adaptation allow for the integrals to be carried out over a finite range and also allow

the inclusion and treatment of the continuum orbitals as well as the standard Gaussian

or Slater type orbitals.
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3.3 The Outer Region Method

3.3 The Outer Region Method

3.3.1 Outer Region Eigenfunctions

In the external region the outer region wavefunction is expressed as an expansion, using

the channel functions ψN
i Y

mi

li
as the basis:

Ψ∆(XN+1) =
∑

i=1

ψN
i Y

mi

li

F∆
i (rN+1)

rN+1
. (3.23)

These are eigenfunctions of the Hamiltonian and describe the solutions where there

is no interaction between the incident electron and the target molecule. This is because

an interaction radius is chosen, beyond which all short-range exchange and correlation

effects between the scattering electron and the electrons of the target molecule vanish.

The wavefunctions ψN
i are created by the coupling of a molecular target state ΦN

i to

the scattering electron spin σN+1. Due to the interaction boundary discussed above there

is no need for the inclusion of an antisymmetrisation operator, as the scattering electron

is in its own independent region. Also because this region is completely separate from

the target the L2 and χ∆
i functions seen in equation (3.20) also vanish. It is therefore

possible to use single-centre reduced radial wavefunctions, F∆
i (rN+1), to represent this

electron.

A set of second order coupled ordinary differential equations can be created from

these. This is done by substitution of Ψ∆(XN+1) into the TISE (equation (3.1)) followed

by a projection of both sides onto the channel basis (appendix B). These equations

F∆
λ
′′ − lλ(lλ + 1)

r2N+1

F∆
λ + 2(E − Eλ)F

∆
λ = 2

∑

λ′

Vλλ′F∆
λ′ , (3.24)

are satisfied by the reduced radial wavefunctions F∆
i (rN+1).

This set of equations are solved for the range [a, ap], where r = a represents the

boundary between internal and external regions, and r = ap defines the boundary be-

tween the external and the asymptotic regions of the calculation space. The differential

equations are also restricted by boundary conditions at the interface between internal

and external regions (r = a):

F∆
i (a) =

∑

j

R∆
ij

(

aF ′j(a)− bFj(a)
)

, (3.25)

and the R-matrix equation (3.19), as discussed in Burke et al. (2007).
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3.3 The Outer Region Method

Propagation of the R-matrix

There are standard method for solving these equations at each interval of a (e.g. Burke

and Seaton (1971)). These methods solve the equations at the r = a region interface,

and propagate outwards by dividing the external region (where a ≤ r ≤ ap) into a

set of p sub-regions. The F∆
i (rN+1) can be expanded within each sub-region, using

a basis of Legendre polynomials (Baluja et al., 1982). By applying this method to

propagate through each subsequent sub-region the R-matrix can be determined at the

external/asymptotic region boundary, r = ap. Now that the R-matrix is known at each

of the sub-region boundaries, the reduced radial wavefunction can be obtained across

each region.

The Asymptotic Region

Careful selection of the size of ap ensures that it is large enough for the solution to

equation (3.24) to be represented by the asymptotic boundary conditions. For open

channels:

F∆
ij ∼

1√
ki

[

sin

(

kir −
liπ

2

)

δij + cos

(

kir −
liπ

2

)

K∆
ij

]

, (3.26)

where i,j are in-, out-channels respectively, and for closed channels:

F∆
ij ∼ e−|ki|r. (3.27)

The K-matrix can then be determined by matching to the open channel boundary

condition, this matrix will have dimensions no × no, where no is the number of open

channels at each scattering energy within the range defined in the calculation.

Scattering Observables

The K-matrix can be used to provide a quantity known as the eigenphase sum, this can

be used as a diagnostic tool for the scattering calculation, providing information on scat-

tering resonances and channel-opening thresholds. In order to obtain this quantity a new

matrix is first created from the diagonalisation of the K-matrix, diag(K∆
1 ,K

∆
2 , . . . ,K

∆
no
).

The arctangent of the diagonal elements are then summed over all channels that have

been retained in the outer region part of the calculation:

η∆(E) =
∑

i

arctanK∆
i . (3.28)
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3.3 The Outer Region Method

This quantity is generally plotted against incident scattering energy and a number of

recognisable features may be determined by examination of these plots. A number of

examples are presented in this work.

The K-matrix can also be linked to the S- and T- matrices respectively using the

following relations:

S∆ = (1 + iK∆)(1− iK∆)−1, (3.29)

T∆ = S∆ − 1 = (2iK∆)(1− iK∆)−1. (3.30)

These are used to determine a number of scattering observables from the calculation.

E.g. The excitation cross-section for the electronic transition i→ i′ is defined as

σ(i→ i′) =
π

k2i

∑

∆

2S + 1

2(2Si + 1)

∑

lλmλlλ′mλ′

|T∆
λλ′ |2. (3.31)

And also the T-matrices are used in the spin-coupled rotational cross-section work

presented in the the next chapter.

3.3.2 Resonances

Resonances describe the temporary trapping of an electron to form a quasibound or

short-lived state. They can primarily be seen as a feature or enhancement of the cross-

section at a certain energy. Resonance features have both a position Er, and due to the

Heisenberg uncertainty principle, a width Γr (where both of these features are measured

in terms of the scattering electron energy).

A number of electron-molecule processes are driven by resonances, such as disso-

ciative attachment (Domcke, 1991), and dissociative recombination (Florescu-Mitchell

and Mitchell (2006), Larsson and Orel (2008)). It is also common in almost all scat-

tering processes for resonances to lead to an enhancement of cross-sections, for example

vibrational excitation due to electron impact (Domcke, 1991).

There are different types of resonances, each is characterised by a different theoretical

treatment.

Shape resonances occur when the electron becomes trapped behind a barrier in the

potential of the electron-molecule system. Usually this barrier is the centrifugal one

caused by the angular momentum of scattering electron. Because of this s-wave scat-

tering cannot create shape resonances. Another common way of understanding this

process is that the electron occupies a low-lying unoccupied electron orbital in the tar-

get molecule, this is often the energetically lowest unoccupied molecular orbital (LUMO).
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3.3 The Outer Region Method

Shape resonances are typically short lived, and as such they have a broad width as a

function of energy when they appear in scattering observables. If the bond length of

the target molecule increases beyond equilibrium shape resonances can become bound

states. This occurs as the energy position of the resonance will decrease with increasing

bond length. Eventually this causes the position to become negative on the energy axis,

with the width also decreasing to zero (Rabadán and Tennyson (1996), Rabadán and

Tennyson (1997)).

Feshbach resonances (Feshbach, 1958, 1962) occur when there is simultaneous elec-

tronic excitation of the target molecule with the incoming electron also becoming trapped.

Hence a normally occupied orbital is now a hole and two virtual orbitals become occu-

pied. The electronically excited state is known as the parent state, and these types of

resonances are normally classified as Feshbach or core-excited resonances, depending on

whether the resonance position lies below or above this parent state. They are also

generally narrower than shape resonances and thus have a longer life-time. At the end

of this life-time a Feshbach resonance will decay to a lower-lying excited state, and a

core-excited resonance will decay back to the parent state or the ground state. Feshbach

resonances also provide a direct route to dissociative recombination (Larsson and Orel,

2008).

A simple way to differentiate between shape and Feshbach resonances in a scattering

calculation is to perform it once using a single-state target and once using a multi-state

target. Resonances that appear in both will be shape, and those only appearing in the

multi-state calculation will be Feshbach (as target excitations are allowed).

Nuclear-excited Feshbach resonances can only occur in molecules, unlike the previ-

ously discussed types. These occur when the N +1 electron system has a weakly bound

state, and appear at very low energies with a narrow width. With this type of resonance

the excitation is caused by vibrational excitation or nuclear motion of the molecule,

hence the treatment must go beyond the Born-Oppenheimer approximation to investi-

gate these correctly. Resonances of this type can lead to complicated structures near

thresholds, and investigations have been made into their effect upon vibrational (Mor-

gan et al. (1990), Thummel et al. (1993)) and rotational (Pfingst et al. (1992), Thummel

et al. (1992)) excitation processes.

Finally another type of resonance may be present in scattering calculation results,

Pseudo resonances. These are spurious resonances which occur when an incomplete
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theoretical model is used. In principle these occur when an open channel which lies

within the energy range of the calculation is omitted. Technically the means of coupling

to this channel must also be present in order to cause the pseudo resonances, hence static

exchange calculations do not find them despite only using the ground state of the target.

Generally this type of resonance is better avoided due to the unnecessary complication it

adds to the calculation results. However sometimes their presence is utilised, for instance

in R-matrix calculations at intermediate energies (Burke et al. (1987), Scholz (1991)).

Determining the precise values of resonance positions and widths is a key objective

for many electron scattering calculations, and in the UK molecular R-matrix codes the

module RESON (Tennyson and Noble, 1984a) is used to initially detect resonances from

the eigenphase sums and then apply a fit to determine a position and width. Resonance

detection used the fact that the eigenphase sum, (3.28)) shows a rapid jump by π radians.

RESON then fits this using a Breit-Wigner formula (Breit and Wigner, 1936) to obtain

the resonance parameters.

η∆(E) = η∆bg + η∆res (3.32)

= η∆bg(E) + arctan
Γr

Er − E
, (3.33)

where ηbg(E) is the background phase.

This method is however sometimes limited, the Breit-Wigner form cannot fit over-

lapping resonances, or those features lying near to a channel-threshold. This problem

occurs because as the size of the energy range of the fit increases, there will be an increase

in the variation of the background eigenphase sum, η∆bg. The resulting assumptions then

made about the background phase will mean uncertainties are introduced for this fit. In

this work it was found that sometimes the fitting failed and as such a manual fit was

taken by eye, examples of this can be found in the results for CN, C3N, and C2H.

3.3.3 T-matrix Transformations

All R-Matrix calculations in this thesis have been carried out on linear molecules (with

the exception of the e−-O work). These molecular calculations have all been carried out

in C2v, the highest Abelian sub-group of the natural group C∞v.

However in order to calculate spin-coupled rotational cross-sections as described in

the next chapter, T-matrices in the natural group, C∞v, are required. Hence we had

to transform the fixed nuclei T-matrices output from the calculations from C2v back to

their C∞v natural group.
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Λ0 mli Λs

2A1

0 2Σ+

2 2∆

4 2Γ

2B1

1 2Π

3 2Φ

2B2

1 2Π

3 2Φ

2A2

0 2Σ−

2 2∆

4 2Γ

Table 3.1: Rule for transforming a C2v T-matrix of symmetry Λ0 to a C∞v one with symmetry

Λs

Linear molecules have Hamiltonians which have C∞v symmetry, so the group ele-

ments g commute with the Hamiltonian:

gĤg̃ = Ĥ ∀g ∈ C∞v. (3.34)

These group elements correspond to an infinitesimal rotation about the z axis, and

commute with Ĥ. Because of this the z-projection of the angular momentum Λt,s is

a constant of motion for both the N - and N + 1-molecular Hamiltonian respectively

(However Λt = 0 for Σ+ ground state targets in this work). Transforming the T-matrix

in the C∞v representation from the existing C2v one merely extracts those T-matrix

elements with mli = Λs. Table 3.1 gives the rules for creating the C∞v symmetries from

the C2v ones.

3.4 The UK Molecular R-Matrix Codes: Structure and

Outline

All work carried out in this thesis uses the polyatomic R-Matrix codes (Morgan et al.,

1998a). This code package comprises of modules which are run in order to carry out a

full electron-scattering calculation. The inner region part of the package is built upon

the Sweden-Molecule quantum chemistry suite of Almlof and Taylor (1984), using these

existing codes to generate the molecular orbitals of the target and also the transformed

51



3.4 The UK Molecular R-Matrix Codes: Structure and Outline

SWORD

SWTRMO

SWFJKSWSCF

GAUSPROP

SCATCI

DENPROP

SWEDMOS

CONGEN

target properties

NOs

SCF orbitals

target CI vectors

SWMOL3

Figure 3.2: R-matrix inner region flow diagram for the target calculation

integrals. The number of outer region modules has increased over time as code users have

introduced new functionality into the suite. Recently the code package has undergone

an update and renewal to introduce uniform coding standards and practices across the

suite, the codes now exist as a collaborative project between institutions under the name

UKRMOL (Carr et al., 2012).

The structure and running order of the target, the inner region scattering, and the

outer region scattering parts of the code are outlined in figures 3.2, 3.3 and 3.4 respec-

tively.

3.4.1 Target and Inner Region Scattering

• SWMOL3: generates one and two-electron integrals from the given GTO ba-

sis set, in the code these are input in SUPERMOLECULE format as found via

(Schuchardt et al., 2007);
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SCF orbitals

SWTRMO

CONGEN

SCATCI

SWMOL3 GAUSTAIL

SWEDMOS

SWORD

(N+1) CI vectors

Target CI vectors

amplitudesBoundary

NOs

Figure 3.3: R-matrix inner region flow diagram for the calculation of the (N + 1) scattering

eigenket |ψ∆
k
〉 (equation (3.20))

• GAUSTAIL: adusts the integrals over atomic orbitals for the finite dimension

of the R-Matrix sphere by adding matrix elements of the Bloch operator to the

Hamiltonian ones (Morgan et al., 1997);

• SWORD: orders the atomic integrals evaluated by SWMOL3;

• SWFJK: forms combinations of Coulomb and exchange integrals for building the

Fock matrix;

• SWSCF: carries out the Hartree-Fock (see section 1.3.1) process to generate the

target molecular orbitals from linear combinations of atomic ones. Here it employs

the integrals obtained from the SWFJK code;

• SWEDMOS: constructs molecular orbitals and boundary amplitudes for the tar-

get wavefunction and also the continuum. It also applies the Schmidt orthogonali-
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sation so that each continuum orbital is orthogonalised to all the target ones, and

symmetric orthogonalisation to orthogonalise the continuum orbitals among them-

selves. A deletion threshold (with a generally accepted value of 10−7) is employed

for orbital deletion. Those continuum orbitals with overlap matrix eigenvalues less

than this threshold are deleted. This is also the point in the codes at which exter-

nal molecular orbitals can be introduced from, e.g. MOLPRO (for examples see

sections 5.3, 6.3 & 7.3);

• SWTRMO: transforms the atomic orbitals to the four-index molecular orbital

representation of the ordered integrals produced by SWMOL3;

• CONGEN: produces configuration state functions (CSFs) of the correct spin

and symmetry coupling. In the case of a static-exchange calculation, only one

(ground state) configuration is produced, however for configuration interaction (CI)

calculations many tens of thousands of CSFs can be produced. It also generates

prototype CSFs for the (N+1)-electron system. CONGEN also solves phase factor

problems that arise from the use of CI expansions (Tennyson, 1997);

• SCATCI: performs a CI calculation of the target molecular and the (N + 1)-

complex wavefunctions (Tennyson, 1996) using the CSFs produced by CONGEN.

Diagonalisation of the Hamiltonian takes place to obtain the CI expansion coeffi-

cients (eigenkets) and the corresponding eigenvalues. The output from this is the

pole energies of the R-Matrix equation (3.19);

• GAUSPROP: generates the property integrals required by DENPROP;

• DENPROP: constructs the transition density matrix from the target eigenvectors

obtained from the CI calculation. From this it then calculates the multipole transi-

tion momentsMm
l (λ→ λ′) required for solving the outer region coupled equations

(3.24), the dipole spherical polarisability α0, and where possible the diagonalised

tensor components αxx, αyy and αzz, which are computed using second-order per-

turbation theory and the property integrals. Only multipole moments up to and

including l = 2 are computed, and together with the target Hamiltonian eigen-

energies (figure 3.2), they are saved to a target properties file for later use in the

outer region (figure 3.4);
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Target properties

TMATRX

IXSEC

RSOLVE

SWINTERF

resonance parameters

eigenphase sums

integral cross sections

EIGENP

RESON

(N+1) CI vectors
boundary amplitudes

Figure 3.4: R-matrix outer region flow diagram

3.4.2 Outer Region

• SWINTERF: the interface between the internal and outer regions. It uses the

boundary amplitudes from SWEDMOS, the N + 1-system eigenvectors and their

corresponding eigenvalues and the molecule’s multipole moments (figure 3.4). The

output contains data needed in order to rapidly construct the R-matrix initially

at the interaction radius as a function of energy;

• RSOLVE: constructs the R-matrix at the interaction radius and uses RPROP (Mor-

gan, 1984) to propagate this R-matrix to the asymptotic region for matching to

the boundary condition there (equation (3.26)) by solving the coupled ordinary

differential equations (3.24) in an outer region which is divided into sectors. It

then constructs the fixed-nuclei K-matrices (Noble and Nesbet, 1984);

• EIGENP: calculates the multichannel eigenphase sum by diagonalising the K-

55



3.5 Contributions to the R-matrix Package

matrix and summing over channels (equation (3.28));

• RESON: detects resonances and performs a least squares fit of the eigenphase

sums to a Breit-Wigner profile (Tennyson and Noble, 1984a) (See section 2.3.2);

• TMATRX: calculates the T-matrices from the K-matrices using equation (3.30);

• IXSEC: computes the integral cross sections from the T-matrices;

• TMATSUB: transforms the C2v FN T-matrices to C∞v as discussed in section

3.4.4;

• ROTLIN: using the ANR approximation it computes rotationally resolved in-

tegral cross sections from the C∞v T-matrices. Also computing and including

the Born correction for |∆J | = 1. It was adapted from the existing ROTIONS

code (Rábadan and Tennyson, 1998a), which computes the same for cations, and

invokes the Coulomb-Born approximation. This programme is the forerunner to

ROTLIN S, which has been created to calculate spin-coupled rotationally re-

solved integral cross-sections.

Other outer region modules exist for calculating other scattering observables, e.g.

differential cross-sections, multi-channel quantum defects. However these modules were

not used in this work. Details of other outer region modules can be found in Tennyson

(2010).

3.5 Contributions to the R-matrix Package

3.5.1 ROTLIN S

In order to calculate the spin-coupled rotationally resolved integral cross-sections out-

lined previously (section 1.6), it was necessary to adapt the existing outer region module

ROTLIN (Faure et al., 2007) to incorporate spin coupling. The original code was based

upon the work of Rabadán et al. (1998b) which detailed rotational cross-sections from

body frame T-matrices. The adaptations made to this code have been outlined in the

next chapter.
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3.5.2 KMATADGENERAL

In the outer region, the module RSOLVE produces K-matrices and outputs them into

files for storage and re-use. In order to save space and I/O processing time only the upper

triangle of the matrix is stored (as the actual K-matrices are symmetric). However some

subsequent outer region programmes require the K-matrices in square format, such as

polyDCS, for calculating differential cross-sections (Sanna and Gianturco, 1998).

A number of ‘KMATAD’ modules had previously been written in order to return the

triangular matrices to the full, square, format. Each version of the module had been

specifically made for different symmetries, as and when it was required. Over time this

led to many versions within the outer region suite.

After some investigation it was discovered the only difference in these versions was

the number of input files looped through for conversion. E.g. for the C2v symmetry

the code looped through 4 triangular K-matrix input files, for the A1, B1, B2 and A2

K-matrices respectively.

In order to provide one version of the module to work for all symmetries, the loop

over input files was simply adapted to run across the number of symmetries provided in

the namelist. This then meant that a single version of the program could be used for all

cases.

3.6 Quantemol-N

Due to the number of modules that must be run in order to carry out a full R-Matrix

calculation, the process from start to finish can take long periods of time to set up.

Each module has its own namelist input, the variables in this namelist can depend on

the results of the previous parts of the calculation. This has historically led to some of

the more complex CI calculations taking up the entire duration of a PhD.

Also when considering the variations possible in the calculations, such as different

basis sets or complete active spaces, it is clear that in order to optimise a calculation to

obtain the best results, it is better to test a number of models for the system.

In order to make the creation and running of the R-Matrix codes far easier, a java-

based GUI wizard system has been created, Quantemol-N (Tennyson et al., 2007). This

has enabled non-specialist users to be able to quickly setup and run electron-molecule

scattering R-Matrix calculations of which they may not have any experience.
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3.6.1 Manually Running the R-Matrix Codes

As hinted at above, when creating an R-Matrix calculation a number of variables must

be chosen for the system:

• Geometry and symmetry of the system.

• Target and continuum basis sets.

• The R-Matrix radius.

• The type of molecular orbitals used.

