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ABSTRACT 

Ischaemic priapism is a pathological condition characterised by a prolonged painful penile 

erection. Corporal blood aspirates show a combination of hypoxia, acidosis and glucopenia. Initial 

treatment includes ice packs, corporal aspiration and subsequent washout with room temperature 

fluids. The effect of ischaemia on cavernosal smooth function was examined.  

 

In vitro guinea-pig cavernosal smooth muscle strip experiments showed that simulated ischaemia 

caused a significant and marked reduction in phenylephrine-induced (PE) contraction (plateau 

PE30 response 35±19%, plateau PE60 response 29±16% of control). The degree of depression 

was similar to that seen in nerve-contraction although there appeared to be some metabolic 

reserve as shown by early preservation of the peak PE response (peak PE30 response 83±31%, 

peak PE60 response 36±35% of control). Nerve-contraction did not recover upon reperfusion 

whereas agonist-contractures demonstrated complete recovery. Experiments recording the effect 

of the elements of ischaemia showed this depression to be secondary to combined hypoxia and 

substrate depletion (absence of superfusate glucose and Na pyruvate). Isolated muscle cells 

showed a significant reduction in agonist-induced calcium transients during similar interventions. 

 

Simulated ischaemia markedly reduced nerve- and abolished agonist-relaxation. These 

detrimental effects were completely reversible upon reperfusion. Nerve-relaxation recovered 

whereas nerve-contraction did not. This effect was again secondary to the combination of hypoxia 

and substrate depletion. This suggests that relaxatory nerves are more resistant to ischaemic 

damage, a finding which would contribute to the pathogenesis of ischaemic priapism and the 

contractile failure observed in this condition.  

 

Intracellular acidification caused a significant and reversible increase in nerve-mediated 

contraction. Intracellular acidification also augmented PE contractures at 30 min. (peak PE30 

response 120±12%, plateau PE30 response 117±9%). Intracellular acidification induced a 

significant and reversible increase in PE-induced calcium transients in isolated cells. This 

augmentation of function was via an oxygen-dependent mechanism.    
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Reduction in superfusate temperature significantly suppressed nerve-contraction. This was not 

due to reduced recruitment of nerve fibres at low temperature. The time-course of phasic nerve-

contractions and agonist-contractures was prolonged, slowing responses significantly. Nerve-

relaxation was significantly ameliorated at low temperatures. The phasic relaxation was also 

prolonged with the return to pre-contracted tension following EFS-mediated relaxation slowed to a 

greater degree than the initial relaxatory response. No change in magnitude of agonist-induced 

relaxation was observed. Overall reduced temperature interventions affect contraction to a 

greater degree than relaxatory mechanisms. These effects were not due to changes in the visco-

elastic properties of the tissue at low temperature. 

 

Prolonged ischaemia is detrimental to contractile function before relaxatory responses. Substrate 

depletion is a late finding in ischaemic priapism, with undetectable blood glucose after 6-12 hours 

of priapism. Depletion of the energy substrates glucose and Na pyruvate, combined with hypoxia, 

is central to the contractile failure seen in ischaemic priapism. This depression is irreversible on 

contractile nerves at an earlier stage when compared to relaxatory nerves and the smooth muscle 

itself, propagating the ischaemic priapic state. Reversal of these conditions should form part of 

any treatment regimen for patients who have priapism. Low temperature interventions do not 

improve CSM function with nerve-mediated function significantly reduced at low temperature as 

well as slowing CSM contractile responses. It may be beneficial to use oxygenated washout fluids 

at body temperature which contain energy substrates such as glucose and Na pyruvate to treat 

ischaemic priapism. 
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1.0 Introduction 
 

1.1    Priapism 

 

Priapism is defined as a pathological condition where penile erection persists beyond, or is 

unrelated to sexual stimulation. Priapism often affects young men who frequently develop severe 

erectile dysfunction as a consequence with its resultant effects on both physical and 

psychological wellbeing. Priapism is a relatively uncommon condition with an incidence of 1.5 per 

100,000 person-years rising to 2.9 per 100,000 person-years in men 40 years and older(1, 2). In 

certain population groups the reported incidence is much higher. In an international multi-centre 

study of men with sickle-cell anaemia, 35% of men questioned reported at least one episode of 

priapism(3).  

 

The term priapism is derived from the Greek demi-god Priapus. Priapus was cursed by the 

goddess Hera to be impotent, ugly and of unpleasant personality whilst in the womb of his mother 

Aphrodite. Born with a disproportionately enlarged phallus, Priapus became a symbol of the 

vitality of the animal and plant kingdoms. Interestingly, Priapus was often frustrated by his 

impotence, the subject of many songs and comedies. The first mention of Priapus in existence is 

in the eponymous comedy Priapus, written in the 4th century BC by Xenarchus(4). “Gonorrhoea, 

Satyriasi et Priapisme” by Petraens contains the earliest account of priapism in the medical 

literature. Research into the condition in the 20th century consisted of personal case series of 

patients with priapism where it was recognised as a difficult condition to treat.  

 

Hinman in the early 20th century attempted to classify the disease into either mechanical or 

nervous types and suggested an approach to management based on this(5). The mechanical 

subtype was described as being related to thrombosis of the veins of the corpora. Conditions 
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associated with this condition included pelvic abscesses, penile tumours, perineal and genital 

injuries and blood dyscrasias. The nervous subtype related to intracerebral disorders affecting the 

erectile process such as syphilis, brain tumours, epilepsy and spinal cord injuries. Dysfunction of 

venous outflow was hypothesised as the primary reason for failure of detumescence in priapism 

by Hinman Jr.(6). He proposed that the dark viscous blood seen following aspiration or incision of 

the corpus cavernosum during a bout of priapism had a reduced oxygen tension with elevated 

carbon dioxide levels and that these factors enhanced blood viscosity, particularly in patients with 

abnormal erythrocytes such as in sickle cell anaemia(6). 

 

The contemporary view is that priapism encompasses two distinct clinical entities, high flow 

arterial and low flow ischaemic priapism, both exhibiting the phenotype of prolonged penile 

erection(7). The terms high and low flow describe the status of the blood flow in the penis; the 

differing clinical presentation and treatments of these groups is outlined below.  

 

1.1.1 High flow priapism 

 

High flow priapism is due to unregulated arterial blood flow within the lacunar spaces of the 

corpora cavernosae of the penis(8, 9). This results in a localised hyperdynamic circulation with 

penile tumescence secondary to a pressure effect and release of localised relaxant factors. High 

flow priapism occurs most commonly following penile or perineal trauma (‘saddle’ or ‘fall astride’ 

type injuries). This results in a cavernosal artery laceration which may present acutely or after 

several days or weeks. Delayed presentation is postulated to occur due to the original injury 

causing a localised area of arterial wall weakness which subsequently ‘gives way’ resulting in 

unrestricted arterial flow within the penis(8). Microvascular trauma secondary to the injection 



 20 

needle used in intracavernosal therapy for erectile dysfunction may also create an arterio-lacunar 

fistula resulting in high flow priapism(9, 10).  

 

High flow priapism has also been described in association with sickle cell anaemia(11), 

cavernosal artery pseudoaneurysms(12) and Fabry’s disease(13, 14). Fabry’s disease is an 

inherited disorder which results in an α-galactosidase A deficiency. This leads to a glycolipid 

accumulation in vascular endothelium such as that lining the lacunar spaces of the penis. It is 

postulated that this leads to derangement of the nitric-oxide pathway, especially when associated 

with a concurrent glucose-6-phosphate dehydrogenase deficiency (15-17). 

 

High flow priapism is typically painless; the penis is well oxygenated and not subject to the 

localised ischaemia present in the low-flow subtype where smooth muscle damage and corporal 

fibrosis predominate(7, 18). Erectile function is preserved in 77%-86% of patients on long term 

follow up(8, 18). Corporal blood aspiration shows well oxygenated blood and colour Doppler 

ultrasound shows good arterial penile blood flow. These diagnostic tests are interpreted with 

caution as the simple act of inserting a needle into the corpus cavernosum of an ischaemic 

priapism may produce a localised iatrogenic arteriovenous shunt. This can erroneously infer the 

diagnosis of a safe high flow priapism in a patient who actually has an ischaemic priapism which 

has a poorly oxygenated, acidotic microenvironment and is a surgical emergency(19, 20).   

 

Conservative measures to treat high flow priapism have been reported with limited success. 

These include observation, ice packs/baths and intracavernosal injection of methylene blue (a 

monoamine oxidase inhibitor which may act as a non-selective inhibitor of nitric oxide 

synthase)(18, 21, 22). The mainstay of current management is superselective internal pudendal 

angiography. This modality allows confirmation of the diagnosis as well as intervention by means 
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of injection at the site of the lacunar fistula with either absorbable gelfoam or permanent metallic 

coils(23-26). Metallic coils are no longer recommended due to their permanent nature being 

implicated in long term erectile dysfunction in these patients. Although spontaneous resolution 

can occur after observation, immediate embolisation is both successful and avoids the risk of long 

term venous leakage(24). Open arterial ligation using intraoperative ultrasound to localise the 

abnormality has also been described(27).   

 

1.1.2 Ischaemic priapism 

 

The commonest subtype, ischaemic priapism, is characterised by a prolonged painful penile 

erection often lasting for more than 8 hours(28). The condition is a surgical emergency as it is a 

form of compartment syndrome(10, 29, 30). The corpora cavernosae are turgid and painful with 

dark ischaemic blood, the glans is characteristically soft as it is uninvolved in the pathophysiology 

due to its differing blood supply. Blood is trapped within the lacunar spaces of the penis, with little 

or no arterial inflow or venous outflow. As the priapism episode progresses, the cavernosal 

microenvironment becomes progressively more ischaemic(31). Blood gas analysis of cavernosal 

aspirates typically demonstrates hypoxia and acidosis, typical values are outlined in table 1.1(10, 

32). A subtype of ischaemic priapism is termed ‘stuttering’ priapism. This is characterised by 

recurrent short lived painful erections which may precede a full blown ischaemic priapism 

episode(33, 34). 
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Table 1.1 – Typical cavernosal blood gas values. Adapted from (31, 35) 

14 patients developed prolonged painful erections following prostaglandin E1 (PGE1) injection 

administered in a hospital environment. Corporal aspiration and blood gas analysis demonstrated 

a clear trend towards hypoxia, acidosis and hypercarbia with prolonged erections lasting between 

105 and 342 minutes(31). In addition 6 patients with prolonged ischaemic priapism lasting 60-240 

hours also demonstrated severe glucopenia on corporal blood aspirates(35). 

 Normal flaccid 

penis  

Normal erect 

penis 

High flow 

priapism 

Ischaemic 

priapism 

pH 7.35 7.35 7.4 <7.25 

pO2 (mmHg) 40 100 60 -100 <30 

pCO2 (mmHg) 50 40 40-50 >60 

blood glucose (BM) 4-8 4-8 4-8 <4 

 

 

There are several causes of ischaemic priapism with early therapy aimed at preventing 

cavernosal smooth muscle necrosis and preserving long-term erectile function (Table 1.2). The 

mechanisms underlying prolonged penile tumescence in this clinical scenario are unclear but are 

thought to be a combination of both veno-occlusive and smooth muscle dysfunction. 

 

Several haematological conditions are associated with priapism. Postulated mechanisms include 

increased blood viscosity and abnormal erythrocyte function. Sickle cell anaemia is the 

commonest blood dyscrasia associated with ischaemic priapism; 38-42% of patients report at 

least one episode of priapism(3, 36). It is seen more commonly in homozygous patients and is 

associated with sickle cell crises where abnormal deformation of red cells occur causing 

occlusion of the microvasculature and localised ischaemia. There may also be chronic changes 
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within the cavernosum of these patients resulting in disordered contractile regulatory mechanisms 

within the smooth muscle(27, 37). Other associated conditions include leukaemia, thalassemia, 

polycythaemia, fat emboli and Fabry’s disease(38, 39). 

  

Drug therapy is also associated with low flow ischaemic priapism (Table 1.2). This may be 

secondary to α-adrenergic blockade resulting in impaired cavernosal smooth muscle contraction. 

Intracavernosal agents utilised in erectile dysfunction and directly instilled into the corpora (e.g. 

papaverine, prostaglandin E1 and phentolamine) are associated with low-flow priapism and 

account for 0.5-6% of cases. Drug classes associated with priapism include α-adrenergic 

blockers, serotonin agonists and dopamine antagonists(40-42).  

 

Primary penile cancer, local invasion from adjacent organs and metastases from distant sites 

have been reported as causing priapism. Local invasion occurs from the prostate, bladder and 

urethra(43-48). Priapism associated with neurological disorders is well described. An imbalance 

of parasympathetic and sympathetic outflow from the spinal cord is postulated as the underlying 

pathology however this is far from clear. Examples include cauda equina syndrome, spinal cord 

lesions and spinal stenosis(49-54). Amyloidosis, rabies and scorpion stings are rare conditions 

described in case reports as causing ischaemic priapism(55-57).  
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Table 1.2 - Causes of ischaemic priapism 

In Europe and the U.S.A the commonest cause of priapism is intra-cavernosal therapy for erectile 

dysfunction. Worldwide sickle cell anaemia predominates(30).  

Category Subtypes 

Drug therapy for ED Intra-urethral prostaglandin E1 (MUSE)  

Intra-cavernosal prostaglandin E1 (Caverject) 

PDE-5 inhibitors (Sildenafil, Tadalafil, Vardenafil) 

Intracavernosal phentolamine - α-AR antagonist 

Papaverine – intracavernosal vasodilator 

Haematological Sickle cell anaemia 

Thrombophilia  

Other Haemoglobinopathies inc. Thalassemia 

Leukaemia 

Myeloma 

Pharmacotherapy and other drugs Phenothiazines 

Selective Serotonin Reuptake Inhibitors (SSRIs) 

Anticoagulants (heparin)  

Anti-hypertensives 

Alcohol 

Marijuana 

Cocaine 

Solid Tumours Locally advanced bladder cancer 

Locally advanced prostate cancer 

Metastatic renal cancer 

Systemic disease Hypertension 

Diabetes 

Rheumatoid Arthritis 

Idiopathic   

Others Total parenteral nutrition, amyloid, rabies, appendicitis 
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Regardless of the underlying cause, urgent treatment is indicated as smooth muscle death and 

subsequent impairment of function are the inevitable sequelae of delayed or inappropriate 

treatment(58, 59). This may leave young, previously fit men, with severe organic erectile 

dysfunction and its’ associated physical and psychological morbidity. It is therefore essential that 

the goals of any treatment regimen should not only take into account penile detumescence but 

also preservation of long term sexual function(60). 

 

Patients with recurrent ‘stuttering’ priapism describe the use of masturbation and ejaculation, cold 

baths and ice packs in managing short lived episodes of priapism and avoiding presentation to 

their medical practitioner(61). The primary medical treatment of ischaemic priapism involves 

analgesia followed by aspiration of blood from the corpora and irrigation with 0.9 % NaCl solution 

at room temperature should initial non-invasive measures fail. Aspiration of the stagnant blood 

may be enough to re-establish penile blood flow and terminate the priapic episode with penile 

detumescence(10, 28). The aspirate is typically dark and viscous and should be sent for blood 

gas analysis to confirm the diagnosis. Aspiration and washout is often combined with the use of 

ice-packs and cold compresses. There is no evidence for the use of these reduced temperature 

interventions.  

 

Should these measures be unsuccessful in effecting detumescence, α-adrenergic agonists 

(usually phenylephrine) injected into the corpora cavernosae are recommended(60, 62). Careful 

cardiovascular monitoring is instigated during treatment to monitor for the systemic effects of α-

agonists (cardiac arrythmias, hypertension). The aim of treatment is to cause contraction of the 

cavernosal smooth muscle and helicine arteries. This then relieves pressure on the venous 

outflow with the aim of re-establishing penile blood flow and penile detumescence(60, 62). 

Alternative α-agonists have been described in the literature including epinephrine, norepinephrine 



 26 

and metaraminol(32). Several other oral and intracavernosal agents have been described 

although none has gained widespread use in the initial treatment of priapism. These include the 

cyclic guanosine monophosphate (cGMP) inhibitor methylene blue (stains penis bright blue), 

etilefrine (oral and intracavernous α-agonist) and intracavernosal thrombolysis(63-68). Oral 

terbutaline has been reported to be successful although it does also have β-agonist effects(69, 

70).  

 

It is clear from clinical studies that intra-cavernosal injection of α-agonists becomes less 

efficacious with increasing duration of ischaemia(35). Cavernosal smooth muscle biopsies from 

patients with ischaemic priapism show evidence of apoptosis and necrosis(71, 72). In addition, 

functional in vitro studies on this tissue have shown it to be increasingly resistant to 

phenylephrine-induced contraction in a time-dependent manner(35).      

 

Failure of intra-cavernosal therapy is considered when detumescence has not occurred despite 

up to one hour of repeated intracavernosal injections in conjunction with systemic treatment 

where indicated (e.g. intravenous fluid resuscitation and oxygen in sickle cell crisis)(62). Invasive 

surgical intervention is indicated at this stage. The aim of shunt surgery is to create an iatrogenic 

fistula between the corpora cavernosae and the systemic circulation, bypassing the dysfunctional 

veno-occlusive mechanism and providing venous outflow for blood within the corpus 

cavernosae(73). Shunts are indicated where there is a possibility of salvage of some degree of 

long term erectile function. In prolonged cases of priapism (>72 hours) penile implant insertion is 

the preferred option in the acute phase(74).  

 

Various shunt procedures have been described and these are summarised in table 1.3(75-81). 

Shunts are reported to effect detumescence in up to 50% of patients(28). However, long-term 
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erectile dysfunction is common in up to 80% of patients(73). When shunt surgery has failed the 

placement of a penile prosthesis is considered in order to minimise penile shortening secondary 

to fibrosis and preserve sexual function. Implant surgery may be considered at an earlier stage in 

those with pre-existing erectile dysfunction or those who present at a late stage of their priapic 

episode(74). 

 

The mechanisms underlying priapism are unclear. An outline of penile anatomy, cavernosal 

smooth muscle physiology and the normal mechanisms of penile erection and detumescence 

follow. 
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Table 1.3 – Summary of shunt surgery  
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1.2 The penis 

 

1.2.1 Macroscopic structure 

 

The human penis acts as the common conduit for both urine and semen. In addition, when erect, 

the penis is the male copulatory organ. Anatomically the penis is described when erect therefore 

the dorsal aspect is the surface closest to the abdominal wall and the ventral surface that where 

the urethra is palpable. It is predominately formed by 3 ‘tubes’. The paired corpora cavernosae 

dorsally and the corpus spongiosum (surrounding the anterior urethra) ventrally. These three 

erectile bodies are anchored proximally to both fasciae and bone within the superficial perineal 

pouch (the ‘root’ of the penis). The two corpora cavernosae attach to the inferior pubic rami and 

perineal membrane surrounded by the ischiocavernosus muscles. The single corpus spongiosum 

is attached to the centre of the perineal membrane. From there it enlarges distally to incorporate 

the bulbar urethra and is surrounded by the bulbospongiosus muscle. The corpus spongiosum 

runs along the ventral aspect of the penis and expands distally to ‘cap’ the paired corpora 

cavernosae as the glans penis, separated from them by the penile corona(29, 82-84). 

The paired corpora cavernosae join in the midline beneath the pubis to form the major portion of 

the penile body. These ‘pressure barrels’ are surrounded by the tunica albuginea, a thick 

collagenous layer formed of inner circular and outer longitudinal fibres. These are elastic and 

change orientation to accommodate the enclosed spongy tissue during penile erection. There is a 

midline septum between the two cavernosae which is fenestrated, allowing free communication 

between the two chambers. Each corpus cavernosum encloses a lacunar meshwork of smooth 

muscle (50%) and connective tissue (45%)(72). The spaces within this spongy tissue are lined by 

vascular endothelium which, in response to appropriate stimuli, releases vaso-active factors 
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resulting in smooth muscle relaxation and penile tumescence. The spongy network is 

interspersed with collagen and elastin (fig. 1.1). 

 

 

 

 

 

 

Figure 1.1 – Cross section of the human penis at the mid-shaft level 

 

The corpus spongiosum and contiguous glans penis are similar in structure to the corpora 

cavernosae. However, the vascular spaces within the smooth muscle meshwork are larger and 

the surrounding tunica is thinner around the corpus spongiosum. This is due to an absent outer 

tunical longitudinal layer and ensures a low pressure system in this part of the penis during 

erection. The tunica is absent over the glans penis.  

 

Bucks’ fascia surrounds all three penile corpora and extends proximally to join with fibres from the 

anterior rectus sheath to form the fundiform ligament of the penis. Fibres arise from the pubis 

itself and merge with the fundiform ligament to form the penile suspensory ligament. This acts to 

hold the penis in an upright position during penile erection(82). Bucks’ fascia extends distally and 

fuses with the penile corona, just proximal to the glans penis. Surrounding Bucks’ fascia is a 

further superficial fascial layer just beneath the skin. This layer of dartos confers the mobility 

required to accommodate the changes of penile size during tumescence. The blood supply to this 

skin is independent to that of the erectile bodies(84). 

   

 
 
 
 

Image removed 
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1.2.2 Blood supply of the penis 

 

The penile artery is the terminal branch of the internal pudendal artery, itself arising from the 

anterior branch of the internal iliac artery. The internal pudendal artery passes through the 

perineum supplying the anus and scrotum. It then passes through Alcock’s canal as the penile 

artery and forms three terminal branches. The bulbourethral artery supplies the urethra, corpus 

spongiosum and glans penis. The cavernosal artery, responsible for cavernosal tumescence, 

traverses the corpus cavernosum giving rise to many branches which supply the spongy corporal 

tissue (fig. 1.2). 

 

 

 

 

 

 

Figure 1.2 – Arterial blood supply to the penis (withealth.net) 

The penis has an extensive arterial supply. It is important to note that the supply to the corpora 

cavernosae differs from that of the glans and corpus spongiosum as well as the overlying skin.  

 

The terminal helicine arteries of the cavernosal artery are intimally associated with the 

trabeculated smooth muscle along with the terminal cavernosal nerves (fig 1.3)(84, 85). These 

helicine arteries are tortuous in the flaccid state becoming straight during penile erection. The 

dorsal artery of the penis, responsible for tumescence of the glans, runs along the dorsal aspect 

of the penis with the dorsal vein and nerve below Buck’s fascia in the main neurovascular bundle 

of the penis. This third artery gives rise to circumferential branches to the cavernosum, 

 
 
 
 

Image removed 
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spongiosum and urethra. These branches take a direct route when piercing the tunica, resulting 

in minimal occlusion during penile erection (fig. 1.1).  

 

 

 

 

 

 

 

Figure 1.3 – Scanning electron micrograph of arterial supply to lacunar space Modified from(85) 

 

The main venous drainage of the penis is via the deep dorsal penile vein (fig. 1.4). This arises 

from several venous channels just proximal to the glans penis (the retro coronal venous plexus). 

It traverses the ventral aspect of the penis with tributaries from the corpus spongiosum 

(circumflex veins present in the distal two thirds of the penis). The vascular spaces of the corpora 

cavernosae drain into venules which coalesce beneath the tunica to form the subtunical venous 

plexus before exiting as the emissary veins (fig. 1.5)(84). These emissary veins follow an oblique 

path between the layers of the tunica and drain into the circumflex veins dorsolaterally. This 

oblique path changes orientation during penile erection resulting in venular occlusion and 

contributing to penile erection. In the proximal one third of the penis, veins draining the cavernous 

bodies, crura and penile bulb join the dorsal penile vein to drain into the internal pudendal veins.  
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Figure 1.4 – Venous drainage of the penis (withealth.net) 

Draining veins coalesce into a sub-tunical plexus such that as penile tumescence occurs, venular 

compression occurs. This ‘traps’ blood within the penis and contributes to the veno-occlusive 

mechanism of penile erection.  

 

 

 

 

 

 

Figure 1.5 – Scanning electron micrograph of venous drainage of subtunical plexus(85)  

Draining emissary veins pass through the tunica albuginea in an oblique fashion becoming 

occluded as penile erection occurs. 
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1.2.3 Innervation of the penis 

 

The penis has both autonomic (parasympathetic and sympathetic) and somatic (sensory and 

motor) innervation. The autonomic nerve populations have been divided into three categories; 

adrenergic, cholinergic and non-adrenergic, non-cholinergic (NANC)(86-88).   

 

The parasympathetic pathway arises from the second to the fourth sacral spinal segments (fig. 

1.6, S2-S4). Pre-ganglionic fibres travel via the pelvic nerves to the pelvic plexus. The 

sympathetic pathway arises from eleventh thoracic to the second lumbar spinal segments (T11-

L2), passing through the white rami to the sympathetic chain ganglia. Fibres travel via the lumbar 

splanchnic nerves to the inferior mesenteric and superior hypogastric plexuses. The hypogastric 

nerves contribute to the pelvic plexus and together with the parasympathetic fibres, form the 

cavernosal nerves (fig. 1.6). The cavernosal nerves supply the corpora to effect the 

neurovascular events seen during erection and detumescence(29, 83, 84, 86). 

 

The somatosensory pathway originates at the sensory receptors in the penile skin, glans, urethra 

and within the corpora cavernosae. These free nerve endings are derived from both thin 

myelinated Aδ fibres and unmyelinated C fibres. They converge to form the dorsal nerve of the 

penis. This in turn merges with the perineal and inferior rectal nerves to form the pudendal nerve, 

entering the spinal cord as the second, third and fourth sacral nerves (S2-S4). The dorsal nerve 

also contains autonomic elements enabling it to regulate both erectile and ejaculatory function. 

Somatomotor innervation arises from Onuf’s nucleus located in the ventral part (lamina IX) of the 

anterior horn in the sacral region of the spinal cord (S2-S4). Fibres originating here travel as the 

pudendal nerve, via the sacral nerves, to innervate the ischiocavernosus and bulbocavernosus 
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muscles. Contraction of these produces the rigid erection phase, with contraction of 

bulbocavernosus required for ejaculation(83, 84, 86).  

 

Fig. 1.6 – Diagrammatic representation of penile neural pathways. Adapted from(89) 
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1.2.4 Central pathways involved in penile erection 

 

Penile erection is a process which, in health, is initiated centrally at the level of the hypothalamus. 

The predominant areas involved are the medial preoptic area (MPOA) and the paraventricular 

nucleus (PVN)(90). Sensory stimuli originating at the somatosensory nerve terminals are 

processed here and integrated with multiple other stimuli including audiovisual, cognitive, 

olfactory and tactile sensation. Dopaminergic neurons arising from the caudal hypothalamus 

synapse with oxytocinergic neurones within the PVN(91, 92). Stimuli are integrated within these 

two centres and result in activation of the autonomic pathways which mediate penile erection. 

Pro-erectile neurotransmitters include dopamine, adrenocorticotrophic hormone (ACTH) and 

oxytocin. Those inhibiting penile erection are 5-Hydroxytryptamine (5-HT), γ-aminobutyric acid 

(GABA), neuropeptide Y and prolactin(83, 84). 

 

1.3 Mechanism of penile erection and detumescence 

 

1.3.1 Corpora cavernosae 

 

The state of the penis is predominantly influenced by the arteriolar and trabecular smooth muscle 

tone. In the flaccid state, these muscles are tonically contracted, allowing enough penile blood 

flow to maintain homeostasis. In response to appropriate stimuli, neurotransmitters are released 

from the cavernous nerve terminals resulting in smooth muscle relaxation. Six phases in the cycle 

of penile erection and detumescence are described (fig. 1.7)(93, 94): 
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1. Flaccid phase  

Minimal arterial and venous blood flow with cavernosal blood gas values similar to those 

of venous blood. Flow rate 2.5-8 mL/100 g/min(95); 0.5-6.5 mL/100 g/min(94). Arteriolar 

and cavernosal smooth muscle is tonically contracted due to basal release of NA from 

sympathetic nerves and endothelin form the endothelium.   

2. Latent (filling) phase 

Arterial smooth muscle relaxation in the internal pudendal artery during both systolic and 

diastolic phases results in increased blood flow into the penis. The lacunar spaces within 

the corpora fill with blood and expand, facilitated by relaxation of the trabeculated smooth 

muscle. Intracavernous pressure remains unchanged and there is some lengthening of 

the penis. 

3. Tumescent phase 

As the trabecular meshwork expands the subtunical venular plexus is compressed 

against the inner layer of the tunica albuginea resulting in decreased venous outflow. 

Intracavernous pressure rises until full erection is achieved. The penis expands and 

elongates. The arterial blood flow rate decreases as the pressure rises.  

4. Full erection phase 

As the tunica albuginea expands, the inner circular and outer longitudinal layers expand 

in slightly differing directions secondary to the orientation of the connective tissue fibres. 

The emissary veins which traverse the tunica in an oblique fashion are occluded as the 

tunica expands, resulting in a further reduction in venous outflow. These changes result 

in an increase in intracavernous pressure. In the adult this can rise to as much as 80-

90% of the systolic pressure (~100 mmHg). Pressure in the internal pudendal artery 

increases but remains slightly below systemic pressure. Arterial blood flow is much less 

than in the initial filling phase but is still higher than in the flaccid phase. Although the 
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venous channels are mostly compressed, the venous flow rate is slightly higher than 

during the flaccid phase. Due to these pressure changes, blood flow occurs only in 

systole. Cavernosal blood gas values approach those of arterial blood. 

5. Rigid erection phase 

As a result of contraction of the ischiocavernosus muscle (which surround the bony 

attachment of the corpora cavernosae), the intracavernous pressure rises well above the 

systolic pressure, resulting in rigid erection. During this phase, almost no blood flows 

through the cavernous artery; however, the short duration prevents the development of 

ischaemia or tissue damage. 

6. Detumescent phase 

After ejaculation or cessation of erotic stimuli, smooth muscle contraction occurs as a 

result of increased sympathetic tone. This effectively diminishes the arterial flow to flaccid 

levels. The penis returns to its flaccid length.  

 

 

 

 

 

 

 

Figure 1.7 – Graph showing penile haemodynamic changes during erection and detumescence 

Recordings made in monkeys with erections induced by neurostimulation.  

Numbers along the top correlate with phases of penile erection.  

Upper trace – pudendal arterial blood flow, Lower trace – intracavernosal pressure(93). 
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Penile erection is thus a combination of arterial dilatation, sinusoidal relaxation and venous 

compression(93). 

 

1.3.2 Corpus spongiosum and glans penis 

 

Arterial inflow to the glans and corpus spongiosum increases in a similar manner to that seen in 

the corpora cavernosae. However, the absence of tunical covering of the glans and lack of tunical 

longitudinal fibres over the spongiosum results in minimal venous occlusion and a lower pressure 

system during erection (typically one third to one half that seen in the corpora cavernosae). 

During erection, compression of the dorsal and circumflex veins contributes to engorgement of 

the glans and spongiosum. In the rigid erection phase, contraction of the ischiocavernosus and 

bulbocavernosus muscles compress the spongiosum and penile veins, increasing pressure within 

the glans(96). 

      

1.4 Mechanisms of cavernosal smooth muscle contraction 

 

1.4.1 Cavernosal smooth muscle cell structure 

 

Cavernosal smooth muscle fibres are spindle shaped and have the ability to both contract and 

relax. The smooth muscle cells contain the proteins calmodulin, caldesmon and calponin. The 

cytoskeleton consists of the intermediate filament proteins vimentin and desmin, along with actin 

filaments. The actin filaments attach to the sarcolemma by focal adhesions. The contractile 

proteins actin and myosin organise into zones along the long axis of the cell. The sarcolemma 

possesses invaginations containing receptors (including muscarinic and adrenergic receptors), G 

proteins (Rho A, G alpha), second messenger generators (adenylate cyclase, phopholipase C) 
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and ion channels (L-type calcium channels, ATP sensitive potassium channels - KATP, calcium 

sensitive potassium channels - KCa)(86).  

 

To maintain the trabeculated structure found within the corpora, cells are attached to one another 

by adherens junctions. Because of this, contraction of one cell causes contraction of adjacent 

cells simply by transmission of mechanical force. In addition, electrical activity within the corpus 

cavernosum is coordinated, with cells behaving as a functional syncytium(86). Gap junctions 

couple adjacent cells both chemically and electrically, facilitating propagation of smooth muscle 

cell contraction and relaxation. Connexin 43 is the predominant gap junction protein found in 

cavernosal tissue. These intercellular channels promote co-ordinated smooth muscle contraction 

and relaxation(97). 

 

1.4.2 Neurotransmitters involved in penile detumescence and maintenance of penile flaccidity 

 

1.4.2.1 Noradrenaline 

 

Penile flaccidity is achieved when corporal smooth muscle is tonically contracted. Α-adrenergic 

nerve fibres and receptors present in the trabeculated cavernosal smooth muscle and cavernosal 

arteries are thought to mediate this contraction. The α-adrenoceptor (α-AR) is ten times more 

prevalent within the corporal smooth muscle than the β-adrenoceptor (β-AR) with around 650,000 

α-AR binding sites per cell(98, 99). Both the α1–AR and α2–AR sub-types are present in CSM 

however the former is functionally more important(100-104).  

 

It is postulated that α1A-, α1B- and α1D-AR subtypes mediate smooth muscle contraction, the α1b 

subtype conferring a degree of pre-synaptic modulation(103, 105, 106). Both phenylephrine and 
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noradrenaline contract human corpus cavernosum smooth muscle(107). Non-selective α-AR 

antagonists abolished these contractions (phentolamine) as did the α1-AR antagonist 

prazosin(107, 108). These same contractions were also sensitive to the L-type Ca2+ channel 

antagonists nifedipine and rauwolscine(107, 108). Α1-adrenoceptor mediated contraction results 

in the release of intracellular Ca2+ stores followed by the extracellular entry of Ca2+ for the 

maintenance of tone (Fig. 1.8).  

 

Receptor localisation studies have shown that α2-ARs are present on the helicine arterioles 

supplying the cavernosal spaces(102, 109). In addition α2 -ARs have been demonstrated on the 

autonomic nerves (pre-junctional) and smooth muscle itself (post-junctional)(100). Selective α2-

agonists elicit contraction of corpus cavernosum strips in vitro as well as inhibiting NO release 

from autonomic nerves(102, 110). The role of these receptors in health and disease in the in vivo 

setting are unclear. 

 

Both β1 and β2 adrenoceptors are expressed in cavernosal smooth muscle(99). Both procaterol 

(selective β2 adrenoceptor agonist) and isoprenaline (β1 and β2 adrenoceptor agonist) produce 

relaxation in CSM strips pre-contracted with NA(107).  Selective β-adrenergic stimulation 

produces relaxation of both corporal and penile arteriolar vascular smooth muscle(107). This 

effect was abolished in the presence of the β antagonist propranolol. These results suggest that 

both β1 and β2 adrenoceptor activation cause relaxation of corporal smooth muscle. However, β 

receptors are markedly outnumbered by α receptors on cavernosal smooth muscle and their 

functional role in the maintenance of smooth muscle tone is still largely unknown(99). 
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1.4.2.2 Calcium sensitisation and maintenance of CSM tone 

 

Tension generated for a given intracellular [Ca2+] ([Ca2+]i) is variable. For example, tension 

generated in response to α-adrenoceptor stimulation is greater than that generated secondary to 

membrane depolarisation (e.g. by KCl)(111). Force of contraction does not always correlate with 

the degree of elevation in [Ca2+]i(112). This would suggest a possible calcium-sensitizing effect of 

contractile-agonists. Simultaneous in vitro measurement of [Ca2+]i and tension in cavernosal 

smooth muscle strips during α1-adrenoceptor stimulation showed increase in force to correlate 

with both [Ca2+]i and sensitivity of the contractile apparatus(111). These sensitizing effects are 

due to inhibition of myosin phosphatase via guanosine triphosphate (GTP) binding proteins that 

generate protein kinase C or arachidonic acid(113). This reduction in phosphatase activity results 

in a net increase of phosphorylated MLC20 and therefore smooth muscle contraction independent 

of an increase in [Ca2+]i. The calcium sensitizing Rho-A/Rho-kinase pathway plays a role in 

maintaining penile detumescence(114). In addition to inhibiting myosin phosphatase, Rho-A can 

itself directly phosphorylate MLC20, resulting in an increase in activated myosin and therefore 

CSM contraction(86). An additional pathway contributing to this calcium sensitisation involves 

protein phosphatase-1 inhibitory protein (CPI-17)(111). This protein also inhibits myosin 

phosphatase when phosphorylated by protein kinase C. Again an increase or maintenance of 

tone can be seen independent of [Ca2+]i increase(111).  

 

1.4.2.3 Endothelins 

 

Endothelins are potent vasoconstrictors produced by vascular endothelium and contribute to 

maintenance of the penis in the flaccid state. Endothelin-1 is not stored in vesicles, it is 

synthesised directly from mRNA in response to stimuli such as hypoxia, ischaemia, 
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catecholamines, angiotensin II, thrombin or sheer stress. Human corpus cavernosum endothelial 

cells express endothelin 1 (ET-1) mRNA and ET receptors (ETA and ETB) have been 

demonstrated in penile vascular and trabecular CSM(115). ETA receptors are present in the 

endothelium lining the lacunar spaces and appear to mediate relaxatory responses, possible via 

the action of NO(116, 117). ETB receptors are localised to vascular endothelium and appear to 

mediate vaso-constriction(116, 118). Despite these contrasting effects on stimulation of ETA and 

ETB receptors, ET-1 itself induces slowly developing, long-lasting contractions in cavernosal 

arteries and smooth muscle(115, 119, 120). The main role of endothelins in penile smooth 

muscle physiology in health is to sustain smooth muscle tone and maintain penile 

detumescence(121).  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.8 – Diagram of CSM contractile factors 
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1.4.2.4   Oxygen tension and maintenance of penile flaccidity 

 

There is also evidence to suggest that the corporal microenvironment itself may contribute to 

maintenance of flaccidity. The oxygen tension (pO2) within the flaccid penis is around 25-43 

mmHg(122, 123). This is similar to mixed venous blood. During penile erection, oxygen tension 

increases to around 100 mmHg(123). Production of NO requires oxygen and the reduction in 

PaO2 in the flaccid penis in itself inhibits the basal release of nitric oxide, the principal mediator of 

CSM relaxation and penile tumescence(122-124). As penile tumescence begins, PaO2 increases 

due to increased arterial flow, NO production becoming maximal at pO2 levels above 60 

mmHg(122). Prostaglandin formation is also reduced at low oxygen tension. PGE2 contributes to 

CSM relaxation and therefore reduction in production will help maintain detumescence(Fig. 

1.8)(125). 

 

1.4.3 Molecular mechanism of smooth muscle contraction 

 

Contraction of human penile arteries and trabecular smooth muscle is largely mediated by the 

stimulation of α1-ARs by circulating NA, NA release from autonomic nerves and endothelins from 

endothelium (fig. 1.8)(103, 126, 127). Cavernosal smooth muscle contraction is brought about by 

a sliding filament mechanism. Smooth muscle cell stimulation results in an increase in [Ca2+]i. 

These calcium ions bind to calmodulin forming a calcium-calmodulin complex. This complex in 

turn activates myosin light chain kinase (MLCK). Activated MLCK catalyses phosphorylation of 

the regulatory light chain subunits of myosin (MLC20). Phosphorylated MLC20 activates myosin 

ATPase. The myosin filaments then hydrolyse ATP to release energy. This enables the myosin 

filament to undergo a conformational change. The globular heads protruding from the myosin 

filament form crossbridges with the actin filaments. These myosin heads shift at the time of this 



 45 

conformational change to slide along the actin filament. The heads then release and adopt their 

original conformation prior to rebinding and shifting again should the stimulus for contraction 

continue. This process is called crossbridge cycling (fig. 1.9)(128). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.4 Energy consumption during smooth muscle contraction 

 

Myosin light chain phosphorylation correlates well with the shortening velocity of smooth muscle. 

This is accompanied by a rapid burst of energy as measured by oxygen consumption. Sustaining 

this force of contraction is expensive in terms of energy and, soon after initiation, myosin light 

chain phosphorylation decreases and the muscle relaxes. However, it is clear that in cavernosal 

smooth muscle, a sustained level of smooth muscle tone is maintained to ensure that the penis 

remains flaccid. This baseline tone may be attributed to slowly cycling de-phosphorylated myosin 

Calcium-Calmodulin Complex 

MLCK 

MYOSIN MYOSIN - P X  ACTIN 

CROSS-BRIDGE 
CYCLING MLCP 

Phosphorylation 

Dephosphorylation 

Fig. 1.9 – Mechanism of contraction of CSM 

The Calcium-Calmodulin complex brings about myosin phosphorylation via MLCK. This 

Myosin-P then hydrolyses ATP and undergoes a conformational change moving along the 

actin filament. These cross bridges continue forming and releasing as long as the stimulus for 

contraction continues. Slowly cycling cross bridges and actin polymerisation contribute to the 

maintenance of tone at low energy cost to the cell. 
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crossbridges (‘latch-bridges’) and to actin polymerisation stiffening the cell. This type of 

contraction maintains a degree of force at low energy costs(129-134).  

 

Maintenance of penile flaccidity is therefore an active process. Noradrenaline-induced smooth 

muscle contraction along with intrinsic myogenic activity and endothelium-derived contracting 

factors such as endothelin all contribute. 

 

1.5 Mechanisms of cavernosal smooth muscle relaxation 

 

1.5.1 Neurotransmitters involved in penile detumescence 

 

1.5.1.1 Acetylcholine 

 

The penile vasculature and corporal smooth muscle receive a rich cholinergic innervation(129, 

135, 136). Acetylcholine (Ach) acts on muscarinic receptors on both corporal smooth muscle and 

endothelium. M1-M4 receptor subtypes have been demonstrated in human corpus cavernosum 

with the M2 subtype predominating on the smooth muscle and the M3 subtype on the 

endothelium(137, 138). Isolated CSM cells have ~45,000 binding sites for Ach, approximately 15 

times fewer than the number of α-ARs(98). Muscarinic receptor agonists cause contraction of 

isolated CSM. It is therefore postulated that the relaxant effects of ACh on CSM tissue are via 

pre-synaptic inhibition of adrenergic neurones which mediate smooth muscle contraction and by 

stimulation of the release of nitric oxide from endothelial cells(86, 107, 127, 135, 139, 140).  
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1.5.1.2 Nitric Oxide and the Guanyl Cyclase/cGMP pathway 

 

Penile erection is a result of arteriolar and corporal smooth muscle relaxation. The principle 

neurotransmitter mediating this process is nitric oxide (NO)(86, 141). NO is synthesised from the 

terminal nitrogen atom of arginine by nitric oxide synthase (NOS) in the presence of NADPH and 

oxygen (fig. 1.10). It is therefore an oxygen dependent mechanism. There are several forms of 

NOS. Neuronal NOS (nNOS or NOS-1), is found in the cavernous nerves (postganglionic 

parasympathetic nerve fibres) and penile arteries(142). nNOS has also been demonstrated in 

pre-ganglionic parasympathetic nerves as well as pre-ganglionic sympathetic nerves(143-145). 

Endothelial NOS (eNOS or NOS-3) is present in the cells lining the cavernous spaces and in 

those lining the small intra-cavernosal helicine arteries(135, 142, 146, 147).  

 

In response to stimuli from higher centres, electrical impulses are transmitted along efferent 

‘nitrergic’ nerve fibres which terminate within the corporal bodies(148). The term ‘nitrergic’ applies 

to nerves whose transmitter function depends on the release of NO or to transmission 

mechanisms that are brought about by NO(149). This neuronal depolarisation causes the 

production of NO via nNOS. In addition, endothelial production of NO via eNOS is directly 

stimulated by acetylcholine as well as other neurotransmitters such as substance P and 

bradykinin(150, 151). Acute increases in shear stress (the term used to describe pressure forces 

exerted on endothelial cells by the flow of blood over them) act to drive rapid but limited amounts 

of NO release by similar biochemical mechanisms(152, 153). 

 

NO diffuses into corporal smooth muscle cells where it catalyses the conversion of GTP into 

cyclic GMP (cGMP) and pyrophosphate via activation of the enzyme soluble guanyl cyclase 

(sGC). Cyclic GMP in cavernosal smooth muscle is metabolised by the iso-enzyme 
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phosphodiesterase-5. Inhibition of this enzyme (by drugs such as sildenafil - ViagraTM) results in 

potentiation of the relaxatory effects of cGMP and penile erection.   

 

 

 

Figure 1.10 – Nitric oxide generation from L-arginine 
NO generation from L-arginine. Nitric oxide synthase (NOS), in the presence of O2 converts 

arginine to NO, with the formation of citrulline.   

 

1.5.2 Molecular mechanism of cavernosal smooth muscle relaxation 

As previously outlined, NO produced as a result of stimulation of endothelium by Ach diffuses into 

corporal smooth muscle cells. This catalyses the conversion of GTP into cGMP via activation of 

the enzyme sGC. The increase in cGMP activates a cGMP-dependent protein kinase (protein 

kinase G – PKG) and to a much lesser extent, protein kinase A (PKA). These activated protein 

kinases bring about smooth muscle relaxation by several mechanisms: 

• PKG activates myosin light chain phosphatase, dephosphorylating myosin light chains and 

leading to smooth muscle relaxation. 
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• PKA phosphorylates phospholamban, a protein that inhibits the Ca2+ pump of the SR. The 

pump is therefore activated and intracellular Ca2+ is taken back into the SR, reducing 

[Ca2+]i(154). 

• Both cGMP and PKG activate K+ channels resulting in smooth muscle cell 

hyperpolarisation. This closes membrane-bound voltage-dependent calcium channels 

resulting in a decrease in [Ca2+]i(154, 155). 

• cGMP may inhibit the L-type Ca2+ channel and thereby reduce [Ca2+]i(156).  

Cellular hyperpolarisation may also be brought about by the direct effect of NO on membrane-

bound Na-K-ATPase channels, i.e. a cGMP independent pathway(157). The net effect of these 

mechanisms is to reduce sarcoplasmic [Ca2+] and therefore cause CSM relaxation. 

 

 

 

 

 

 

 

Fig. 1.11 – Line diagram showing methods by which NO causes CSM relaxation 
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1.5.3     Other endogenous mediators of CSM tone 

 

Several other mediators of CSM tone have been identified in human CSM. They are thought to 

have a modulatory effect rather than be the predominant mechanisms involved in effecting penile 

erection and detumescence.  

Immunohistochemical studies have identified vaso-active intestinal polypeptide (VIP) in human 

cavernosal tissue biopsies(158). VIP in human cavernosal nerves has been co-localised with 

NOS(159, 160). In addition, intracavernosal injection of VIP causes penile tumescence in some 

patients(161). However, it has been difficult to show that VIP directly causes CSM relaxation. 

Some studies have shown that an antagonist of VIP ameliorated EFS-mediated contractions in 

rabbit CSM. The authors concluded that relaxation was dependent upon prostanoids and the 

production of NO(162).  

 

Intracavernosal injection of histamine produces a short lived penile erection. Histamine produced 

dose dependent relaxation in human corpus cavernosum samples(163). However, not all studies 

have shown consistent relaxatory effects. The predominant histamine receptor sub-type is the H1 

receptor (H1-3 have been categorised). Stimulation of the H1 receptor elicits contraction in isolated 

corpus cavernosum(164).  

 

Stimulation of serotonin (5-hydroxytryptamine, 5-HT) type 1 and 2 subtypes mediates contraction 

in rabbit CSM. 5-HT4 stimulation elicits relaxation in the same in vitro model(165). However, 

further studies using human corpus cavernosum show an overall tendency towards smooth 

muscle contraction(166). The physiological role of peripheral serotonin remains unclear. 
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The role of purines such as ATP and adenosine in CSM contraction are not established. Both 

compounds produce relaxation in pre-contracted rabbit CSM and canine penile arteries(167). The 

purinergic system is the focus of considerable interest at present and further developments may 

reveal new therapeutic targets for the treatment of erectile dysfunction. 

 

Vascular smooth muscle relaxation is mediated by endothelium-dependent mechanisms which 

include NO(168). Relaxation still occurs in vascular tissue with intact endothelium despite 

blockade of NOS and cyclo-oxygenase (inhibiting the NO-cGMP and prostaglandin pathways 

respectively) and is thought to be mediated by endothelial cell hyperpolarisation. The alternative 

endothelial derived hyperpolarising factors (EDHFs) involved in relaxation pathways may be 

related to products of arachidonic acid metabolism or metabolites of P-450(169). EDHFs have an 

important role in the relaxation of arteriolar smooth muscle as opposed to cavernosal smooth 

muscle(170).  

 

1.6 Cavernosal smooth muscle cell calcium regulation 

 

Corporal smooth muscle contraction is a result of an increase in [Ca2+]i. Transient changes in 

[Ca2+]i are critical to the contractile state of CSM. An outline of cellular Ca2+ regulation follows. 

 

Ca2+ entry pathways 

CSM cells exhibit a variety of voltage and ligand-gated ion channels that normally serve as the 

principle Ca2+ entry pathway. At rest, sarcoplasmic free [Ca2+] is ~100 nM. Extracellular fluid 

[Ca2+] is ~10,000 times higher than this (~1.5 to 2 mM). This concentration gradient is maintained 

by the Ca2+ pump and Na+/Ca2+ exchanger, both located on the cell membrane. Channel 

activation causes movement of Ca2+ down an electrochemical gradient and results in a 5-fold 



 52 

increase in [Ca2+]i to ~550 – 700 nM(171). This results in myosin phosphorylation and smooth 

muscle contraction.  

 

The predominant voltage gated channel in CSM is the L-type Ca2+ channel. Cell membrabe 

depolarisation due to an action potential opens these voltage-gated L-type Ca2+ channels, 

resulting in Ca2+ influx along the concentration gradient into the cell. These channels may be 

blocked by drugs such as nifedipine.  

 

It is postulated that Transient receptor (TRP) channels are also present on the cell membrane, 

TRPM8 (a subtype of TRP channel) having been shown in rat CSM(172). Transient receptor 

(TRP) channels are present on the plasma membrane of many smooth muscles and are relatively 

non-selectively permeable to cations including Ca2+.  

 

Ca2+ release mechanisms 

An important mechanism for [Ca2+]i elevation involves release of Ca2+ from intracellular stores. 

These can increase [Ca2+]i with or without a change in membrane potential i.e. with or without an 

influx of Ca2+ into the cell. The sarcoplasmic reticulum facilitates the storage and release of 

Ca2+(173). Accumulation of Ca2+ into these stores is accomplished by a Ca2+ ATPase. Release of 

these stores occurs secondary to release of inositol 1,4,5-trisphosphate (IP3)(174). The IP3 

pathway is stimulated when noradrenaline binds to the α1-adrenoceptor which is coupled to 

phosphoinositide-specific phospholipase C via GTP-binding proteins. Phospholipase C then 

hydrolyses phosphatidylinositol 4,5-biphosphate (PIP2) to 1,2-diacylglycerol (this is membrane 

bound and activates protein kinase C) and IP3. IP3 (which is soluble and diffuses through the cell) 

binds to its receptor (IP3R) on the sarcoplasmic reticulum (SR). The SR concentration of Ca2+ is 

around 1 mM. IP3 binding opens calcium channels in the SR resulting in Ca2+ efflux into the 
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sarcoplasm and subsequent smooth muscle contraction. This increase in Ca2+ activates the 

ryanodine receptor-operated channel on the SR, leading to a further increase in sarcoplasmic 

[Ca2+](i.e. calcium-induced calcium release-CICR)(84, 112, 128, 175-177). Caffeine may be used 

to activate CICR in intact cells(178). 

Ca2+ efflux pathways 

To maintain homeostasis, Ca2+ influx must be balanced by efflux across the cell membrane. This 

is accomplished via a Ca2+ ATPase (the calcium ‘pump’) and the Na+/Ca2+ exchanger. The former 

may be sensitive to pH change whilst the latter is sensitive to amiloride(179).    