• The electron distribution through these orbitals for both the target model and the

inner region CI problem.

• The deletion threshold for the continuum orbitals.

• The scattering energy grid.

• The number of target states retained in the outer region calculation.

• The R-Matrix propagation distance.

• Further outer region module options (e.g. Resonance fitting parameters etc..).

3.6.2 The Quantemol-N Approach

By automating much of the selection of these options behind-the-scenes, Quantemol-N

can be used to create R-Matrix calculations from only a select few input variables:

• Geometry co-ordinates of the system.

• Symmetry of the system (aided with graphics to ensure a suitable option is chosen).

• Electron configuration of the target (a default initial guess is provided which can

be changed if required).

• Type of model to be used (Hartree-Fock static exchange or configuration-interaction

close coupling).

• Basis set for the target molecule (a library of stock basis sets is included for non-

experts).
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• R-Matrix radius (aided by graphics to ensure whole system is enclosed by R-Matrix

sphere), this then defines the continuum basis set to be used for representing the

scattering electron (Faure et al., 2002b).

• For CI calculations: Number of states per symmetry calculated for the target and

number of orbitals retained in the complete active space.

• Scattering energy grid (a default option is provided which can be changed if re-

quired).

By taking these few inputs, the software automatically produces the correct inputs

and runs all the modules required to produce a full calculation, presenting the results

afterwards as part of the GUI.

3.6.3 Use of Quantemol-N in this Work

All of the work presented started in some way with an initial R-Matrix calculation using

Quantemol-N. In each case initial studies were taken using a range of different basis sets

until a model was found which was deemed to represent the system well.

In the cases of NaI (chapter 9) and SiBrn (chapter 10) the final Quantemol-N results

obtained were tested using multiple models until a convergence was found to consistent

results (given the lack of literature with which to compare these species with).

However in the cases of CN, C3N & C2H, (chapters 5, 6 & 7) there were a num-

ber of factors which led to the decision to extend the model beyond the capabilities of

Quantemol-N. In these cases the jobfiles produced automatically by the software were

used as a starting point, with changes and extensions being made to them in order to

make the calculation more advanced. For these species, when calculating the target,

it was necessary to move away from the HF-SCF orbitals produced by the R-Matrix

module SCF and into natural orbitals produced by the MRCI method from the MOL-

PRO software (Werner et al., 2008). This procedure is now used regularly in R-Matrix

calculations but is currently beyond Quantemol-N.

Finally, whilst it is possible theoretically to calculate electron-atom scattering using

the polyatomic R-Matrix codes (and thus Quantemol-N), we believe the Oxygen results

presented in this work (chapter 8) to be the first attempt at it. This led to a number

previously unconsidered problems which would not normally occur when carrying out

standard electron-molecule scattering using the codes. These considerations are outlined
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in chapter 8 along with their solutions. Because of these again extension beyond the

Quantemol-N calculations was required in order to proceed. Here we simply took the

jobfiles produced by the software and manually made changes to solve the problems

faced, before running as a standard R-Matrix calculation.
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Chapter 4
Electron-Impact Spin-Coupled Rotational

Cross-Sections - A New Theory

This chapter has been substantially published as Harrison et al. (2012)

4.1 Introduction

Electron collisions provide a route to excitation in even weakly ionised plasmas. While

most plasmas are not studied at rotational resolution, this is not true of the cold as-

tronomical plasmas in the interstellar medium (ISM), that form both dense and diffuse

molecular clouds. Electron molecule collisions are important in other astronomical en-

vironments including planetary nebulae, cometary tails and planetary aurora. Thus, for

example, rotational emission spectra have been used to provide the most direct estimate

available of the electron density in a shocked region of the ISM (Jimenez-Serra et al.,

2006) and hence to study differences in the behaviour of ionised and neutral molecules

(Roberts et al., 2010).

Given that none of the environments mentioned above are in local thermodynamic

equilibrium (LTE), electron collision cross sections are required to model any observed

emission due to electron impact excitation. The laboratory measurement of electron

impact rotational excitation cross section is extremely challenging and very few such

measurements are available. This has placed the onus on theory to provide the necessary

data.

R-matrix calculations, combined with a Coulomb-Born treatment for high electron

angular momenta, were originally developed for the treatment of electron collisions with
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linear molecular ions (Rabadán et al., 1998b,a; Rabadán and Tennyson, 1998b; Lim

et al., 1999; Faure and Tennyson, 2001). Comparison of calculations performed for

several species showed that while for systems with dipoles larger than about 2 Debye,

excitations with ∆J = 1 are both completely dominant and well-treated by the Coulomb-

Born formula of Chu and Dalgarno (1974b), transitions with ∆J 6= 1 are important for

less polar molecules and such systems require the detailed treatment of short-range

interactions provided by the R-matrix methodology.

The work on linear was subsequently extended to non-linear ions (Faure and Ten-

nyson, 2002b,a) and neutral molecules (Faure et al., 2004). Electron impact rotational

excitation with a number of closed-shell linear molecules has been considered including

HCN and HNC (Faure et al., 2007), SiO (Varambhia et al., 2009) and CS (Varambhia

et al., 2010). For the HCN system, Faure et al. (2007) extended the theoretical treat-

ment to allow for hyperfine effects. The data on electron impact rotational excitation

of neutral and ionised molecules of astrophysical interest is gathered in the BASECOL

database (Dubernet et al., n.d.).

The difficulty of measuring rotational excitation cross sections makes it hard to assess

independently the reliability of the cross sections mentioned above. However evidence

from experimental studies on cooling of HD+ by electrons (Shafir et al., 2009) and

electron collisions with water (Faure et al., 2004; Itikawa and Mason, 2005; Curik et al.,

2006; Zhang et al., 2009), as well as comparison with detailed close-coupling calculations

(Faure et al., 2006), all point towards the reliability of this procedure.

So far all the studies considered above have only treated closed systems. Open

shell species introduce new sources of angular momentum in the collision system and

therefore require a generalisation of the methodological developments described above.

In this work we re-formulate the theory of electron impact rotational excitation for the

case of a linear molecule with total electron spin angular momentum, S, greater than

zero. In this we follow the work of Corey and McCourt (1983), who considered collisions

between a 2S+1Σ+ linear molecule and an atom in a 1S state. As an electron has s = 1/2,

it is necessary to consider an extra spin in our treatment.

Spin-coupling has been taken into account for a number of different physical situa-

tions. From probing Zeeman effect in magnetic fields (Radford and Broida, 1962), to

studying the cosmic microwave background radiation (Roth et al., 1993; Leach, 2012).

Spin-rotation coupling also plays an important role in ultra-cold physics (Guillon and
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Stoecklin, 2007).

Currently we know of no other computation implementations for calculating spin-

coupled rotational cross-sections driven by electron impact, however there has been

recent work published on spin-inclusive rovibrational cross-sections for atom-molecule

systems (Lopez-Duran et al., 2008). Similarities exist with this work in that the atom in

question is treated as structureless, which is also the initial assumption for the projectile

used here.

4.2 Method

The initial starting point of this theory is the work of Corey and McCourt (1983), whose

work outlined the calculation of cross-sections for a collision between a 2S+1Σ linear

molecule and an atom in a 1S state, using a Hund’s case (b) coupling scheme. The general

idea is that the electron spin is only weakly coupled to the molecular rotation and it plays

a spectator role in the collision dynamics. In such a treatment, the dynamical problem

is reduced to a spin-free problem where the energy splitting of the spin multiplets is

neglected and the spin wave functions are decoupled from the rotational wave functions

using a recoupling scheme. This “recoupling” approach is adapted at collisional energies

much larger than the energy splittings, which are typically below 1 meV for doublet and

triplet targets. In order to implement collisions with electrons, the spin of the projectile

needs to be incorporated into the coupling scheme of the existing work.

4.2.1 Coupling in Case when the Projectile is Spinless

Using the general case of Corey and McCourt (1983), We adapt the angular momentum

coupling scheme to include a spin-1/2 electron projectile. Using the definitions from

Corey & McCourt (CM):

• N is the rotational angular momentum of molecule;

• S is the electron spin angular momentum of the molecule;

• j = N + S is the total angular momentum of the molecule;

• l is the orbital angular momentum of the projectile;

• J = l + j is total angular momentum of the compound system.
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CM use a total-J basis represented by the coupling scheme, eq. (CM2.10):

N+ l = J ,J + S = J. (4.1)

This basis is defined through eq. (CM2.11)

|(Nl)J S; JM〉 =
∑

m,mS

(−1)−J+S−M [J ]1/2





J S J

M ms −M



 |NlJM〉 |Sms〉 , (4.2)

where |NlJM〉 is defined by eq. (CM2.12)

|NlJM〉 =
∑

mN ,ml

(−1)−N+l−M[J ]1/2




N l J
mN ml −M



 |NmN 〉 |lml〉 , (4.3)

where the [x] is used to represent a factor of (2x+ 1).

Thus if one has T-matrices in the |NmN 〉 |lml〉 basis, they can be converted to the

|NlJM〉 basis using the above, subject to the condition J = N + l.

4.2.2 Case when the Projectile has Spin=1/2

The above case of coupling can be adapted by redefining some variables and adding a

new one to define the projectile electron spin. In this new coupling scheme the spin

momenta and non-spin momenta are calculated in parallel before being combined in the

final coupling stage.

• N is rotational angular momentum of molecule.

• Sm is electron spin angular momentum of the molecule.

• s is spin of projectile electron, s = 1/2.

• S is total spin angular momentum of the system, S = Sm + s.

• j defined as previously, j = N + Sm.

• l is angular momentum of the projectile.

In this case we still use eq. 4.1:

N+ l = J ,J + S = J. (4.4)

but with a generalised definition of S:

S = Sm + s = Sm ± 1/2. (4.5)
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Figure 4.1: Comparison of the old (Corey and McCourt (1983), left) and new (right) coupling

schemes.

Both schemes are shown in fig. 4.1, note the difference in definition of molecular spin,

j and J between the original (left) and the new (right) schemes. Figure 4.1 also provides

the triangulation limits on the summations in eqs. 4.6 to 4.8 below.

Within our chosen coupling scheme, the spin and other angular momenta are coupled

separately and then joined. Therefore the electron scattering T-matrices can be trans-

formed by using eq. 4.3, before including the extra weighted summation over S arising

from the need to consider projectile spin. Adapting eq. (CM2.27):

T JS
N ′j′l′,Njl =

∑

J

(−1)j′−l′−j+l[J ][j′, j]1/2






S N j

l J J













S N ′ j′

l′ J J







TJS
N ′l′,Nl,

(4.6)

where the superscript S notation shows that the total electron spin is treated as a

constant of motion for a given T-matrix.

4.2.3 Rotational Cross-Sections

Once the T-matrices have been transformed to the necessary basis, the scattering observ-

ables can be calculated using the following equations. Eq. (CM2.28) gives the scattering

amplitude from state NSjm to state N ′Sj′m′:
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f(N ′Sj′m′←NSjm|R̂)

=
( π

kk′

)1/2 ∑

Jll′ml′

il−l
′+1[l]1/2[J ]





j J l

m −m 0









j′ J l′

m′ −m ml′



T JS
N ′j′l′,NjlYl′ml′

(R̂)

=
( π

kk′

)1/2 ∑

Jll′ml′

∑

J

il−l
′−1(−1)j′−l′−j+l[J J ][jj′l]1/2







S N j

l J J













S N ′ j

l′ J J







×





j J l

m −m 0









j′ J l′

m′ −m ml′



TJS
N ′l′,NlYl′ml′

(R̂). (4.7)

Finally, the integral cross-section for a given S is given by eq. (CM2.30):

σS(N ′j′←Nj) =
π

(2j + 1)k2

∑

Jll′

[J ]|T JS
N ′j′l′←Njl|2

=
π

k2

∑

JJ ′

∑

Jll′

[JJ ′J j′]







S N j

l J J













S N ′ j′

l′ J J







×







S N j

l J J ′













S N ′ j′

l′ J J ′







TJSN ′l′,NlT
J ′S∗
N ′l′,Nl. (4.8)

However a weighted summation over S is required to obtain the observable cross-

section

σ(N ′j′←Nj) =
Sm+s
∑

S=|Sm−s|

(2S + 1)

n
σS(N ′j′←Nj), (4.9)

with

n =

Sm+s
∑

S=|Sm−s|

(2S + 1). (4.10)

This summation is not required in the original theory of Corey and McCourt (1983), as

there is only a single value of S in their scheme.

4.3 The Infinite Order Sudden Approximation

Spin-coupled cross-sections may also be obtained through manipulation of the pure ro-

tational cross-sections using the Infinite Order Sudden approximation (IOS). This ap-

proximation is very similar to the Adiabatic Nuclei Rotation (ANR) approximation in

the electron-molecule literature (Lane, 1980b). This latter was employed in all previous

R-matrix studies, combined with the Born or Coulomb-Born theory (see references in

section 4.1). The ANR and IOS approximations consist of assuming that the target ro-

tational states are degenerate, which is valid when the rotational spacings are negligible
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4.3 The Infinite Order Sudden Approximation

with respect to the collisional energy. Within such a treatment, the sum of cross-sections

over a final state is independent of the initial state. The IOS or ANR approximation

was shown to be valid down to threshold in the case of the electron-H+
3 system (Faure

et al., 2006), owing to the strong Coulomb field which ensures that the time scale for

electron motion is always rapid compared to nuclear motion. In the case of a neutral

target, the IOS approach is expected to fail at threshold, and a kinematic correction

is usually employed (see below). Corey and McCourt (1983) have shown that within

the IOS approximation, the spin-coupled or fine structure cross sections can be directly

obtained from the “fundamental” pure rotational cross sections, i.e. those out of the

lowest N = 0 level. In practice, this is the method used below to calculate our data.

Rabadán et al. (1998b) describe how to calculate rotational cross-sections using T-

matrices produced by the R-matrix method (Tennyson, 2010), employing the ANR ap-

proximation to allow the body-frame T-matrices to be transformed to the laboratory

frame:

TJS
N ′l′,Nl ≈

l
∑

Λ=−l

AJΛ
N ′,l′T

ΛS
l′,l A

JΛ
N,l , (4.11)

where Λ is the projection of l over the nuclear axis and where

AJΛ
N,l =

√

2N + 1

2J + 1
C(NlJ ; 0Λ− Λ), (4.12)

where C(.) is a Clebsch Gordan coefficient. From these, the integrated rotational cross-

sections are then calculated using:

σRM (N ′←N) =
π

(2N + 1)k2i

∞
∑

J=0

J+N
∑

l=|J−N |

J+N ′

∑

l′=|J−N ′|

(2J + 1) |TJS
N ′l′,Nl|2, (4.13)

where ki is the initial momentum of the electron. In practice, the partial-wave ex-

pansion is truncated to some finite maximum value of l. This formulation has been

implemented in the Fortran program ROTLIN, written by Faure et al. (2007). We have

used the ROTLIN program to produce the pure rotational cross-sections for this work,

subsequently calculating the spin-coupled data using the IOS approximation outlined in

Corey and McCourt (1983).

Within the IOS approximation, the spin-coupled, degeneracy-averaged integrated

cross-sections are given by eq. (CM4.11):

σS(N ′Sj′←NSj) =
N+N ′

∑

λ=0

[N ′Nj′]





N ′ N λ

0 0 0





2




λ j j′

Sm N ′ N







2

× σS(λ← 0), (4.14)
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where σ(λ← 0) is defined explicitly by

σS(λ← 0) ≡ π

k2i

∑

l′l

[l′l]

[λ]





l′ l λ

0 0 0





2

|T lS
λ |2. (4.15)

This is equivalent to the pure rotational cross-section out of the lowest N = 0 level, for

a given S

σS(λ← 0) ≡ σS(N ′ ← 0). (4.16)

The total cross section is then obtained using Eq. (4.9).

Using this method we have generalised on the code ROTLIN to the create ROTLIN S

which implements this IOS approximation method to add the spin-coupling to the pure

rotational cross-sections. This is done by specifying the required values of j and j′ as

user input, where they can take the values

|N − Sm| ≤ j ≤ N + Sm, (4.17)

and

|N ′ − Sm| ≤ j′ ≤ N ′ + Sm, (4.18)

in integer steps of j, j′.

The original ROTLIN code also implemented a Born correction for ∆N = 1 transi-

tions, this is especially important when the dipole moment of the molecule is large (say

& 1 D) and the Born cross-section becomes dominant (Faure et al., 2004). In this case,

the standard procedure is to use the dipolar Born approximation to obtain the cross-

section for the high partial waves not included in the body-frame T-matrices (Norcross

and Padial, 1982). The resulting ∆N = 1 spin-rotation cross-sections produced also

incorporate the Born correction correctly.

Finally, as mentioned above, the expected unphysical behaviour of the IOS cross-

sections near rotational thresholds was corrected using a simple kinematic ratio (Chang

and Temkin, 1969; Rabadán et al., 1998b) which forces the excitation cross-sections to

zero at the rotational threshold:

σfinal(N ′j′←Nj) = kf
ki
σ(N ′j′←Nj), (4.19)

where kf is the final momentum of the electron, which is equal to zero at threshold. The

exact threshold law is however not known. We note that threshold as well as closed-
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channel effects can only be included rigorously in full close-coupling calculations (Faure

et al., 2006).

4.4 Testing the IOS Approximation

Corey and McCourt (1983) showed that a consequence of the IOS approximation is

that cross sections for any transition N ′ ← N can be deduced from the fundamental

rotational cross sections σ(λ← 0). Namely eq. (CM5.8),

σ(N ′ ← N) =
N+N ′

∑

λ=0

[N ′]





N ′ N λ

0 0 0





2

σ(λ← 0), (4.20)

where σ(λ ← 0) are the pure rotational cross-sections out of the N = 0 level. This

property can thus be tested in the present context. Indeed, in the above treatment the

IOS approximation was combined with both a Born and a threshold correction and the

rotational spacings were thus taken into account in the final cross sections. Also the

above sum over lambda is limited by the maximum of N and N ′ but is truncated in

practice. Hence the above IOS property, eq. (4.20), should not be fulfilled. However, if

in practice the departure from eq. (4.20) is small, as expected at high collision energy,

the above IOS treatment for spin-coupled cross sections should be reliable.

Recently Harrison and Tennyson (2012) published electron-collision data on the

molecular radical CN using the R-matrix method. The T-matrices produced during

these calculations are used here to calculate spin-rotational cross-sections from 0.1 to

4 eV. We use this example to test whether the IOS approximation holds, and also to

produce some initial spin-rotational cross-sections for CN (see next section). Figure 4.4

presents comparisons of the directly calculated σ(N ′ ← N) pure rotational cross-sections,

which include the Born and threshold corrections, with those calculated using the IOS

eq. (4.20) above for a number of transitions.

Clearly there is excellent correlation between the two calculations for all transitions.

The slight discrepancies at low energy (lower than ∼ 25%) can be explained because i)

the target rotational levels are not treated as degenerate in the Born regime and ii) the

rotational thresholds are included in the full calculation through the kinematic ratio,

eq. (4.19). However there is in general an excellent correlation between the two calcula-

tions, demonstrating that eq. (4.20) and by extension eq. (4.14) is reliable. We therefore

conclude that the IOS approximation is applicable in the energy regime investigated and
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Figure 4.2: Electron-impact rotational excitation of CN (N → N ′) calculated using the full

theory (solid) and the IOS approximation, Eq. 4.20 (dashed).

can be used to simplifying the full spin-coupling theory. We note that at lower energy, it

is possible to improve the IOS approach by scaling the IOS spin-recoupled cross sections

by the pure rotational cross sections, as done by Faure et al. (2007) for the hyperfine rate

coefficients of HCN. Full details about this scaling procedure, which becomes necessary

for collision energies below 0.1 eV owing to the failure of the IOS assumption, will be

discussed elsewhere.

4.5 Conclusions

Here is presented a new theory of calculating spin-coupled rotational cross-sections for

electron collisions with neutral linear molecules in a 2S+1Σ+ ground state. This is based

on the initial work of Corey and McCourt (1983), who outlined the details of a 1S atom

colliding with a linear molecule in a 2S+1Σ+ ground state. This work has already pro-

vided the equations required for calculating the state to state differential, and integrated
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cross-sections from the collision T-matrices of the appropriate basis. By introducing pro-

jectile spin to represent the colliding electron, and coupling this to the target molecule

spin, we have presented an altered coupling scheme which can still be used in the existing

theoretical framework.