 

1.7 Effect of ischaemia on cavernosal smooth muscle 

  

As previously outlined, the process of penile erection and detumescence is secondary to 

haemodynamic changes within the penis. During penile erection, there is a degree of reduced 

blood flow within the penis secondary to the reduction in venous outflow (fig. 1.7 – penile 

haemodynamic changes during erection and detumescence and detumescence, page 38). As the 

duration of penile erection increases, the corporal microenvironment will change. Serial 

cavernosal blood gases in men with pharmacologically induced penile erection demonstrate a 

time-dependent decrease in oxygen tension and pH, and an increase in carbon dioxide 

levels(31). In addition, corporal blood aspirates during priapism show a time dependent decrease 

in blood glucose levels(31, 35, 93, 180, 181). Various researchers have examined the effect of 

these metabolic changes in isolation and in combination on cavernosal smooth muscle with a 

view to examining the effect of acute and chronic ischaemia on corporal smooth muscle.  
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1.7.1 The effect of hypoxia on CSM contraction 

 

Broderick et al. subjected rabbit cavernosal smooth muscle strips to anoxia and examined the 

effect of EFS-mediated and agonist-induced contraction and relaxation. Both aspects of CSM 

function were severely affected; relaxatory responses were abolished in the absence of 

oxygen(182). Kim et al. examined the effect of hypoxia on nerve-mediated and agonist-induced 

contraction in an in vitro model of CSM(183). Noradrenaline (NA) and endothelin evoked 

contractions were significantly attenuated after 180 min of hypoxia. Responses returned to 

normal upon return to control conditions. Interestingly, EFS-mediated contractions appeared to be 

augmented during hypoxia, an effect which was reversed when experiments were repeated in the 

presence of the NOS inhibitor L-NOARG. Potassium induced tonic contraction was also 

examined, with a sustained relaxation observed during up to 180 min of hypoxia. This was fully 

reversible on return to control conditions. Additional experiments found similar responses 

between muscle strips with intact vs. denuded endothelium as well as in the presence of 

indomethacin (cyclo-oxygenase inhibitor) and methylene blue (guanyl cylcase inhibitor). This 

paper concluded that ‘the effects of hypoxia are not restricted to a specific receptor pathway, but 

that there is a failure of the contractile mechanism of the smooth muscle to respond to any 

agonist or to the depolarisation that follows exposure to high [K+]’. The finding that EFS-mediated 

contraction was increased during hypoxia was attributed to the differential effect of low oxygen 

tension on the various nerve types present. 

 

Kim et al. also examined the effect of hypoxia on relaxatory responses in an in vitro model of 

CSM using both human and rabbit tissue samples(122). At oxygen tensions similar to that found 

in the erect penis (~ 100 mmHg), Acetylcholine and electrical field stimulation elicited increasing 

concentration-dependent and frequency-dependent relaxations in pre-contracted muscle strips 
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mounted in organ baths. Reduction in oxygen tension to that found in the flaccid penis (44-57 

mmHg) resulted in significant amelioration of both Ach and EFS-mediated relaxation in the rabbit 

CSM preparation. EFS-mediated relaxatory responses in human CSM were significantly reduced 

under similar hypoxic conditions; however, more severe hypoxia was required to significantly 

reduce Ach mediated responses. Responses returned to normal on return to normoxia. 

Interestingly, during hypoxia, responses similar those seen at PO2 ~ 100 mmHg were observed in 

response to exogenous NO.         

 

1.7.2       The effect of acidosis on CSM contraction 

 

Saenz de Tejada and co-workers examined the effect of acidosis on contraction in an in vitro 

model of CSM(184). Smooth muscle strips equilibrated at pH 7.4 were exposed to 30 min. of 

acidosis (pH 6.9) generated using a 25% O2/75% O2 gas mix. Responses to EFS, NA and [K+] 

were recorded. Acidosis caused a right shift in the dose response curve to NA i.e. higher doses of 

NA were required to elicit the same response under acidic conditions. The maximal response to 

NA was unchanged. EFS mediated contractions were significantly suppressed throughout the 

frequency response range at pH 6.9. Acidosis had no effect on the maximal contraction in 

response to high [K+]. However, at [K+] less than maximal tension generated was reduced under 

acidotic conditions. EFS and agonist mediated relaxation in tissue strips precontracted with a 

non-maximal [K+] were relatively preserved under acidotic conditions. Moon et al. induced a 

metabolic acidosis in anaesthetised cats using hyperventilation. Intracavernous pressure 

measurements were reduced during stimulated penile erections indicating a degree of CSM 

failure(185). 
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1.7.3       The effect of combined elements of ischaemia 

 

In an in vitro model of low flow priapism, Muneer et al. examined the effect of elements of 

ischaemia - hypoxia, acidosis and hypoglycaemia, individually and in combination on cavernosal 

smooth muscle(71). The absence of glucose markedly reduced both nerve-mediated and agonist-

induced contractions when compared to the effects of acidosis and hypoxia alone. The 

combination of hypoxia and glucopenia, with our without simultaneous acidosis, significantly 

attenuated contractile function when compared to each factor in isolation. Hypoglycaemia during 

the period of ischaemia also reduced the ability of the tissue to recover following a period of 

reperfusion. In the same study it was found that nitrergic nerve-mediated relaxation was relatively 

spared during ischaemia when compared to adrenergic nerve-mediated contraction, a finding that 

could help explain the failure of detumescence in low flow priapism.  

 

Munarriz et al. used an animal model to examine the effects of ischaemia and reperfusion on 

cavernosal smooth muscle(186). Penile erection was induced in anaesthetised rabbits and 

maintained using a penile clamp to mimic priapism. Varying periods of reperfusion were applied 

by removal of the clamp prior to tissue fixation and removal for analysis. As expected, a time 

dependent reduction in intracavernosal oxygen tension was noted during the priapic episode. 

Interestingly, increases in myeloperoxidase activity and lipid peroxidation (markers of oxidative 

injury) were noted with reperfusion. This would suggest that not only is corporal smooth muscle 

injured during the ischaemic insult but that damage occurs on reperfusion with arterial blood. 

 

Cavernosal blood aspirates during ischaemic episodes show evidence of metabolic depletion as 

evidenced by low pO2, low pH and low glucose. CSM contractile failure is integral to the 
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mechanisms underlying ischaemic priapism. The relative contributions of these elements of 

ischaemia to CSM dysfunction are not clearly defined. 

 

1.8 Experimental models for the study of ischaemia on CSM 

 

As described above, various animal models have been used to study the effects of ischaemia in 

vitro and in vivo(187). The origin of tissue for experimentation is influenced by several variables 

including availability and cost, as well as relevance to the condition being studied. Ideally, normal 

human CSM would be used for experimentation as this would most closely resemble the 

pathological condition. There are no operations during which normal human CSM may be 

retrieved without causing a detrimental effect to the patient. Abnormal CSM may be retrieved 

(with full ethical approval and patient consent) during implantation of penile prostheses(35, 72, 

74). However, this tissue is abnormal due to the underlying processes causing the erectile 

dysfunction prompting the implant insertion. These are usually conditions such as diabetes and 

cardiovascular disease, both of which are associated with chronic corpus cavernosal ischaemic 

change.  

 

A second potential source of human tissue would be during penectomy for penile cancer. Again, 

the patient group affected are elderly with multiple comorbidities often resulting in erectile 

dysfunction. In addition, due to a trend towards penile preserving surgery where possible, only 

small amounts of tissue are usually available. Finally penectomy during male to female gender 

reassignment surgery would be an excellent source of tissue for experimentation, the volume of 

tissue available is large and surgery is elective allowing for scheduling of experiments. However, 

patients undergo surgery after a prolonged period of oestrogen administration, usually for several 

years prior to penectomy. This in itself may induce cavernosal smooth muscle change(104).  
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Animal models have formed the usual basis for experiments examining CSM function. The 

majority of studies utilise rabbit CSM for both muscle strip and single cell experiments, the 

characteristics of this tissue source are well established(71, 122, 183, 184). Mouse and rat 

models are also described. The advantage of these is their relative ease of use and cost as well 

as steady supply for experimentation. In addition various pharmacological parameters are 

comparable to human tissue (smooth muscle to collagen ratios, EC50 to contractile agonists). 

However, within our own laboratory, guinea-pig tissue has been used for experiments on both 

cardiac and lower urinary tract smooth muscle(188, 189). In order to maintain efficiency and 

enable the large number of experiments proposed we decided to define a novel guinea-pig model 

for examining the effect of ischaemia on CSM.  

 

The mechanism by which researchers simulate ischaemia varies markedly. The components of 

ischaemia will be considered in turn. 

 

Glucopenia 

Glucose is broken down in the cytoplasm by the process of glycolysis(190, 191). Pyruvate is 

produced in a chain of events within the cytosol with the additional production of energy in the 

form of two molecules of adenosine-triphosphate (ATP). In the presence of oxygen, mitochondria 

are able to undergo aerobic respiration. Pyruvate drives the electron transport chain of the citric 

acid (Krebs) cycle to create further ATP as part of oxidative phosphorylation(192). In the absence 

of oxygen, the pyruvic acid produced by glycolysis undergoes lactic acid fermentation within the 

cytoplasm. In terms of energy production, aerobic respiration is far more efficient, liberating 38 

ATP from each glucose molecule compared to 2 ATP for anaerobic metabolism(193). Omission 

of glucose (and Na pyruvate if present) from superfusing solutions during experimentation allows 
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the effect of prolonged glucopenia as well as the presence and effectiveness of glycogen stores 

at maintaining contractile function to be examined(71). 

 

Hypoxia   

Oxygen is required by smooth muscle to generate energy via oxidative phosphorylation. Tissues 

increasingly rely upon anaerobic metabolism during hypoxic interventions; this is expensive in 

terms of glucose expenditure. In general researchers generate hypoxia by substituting nitrogen 

for oxygen in gas mixtures used to perfuse solutions bathing tissue strips/isolated cell 

preparations. It is methodologically difficult to conduct experiments in completely anoxic 

conditions unless completely enclosed tissue chambers are used due to the diffusion of 

atmospheric oxygen into the surface of liquids. This effect is increased with greater surface area 

to volume ratios of fluid and reduced flow rates.  

 

Acidosis  

In health, extracellular acidosis induces intracellular acidification due to buffering and equilibration 

of H+ across the cell membrane by both active and passive mechanisms(188, 194, 195). In broad 

terms, researchers may generate a reduction in pH in one of two ways. 

1. Increasing PaCO2 in the perfusing gas mixture. In solution this will generate an increase 

in free [H+]. Changes in pH occur quickly and extracellular pH may be adjusted by 

increasing the concentration of available buffer for H+ in solution(188, 194).  

2. The use of weak acids (e.g butyrate) in perfusing solutions acts as a source of H+ ions 

which will equilibrate across the cell membrane(195). This method allows pH to be 

manipulated in both intra and extracellular compartments by altering the buffering solute 

(bicarbonate) concentration. This mechanism typically produces smaller changes in pHi 

than method 1.  
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1.9 Effect of low temperature on smooth muscle 

Washout of the turgid corporal bodies with fluids is a recommended intervention in the 

management of priapism(60, 62). These fluids are usually at room temperature and may be 

combined with ice packs and cold compresses to help reduce the oedema and pain that 

accompanies prolonged ischaemic priapism. However, there is no evidence for these reduced 

temperature interventions in improving cavernosal smooth muscle contraction and therefore 

facilitating detumesence.  

 

In the respiratory tract reduced temperature appears to potentiate smooth muscle contraction. In 

human nasal smooth muscle, nerve-mediated phasic contractions were prolonged although the 

magnitude remained unchanged. Agonist-induced contractures mediated via α-adrenoceptors 

were augmented in the same preparation (196). Tracheal smooth muscle demonstrated a left 

shift in the nerve-mediated force-frequency relationship. Overall magnitude was not increased. In 

addition, agonist-induced relaxation mediated via β-adrenoceptors was abolished (197). Small 

intestine smooth muscle showed an increase in magnitude of contraction in response to 

acetylcholine with no alteration on in the EC50 of the preparation. Researchers proposed these 

changes to be secondary to increases in [Ca2+]i at low temperature(198). Vascular smooth 

muscle also demonstrates augmentation of contraction at reduced temperature. An increase in 

nerve-mediated contraction was noted in saphenous vein which was maintained in the presence 

of the α1-adrenoceptor antagonist prazosin(199). Augmentation was abolished in the presence of 

the α2-adrenoceptor rauwolscine supporting the hypothesis that this receptor mediates cold-

induced vasospasm in peripheral vessels. 

 



 61 

Reduced temperature shows a marked effect in the lower urinary tract. Cooling from 37 °C to 5 

°C in a stepwise fashion evoked contraction of rat bladder muscle strips. Responses were 

postulated to be secondary to an increase in [Ca2+]i shown by the sensitivity of the recorded 

response to the Ca-channel blocker nifedipine and to perfusion with Ca2+-free solution(200). Vas 

deferens showed an increase in agonist-induced contraction with a left-shift of the force-

concentration relationship with a reduction in temperature. Contractions were elicited by the α1-

adrenoceptor agonist phenylephrine; augmentation at low temperature was abolished when 

perfusing solution [Ca2+] was reduced by 50%(200). 

 

 Responses to cooling differ between species. Guinea-pig ureter showed a reduction in 

magnitude of the agonist-induced contracture in addition to slowing of the response. The fast 

sarcoplasmic reticulum related [Ca2+] changes appeared to be affected to a greater extent when 

compared to the slower membrane bound mechanisms (Na/Ca2+ exchange and Ca2+ pump)(201). 

Rat ureter by contrast showed an increase in force generated in response to stimulation during 

reduced temperature interventions. This was attributed to an increase in the Ca2+ transient 

secondary to a prolonged action potential(202). These differences were secondary to varying 

contributions of ion channels to the action potential. Cooling appeared to potentiate Ca2+ 

activated Cl- currents (present in rat ureter, absent in guinea-pig ureter) with a resultant prolonged 

plateau phase of the action potential. In the rat this augmented action potential was sufficient to 

overcome kinetic lag. In addition and in contrast to other researchers, Ca2+ entry and SR release 

of Ca2+ appeared to be relatively insensitive to cooling whereas MLCP activity was markedly 

affected by reduced temperature therefore increasing the amount of phosphorylated myosin for 

any given [Ca2+]i(202). Maintenance of smooth muscle tone at low energy costs is essential in 

promoting penile detumescence. Smooth muscle may have a reduced capacity to maintain tone 
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during a reduction in temperature using slowly cycling cross-bridges (latch state). This has also 

been postulated to be secondary to a reduction in myosin phosphorylation(134). 

 

It is clear that cooling can modulate force production and has differing effects in varying smooth 

muscles. The effect of a reduction in temperature on cavernosal smooth muscle has not been 

reported. In addition to experiments examining the effect of ischaemia on CSM function, the effect 

of cooling was recorded on various aspects of CSM function.   

 

1.10 Aims and objectives of thesis 

Hypothesis: 

1 The combination of hypoxia, acidosis and glucopenia causes cavernosal smooth muscle 

failure in a time-dependent manner. The contribution of the various elements of 

ischaemia is variable however glucopenia is central to irreversible smooth muscle 

dysfunction. 

2 Low temperature washout fluids do not improve CSM contractile function. 

Aims of the thesis: 

The aim of this project was to investigate the role of the various elements of ischaemia on 

cavernosal smooth muscle cell contractile function. The effect of hypoxia, acidosis and 

glucopenia, individually and in combination, were investigated on the contractile activity of CSM 

preparations. Both nerve-mediated and agonist-induced contraction and relaxation were 

examined. Guinea-pig cavernosal smooth muscle strips and single cell preparations were used.  
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Objectives: 

The following objectives were addressed through the experiments performed in this study, to 

determine the effect of the various elements of ischaemia on CSM. 

1. To establish the viability of guinea-pig CSM as a model for the study of corporal smooth 

muscle function 

2. To determine the effect of hypoxia, acidosis and glucopenia on nerve-mediated and 

agonist-induced contractions and relaxations in guinea-pig CSM muscle strips. Intra- and 

extra-cellular acidosis was examined as well as a reduction in pH in both compartments. 

The elements of ischaemia were applied in isolation and in combination. The recovery of 

preparations on return to normal conditions was also recorded.  

3. The effect of the above conditions on [Ca2+]i  was recorded in an isolated CSM cell 

model. 

4. The effect of a reduction in temperature on CSM function was also examined.  
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2.0 Materials and Methods 

 

2.1 Solutions and chemicals 

 

2.1.1 Tyrode’s solution 

 

Tyrode’s physiological solution was used in all experiments to superfuse preparations. The 

constituents of the solution and their concentrations are listed in Table 2.1. AnalaR® grade 

reagents were added to de-ionised water (RO water - minimum 18 MΩ resistance, reverse 

osmosis filter, Purite Ltd, UK) in their solid form (NaCl, NaHCO3, glucose and Na pyruvate) or 

from 1 M stock solutions (KCl, MgCl2 and NaH2PO4) made up in the laboratory, with the exception 

of CaCl2 which was obtained as a 1 M stock solution (BDH Ltd, UK). Solid compounds were 

weighed using a fine balance (Sartorius Ltd, UK) and liquids measured using calibrated variable 

volumetric pipettes. Tyrode’s solution was stored at 21°C for use on the day of production, or at 

4°C if kept overnight for use the next day. A HEPES-buffered Ca-free Tyrode’s solution was used 

for tissue storage and cell isolation (table 2.1). This Ca-free solution was adjusted to pH 7.4 with 

1 M NaOH to compensate for the absence of CO2 gas perfusion.  

 

2.1.2 Chemicals and drugs 

 

All chemicals used in interventions were freshly made up daily to the required concentration in 

Tyrode’s or modified Tyrode’s solution. The AnalaR® grade solid chemicals phenylephrine, 

carbachol and tetrodotoxin (Sigma, UK) were made up in RO water. 1H-[1,2,4]oxadiazolo-[4,3-

a]quinoxalin-1-one (ODQ - Sigma, UK) and Fura-2 (Invitrogen Molecular Probes Inc, USA) were 
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dissolved in the organic solvent dimethyl sulphoxide (DMSO – BDH, UK). Stock solutions were 

made up in the laboratory and stored at 4 °C or drawn up into aliquots and stored at -20 °C. 

 

2.1.3 Simulation of ischaemia   

 

Modification of Tyrode’s solution enabled the various components of ischaemia to be simulated. 

All perfusing gases were stored at room temperature and sourced from BOC, UK. The various 

components of simulated ischaemia are shown in Table 2.1 and are summarised here: 

 

Hypoxia (H) The superfusate PO2 was reduced by gassing the solution with a N2/CO2 mixture, 

rather than an O2/CO2 mixture. Samples were taken at the superfusion bath during experiments 

to estimate the partial pressure of oxygen within the solution using an oxygen-electrode (PO2 

from 10 kPa to 4 kPa)(203). 

 

Substrate depletion (S) Glucose and sodium pyruvate were omitted from the solution. 

  

Intracellular acidification and extracellular acidosis (IA) The pH was reduced as a result of 

increasing superfusate PCO2 by using a 10% CO2 gas mixture rather than a 5% CO2 mixture.  

 

Extracellular acidosis (A) A decrease of extracellular pH was achieved by reducing the [HCO3
-] of 

the superfusate (a reduction in concentration of [NaHCO3] from 24 mM to 9.6 mM). The [Na+] was 

maintained by increasing the [NaCl] added (from 118 mM to 132.4 mM). The availability of free 

Ca2+ was maintained by decreasing the [CaCl2] added (from 1.8 mM to 1.55 mM)(188).  
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Intracellular acidification (I) A decrease of intracellular pH, at constant extracellular pH, was 

achieved by increasing the [HCO3
-] and PCO2 in proportion. This was achieved by doubling the 

[NaHCO3] added to the solution (from 24 mM to 48 mM) and using a 10% rather than a 5% CO2 

gas mixture. The [CaCl2] was adjusted appropriately to maintain Ca2+ activity from 1.8 mM to 2.34 

mM(188).  

 

The above interventions were applied separately and in various combinations. A pH electrode 

(BDH Ltd, UK) and pH meter (SE-500, Solex, Taiwan) were used to record superfusate pH at 

various times during experiments; the pH electrode was calibrated on a daily basis. Oxygen 

tension was estimated during experiments using an O2 electrode (Licox CMP, Integra 

Neurosciences Ltd, UK). 

 

2.2 Tissue collection and preparation 

 

Cavernosal tissue was obtained from barrier maintained sexually mature male Dunkin-Hartley 

guinea-pigs weighing 500-950 g (Bantin & Kingsman Universal Ltd, UK). Animals were humanely 

killed by cervical dislocation according to UK Home Office guidelines. The penis was immediately 

dissected and placed into a dissection dish containing Ca-free Tyrode’s solution. The penis was 

immobilised with three 25 gauge syringe needles (Terumo, Belgium) and excess connective 

tissue removed using straight nosed no. 5 micro-dissection forceps and fine scissors (INOX, 

Switzerland). Cavernosal smooth muscle strips were then prepared for isometric tension 

experiments (5 x 1 mm), or pieces of tissue obtained for isolated cell work (1mm3). Tissue was 

stored in Ca-free Tyrode’s at 4°C prior to use. 
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Table 2.1 Constituents of Tyrodes  
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2.3 Isometric tension measurement 

 

2.3.1 Equipment and set-up 

 

A horizontal Perspex superfusion trough (4 mm x 4 mm cross-section) was used that allowed the 

muscle strip to be immersed in a constant flow of solution (fig. 2.1). Flow speed was controlled 

with a gate clamp around the solution delivery tube which was adjusted at the start of every 

experiment to give a flow rate of 3 ml.min-1. 

 

The muscle strip was secured between two stainless steel mounting hooks; one fixed into the 

superfusion trough and a second connected to a force transducer (FT03, Grass Instrument Co, 

USA). This force transducer was mounted on a micromanipulator (Prior instruments, UK) with a 

Vernier scale on each plane of movement so that the transducer hook’s position relative to the 

fixed hook could be recorded to give the length of the muscle strip. The system also permitted 

muscle length to be adjusted to yield maximum contractile force. The force transducer was 

connected to a variable gain Wheatstone bridge amplifier with a 5 Hz high frequency cut-off 

(Model TBM4M, World Precision Instruments, USA). Output was both monitored and recorded on 

a pen recording device with a low-pass filter of corner frequency 10 Hz (TA 240S, Gould 

Instruments Ltd, UK) and oscilloscope (DSO 420, Gould, UK). 

  

A pair of platinum electrodes were embedded within the walls of the superfusion trough to deliver 

electrical field stimulation (EFS), and positioned such that the strip would lie between them. The 

electrodes were connected to an electrical stimulator (model 200, Palmer Bioscience, UK) and 

gating device (model 150, Palmer Bioscience, UK) which allowed reproducible manipulation of 

stimulation parameters. The stimulator and gating device were calibrated using a signal generator 
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(model TWG-501, Feedback, UK) and digital oscilloscope (Easyscope 420, Gould Instruments 

Ltd, UK) prior to use.  

 

A water bath with a combined heater and pump (Thermoflow 471, Coniar Churchill Scientific 

supplies Ltd, UK) was used to warm perfusing solutions to 37±0.5 °C. This was mounted 1.5 m 

above the superfusion trough to enable warmed solution to be delivered to the trough under 

gravity. Warmed solutions were delivered to the trough via circulating water-jacketed 1.5 mm 

diameter tubing. After perfusing the tissue, solutions drained to waste. In experiments utilising low 

temperature superfusion fluids, a separate water bath (containing ice water if required) and 

delivery tubing system was used without a warming water jacket. Perfusing solution temperature 

was monitored periodically at the superfusion trough with a digital thermometer (model 915-1, 

Testo, UK). Solutions were bubbled with the appropriate gas mixture for at least 15 min prior to 

use.  

 

A specially constructed experimental table was used with several features to minimise 

mechanical noise due to vibration. A welded steel frame with legs in buckets of sand was used 

with a 20 mm plywood top. This in turn supported a 25 mm steel plate mounted on neoprene and 

Teflon vibration absorbing pads (SK bearings, Cambridge, UK). Mounted on this was an 

aluminium modular top that allowed equipment to be firmly clamped in place.  

 

At the end of experiments, the wet weight of the muscle strips was measured using a fine balance 

(model 205A, Precisa Balances Ltd, UK). This value along with the length of the strip was used to 

estimate the cross-sectional area (csa) using the formula: 

csa (mm2) = 1000 x mass (g)]/[[density (g/ ml-1)] x [length (mm)]] 

o Density was taken as 1.05 g.ml-1.  
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Fig 2.1 Muscle strip experimental set up 
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2.3.2 Calibration of tension transducer 

 

The orientation of the force transducer was manipulated such that small solder weights could be 

hung from the mounting hook to enable calibration. The mass of weights were confirmed on the 

fine balance and then each weight was suspended from the force transducer hook in turn. 

Corresponding deflections were recorded on the pen recorder. The height (mm) of each 

deflection above baseline (no weight) was plotted as a function of force (mN) calculated using the 

formula: 

Force (mN) = mass (g) x gravitational constant (m.s-2) 

o The gravitational constant was taken as 9.81 m.s-2  

 

2.3.3 Muscle strip preparation and mounting 

 

6/0 sutures (Sutures Ltd, UK) were tied with non-slipping surgical knots to each end of a muscle 

strip. The strip was then transferred to the superfusion trough with Tyrode’s solution at 37 °C, 

flowing through at 3 ml.min-1. One end of the strip was tied to a fixed mounting point in the base 

of the trough, and the other to the attachment hook of the tension transducer. The 

micromanipulators were adjusted so that the tissue was immersed in the flowing Tyrode’s 

solution. There was no slack in the strip and the position was adjusted so that it was equidistant 

from each platinum electrode. Strip length was adjusted so that a stable baseline recording was 

achieved and reproducible phasic contractions in response to electrical field stimulation (EFS – 

see section 2.3.4) were obtained of a magnitude close to the maximum of the length-tension 

relationship. Typical strip length and weight was 5.5 mm and 0.015 g. Estimated CSA from these 

values was 2.5 mm2.   
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2.3.4 Electrical field stimulation (EFS) experiments 

 

EFS contraction experiments 

Phasic contractions were elicited by periodic exposure of the muscle strips to electrical field 

stimulation (EFS). The optimum stimulation parameters in terms of stimulation voltage and 

frequency, duration of stimulation train and period between stimulations was ascertained 

experimentally and used for subsequent experiments.  

 

All experiments commenced with 60 min. of periodic EFS to allow the muscle strip to equilibrate. 

Preparations were stimulated every 90 s with a 3 s pulse train at 32 Hz, 0.1 ms pulse width and at 

50 V. Stimulation parameters were confirmed using an oscilloscope (DSO 240, Gould, UK). 

Tension in the strip was adjusted using the micromanipulators until a stable response was 

attained.  

 

Strips were stimulated every 90 s at 32 Hz throughout each experiment. At various points during 

each experiment a force frequency relationship was determined by using stimulation frequencies 

from 8 to 60 Hz incrementally. The force-frequency relationship at the end of the 60 min. 

equilibration period acted as the control recording with similar force-frequency estimations being 

carried out during the ischaemic interventions and after a period of reperfusion in normal Tyrode’s 

solution (figure 2.2). 
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Figure 2.2 - Experimental protocol for EFS contraction experiments    

Stimulation at 32 Hz every 90 s throughout the experiment enabled the time point at which 

interventions had an effect to be determined whilst regular force/frequency estimations enabled 

these effects to be characterised. 