However, by applying the IOS approximation, we are able to greatly simplify the

theory to obtain the spin-coupled cross-sections by simple manipulation of the pure

rotational data. The viability of using this approximation has been tested using exist-

ing input T-matrices from electron-CN scattering calculations (Harrison and Tennyson,

2012), and found to be applicable in this scheme. The use of IOS approximation has also

enabled a successful integration into the existing ROTLIN Fortran program, which calcu-

lates pure rotational cross-section using the T-matrix output from an electron-molecule

scattering calculation using the R-matrix method (Tennyson, 2010). This has led to

the development of the new ROTLIN S program, which enables the spin-coupled cross-

sections to be calculated with the addition of new user input which will be implemented

as a module within the UK Molecular R-matrix code (section 3.4).

4.6 Example Results

A full set of example results for the CN spin-rotation cross-sections, and conclusions to

these results, can be found in section 5.7.
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Chapter 5
CN

This chapter has been substantially published as Harrison and Tennyson (2012).

5.1 Introduction

The CN radical (fig 5.1) is a well known and a well studied molecule, particularly through

its spectra. A review of previous work on this can be found in the introduction of (Liu

et al., 2001). CN is found in numerous environments, ranging from the sun’s atmosphere

Porfireva (1975), the interstellar medium Krelowski et al. (2011) to terrestrial plasmas

and within flames Halpern et al. (1996). It was also one of the first molecules used to

study the cosmic microwave background Thaddeus (1972); Kaiser and Wright (1990),

and is still studied today Leach (2012).

Information on electron scattering is important as such collisions may cause electronic

excitations. This produces the electronic emission spectra crucial in identifying the

molecule in a range of environments. Modelling these spectra requires knowledge of

appropriate electronic excitation mechanisms. Here we consider the interactions between

the target radical and the scattering electron and, in particular, the first two excitations

of molecular CN, the X2Σ+-A2Π and X2Σ+-B2Σ+ transitions. These give rise to the

‘CN red’ and ‘CN violet’ spectral bands.

The anionic form, CN−, is also the smallest molecular anion to be have been observed

in space (Agundez et al., 2010). This detection used observations of the J = 2− 1 and

J = 3 − 2 rotational transitions in the envelope of carbon star IRC +10216; these

transitions were recently measured experimentally in the laboratory by Gottlieb et al.

(2007). Here CN− was found in high abundance. 0.25%, relative to neutral CN, in
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5.1 Introduction

Figure 5.1: The molecule CN (taken from Quantemol-N)

comparison to the extremely small abundance of C2H
− relative to its neutral in the same

region. The reason for the relative sparseness of C2H
− in comparison to other observed

small linear carbon chains is discussed in chapter 7. As the rate of formation of the

anion due to radiative electron attachment is very slow for the smallest carbon chains,

such as CN−, here we investigate the possibility that the formation rate is enhanced

by very weakly bound anion states. This mechanism has been proposed for the linear,

carbon-chain anions recently detected in space (Herbst and Osamura, 2008).

Surprisingly, given its importance, there is very little previous work on electron colli-

sions with CN. Experimental electron collision studies are common for stable diatomics

(Brunger and Buckman, 2002) but difficult for radicals and we are unaware of any for

CN. Many theoretical methods are not constrained by the need for a stable target struc-

ture, including the one we present below. However the only calculated e−-CN collision

cross sections are due to Joshipura and Patel (1994), who considered total cross sec-

tions at high energies (100 – 1000 eV). Our work therefore represents the first study of

low-energy electron collision behaviour with the CN radical.
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5.2 Method

5.2 Method

The scattering calculations reported here were performed using the UK molecular R-

matrix codes Morgan et al. (1998b). In order to simplify the calculation, the Quantemol-

N interface (section 3.6) has been used for models 1–4 (see the Target Calculations section

for details on these models). Non-Quantemol calculations used molecular orbitals differ-

ent from the standard Hartree-Fock (HF) orbitals which the R-Matrix codes produce.

To produce these non-standard orbitals the quantum chemistry software MOLPRO of

Werner et al. (2008) has been used to calculate and output natural orbitals (NOs), via

the multi-reference configuration interaction (MRCI) method.

Scattering calculations were performed at two levels: static exchange (SE), and close

coupling (CC). The presence of low-lying excited target states meant that the widely

used one-state static exchange plus polarisation model was deemed inappropriate for

this study, as this method is prone to give pseudo-resonances at energies above the

first electronically excited target state. Calculations were carried out with an R-Matrix

radius of 15 a0, this was to ensure all of the more diffuse augmented basis set used are

entirely enclosed within the R-matrix sphere.

All calculations were initially performed at the CN equilibrium geometry 1.1718 Å,

and ignored effects due to nuclear vibrational motion.

We note that although CN is linear, neither the polyatomic R-matrix codes nor

MOLPRO use C∞v symmetry. All calculations were therefore performed using C2v

symmetry but identifying the results in C∞v proved to be straightforward and these

symmetry labels are largely used below.

5.3 Target Calculations

A variety of models were tested at re when calculating results for the neutral CN target,

a selection of these are shown in table 5.2. Models 1 – 4 were carried out using the R-

Matrix expert system Quantemol-N. These comprised of HF and Complete Active Space

Configuration-Interaction (CAS-CI) calculations. Two basis sets, cc-pVTZ and aug-cc-

pVTZ, were also used for each method. For the CAS-CI calculations an orbital space

of 7,2,2 (for symmetries a1, b1, b2) has been used. Mapping to 7 σ and 2 π orbitals

in C∞v. Eight electrons were frozen in the 1 – 4σ orbitals with five active electrons

distributed amongst the 5 – 7σ and 1 – 2π. Model 5 used this CAS-CI model but the
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5.3 Target Calculations

Table 5.1: Results of the aug-cc-pVTZ R-matrix target tests run using various weighted NOs pro-

duced by Molpro, and their comparison to the standalone Molpro quantum chemistry calculation

and experimental data.

Weighting (2Σ+:2Π) X 2Σ+ (H) µ (D) A 2Π (eV)

1:0 -92.384 1.42 1.71

5:1 -92.381 1.61 1.52

5:2 -92.380 1.74 1.45

1:1 -92.370 1.93 1.34

Molpro -92.586 1.28 1.32

Thompson and Dalby (1968) 1.45

Huber and Herzberg (1997) 1.15

molecular orbitals used in the calculation were the NOs produced by MOLPRO. For this

model the scattering calculations were performed using the R-Matrix codes manually,

to allow for use of these orbitals. The NOs were state averaged from 3 separate MRCI

calculations, one for each of the 2A1,
2B1 and 2B2, (2Σ+ and 2Π) states, using the

MOLPRO ‘MATROP’ facility. The weighting chosen for each state in the average was

(using the above order of states) 5:1:1. This weighting was chosen as the pure 2Σ+ (1:0:0)

MRCI orbitals gave a vertical excitation energy which is too high but reproduced the

experimental dipole moment excellently, and the equally state averaged (1:1:1) orbitals

made the dipole moment too high by 0.5 Debye, although this model reproduced the

vertical excitation energy found in the literature excellently. Because of this it was

deemed that a weighting be used which approximated both parameters to a good degree

without sacrificing the quality of one to improve the other. Having excitation energies

too high would cause a shift in the threshold of the subsequent excitation cross-sections

produced. Also when the Born correction is applied to these excitation cross-sections,

the correction’s magnitude depends fundamentally on the square of the dipole moment.

Hence approximating both of these molecular properties to a good degree is important

to obtain a target which will lead to accurate scattering observables being produced in

the finished calculation. Table 5.1 shows the full details of Molpro NO study.

There have been a number of previous ab initio studies on CN; Table 5.2 compares

our models with the best of these. As we only use a very limited correlation space, the

other studies give lower absolute energies even for calculations which use the same target

basis. Our dipole moment for our final model gives agreement within 10% against the

calculation of Kalcher (2002) and the experimental values of Thompson and Dalby (1968)
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5.4 Scattering Calculations

Table 5.2: Selected calculated target properties of CN. All results are for the equilibrium geometry

of CN. The calculated absolute energies of the X 2Σ+ ground state are given in Hartree while

the vertical excitation energy to the low-lying electronic states is given in eV. µ is the ground

state dipole moment, given in Debye. See text for details of models.

Model Basis Orbitals Method X 2Σ+ µ A 2Π B 2Σ+

1 cc-pVTZ SCF HF -92.217 2.260

2 cc-pVTZ SCF CAS-CI -92.290 1.167 1.538 3.910

3 aug-cc-pVTZ SCF HF -92.218 2.307

4 aug-cc-pVTZ SCF CAS-CI -92.221 2.230 2.142 7.023

5 aug-cc-pVTZ NOs CAS-CI -92.381 1.612 1.515 3.491

Thogersen and Olsen (2004) cc-pVDZ FCI -92.493

Berente et al. (2002) DZP ROHF CCSD -92.508

Sordo (2001) CBS limit CCSDT -92.606

Ajitha and Hirao (2001) ANO RCCSD 1.106

Shi et al. (2011) AV5Z MRCI+Q+CV+RE 1.141 3.194

Kalcher (2002) cc-pVQZ CAS-ACPF 1.44 1.141

Polak and Fiser (2002) aug-cc-pVQZ CASSCF-MRCI -1.44

Thompson and Dalby (1968) Experiment 1.45

Huber and Herzberg (1997) Experiment 1.151 3.197

and Polak and Fiser (2002). Absolute values of the dipole moment have been given, and

in all cases the direction points towards the Nitrogen atom. Our predictions for the

vertical energy of excitation for the low-lying state are systematically too high for all

models based on Hartree-Fock orbitals. Use of NOs greatly improves this situation; with

these orbitals our excitation energies are 0.6 eV and 3.5 eV closer to the experimental

values than model 4, which used Hartree-Fock orbitals but the same basis set. The

best theoretical results, from the recent paper of Shi et al. (2011), benefit from having

the Davidson correction applied as well as including relativistic effects and core-valence

correlation into the calculations. Note that the experimental excitation energies, taken

from Huber and Herzberg (1997), are corrected to change from adiabatic to vertical

excitation energies. This raises the original adiabatic values by some 0.06 eV (A) and

0.001 eV (B) giving vertical excitation energies given in the table.

5.4 Scattering Calculations

Our scattering calculations provide a number of scattering observables, including total

elastic and excitation cross-sections, eigenphase sums and resonance data, and detection

of anionic bound states. Three classes of model were tested: SE based on a single target
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Figure 5.2: Elastic Cross-Section for electron CN collisions

state and using Hartree-Fock orbitals (the SCF-SE method), and two CC models where

48 state calculations (with the target composing of doublet and quartet states and 6

states per symmetry) were performed in the inner region. Of the two CC models, one

used Hartree-Fock orbitals (SCF-CC), and the other used the MRCI natural orbitals

produced in MOLPRO (NO-CC).

Outer region calculations were performed retaining those target states which lie below

10 eV for the CC calculations, the Quantemol-N default setting. This means 16 and

only 4 states were kept for models 2 and 4 respectively, and 15 for model 5. The results

reported below are insensitive to increasing these numbers.

5.4.1 Cross-sections

Figure 5.4 presents the total elastic cross-section of CN for electron scattering energies

up to 10 eV, for all 3 models with the aug-cc-pVTZ basis set, SCF-SE, SCF-CC and

NO-CC. For the final NO-CC model, a Born correction was applied due to the dipolar

nature of the molecule, which acts to increase the cross-section at all energies.

Electron impact electronic excitation cross sections are given by the many-state CC

calculations. Figure 5.5 shows the cross-sections representing the excitation from the 2Σ+

ground state of the neutral to the first two excited states, A 2Π and B 2Σ+. Here the

Born correction is applied to both excitations as they are both dipole allowed transitions;

77



5.4 Scattering Calculations

0

1

2

3

4

E
xc

ita
tio

n 
cr

os
s-

se
ct

io
n 

(Å2 )

A 
2Π SCF-CC

NO-CC w/o/ Born
NO-CC w/ Born

0 2 4 6 8 10
Energy (eV)

0

0.5

1

1.5

2

2.5

3

E
xc

ita
tio

n 
cr

os
s-

se
ct

io
n 

(Å2 )

B 
2Σ+

Figure 5.3: Electron impact electronic excitation cross sections for CN final state: A 2Π, B 2Σ+

for clarity we only give corrected results for our calculation based on the use of NOs.

The Born correction is small near threshold but becomes significant at higher collision

energies, presumably as higher partial waves become important. Both excitation cross

sections show resonance features. The biggest difference between models is caused by the

shift in excitation threshold. Since the NO-based calculation gives excitation energies

which agree more closely with experiment than the SCF-based calculations, these must

be regarded as our best estimate for the electronic excitation cross section.

5.4.2 Bound anionic states

Bound state energies were calculated by searching at negative scattering energies using

the outer region program BOUND (Sarpal et al., 1991). For these calculations only the

low-lying X 2Σ+ and A 2Π were retained in the outer region of the CC calculations, since

experience has shown that strongly closed states can cause such outer region calculations

to be numerically unstable. These were propagated to a distance of 30.1 a0. Table 5.3

summarizes the results of these studies. All models found only a single bound state.
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5.4 Scattering Calculations

Table 5.3: CN− bound states with energies given in eV. All calculations are for the equilibrium

geometry of CN

Model Basis Orbitals Method 1Σ+ Binding energy

This work/1 cc-pVTZ SCF SE 2.594

2 cc-pVTZ SCF CC 3.485

3 aug-cc-pVTZ SCF SE 2.571

4 aug-cc-pVTZ SCF CC 3.820

5 aug-cc-pVTZ NOs CC 3.407

Thogersen and Olsen (2004) cc-pVDZ FCI 3.527

Midda and Das (2004) aug-cc-pVTZ HF/DF B3LYP 4.04

Polak and Fiser (2002) aug-cc-pVQZ CASSCF-MRCI 3.58

w/Davidson 3.75

Ortiz (1998) 6-311++G(d,p) UHF 2MBPT 3.83

Berkowitz et al. (1969) experiment 3.82±0.02

Klein et al. (1983) experiment 3.821±0.004

Bradforth et al. (1993) experiment 3.86±0.003

The SE calculations give a vertical binding energy of about 2.6 eV whereas for the CC

calculations this binding energy is increased to between 3.4-3.8 eV. This figure is in

good agreement with the full configuration interaction electronic structure calculations

of Thogersen and Olsen (2004).

The use of density functional theory (Midda and Das, 2004) gives an energy of 4.04

eV, 0.6 eV higher than our value despite using the same basis set. The NO-CC binding

energy of our final model is some 0.4 eV less than both the calculated SCF-CC and the

measured values; however the measured binding energies quoted are adiabatic and will

therefore be larger than our calculated vertical ones. The work of Polak and Fiser (2002)

agrees within 5% of our best value despite their use of a larger basis set, however once the

Davidson correction had been applied the result moved away from our results towards

the experimental values. Finally the best theoretical results come from the second order

many body perturbation theory of Ortiz (1998), who matches the experimental values

excellently.

5.4.3 Resonances

Resonances were characterised using a Breit-Wigner fit to the eigenphase sums as imple-

mented in the automated detection and fitting program RESON (Tennyson and Noble,
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Figure 5.4: Electron – CN eigenphase sums for different symmetries for the SCF-SE(dash),

SCF-CC(dash-dot) and NO-CC(solid) models.

1984b). Eigenphase sums, which were obtained from diagonalising the K-matrix for

each symmetry at each energy, are displayed in figure 5.6. Only low-lying resonances

were considered since higher resonances are unlikely to be important in any radiative

association process.

A resonance manifests itself as a rapid increase by π radians in the eigenphase sum.

This can best be seen in the 3Π sum of the figure, where all 3 models undergo this change

(although these resonance features extend above the 4 eV range of this figure). Note

we do not see the full shift of π as the widths of these resonances are large, spanning

between 1 - 1.5 eV. The fitting of the Breit-Wigner form to a resonance can however be

disrupted by the presence of threshold features in the eigenphase sum within the energy

range of the fit. Threshold features are discontinuities in the derivative of the eigenphase
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5.5 Results as a Function of Bond Length

sum caused by the opening of new scattering channels. This can clearly be seen in both

the 1Σ+ and 3Σ+ eigenphase sums of the NO-CC model, where the B 2Σ+ excitation

threshold of the target appears at 3.491 eV. The Breit-Wigner form explicitly does not

allow for a partial resonance fit, thus when this occurs there is an uncertainty in the

fitted data.

Table 5.4 summarizes the resonances detected for CN−. The SE calculations both

detect a single shape resonance of 3Π symmetry at about 3.4 eV. At the SE level this is a

very broad resonance with a width of about 1.5 eV. In the CC calculations this resonance

position is systematically lowered, although for the cc-pVTZ basis set the width narrows

and for the aug-cc-pVTZ basis it broadens. This is possibly because RESON had trouble

finding this resonance in certain models (where thresholds were present), only a manual

increase in the sensitivity of the programme allowed it to be fitted. Hence the widths

do not appear consistent across similar models; the quoted values should probably be

regarded as uncertain by up to 50%. The CC calculations based on the use of SCF

orbitals introduce Feshbach resonances of 3Σ+ and 3Σ− symmetry, with the use of an

augmented basis set acting to raise the energy at which it appears by about 1 eV and

0.7 eV respectively. We note that none of these resonances lie below the A 2Π first

excited state of CN.

The quantum chemistry calculations on CN− by Musial (2005), using the same aug-

cc-pVTZ basis set as our final model, calculated excited states of the anion. These

excited states would manifest in our scattering calculations as the sum in energies of

an anionic bound state and a resonance (of the same symmetry). However the results

in Musial (2005) are purely for singlet excited states, for which we find no resonances.

This leads us to conclude that the excited states of CN− detected by Musial (2005) are

all false artefacts. The reasoning behind which can be found in the work of Stibbe and

Tennyson (1999).

Interestingly we note that both HCN and HNC were found to support a single shape

resonance of 2Π symmetry at a position of between 2.5 – 3.3 eV and a width of between

1.3 – 1.6 eV depending on the model used (Varambhia. and Tennyson, 2007).

5.5 Results as a Function of Bond Length

As a further development to our calculations we ran the same model (aug-cc-pVTZ basis

set, NO-CC scattering model) at different bond lengths, spanning 0.5 Å and centred
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Table 5.4: CN− low lying resonance positions (and widths) in eV

Model 1 2 3 4 5

3Σ+ 3.450 (0.761) 4.486 (0.462) 4.526 (1.186)

3Π 3.359 (1.513) 2.978 (1.053) 3.424 (1.403) 3.340 (1.583) 3.208 (1.084)

3Σ− 4.613 (1.209) 5.319 (0.906) 4.881 (1.084)

Table 5.5: X 2Σ+ target energies, A 2Π & B 2Σ+ excitation energies, and 1Σ+ bound state

energies for different bond lengths, All values are in eV.

Bond length (Å) X 2Σ+ A 2Π B 2Σ+ 1Σ+ Binding energy

0.9718 -92.252 3.092 3.212 3.178

1.0718 -92.354 2.206 3.341 3.326

1.1718 (equilibrium) -92.381 1.515 3.491 3.407

1.2718 -92.371 1.014 3.651 3.414

1.3718 -92.338 0.589 3.622 3.411

on the equilibrium geometry of 1.1718 Å. Table 5.5 presents the results of the target

calculation as a function of bond length and also the binding energy of the anionic

bound state detected in the scattering calculation.

Table 5.6 gives resonance positions for the 3Σ+, 3Π and 3Σ− resonances as a function

of bond length. As bond length increases we find that all resonances lower in position

and narrow in their widths. At the smallest bond length we were unable to fit the width

of the 3Π resonance. This is due to the extreme broadness the resonance is likely to

have, resulting in it crossing over threshold features which RESON is unable to make

a fit of. Our calculations also detected a 3∆ state at 1.2718 and 1.3718 Å, at 1.2718

Å it lies very close to the 3Σ−, thus we were unable to obtain a position fit for this

resonance despite its clear appearance in the eigenphase sums. The value of 4.1 eV given

in Table 5.6 is a result of a manual fit, whereby we have taken the second derivative of

Table 5.6: Resonance position (and widths) in eV as a function of bond length. a indicates a

manual fit.