   

Recorded responses were measured using a 30 cm rule with 1 mm gradations to accuracy of ± 

0.5 mm. Measurements were taken from baseline tension to the peak of each phasic contraction. 

Using calibration data, measurements were converted to force and normalised to unit cross-

sectional area (csa) using the following equation: 

 

Deflection (mm) / [gradient of calibration graph (mN.mm-1) x csa (mm2)] = force (mN.mm-2) 

 

In certain experiments, the time constant of the phasic contraction was measured as well as the 

maximum tension generated. To do this the pen recorder paper speed was increased from 2.5 

mm.min-1 to 25 mm.s-1 for the final 60 Hz stimulation of each force-frequency estimation. The 

time-constant (τ) for both the upstroke and downstroke of the phasic contraction were measured 

as shown in fig. 2.3. 
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Figure 2.3 - Method of measuring time-constant for phasic contractions 

x = maximum height of response (mm), τcontraction = time constant of upstroke (s), τrelaxation = time 
constant of downstroke (s).   
 

EFS relaxation experiments 

All experiments commenced with 60 min. of periodic EFS to allow the muscle strip to equilibrate. 

EFS was then stopped and a stable baseline measurement confirmed for 5 min. Phasic 

relaxations were elicited by periodic exposure of pre-contracted muscle strips to electrical field 

stimulation. Strips were pre-contracted by exposure to 15 µM phenylephrine (PE) in Tyrode’s 

solution for 15 min. to elicit a tonic contracture. This concentration was chosen as being 10 times 

the EC50 for phenylephrine in this preparation, ascertained experimentally by another investigator 

in our laboratory (unpublished work). 15 min. PE allowed the preparation to reach a stable 

plateau contracture. 15 µM PE was chosen as the proposed experiments involved ischaemic 

interventions that may be detrimental to the force of contraction generated in response to PE in a 

time-dependent manner. A single concentration (15 µM PE) was chosen to measure the effect of 

these interventions rather than a dose response curve due to the time involved in conducting the 

latter. It was postulated that the effect of ischaemia may differ at the start of recording the 

response to a cumulative dose of PE compared to the end. As relaxatory responses were also 
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being examined a maximal contracture was generated in order to minimise experimental error 

when measuring responses (10 times EC50) rather than EC50 or EC80. Once this contracture had 

reached a plateau, a force frequency relationship was determined by using stimulation 

frequencies from 4 to 24 Hz incrementally. The phenylephrine was then washed out with normal 

Tyrode’s solution (figure 2.4).  

 

 

Figure 2.4 - Experimental protocol for EFS relaxation experiments 

Regular washout of phenylephrine during control and intervention was used to prevent muscle 

fatigue. After 15 min. of PE preparations had reached a plateau. Phasic relaxations were then 

elicited with an EFS stimulation train of 4-24 Hz.   

 

Recorded responses were measured using a 30 cm rule and converted to force per unit csa as 

previously described. The following measurements were taken from baseline tension (Fig. 2.5): 

 

o The maximum tension of each tonic contracture (PE peak). 

o The plateau tension of each tonic contracture (PE plateau). In cases where magnitude of 

the contracture was changing, this was taken as the contracture height above baseline 

after 16 min of phenylephrine. 
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o The tension remaining above baseline after each EFS relaxation. 

 

Tension remaining after EFS was expressed as a % of preceding PE plateau in all experiments 

and plotted using the Kaleidagraph™ program to obtain estimated minimum tension remaining 

(Ymin) and the frequency of stimulation resulting in half maximal relaxation (f½). 

 

 

 

 

 

 

 

 

 

 

 

In certain experiments, the time constants of the relaxation were measured. These experiments 

also involved pre-contracting the tissue with 15 µM PE after a period equilibration in Tyrode’s 

solution at 37 °C. Once the contracture had reached a plateau, a single pulse train of EFS at 16 

Hz (EFS16Hz) was used to elicit a relaxation. A typical trace and the method of estimating the time-

constants of the response are shown in fig 2.6.  

 

 

 Figure 2.5 - Method for measuring tension remaining after EFS-mediated relaxation 

x –tension remaining after EFS stimulation at 4 Hz 

y – tension remaining after EFS stimulation at 24 Hz   

y 

x 

baseline 

EFS stimulation  
4 – 24 Hz 
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Figure 2.6 - Method of measuring time-constant of EFS-mediated relaxation 

x = maximum height of downstroke (mm), y = maximum height of upstroke (mm),  

 τrelaxation = time constant of downstroke (s), τcontraction = time constant of upstroke (s). 

 

2.3.5 Agonist-induced contracture and relaxation experiments 

 

All experiments commenced with 60 min. of periodic EFS to allow the muscle strip to equilibrate. 

EFS was then stopped and a stable baseline measurement confirmed for 5 min. Tonic 

contractures were elicited by periodic exposure of the muscle strips to 15 µM phenylephrine. 

Once this contracture had reached a plateau, agonist-induced relaxation was induced by 

additional exposure of 1 µM carbachol to the pre-contracted muscle strips. The phenylephrine 

and carbachol was then washed out with unmodified Tyrode’s solution (Fig. 2.7). 
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Figure 2.7 - Experimental protocol for agonist-induced contractions and relaxations  

Agonist-induced contractures reached a plateau with 15 min. of PE. Perfusing solutions were 

changed to PE and carbachol to examine the effect of the agonist-induced relaxation. 5 min. of 

carbachol was sufficient to elicit a plateau response.  

 

Recorded responses were measured using a 30 cm rule and converted to force per unit csa as 

previously described. The following measurements were taken from baseline tension (fig. 2.8): 

 

o The maximum tension of each tonic contracture (PE peak). 

o The plateau tension of each tonic contracture (PE plateau). In cases where magnitude of 

the contracture was changing, this was taken as the contracture height above baseline 

after 16 min of phenylephrine (fig. 2.8a). 

o The minimum tension remaining above baseline after application of carbachol (C nadir) 

o The plateau tension remaining after application of carbachol (C plateau). In cases where 

magnitude of the remaining contracture was changing, this was taken as the remaining 

contracture height above baseline after 1 min of carbachol (fig. 2.8b). 
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Fig. 2.8a - Method of measuring agonist-induced contractures 

PE peak = maximum height above baseline (mm), PE plateau = height above baseline after 16 

min (mm).   

Fig. 2.8b - Method of measuring agonist-induced relaxations 

C Nadir = minimum height above baseline after application of carbachol (mm), C plateau = height 

above baseline after 5 min of carbachol (mm). 

 

In certain experiments, the time constants of the agonist-induced contracture were measured. A 

typical trace and the method of estimating the time-constants of the response are shown in figure 

2.9. 
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Fig. 2.9 - Method of measuring time-constants for tonic contractures 

x = Peak PE contracture (mm), y = plateau PE contracture (mm), τcontraction = time constant of 

upstroke (s), τrelaxation = time constant of downstroke (s). 

 

2.3.6 Reduced temperature interventions 

 

The effect of reduced temperature on CSM function was examined in several experiments. The 

experimental protocols were similar to those described for the ischaemic interventions. The 

effects of Tyrode’s solution at room temperature (21±1 °C) as well as chilled Tyrode’s (10±3 °C) 

were recorded on the various aspects of CSM function described in sections 2.3.4 and 2.3.5. A 

tubing system without a warming jacket was used to supply superfusate to the muscle strips at a 

similar rate as the 37 °C Tyrode’s solution (3ml.min-1). Solution temperature was monitored at 

regular intervals throughout experiments at the superfusion chamber level using a digital 

thermometer (model 915-1, Testo, UK). Superfusate pH was monitored with a pH electrode (BDH 

Ltd, UK) and pH meter (SE-500, Solex, Taiwan). Chilled solutions were maintained in a 

polystyrene insulated water bath containing ice.  
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2.4 Estimation of stress/relaxation characteristics 

 

Changes seen in the contractile and relaxatory responses at reduced temperature were 

postulated as being secondary to alterations in tissue biomechanics. In order to evaluate this, 

estimation of stress/relaxation characteristics were recorded at low temperature.  

 

2.4.1 Equipment and set-up 

 

A similar set up to that used for isometric tension measurement (section 2.3.1, figure 2.1) was 

used with the following the differences. 

 

A solenoid arm with a stainless steel hook was used rather than a fixed mounting point. This 

solenoid arm was attached to a solenoid (model 6800HP, Cambridge Technology Inc, USA) 

mounted on a micromanipulator (Prior instruments, UK). A variable voltage supply and gating 

device (model TWG501, Feedback, UK) supplied current to this solenoid via a lever arm system 

(model 308B, Cambridge Technology Inc, USA). A change of voltage resulted in rotation of the 

solenoid and horizontal displacement of the hook (figure 2.10). Tension transducer output and 

solenoid output were connected to an a-d convertor (10 Hz sampling rate, Digidata 1200 

interface, Axon Instruments Inc, USA), attached to a personal computer. The Clampex™ program 

(v8.0, Axon Instruments Inc, USA) was used to record data.  
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Fig 2.10 Stress relaxation experimental set up 
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A muscle strip was mounted between the force transducer and solenoid arm and the 

micromanipulators adjusted such that the strip was immersed in flowing Tyrode’s solution. 

Tension in the strip was adjusted using the micromanipulators until the strip was taut. The ramp 

function of the variable voltage supply was used to ensure tension in the strip was within the 

linear region of the stress/strain relationship. The square wave function was used to examine the 

stress/relaxation relationship (figure 2.12). 

 

At the end of each experiment the micromanipulator Vernier scales were used to measure the 

length and a fine balance used to estimate the mass of the strip. Cross-sectional area of each 

strip was calculated as previously described. 

 

2.4.2 Experimental protocol 

 

CSM strips were mounted as described in section 2.4.1. The strip was allowed to equilibrate in 

flowing Tyrode’s solution at 37 °C for 15 min. (control conditions, figure 2.11). During this 

equilibration period, voltage supply to the solenoid was 0 V. The ramp function of the voltage 

supply was then selected and voltage increased to bring about linear movement of the solenoid 

arm hook and a cyclical increase and return to resting length of the tissue strip (length of 

complete cycle 100 s). Tension transducer output was observed to ensure strip length changes 

were within the linear portion of the length/tension relationship (fig. 2.12). The square wave 

function was then selected at the same voltage and three cycles of stress/relaxation were 

recorded. This process was repeated for another voltage on the same CSM strip.  

 

The CSM strip was then allowed to equilibrate with Tyrode’s at 13 °C for 15 min. (intervention, fig. 

2.11). The above protocol was repeated and voltage supply/tension transducer output recorded. 
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A similar procedure was followed for examining the effect of return to 37 °C on stress/relaxation 

characteristics (reperfusion, fig. 2.11).  

 

 

Figure 2.11 – Experimental protocol for estimation of stress/strain characteristics of CSM  

The ramp function was selected on the voltage supply and responses observed to ensure strip 

length changes were within the linear (Hookean) portion of the length/tension relationship 

 

2.4.3 Calibration of equipment 

 

These experiments required the calibration of both the force transducer and the solenoid arm. 

 

Calibration of the force transducer was identical to that in isometric force measurements (section 

2.3.2). The change in signal magnitude with each mass was plotted as a function of force and the 

calibration slope calculated as previously described.   

 

Calibration of the solenoid was carried out as follows. A dissection microscope and graticule 

(Nikon, Japan) were calibrated using a 30 cm rule with 1 mm gradations such that the number of 

graticule divisions per mm was known. The voltage across the solenoid was adjusted in 1 V 

increments. The resulting displacement of the solenoid hook was measured using the 

Control 
37 °C Tyrode’s 

Solution 

Reperfusion 
37 °C Tyrode’s 

Solution 

Intervention 
13 °C Tyrode’s 

Solution  

Ramp  

Square wave  



 85 

microscope/graticule assembly. Change in length was plotted against change in variable voltage 

supply output on the Clampex program. 

 

2.4.4 Data Analysis 

 

The Clampfit™ (v8.0, Axon Instruments Inc, USA), Kaleidagraph™ (v3.5, Synergy Software, 

USA) and Excel™ (Microsoft, USA) programs were used to analyse recorded data. Typical output 

data are shown in figure 2.12. Data were recorded and converted to length (solenoid variable 

voltage output) and tension (tension transducer output) measurements using the calibration data 

(section 2.4.3). Tension was normalised to csa. The following data were calculated.  

 

o The instantaneous maximum stress due to an increase in length (l). This comprised the 

sum of steady-state (fig. 2.12, C) and viscous components (figures 2.12, A) and was 

expressed in Pascals (Pa). 

o The stiffness of the viscous component (calculated as instantaneous stress due to 

viscous component A / change in length l) expressed in Pa/mm. 

o The stiffness of the steady-state component (figures 2.12, C/l) expressed in Pa/mm.  

o The stiffness of the viscous component expressed as a proportion of the instantaneous 

maximum stiffness (A/A+C) expressed as a percentage.  

o The time-constant of the relaxation of the viscous component (figures 2.12, A) expressed 

in seconds (k). 

o Young’s modulus (e) for the tissue, a constant obtained as the gradient of a straight line 

plot of steady state stress (figures 2.12, C) against strain (calculated as change in length 

l / resting length L) for each individual tissue strip. The straight line was fitted to the data 

using the least squares method.  
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Figure 2.12 – Typical output from variable voltage supply and tension transducer during 
estimation of stress/strain characteristics 
 
1 – Ramp function of voltage supply used to ensure strip tension within linear (‘Hookean’) 
region of stress/strain relationship. 
2 – Square wave function of voltage supply used to examine the stress/relaxation 
characteristics of the tissue (tension transducer output magnified in 3). 
3 – Data used to estimate viscous (A) and steady state (C) stress/relaxation characteristics.    
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2.5 Isolated cell experiments (I) 

 

2.5.1 Principles of epifuorescence microscopy 

 

Epifuorescence microscopy was used to measure [Ca2+]i. The technique utilises the ability of 

certain compounds to emit light (fluoresce) in an ion concentration-dependent manner, in 

response to excitation by light of higher frequency. The emitted light has less energy and is 

therefore of a longer wavelength and different colour when compared to the excitation light. This 

phenomenon permits the use of light filters to isolate the emitted light and allow measurement of 

its intensity. The fluorescent indicators chosen for this purpose had two important attributes. 

Firstly, each was taken up by the cell in a non-invasive manner and predominantly localised in the 

cytosol. Secondly the fluorescence of each was quantitatively related to the concentration of the 

ion in question. 

 

Cells were passively loaded with the lipid soluble acetoxymethyl ester (AM) of the indicator 

(sections 2.6.2 and 2.7.2). Once inside the cell, this ester would be hydrolysed to the active 

anionic indicator. Several factors were taken into account when choosing the method of 

fluorescence measurement. 

 

i. Compartmentalisation   

The indicator (both the cell permeable ester and the anionic form) may accumulate within 

intracellular organelles where they would fluoresce independent of cytosolic ion concentration.  



 88 

ii. Incomplete AM ester hydrolysis 

There may be residual AM ester in the extracellular space contributing to the detected 

fluorescence (should the AM ester be fluorescent as in the case of Fura-2 AM). In addition there 

may be incompletely hydrolysed indicator within the cell which would be insensitive to changes in 

ion concentration but would again contribute to the measured cell fluorescence.   

iii. Leakage and photobleaching 

Anionic indicators may be actively removed from the cell by organic ion transporters, increasing 

the extracellular fluorescence. In addition, repeated fluorophore excitation and light emission is 

not a process that can go on indefinitely. Eventually the fluorophore will degrade, a process 

known as photobleaching. 

iv. Signal buffering 

Indicators bind the ion of interest. If the intracellular indicator concentration is too high, the ion of 

interest will be buffered thus attenuating the magnitude and rate of change of the signal(189).   

 

In order to compensate for some of the above factors (mainly iii), a ratiometric method of 

measurement was chosen. The indicators chosen exhibit an excitation spectral shift upon binding 

the ion of interest. By using a ratio of the fluorescence intensities at two different wavelengths, 

variations in the fluorescence signal itself (for the reasons listed above) can be cancelled out. The 

ratio of two fluorescence intensities with opposite ion-sensitive responses gives the largest range 

of ratio signals for a given indicator improving recording efficiency. By using a ratiometric method, 

factors such as leakage and photobleaching and variable cell thickness were compensated for. 
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Calibration of the system was achieved by experimentally deriving the dissociation constant (Kd). 

This would allow a given fluorescence signal in the same experimental system to be converted to 

an ion concentration.   

 

2.5.2 Equipment and set-up 

 

i. Cell suspension chamber and microscope 

 

Isolated cells were placed in a Perspex cell bath mounted on a microscope stage such that fine 

manipulation of the chamber with respect to the objective lens could be achieved with adjustment 

of the stage controls. The base of the cell bath was made of a borosilicate microscope cover slip 

(thickness type 1, VWR, USA). The chamber was supplied with superfusing solution via 1mm 

tubing from four glass chambers placed 50 cm above the microscope. The cell bath, tubing and 

glass chambers were all water-jacketed and maintained at 37±0.5 °C using a water bath (model 

M3, Lauda, Germany). Three-way taps and a gate clamp controlled and maintained superfusate 

flow at 2ml.min-1 to the bath. The cell bath was drained by suction using a peristaltic pump 

(Watson Marlow, UK) allowing a constant fluid level to be maintained. The cell bath was 

illuminated from above via a removable red light filter (λ > 580 nm) and observed using an 

inverted stage light microscope (Diaphot-TMD, Nikon Corporation, Japan). The apparatus was 

mounted on a nitrogen pressurised air table (model MICRO-g, Technical Manufacturing Corp, 

USA) and surrounded by a Faraday cage covered in a light-proof material (figure 2.13). 

Experiments were conducted in a darkened room. 
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ii. Light source, transmission and collection   

 

A 75 W xenon short-arc bulb (XBO, Osram Ltd, Germany) with an independent high voltage 

power supply (Cairn research Ltd, UK) provided high-intensity broad-bandwidth light which was 

filtered, prior to transmission via a quartz fibre-optic cable. Filtration was achieved in two stages; 

polarisation with a static collimating filter followed by a motorised rotating wheel containing slots 

for up to eight radially placed filters of fixed wavelengths (Cairn Research Ltd). Magnetic and 

optical sensors within the filter housing enabled the central spectrophotometer unit (Cairn 

Research Ltd) to control the speed at which this filter wheel span (32 Hz) and synchronised this 

with the light detection mechanism.  

 

Several mirrors, both plane and dichroic, were used to reflect the various light sources. The first 

dichroic mirror reflected the filtered illuminating light up through the microscope objective (x40 

quartz objective, numerical aperture 1.3, oil lens, Nikon, Japan) to the microscope stage and cell 

bath where it was focussed on the cell in question. Emitted light passed back through this 

objective lens to pass straight through the first dichroic down to the plane microscope mirror. This 

reflected the emitted light to the collection system.  

 

The microscope light source was positioned above the stage and filtered using a λ > 580 nm red 

light filter. This light, used to position the cell, passed straight through the first dichroic mirror and 

was reflected by the microscope mirror to the collection system. This light source was 

extinguished during data acquisition. 

 

The first stage of the collection system comprised a diaphragm which could be adjusted to reduce 

the field size and therefore reduce background emission. A second dichroic mirror acted as a 
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beam splitter. Higher wavelengths passed through this dichroic to a digital camera (Jai-PULNiX, 

USA) connected to a monitor (model 5512, Sanyo, USA). This image was used to observe the 

cell and adjust the diaphragm. Lower wavelengths were reflected up to a photomultiplier tube 

(PMT, Cairn Research Ltd) for signal detection. 

 

iii. Signal detection and recording  

 

The PMT provided a current output which was a function of the light intensity entering it. Adjusting 

the voltage across the PMT enabled optimisation of the output with respect to the signal/noise 

ratio. In all recordings, two filters of differing wavelengths were placed in the motorised wheel. A 

high frequency internal clock within the spectrophotometer enabled rotation of each filter on the 

wheel to be synchronised with one of two sample-and-hold amplifiers. As emitted light from 

excitation at each filter frequency reached the PMT, the voltage output was integrated for the 

duration of the filter sweep, and the peak amplitude sampled. An analogue division circuit within 

the spectrophotometer enabled the signal from each amplifier to be converted to a signal ratio. 

This ratio signal along with the two individual sample-and-hold amplifier signals were recorded on 

a pen recorder (Gould TA 240S, UK) and a personal computer as well as displayed on a digital 

oscilloscope (Gould DSO 420, UK).  

 



 92 

Fig 2.13 Isolated cell set up 
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2.5.3 Cavernosal cell isolation 

 

Cavernosal tissue was dissected as described in section 2.2. An enzyme solution (Sigma, UK 

except collagenase Worthington, UK - table 2.2) was made up in the laboratory and aliquots 

stored at -20 °C for subsequent use. 0.7 ml of the thawed enzyme solution was added to 0.7 ml 

Ca-free HEPES buffered Tyrode’s solution in a 2 ml eppendorf tube. 8-10 pieces of cavernosal 

tissue (1 mm3) were placed in the enzyme mixture and stored for 12-15 hours at 4 °C. Tissue 

was then finely chopped with dissection scissors and the mixture transferred to a 7 ml screw top 

Perspex container along with a 5mm magnetic stirrer bar. This was placed in a 250 ml beaker 

containing water at 37.5 ± 0.5 °C on a stirrer for 6 min. Water temperature was monitored using a 

digital thermometer (model 915-1, Testo, UK). The resulting cell suspension was stored at 4 °C 

for subsequent use. All instruments and magnetic stirrers were soaked in a disinfecting solution 

(Haztab, Guest Medical, UK) and then washed in RO water prior to use. 

 

Table 2.2 - Constituents of enzyme mixture added to HEPES buffered Ca-free Tyrode’s solution   

Compound Concentration (mg/ml) Source 

Collagenase type I (256 units/mg) 20 Worthington, UK 

Hyaluronidase type I-S 0.5 

Hyaluronidase type III 0.5 

Antitrypsin type II-S 0.9 

Bovine albumin 5.0 

 

Sigma, UK 
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2.6 Isolated cell experiments (II) 

 

2.6.1 Measurement of [Ca2+]i by epiflourescence microscopy 

 

The fluorescent indicator Fura-2 (Calbiochem-Novabiochem Corp, USA) was used as an index of 

[Ca2+]i. Fura-2 has a Kd value that is close to typical basal Ca2+ levels in mammalian cells (~100 

nM), and has a high selectivity for Ca2+ binding relative to Mg2+. The fluorescence excitation 

spectrum of Fura-2 demonstrates an isoflourescence wavelength of 360 nm (fig. 2.14). As [Ca2+]i 

increases, the spectrum shifts to the left resulting in: 

i) The emission intensity at 340 nm excitation increasing and  

ii) The emission intensity at 380 nm excitation decreasing. 

 

 

 

 

 

 

Figure 2.14 - The fluorescence intensity spectra of Fura-2 detected at 510 nm at different [Ca2+]  

(modified from Invitrogen Molecular Probes handbook). 

 

Therefore, in these experiments 340 nm and 380 nm filters were placed in the filter wheel in the 

UV light path. The emission spectrum of fura-2 is maximal above 510 nm; hence emitted light 

was collected above this wavelength (fig 2.15). To achieve this, dichroic mirror 1 was a 410 nm 

mirror (allowing light > 410 nm to pass through) and dichroic mirror 2 was a 510 nm mirror to 

 
 
 
 

Image removed 
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reflect fluorescent light to the PMT tube (fig 2.13). The ratio of the 340/380nm emission was used 

as an index of [Ca2+]i.  

 

 

 

 

 

 

 

Figure 2.15 - The fluorescence emission spectra of Fura-2 at different [Ca2+] at 340 nm excitation 

(modified from Invitrogen Molecular Probes handbook) 

 

2.6.2 Intracellular loading of Fura-2 

 

The acetoxymethylester of Fura-2 (Fura-2 AM, Calbiochem-Novabiochem Corp, USA) was 

dissolved in DMSO to a concentration of 1 mM in the laboratory and stored at -20 °C. The lipid-

soluble AM ester is able to passively diffuse across the cell membrane and once inside the cell, is 

cleaved by intracellular esterases to yield the charged cell-impermeant fluorescent Ca2+ indicator 

(figure 2.16).  

 

 

 

 

 

 

 
 
 
 

Image removed 
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Figure 2.16 -  The process of fura-2 AM hydrolysis liberating the Ca2+ sensitive fluorophore 

(Invitrogen Molecular Probes handbook)   

 

Cells were loaded at room temperature by adding 5 µl of Fura-2 AM stock solution to 1 ml of cell 

suspension resulting in an indicator concentration of 5 µM. Cells were stored at 4 °C for 30 min 

to facilitate intracellular indicator loading. 

 

2.6.3 Experimental procedure 

 

The experimental rig was primed with oxygenated Tyrode’s solution and the cell bath was 

washed with RO water and dried. Using a flamed-glass Pasteur pipette, two drops of loaded cell 

suspension were placed in the cell bath. The preparation was left for 30 min to allow cell 

adhesion to the base of the cell bath. The preparation was then superfused with Tyrode’s solution 

 
 
 
 

Image removed 
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at a rate of 2 ml.min-1. Many cells were washed away at this point but due to the high yield (~ 100 

cells per high power field) from the isolation method described, enough cells remained for 

experimentation. Suitable cells were recognised as being spindle shaped with homogeneous 

cytoplasm and a smooth cell membrane. Additionally the presence of a ‘halo’ around the cell 

membrane under phase contrast illumination was seen as a favourable indicator of cell viability.  

 

Once a suitable cell was identified, it was brought into focus and the stage adjusted to bring the 

cell into the centre of the field. The microscope red light filter was then slotted in place and the 

light collection diaphragm adjusted, guided by the monitor image, to optimise light collection from 

the cell. The microscope cage was then blacked out and the room lights turned off. 

 

The light source was switched on to allow the appropriate excitation wavelengths to be reflected 

to the stage. The PMT voltage was adjusted to ensure full scale deflection of the 380 nm signal 

on the oscilloscope screen. Recording of the individual and ratio signals on both the computer 

and pen recorder were commenced. Once a stable signal was confirmed, background 

fluorescence was recorded by moving the cell out of position using the stage controls for 10 s 

without adjusting the size of the light collection diaphragm. The cell was then moved back into 

position and the experimental interventions commenced. At the conclusion of the planned 

interventions, background fluorescence was again recorded in a similar manner as previously 

described (figure 2.17a, 2.17b and 2.18).  
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Figure 2.17a – Diagram of emission signals showing rationale behind accounting for background 

emission. 