Bond length (Å) 0.9718 1.0718 1.1718 (equilibrium) 1.2718 1.3718

3Σ+ 7.55 (2.01) 5.71 (1.35) 4.526 (1.186) 2.08 (0.25) 1.03 (0.08)

3Π 9.72(a) 7.76 (3.14) 3.208 (1.084) 2.64 (0.84) 2.08 (0.52)

3Σ− 9.04 (2.89) 6.64 (1.73) 4.881 (1.084) 4.1a 2.40 (0.43)
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the eigenphase sum to find the position of the point of inflection. The 3∆ resonance is

observable in the eigenphase sums at all bond lengths, however due to its proximity to

3Σ− and the increased broadness of all resonances at lower bond lengths, we were not

able to obtain RESON fits for this 3∆ resonance.

5.6 Conclusions

This chapter has presented excitation cross-sections to the first two excited states of

CN which represent the ‘CN red’ and ‘CN violet’ spectral lines. Applying the Born

correction to these cross-sections leads to an enhancement of the magnitude of both. It

must also be considered that this enhancement is already pronounced at the maximum

incident electron energy in our calculations. At 10 eV the size of the cross-section

is approximately doubled by the correction. A typical plasma may contain electrons

moving at much greater energies than 10 eV, thus if we were to extend our results up

to and beyond ionisation of the molecule (into the high energy scattering regime), this

enhancement will be even more pronounced. This is because at these energies the Born

approximation becomes dominant. This increase in cross-section magnitude will lead

to an increase in calculated excitation rates, likely leading to an enhancement of the

spectra modelled from this data.

Thus far the role of electron-scattering cross-sections in the interstellar medium (ISM)

has largely been ignored. Due to this there is no data with which to compare our excita-

tion cross-sections to, and to our knowledge we believe our data to be the first low-energy

electronic excitation cross-sections for this molecule. Comparisons with plasma models

are also difficult, as these all assume non-local thermal equilibrium (LTE). Because of

this the plasma spectra can be predicted from these models, however reaction rates

cannot. Thus no direct comparisons with existing plasma data can be made.

The calculations also give data which suggest there are no scattering resonance fea-

tures at low energy, below 3 eV. This makes it unlikely that the formation on CN− in the

ISM is caused by the trapping of an incoming electron into a resonance state of neutral

molecule. The temperatures in the ISM are simply too low to produce electrons with

enough energy to become trapped in one of these states.

As discussed in chapters 6 & 7, an alternative explanation of the observed molecular

anion abundance may arise from the very weakly bound anionic states. These states will

support nuclear excited states which lie in the continuum and therefore are resonances.
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However, it appears that CN− does not support any of these states either. It would

therefore seem likely that the vast majority interstellar CN− is formed by some other

mechanism, such as by dissociative attachment of a CN containing species.

5.7 CN Spin-Coupled Rotational Cross-Sections

The theory used in this section is fully outlined in chapter 4 and these results have been

published in Harrison et al. (2012).

5.7.1 Introduction

CN was one of the earliest molecules detected in the ISM and it has been observed in

a variety of different astronomical environments (Bus et al., 1991; Ahearn et al., 1995;

Fray et al., 2005; Giannetti et al., 2012). The CN rotational spectrum has been used

to measure the temperature of the cosmic microwave background (CMB) along different

lines of sight. However whether the collisional excitation by species including electrons

contribute to an enhanced observed temperature for the rotational states of CN has

proved controversial (Roth et al., 1993; Leach, 2012). Electron collisional excitation of

CN was considered sometime ago by Crawford et al. (1969) and Allison and Dalgarno

(1971), and recently by Harrison and Tennyson (2012).

Each rotational level of CN is split by spin-rotation coupling so that rotational level

N has two sub-levels given by j = N ± 1/2; conventionally each of these are labelled

using N and the e or f label for the splitting (Brown et al., 1975). Levels with parity

+(−1)j−1/2 are e levels (j = N + 1/2), while levels with parity −(−1)j−1/2 are f levels

(j = N − 1/2). Radiative (dipolar) selection rules are:

∆j = 0, e↔ f,∆j = ±1, e↔ e, andf ↔ f, (5.1)

5.7.2 Results

Figures 5.7 to 5.11 present both the pure rotational (“rotational”) and spin-rotational

cross-sections for the 0 → N (N = 0, 1, 2, 3, 4), 1 → 1, 2 → 2, 1 → 2 and 1 → 3

transitions, for incident electron energies up to 4 eV. The e/f notation in the legends

indicating the spin-resolved transition between states as discussed in the previous para-

graph. It is important to note that above the A 2Π excitation threshold at 1.515 eV,

electronic excitations are also possible. However, what is clearly visible in the figures is
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Figure 5.5: CN N = 0− 0 elastic rotationally-resolved cross-section

the resonance feature associated with the 2Pi resonance between 3-3.4 eV (depending

on model). The resonance region is the energy range where transitions with ∆N > 2 are

significant but, conversely, it does not significantly affect the dipole-dominated ∆N = 1

transitions. Also note the 0-0 elastic rotational cross-section is not changed by introduc-

ing spin-coupling, as both j and j′ may only have the value 1/2. Cross-sections up to

and included ∆N = 6 were calculated and considered, however those beyond ∆N = 4

are all very small, below 0.01 Å2 and are not considered here.

In fig. 5.7, the present pure elastic 0 − 0 cross section is compared to the old close-

coupling calculations of Allison and Dalgarno (1971). Both calculations are found to

agree at the lowest energy (0.1 eV) while at higher energy, our value is much larger,

reflecting most probably the much better treatment of the short-range forces as well as

the possible role of the above mentioned resonances.

Very similar elastic cross sections are obtained for levels N = 1 and 2, as plotted

in fig. 5.8. We also observe for these “quasi-elastic” transitions (∆N = 0) that parity-

changing transitions (e ↔ f) have much lower cross sections than parity-conserving

transitions. This propensity rule is further discussed below.

In fig. 5.9, the 0− 1 and 0− 2 rotational cross sections are compared to the results

of Allison and Dalgarno (1971). The large dipolar 0 − 1 cross sections are found in

excellent agreement, as expected since the dipole moment used is the same in both

calculations. The present 0− 2 cross section is found to be significantly lower than that

of Allison and Dalgarno (1971), as this transitions is dominated by short-range effects,
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Figure 5.6: CN N = 1− 1 and N = 2− 2 spin-rotationally resolved elastic cross-sections

this again shows the importance of the R-matrix treatment. It is also about two orders

of magnitude lower than the 0− 1 cross section. We also observe that the largest spin-

rotational cross sections are those corresponding to parity-conserving transitions. This

propensity rule, which can be written ∆j = ∆N , is a general feature of any molecule in

2S+1Σ electronic state as described theoretically in Alexander et al. (1986). For ∆j = 1

it thus follows the above radiative selection rule. At the IOS level, it can be explained

simply from the 3j and 6j coefficients in eq. (4.14). We note that this propensity rule

is also observed in the recent close-coupling calculations of Lique and Klos (2011) and

Kalugina et al. (2012) on CN–He and CN–H2, respectively.

Fig. 5.10 shows that 0 − 3 and 0 − 4 cross sections are much lower than the 0 − 2

cross section, except in the region of the B 2Σ+ resonance where the 0− 4 cross section,

in particular, is significantly amplified and becomes larger than the 0− 2 cross section.

This is expected to have important consequences on the spin-coupled cross sections, as

discussed below. Again we observe that parity-conserving transitions (∆j = ∆N) are
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Figure 5.7: CN N = 0− 1 and N = 0− 2 spin-rotational excitation cross-sections

preferred.

Finally, fig. 5.11 gives cross sections for ∆N = 1, 2 transitions out of the N = 1

parity doublet. The dipolar 1− 2 rotational cross section is found to be comparable to

the 0− 1 cross section and the propensity rule e↔ e, f ↔ f is clearly in evidence for all

transitions at collision energy below about 2 eV. However, at higher energy, the parity-

changing transition 1f − 3e is surprisingly found to become dominant. This illustrates

the strong impact of the resonance associated with the B 2Σ+ excitation at 3.49 eV.

Indeed, this resonance greatly enhances the 0− 3 and 0− 4 cross sections (see fig. 5.10)

which, in turn, increase ∆j = 3 cross sections through eq. (4.14).

5.7.3 Conclusions

Data has been presented for the (0→N), (N = 0 − 4), 1 → 2 & 1 → 3 rotational

cross-sections for an electron-CN collision. These results are heavily influenced by both

the A 2Π and B 2Σ+ excitation thresholds at 1.52 and 3.49 eV respectively. The latter
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Figure 5.8: CN N = 0− 3 and N = 0− 4 spin-rotational excitation cross-sections

in particular leading to an enhancement of the cross-sections. At energy below these

electronic thresholds, the usual propensity rule for parity-conserving transitions (∆j =

∆N) was found to hold.
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Chapter 6
C3N

This chapter has been substantially published as Harrison and Tennyson (2011).

6.1 Introduction

The molecule C3N (fig 6.1) has recently been discovered in the ISM (Thaddeus et al.,

2008) alongside other members in the CnN series (Cernicharo et al., 2008; Agundez et al.,

2010). It has also been detected in the atmosphere of Titan (Vuitton et al., 2009).

No experimental data has ever been produced on the molecule, and whilst this is

the first investigation into electron-scattering interactions with C3N, many target cal-

culations have already been published (McCarthy et al., 1995; Sadlej and Roos, 1991;

Flores, 1992), along with work on the ground state of the C3N
− anion (Botschwina and

Oswald, 2008; Kolos et al., 2008; Zhan and Iwata, 1996).

6.2 Method

The scattering calculations reported here were performed using the UK molecular R-

matrix codes (Morgan et al., 1998b), mostly starting from the Quantemol-N interface

(section 3.6). Target electronic structure calculations were largely performed with MOL-

PRO (Werner et al., 2008), which was also used to provide many of the sets of target

molecular orbitals. The scattering calculations were performed at two levels: static ex-

change (SE), which is useful for identifying shape resonances, and close coupling (CC).

The presence of very low-lying excited target states meant that the widely used static ex-

change plus polarisation model was deemed inappropriate for this study, as this method
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6.2 Method

Figure 6.1: The molecule C3N (taken from Quantemol-N)

Table 6.1: Equilibrium bond lengths for C3N

Bond Length (Å)

C1-C2 1.212

C2-C3 1.375

C3-N 1.161

is prone to giving pseudoresonances at energies above the first electronically excited

target state.

As we are dealing with electron collisions with strongly dipolar systems, it is nec-

essary to allow for the contribution of electron interactions with the long-range target

dipole moment to any cross sections calculated. This was carried out using the program

BORNCROS (Baluja et al., 2000), which directly calculates the dipole Born correction

to the cross-sections.

All calculations were performed at the equilibrium geometry of the neutral target

(table 6.1) and ignored effects due to nuclear motion. We note that although the molecule

considered here is linear, neither the polyatomic R-matrix codes nor MOLPRO use C∞v

symmetry. All calculations were therefore performed using C2v symmetry. In most cases

identifying the results in C∞v is straightforward and these symmetry labels are largely

used below.
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6.3 Target Calculations

Table 6.2: Results of the cc-pVTZ R-matrix target tests run using various weighted NOs produced

by Molpro, and their comparison to the pure Molpro calculation and other theoretical data.

Weighting (2Σ+:2Π:2Σ−) X 2Σ+ (H) µ (D) A 2Π (eV)

1:0:0 -168.009 2.93 1.20

5:2:1 -168.003 3.66 0.41

1:1:1 -167.999 3.89 0.30

Pure Molpro -168.516 2.86 0.16

McCarthy et al. (1995) -167.400 2.85 0.27

6.3 Target Calculations

Quantemol-N was used to carry out HF and CAS-CI calculations using DZP and cc-

pVDZ basis sets. Tests were performed with several other basis sets, including the ANO

basis recommended by Widmark et al. (1990) for the C3N but for which we were unable

to get satisfactory results.

Models 2 and 4, used a 10σ, 3π orbital space, with 8 electrons frozen in the 1 –

4σ orbitals and the remaining 17 electron distributed among the 5 – 10σ and all the

π orbitals. This CAS-CI model was retained for use in model 5, which made use of

MOLPRO MRCI orbitals; these NOs were obtained by the state-averaging the lowest

2A1,
2B1,

2B2, and
2A2 MRCI states in a 5:2:2:1 weighting, manually chosen in order

to produce good target characteristics for the scattering run. Table 6.2 shows the full

details of Molpro NO study.

Table 6.3 compares our target models with the results of previous electronic structure

calculations. Despite a thorough search no experimental dipole moments could be found

for the neutral molecule.

6.4 Scattering Calculations and Bound Anion States

Again a 48-state calculation was carried out (doublet and quartet states with 6 states

per symmetry being included). The 40 target states below 10eV retained in the outer

region. 46 in Quantemol-N jobs. As for C2H
− (chapter 7) the bound state calculations

retained only the X 2Σ+ and A 2Π target states, and were propagated to 30.1 a0.

Table 6.4 presents the calculated electronic bound states for all models, as well as

previous results from literature. All models find the deeply bound X 1Σ+ state, with

CC calculations finding the state between 1 and 1.5 eV deeper, furthermore use of the
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6.5 Resonances

Table 6.3: Selected calculated target properties of C3N. All results are for the equilibrium ge-

ometry of C3N. The calculated absolute energies of the X 2Σ+ ground state is given in Hartree

while the vertical excitation energy to the low-lying A 2Π is given in eV. µ is the ground state

dipole moment, given in Debye. See text for details of models.

Model Basis Orbitals Method X 2Σ+ µ A 2Π

This work/1 DZP SCF HF -167.870 2.332

2 DZP SCF CAS-CI -167.933 1.288 1.038

3 cc-pVDZ SCF HF -167.871 2.749

4 cc-pVDZ SCF CAS-CI -167.937 2.270 1.235

5 cc-pVTZ NOs CAS-CI -168.003 3.655 0.406

Flores (1992) 6-31G* UMP2 -168.345 3.270

Sadlej and Roos (1991) ANO CAS-SCF CAS-SCF 2.920 0.750

CAS-SCF MRCI 3.040 0.400

McCarthy et al. (1995) cc-pVTZ RCCSD(T) -167.440 0.266

cc-pVQZ RHF -168.071 3.254

RCCSD -167.439 2.887

RCCSD(T) -167.400 2.852 0.270

MRCI-CC calculation bring the bound state even deeper to about 4 eV, closer in line

with data from previous results in the literature. This model also finds numerous other

weakly bound states of C3N
−, presented in table 6.5. It should be noted that model

3 (SCF-SE calculation using the cc-pVDZ basis set) also finds the 1,3Π bound state

at 0.0002 eV, although this was not found in any other models that use SCF orbitals.

There appears to be no prediction of bound states other than the X 1Σ+ states in the

literature.

6.5 Resonances

Figure 6.2 presents the eigenphase sums for C3N
− calculations. Table 6.6 summarizes

the resonance data for C3N
− calculations, with the same method being employed as

previously described for the C2H
− resonances. The SE models all find shape resonances

of 1Π and 3Π symmetries. These appear in all CC calculations at about 0.1 eV lower in

electron scattering energy, with the width remaining quite stable for the 1Π resonance,

and at about 0.2 – 0.4 eV lower scattering energy with a narrower width for the 3Π
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6.5 Resonances

Table 6.4: C3N
− bound states with binding energies given in eV relative to the ground state.

All results are for the equilibrium geometry of C3N

Model Basis Orbitals Method X 1Σ+

This work/1 DZP SCF SE 2.793

2 DZP SCF CC 3.896

3 cc-pVDZ SCF SE 2.248

4 cc-pVDZ SCF CC 3.788

5 cc-pVTZ MRCI CC 4.009

Botschwina and Oswald (2008) VQZ+ RHF RHF 3.651

VQZ+ RHF RCCSD 4.343

VQZ+ RHF RCCSD(T) 4.395

Kolos et al. (2008) aug-cc-pCV5Z RHF RHF 3.650

aug-cc-pCV5Z RHF RCCSD 4.363

aug-cc-pCV5Z RHF RCCSD(T) 4.417

Zhan and Iwata (1996) 6-31G+(d) HF HF 2.519

Table 6.5: Binding energies, in eV, of the states of C3N
− calculated for the MRCI-CC scheme

(model 5).

Singlet Triplet

Σ+ 0.0012

0.5490 0.5490

0.6241

0.6220

4.0094 4.0094

Π 0.0003 0.0003
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6.6 Cross-Sections

Table 6.6: C3N
− low-lying resonance positions (and widths) in eV

Model 1 2 3 4 5

1Π 2.905 (0.471) 2.716 (0.452) 2.989 (0.444) 2.822 (0.475) 2.749 (0.437)

1Σ− 2.29 a 2.191 (0.158) 2.094 (0.153)

1∆ 2.307 (0.161) 2.248 (0.176) 2.167 (0.184)

3Σ+ 0.987 (0.016) 1.327 (0.023) 0.741 (0.034)

3Π 1.342 (0.204) 1.167 (0.121) 1.632 (0.220) 1.25 a 1.426 (0.141)

3Σ− 1.795 (0.053) 2.163 (0.063) 1.666 (0.075)

3∆ 1.460 (0.038) 1.819 (0.047) 1.329 (0.060)
a Resonance present in eigenphases but not fitted by RESON.

resonance. In all CC calculations, Feshbach resonances appear in 1Σ−, 1∆, 3Σ+, 3Σ−

and 3∆ symmetries. These resonances appear systematically at higher energies for the

larger cc-pVTZ basis compared to cc-pVDZ when using SCF orbitals. However the use

of MRCI NO’s leads to lower resonance positions than either SCF-CC models for all

symmetries. The Feshbach resonance widths remain stable across all CC models.

6.6 Cross-Sections

Figure 6.3 presents the total elastic cross-section of C3N for electron scattering energies

up to 10 eV, for three models, SCF-SE, SCF-CC and MRCI-CC. Born corrected results

for the MRCI-CC model are also shown.

Figures 6.4 shows inelastic cross-sections representing the excitation from the 2Σ+

ground state of the neutral to the first two excited states, both of which are 2Π; the Born

correction is applied to both excitations. The comparison between the SCF-CC and the

MRCI-CC models shows us that the use of MRCI orbitals increases the cross-sections

at all energies, although both models share similar features (such as the threshold spike

in B 2Π excitation). Again the extra resonances shown by the MRCI-CC model should

be treated with caution.

6.7 Conclusions

The presence of electronic resonance features above 1 eV for this molecule suggests that

formation of temporary negative ions by electrons trapped in these resonance states is an

unlikely mechanism for radiative electron attachment in the ISM. This is because 1 eV
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Figure 6.2: Electron – C3N eigenphase sums: for SCF-SE(dash), SCF-CC(dash-dot) and MRCI-

CC(solid) models.

converts to a much higher temperature than electrons are found at in the ISM, making it

highly unlikely electrons will reach the energies required to become temporarily trapped

in the resonance states.

The more likely possibility is that the molecular anions observed may arise from the

very weakly bound anionic states, as found for C3N
−. These states will support nuclear

excited states which lie in the continuum and therefore are resonances. If this mechanism

does explain the formation of such anions, C3N
− would be observed in large quantities

but C2H
− would not as this molecule does not support such states (see chapter 7). This

prediction appears to match current observations.
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Chapter 7
C2H

This chapter has been substantially published as Harrison and Tennyson (2011).

7.1 Introduction

Whilst C2H (figure 7.1) has not been directly observed in the ISM, a number of its larger

counterparts have been (Gupta et al., 2007; McCarthy et al., 2006; Brunken et al., 2007;

Vuitton et al., 2009). Initially our studies focussed on electron collisions with C4H as

the first member of the series for which the associated anion had been observed in the

interstellar medium (Gupta et al., 2007). However we found it difficult to establish

definitive properties for the ground state of C4H, a problem that is well-documented

(Fortenberry et al., 2010). Although we have performed a series of electron collision

studies with C4H, here we report electron collision calculations which focus on C2H as

we consider the results of these calculations to be more reliable.

Although no experimental work has ever been carried out on the neutral radical,

a number of previous theoretical calculations (Woon, 1995; Cui and Morokuma, 1998),

including DFT (Ziegler and Gutsev, 1992) have been published. There is also been some

experimental data on the binding energy of the electron in C2H
− (Janousek et al., 1979;

Ervin and Lineberger, 1991; Taylor and Xu, 1998).