A – Background emission included in emission signal, B – background emission removed from 

recorded signal therefore isolating emitted light form the cell alone  

 

 

 

Figure 2.17b – Typical emission signals showing changes recorded during cell stimulation 

A good signal to noise ratio was a requirement for using a particular cell for experimentation. 

Additonal signs used in selecting cells included spindle-like shape, homogenous loading of 

FURA-2 and a ‘halo’ on phase microscopy. 
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Figure 2.18 – Experimental protocol for isolated cell intervention 
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2.6.4 Calibration of the Fura-2 signal 

 

The ratio of Fura-2 fluorescence at two different excitation wavelengths was used as an index of 

the [Ca2+]i. The purpose of calibration was to determine the fluorescence signals and ratio at 

known concentrations of Ca2+ in the absence of cells. This in vitro calibration was performed in 

conditions mimicking the intracellular environment (high [K+]) using ethylene glycol tetra-acetic 

acid (EGTA) as a Ca2+ buffer to ensure [Ca2+] was within the physiological range (table 2.3). 

 

Table 2.3 - Constituents of FURA-2 signal calibration solution 

The purity of EGTA was 94% determined from previous experiments making the actual 

concentration of EGTA 4.7 mM(204). 

 

 

Aliquots of 1 M CaCl2 solution were added to this solution at 37 °C (table 2.4). Each solution was 

titrated with KOH to a pH of 7.1 using a pH meter (BDH, UK). A 2M KOH stock solution was 

made from solid KOH. This compound is supplied as solid pellets of ~85% purity. This was taken 

into account when calculating the weight of compound to be dissolved in RO water. The [Ca2+] 

was calculated using the following equation: 

pCa = pKCa + log ([EGTA] / [Ca EGTA]) 

Compound Concentration (mM) 

KCl 120 

HEPES 20 

NaCl 10 

MgCl2 1.0 

EGTA 5.0 (actual 4.7) 
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o pCa was the negative logarithm of [Ca2+] 

o The pKCa of the apparent EGTA dissociation constant (KCa) was taken as 6.64(188). 

o [EGTA] was the concentration of added EGTA. 

o [Ca EGTA] was taken as the concentration of added CaCl2 when < 4.0 mM. 

o The first solution had 0 mM added CaCl2 and was used to calculate Rmin.  

o The last solution had 6 mM added CaCl2 to yield a solution with a [Ca2+]free > 1 mM. This 

was used to calculate Rmax. 

 

Table 2.4 - Concentration of free Ca2+ in calibrating solutions 

[Ca EGTA] 

(mM) 

[EGTA] 

(mM) 

pCa [Ca2+]free 

(nM) 

0   0 

0.5 4.2 7.56 27.3 

1.0 3.7 7.21 61.9 

2.0 2.7 6.77 169.7 

2.5 2.2 6.58 260.3 

3.0 1.7 6.39 404.3 

4.0 0.7 5.88 1309.1 

6.0   >1000 

 

The dissociation constant of Fura-2 for Ca2+ in the system (Kd) was derived from the following 

equation(205): 

Kd = [Ca2+]free (Rmax-R) / β(R-Rmin) 

o Kd is the dissociation constant of Fura-2 in the system. 

o R is the ratio signal at a given [Ca2+]free. 
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o Rmin is the ratio signal at 0 mM [Ca2+]free. 

o Rmax is the ratio signal at saturating [Ca2+]free, in practice a [Ca2+]free > 1 mM. 

o β is the emission signal ratio due to excitation at 380 nm of saturating Ca2+ to 0 mM Ca2+ 

(F380max / F380min)  

 

This equation was rearranged to yield a linear relationship for the estimation of Kd: 

log β[(R-Rmin)/(Rmax-R)] = -pCa + pKd 

log β[(R-Rmin)/(Rmax-R)] was plotted against –pCa and pKd estimated as the pCa at which the 

log β[(R-Rmin)/(Rmax-R)] = 0 (figure 2.19).   
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Figure 2.19 – Sample Fura-2 calibration plot 

The log [Ca2+]free at the x-intercept corresponds to the log Kd for Fura-2. Ischaemic interventions, 

in particular alterations in pH, affect the dissociation constant (Kd) for Fura-2. Data are therefore 

presented as ratio signals rather than [Ca2+]i for accuracy(206).
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2.7       Statistical analysis 

 

i) Data are expressed as the mean ± standard deviation of the data set. Several 

interventions caused tension generated to drop to 0 mN.mm-2. These values are 

included in the data sets presented. 

ii) Data sets are the result of n experiments using tissue from N animals.   

iii) The computer program Kaleidagraph™ (v3.5, Synergy Software, USA) was used to 

parameterise straight lines and curves to fit experimental data using the least 

squares analysis method. 

iv) Straight lines were fitted using the equation: 

y=mx + c 

o m is the gradient of the straight line. 

o c is the point at which the line intercepts the y axis. 

v) Curves were fitted using the equation: 

(ymax.xa)/(xa + (khalf)a) 

o ymax is the maximum of the curve. 

o a is the power of the curve. 

o khalf is the value on the x axis corresponding to half ymax. 

vi) For the purposes of statistical comparison between data sets, khalf values are 

presented as log10 khalf (pkhalf) as previous studies on lower urinary tract smooth 

muscle have shown this to be the normally distributed data set(188). 

vii) Where parametric data were being analysed, statistical differences were tested using 

Student’s t-tests. When data sets were compared to a single value (for example 

100%), Mann-Whitney U tests were used to analyse variation. The null hypothesis 

was rejected when p<0.05.  
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3.1 Results I – Basic tissue parameters 

 

3.1.1 Isometric contractions elicited by electrical field stimulation (EFS) 

 

3.1.1.1 EFS-mediated contraction with time 

 

Isometric nerve-mediated contractions elicited by EFS (range 8-60 Hz) were recorded and 

measured as described in section 2.3.4. Preparations were equilibrated in Tyrode’s solution for 

60 min. at 37 °C. At the end of this period, the mean nerve-mediated tension at 32 Hz (EFS32Hz) 

was 0.56±0.37 mN.mm-2 (N=4, n=6) and was 66±7% of the estimated maximal tension (Tmax) 

from the force-frequency curves. The mean half-maximal frequency (f½) under these control 

conditions was 22.2±3.7 Hz.   

 

The maximum duration of proposed experiments was 240 min. including the equilibration period. 

Preparations were periodically stimulated at 32 Hz and the force-frequency relationship measured 

at set intervals during superfusion with Tyrode’s solution (NT) to ascertain the stability of the 

preparation for the duration of the proposed experiments.  

 

The force-frequency relationship as well as the mean EFS32Hz remained stable throughout the 

240 min. of experimentation (figure 3.1). The large standard deviations reflect the variability in 

tension generated between muscle strips. However within each preparation tension was stable 

throughout the experimental period as shown by the Tmax and f½ values (table 3.1).     
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 8  16 24 32 40 60  8  16 24 32 40 60   8  16 24 32 40 60       EFS (Hz) 

         60 min.            90 min.            120 min. 

  

                              8  16 24 32 40 60           8  16 24 32 40 60 EFS (Hz) 

                         180 min.                      240 min. 

Fig. 3.1 – Typical experimental tracing showing periodic force/frequency relationship over time in 

Tyrode’s solution. EFS-mediated contractile responses were stable over the proposed time 

course of experiemts (240 min.)  

  

Table 3.1 – Stability of contractile (EFS) responses in Tyrode’s solution 

NT = Normal Tyrode’s solution 

N=4, n=6 60 min NT  90 min NT 120 min NT 180 min NT 240 min NT 

EFS32Hz (mN.mm-2) 0.56±0.37 0.60±0.42 0.63±0.47 0.66±0.52 0.65±0.50 

EFS32Hz as % control - 104±8 105±14 109±17 109±15 

EFS32Hz as % of Tmax 

(%) 

66±7 63±7 66±3 69±4 68±5 

f½ (Hz) 22.2±3.7 24.1±4.0 21.7±1.3 19.8±2.3 20.2±2.5 

 

 

2 min. 

1 mN 

•    •    •    •    •    •   •    •    •    •    •    •   •    •    •    •    •    • 

   •    •    •    •    •    • •    •    •    •    •    • 
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3.1.1.2 Effect of tetradotoxin on EFS-mediated contraction 

 

To record the proportion of EFS-mediated contraction in the preparation that occurred via 

embedded motor nerves, the effect of the neurotoxin tetrodotoxin (TTX 1 µM) was examined. 

More than 95% of the phasic contraction in response to EFS (range 8-60 Hz) was reversibly 

abolished in the presence of TTX (figure 3.2). 
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Figure 3.2 – Effect of 1 µM TTX on EFS-mediated contraction in CSM (N=8, n=12) 

● – control, □ – 1 µM TTX, ○ – post-control, error bars show standard deviation of the mean  

* significant reduction compared to control (p<0.05).  

1 µM TTX abolished EFS-mediated responses indicating that phasic contractions in response to 

electrical stimulation as described were mediated via intrinsic motor nerves.    

 

 

3.1.1.3 Effect of stimulation voltage on EFS-mediated contraction 

 

* *  * *  * * 
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To ascertain the proportion of embedded motor-nerve fibres stimulated with EFS, the effect of 

increasing stimulation voltage was examined on the preparation (table 3.2 and fig 3.3).  

Table 3.2 - Effect of stimulation voltage on EFS-mediated contractions  

* p<0.05 compared to 50 V 

There was no significant increase in force of contraction above 50 V throughout the range of 

stimulation frequencies (8-60 Hz). In addition there was no difference in the f½ at the different 

stimulation voltages. Subsequent EFS experiments were therefore carried out at 50 V. 

N=4, n=7 40 V 50 V 60 V 70 V 80 V 

EFS24Hz (mN.mm-2) 0.23±0.13* 0.27±0.13 0.33±0.16 0.32±0.20 0.39±0.26 

EFS24Hz as %  of EFS24Hz 

at 50 V 

82±11* - 124±22 118±31 151±68 

f½ (Hz) 20.0±13.7 25.2±13.3 19.6±6.5 22.8±6.8 24.0±7.6 

0
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Fig. 3.3 – Recruitment curve showing tension in response to EFS24 Hz at varying stimulation 

voltages * p<0.05 vs. 50 V 

Findings were consistent throughout the frequency range (8-60 Hz). This indicates maximal 

nerve-recruitment at 50 V and above.  

* 
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3.1.2 Isometric contractures elicited by phenylephrine (PE)  

 

3.1.2.1 PE-induced contractures with time 

 

Isometric agonist-induced contractures were recorded and measured as described in section 

2.3.5. Preparations were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end of this 

period, 15 µM PE was introduced and a contracture recorded. The mean peak tension in 

response to PE was 0.50±0.35 mN.mm-2 and mean plateau tension was 0.42±0.29 mN.mm-2 

(N=11, n=14). The maximum duration of experiments measuring PE-induced contractures was 

240 min. To ascertain the stability of the preparation, separate contractures were elicited in 

response to 15 µM PE for a similar time period (table 3.3).  

 

Table 3.3 - Stability of phenylephrine-induced contractile responses in Tyrode’s solution 

Peak and plateau PE responses remained stable throughout the experimental period. Plateau 

responses were on average 86% of the peak PE response (range 70-100%).  

Intervention Peak tension 

(mN.mm-2) 

Plateau tension 

(mN.mm-2) 

Plateau tension 

as % of peak 

tension 

60 min Tyrode’s 0.50±0.35 0.42±0.29 83±8 

90 min Tyrode’s 0.51±0.36 0.44±0.31 87±7 

120 min Tyrode’s 0.49±0.36 0.43±0.31 91±7 

180 min Tyrode’s 0.50±0.34 0.43±0.30 85±9 

240 min Tyrode’s 0.52±0.37 0.44±0.33 85±9 
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3.1.2.2 Effect of nifedipine on phenylephrine-induced contractures 

 

In order to examine the proportion of the phenylephrine-induced contracture which was due to 

Ca2+ influx into the cells, the effect of the L-type calcium channel blocker nifedipine was 

examined. Muscle strips were maximally contracted with 15 µM phenylephrine and the 

contracture recorded as previously described. 100 µM nifedipine was then introduced into the 

superfusate and a similar PE-induced contracture recorded. This dose of nifedipine was chosen 

as it completely abolished the contracture seen in response to high KCl (100 mM).  

 

The mean peak tension in response to PE was 1.60±0.90 mN.mm-2 and mean plateau tension 

was 1.48±0.85 mN.mm-2 (N=6, n=7, fig. 3.4). Peak and plateau contractile responses to 15 µM 

phenylephrine were significantly reduced in the presence of 100 µM nifedipine to 1.27±0.70 

mN.mm-2 and 1.15±0.67 mN.mm-2 respectively (79±7% and 77±7% of control respectively). 
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Figure 3.4 – The effect of 100 µM nifedipine on PE-induced contractures. 

PE – phenylephrine, N – nifedipine  

* significant reduction compared to control PE contracture (p<0.05) 

* * 
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These findings indicate that the majority of the agonist-induced contracture was independent of 

calcium influx via the L-type calcium channel.  

3.1.3 Isometric relaxations elicited by electrical field stimulation (EFS) 

 

3.1.3.1 EFS-mediated relaxation with time 

 

Isometric relaxations elicited by EFS (range 4-24 Hz) in CSM strips pre-contracted with 15 µM 

PE were recorded and measured as described in section 2.3.4. Preparations were equilibrated in 

Tyrode’s solution for 60 min. at 37 °C. At the end of this period, the mean tension remaining after 

nerve-mediated relaxation at 24 Hz (EFS24Hz) was 0.37±0.15 mN.mm-2 (N=4, n=7) and was 

57±16% of the preceding plateau PE contracture. The mean half-maximal frequency (f½) under 

these control conditions was 5.9±2.1 Hz.   

 

The maximum duration of proposed experiments was 240 min. including the equilibration period. 

Preparations were periodically pre-contracted and a force-frequency relationship recorded (EFS 

range 4-24) at set intervals during superfusion with Tyrode’s solution (NT) to ascertain the 

stability of the preparation for the duration of the proposed experiments (figure 3.5). Increasing 

frequency of stimulation elicited progressively larger relaxatory responses in the pre-contracted 

strips.  

However, in contrast to the EFS-mediated contractions (section 3.1.1), the EFS-relaxation force-

frequency relationship was not stable throughout the proposed experimental period. This is 

shown by the left-shift of the force-frequency relationship with time (figure 3.6 and table 3.4). The 

EFS24Hz was the most stable parameter and is therefore used as the variable in subsequent 

experiments. 
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EFS (Hz)    4 8 16 24     4 8 16 24            4 8 16 24 

         

60 min.    90 min.   120 min. 

EFS (Hz)            4 8 16 24    4 8 16 24   

     

 180 min.   240 min. 

Figure 3.5 – Typical experimental tracing showing EFS-mediated relaxatory responses over time 

Consecutive contractures over 240 min. showing stability of 15 µM PE contracture with time. 

Each stimulation train (EFS 4-24 Hz) elicited a progressively greater relaxatory response. 

Tension remaining after the final 24 Hz stimulation was the most stable parameter.    

 

Table 3.4 - Effect of Tyrode’s solution on EFS relaxation          NT = Unmodified Tyrode’s solution 

N=4, n=7 60 min NT  90 min NT 120 min NT 180 min NT 240 min NT 

PE plateau  

(mN.mm-2) 

0.65±0.19 0.67±0.21 0.67±0.22 0.66±0.22 0.74±0.19 

EFS24Hz (mN.mm-2) 0.37±0.15 0.34±0.12 0.33±0.14 0.30±0.12 0.32±0.15 

EFS24Hz as % 

preceding PE plateau 

contracture 

57±16 52±18 51±19 48±20 45±20 

f½ (Hz) 5.9±2.1 4.2±3.0* 3.6±2.0* 2.5±2.2* 2.4±2.3* 

5 min. 

0.5 mN  

  • •  • • 

 

    • •  • • 

 

    • •  • • 

 

  •  • • • 

 

   • • •  • 

 

15 µM PE 

15 µM PE 
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Fig. 3.6 – Variation of EFS-mediated relaxation in CSM with time  

○ – control, □ – 60 min NT, ◊ – 120 min NT, ∆ – 180 min NT, + - 240 min NT 

Stimulation trains during each consecutive contracture elicited larger relaxatory responses.  

  

3.1.3.2 EFS-mediated relaxation at differing levels of pre-contraction 

 

Differing doses of PE were used to examine whether EFS-mediated relaxations were dependent 

upon the level of pre-contraction. Isometric relaxations elicited by EFS (range 4-24 Hz) in CSM 

strips pre-contracted with 15 µM PE or 1.5 µM PE were recorded and measured as described in 

section 2.3.4. Preparations were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end 

of this period, the mean plateau tension after pre-contraction with 15 µM PE was 1.03±0.56 

mN.mm-2 (N=3, n=6). A force-frequency relationship was subsequently recorded (EFS range 4-

24). Tension remaining after nerve-mediated relaxation at 24 Hz (EFS24Hz) was 0.68±0.47 

mN.mm-2 and was 62±12% of the preceding plateau PE contracture. Experiments were repeated 

using the same preparation pre-contracted with 1.5 µM PE. The mean plateau tension was 
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0.50±0.34 mN.mm-2 (N=2, n=6) which was 46±9% of the plateau 15 µM PE contracture. Tension 

remaining after nerve-mediated relaxation at 24 Hz (EFS24Hz) was 0.18±0.18 mN.mm-2 and was 

33±19% of the preceding plateau PE contracture (figure 3.7). 
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Figure 3.7 – Effect of differing levels of pre-contraction on tension remaining after EFS relaxation 

○ – pre-contraction with 15 µM PE, □ – pre-contraction with 1.5 µM PE 

* significant reduction compared to 15 µM PE (p<0.05) 

Relaxation was proportionally greater with smaller PE pre-contraction.  

 

 

 

 

 

 

 

* * * * 
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3.1.3.3 TTX on EFS-mediated relaxation 

 

To record the proportion of EFS-mediated relaxation in the preparation that occurred via 

embedded motor nerves, the effect of the neurotoxin tetrodotoxin (TTX 1 µM) was examined. On 

average 88% (range 68-100%, N=4, n=7) of the phasic relaxation in response to EFS (range 4-24 

Hz) was reversibly abolished in the presence of TTX (fig. 3.8).  
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Fig. 3.8 – Effect of 1 µM TTX on EFS mediated relaxation 

○ – pre-control, □ – 1 µM TTX, ◊ – post-control 

* significant reduction compared to control and compared to preceding plateau PE 

contracture(p<0.05).  

This TTX-resistant relaxation shows that there is an element of EFS-mediated relaxation which is 

not mediated via embedded relaxatory nerves. This may be as a result of direct stimulation of the 

endothelium or the muscle itself.  

* * * * 
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3.1.3.4 ODQ on EFS-mediated relaxation  

 

To record the proportion of EFS-mediated relaxation in the preparation that was secondary to 

nitric oxide release, the effect of the highly selective inhibitor of soluble guanyl cyclase ODQ was 

examined. On average 90% (range 72-100%, N=4, n=6) of the phasic relaxation in response to 

EFS (range 4-24 Hz) was abolished in the presence of ODQ (figure 3.9).  
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Fig. 3.9 – Effect of ODQ on EFS mediated relaxation 

○ – pre-control, □ – 10 µM ODQ, ◊ – post-control 

* significant reduction compared to control and to the 100% PE contracture(p<0.05) 

This shows that the majority of relaxation in response to EFS is mediated via a cGMP specific 

pathway such as via nitric oxide production. Responses did not return to control values during the 

time course of reperfusion in these experiments. In a similar manner to the TTX responses, a 

proportion of relaxation persisted in the presence of ODQ and was significantly different from the 

preceding PE contracture. This ODQ-resistant relaxation shows that there is an element of EFS-

mediated relaxation which is not mediated via a cGMP specific pathway.

* * * * 
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3.1.4      Isometric relaxations elicited by carbachol  

 

3.1.4.1 Carbachol-induced relaxation with time 

 

Isometric agonist-induced relaxations were recorded as described in section 2.3.5. Preparations 

were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end of this period, 15 µM 

phenylephrine (PE) was introduced and a contracture recorded. Once this contracture had 

reached a plateau, 1 µM carbachol was used to induce a relaxatory response in the pre-

contracted muscle strip. The mean nadir tension remaining after application of carbachol was 

0.11±0.09 mN.mm-2 (N=7, n=7) and mean plateau tension remaining was 0.11±0.09 mN.mm-2 

(figure 3.10 and table 3.5).  

 

Table 3.5 - Stability of carbachol-induced relaxatory responses in Tyrode’s solution 

NT = unmodified Tyrode’s solution, PE = phenylephrine 

These responses were not significantly different from each other. Nadir and peak values were not 

significantly different throughout the experimental period   

Intervention Nadir tension 

remaining 

(mN.mm-2) 

Nadir tension as 

% preceding PE 

contracture (%) 

Plateau tension 

remaining 

(mN.mm-2) 

Plateau as % 

preceding PE 

contracture (%) 

60 min NT  0.11±0.09 61±17 0.11±0.09 63±14 

90 min NT 0.11±0.12 55±21 0.12±0.12 57±19 

120 min NT 0.10±0.11 50±22 0.11±0.12 54±21 

180 min NT 0.09±0.10 40±25 0.09±0.10 44±23 

240 min NT 0.08±0.10 41±24 0.10±0.10 49±23 
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60 min.   90 min.  

 

120 min.  180 min.  

   

       240 min.  

 

Fig. 3.10 – Typical experimental tracing showing stability of phenylephrine induced contractures 

and carbachol-induced relaxations over time 

 

3.1.4.2 Carbachol-induced relaxation at differing levels of pre-contraction 

 

Different doses of PE were used to examine whether carbachol-induced relaxations were 

dependent upon the level of pre-contraction. Relaxations elicited by 1 µM carbachol in CSM 

strips pre-contracted with 15 µM PE or 1.5 µM PE were recorded and measured as described in 

section 2.3.5. Preparations were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end 

of this period, the mean plateau tension after pre-contraction with 15 µM PE was 0.96±0.51 

mN.mm-2 (N=3, n=6). The mean nadir tension remaining after application of carbachol was 

0.67±0.42 mN.mm-2 and was 67±8% of the preceding plateau PE contracture. Mean plateau 

5 min. 

1 mN 

15 µM PE 

1 µM C 

15 µM PE 

1 µM C 

15 µM PE 

1 µM C 



 118 

tension remaining after application of carbachol was 0.72±0.45 mN.mm-2 and was 72±9% of the 

preceding plateau PE contracture. 

 

The mean plateau tension after pre-contraction with 1.5 µM PE was 0.46±0.27 mN.mm-2 (N=3, 

n=6) and was 46±9% of that generated after 15 µM PE. The mean nadir tension remaining after 

application of carbachol was 0.24±0.24 mN.mm-2 and was 46±25% of the preceding plateau PE 

contracture. Mean plateau tension remaining after application of carbachol was 0.28±0.26 

mN.mm-2 and was 54±22% of the preceding plateau PE contracture (fig. 3.11). 
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Fig. 3.11 – Effect of differing levels of pre-contraction on carbachol-induced relaxation 

    – 15 µM PE,      – 1.5 µM PE 

* significant reduction compared to responses with 15 µM PE pre-contraction (p<0.05) 

In a similar manner to EFS relaxation, 1.5 µM carbachol elicited a proportionally larger relaxatory 

response with a smaller PE pre-contracture.  

 

 

 

* * 
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3.1.5 Effect of repeated applications of PE on calcium transients is isolated CSM cells 

 

CSM cell isolation was performed on fresh tissue as outlined in sections 2.6.2 and 2.6.3. In 

general, experimental protocols were as outlined in fig. 2.18. Cells were equilibrated in Tyrode’s 

solution for 10 min. at 37 °C and constantly perfused with fresh solution during the course of the 

interventions. 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.20±0.04 at the start and 0.23±0.03 at the end of the experiment ([Ca2+] 

121±72 and 178±52 µM respectively). The mean PMT voltage required was 889±127 V. At the 

end of this period, 3 µM PE was introduced for 1 min. and the response recorded. Unmodified 

Tyrode’s solution at 37 °C was used to perfuse isolated cells for 10 min. between subsequent 

stimulations as a ‘washout’ period. After a final washout period, 120 mM KCl was introduced and 

the response recorded. The maximum duration of experiments measuring PE-induced responses 

was 60 min. To ascertain the stability of the preparation, responses to 3 µM PE were recorded 

over a similar time period (figures 3.12, 3.13 and table 3.6). 

 

Table 3.6 - Effect of repeated stimulation with PE on isolated CSM cells 

PE responses in isolated cells remained stable throughout the experimental period. 

N=7, n=8 1st PE 

response  

2nd PE 

response 

3rd PE 

response 

4th PE 

response 

5th PE 

Response 

120 mM 

KCl 

Peak ratio 

signal 

0.31±0.05 0.30±0.03 0.31±0.04 0.32±0.04 0.31±0.02 0.28±0.05 

∆ [Ca2+] 

(nM) 

327±90 308±59 318±72 336±68 325±42 275±89 
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                 -----        -----          -----            1 min. 3 µM PE 

 1st Ca2+ transient        2nd Ca2+ transient         3rd Ca2+ transient  

   

                       -----         1 min. 3 µM PE     -----   1 min. 120 mM KCl                

    4th Ca2+ transient           5th Ca2+ transient  

Fig. 3.12 – Experimental tracing showing Ca2+ transients in response to consecutive 3 µM PE 

To ensure cell stability, two consecutive PE responses were elicited under control conditions and 

subsequent interventions compared to the second. 
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Fig. 3.13 – Effect of consecutive applications of PE on calcium transients in isolated CSM cells  

 The final KCl response was 91±12% of the preceding PE response. 
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3.1.6 Summary of basic tissue parameters 

 

Dissection was straightforward after animals were sacrificed as outlined in section 2.2. No 

differences were observed between samples used on day 1 or day 2 after storage at 4 °C 

overnight in Ca2+-free Tyrodes solution. 

 

EFS-mediated contraction was stable over 240 min. 95% of contraction was via embedded motor 

nerves (TTX-sensitive). Maximal motor nerve recruitment was seen at 50 V. 