7.2 Method

The scattering calculations reported here were performed using the UK molecular R-

matrix codes (Morgan et al., 1998b), mostly starting from the Quantemol-N interface

(section 3.6). Target electronic structure calculations were largely performed with MOL-
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7.2 Method

Figure 7.1: The molecule C2H (taken from Quantemol-N)

PRO (Werner et al., 2008), which was also used to provide many of the sets of target

molecular orbitals. The scattering calculations were performed at two levels: static ex-

change (SE), which is useful for identifying shape resonances, and close coupling (CC).

The presence of very low-lying excited target states meant that the widely used static ex-

change plus polarisation model was deemed inappropriate for this study, as this method

is prone to giving pseudoresonances at energies above the first electronically excited

target state.

As we are dealing with electron collision with strongly dipolar systems, it is nec-

essary to allow for the contribution of electron interactions with the long-range target

dipole moment to any cross sections calculated. This was carried out using the program

BORNCROS (Baluja et al., 2000), which directly calculates the dipole Born correction

to the cross-sections.

All calculations were performed at the equilibrium geometry of the neutral target

(table 7.1) and ignored effects due to nuclear motion. We note that although the molecule

considered here are linear, neither the polyatomic R-matrix codes nor MOLPRO use C∞v

symmetry. All calculations were therefore performed using C2v symmetry. In most cases

identifying the results in C∞v is straightforward and these symmetry labels are largely

used below.

100



7.3 Target Calculations

Table 7.1: Equilibrium bond lengths for C2H

Bond Length (Å)

C1-C2 1.235

C2-H 1.080

7.3 Target Calculations

A variety of models were tested when calculating results for the neutral C2H target, a

selection of these are shown in table 7.3. Models 1 – 6 were carried out using the R-Matrix

software Quantemol-N. These comprised Hartree-Fock (HF) and Complete Active Space

Configuration-Interaction (CAS-CI) calculations using each of the 3 basis sets, DZP,

cc-pVDZ and cc-pVTZ. The CAS-CI calculations used an orbital space of 7,2,2 orbitals

of symmetry a1, b1, b2 respectively which maps to 7 σ and 2 π orbitals. Eight electrons

were frozen in the 1 – 4σ orbitals with five active electrons distributed amongst the 5

– 7σ and 1 – 2π. Model 7 used this CAS-CI model but the molecular orbitals used

in the calculation were produced by MOLPRO, in this case using a multireference CI

(MRCI) calculation, and the R-Matrix calculation was carried out using the R-Matrix

codes manually, to allow for use of MOLPRO orbitals. These natural orbitals (NOs) were

state averaged from 3 states produced one each from 2A1,
2B1 and 2B2, (

2Σ+ and 2Π)

MRCI calculations, using the MOLPRO ‘MATROP’ facility, with a 13:1:1 weighting.

This weighting was chosen to create a target model with good characteristics for the

scattering calculation i.e. a good reproduction of the excitation energies and dipole

moment in comparison with the original MOLPRO calculations. Use of the pure 2A1

MRCI orbitals was found to make the first vertical excitation energy too high in energy

by a factor of 2, and the use of more equally weighted state-averaged orbitals was found

to reduce the dipole to a value too small to be acceptable in the scattering calculation

by up to a factor of 3. Hence model 7 was deemed acceptable in describing both these

characteristics without sacrificing one in favour of the other. Whilst we were able to

find some experimental data for the bound state energy of the anion, we could not find

any data on the neutral, such as the dipole moment. Table 7.2 shows the full details of

Molpro NO study.

There have been a number of previous ab initio studies on C2H; Table 7.3 compares

our models with the best of these. As we only use a very limited correlation space,

the other studies give lower absolute energies even for calculations which use the same
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7.4 Scattering Calculations and Bound Anion States

Table 7.2: Results of the cc-pVTZ R-matrix target tests run using various weighted NOs produced

by Molpro, and their comparison to the standalone Molpro quantum chemistry calculation and

other theoretical data.

Weighting (2Σ+:2Π:2Σ−) X 2Σ+ (H) µ (D) A 2Π (eV)

16:1:0 -76.297 0.68 1.12

13:1:0 -76.296 0.64 1.09

8:1:1 -76.296 0.57 1.03

5:2:0 -76.293 0.28 0.87

1:1:1 -76.267 0.09 0.82

Molpro -76.484 0.82 0.55

Woon (1995) -76.468 0.77 0.40

Table 7.3: Selected calculated target properties of C2H. All results are for the equilibrium ge-

ometry of C2H. The calculated absolute energies of the X 2Σ+ ground state is given in Hartree

while the vertical excitation energy to the low-lying A 2Π is given in eV. µ is the ground state

dipole moment, given in Debye. See text for details of models.

Model Basis Orbitals Method X 2Σ+ µ A 2Π

This work/1 DZP SCF HF -76.142 0.804 1.186

2 DZP SCF CAS-CI -76.200 0.837 1.204

3 cc-pVDZ SCF HF -76.138 0.789

4 cc-pVDZ SCF CAS-CI -76.207 0.801 1.304

5 cc-pVTZ SCF HF -76.156 0.797

6 cc-pVTZ SCF CAS-CI -76.208 0.801 1.248

7 cc-pVTZ NOs CAS-CI -76.296 0.640 1.089

Woon (1995) cc-pVDZ RCCSD(T) -76.401 0.766 0.361

cc-pVTZ RCCSD(T) -76.468 0.774 0.402

CBS limit RCCSD(T) -76.499 0.423

Cui and Morokuma (1998) cc-pVTZ CASPT2 -76.458 0.790

target basis. Our dipole moments are in reasonable agreement with those predicted by

Woon (1995). However our predictions for the vertical energy of excitation for the very

low-lying A 2Π state appear to be systematically too high.

7.4 Scattering Calculations and Bound Anion States

Our scattering calculations concentrated on finding bound states and resonances for

C2H
− but also provide low-energy electron – C2H collision cross sections. Two classes
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7.4 Scattering Calculations and Bound Anion States

Table 7.4: C2H
− bound states with binding energies given in eV relative to the ground state.

All calculations are for the equilibrium geometry of C2H

Model Basis Orbitals Method 1Σ+ Binding energy (eV)

This work/1 DZP SCF SE 1.186

2 DZP SCF CC 2.713

3 cc-pVDZ SCF SE 1.114

4 cc-pVDZ SCF CC 2.637

5 cc-pVTZ SCF SE 1.156

6 cc-pVTZ SCF CC 2.617

7 cc-pVTZ NOs CC 2.282

Baker et al. (1986) 6-311++G UHF UHF 1.56

6-311++G UHF UCISD 2.62

Janousek et al. (1979) experiment 2.94±0.10
Ervin and Lineberger (1991) experiment 2.969±0.006

Taylor and Xu (1998) experiment 2.956±0.020

of models were tested: SE based on a single target state and CC models where 48 state

calculations (doublet and quartet states, 6 states per symmetry) were performed in the

inner region. As discussed below, different numbers of these states were retained in the

outer region of the calculation.

Bound states were calculated using the outer region program BOUND (Sarpal et al.,

1991). For these calculations only the low-lying X 2Σ+ and A 2Π were retained in

the outer region of the CC calculations. These were propagated to a distance of 30.1

a0. Table 7.4 summarizes the results of these studies. In contrast to C3N
− discussed in

chapter 6, all models found only a single bound state. The SE calculations give a vertical

binding energy of about 1.2 eV whereas for the CC calculations this binding energy is

increased to about 2.6 eV. These figures are in broad agreement with the electronic

structure calculations of Baker et al. (1986). The CC binding energies are some 0.6 eV

less than the measured ones; however the measured binding energies are adiabatic and

will therefore be higher than our calculated vertical ones.
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7.5 Resonances

Table 7.5: C2H
− low lying resonance positions (and widths) in eV

Model 1 2 3 4 5 6 7

1Σ+ 2.957 (0.122)

1Σ− 3.876 (1.115) 4.231 (1.056) 3.908 (1.080) 5.130 (1.596)

3Σ+ 2.589 (0.430) 2.768 (0.377) 2.679 (0.444) 2.923 (0.127)

3.942 (0.125)

3Π 3.522 (1.949) 3.49 a 3.634 (2.038) 3.380 (1.360) 3.562 (2.021) 3.53 a 3.682 (2.742)

3Σ− 3.374 (0.867) 3.625 (0.814) 3.416 (0.854) 4.495 (1.298)
a Resonance present in eigenphases but not fitted by RESON.

7.5 Resonances

Outer region calculations were performed retaining those target states which lie below

10 eV for the CC calculations, the Quantemol-N default setting. This means 25 states for

models 2, 4 and 6 but only 16 for model 7. The results reported below are insensitive to

increasing these numbers. Resonances were characterised using a Breit-Wigner fit to the

eigenphases, which are shown in figure 7.2, as implemented in the automated detection

and fitting program RESON (Tennyson and Noble, 1984b). As noted below, resonances

which overlap excitation thresholds were not fitted by this procedure. Only low-lying

resonances were considered since higher resonances are unlikely to be important in any

radiative association process.

Table 7.5 summarizes the resonances detected for C2H
−. The SE calculations all

detect a single shape resonance of 3Π symmetry at about 3.5 eV. At the SE level this is

a very broad resonance with a width of about 2 eV. In the CC calculations this resonance

position is lowered to about 3.4 eV and becomes considerably narrower with SCF orbitals

and broader with MRCI NO’s. The CC calculations based on the use of SCF orbitals

introduce Feshbach resonances of 1Σ−, 3Σ+ and 3Σ− symmetry. Use of NOs introduce

a further narrow 3Σ+ resonance. We note that none of these resonances lie below the

A 2Π first excited state of C2H.

7.6 Cross-Sections

Figure 7.3 presents the total elastic cross-section of C2H for electron scattering energies

up to 10 eV, for all 3 models, SCF-SE, SCF-CC and MRCI-CC. For the final MRCI-CC

model, a Born correction was applied due to the dipolar nature of the molecule, which

acts to increase the cross-section at all energies.

Electron impact electronic excitation cross sections are a feature of CC calculations.
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Figure 7.2: Electron – C2H eigenphase sums for different symmetries for the SCF-SE(dash),

SCF-CC(dash-dot) and MRCI-CC(solid) models.

Figure 7.4 shows the cross-sections representing the excitation from the 2Σ+ ground

state of the neutral to the first three excited states, A 2Π, a 4Σ+ and b 4∆. Here

the Born correction is only applied to the 2Π excitation, as this is the only dipole-

allowed transition. All three excitation cross sections show resonance features. These

are particularly pronounced in the CC-MRCI calculations; we note that cross sections

approximately average the SCF-CC ones which show fewer resonances. Although it is

likely that these cross sections display resonance features, they can only be properly

characterised by much larger calculations than the one presented here.
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Figure 7.3: Elastic Cross-Section for electron C2H collisions

7.7 Conclusions

The presence of electronic resonance features above 1 eV for this molecule suggests that

formation of temporary negative ions by electrons trapped in these resonance states is an

unlikely mechanism for radiative electron attachment in the ISM. This is because 1 eV

converts to a much higher temperature than electrons are found at in the ISM, making it

highly unlikely electrons will reach the energies required to become temporarily trapped

in the resonance states.

The more likely possibility is that the molecular anions observed may be arise from

the very weakly bound anionic states, as found for C3N
−. These states will support

nuclear excited states which lie in the continuum and therefore are resonances. We

note that C2H
− appears not to support such states. If this mechanism does explain the

formation of such anions, C3N
− would be observed in large quantities but C2H

− would

not. This prediction appears to match current observations.
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Figure 7.4: Electron impact electronic excitation cross sections for C2H final state: A 2Π, a 4Σ+

and b 4∆.
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Chapter 8
Atomic Oxygen

8.1 Introduction

Atomic oxygen (figure 8.1) is one of the most abundant elements in the universe and

can be found in a wide range of environments such as astrophysical and industrial plas-

mas (Goicoechea et al., 2009; Ershov and Borysow, 2007) and planetary atmospheres

(Gerarda et al., 2008; Hall et al., 1995). This atom is extremely reactive and thus has a

short lifespan unless it exists in an environment where its continually produced, such as

Earth’s low-orbit atmosphere (Hecht et al., 1995), where ultra-violet radiation continu-

ally splits its molecular parent. This leads to this environment being composed of 96%

atomic oxygen, historically leading to problems with the erosion of spacecraft passing

through (Packirisamy et al., 1995). The reactive nature of atomic oxygen has also led to

it being used in cleaning processes for paintings and surgical instruments, where removal

of organic hydrocarbons which may not be removed by other means is desired.

The abundance and variety of environments in which the element is found means it

Figure 8.1: The Oxygen atom (taken from Quantemol-N)
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8.1 Introduction

is crucial to understand the processes which it can undergo. This is especially impor-

tant in both astrophysical and industrial plasmas, which require a key understanding of

environmental chemistry to model and understand what is happening.

The motivation behind this chapter is a direct influence from my work with Quan-

temol. Shortly after supplying Quantemol-N to Dublin City University (DCU), I was

contacted by Dr. Bernard Keville in order for me to act as support in his use of it.

After some successful initial work, Bernard asked if it was possible for Quantemol-N to

carry out calculations on electron-atom collisions, in particular oxygen. In particular

Bernard was interested in theoretically re-producing the excitation cross-section which

leads to the 3P-3So emission line at 844 nm. This line is caused by an electron excitation

between ground and excited 3P states, before de-excitation to the 3So state. The aim

of this calculation would be to theoretically re-produce the 844 nm excitation cross-

section found in Katsch et al. (2000). After initial investigations it was determined that

Quantemol-N would be unable to carry out the electron-oxygen scattering calculation.

This was because using D2h molecular symmetry to reproduce spherical symmetry be-

came problematic for excitations, where a breaking of the required degeneracies between

D2h symmetries occurred. Note that the UK molecular R-matrix codes cannot be run

using spherical symmetries, but only use Abelian symmetries, thus D2h symmetry is used

as it contains the most symmetry, thus leading to the fastest calculation. The symmetry

issue was further complicated by the 3P ground state of oxygen, which proved difficult

to reproduce in Quantemol-N. It was therefore decided that I would run R-matrix calcu-

lations in an attempt to produce the required data, as manual manipulation of the input

files would allow for a fine-tuning of the results as opposed to the automated approach

of Quantemol-N.

A significant amount of experimental work has been done concerning oxygen in plas-

mas (e.g. Ershov and Borysow (2007); Booth et al. (1991)), and a small number of

previous atomic R-matrix calculations on electron-oxygen scattering do exist. Primarily

the RMPS calculations of Thomas et al. (1997), and the modified B-spline R-matrix

method with non-orthogonal orbitals of Zatsarinny and Tayal (2001). These calcula-

tions however do not include results for the required 3P-3P excitation cross-section. No

other theoretical cross-sections for this excitation have been found, thus this chapter

gives the first theoretical cross-section for the 3P-3P excitation by electron impact. The

R-matrix method has also been used to calculate oscillator strengths for the allowed
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8.2 Method

transitions (Bell and Hibbert, 1990). An extensive summary of all atomic oxygen colli-

sion cross-sections, used as the benchmark in this work, has also been created (Itikawa

and Ichimura, 1990).

This chapter represents the first serious use of the UK molecular R-matrix codes

(Carr et al., 2012) to model an electron-atom interaction. Whilst in principle the codes

are able to correctly model this, a number of minor difficulties were encountered. Thus

the aim of this chapter is to not only present the data calculated, but also to explain

the process of how to run an atom in the codes and the factors which must be known

about.

8.2 Method

Whilst the work in this chapter primarily follows the standard procedure outlined in

Chapter 3 and used in the other chapters, there are a few key points of note to consider

when carrying out an electron-atom collision using the molecular codes.

• Establishing the correct electron configuration of the ground state in D2h molecular

symmetry when applied to an atom.

• Ensuring that excited atomic states are correctly described by the appropriate

degenerate D2h states. Here we note that the D2h states only share degenerate

energies as they are describing a species with a higher symmetry (in this case,

atomic spherical symmetry).

• Making sure the input files for the running of the code have the appropriate changes

to reflect the above.

It is important to note how each of these were dealt with in order to successfully run an

atomic calculation with molecular codes.

1. The oxygen ground state: As previously mentioned, atomic oxygen has a 3P ground

state, this is quite an awkward state to create in the D2h molecular representation.

Table 8.1 shows the neccesary conversion between atomic and the molecular sym-

metries, clearly a P-state requires 3 degenerate molecular states. In order to create

the correct ground state, the following electron configuration was used a2g, b
2
1g, b

2
2g

& b23g. This reflects the electron configuration in spherical (atomic) notation of

1s2, 2s2, 2p4.
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8.3 Calculation Details

Table 8.1: Conversion relations between spherical atomic state symmetries and molecular states

of D2h symmetry

Atomic State Corresponding Degenerate D2h States

S Ag

So Au

P B1g, B2g, B3g

Po B1u, B2u, B3u

D Ag, Ag, B1g, B2g, B3g

Do Au, Au, B1u, B2u, B3u

2. Excited states: A common practise in atomic R-matrix calculations is to manually

shift the energies of excited states so that they match experimental values (e.g.

Hudson et al. (2012)). It was crucial to do this in these calculations for two

reasons. First, so that the excited 3P state is at the same threshold as found

in the experimental work of Katsch et al. (2000), and secondly to ensure that

the excited states retain the necessary state degeneracies in order to correctly

reproduce the atomic states in the D2h molecular symmetry used in the calculation.

There is further discussion of this below, with table 8.3 showing the energy shifts

I had to impart on each of the molecular target states in order to retain the

correct degeneracies, whilst also ensuring they were at the experimental excitation

energies.

3. Adapting the input files to correctly impart energy shifts: This took the most time

to correctly configure due to some experimentation. Whilst energy shifting is

contained in the code documentation, there is no guide which explains the process

from start to finish. Hence I have created a framework here with which future users

can use when attempting similar atomic calculations. Table 8.2 provides this, and

also contains the atom-specific changes which are required during the running of

certain code modules.

8.3 Calculation Details

For this R-matrix calculation the aug-cc-pVQZ basis set was chosen (Dunning, 1989).

Initial investigation with cc-pVnZ (n=D,T,Q) basis sets led to poor target results, further

discussion led to the conclusion that an augmented basis set was required to take into
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8.3 Calculation Details

Table 8.2: Framework for running an atom (as opposed to a molecule) - electron collision calcu-

lation in the UK Molecular R-matrix codes

Task Additional Comments

1 Run the target calcula-

tion

Make sure the correct electron configuration in D2h is

established in order to correctly create the atomic ground

state.

2 Observe state energies These are found in the fort.24 file.

3 Determine which states

should be degenerate to

resolve atomic states

Comparison with experimental energies is useful here.

4 Calculate a ‘shift en-

ergy’ for each state to

make appropriate D2h

states degenerate

Also a good idea to include a shift which makes the

atomic state match the experimental value.

5 The N+1 inner region

jobfiles need an addition

The ‘ESHIFT’ variable must be added to the N+1

SCATCI’s, this is an array of energy shifts (in Hartree)

in the same order as states in CONGEN.

6 Outer region addition SWINTERF needs an ‘ESHIFT’ array included, this ar-

ray of energies should be in fort.24 order of states.

7 Outer region change The ‘IDTARG’ array in SWINTERF is created using the

same process as normal (i.e. All instances of the first

state, then all instances of the next state etc.). However,

this process must be applied to the ‘post-shift’ energy

ordering of states, NOT the fort.24 ordering.

consideration the ‘Rydberg-like’ nature of the oxygen atom, particularly in its excited

states. Larger basis sets were not investigated due to time limitations. The diffuse nature

of the basis set used also meant an increase of the R-matrix radius from the standard

10 a0 to 12 a0. This was to ensure that none of the target wavefunction leaks outside

of the R-matrix sphere, as tests run at 10 a0 suggested this was happening. In order to

produce a set of ‘base-example’ job files, a Quantemol-N CI calculation was carried out

using the correct basis set and electron configuration (see below). Whilst this calculation

did not produce any usable results, it provided a complete suite of calculation jobfiles

which were then edited (in order to, for example, add the energy shifts) in order to run

the correct calculation manually.

The target CI calculation kept (1ag)
2 frozen, with an active space of (2-4ag, 1-2b1u,

1-2b2u, 1-2b3u, 1b1g, 1b2g, 1b3g)
6. State energies were calculated for 48 states, 3 states

for each of the 8 D2h symmetries, for both singlet and triplet spins. However I then
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8.3 Calculation Details

limited the scattering calculation to keep only 26 states in the outer region. This was

judged by analysis of the state energies, beyond the 26 states the D2h state degeneracies

became too mixed up between states and it proved too difficult to resolve the atomic

states from these. Table 8.3 shows the 26 states which were retained and had energy

shifts applied. Note that the energy shifts not only increase the degeneracy of states

in order to re-create the atomic states, they also adjust the energy of the resultant

degenerate states so they match the experimental data of Itikawa and Ichimura (1990).

The excitation cross-section calculated was for the excitation from the 3P ground state

to the 10.99 eV 3P excited state.

Scattering calculations were propagated to 30.1 a0 and upon the request of DCU

results were calculated up to an electron scattering energy of 100 eV. Standard R-

matrix calculations normally provide stable results up to the first ionisation energy, and

then a high-energy treatment is used to extend the range. The ionisation energy of

atomic oxygen is around 13.6 eV, so extending the range up to the required 100 eV

had the potential to provide spurious results for the majority of the energy range. This

problem is amplified by the fact that the 3P-3P transition is dipole forbidden, therefore

the standard high-energy BEf approximation (Kim, 2001, 2007) could not be applied to

the cross-section.

One important point of note is the extraction of an excitation cross-section between

the atomic states when using the D2h molecular symmetry. To obtain the correct cross-

section, one must extract the cross-section going from one of the degenerate initial states

to one of the degenerate final states. Multiplication and division factors may then be

applied depending on the degeneracies of the states involved. For example in this work

(the 3P-3P transition) I first extracted the excitation cross-section going from the 3B3g to

the excited 3B3g state with the ‘post-shift’ value of 10.99 eV. Degeneracy rules can then

be applied in order to increase or decrease the cross-section. E.g. the oxygen 3P ground

initial state is made of 3 degenerate molecular states, so the cross-section is decreased

by a factor of 3, however the final 3P state is also triply-degenerate, so we increase the

cross-section by a factor of 3. Hence the overall effect these rules have in this case is

nullified. Thus

σ(3P −3 P ) = σ(3B3g −3 B3g). (8.1)

In general the degeneracy rules can be applied as follows (where n andm represent the

degeneracies of the initial (x) and final (y) molecular states of the excitation respectively,
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8.3 Calculation Details

Table 8.3: Energy shifts required to make atomic states from molecular states (note the states

are presented in the order of the ’pre-shift’ original target calculation). Shifts are applied to

make state energy match the experimental values of Itikawa and Ichimura (1990).

Target Eh D2h State Vert. Exc. En. (eV) Shift (eV) Atomic State Exp. En. (eV)

-74.539 3B3g 0.000 0.000

3P 0.00-74.539 3B1g 0.004 -0.004

-74.538 3B2g 0.007 -0.007

-74.471 1Ag 1.849 0.121

1D 1.97

-74.469 1Ag 1.900 0.020

-74.463 1B2g 2.070 -0.320

-74.459 1B1g 2.161 -0.504

-74.458 1B3g 2.186 -0.553

-74.406 1Ag 3.617 0.573 1S 4.19

-74.035 3Au 13.715 -4.195 3So 9.52

-74.011 3B3u 14.362 -0.242

3Po 14.12-74.011 3B1u 14.366 -0.251

-74.010 3B2u 14.398 -0.315

-74.004 3Au 14.558 -2.468

3Do 12.09

-74.001 3B2u 14.624 -2.600

-74.000 3B1u 14.655 -2.662

-74.000 3B3u 14.663 -2.677

-73.999 3Au 14.684 -2.721

-73.969 3B3g 15.495 -4.505

3P 10.99-73.969 3B1g 15.504 -4.522

-73.968 3B2g 15.529 -4.573

-73.954 1B3u 15.920 -3.190

1Do 12.73

-73.953 1B1u 15.932 -3.214

-73.951 1B2u 15.987 -3.324

-73.945 1Au 16.149 -3.648

-73.942 1Au 16.237 -3.825

and the true atomic states are given by i (initial) and j (final):

σij =
m

n
σxy (8.2)

The 3P-3P cross-section could have also been extracted by finding the cross-section

between any of the degenerate molecular states in the 3P ground state, to any of the

degenerate molecular states that make up the final 3P state. After checking the data

this was confirmed.
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Figure 8.2: Eigenphase sums of the doublet O− states

8.4 Scattering Results

8.4.1 Eigenphase Sums

Eigenphase sums were calculated up to 100 eV, however beyond the ionisation energy

these can become unstable and erratic. Thus here we present the scattering eigenphase

sums up to a 10 eV (figures 8.5 and 8.6). Beyond this energy scattering observables can

become unstable, an example of this is the dramatic increase of the eigenphase sums

above 10 eV (not shown). One prominent point of note from the eigenphase sums is

that the D2h scattering states which should be degenerate for atomic symmetry (e.g.

2B1g,
2B2g,

2B3g to describe 2P) are not, this is a consequence of applying the energy

shifts to the target states. This became evident when comparing to the results of the

Quantemol-N calculation, in which no energy shifts were applied. In this calculation

the eigenphase sums of the degenerate scattering states were indeed identical. However

as previously mentioned the 3P-3P cross-section from the Quantemol-N calculation did

not agree at all with the cross-section of Katsch et al. (2000). Another important point

of note is the role of pseudo-resonances, which are excited target states lying above the

ionisation threshold.
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Figure 8.3: Eigenphase sums of the quartet O− states

8.4.2 3P-3P Cross-Section

Figure 8.7 presents the final calculated electron impact cross-section for the 3P-3P ex-

citation, up to an energy of 100 eV, this was done purely using the R-matrix method

without application of any high-energy approximations. Here we have applied Gaussian

smoothing to our data to reduce the noise caused by pseudo-resonances (Gorfinkiel and

Tennyson, 2005), carried out via a Fortran subroutine (J. Gorfinkiel, private commu-

nication). By comparison of this work to the Katsch data we can see there is a good

match, particularly in the threshold region. The magnitude and shape of the overall

cross-section matches excellently, including the early peak around 30 eV and also the

tail of the cross-section which levels off at around 0.02 Å2. Clearly the theoretical data

shows many more features compared to the smooth nature of the experimental result,

this can be attributed to a large number of pseudo-resonances which present themselves

in the theoretical calculation, and also the slight numerical instability of the R-Matrix

method above ionisation.

8.5 Conclusions

Here I have presented the first known attempt at running an electron-atom scattering

calculation using the UK molecular R-matrix codes. There are a number of key points
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Figure 8.4: Atomic Oxygen 3P-3P excitation cross-section, leading the emission of the 844 nm

spectral line

which require attention when carrying out such an exercise, and in the example of

atomic oxygen this was not helped by the non-standard nature of the ground state.

However I feel the attempt was successful and the theoretical cross-section matches the

experimental result excellently despite the issues, including the fact that the R-matrix

method is not designed to go to such high energies above ionisation. When presenting

the data to Bernard Keville at DCU he was extremely happy with the results, and thus

I feel as a proof of concept exercise for running atoms using the molecular code, it has

been successful.
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Chapter 9
NaI

9.1 Introduction

NaI (figure 9.1) is an alkali halide with 64 electrons, and is commonly used as a food

supplement to treat and prevent iodine deficiency. It can also be activated with thalium

and used in scintillation detectors. This is because activated NaI emits photons when

exposed to ionizing radiation, this is traditionally the most widely used of the current

scintillation materials as it gives the highest light yield. NaI also has a radioactive

isotope, Na131I, which is used in the treatment of cancer and hyperthyroidism.

The motivation behind investigating electron scattering with the NaI molecule came

directly from my work with Quantemol. Mark Kushner, director of the computational

plasma science and engineering group at the university of Michigan, requested we carry

out electron scattering calculations on a number of molecules used in plasmas, with NaI

being one of the molecules in question. The data requested included elastic and inelastic

cross-sections up to 100 eV.

A literature search reveals there is no previous electron scattering data for this

molecule, either experimental or theoretical. The majority of existing work concerns

potential curves (e.g. Sandrone and Dixon (1998), Kim et al. (2001)), photo-dissociation

data (e.g. Ziesel et al. (2001), Hosseini et al. (2005)) and molecular dynamics (e.g. Mar-

tinez and Levine (1996), Nakagami et al. (2002)). I was also unable to find energies for

the ground and excited states for comparison with the results presented here.
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9.2 Calculation Details

Figure 9.1: The molecule NaI (taken from Quantemol-N)

9.2 Calculation Details

The electron-molecule collision calculations were carried out solely using Quantemol-N

(section 3.6). Whilst the NaI molecule has the irreducible symmetry of C∞v, this is not

possible in Quantemol-N. Instead C2v symmetry was used, with conversion back to the

true C∞v states being relatively trivial. The target calculation was a full configuration

interaction with 8 states in total (the 4 state symmetries in both singlet and triplet

spin multiplicities, 1 state per symmetry). A bond length of 2.71 Å was taken from the

experimental data of Herzberg and Huber (1979), and the 3-21G basis set has been used

for the calculation (Dobbs and Hehre, 1987). The R-matrix radius has been set to 13 a0,

and the scattering propagated out to 100 a0. The electronic configuration of the ground

state was chosen as (1-16a1, 1-7b1, 1-7b2, 1-2a2)64, and for the configuration interaction

the (1-12a1, 1-5b1, 1-5b2, 1a2)46 orbitals were frozen, with an active space of (13-16a1,

6-7b1, 6-7b2, 2a2)18. Scattering variables were calculated up to 100 eV.

9.3 Target Results

The energy of the X 1Σ+ ground state is calculated to be -7048.24 Hartree, with some

low-lying excited states also found (table 9.1). Note that as the target calculation only

ran for 1 state per symmetry, it is possible that a low-lying excited state of the same

spin-symmetry as the ground state could exist, however it would not be detected in this

particular piece of work. A very large ground state dipole moment of 10.05 Debye (in

the direction of the Na atom) is calculated, which compares well to the literature (table

9.2).
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9.4 Scattering Results

Table 9.1: Vertical excitation energies from the X 1Σ+ state.

Excited state Vertical exc. en. (eV)

a 3Π 4.163

A 1Π 4.218

b 3Σ+ 4.544

Table 9.2: NaI groud state dipole moment literature comparison

Source Method µ (D)

This work CI 10.05

Sakai et al. (1992) MRSDCI 9.41

Hebert et al. (1968) Experimental 9.21

9.4 Scattering Results

Figure 9.2 shows the eigenphase sums for the Doublet NaI− scattering states up to 10

eV. The corresponding resonance data is given in table 9.3.

Figure 9.3 gives the elastic cross-section up to 100 eV, here it is clear that the Born

correction dramatically changes the cross-section at low energies. For example at 10 eV

the Born corrected cross-section is almost 2000 Å larger than the non-Born value. At

higher energies this also results in the Born corrected cross-section levelling at around

100 Å2, a much larger value than the non-corrected value. Figure 9.4 contains the BEB

ionisation cross-section up to 5000 eV, this is calculated as part of Quantemol-N. Here

a peak of around 3.2 Å2 occurs at about 200 eV, with values at higher energies tailing

off to about 0.55 Å2 at 5000 eV.

Figure 9.5 contains the electron-impact excitation cross-sections for the excitations

of the ground state to the first three excited target states (given in table 9.1). For both

the 2Π excitations we can see a pronounced enhancement of the cross-section at 4.2 eV,

this is due to the 2Π scattering resonance found at 3.74 eV. Also note that the peak is

much larger (1 Å2 c.f 0.2 Å2) and the higher energy plateau is about twice as large (0.1

Å2 c.f. 0.05 Å2) for the ∆S=1 Π transition compared to the ∆ S=0 Π transition. The

Table 9.3: NaI− doublet resonance positions (and widths) in eV, below 10 eV

Π 0.662 (0.214)

3.740 (0.003)

Σ− 4.950 (0.298)

∆ 7.133 (0.601)
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Figure 9.4: NaI BEB ionisation cross-section

X 1Σ+-b 1Σ+ excitation cross-section has a pronounced peak of 1.5 Å2 just above 6 eV.

I believe this could be due to the 2∆ resonance at 7.133 eV, which has a width large

enough to bring the peak into its range. Beyond this peak the cross-section remains

fairly stable at 0.1 Å2 between 7.5 - 10 eV.

Figure 9.6 presents the high energy approximation of the excitation cross-section

using the BEf method (Kim, 2001, 2007). Here we note this method is only applicable to

dipole allowed transitions and thus only the cross-section for the X 1Σ+ - A 1Π transition

has been calculated. The calculated dipole transition moment used in this method for

this transition is 9.58 Debye, taken from the target calculation fort.24 output. In this

figure we see an early peak of 0.51 Å2 at about 10 eV, before steadily levelling off to

0.04 Å2 at 1000 eV.

Finally figure 9.7 gives the reaction rate co-efficients for the scattering calculation.

This is a standard Quantemol-N result calculated by applying a Boltzmann-type distri-

bution to the elastic cross-section. The rate coefficient is maximised at around 2500 K,

with a value of 4.5 × 10−5 cm3/s, before steadily decreasing down to 3.5 × 10−5 cm3/s

at 10,000 K.
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Figure 9.5: NaI excitation cross-sections from the X 1Σ+ state to the a 3Π, A 1Π, and b 3Σ+

states.
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Figure 9.6: NaI scaled BEf excitation cross-section for the dipole allowed X 1Σ+ - A 1Π transition.
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Figure 9.7: NaI reaction rate coefficients for elastic electron scattering as a function of Temper-

ature.

9.5 Conclusions

In this chapter I have carried out electron scattering on the NaI molecule. An 8-state CI

model was used and a ground state energy of -7048.24 Hartree has been found, of 1Σ+

symmetry. Furthermore three relatively low lying excited states have been found between

4.0 and 4.6 eV, of 3Π, 1Π and 3Σ+ symmetries. Although here it should be noted that the

target calculation only included one state-symmetry combination, therefore there may

exist a second 1Σ+ state lower than 4 eV in energy. The calculated X 1Σ+ ground state

dipole moment was found to be 10.05 Debye, which matches well with experimental

values between 9.2 - 9.4 Debye. A CC scattering model has been used to calculate

scattering observables up to 100 eV, although eigenphase sums and resonance parameters

have only been considered up to 10 eV due to the presence of pseudo-resonances above

ionisation threshold. Resonances were found of 2Π, 2Σ− and 2∆ symmetries and these

acted to enhance the excitation cross-sections. The Born correction has been applied

to the calculated total elastic cross-section and this leads to a dramatic increase in the

cross-sections magnitude between 0-100 eV, but particularly at the lower energies. This

is due to the large dipole moment of the ground state making the Born correction bigger,

as this increases with the square of the dipole moment value. Finally, the BEB ionisation

cross-section (up to 5000 eV), the X 1Σ+ - A 1Π BEf excitation cross-section (up to 1000
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eV), and reaction rate co-efficients (up to 10000K) have been presented.

In terms of applying this data to the modelling of industrial plasmas, there is more

emphasis placed upon the high-energy results (those above the ionisation threshold of

the molecule). This is simply because industrial plasmas carry free electrons with a much

larger energy than are found interstellar environments (such as found in the previous

chapters). Therefore it is likely the key data which can be used from this chapter will

be the cross-sections which go up to high energies, such as the BEB ionisation, BEf

excitation, and elastic total cross-sections. Low-lying resonances are less likely to be as

important compared to the large-scale trend and magnitude of these cross-sections.
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Chapter 10
SiBr & SiBr2

10.1 Introduction

Both SiBr and SiBr2 are metal halides which can occur in industrial plasmas when silicon

is etched by products such as hydrogen bromide. As these species can then exist in the

plasma itself it is necessary to understand how they interact with the free electrons that

are available. The calculations in this chapter were carried out as part of some work

Quantemol carried out with an industrial partner. The electron-impact cross-sections

calculated here were subsequently used to increase the level of sophistication of plasma

models, which have historically not included complete sets of reactions possible within

the plasma.

No previous electron scattering investigations have been carried out for these molecules,

with SiBr investigations mainly concentrating on spectroscopic properties and analysis

(Jevons and Bashford, 1937; Rao and Haranath, 1969; Ishiguro et al., 1995), its Ryd-

berg states (Bossier et al., 1984), and has also been used in analysis of the fine-structure

constant (Beloy et al., 2010). A literature check for SiBr2 suggests that most work has

concentrated on the structure and vibrational energetics of the molecule (Hargittai et al.,

1983; Coffin et al., 1989; Gershikov et al., 1990).

10.2 SiBr

10.2.1 Calculation Details

Two calculations were carried out for SiBr, one using a Hartree-Fock target and static-

exchange scattering model, the other using a configuration interaction target (allowing
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10.2 SiBr

Figure 10.1: The molecule SiBr (taken from Quantemol-N)

Table 10.1: SiBr target calculation data.

Method Ground State Energy (H) µ (D)

HF 2Σ+ -2861.12 3.51

CI 2Π -2861.24 4.14

excitations from the ground state) followed by the close coupling scattering method.

Both of these calculations were carried out using Quantemol-N (section 3.6). For these

calculations the equilibrium bond length of 2.64 Å was used, found by carrying out a

relaxation in MOLPRO (Werner et al., 2008), and making use of the c2v symmetry. The

ground state electron configuration for both HF and CI models being (1-14a1 1-5b1 1-5b2

1a2)
49, with the single electron in the 14a1 orbital. For the CI calculation 28 electrons

were frozen in the (1-8a1 1-3b1 1-3b2) orbitals, with the remaining 21 electrons in an

active space of (9-14a1 4-6b1 4-6b2 1a2). An R-matrix radius of 10 a0 was chosen to fully

encompass the target wavefunction created using the 6-311G basis set.

10.2.2 Target Data

The HF target calculation produces a 2Σ+ ground state, which becomes 2Π in the CI

calculation, with the 2Σ+ state becoming the first excitation. Both models have a large

dipole moment in the direction of the bromine atom, with the CI model having the larger

value by 0.6 D. Table 10.1 summarises these results and table 10.2 gives the first three

excited states from the CI model. No information for comparison could be found in the

literature for any of these values.

10.2.3 Scattering Results

For the scattering results we note that Koopman’s theorem indicates an ionisation energy

of 4.53 eV for SiBr, due to this we will only consider resonances up to 5 eV, as any above
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10.2 SiBr

Table 10.2: SiBr vertical excitation energies from the X 2Π state.

Excited state Vertical exc. en. (eV)

A 2Σ+ 2.10

a 4Σ− 2.67

b 4Π 3.32

Table 10.3: SiBr resonance positions (and widths) in eV for the CI-CC model, a Resonance

present in eigenphases but not fitted by RESON.

State Position (Width)

1Σ+ 4.997 (0.035)

1Π 3.919 (0.129)

1Σ− 4.6a

1∆ 4.875 (0.031)

3Σ+ 4.061 (0.330)

3Π 2.719 (0.159)

4.863 (0.218)

3Σ− 4.620 (0.217)

3∆ 4.061 (0.330)

4.620 (0.217)

this will be pseudo-resonances. Figures 10.2 and 10.3 give the scattering eigenphase sums

for the electron-SiBr collision for static-exchange and close-coupling models (although no

shape resonances were detected in the static-exchange model). The associated resonance

data (up to 5 eV) can be found in table 10.3. Feshbach resonances are detected in the

1Σ+, 1Π, 1Σ−, 1∆, 3Π, and 3∆ symmetries, there is also a 1∆ resonance which appears

at 4.87 eV (with a width of 0.03 eV) in both the 1Σ+ and 1Σ− symmetries. We note

that the two 3∆ resonances were fitted using the RESON data from the 3Σ+ and 3Σ−

respectively. This was because RESON did not detect the 4.06 eV resonance in 3Σ−

or the 4.62 eV resonance in 3Σ+, despite them both being present in the eigenphase

diagram.

Figure 10.4 gives the elastic cross-section for the static-exchange and close-coupling

scattering models, with a Born correction also applied to the CC model in order to correct

and enhance the low-energy magnitude of the cross-section. Both the SE and uncorrected

CC cross-sections are very similar however once the Born correction is applied there is a

large enhancement at the lower energies. All three variations level off at higher energies

to about 50 Å2. Figure 10.5 is the BEB ionisation cross-section up to 5000 eV for both
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Figure 10.2: SiBr− singlet scattering eigenphases for the SE (dashed) and CC (solid) models.

the SE and CC models, created using the BEB approximation from the orbital energies.