 

Agonist-induced contractures were stable over 240 min. An initial peak response followed by a 

plateau was observed upon addition of 15 µM phenylephrine to the superfusate. The plateau 

contracture was on average 85% of the peak response. In addition, the majority of tension 

generated (87% of peak and 84% of plateau PE contracture) was insensitive to the L-type 

calcium channel blocker nifedipine. Alternative sources of calcium would be intracellular stores, 

intracellular calcium sensitisation and non-specific cation channels. These could have been 

investigated by using caffeine, Rho-kinase inhibitors and non-specific cation channel blockers 

(flufenamic acid and ruthenium red) respectively.  

 

The majority of EFS-mediated relaxation is TTX sensitive (88%). However, there is a TTX 

insensitive proportion of EFS mediated relaxation which increased with increasing frequency of 

stimulation. Similarly relaxations were sensitive to ODQ and again there was a small ODQ 

insensitive proportion which increased with increasing frequency of stimulation. This may be 

secondary to direct EFS of the endothelium and may represent a nitric-oxide independent 

mechanism of relaxation. 
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EFS-mediated relaxation demonstrated a shift to the left of the force-frequency relationship over 

240 min. EFS24Hz was stable when expressed as percentage of preceding PE contracture as long 

as the preceding PE contracture remained stable. However, the magnitude of EFS-mediated 

relaxation was dependent upon the level of pre-contraction. EFS-mediated relaxation had a 

proportionally greater effect with lower levels of pre-contraction. During the proposed 

experiments, it is postulated that the level of pre-contraction may be changing due to the 

ischaemic micro environment. Therefore observations on the effect of interventions on EFS-

mediated relaxation can only be made when the normal relationship is altered. In summary this 

normal relationship is comprised of two aspects: 

 

• At similar levels of pre-contraction, EFS-relaxation increases with time 

• During interventions where the level of pre-contraction is reduced, EFS-mediated relaxation 

has a proportionally greater effect.  

 

Carbachol-induced relaxation was stable over 240 min. However, the degree of relaxation in 

response to 1 µM carbachol was dependent upon the level of pre-contraction. In a similar manner 

to EFS-mediated relaxation, carbachol induced a proportionally greater relaxation at lesser levels 

of pre-contraction. Therefore, in experiments where the levels of pre-contraction may be reduced 

during the intervention, this relationship must be taken into account. 

 

Isolated cell harvest was satisfactory with the protocol developed. PE-induced calcium transients 

were stable for the duration of proposed experiments. 
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Table 3.7 – Summary of basic tissue parameters 

Aspect of CSM function 

examined 

Comments 

EFS-mediated contraction • Stable over 240 min. 

• 95% of contraction via embedded motor nerves. 

• Maximal nerve recruitment at 50 V and above. 

PE-induced contraction • Stable over 240 min. 

• Initial peak response followed by plateau. 

• Majority of response not sensitive to L-type calcium channel 

blockade.  

EFS-mediated relaxation • Left shift of the force-frequency relationship over 240 min.  

• Dependent upon level of pre-contraction 

• 88% TTX sensitive, 90% ODQ sensitive 

Carbachol-induced 

relaxation 

• Stable over 240 min. 

• Dependent upon level of pre-contraction 

Isolated cell contraction • PE-induced [Ca2+]i transients stable over 60 min. 
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3.2 Results II – The effect of simulated ischaemia on nerve-mediated contraction 

 

3.2.1 Effect of simulated ischaemia (HIAS) on nerve-mediated contraction 

 

Simulated ischaemia (HIAS) consisted of simultaneous hypoxia, intra & extracellular acidosis and 

substrate depletion (absence of glucose and sodium pyruvate). This resulted in reduction of 

superfusate from pH 7.43±0.03 to 6.98±0.02 and reduction in PO2 from 88.3±4.2 kPa to 7.8±1.6 

kPa.  

 

Isometric nerve-mediated contractions elicited by electrical field stimulation (EFS range 8-60 Hz) 

were recorded as described in section 2.3.4. Preparations were equilibrated in Tyrode’s solution 

for 60 min. at 37 °C. At the end of this period, the mean nerve-mediated tension at 32 Hz 

(EFS32Hz) was 0.25±0.13 mN.mm-2 (N=5, n=6) and was 45±1% of the estimated maximal tension 

(Tmax) from the force-frequency curves. The mean f½ under these control conditions was 34.6±1.5 

Hz.   

 

30 min. of HIAS significantly reduced the mean EFS32Hz to 0.14±0.15 mN.mm-2 (53±30% of 

control). This significant reduction was present at stimulation frequencies above 32 Hz. Further 

exposure reduced tension even more, until after 60 min. HIAS, EFS32Hz was significantly reduced 

to 20±13% of control (figures 3.14 and 3.15, table 3.7). This reduction was significant throughout 

the frequency range of stimulation. f½ was unchanged during simulated ischaemia. The EFS 

response did not recover upon reperfusion; after 60 min. of normal Tyrode’s solution, EFS32Hz 

remained at 0.09±0.09 mN.mm-2 (30±24% of control).  
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  8 16 24 32 40 40 60      8  16 24 32 40 60             8  16 24 32 40 60           8  16 24 32 40 60     

Control      30 min. HIAS       60 min. HIAS         reperfusion 

Figure 3.14 – Typical experimental tracing showing effect of 60 min. simulated ischaemia 

followed by re-superfusion with normal Tyrode’s solution for 60 min. on nerve-mediated 

contraction  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 - Effect of 60 min. simulated ischaemia (HIAS) and reperfusion with normal Tyrode’s 

solution on nerve-mediated force-frequency response. 

● – control, □ - 30 min HIAS, ○ – 60 min HIAS, ■ – reperfusion 

*significant reduction 30 min. HIAS compared to control (p<0.05), error bars omitted for clarity 

Tension was significantly and irreversibly ameliorated by simulated ischaemia. 
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Table 3.8 - Effect of simulated ischaemia (HIAS) on nerve-mediated contraction 

* p<0.05 compared to control  

N=5, n=6 control 30 min HIAS 60 min HIAS re-superfusion 

extracellular pH 7.43±0.03 6.98±0.02 7.43±0.03 

EFS32Hz (mN.mm-2) 0.25±0.13 0.14±0.15* 0.05±0.06* 0.09±0.09* 

EFS32Hz as % control - 53±30 *  20±14 * 30±24 * 

Tmax (mN.mm-2) 0.56±0.29 0.28±0.28* 0.13±0.13* 0.49±0.29 

f½ (Hz) 34.6±1.5 46.3±44.5 31.0±6.07 65.6±48.0 

 

Simulated ischaemia (HIAS) had a marked effect on nerve-mediated contraction. The individual 

effects of each component of simulated ischaemia were examined to try to elicit the most 

important factors in mediating this loss of contractile function. 
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3.2.2 Effect of isolated components of ischaemia on nerve-mediated contraction 

 

3.2.2.1 Effect of substrate depletion (S) on nerve-mediated contraction 

 

The effect of omission of glucose and Na pyruvate (S) from the superfusate on nerve-mediated 

contraction was examined. In the first set of experiments, the effect of 60 min. substrate depletion 

was recorded. At the end of the equilibration period, the mean EFS32Hz was 0.28±0.25 mN.mm-2 

(N=4, n=5) and was 38±15% of the Tmax. The mean f½ under these control conditions was 

47.0±16.9 Hz (table 3.9).   

  

Table 3.9 - Effect of 60 min. substrate depletion (S) on nerve-mediated contraction 

60 min. of substrate depletion had no effect on nerve-mediated contraction. In addition, 

parameters after 60 min. of re-superfusion with normal Tyrode’s were not significantly different 

from control. 

N=4, n=5 Control  60 min S 15 min 

reperfusion 

60 min 

reperfusion 

EFS32Hz (mN.mm-2) 0.28±0.25 0.32±0.25 0.34±0.27 0.27±0.22 

EFS32Hz as % control - 127±17 111±22 106±18 

f½ (Hz) 47.0±16.9 31.8±13.7 33.4±7.6 40.6±13.5 

 

The next set of experiments examined the effect of 120 min. of substrate depletion (S). The mean 

EFS32Hz at the end of the equilibration period was 0.53±0.16 mN.mm-2 (N=4, n=6) and was 

53±15% of the estimated Tmax from the force-frequency curves. The mean f½ under these control 

conditions was 33.3±19.4 Hz (figure 3.16).   
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120 min. of substrate depletion also had no effect on the mean EFS32Hz. However there was 

significant depression of tension generated in response to EFS at frequencies higher than this 

(EFS40Hz, EFS60Hz and EFS80Hz). This was reflected in a significant reduction in the Tmax after 120 

min of substrate depletion (control Tmax, 1.05±0.33 mN.mm-2 to 120 min. S Tmax, 0.51±0.26 

mN.mm-2) In addition, f½ was also significantly reduced during this period (table 3.10, figure 3.16).  

 

Upon re-superfusion with normal Tyrode’s for 60 min., f½ returned to control values (table 3.10). 

However, tension generated upon EFS did not recover. In fact nerve-mediated contractile 

responses were reduced further throughout the frequency range upon re-superfusion when 

compared to control contractions. 

 

 Table 3.10 - Effect of 120 min. substrate depletion (S) on nerve-mediated contraction 

* p<0.05 compared to control  

N=4, n=6 Control  60 min S 120 min S 15 min 

reperfusion 

60 min 

reperfusion 

EFS40Hz (mN.mm-2) 0.65±0.20 0.59±0.17* 0.44±0.22* 0.36±0.25* 0.30±0.22* 

EFS40Hz % of control - 90±6 66±18* 42±31* 43±25* 

EFS32Hz (mN.mm-2) 0.53±0.16 0.49±0.14 0.40±0.19 0.29±0.20* 0.25±0.19* 

EFS32Hz % of control - 93±7 73±24 50±25* 44±25* 

Tmax (mN.mm-2) 1.05±0.33 0.89±0.26* 0.51±0.26* 0.67±0.38 0.45±0.26* 

f½ (Hz) 33.3±19.4 30.5±18.6 15.6±7.5* 44.4±20.4 31.9±9.8 
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Figure 3.16 - Effect of 120 min. substrate depletion (S) on nerve-mediated contraction 

● – control, □ - 60 min S, ○ – 120 min S, Δ – 15 min reperfusion, ■ – 60 min reperfusion  

*significant reduction of 120 min. S compared to control (p<0.05), error bars omitted for clarity 

Nerve-mediated contraction during substrate depletion (omission of glucose and Na pyruvate 

from supefusate) exhibited an initial resistance (for up to 60 min) to any detrimental effects. 

However, with increasing periods of substrate depletion (120 min.), it was not possible to maintain 

the magnitude of higher frequency nerve-mediated contractions. In addition, when this reduction 

of force occurred, reperfusion with normal Tyrode’s caused a further reduction of contractile 

function throughout the frequency range.  

 

The time course of tension reduction during simulated ischaemia (HIAS) was shorter, and the 

magnitude of tension reduction greater, when compared to substrate depletion alone. This implies 

that substrate depletion alone was not the sole factor mediating reduction of nerve-mediated 

contractions during simulated ischaemia. The effects of the other components of simulated 

ischaemia were therefore examined followed by combinations of interventions.    
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3.2.2.2 Effect of hypoxia (H) on nerve-mediated contraction 

 

The effect of using 95% nitrogen rather than 95% oxygen in the superfusate gas mixture on 

nerve-mediated contraction was examined. This resulted in a drop on PO2 measured at the 

superfusion bath from 10±0.5 kPa to 4±0.3 kPa. The mean EFS32Hz at the end of the equilibration 

period was 0.47±0.21 mN.mm-2 (N=5, n=6) and was 62±7% of the estimated Tmax. The mean f½ 

under these control conditions was 24.4±4.3 Hz (table 3.11).  

 

Table 3.11 - Effect of 120 min. hypoxia (H) on nerve-mediated contraction 

60 and 120 min. of hypoxia had no effect on nerve-mediated contractions. After 60 min. of 

reperfusion, variables and parameters also remained at control values. 

N=4, n=6 Control  60 min H 120 min H reperfusion 

EFS32Hz (mN.mm-2) 0.47±0.21 0.42±0.21 0.40±0.23 0.41±0.22 

EFS32Hz as % control - 93±20 86±21 85±13 

Tmax (mN.mm-2) 0.66±0.33 0.64±0.30 0.63±0.29 0.70±0.36 

f½ (Hz) 24.4±4.3 28.6±10.1 30.3±10.1 33.2±7.5 

 

3.2.2.3 Effect of intra- and extracellular acidosis (IA) on nerve-mediated contraction 

 

Using 10% CO2 rather than 5% CO2 in the superfusate gas mixture generated an acidotic 

Tyrode’s solution (pH 7.45±0.00 to pH 6.96±0.03). The effect of up to 120 min. acidosis (IA) on 

nerve-contraction in CSM was examined with data collected at 30, 60 and 120 min. The mean 

EFS32Hz at the end of the equilibration period was 0.49±0.48 mN.mm-2 (N=5, n=6) and was 

41±12% of the estimated Tmax from the force-frequency curves. The mean f½ under these control 

conditions was 46.0±15.7 (figure 3.17a and table 3.12).  
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Table 3.12 - Effect of 120 min. IA on nerve-mediated contraction 

120 min. of simultaneous intra- and extra-cellular acidosis had no effect on nerve-mediated 

contraction. After 60 min. of reperfusion, parameters also remained at control values. 

N=5, n=6 Control  30 min IA 60 min IA 120 min IA reperfusion 

pH 7.45±0.00 6.96±0.03 7.45±0.00 

EFS32Hz (mN.mm-2) 0.49±0.48 0.48±0.50 0.48±0.52 0.48±0.53 0.51±0.58 

EFS32Hz as % control - 96±12 97±15 93±16 98±16 

Tmax (mN.mm-2) 1.04±0.66 1.23±1.08 1.11±1.10 0.91±0.68 1.01±0.72 

f½ (Hz) 46.0±15.7 46.4±10.4 38.6±5.7 38.5±12.0 41.8±13.4 

 

3.2.2.4 Effect of intracellular acidification (I) on nerve-mediated contraction 

 

As previously described, using 10% CO2 rather than 5% CO2 in the superfusate gas mixture 

generated an acidotic Tyrode’s solution. By simultaneously increasing the amount of extracellular 

buffer (HCO3-) it was possible to create an intracellular acidification at normal extracellular pH 

(section 2.1.3). The effect of 120 min. intracellular acidification (I) on nerve-mediated contraction 

was examined.  

 

The mean EFS32Hz at the end of the equilibration period was 0.59±0.60 mN.mm-2 (N=5, n=6) and 

was 54±12% of the estimated Tmax from the force-frequency curves. The mean f½ under these 

control conditions was 30.3±7.2 (figure 3.17b and table 3.13).  
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Table 3.13 - Effect of 120 min. intracellular acidification (I) on nerve-mediated contraction 

* p<0.05 compared to control 

30 min. of intracellular acidification significantly augmented nerve-mediated contraction in CSM 

and this effect was maintained at 60 and 120 min. intracellular acidification. Tmax and f½ were 

unaltered during the intervention. Parameters returned to control values after 60 min. reperfusion 

in Tyrode’s solution.  

N=5, n=6 Control  30 min I 60 min I 120 min I reperfusion 

pH 7.43±0.02 7.45±0.01 7.43±0.02 

EFS32Hz (mN.mm-2) 0.59±0.60 0.67±0.64* 0.66±0.62* 0.62±0.61* 0.53±0.56 

EFS32Hz as % control - 116±5* 115±6* 107±7* 89±9 

Tmax (mN.mm-2) 1.00±0.75 1.14±0.76 1.06±0.74 1.01±0.69 0.89±0.67 

f½ (Hz) 30.3±7.2 31.5±12.1 28.9±9.8 30.4±10.3 28.5±8.3 

 

3.2.2.5 Effect of extracellular acidosis (A) on nerve-mediated contraction 

 

By reducing the [HCO3-] in Tyrode’s solution, it was possible to reduce the pH of the extracellular 

environment without a concomitant reduction in intracellular pH (pHe 7.39±0.03 to pHe 

6.96±0.03)(186). The effect of up to 120 min. extracellular acidosis (A) on nerve-contraction in 

CSM was examined.  

 

The mean EFS32Hz at the end of the equilibration period was 1.09±1.00 mN.mm-2 (N=5, n=6) and 

was 49±18% of the estimated Tmax. The mean f½ under these control conditions was 39.0±21.2 

Hz (figure 3.17c and table 3.14).  
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Table 3.14 - Effect of 120 min. extracellular acidosis (A) on nerve-mediated contraction 

* p<0.05 compared to control 

30 min. of extracellular acidosis significantly depressed nerve-mediated contractions and this 

effect was maintained at 120 min. extracellular acidosis. Parameters remained significantly 

depressed after 60 min. re-superfusion in Tyrode’s solution.  

N=5, n=6 Control  30 min A 60 min A 120 min A reperfusion 

pH 7.39±0.03 6.96±0.03 7.39±0.03 

EFS32Hz (mN.mm-2) 1.09±1.00 0.76±0.85* 0.75±0.86* 0.72±0.88* 0.94±1.04* 

EFS32Hz as % control - 62±19* 58±18* 52±23* 76±18* 

Tmax (mN.mm-2) 2.29±1.59 1.64±1.41 1.55±1.33* 1.49±1.33* 1.58±1.43 

f½ (Hz) 39.0±21.2 39.2±12.6 35.2±8.1 36.7±6.4 29.2±6.5 

 

 

Simultaneous intra- and extracellular acidosis had no effect on nerve-mediated contraction of 

CSM. However acidosis in the individual compartments had opposite actions; intracellular 

acidification augmented function whilst extracellular depressed it (figures 3.17a-c). 

No single component in isolation mimicked the effect of simulated ischaemia (HIAS) on nerve-

mediated contraction (60 min. HIAS reduced EFS32Hz to 20±14% of control with no significant 

recovery after 60 min. re-superfusion in normal Tyrode’s). The effects of various factors in 

combination were therefore examined. Glucose and Na pyruvate omission from the superfusate 

(S) had the most marked effect, and therefore the combination of this with hypoxia (H) was 

recorded. 
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Fig. 3.17 – Acidosis on nerve contraction 
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3.2.3 Effect of combinations of components of simulated ischaemia on nerve-mediated 

contraction 

 

3.2.3.1 Effect of hypoxia and substrate depletion (HS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.71±0.60 mN.mm-2 (N=7, n=7) and 

was 54±13% of the estimated Tmax from the force-frequency curves. The mean f½ under these 

control conditions was 30.9±9.2 Hz.   

 

Hypoxia and substrate depletion (HS) for 60 min. significantly reduced the mean EFS32Hz to 

0.06±0.05 mN.mm-2 (13±10% of control). The f½ was unchanged after 60 min. of HS depletion. 

Nerve-mediated contractile responses did not recover upon re-superfusion; after 60 min. of 

normal Tyrode’s solution, EFS32Hz remained at 0.09±0.07 mN.mm-2 (17±10% of control, table 

3.15 and figure 3.18). There was no significant difference between the effect of HIAS compared 

to simultaneous hypoxia and substrate depletion (HS) alone (table 3.16).  

 

Table 3.15 - Effect of hypoxia and substrate depletion (HS) on nerve-mediated contraction 

* p<0.05 compared to control 

HS depletion significantly and irreversibly ameliorared nerve-mediated contraction. 

N=7, n=9 Control  60 min HS 15 min 

reperfusion  

60 min 

reperfusion 

EFS32Hz (mN.mm-2) 0.71±0.60 0.06±0.05* 0.09±0.07* 0.09±0.07* 

EFS32Hz as % control - 14±11* 18±12* 17±10* 

Tmax (mN.mm-2) 1.20±0.77 0.12±0.11* 0.23±0.16* 0.21±0.13* 

f½ (Hz) 30.9±9.2 31.8±8.8 35.7±8.0 32.4±8.8 
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Figure 3.18 - Effect of simultaneous hypoxia and substrate depletion (HS) on nerve contraction 

● – control, □ - 60 min HS, ○ – 15 min reperfusion, ■ – 60 min reperfusion  

The depression of tension generated was present throughout the range of EFS.  

 

Table 3.16 - Effect of simulated ischaemia (HIAS) compared to simultaneous hypoxia & substrate 

depletion (HS) on nerve-mediated contraction * p<0.05 compared to control 

These results showed that the combination of hypoxia and substrate depletion (HS) could be 

responsible for the depression of nerve-mediated contractile function seen during simulated 

ischaemia (HIAS). 

Intervention HIAS 

N=5, n=6 

HS 

N=7, n=7 

30 min intervention  53±30* - 

60 min intervention  20±14* 14±11* 

 

As % of control 

(%) 60 min reperfusion 30±24* 17±10* 
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In order to examine further the effect of intracellular acidification on nerve contraction, the effect 

of intra- or extracellular acidosis in the presence of hypoxia and substrate depletion was 

examined.  

 

3.2.3.2 Effect of hypoxia, extracellular acidosis and substrate depletion (HAS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.60±0.40 mN.mm-2 (N=5, n=6) and 

was 51±8% of the estimated Tmax from the force-frequency curves. The mean f½ under these 

control conditions was 31.9±4.9 Hz (table 3.17 and fig 3.19c).   

 

Table 3.17 - Hypoxia, extracellular acidosis and substrate depletion (HAS) on nerve-contraction  

Hypoxia, extracellular acidosis and substrate depletion (HAS) for 30 min. significantly reduced the 

mean EFS32Hz to 29±16% of control. The reduction in tension generated persisted at 60 min. f½ 

was unchanged during the intervention. The EFS response recovered partially upon reperfusion; 

after 60 min., EFS32Hz increased to 50±19% of control. However, tension generated remained 

significantly less than control values. 

N=5, n=6 

* p<0.05 compared to control 

Control  30 min HAS 60 min HAS 60 min 

reperfusion 

pH 7.40±0.02 7.00±0.04 7.40±0.02 

EFS32Hz (mN.mm-2) 0.60±0.40 0.13±0.05* 0.10±0.03* 0.27±0.13* 

EFS32Hz as % control - 28.6±15.7* 23.6±14.4* 49.7±19.0* 

Tmax (mN.mm-2) 1.14±0.66 0.30±0.13* 0.24±0.08* 0.61±0.09* 

f½ (Hz) 31.9±4.9 28.1±8.5 38.9±11.1 27.8±2.2 
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3.2.3.3 Effect of hypoxia, intracellular acidification and substrate depletion (HIS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.57±0.40 mN.mm-2 (N=6, n=6) and 

was 49±8 % of the estimated Tmax. The mean half-maximal frequency (f½) under these control 

conditions was 33.7±5.4 Hz (table 3.18, fig. 3.19b).  

 

Table 3.18 - Hypoxia, intracellular acidification and substrate depletion (HIS) on nerve-contraction 

* p<0.05 compared to control. Hypoxia, intracellular acidification and substrate depletion (HIS) for 

30 min. significantly reduced the mean EFS32Hz to 23±29% of control. f½ was unchanged after 60 

min. of HIS depletion. The EFS response did not recover upon reperfusion; after 60 min. of 

normal Tyrode’s, EFS32Hz remained at 26±23% of control.  

N=6, n=6 Control 30 min HIS 60 min HIS  reperfusion 

pH 7.45±0.01 7.50±0.01  

EFS32Hz (mN.mm-2) 0.57±0.40 0.08±0.07* 0.04±0.05* 0.11±0.08* 

EFS32Hz as % control - 22.5±28.6 11.5±19.6 25.6±22.9 

Tmax (mN.mm-2) 1.11±0.65 0.19±0.22* 0.09±0.12* 0.27±0.23* 

f½ (Hz) 33.7±5.4 25.9±30.7 21.2±17.7 37.3±13.6 

 

In summary, the detrimental effect of hypoxia and substrate depletion (HS) on nerve-mediated 

contraction was similar to the effect of simulated ischaemia. Intra- or extracellular acidosis did not 

limit the reduction in tension although simultaneous extracellular acidosis did significantly 

increase tension upon reperfusion albeit not to control values (figures 3.19a-c). This may be due 

to inactivation of the mechanisms by which intracellular acidification augments nerve-mediated 

contractile function (section 3.2.2.4) by either hypoxia or substrate depletion. The effect of 

acidosis in combination with either hypoxia or substrate depletion was therefore examined. 
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Fig 3.19 Hypoxia, acidosis and substrate depletion on nerve-contraction 
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3.2.4 Effect of combinations of intracellular and extracellular acidosis and substrate 

depletion on nerve-mediated contraction in CSM 

 

3.2.4.1 Effect of acidosis and substrate depletion (IAS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.32±0.20 mN.mm-2 (N=6, n=6) and 

was 43±12 % of the estimated Tmax. The mean half-maximal frequency (f½) under these control 

conditions was 38.8±14.7 Hz (figure 3.20a and table 3.19).   

 

Table 3.19 - Effect of intracellular and extracellular acidosis and substrate depletion (IAS) on 

nerve-mediated contraction * p<0.05 compared to control  

30 min acidosis and substrate depletion (IAS) significantly reduced the mean EFS32Hz to 73±16 % 

of control. However, the estimated Tmax during the intervention was unchanged when compared 

to control values. This is in contrast to the lack of effect recorded with 60 min. substrate depletion 

(S) alone. At 60 min. of IAS depletion, EFS32Hz had returned to control values.  

N=6, n=6 Control 30 min IAS 60 min IAS  Reperfusion 

pH 7.43±0.02 6.98±0.01 7.43±0.02 

EFS32Hz (mN.mm-2) 0.32±0.20 0.22±0.15* 0.24±0.14 0.32±0.22 

EFS32Hz as % control - 72.7±15.5 81.1±19.2 100.1±12.4 

Tmax (mN.mm-2) 0.77±0.45 0.64±0.44 0.55±0.28 0.70±0.28 

f½ (Hz) 38.8±14.7 38.3±5.6 33.8±3.8 37.3±9.2 
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3.2.4.2 Effect of extracellular acidosis and substrate depletion (AS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.63±0.41 mN.mm-2 (N=6, n=6) and 

was 51±9 % of the estimated Tmax. The mean half-maximal frequency (f½) under these control 

conditions was 31.8±6.7 Hz (figure 3.20b and table 3.20).   

 

Table 3.20 - Effect of extracellular acidosis and substrate depletion (AS) on nerve contraction 

* = p<0.05 compared to control 

Extracellular acidosis and substrate depletion (AS) for 30 min. significantly reduced the mean 

EFS32Hz to 67±19 % of control. This depression of nerve-mediated function was maintained at 60 

min. AS depletion. Again this is in contrast to the lack of effect seen with 60 min. substrate 

depletion (S) in isolation. Parameters returned to control values upon reperfusion. 