These both have an early peak at about 100 eV, with the SE peaking at just over 7 Å2

and the CC at 9 Å2. Both models then decrease down to 0.75 Å2 by 5000 eV.

Excitation cross-sections for the first three excitations out of the X 2Π ground state

are given in figure 10.6. The first excitation is the dipole allowed transition to the A

2Σ+ state and has the largest magnitude of all 3 excitations shown, about twice as large

as the X 2Π - a 4Σ− excitation, which peak at about 2.5 and 1.5 Å2. All 3 cross-sections

approximately take the same form, an early peak just after their threshold followed by a

steady decrease to level off at approximately 0.05 Å2 by 20 eV. We also note that due to

the relatively low ionisation energy of SiBr (about 4.5 eV), many of the enhancements

shown in these cross-sections beyond that energy may be due to the appearance of

pseudo-resonances in the calculation.

Figure 10.7 gives the reaction rate co-efficients for the SE and CC scattering models.

The SE model gives values approximately 33% larger than the CC model, with a maxi-

mum of 6× 10−6 cm3/s compared to 4× 10−6 cm3/s at 2500 Kelvin. Beyond this peak
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Figure 10.3: SiBr− triplet scattering eigenphases for the SE (dashed) and CC (solid) models.
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Figure 10.4: SiBr elastic cross-section
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Figure 10.5: SiBr BEB ionisation cross-section
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states.
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10.3 SiBr2
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Figure 10.7: SiBr reaction rate co-efficients as a function of temperature.

temperature both models remain relatively stable to further increases, with the SE and

CC models levelling off at 5 × 10−6 cm3/s and 3 × 10−6 cm3/s respectively by the end

of the x-axis (10,000 Kelvin).

10.3 SiBr2

Figure 10.8: The molecule SiBr2 (taken from Quantemol-N)

10.3.1 Calculation Details

Two calculations were carried out for SiBr2, one using a Hartree-Fock target and static-

exchange scattering model, the other using a configuration interaction target (allowing

excitations from the ground state) followed by the close coupling scattering method.
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10.3 SiBr2

Table 10.4: Geometry for SiBr2

Atom x y z

Si 0.0 0.0 1.204

Br 0.0 1.84 -0.212

Br 0.0 -1.84 -0.212

Table 10.5: SiBr2 target calculation data.

Method X 1A1 (H) µ (D) a 3B1 (eV)

HF -5433.61 -2.28

CI -5433.62 -2.09 1.96

Coffin et al. (1989) -5412.36 1.45

Both of these calculations were carried out using Quantemol-N (section 3.6). For these

calculations the equilibrium geometry found in table 10.4 was used based upon the

literature values, both experimental (Hargittai et al., 1983; Gershikov et al., 1990) and

theoretical (Coffin et al., 1989), making use of the c2v symmetry (however we note as

this molecule is non-linear the B1 and B2 states are not degenerate). The ground state

electron configuration for both HF and CI models being (1-17a1 1-6b1 1-14b2 1-5a2)
84.

For the CI calculation 62 electrons were frozen in the (1-12a1 1-5b1 1-10b2 1-4a2) orbitals,

with the remaining 22 electrons in an active space of (13-18a1 6-7b1 11-14b2 5a2). An

R-matrix radius of 13 a0 was chosen to fully encompass the target wavefunction created

using the 6-311G basis set.

10.3.2 Target Data

Both HF and CI models found a 1A1 ground state, with the CI calculation 0.02 Hartree

lower in energy, both of these calculations are better than the target energy found by

Coffin et al. (1989). Both models used here also found similar ground states dipole

moments of between 2.1-2.3 Debye in the direction of the bromine atoms. Table 10.5

summarises these results along with the comparison to the work of Coffin et al. (1989),

table 10.6 gives the first three excited states from the CI model.

10.3.3 Scattering Results

For the scattering results we note that Koopman’s theorem indicates an ionisation energy

of 10.12 eV for SiBr2, due to this we will only consider resonances up to 10 eV, as any

above this will be pseudo-resonances. Figure 10.9 gives the scattering eigenphase sums
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10.3 SiBr2

Table 10.6: SiBr2 vertical excitation energies from the X 1A1 state.

Excited state Vertical exc. en. (eV)

a 3B1 1.96

A 1B1 3.40

b 3A2 7.74
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Figure 10.9: SiBr−2 doublet scattering eigenphases for the SE (dashed) and CC (solid) models.

for the electron-SiBr2 collision for both the static-exchange and close-coupling models.

The associated resonance data (up to 10 eV) can be found in table 10.7. Four 2A1

shape resonances have been detected, appearing in both SE and CC models, with the

SE resonances being slightly higher in energy and wider than the CC counterparts. We

also find a narrow Feshbach 2A1 resonance at 9.6 eV. In the 2B2 symmetry a shape

resonance has been detected in both SE and CC models at around 2 eV. Although in

the CC model this was not automatically detected by RESON it is clearly present in the

eigenphase sums, this model has also detected two narrow Feshbach resonances at 4.8

and 6.7 eV. For the 2A2 symmetry a shape resonance has been detected in both models,

again the SE model detecting it at higher energy and greater width than the CC model.

The CC model has also detected a single Feshbach resonance at 4.3 eV of 1.5 eV width.

Figure 10.10 gives the elastic cross-section for the static-exchange and close-coupling

scattering models, with a Born correction also applied to the CC model in order to

correct and enhance the low-energy magnitude of the cross-section. This leads to the

corrected cross-section being about twice as large as the uncorrected at an electron
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10.3 SiBr2

Table 10.7: SiBr2 resonance positions (and widths) in eV. a Resonance present in eigenphases

but not fitted by RESON.

State HF CI

2A1 1.154 (0.082) 0.243 (0.221)

2.973 (0.143) 1.897 (0.185)

7.245 (0.675) 6.209 (0.151)

8.165 (0.592) 6.9a

9.612 (0.001)

2B2 2.045 (1.524) 1.8a

4.828 (0.013)

6.684 (0.117)

2A2 4.384 (1.526)

7.606 (6.202) 5.569 (0.232)
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Figure 10.10: SiBr2 elastic cross-section

energy of around 2.5 eV. All three variations level off at higher energies to about 50 Å2.

Figure 10.11 is the BEB ionisation cross-section up to 5000 eV, created using the BEB

approximation from the orbital energies. This has an early peak of 3.5 Å2 at 250 eV,

before decreasing down to 0.75 Å2 by 5000 eV.

Figure 10.12 presents the first three excitation cross-section from the X 1A1 state.

With a peak of 2.4 Å2, the first excitation to the a 3B1 state is twice as large as the

next excitation (A 1B1) and an order of magnitude greater than the third (b 3A2). Both

the a 3B1 and A 1B1 excitations have maximum peaks at around 4.5 eV and level off
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Figure 10.11: SiBr2 BEB ionisation cross-section

to around 0.25 Å2 at 20 eV. The b 3A2 excitation is very sharply peaked at around 6

eV and levels off to 0.02 Å2 by 20 eV. Figure 10.13 gives the high energy approximation

of the excitation cross-section using the BEf method (Kim, 2001, 2007). This has only

been calculated for the X 1A1 - A 1B1 excitation as this is the only dipole allowed of

the three excitations considered, making use of the X 1A1 - A 1B1 dipole transition

moment of -0.15 Debye, given by the target CI calculation. Compared to the same

excitation cross-section as calculated by the R-matrix method, the BEf approximation

peaks at 0.35 Å2, about a quarter of the R-matrix cross-sections peak. However this

approximation method is best used for high energies, and it is clear that as the energy

approaches 1000 eV it levels off at around 2.5 Å2, which is the same value obtained by

the R-matrix excitation cross-section.

Figure 10.14 gives the reaction rate co-efficients for the SE and CC scattering mod-

els. The SE model gives values approximately 25% larger than the CC model, with a

maximum of 2.75× 10−6 cm3/s compared to 2.2× 10−6 cm3/s at 2500 Kelvin. Beyond

this peak temperature both models remain relatively stable to further increases, with the

SE and CC models levelling off at 2.5× 10−6 cm3/s and 1.8× 10−6 cm3/s respectively.
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Figure 10.12: SiBr2 excitation cross-sections from the X 1A1 state to the a 3B1, A
1B1 and b

3A2 states.
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Figure 10.13: SiBr2 scaled BEf excitation cross-section for the dipole allowed X 1A1 - A 1B1

transition.
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Figure 10.14: SiBr2 reaction rate co-efficients for elastic electron scattering as a function of

temperature.

10.4 Conclusions

The calculations in this chapter have been carried out due to the increasing need for

electron-scattering data on species found within industrial plasmas. Since these calcula-

tions have taken place the data presented here has been used and applied to theoretical

industrial plasma simulations, with successful results. As no previous electron scattering

work had been carried out on these species these results are the first.

For SiBr two different models were applied, one using a Hartree-Fock target and

static-exchange scattering model, and another using a configuration interaction target

and close-coupling scattering model. Both models found there to be a ground state with

an energy of around -2861 Hartree, although the HF target found a 2Σ+ ground state

whilst the CI model found one of 2Π. Similarly there was an increase in dipole moment

from 3.51 to 4.14 Debye when going from the HF to CI models. No previous target

data could be found for comparison. The CI model also found three low-lying excited

states between 2.10 - 3.32 eV, of 2Σ+, 4Σ− and 4Π symmetries. The use of two different

models also enabled us to check for Feshbach resonances, which will be present only in

the CC scattering model. It was found there were 10 Feshbach resonances present under

10 eV, of various symmetries, no shape resonances were detected. These results can be

clearly seen by comparison of the SE and CC model’s eigenphase sums. The influence

138



10.4 Conclusions

of these resonances can be seen in the excitation cross-sections for SiBr, which show

evidence of enhancement in the energy range of the resonance positions. Also presented

are the total elastic and BEB ionisation cross-sections, and the reaction rate co-efficients

as a function of temperature, for both the SE and CC scattering models. Whilst these

models give similar results for the cross-sections in question, the addition of the Born

correction to the total elastic cross-section increases the magnitude of it by around 100%

at all energies (up to 20 eV).

For SiBr2, again the two distinct models were used, both found there to be a 1A1

ground state of -5433.6 Hartree, with a dipole moment of between 2.1 - 2.3 Debye.

The ground state energy compared well to the other theoretical data found (-5412.36

Hartree). The CI model also found the first excited state to be of 3B1 symmetry at

1.96 eV, again comparing well to the previous theoretical value of 1.45 eV. Furthermore

the CI model also found two more low-lying excited states, at 3.40 (1B1) and 7.74

(3A2) eV respectively. After carrying out the scattering calculations, six shape and four

Feshbach resonances were found in total, across various symmetries. Their influence can

be seen in the excitation cross-sections as small increases in magnitude in the energy

range associated with the resonance. Interestingly, from observation of the total elastic

cross-section, we note that the SE model has a greater magnitude than the CC model

at low energies. However, as previously, the application of the Born correction enhances

this by approximately 100% at lower energies, the result of this being that both the SiBr

and SiBr2 total elastic cross-sections are very similar once the Born correction has been

applied. The same is not true of the BEB ionisation cross-section, which is around 50%

smaller for SiBr2 than for SiBr, whilst sharing a similar shape. Also included in this set

of data is the BEf cross-section for the dipole allowed X 1A1 - A 1B1 excitation, at low

energies the maximum value of this cross-section is around 33% of the same excitation

cross-section calculated using the R-matrix method. However, BEf is an approximation

method designed to extend excitation cross-sections to much higher energies, so both

are useful as data for distinct energy ranges.
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Chapter 11
Conclusion

Within this thesis a number of electron-scattering interactions have been analysed, these

range from astrophysical hydrocarbons (CN, C3N, C2H), to molecules of plasma interest

(NaI, SiBr, SiBr2), and atoms (O). The majority of these calculations were restricted to

low-energy (i.e. below ionisation energy) electron-scattering, particularly for the astro-

physical molecules as these low energy electrons reflect the environmental temperature of

the interstellar medium. However use of approximation methods allow some scattering

observables to be extended to much higher energies than the R-matrix calculations are

capable of (e.g. BEB ionisation and BEf excitation cross-sections). For each of these cal-

culations the K-,T- and R-matrices, the eigenphase sums, resonance parameters, elastic,

inelastic, BEB and BEf cross-sections were all calculated.

This thesis also includes the development of a theory used for calculating spin-coupled

rotational cross-sections. This has been developed from the work of Corey and Mc-

Court (1983) and describes how the spin-coupled cross-sections may be obtained from

the manipulation of the non-coupled ones (which themselves can be computed from T-

matrices). This has led to the development of a new FORTRAN program for carrying

this out, ROTLIN S. Example data has been included as a validation of the code and

to provide the first spin-coupled rotational cross-sections for the molecule CN, intended

for further use in astrophysical modelling.

Finally within the thesis is detailed the first known complete calculation using the UK

Molecular R-Matrix codes to carry out electron-atom scattering (in this case, oxygen).

A number of problems were encountered that were particular to carrying out an electron-

atom calculation, such as dealing with the spherical symmetry of an atom in the D2h

symmetry of the molecular codes. These have been detailed, along with solutions to each,
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in the oxygen section (chapter 8). I feel as a proof of concept for running electron-atom

scattering using these codes, this work was successful.

None of the electron-scattering calculations carried out in this thesis had previously

been undertaken, either theoretically or experimentally, so all data presented here can

be considered new. In the case of CN, C2H, C3N, SiBr2 and O, some previous quantum

chemistry data was found outlining the energetics of the various target states (also dipole

moments and bound states in the case of CN, C2H, and C3N). Here the calculations were

found to be in good agreement with the existing data. For the CN spin-coupled rotational

cross-sections (sec 5.7), the data presented has been compared to the findings of Allison

and Dalgarno (1971). In certain energy ranges the results differ significantly, showing

the importance of the more complete R-matrix treatment we have carried out, more

complete analysis is available in chapter 5.

Whilst a through analysis of results are presented in each chapter, here is now pre-

sented a brief outline of the results found for each study.

Chapter 5 details e-CN scattering for a number of combinations of orbital type and

scattering methods. Particular attention was taken to the first 2 excitations as these

are the cause of the well-known ‘CN red’ and ‘CN violet’ spectral bands, it was found

the Born correction greatly enhances these cross-sections. A number of resonances were

found in the triplet eigenphase sums, notably a 3Π shape resonance at 3 eV which

manifested itself across all 5 models, both static exchange and close-coupling. There are

also Feshbach resonances detected for the 3Σ+ and 3Σ− symmetries at approximately

4.5 and 5 eV respectively (depending on model). The fact no singlet resonances detected

lead us to believe that the excited states of CN− detected by Musial (2005) (which are all

singlet) are false artefacts. As a further development an analysis of target and scattering

properties as a function of bond length was undertaken, it was found that the resonances

become lower in position and narrower in width as the bond length increases. The spin-

rotational cross-sections were also calculated for various transitions, as discussed above

some of these can be compared to the results of Allison and Dalgarno (1971). As a

further extension to this, the cross-sections could now be utilised to produce reaction

rates for the various electronically excited spin-rotation transitions. These would be

extremely useful to the astrophysical community. In order to do this the outer region of

the original CN R-matrix calculation would likely need to be re-done with a finer energy

grid to fully resolve the data at the smallest electron energies (thus reflecting the low
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temperatures of the ISM).

Chapters 6 and 7 present the calculations for e-C3N and e-C2H, these may be consid-

ered together as one investigation into how molecular anions may form in the interstellar

medium. General consensus is that they form by radiative attachment of an electron

to the neutral molecule with the same chemical formula (Millar et al., 2007). These

chapters investigate whether this is possible. It is found that C3N has a number of very

weakly bound states (< 1 eV), whilst C2H does not. There is a mechanism possible

whereby very weakly bound states will support nuclear excited states which lie in the

continuum and therefore are resonances. If this mechanism does explain the formation

of such anions in the ISM, then the likelihood is C3N
− would be much more abundant

than C2H
−, which currently matches the observations.

Chapter 8 outlines the method and problems of running an e-atom calculation using

the UK molecular R-matrix codes. This was carried out in order to theoretically replicate

the 3P-3P experimental cross-section of Katsch et al. (2000), requested by a Quantemol

customer. This method was proven successful as the resulting theoretical cross-section

matched the experimental data well. Whilst other data was calculated in this inves-

tigation, this excitation was the main focus and as such the quality of the calculation

as a whole is based solely on this result. If we were to be critical of this calculation,

I feel further attention could be made into investigating the effect manually changing

the energy levels has as the calculation progresses to the outer region. In this work it is

found that the eigenphase sums of the scattering states which should be degenerate are

no longer after shifts are applied.

Chapter 9 shows the results of the first known e-NaI scattering calculation. Whilst

only one model was considered and there is very little data on NaI with which to compare,

a ground state dipole moment of 10.05 Debye was found, which matches nicely with the

work of Sakai et al. (1992) and Hebert et al. (1968). Furthermore it was found that

the first three excited states all lie very closely to each other, between 4.1 - 4.5 eV. The

associated excitation cross-sections found present very similar forms, however the dipole

allowed transition to the second excited state, A 1Π, was found to be approximately

twice as large as the dipole forbidden transitions to the first (a 3Π) and third (b 3Σ+)

excited states. It is also worth noting that due to the very large dipole moment of the

target molecule, the elastic cross-section was greatly enhanced by the Born correction,

with there being up to two orders of magnitude difference at 10 eV (approx 10 c.f. 1000
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Å2) and at least an order of magnitude difference even at 100 eV (approx 5 c.f. 100 Å2).

Finally Chapter 10 contains the results of investigations into both e-SiBr and e-SiBr2

systems. Static-exchange and close-coupling scattering methods were employed for both

molecules to search for shape and Feshbach resonances. SiBr was found to have no shape

resonances at all below the ionisation threshold of 4.5 eV, however there are a number of

Feshbach resonances of 1Σ+, 1Π, 1Σ−, 1∆, 3Π and 3∆ symmetries. There is no data at

all to compare the SiBr results to, however some target data for SiBr2 was found (Coffin

et al., 1989). Here it was found that both the HF and CI target calculations from this

work produced better ground state energies by 21 Hartree, however the calculated X

1A1 - a 3B1 excitation energy was 0.5 eV higher. This potentially could be due to the

method employed in this work improving the ground state energy but not the excited

state energy, hence the vertical excitation energy is greater. The ionisation threshold for

SiBr2 is 10.1 eV, below which a number of shape resonances were found (four 2A1, one

2B2 and one 2A2). Also Feshbach resonances were detected in the 2A1,
2B2 (two) and

2A2 symmetries.

The R-matrix software Quantemol-N (Tennyson et al., 2007) was used at some stage

in every calculation carried out in this work. Either to provide models for comparison

with the final results (CN, C3N, C2H), job files for adaptation in the manual running of

the R-matrix codes (O), or to provide the final sets of data (NaI, SiBr, SiBr2). For over 5

years this program has been used as a tool for enabling non-experts to carry out R-matrix

calculations, and over the course of this work has developed in ability and flexibility.

Some of the newest features to be added to the software include the ability to calculate

cross-sections for molecules of a particular fixed orientation, calculation of differential

and momentum transfer cross-sections, and calculation of rotational excitation cross-

sections.

The R-matrix codes themselves have also undergone a recent improvement (section

3.4) and are being continually developed. The majority of this work now lies in the outer

region, where new functionality can be added in modularised form or small, standalone

programs separate from the R-matrix codes themselves but which utilise the T-matrices

produced. An example of this is the new code presented in chapter 4, the ROTLIN S code

enables spin-coupled rotational cross-sections to be computed from input T-matrices

from the R-matrix codes. Note that in order to do this they have been converted into

the correct irreducible symmetry using the KMATAD module, an example of these
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transformations can be found in table 3.1.

The very fact that no previous electron-scattering data could be found for any of

the species in this work is a stark reminder of how much is still unknown about the

behaviour of both interstellar and industrial plasmas. The findings and conclusions

drawn from both the work on C2H and C3N suggest that the current theories on carbon

chain formation in the ISM (Millar et al., 2007) are heading in the right direction, as

this work provides a potential explanation to match observations (Gupta et al., 2007;

Thaddeus et al., 2008; Agundez et al., 2010). However more work is required on other

relevant species e.g. C4H, C6H etc (it should be noted that there are inherent difficulties

in working with C4H theoretically (Fortenberry et al., 2010)). What we can conclude

however is that electron-molecule interactions play a crucial role in interstellar plasmas.