N=6, n=6 Control 30 min AS  60 min AS  Reperfusion 

pH 7.40±0.02 6.94±0.02 7.40±0.02 

EFS32Hz (mN.mm-2) 0.63±0.41 0.43±0.31* 0.46±0.32* 0.59±0.34 

EFS32Hz as % control - 67.4±19.1 71.3±20.6 96.5±10.4 

Tmax (mN.mm-2) 1.28±0.85 0.93±0.58 0.91±0.56* 1.19±0.75 

f½ (Hz) 31.8±6.7 33.9±5.5 31.4±4.5 31.4±4.8 

 

3.2.4.3 Effect of intracellular acidification and substrate depletion (IS) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.55±0.34 mN.mm-2 (N=5, n=6) and 

was 55±8 % of the estimated Tmax. The mean f½ under these control conditions was 38.6±4.7 Hz 

(figure 3.20c and table 3.21).   
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Table 3.21 - Effect of intracellular acidification and substrate depletion (IS) on nerve-contraction 

* = p<0.05 compared to control 

30 min. intracellular acidification and substrate depletion (IS) significantly increased the mean 

EFS32Hz to 112±7 % of control. This increase of nerve-mediated function was maintained at 60 

min. Substrate depletion alone had no effect over a similar time course. Parameters returned to 

control values upon reperfusion. 

N=6, n=6 Control 30 min IS 60 min IS  Reperfusion 

pH 7.44±0.01 7.50±0.01 7.44±0.01 

EFS32Hz (mN.mm-2) 0.55±0.34 0.61±0.37* 0.63±0.37* 0.60±0.37 

EFS32Hz as % control - 111.8±6.7 118.5±11.5 110.1±7.8 

Tmax (mN.mm-2) 0.96±0.55 0.99±0.52 1.01±0.54 1.04±0.53 

f½ (Hz) 28.6±4.7 28.2±10.2 26.7±8.6 31.0±10.1 

 

 

These experiments show that substrate depletion does not affect the mechanism by which 

intracellular acidification augments and extracellular acidosis depresses nerve-mediated 

contraction in CSM. In addition, when both intra- and extracellular acidosis was combined with 

substrate depletion, an initial reduction in force of contraction at 30 min. followed by return to 

control values at 60 min. was recorded during the intervention. The mechanism(s) by which 

intracellular acidification maintains contractile function in the presence extracellular acidosis are 

therefore time-dependent. The effect of the combination of hypoxia and acidosis was examined 

next. 
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Fig 3.20 Acidosis and substrate depletion on nerve contraction 
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3.2.5 Combinations of hypoxia and acidosis on nerve-mediated contraction in CSM 

 

3.2.5.1 Effect of hypoxia and intracellular and extracellular acidosis (HIA) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.31±0.08 mN.mm-2 (N=4, n=6) and 

was 56±9 % of the estimated Tmax. The mean f½ under these control conditions was 29.5±6.3 Hz. 

(figure 3.21a and table 3.22).   

 

Table 3.22 - Effect of hypoxia and acidosis (HIA) on nerve-mediated contraction 

* p<0.05 compared to control  

30 min. hypoxia, intracellular and extracellular acidosis (HIA) significantly decreased the mean 

EFS32Hz to 88±11 % of control. This depression of nerve-mediated function was maintained at 60 

min. HIA depletion. Parameters returned to control values upon reperfusion 

N=4, n=6 Control 30 min HIA 60 min HIA  Reperfusion 

pH 7.45±0.01 7.42±0.02 7.45±0.01 

EFS32Hz (mN.mm-2) 0.31±0.08 0.28±0.09* 0.25±0.07* 0.31±0.10 

EFS32Hz as % control - 88.0±11.3 78.0±8.2 98.7±9.5 

Tmax (mN.mm-2) 0.57±0.14 0.43±0.11* 0.40±0.10* 0.56±0.13 

f½ (Hz) 29.5±6.3 23.9±3.7 25.5±2.8 28.3±4.5 
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3.2.5.2 Effect of hypoxia and extracellular acidosis (HA) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.36±0.38 mN.mm-2 (N=6, n=8) and 

was 53±8 % of the estimated Tmax. The mean f½ under these control conditions was 29.3±4.4 Hz 

(table 3.23 and figure 3.21c).   

 

Table 3.23 - Effect of hypoxia and extracellular acidosis (HA) on nerve-mediated contraction 

* p<0.05 compared to control  

Hypoxia and extracellular acidosis (HA) for 60 min. had no significant effect on mean EFS32Hz. 

However the Tmax was significantly reduced during the ischaemic intervention with a reduction of 

f½ at 30 min. All variables returned to control values after 60 min. reperfusion.  

N=6, n=8 Control 30 min HA 60 min HA  Reperfusion 

pH  7.42±0.02 6.99±0.01  

EFS32Hz (mN.mm-2) 0.36±0.38 0.32±0.38 0.30±0.38 0.40±0.44 

EFS32Hz as % control - 87.6±20.2 79.2±21.6 115.5±19.7 

Tmax (mN.mm-2) 0.62±0.59 0.47±0.46* 0.46±0.49* 0.68±0.71 

f½ (Hz) 28.6±4.7 21.3±3.4* 24.2±3.6 27.7±3.8 
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3.2.5.3 Effect of hypoxia and intracellular acidification (HI) 

 

At the end of the equilibration period, the mean EFS32Hz was 0.34±0.43 mN.mm-2 (N=5, n=6) and 

was 50±5 % of the estimated Tmax. The mean half-maximal frequency (f½) under these control 

conditions was 25.1±4.0 Hz (table 3.24 and figure 3.21b). 

  

Table 3.24 - Effect of hypoxia and intracellular acidification (HI) on nerve-mediated contraction 

* = significant reduction compared to control, # = significant increase compared to control, p<0.05 

Hypoxia and intracellular acidification (HI) for 60 min. had no significant effect on mean EFS32Hz. 

However the f½ was significantly reduced during the ischaemic intervention. All variables returned 

to control values after 60 min. reperfusion. 

N=5, n=6 Control 30 min HI 60 min HI  Reperfusion 

pH 7.40±0.00 7.48±0.02  

EFS32Hz (mN.mm-2) 0.34±0.43 0.35±0.38 0.34±0.36 0.33±0.40 

EFS32Hz as % control - 115.5±20.9 113.3±19.0 102.7±10.4 

Tmax (mN.mm-2) 0.56±0.68 0.50±0.50 0.47±0.47 0.59±0.62 

f½ (Hz) 25.1±4.0 20.6±3.7* 19.8±3.8* 29.3±3.9# 

 

During simultaneous intra and extracellular acidosis, it appears that intracellular acidification 

protects against reduction in tension seen with extracellular acidosis (section 3.2.2.3). The 

mechanism by which intracellular acidification augments nerve-mediated contractile function is 

sensitive to hypoxia. The above findings support this hypothesis. During simultaneous hypoxia 

and intracellular acidification, no augmentation of function was seen. Findings during 

simultaneous hypoxia, intra and extracellular acidosis (HIA) vs. hypoxia and extracellular acidosis 

were similar.  
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Fig 3.21 Hypoxia and acidosis on nerve contraction 
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3.2.6 Summary of results for nerve-mediated contraction in CSM  

 

Simulated ischaemia (the combination of hypoxia, intra- and extracellular acidosis and substrate 

depletion) caused a significant, immediate and irreversible reduction in tension generated in 

response to EFS (HIAS - EFS32Hz 20±14% of control after 60 min. intervention). A similar 

response was seen in the presence of hypoxia and substrate depletion alone (HS - EFS32Hz 

14±11% of control after 60 min. intervention). No further differences from HS values were seen 

when hypoxia and substrate depletion were combined with either intra- or extracellular acidosis 

(HAS - EFS32Hz 12±20% of control, HIS - EFS32Hz 13±11% of control after 60 min. intervention).  

 

Looking at the individual elements of simulated ischaemia, 120 min. of hypoxia had no effect on 

nerve-mediated tension (H - EFS32Hz 93±20% of control). Simultaneous intra- and extracellular 

acidosis also had no effect (IA - EFS32Hz 97±15% of control after 120 min. intervention). However, 

intra- or extracellular acidosis in isolation had opposite effects. Intracellular acidification 

significantly and reversibly augmented nerve-mediated tension whereas extracellular acidosis 

significantly and irreversibly depressed it (I - EFS32Hz 115±6% of control, A - EFS32Hz 58±20% of 

control after 120 min. intervention).  

 

Intracellular acidification was combined with other elements of simulated ischaemia to examine 

this increase in nerve-mediated tension. Augmentation of nerve-mediated tension was again seen 

when combining intracellular acidification with substrate depletion (IS - EFS32Hz 119±12% of 

control after 60 min. intervention). A similar period of substrate depletion alone had no effect on 

tension generated (although longer periods of substrate depletion significantly and irreversibly 

depressed nerve-mediated tension, EFS32Hz 74±24% of control after 120 min. S). In contrast to 

the inotropic effect of IS depletion, extracellular acidosis and substrate depletion depressed 
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tension generated (AS - EFS32Hz 71±21% of control after 60 min. intervention). Acidosis in both 

compartments in combination with substrate depletion initially depressed function followed by a 

return to control values at 60 min. of the intervention (IAS - EFS32Hz 73±16% and 81±19% of 

control after 30 min. and 60 min. of intervention respectively). This would suggest that the 

mechanism(s) by which intracellular acidification maintains contractile function in the presence 

extracellular acidosis are time-dependent.   

 

Intracellular acidification was combined with hypoxia to further examine the augmentation seen 

with this component of ischaemia. No significant increase in tension was seen with this 

combination (HI - EFS32Hz 113±19% of control after 60 min. intervention). A reduction in tension 

to 79±22% of control was seen after 60 min. of both hypoxia and extracellular acidosis (HA). A 

similar reduction was seen with extracellular acidosis alone. Hypoxia and acidosis in both 

compartments resulted in a reduction in nerve-mediated tension (HIA - EFS32Hz 78±8% of control 

after 60 min. intervention). Again this was similar to the reduction in tension seen with 

extracellular acidosis alone, further evidence that hypoxia inactivates the mechanism by which 

intracellular acidification increases nerve-mediated tension. The effect of simulated ischaemia on 

nerve-mediated contraction in CSM is summarised in Table 3.25. 

 

The next stage of investigation was to examine the effect of the various components of ischaemia 

on direct agonist-induced contraction of CSM. Subsequent experiments followed a similar format 

as that presented thus far on nerve-mediated contraction. The effect of simulated ischaemia on 

PE-induced contractures was recorded, followed by the individual components of ischaemia in 

turn; combinations of interventions were used to explore further the effects of simulated 

ischaemia. For presentation purposes data have been tabulated and presented in grapical form 

where appropriate.
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Table 3.25 - Effect of components of ischaemia applied in various combinations on nerve-

mediated contraction in CSM 

* = significant reduction compared to control, # = significant increase compared to control, p<0.05 

Intervention EFS32Hz after 60 min 

intervention (% control) 

f½ Reperfusion 

HIAS 20±14* no change no recovery 

HIAS had a rapid irreversible detrimental effect. 

HS 14±11* no change no recovery 

HAS 13±11* no change no recovery 

HIS 12±20* no change no recovery 

Detrimental effect of HIAS due to combined effect of hypoxia and substrate depletion (HS). 

H 93±20 shifted right after reperfusion no change 

IA 97±15 no change no change 

A 58±20* no change some recovery 

I 115±6# no change back to control 

Intracellular acidification rapidly augments contraction with no change in f½. 

60 min. S 93±7* no change no change  

120 min. S 74±24* shifted left after 120 min deterioration  

Tmax suppressed during intervention. Reperfusion caused a further deterioration of function  

IAS 81±19 no change no change 

AS 71±21* no change back to control 

IS 119±12# no change back to control 

Intracellular acidification limited detrimental effect of extracellular acidosis with substrate 

depletion 

HIA 78±8 no change back to control 

HA 79±22 initially shifted to left back to control 

Tmax significantly suppressed during intervention, similar effect to extracellular acidosis 

HI 113±19 shifted to left back to control  

Augmentation of function by intracellular acidification is sensitive to hypoxia 
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3.3 Results III – The effect of ischaemia on agonist-induced contraction 

 

3.3.1 Effect of simulated ischaemia (HIAS) on agonist-induced contraction in CSM 

 

Isometric contractures in response to 15 µM phenylephrine (PE) were recorded as described in 

section 2.3.5. Preparations were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end 

of this period, PE was added to the superfusing solution and the resulting contracture recorded. 

The effect of 60 min. of simulated ischaemia was examined on both the peak and plateau PE 

contracture (Table 3.26).  

 

Table 3.26 - Effect of simulated ischaemia (HIAS) on PE contractures 

* p<0.05 compared to control 

N=6, n=6 Control  30 min HIAS 60 min HIAS Reperfusion 

Peak PE contracture  
(mN.mm-2) 

0.74±0.53 0.55±0.42 0.21±0.11* 0.70±0.48 

Peak PE contracture as % of 
control (%) 

- 83±31 35±19* 99±23 

Plateau PE contracture 
(mN.mm-2) 

0.70±0.53 0.18±0.17* 0.16±0.08* 0.60±0.43 

Plateau PE contracture as % 
of control (%) 

- 36±35* 29±16* 92±23 

 

Simulated ischaemia (HIAS) caused a significant reduction in the size of the PE contracture 

which recovered completely upon reperfusion. This reduction was time-dependent - the peak 

contracture at 30 min. of simulated ischaemia was preserved whilst the steady state value was 

reduced to that remaining at 60 min, indicating some metabolic reserve prior to contractile failure  

(compare figs. 3.22 and 3.23). However, in contrast to the effect of HIAS on nerve-mediated 

contraction (section 3.2.1), PE contractures recovered completely upon reperfusion. The effect of 

HIAS on nerve-mediated contraction and PE contractures are summarised in fig. 3.24.  
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Fig. 3.22 – The effect of simulated ischaemia (HIAS) on peak PE contractures 

* significant reduction compared to control (p<0.05) 

The peak PE contracture was initially preserved.  
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Fig. 3.23 – The effect of simulated ischaemia (HIAS) on plateau PE contractures 

* significant reduction compared to control (p<0.05) 

Plateau PE contracture was significantly ameliorated throughout the intervervention. 

* * 

* 
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Fig. 3.24 – The effect of simulated ischaemia (HIAS) on CSM contraction 

red hatched bars peak PE contractures, blue hatched bars EFS32Hz 

* significant reduction compared to control (p<0.05) 

Agonist-induced contractures recovered completely upon reperfusion whereas nerve-mediated 

contractions did not.  

 

3.3.2 Effect of simulated ischaemia (HIAS) on agonist-induced contractures in the presence of 

nifedipine 

 

Under control conditions, peak and plateau contractile responses to 15 µM phenylephrine were 

significantly reduced in the presence of 100 µM nifedipine to 79±7% and 77±7% of control 

respectively (section 3.1.2.2, page 98). Therefore around 20% of the agonist-induced contracture 

was dependent on Ca2+ influx via the L-type Ca2+channel under control conditions. To further 

examine the effect of simulated ischaemia, PE-contractures in the presence of the L-type 

Ca2+channel blocker nifedipine were recorded (table 3.27 and fig. 3.25). 

   

* * * * 
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Table 3.27 - Simulated ischaemia (HIAS) on PE contractures in presence of 100 µM nifedipine  

* p<0.05 compared to control 

N=5, n=7 control NT  30 min HIAS 60 min HIAS Reperfusion 

 in the presence of 100 µM nifedipine  

Peak PE contracture (mN.mm-2) 
 

1.27±0.70 1.18±0.68 0.78±0.51 1.42±0.98 

Peak PE contracture as % of 
control (%) 

- 93±9 68±27 107±17 

Plateau PE contracture 
(mN.mm-2) 

1.15±0.67 0.84±0.67 0.67±0.42* 1.31±0.92 

Plateau PE contracture as % of 
control (%) 

- 77±21 66±31 110±21 

 

   

0

20

40

60

80

100

120

60 min NT 30 min HIAS 60 min HIAS reperfusion

% control 

Interventions  

Fig. 3.25 – Simulated ischaemia (HIAS) on agonist contractures in the presence of nifedipine 

       plateau PE contractures        plateau PE contractures in presence of 100 µM nifedipine 

*significant reduction compared to control (p<0.05) 

The detrimental effect of simulated ischaemia was significantly ameliorated in the presence of 

nifedipine. This suggests that the Ca2+ channel is labile to the effects of ischaemia.  

 

 

 

* * 
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3.3.3 Effect of simulated ischaemia (HIAS) on Ca2+transients in isolated CSM cells 

 

Simulated ischaemia caused a significant reduction in PE induced contractures, an effect that 

appeared to be time dependent on agonist induced contractions. The L-type Ca2+channel is labile 

to the effects of simulated ischaemia with the detrimental effects of this intervention ameliorated 

by the presence of nifedipine. To examine the effect of ischaemia on [Ca2+]i the following 

experiments were carried out. 

  

CSM cell isolation was performed on fresh tissue as outlined in sections 2.6.2 and 2.6.3. Cells 

were equilibrated in Tyrode’s solution for 10 min. at 37 °C and constantly perfused with fresh 

solution during the course of the interventions. 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.18±0.02 at the start and 0.20±0.03 at the end of the experiment ([Ca2+] 

97±37 nM and 127±45 nM respectively). The mean PMT voltage required was 817±46 V. At the 

end of this period, two responses with 3 µM PE were recorded, the second acting as the control 

calcium transient for comparison with simulated ischaemia exposures. 3 µM PE was determined 

experimentally as eliciting a maximal calcium transient. Unmodified Tyrode’s solution at 37 °C 

was used to perfuse isolated cells for 10 min. between each intervention as a ‘washout’ period. 

The isolated cell was then subjected to 20 min. of simulated ischaemia (the combination of 

hypoxia, intra- and extracellular acidosis and substrate depletion). Two further PE responses 

were recorded during this intervention. 20 min. of intervention was used (in contrast to 30 min. 

and 60 min. responses in the muscle strip experiments) due to experimental limitations with cell 

stability over prolonged periods of experimentation. In addition the effect of interventions in the 

muscle strip experiments was apparent, in general, within 5-10 min. Unmodified Tyrode’s solution 
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was then re-introduced for a period of 10 min. and a PE response recorded to examine the effect 

of reperfusion. A final response to 120 mM KCl was recorded at the end of the experiment (fig. 

3.26, fig. 3.26a and table 3.28). 
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Fig. 3.26 – Effect of simulated ischaemia (HIAS) on calcium transients in isolated CSM cells 

PE responses were not significantly different from control values during the ischaemic 

intervention. These findings suggest that the decline in the PE contracture during simulated 

ischaemia is unrelated to changes in [Ca2+]i. 

   

                

        Control    1st     2nd             reperfusion 

          HIAS depletion   

Fig. 3.26a – Typical experimental tracing demonstrating the effect of HIAS on isolated CSM cells  

 

 

340 nm 
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ratio 

  3 min 

[Ca2+]  
75 µM 
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Table 3.28 - Effect of simulated ischaemia on PE-induced Ca2+ transients in isolated CSM cells 

N=4, n=6 Control  1st HIAS 
response 

2nd HIAS 
Response 

Reperfusion 120 mM KCl 

Peak ratio 
signal 

0.32±0.07 0.34±0.06 0.35±0.08 0.33±0.08 0.26±0.01 

∆ [Ca2+] (nM) 
 

349±133 390±122 409±168 375±165 228±23 

 

In a similar manner to preceding experiments, the effect of the separate components of 

ischaemia on agonist-induced contractures was examined. 
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3.3.4 Effect of isolated components of ischaemia on agonist-induced contraction 

3.3.4.1  Effect of substrate depletion (S) on agonist-induced contraction in CSM 

 

The effect of 120 min. omission of Na pyruvate and glucose (S) from the superfusate was 

examined on both the peak and plateau PE contracture (figure 3.27 and table 3.32). 
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Fig. 3.27 – The effect of substrate depletion (S) on CSM contraction 

        plateau PE contractures,         EFS40Hz 

* significant reduction compared to control, # significant increase compared to control (p<0.05) 

Substrate depletion had no effect on the magnitude of the PE response. On reperfusion for 60 

min., both peak and plateau responses were greater than control. This is in contrast to the time-

dependent detrimental effect of S on nerve-mediated contraction. 

 

 

 

 

 

 

* * # 
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3.3.4.2   Effect of substrate depletion (S) on isolated CSM cells 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.17±0.01 at the start and 0.19±0.01 at the end of the experiment ([Ca2+] 

72±18 and 114±15 nM respectively). The mean PMT voltage required was 792±40 V. At the end 

of this period, two responses with 3 µM PE were recorded using the same protocol as in section 

3.3.2. The isolated cell was then subjected to 20 min. of substrate depletion. Two further PE 

responses were recorded during this intervention. Unmodified Tyrode’s solution was then re-

introduced for a period of 10 min. and a PE response recorded to examine the effect of 

reperfusion. A final response to 120 mM KCl was recorded at the end of the experiment (fig. 3.28 

and table 3.29). Ca2+ transients were unaffected by substrate depletion. Due to time constraints, 

the number of experiments was small and conclusions cannot be drawn from these findings (N=2, 

n=3).  

       

        Control    1st     2nd             reperfusion  

            S depletion   

Fig. 3.28 – Typical experimental tracing demonstrating the effect of S on isolated CSM cells  

Ca2+ transients were not significantly different during the intervention. 

 

Table 3.29 - Effect of substrate depletion on PE-induced transients in isolated CSM cells 

N=2, n=3 Control  1st S 
Response 

2nd S 
Response 

Reperfusion 120 mM KCl 

Peak ratio 
signal 

0.44±0.09 0.40±0.07 0.39±0.06 0.42±0.07 0.29±0.10 

340 nm 
380 nm 

 
 

ratio 
  3 min 

[Ca2+]  

75 µM 
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3.3.4.3   Effect of hypoxia (H) on agonist-induced contraction in CSM 

 

The effect of up to 120 min. hypoxia (H) was examined on peak and plateau PE contractures (fig. 

3.29 and table 3.32). 
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Fig. 3.29 – The effect of hypoxia (H) on CSM contraction 

       peak PE contractures,        plateau PE contractures,        EFS32Hz 

* significant reduction compared to control (p<0.05) 

In a similar manner to the effect of HIAS, there appeared to be some early preservation of the 

peak PE response at 30 min. of hypoxia, with a significant effect on the peak response at 60 and 

120 min. of the hypoxic intervention. Hypoxia significantly suppressed the plateau response at 

each interval. This is in contrast to the lack of effect of hypoxia on nerve-mediated contraction. 

 

 

 

 

 

 

* * * * * 
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3.3.4.4   Effect of intracellular and extracellular acidosis (IA) on agonist-contraction in CSM 

 

The effects of 120 min. intra- and extra-cellular acidosis (IA) were examined on both peak and 

plateau PE contractures (Table 3.32).  

IA had no effect on the magnitude of the PE response in a similar manner to the lack of effect of 

IA seen on nerve-mediated contraction. 

 

3.3.4.5   Effect of acidosis (IA) on isolated CSM cells 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.17±0.02 at the start and 0.21±0.02 at the end of the experiment ([Ca2+] 

77±30 and 138±38 nM respectively). The mean PMT voltage required was 810±44 V (fig. 3.30 

and table 3.30).  

             

        Control    1st       2nd                  reperfusion  

              IA depletion   

Fig. 3.30 – Typical experimental tracing demonstrating the effect of IA on isolated CSM cells  

Intra- and extracellular acidosis had no significant effect on calcium transients. 

Table 3.30 - Effect of intra- and extracellular acidosis on calcium transients in isolated CSM cells 

N=5, n=9 Control  1st IA 
response 

2nd IA 
Response 

Reperfusion 120 mM KCl 

Peak ratio 
signal 

0.35±0.11 0.38±0.15 0.38±0.15 0.36±0.12 0.28±0.08 

∆ [Ca2+] (nM) 426±267 502±393 498±402 447±288 273±156 

 

340 nm 
380 nm 

 
 

ratio 
  3 min 

[Ca2+]  

75 µM 
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3.3.4.6    Effect of intracellular acidification (I) on agonist-induced contraction in CSM 

 

The effect of 120 min. intracellular acidification (I) was examined on both peak and plateau PE 

contractures (table 3.32 and fig. 3.30a). 
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Fig. 3.30a – The effect of intracellular acidification (I) on CSM contraction 

       peak PE contractures,        plateau PE contractures,        EFS32Hz   

* significant increase compared to control 

Intracellular acidification significantly increased the magnitude of the PE contracture. This effect 

was transient, at 60 and 120 min. the increase was not maintained. This contrasts with the effect 

of intracellular acidification on nerve-mediated contraction, where the increase occurred 

throughout the 120 min. intervention. Responses returned to normal upon reperfusion. 

 

 

 

 

 

*  *  *       *       * 
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3.3.4.7    Effect of intracellular acidification (I) on isolated cells 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.18±0.02 at the start and 0.21±0.03 at the end of the experiment ([Ca2+] 

93±32 and 150±49 µM respectively). The mean PMT voltage required was 799±61 V. At the end 

of this period, two responses with 3 µM PE were recorded. The isolated cell was then subjected 

to 20 min. of intracellular acidification and two further PE responses were recorded (figs. 3.31, 

3.32 and table 3.31).  

 

Table 3.31 - Effect of intracellular acidification on calcium transients in isolated CSM cells 

* p<0.05 compared to control 

Calcium transients were significantly and reversibly augmented during the period of intervention. 

N=5, n=8 Control  1st I 
response 

2nd I 
response 

Reperfusion 120 mM KCl 

Peak ratio 
signal 

0.34±0.07 0.41±0.09* 0.41±0.09* 0.34±0.07 0.29±0.08 

∆ [Ca2+] (nM) 388±148 555±231 542±236 401±159 293±163 

 

 

       

 Control         1st     2nd         reperfusion 

            Intracellular acidification   

Fig. 3.31 – Typical experimental tracing demonstrating the effect of intracellular acidification on 

isolated CSM cells 
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Fig. 3.32 – Effect of intracellular acidification on Ca2+ transients in isolated CSM cells 

*significant increase compared to control (p<0.05) 

Increase in tension recorded during intracelleular acidification was secondary to a rise in [Ca2+]i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* * 
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3.3.4.8   Effect of extracellular acidosis (A) on agonist-induced contraction in CSM 

 

The effect of 120 min. extracellular acidosis (A) was recorded on both peak and plateau PE 

contractures (table 3.32 and figure 3.33).  
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Fig. 3.33 – The effect of extracellular acidosis (A) on CSM contraction 

        plateau PE contractures,       EFS32Hz 

 * significant reduction compared to control 

Extracellular acidosis had no effect on the magnitude of either the peak or plateau PE 

contracture. This is in contrast to the significant reversible depression of nerve-mediated 

contraction seen with extracellular acidosis. 