In order to fully understand the chemistry of these environments there is a need to

complete the catalogue of mechanisms and interactions which are possible, this must be

done in conjunction with observation as only then will the true nature of these plasmas

will become apparent. This becomes even more important now that these species are

starting to be observed in planetary atmospheres (Vuitton et al., 2009).

There is also an increasing demand within the industrial plasma community to un-

derstand the true mechanics that occur within a reactor. Traditionally the onus has

been placed on machine output (i.e. silicon chip yield), with the physics of the plasma

itself being of secondary importance. However as manufacturers strive for efficiency and

effectiveness in their machines there comes a need to go beyond the varying of simple in-

puts such as power or gas flow. A true understanding of the electron-molecule chemistry

is needed to produce the best output yield in the most cost-effective way. Quantemol

have worked in partnership with global industrial plasma manufacturers on such inves-

tigations and it has been found that previously unconsidered interactions have had a

profound effect on the plasma, where internal processes such as etching can produce

a great number of ions and radicals (e.g. Kimura et al. (2001)). The work presented

here on NaI, SiBr and SiBr2 has shown these electron-heavy species have many reso-

nances which result from electron-scattering interactions. These resonances all aid and

enhance the electron-collision cross-sections, thus meaning that these species can have a

substantial effect on the electrons that exist within the plasma.
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Appendix A
Non-Hermiticity of the Hamiltonian: A

Potential Scattering Example

This appendix has been taken and used with full permission courtesy of Hemal N.

Varambhia.

Let the wavefunction of an enclosed system ψi = fi(r)Y
mi

li
(θ, φ). Evaluating the

Hamiltonian matrix element 〈ψj |Ĥψi〉− 〈Ĥψj |ψi〉 over the interval containing the inter-

nal region yields:

M = −1

2
[〈ψj |∇2ψi〉 − 〈∇2ψj |ψi〉] (A.1)

(the potential matrix elements are assumed to be Hermitian and vanish). Thus the

braket simplifies to a radial integral below

M = −1

2

{∫ a

0
r2drf∗j

1

r2
d

dr

(

r2
dfi
dr

)

−
∫ a

0
r2dr

[

1

r2
d

dr

(

r2
dfj
dr

)]∗

fi

}

(A.2)

(A.3)

Simplifying notation:

M = −1

2
(I1 − I2) (A.4)

I1 =

∫ a

0
f∗j

d

dr

(

r2
dfi
dr

)

dr (A.5)

I2 =

∫ a

0

d

dr

(

r2
df∗j
dr

)

fidr (A.6)

We shall evaluate the integrals I1 and I2 using integration by parts where for I1:
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v = f∗j (A.7)

du

dr
=

d

dr

(

r2
dfi
dr

)

(A.8)

and for I2

v = fi (A.9)

du

dr
=

d

dr

(

r2
df∗j
dr

)

(A.10)

Upon evaluation of these integrals, one obtains non-zero surface terms resulting in

the Hamiltonian not being Hermitian.

M = −a
2

2
(fj(a)

∗f ′i(a)− f ′j(a)∗fi(a)) 6= 0 (A.11)

Define the Bloch operator and the modified Hamiltonian:

L̂ =
1

2a
δ(r − a) d

dr
r (A.12)

Ĥ = Ĥ + L̂ (A.13)

Computing the modified Hamiltonian matrix elements over the same interval

−1

2
〈ψj |∇2ψi〉+ 〈ψj |L̂ψi〉 −

1

2
〈∇2ψj |ψi〉 − 〈L̂ψj |ψi〉 (A.14)

it may be shown that evaluating those matrix elements involving the Bloch operator

simplify to

1

2a

{

a2
[

fj(a)
∗ d

dr
[rfi(r)]a −

d

dr
[rfj(r)

∗]afi(a)

]}

(A.15)

Finally appealing to the product rule equation (A.15) may be shown to cancel the

kinetic energy surface term (A.11), and Hermicity is regained. Discussion on the above

problem may be found in Lane and Robson (1966).
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Appendix B
The Outer Region Coupled Differential

Equations

This appendix has been taken and used with full permission courtesy of Hemal N.

Varambhia.

B.1 Derivation

Considering

ĤN+1|Ψ∆〉 = E|Ψ∆〉 (B.1)

one may decompose this Schrödinger equation to

−1

2
∇2

N+1Ψ
∆ +

{

−
∑

A

ZA

|rN+1 − rA|
+
∑

i

1

|rN+1 − ri|

}

Ψ∆ + ĤNΨ∆ = EΨ∆ (B.2)

Let

V̂1 = −
∑

A

ZA

|rN+1 − rA|
(B.3)

V̂2 =
∑

i

1

|rN+1 − ri|
(B.4)

In the outer region one may employ the single centre expansion:

Ψ∆ =
∑

λ

F∆
λ

rN+1
ψN
λ Y

mλ

lλ
(B.5)
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B.2 The Channel Coupling Potential

In evaluating the kinetic energy term of equation (B.2)

∇2Ψ∆ =
∑

λ

[

F∆
λ
′′ − lλ(lλ + 1)

r2N+1

F∆
λ

]

ψN
λ Y

mλ

lλ

rN+1
(B.6)

Further manipulation of equation (B.2) and substituting equation (B.6) the coupled

differential equations become:

∑

λ

{

F∆
λ
′′ − lλ(lλ + 1)F∆

λ

r2N+1

+ 2(E − Eλ)F
∆
λ

}

ψN
λ Y

mλ

lλ
= 2

∑

λ

V̂ F∆
λ ψ

N
λ Y

mλ

lλ
(B.7)

where

V̂ = V̂1 + V̂2 (B.8)

V̂ = −
∑

A

ZA

|rN+1 − rA|
+
∑

i

1

|rN+1 − ri|
(B.9)

and projecting on to ψN
λ′Y

mλ′

lλ′

F∆
λ′

′′ − lλ′(lλ′ + 1)F∆
λ′

r2N+1

+ 2(E − Eλ′)F∆
λ′ = 2

∑

λ

Vλ′λF
∆
λ (B.10)

where

Vλ′λ = 〈ψN
λ′Y

mλ′

lλ′
|V̂ |ψN

λ Y
mλ

lλ
〉 (B.11)

B.2 The Channel Coupling Potential

In the outer region the position vector of the scattering electron is greater than those

of the target electrons and the constituent nuclei. Therefore one may appeal to the

Legendre generating function and the spherical harmonic addition theorem to show that:

∑

i

1

|rN+1 − ri|
=
∑

l

l
∑

m=−l

1

rl+1
N+1

∑

i

Rm
l (ri)Y

m
l (θN+1, φN+1) (B.12)

where

Rm
l (ri) =

4π

2l + 1
ri

lY m
l (θi, φi) (B.13)

Furthermore, define
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B.2 The Channel Coupling Potential

V 1
λ′λ = 〈ψN

λ′Y
mλ′

lλ′
|V̂1|ψN

λ Y
mλ

lλ
〉 (B.14)

V 2
λ′λ = 〈ψN

λ′Y
mλ′

lλ′
|V̂2|ψN

λ Y
mλ

lλ
〉 (B.15)

Computing 〈ψN
λ′Y

mλ′

lλ′
|V̂2|ψN

λ Y
mλ

lλ
〉 to begin with, we then obtain

V 2
λ′λ =

∑

l

l
∑

m=−l

(−1)mλ′

rl+1
N+1

Mm
l (λ′ → λ)C(lλ′ , l, lλ)





lλ′ l lλ

−mλ′ m mλ









lλ′ l lλ

0 0 0





(B.16)

where

Mm
l (λ′ → λ) = 〈ψN

λ′Y
mλ′

lλ′
|
∑

i

Rm
l (ri)|ψN

λ Y
mλ

lλ
〉 (B.17)

Let us define

bl,λ′λ =
l
∑

m=−l

(−1)mλ′+1
[

−Mm
l (λ′ → λ)

]

C(lλ′ , l, lλ)





lλ′ l lλ

−mλ′ m mλ









lλ′ l lλ

0 0 0





(B.18)

In a similar fashion to the above, we can show that:

V 1
λ′λ =

∑

l

l
∑

m=−l

∑

A

ZAR
m
l (RA)(−1)mλ′+1

rl+1
N+1

δλλ′C(lλ′ , l, lλ)





lλ′ l lλ

−mλ′ m mλ









lλ′ l lλ

0 0 0





(B.19)

Again we let

cl,λ′λ =
l
∑

m=−l

∑

A

ZAR
m
l (RA)(−1)mλ′+1δλλ′C(lλ′ , l, lλ)





lλ′ l lλ

−mλ′ m mλ









lλ′ l lλ

0 0 0





(B.20)

Hence if we let al,λ′λ = bl,λ′λ + cl,λ′λ then

〈ψN
λ′Y

mλ′

lλ′
|V̂ |ψN

λ Y
mλ

lλ
〉 =

∑

l

al,λ′λ

rl+1
N+1

(B.21)

where

C(lλ′ , l, lλ) =

√

(2lλ′ + 1)(2l + 1)(2lλ + 1)

4π
(B.22)
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B.2 The Channel Coupling Potential

al,λ′λ =

l
∑

m=−l

µml (λ′ → λ)(−1)mλ′+1C(lλ′ , l, lλ)





lλ′ l lλ

−mλ′ m mλ









lλ′ l lλ

0 0 0





(B.23)

and the molecular multipole moments

µml (λ′ → λ) = −Mm
l (λ′ → λ) +

∑

A

ZAR
m
l (RA)δλλ′ (B.24)
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Appendix C
Publications

Bound and continuum states of molecular anions C2H
− and C3N

−

S. Harrison and J. Tennyson

J. Phys. B: At. Mol. Opt. Phys., 44, 045206 (7 pages) (2011)

Electron collisions with the CN radical: bound states and resonances

S. Harrison and J. Tennyson

J. Phys. B: At. Mol. Opt. Phys., 45, 035204 (7 pages) (2012)

A dissociative electron attachment cross-section estimator

J.J. Munro, S. Harrison, J. Tennyson and M.M. Fujimoto

J. Phys. Conf. Series, (in press)

Calculated electron impact spin-coupled rotational cross sections for 2S+1Σ+ linear

molecules: CN as an example

S. Harrison, J. Tennyson and A. Faure

J. Phys. B: At. Mol. Opt. Phys., 45, 175202 (9 pages) (2012)

151



Bibliography

Agundez M, Cernicharo J, Guelin M, Kahane C, Roueff E, Klos J, Aoiz F J, Lique

F, Marcelino N, Goicoechea J R, Garcia M G, Gottlieb C A, McCarthy M C and

Thaddeus P 2010 Astron. Astrophys. Lett. 517, L2.

Ahearn M F, Millis R L, Schleicher D G, Osip D J and Birch P V 1995 Icarus 118, 223–

270.

Ajitha D and Hirao K 2001 Chem. Phys. Letters 347, 121–126.

Alexander M H, Smedley J E and Corey G C 1986 J. Chem. Phys. 84, 3049–3058.

Allison A C and Dalgarno A 1971 Astron. Astrophys. 13, 331–332.

Almlof J and Taylor P R 1984 ‘Advanced Theories and Computational Approaches to

the Electronic Structure of Molecules’.

Baker J, Nobes R H and Radom L 1986 J. Comp. Chem. 7, 349–358.

Baluja K L, Burke P G and Morgan L A 1982 Computer Phys. Communs. 27, 299–307.

Baluja K L, Mason N J, Morgan L A and Tennyson J 2000 J. Phys. B: At. Mol. Opt.

Phys. 33, L677–L684.

Baluja K L, Mason N J, Morgan L A and Tennyson J 2001 J. Phys. B: At. Mol. Opt.

Phys. 34, 2807–2821.

Bell K L and Hibbert A 1990 J. Phys. B: At. Mol. Opt. Phys. 23, 2673–2685.

Beloy K, Borschevsky A, Schwerdtfeger P and Flambaum V V 2010 Phys. Rev. A

82, 022106–1–022106–7.

152



BIBLIOGRAPHY

Berente I, Szalay P G and Gauss J 2002 J. Chem. Phys. 117, 7872–7881.

Berkowitz J, Chupka W A and Walter T A 1969 J. Chem. Phys. 50, 1497–1500.

Booth J P, Joubert O and Pelletier J 1991 J. Appl. Phys. 69, 618–626.

Bossier G, Bredohl H and Dubois I 1984 J. Mol. Spec. 106, 72–76.

Botschwina P and Oswald R 2008 J. Chem. Phys. 129, 044305.

Bouchiha D, Caron L G, Gorfinkiel J D and Sanche L 2008 J. Phys. B: At. Mol. Opt.

Phys. 41, 045204.

Boys S F 1950 Proc. Roy. Soc. A 200, 542–544.

Bradforth S E, Kim E H, Arnold D W and Neumark D M 1993 J. Chem. Phys. 15, 800–

810.

Breit G and Wigner E 1936 Phys. Rev. 49, 519–531.

Broadfoot A L, Belton M J S, Takacs P Z, Sandel B R, Shemansky D E, Holberg J B,

Ajello J M, Atreya S K, Donahue T M, Moos H W, Bertaux J L, Blamont J E,

Strobel D F, McConnell J C, Dalgarno A, Goody R and McElroy M B 1979 Science

204, 979–982.

Broadfoot A L, Sandel B R, Shemansky D E, Holberg J B, Smith G R, Strobel D F,

McConnell J C, Kumar S, unten D M, Atreya S K, Donahue T M, Moos H W, Bertaux

J L, Blamont J E, Pomphrey R B and Linick S 1981 Science 212, 206–211.

Brown J M, Hougen J T, Huber K P, Johns J W C, Kopp I, Lefebvre-Brion H, Merer

A J, Ramsay D A, Rostas J and Zare R N 1975 J. Molec. Spectrosc. 55, 500 – 503.

Brunger M J and Buckman S J 2002 Physics Reports 357, 215–458.

Brunken S, Gupta H, Gottlieb C A, McCarthy M C and Thaddeus P 2007 Astrophys.

J. 664, L43–L46.

Burke P G 1973 Computer Phys. Communs. 6, 288–302.

Burke P G, Hibbert A and Robb W D 1971 J. Phys. B: At. Mol. Opt. Phys. 4, 153–161.

Burke P G, Mackey I and Shimamura I 1977 J. Phys. B: At. Mol. Opt. Phys. 10, 2497–

2512.

153



BIBLIOGRAPHY

Burke P G, Noble C J and Burke V M 2007 Adv. Atom. Mol. Opt. Phys. 54, 237–318.

Burke P G, Noble C J and Scott P 1987 Proc. R. Soc. Lond. 410, 289–310.

Burke P G and Seaton M J 1971 Methods Comput. Phys. 10, 1–80.

Bus S J, Ahearn M F, Schleicher D G and Bowell E 1991 Science 251, 774–777.

Caprasecca S, Gorfinkiel J D, Bouchiha D and Caron L G 2009 J. Phys. B: At. Mol.

Opt. Phys. 42, 095205.

Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D,

Masin Z, Plummer M and Tennyson J 2012 Euro. J. Phys. D 66, 58.

Cernicharo J, Guelin M, Agundez M, McCarthy M C and Thaddeus P 2008 Astrophys.

J. 688, L83–L86.

Chakrabati K and Tennyson J 2012 Eur. Phys. J. D 66, 31.

Chang E S and Fano U 1972 Phys. Rev. A 6, 173–185.

Chang E S and Temkin A 1969 Phys. Rev. Letts. 23(8), 399.

Chistophorou L G and Olthoff J K 2004 Fundamental Electron Interactions with Plasma

Processing Gases Kluwer Academic/Plenum Publishers.

Chu S I and Dalgarno A 1974a Phys. Rev. A 10, 788–792.

Chu S I and Dalgarno A 1974b Phys. Rev. A 10, 788–92.

Coffin J M, Hamliton T P, Pulay P and Hargittai I 1989 Inorg. Chem. 28, 4092–4094.

Corey G C and McCourt F R 1983 J. Phys. Chem. 87, 2723–2730.

Crawford O H, Allison A C and Dalgarno A 1969 Astron. Astrophys. 2, 451.

Cui Q and Morokuma K 1998 J. Chem. Phys. 108, 626–636.

Curik R, Ziesel J P, Jones N C, Field T and Field D 2006 Phys. Rev. Lett. 12, 123202–

123206.

Dobbs K D and Hehre W J 1987 J. Comp. Chem 8, 880–893.

Domcke W 1991 Phys. Rep. 208, 97–188.

154



BIBLIOGRAPHY

Dora A, Bryjko L, van Mourik T and Tennyson J 2012 J. Chem. Phys. 136, 024324.

Dubernet M L, ca C B, Daniel F, Dayou F, Doronin M, Faure A, Feautrier N, Flower

D R, Lique F, Grosjean A, Halvick P, Marinakis S, Moreau N, Roueff E, Spielfiedel

A, Stoecklin T, Tennyson J, Vasserot A M and Wiesenfeld L n.d. Astron. Astrophys. .

Dunning T H 1970 J. Chem. Phys 53, 2823.

Dunning T H 1989 J. Chem. Phys. 90, 1007.

Ershov A and Borysow J 2007 Plasma Source Sci. Technol. 16, 798–802.

Ervin K M and Lineberger W C 1991 J. Chem. Phys 95, 1167.

Fano U 1970 Phys. Rev. A 2, 353–365.

Faure A, Gorfinkiel J D, Morgan L A and Tennyson J 2002a Computer Phys. Communs.

144, 224–241.

Faure A, Gorfinkiel J D, Morgan L A and Tennyson J 2002b Computer Phys. Comms.

144, 224–241.

Faure A, Gorfinkiel J D and Tennyson J 2004 J. Phys. B: At. Mol. Opt. Phys. 37, 801–

807.

Faure A, Kokoouline V, Greene C H and Tennyson J 2006 J. Phys. B: At. Mol. Opt.

Phys. 39, 4261–4273.

Faure A and Tennyson J 2001 Mon. Not. R. astr. Soc. 325, 443–448.

Faure A and Tennyson J 2002a J. Phys. B: At. Mol. Opt. Phys. 35, 3945–3956.

Faure A and Tennyson J 2002b J. Phys. B: At. Mol. Opt. Phys. 35, 1865–1873.

Faure A, Varambhia H N, Stoecklin T and Tennyson J 2007 Mon. Not. R. astr. Soc.

382, 840–848.

Feshbach H 1958 Ann. Phys. 5, 357–390.

Feshbach H 1962 Ann. Phys. 19, 287–313.

Flores J R 1992 J. Phys. Chem. 96, 4414–4420.

Florescu-Mitchell A I and Mitchell J B A 2006 Phys. Rep. 430, 277–374.

155



BIBLIOGRAPHY

Fortenberry R C, King R A, Stanton J F and Crawford T D 2010 J. Chem. Phys. 132.

Fray N, Benilan Y, Cottin H, Gazeau M C and Crovisier J 2005 Planet. Sp. Sci. 53, 1243–

1262.

Gerarda J C, Huberta B, Shematovichb V, Bisikalob D and Gladstone G 2008 Planetary

and Space Sci. 56, 542–552.

Gershikov A G, Subbotina N Y and Hargittai M 1990 J. Mol. Spec. 143, 293–303.

Giannetti A, Brand J, Massi F, Tieftrunk A and Beltran M T 2012 Astron. Astrophys.

538.

Goicoechea J R, Compigne M and Habart E 2009 ApJ 699, L165.

Gorfinkiel J D and Tennyson J 2005 J. Phys. B: At. Mol. Opt. Phys. 38, 1607–1622.

Gottlieb C A, Brunken S, McCarthy M C and Thaddeus P 2007 J. Chem. Phys.

126, 191101.

Guillon G and Stoecklin T 2007 Phys. Rev. A 75, 052722–052728.

Gupta H, Brunken S, Tamassia F, Gottlieb C A, McCarthy M C and Thaddeus P 2007

Astrophys. J. 655, L58–L60.

Hall D T, Strobel D F, Feldman P D, McGrath M A and Weaver H A 1995 Nature Let.

373, L677–679.
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