 

In a similar manner to nerve-mediated contraction, the effects of the components of simulated 

ischaemia in various combinations were investigated on PE-induced contractures.  

 

* * * 
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Table 3.32 Components of ischaemia on PE contractures  
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3.3.5     Effect of combinations of components of simulated ischaemia on agonist-induced 

contractions in CSM 

 

3.3.5.1 Effect of hypoxia and substrate depletion on agonist-induced contraction in CSM 

 

Combinations of interventions exerted a significant effect over a shorter time-frame than 

individual components of ischaemia in isolation. Due to the deleterious effects on muscle strip 

preparations, interventions were applied for a maximum of 60 min., in order to usefully record the 

effects of reperfusion. The effect of 60 min. hypoxia and substrate depletion (HS) was recorded 

on both peak and plateau PE contractures (Table 3.34).  

 

HS depletion caused a significant reduction in the size of the PE contracture which recovered 

completely upon reperfusion. In a similar manner to the effect of HIAS, the effect was time-

dependent as shown by the fact that the peak contracture at 30 min. of HS was not reduced. 

Again, in contrast to the effect of HS on nerve-mediated contraction, PE contractures recovered 

completely upon reperfusion (fig. 3.35a). 

 

3.3.5.2 Effect of hypoxia and substrate depletion (HS) on isolated CSM cells 

 

Background fluorescence was recorded at the start and end of the experimental protocol. The 

mean ratio signal was 0.15±0.04 at the start and 0.19±0.01 at the end of the experiment ([Ca2+] 

54±55 and 109±23 nM respectively). The mean PMT voltage required was 766±15 V. At the end 

of this period, two responses with 3 µM PE were recorded. The isolated cell was then subjected 

to 20 min. combined hypoxia and substrate depletion. Two further PE responses were recorded 

during this intervention. Unmodified Tyrode’s solution was then re-introduced for a period of 10 
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min. and a PE response recorded to examine the effect of reperfusion. A final response to 120 

mM KCl was recorded at the end of the experiment (table 3.33 and figs. 3.34a and b).  

 

Table 3.33 - Effect of hypoxia and substrate depletion on calcium transients in isolated CSM cells 

* = significant reduction compared to control p<0.05 

The second PE response was significantly depressed during HS depletion. 

N=4, n=7 Control  1st HS 
Response 

2nd HS 
Response 

Reperfusion 120 mM KCl 

Peak ratio 
signal 

0.33±0.08 0.32±0.07 0.28±0.08* 0.29±0.09 0.24±0.03 

∆ [Ca2+] (nM) 361±157 346±137 277±144 289±177 189±54 

 

 

 

       

 Control         1st     2nd         reperfusion 

                          Hypoxia and substrate depletion   

Fig. 3.34a – Typical tracing showing effect of HS depletion on isolated CSM cell 
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Fig. 3.34b – Effect of hypoxia and substrate depletion on calcium transients in isolated CSM cells   

*significant reduction compared to control (p<0.05) 

 

3.3.5.3 Effect of hypoxia, extracellular acidosis and substrate depletion on PE contraction 

 

The effect of 60 min. hypoxia, extracellular acidosis and substrate depletion (HAS) was recorded 

on both peak and plateau PE contractures (Table 3.34).  

 

The effect of HAS on agonist-induced contraction was similar to the effect of HS depletion 

(section 3.3.5.1). HAS depletion caused a significant reduction in the PE contracture, however, 

the peak PE response at 30 min. was relatively preserved. Contractures recovered completely 

upon reperfusion in contrast to EFS responses (fig. 3.35b). 

 

 

 

* 
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3.3.5.4 Effect of hypoxia, intracellular acidification and substrate depletion (HIS) on agonist 

contraction 

 

The effect of 60 min. hypoxia, intracellular acidification and substrate depletion (HIS) was 

recorded on both peak and plateau PE contractures (Table 3.34).  

 

HIS depletion caused a similar pattern of responses to HS and HAS interventions which 

recovered completely upon reperfusion. This is in contrast to the effect of HIS on nerve-mediated 

contraction (section 3.2.3.3) where tension did not recover after the HIS exposure (fig. 3.35c). It 

can be seen when comparing figures 3.35 a-c that the depression of function seen during HIS 

depletion was not as severe as that seen during either HS or HAS depletion.    
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Figure 3.35 – Combinations of elements of ischaemia on CSM contraction 
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Table 3.34 – combinations of components of simulated ischaemia on PE contractures 
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3.3.6 Combinations of acidosis and substrate depletion on PE-contractures 

 

The effect of various combinations of intra- and extracellular acidosis and substrate depletion for 

60 min. were recorded on both peak and plateau PE contractures (Table 3.35). 

 

3.3.6.1 Effect of acidosis and substrate depletion (IAS) 

No change in PE contracture was seen during the intervention. Upon reperfusion, a significant 

increase in tension was noted in the peak PE contracture (fig. 3.36a).  

 

3.3.6.2 Effect of extracellular acidosis and substrate depletion (AS) 

A significant reduction in tension was observed on peak PE responses at both 30 and 60 min. AS 

depletion. A trend in reduction was observed in the plateau PE contracture that was significant 

when tension was expressed as a percentage of control values. Responses returned to normal 

upon reperfusion. This is similar to the response of nerve-mediated contraction to extracellular 

acidosis and substrate depletion with a significant reversible amelioration of tension recorded (fig. 

3.36b).  

 

3.3.6.3 Effect of intracellular acidification and substrate depletion (IS) 

 No significant change in tension generated in response to PE was observed during the 

intervention. However, upon reperfusion, both peak and plateau responses were significantly 

augmented when compared to control. Nerve-mediated contraction was significantly increased in 

the presence of intracellular acidification. Agonist-induced contraction showed a trend towards 

increasing but did not reach significance (fig. 3.36c).    
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Figure 3.36 – Acidosis and substrate depletion on CSM contraction  
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Table 3.35 - Acidosis and substrate depletion on PE contractures 
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3.3.7 Effect of combinations of hypoxia and acidosis on agonist-induced contraction 

 

The effect of various combinations of hypoxia, intracellular and extracellular acidosis for 60 min. 

were recorded on both peak and plateau PE contractures (Table 3.36). 

 

3.3.7.1 Effect of hypoxia and acidosis (HIA) 

No significant change in tension generated in response to PE was recorded however a trend in 

reduction in tension during the intervention was observed. Responses remained at control levels 

upon reperfusion. A significant small reversible reduction in nerve-mediated contraction was 

noted during similar interventions (fig. 3.37a). 

  

3.3.7.2 Effect of hypoxia and extracellular acidosis (HA) 

A significant reduction of the PE contracture was recorded with some preservation of the initial 

peak PE contracture. Responses returned to control levels upon reperfusion. A significant 

reversible reduction in nerve-mediated contraction was noted during similar interventions. This 

reduction in tension in nerve-mediated contraction was not as marked as that seen with agonist-

induced contractures (fig. 3.37b). 

 

3.3.7.3 Effect of hypoxia and intracellular acidification (HI) 

A trend towards a time-dependent reduction in the PE contracture was noted during the 

intervention with some preservation of the initial peak PE contracture. However, this did not reach 

significance. Responses remained at control levels upon reperfusion. No significant effect was 

noted with nerve-mediated contraction during similar interventions (fig. 3.37c). 

 

 



 177 

Figure 3.37 – Hypoxia and acidosis on CSM contraction 
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Table 3.36 – Hypoxia and acidosis on PE contractures 
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3.3.8 Summary of results for agonist-induced contraction in CSM 

 

Simulated ischaemia (the combination of hypoxia, intra- and extracellular acidosis and substrate 

depletion - HIAS) caused a significant and marked reduction in agonist-induced contraction 

(plateau PE30 response 35±19%, plateau PE60 response 29±16% of control). The degree of 

depression was similar to that seen in nerve-mediated contraction although there appeared to be 

some metabolic reserve as shown by early preservation of the peak PE response (peak PE30 

response 83±31%, peak PE60 response 36±35% of control). Ca2+ transients in isolated cells 

during similar interventions showed no difference from control values. However, the time-course 

of isolated cell procedures was much shorter and correlated with the period of preservation of 

peak PE responses during HIAS depletion. Nerve-mediated contraction did not recover upon 

reperfusion whereas agonist-induced contraction demonstrated a complete recovery. 

Experiments carried out in the presence of the Ca2+-channel blocker nifedipine showed 

significantly less depression of agonist-induced contraction during simulated ischaemia (plateau 

PE30 response 68±27%, plateau PE60 response 66±31% of control). 

 

As with nerve-mediated contractions, the combination of hypoxia and substrate depletion (HS) 

produced similar responses to simulated ischaemia (plateau PE30 response 28±19%, plateau 

PE60 response 30±20% of control). A significant reversible reduction in tension generated was 

recorded with initial preservation of the peak PE response (peak PE30 response 89±23%, peak 

PE60 response 28±19% of control). In a similar fashion, PE-induced Ca2+ transients demonstrated 

an initial resistance with significant depression of the second PE-induced calcium transient during 

HS depletion. Again, in contrast to nerve-mediated contraction, complete recovery was observed 

upon reperfusion. Combined hypoxia, extracellular acidosis and substrate depletion (HAS) had a 

similar effect to hypoxia and substrate depletion (HS). Combined hypoxia, intracellular 



 180 

acidification and substrate depletion (HIS) also had a similar effect however the initial 

preservation of the peak PE response was more marked (peak PE30 response 102±4%, peak 

PE60 response 52±24%, plateau PE30 response 66±42%, plateau PE60 response 55±25% of 

control). All interventions demonstrated complete recovery upon reperfusion. 

 

Similar to the effect on nerve-mediated contraction, simultaneous intra- and extracellular acidosis 

had no overall effect on agonist-induced contractures, with no change upon reperfusion. 

Intracellular acidification caused a significant and reversible increase in nerve-mediated 

contraction and also augmented the PE contracture at 30 min. although then returned to control 

at 60 and 120 minutes. Intracellular acidification induced a significant and reversible increase in 

PE-induced Ca2+ transients. Interestingly, the significant depression of nerve-mediated 

contraction observed with extracellular acidosis was not observed on PE-contractures.  

 

Substrate depletion (omission of glucose and Na pyruvate) caused significant and irreversible 

depression of nerve-mediated contraction. No effect of this intervention was observed on agonist-

induced contraction or PE-induced Ca2+ transients in isolated cells. When combined with both 

intra- and extracellular acidosis (IAS) no change was observed on the PE contracture. 

Interestingly, the combination of extracellular acidosis and substrate depletion (AS) significantly 

reduced peak PE responses during the intervention with a trend in reduction of plateau responses 

also observed. This would suggest that there was some inotropic effect of intracellular 

acidification in agonist-induced contraction. No significant increase in contraction was observed 

during combined intracellular acidification and substrate depletion (IS). However, there was a 

significant increase in agonist-induced contraction upon reperfusion when compared to control.  
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Hypoxia caused a significant reduction in the PE contracture although some preservation of the 

initial peak PE response was recorded. This is in contrast to the lack of effect seen in nerve-

mediated contractions. It is hypothesised that the reduction is a consequence of the increased 

energy required to generate the agonist-induced contracture as opposed to the nerve-mediated 

phasic contraction. When hypoxia was combined with both intra- and extracellular acidosis, a 

trend in reduction of the PE contracture was observed. This was not significant and returned to 

normal upon reperfusion. The combination of hypoxia and extracellular acidosis caused a marked 

reversible reduction in tension which was greater in magnitude than that seen with a similar 

intervention in nerve-mediated contraction. These findings are further evidence of the detrimental 

effect of hypoxia on agonist-induced contraction. The combination of hypoxia and intracellular 

acidification showed a trend towards reduction during the ischaemic intervention. This was not as 

marked as that seen with hypoxia and extracellular acidosis and again was not significant. This 

also lends evidence to the contraction enhancing effects of intracellular acidification in this 

preparation. 

 

Table 3.37 summarises the effect of simulated ischaemia on calcium transients in isolated CSM 

cells. Both nerve-mediated and agonist-induced contraction in cavernosal smooth muscle strips is 

summarised in Table 3.38. Subsequent experiments examined the effect of simulated ischaemia 

on EFS-mediated relaxation.  
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Table 3.37 - Summary of effect of ischaemia on Ca2+ transients in isolated CSM 

* = significant reduction compared to control, # = significant increase compared to control, p<0.05 

Intervention Peak ratio signal 

 Control  1st response 2nd response Reperfusion 120 mM KCl 

Simulated 

ischaemia 

(HIAS) 

 

0.32±0.07 

 

0.34±0.06 

 

0.35±0.08 

 

0.33±0.08 

 

0.26±0.01 

Hypoxia & 

substrated 

depletion 

(HS) 

 

0.33±0.08 

 

0.32±0.07 

 

0.28±0.08* 

 

0.29±0.09 

 

0.24±0.03 

 

Substrate 

depletion 

(S) 

 

0.44±0.09 

 

0.40±0.07 

 

0.39±0.06 

 

0.42±0.07 

 

0.29±0.10 

Intra- and 

extracellular 

acidosis (IA) 

 

0.35±0.11 

 

0.38±0.15 

 

0.38±0.15 

 

0.36±0.12 

 

0.28±0.08 

Intracellular 

acidification 

(I) 

 

0.34±0.07 

 

0.41±0.09# 

 

0.41±0.09# 

 

0.34±0.07 

 

0.29±0.08 
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Table 3.38 - Effect of components of ischaemia in various combinations on contraction in CSM 

* = significant reduction compared to control, # = significant increase compared to control, p<0.05 

Intervention EFS32Hz after 60 min intervention 

(% control) 

Plateau PE after 60 min intervention 

(% control) 

HIAS 20±14* 29±16* 

Rapid detrimental effect. Irreversible in EFS-mediated, reversible in PE-induced contraction.  

HS 14±11* 30±20* 

HAS 13±11* 21±3* 

HIS 12±20* 55±25* 

Detrimental effect of HIAS due to combined effect of hypoxia and substrate depletion (HS) 

IA 97±15 102±8 

A 58±20* 103±11 

I 115±6# 112±11 

Intracellular acidification reversibly augments contraction. Extracellular acidosis irreversibly 

inhibits nerve-mediated contraction   

S 74±24* 99±16 

Substrate depletion caused an irreversible reduction in nerve-mediated contraction 

IAS 81±19 92±14 

AS 71±21 78±9 

Extracellular acidosis and substrate depletion in isolation had no effect on PE-contracture, in 

combination, significant detrimental effect 

IS 119±12# 103±17 

Intracellular acidification limited detrimental effect of substrate depletion  

H 93±20 55±15* 

Hypoxia had marked reversible effect on PE contracture 

HIA 78±8 76±29 

HA 79±22 35±17* 

Extracellular acidosis augmented detrimental effect of hypoxia on contractile function 

HI 113±19 76±13 

Augmentation of function by intracellular acidification is sensitive to hypoxia. Intracellular 

acidification limited the detrimental effect of extracellular acidosis in the presence of hypoxia  
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3.4 Results IV – The effect of ischaemia on nerve-mediated relaxation 

 

3.4.1 Effect of simulated ischaemia (HIAS) on nerve-mediated relaxation in CSM 

 

Isometric nerve-mediated relaxations elicited by EFS (range 4-24 Hz) in CSM strips pre-

contracted with 15 µM PE were recorded and measured as described in section 2.3.4. 

Preparations equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end of this equilibration 

period, the mean plateau PE response was 0.74±0.21 mN.mm-2. The plateau PE contracture was 

significantly reduced during the intervention (plateau PE30 min 53±29 % and plateau PE60 min 

44±22 % of control). Tension remaining after nerve-mediated relaxation at 24 Hz (EFS24Hz) was 

48±15 % of the preceding PE contracture (table 3.39 and fig. 3.38).   

 

Table 3.39 - Effect of simulated ischaemia (HIAS) on EFS-mediated relaxation 

* = significant reduction compared to control 

30 min. of simulated ischaemia (HIAS) ameliorated nerve-mediated relaxation. This effect 

appeared more marked at 60 min. Responses returned to normal upon reperfusion.  

N=5, n=6 control  30 min HIAS 60 min HIAS Reperfusion 

Plateau PE contracture 

(mN.mm-2) 

0.74±0.21 0.37±0.22* 0.31±0.17* 0.73±0.19 

Tension remaining after 

EFS24Hz (mN.mm-2) 

0.35±0.12 0.19±0.17 0.18±0.16 0.28±0.19 

EFS24Hz as % preceding 

PE plateau contracture 

48±15 45±14 52±23 38±20 
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Fig. 3.38 – Effect of simulated ischaemia on EFS-mediated relaxation in CSM 

○ – control, □ – 30 min HIAS, ◊ – 60 min HIAS, ∆ – reperfusion 

Simulated ischaemia (HIAS) ameliorated nerve-mediated relaxation throughout the range of EFS 

stimulation. Responses returned to normal upon reperfusion. Nerve-mediated contractile 

responses were also ameliorated during simulated ischaemia (HIAS). However, contractile 

responses did not recover upon reperfusion whereas relaxatory responses did during the time 

course of these experiments. 

 

In a similar manner to preceding experiments, the effects of the components of ischaemia on 

EFS-mediated relaxation were examined. 
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3.4.2 Effect of isolated components of ischaemia on nerve-mediated relaxation 

 

3.4.2.1 Effect of substrate depletion (S) on nerve-mediated relaxation  

 

The plateau PE contracture was stable during the intervention. 60 min. of substrate depletion had 

no effect on nerve-mediated relaxation (table 3.40 and fig. 3.41a). 

 

 3.4.2.2 Effect of hypoxia (H) on nerve-mediated relaxation  

 

The plateau PE contracture was significantly reduced during the intervention. 30 min. of hypoxia 

ameliorated nerve-mediated relaxation. At 60 min. relaxation was almost abolished with tension 

remaining similar to that recorded after EFS stimulation in the presence of ODQ (table 3.40, fig. 

3.39-40). 

 

                                

  

  Control      30 min. hypoxia 

 

  

  60 min. hypoxia     reperfusion 

Fig. 3.39 – Typical experimental tracing showing effect of hypoxia on nerve-mediated relaxation 

5 min. 

1 mN 

15 µM PE 

15 µM PE 

EFS (Hz)             4 8 16 24                                                            4 8 16 24 

EFS (Hz)       4 8 16 24                                                                    4 8 16 24 

•  •  •  • 

 

•  •  •  • 

 

 •  •  •  • 

 

 •  •  •  • 
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Fig. 3.40 – Effect of hypoxia on EFS-mediated relaxation in CSM 

○ – control, □ – 30 min H, ◊ – 60 min H, ∆ – reperfusion 

 

3.4.3.2 Effect of acidosis (IA) on nerve-mediated relaxation 

The plateau PE contracture was stable during the intervention. 60 min. of intra- and extracellular 

acidosis had no effect on nerve-mediated relaxation (table 3.40 and fig. 3.41b). 

 

3.4.3.2 Effect of intracellular acidification (I) on nerve-mediated relaxation  

The plateau PE contracture was stable during the intervention. 60 min. of intracellular acidification 

appeared to augment nerve-mediated relaxation. Relaxatory responses appeared to return to 

normal upon reperfusion (table 3.40 and fig. 3.41c). 

 

3.4.3.3 Effect of extracellular acidosis (A) on nerve-mediated relaxation  

The plateau PE contracture was stable during the intervention. 60 min. of extracellular acidosis 

had no effect on nerve-mediated relaxation. This is in contrast to the detrimental and irreversible 

effect similar interventions had upon nerve-mediated relaxation (table 3.40 and fig. 3.41d). 

Figure 3.41 – Components of ischaemia on nerve relaxation 
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Table 3.40 – Components of ischaemia on EFS relaxation 

 



 190 

3.4.3 Combinations of components of ischaemia on nerve-mediated relaxation in CSM 

 

3.4.3.1 Effect of hypoxia and substrate depletion (HS) on nerve-mediated relaxation in CSM 

The plateau PE contracture was significantly reduced during the intervention. 60 min. of hypoxia 

and substrate depletion ameliorated nerve-mediated relaxation in a time-dependent fashion in a 

similar manner to the effect of simulated ischaemia (table 3.41 and fig. 3.42a). 

 

3.4.3.2 Effect of hypoxia, extracellular acidosis and substrate depletion (HAS) on nerve-mediated 

relaxation in CSM 

The plateau PE contracture was significantly reduced during the intervention. 60 min. of hypoxia, 

extracellular acidosis and substrate depletion ameliorated nerve-mediated relaxation. Responses 

returned to normal upon reperfusion (table 3.41 and fig. 3.42b). 

 

3.4.3.3 Effect of hypoxia, intracellular acidification and substrate depletion (HIS) on nerve-

mediated relaxation in CSM 

The plateau PE contracture was significantly reduced during the intervention. 60 min. of hypoxia, 

intracellular acidification and substrate depletion also ameliorated nerve-mediated relaxation. 

Responses returned to normal upon reperfusion (table 3.41 and fig. 3.42c). 
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Figure 3.42 – Combination of components of ischaemia on nerve relaxation  
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Table 3.41 – Combination of components of ischaemia on EFS relaxation 



 193 

3.4.4 Effect of combinations of acidosis and substrate depletion on nerve-relaxation 

 

3.4.4.1 Effect of intra- and extracellular acidosis and substrate depletion (IAS) 

The plateau PE contracture was stable during the intervention. 60 min. of intra- and extracellular 

acidosis with substrate depletion ameliorated EFS-mediated relaxation at the lower end of the 

frequency range (4 and 8 Hz). Higher frequency stimulation (16 and 24 Hz) resulted in a normal 

relaxatory response (table 3.42 and fig. 3.43a). 

 

3.4.4.2 Effect of extracellular acidosis and substrate depletion (AS) 

The plateau PE contracture was significantly suppressed at 60 min. of the intervention. 60 min. of 

extracellular acidosis and substrate depletion appeared to augment nerve-mediated relaxation. 

This maybe artefactual and secondary to the fact that the preceding PE contracture was 

significantly reduced (table 3.42 and fig. 3.43b). 

 

3.4.4.3 Effect of intracellular acidification and substrate depletion (IS) 

The plateau PE contracture was stable during the intervention. 60 min. of intracellular acidification 

and substrate depletion augmented nerve-mediated relaxation. Responses returned to normal 

upon reperfusion (table 3.42 and fig. 3.43c). 
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Figure 3.43 – Acidosis and substrate depletion on EFS relaxation  
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Table 3.42 – Acidosis and substrate depletion on nerve relaxation 
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3.4.5 Effect of combinations of hypoxia and acidosis on nerve-relaxation in CSM 

 

3.4.5.1 Effect of hypoxia and acidosis (HIA) 

 

The plateau PE contracture was significantly suppressed during the intervention. 60 min. of 

hypoxia, intra- and extracellular acidosis ameliorated nerve-mediated relaxation. Responses 

returned to normal upon reperfusion (table 3.43 and fig. 3.44a). 

 

3.4.5.2 Effect of hypoxia and extracellular acidosis (HA) 

 

The plateau PE contracture was significantly suppressed during the intervention. 60 min. of 

hypoxia and extracellular acidosis ameliorated nerve-mediated relaxation. Responses returned to 

normal upon reperfusion (table 3.43 and fig. 3.44b). 

 

3.4.5.3 Effect of hypoxia and intracellular acidification (HI) 

 

The plateau PE contracture was stable during the intervention. 60 min. of hypoxia and 

intracellular acidification ameliorated nerve-mediated relaxation. Responses returned to normal 

upon reperfusion (table 3.43 and fig. 3.44c). 



 197 

Figure 3.44 - Hypoxia and acidosis on EFS relaxation  
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Table 3.43 – Hypoxia and acidosis on EFS relaxation 
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3.4.6 The effect of ischaemia on nerve relaxation summary 

 

Simulated ischaemia (the combination of hypoxia, intra- and extracellular acidosis and substrate 

depletion - HIAS) markedly reduced EFS-mediated relaxation. This is similar to the effect of HIAS 

depletion on nerve-mediated contraction. Interestingly, EFS-mediated relaxation recovered upon 

reperfusion whereas nerve-mediated contraction did not during the time course of these 

experiments. The combination of hypoxia and substrate depletion produced a similar response to 

simulated ischaemia (HIAS) on nerve-mediated relaxation and was again reversible upon 

reperfusion. No difference was seen when hypoxia and substrate depletion were combined with 

either intra- or extracellular acidosis. In summary, the combination of hypoxia and substrate 

depletion, with or without acidosis, markedly reduced the effect of nerve-mediated relaxation. 

Similar interventions severely and irreversibly reduced nerve-mediated contractile responses.  

 

Combined intra- and extracellular acidosis had no effect on EFS-mediated relaxatory responses. 

Extracellular acidosis again had no effect. Intracellular acidification augmented the effect of 

nerve-mediated relaxation. This is similar to the effect of intracellular acidification on nerve-

mediated contraction. The augmentation of response seen was reversible upon reperfusion.  

 

30 min. of hypoxia markedly reduced nerve-mediated relaxation. At 60 min., relaxatory responses 

were almost abolished with residual relaxation in response to EFS similar to that seen during EFS 

relaxation in the presence of the soluble guanyl cyclase inhibitor ODQ. Simultaneous acidosis 

(intra- and extracellular acidosis in isolation and combination) did not ameliorate the inhibitory 

effect of hypoxia on nerve-mediated relaxation. All responses on nerve-mediated relaxation were 

reversible upon reperfusion with normoxic Tyrode’s solution.   
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60 min. of substrate depletion had no effect on EFS-mediated relaxation. Longer periods of 

intervention were not examined. Simultaneous intra-and extracellular acidosis ameliorated 

relaxation in response to low frequency EFS, sparing responses to higher frequency stimulation. 

Extracellular acidosis and substrate depletion (AS) appeared to augment relaxation. However, 

this observation may be artefactual as the preceding PE contracture during AS depletion was 

significantly decreased. EFS-mediated contraction in sub-maximally precontracted muscle strips 

caused a proportionally increased EFS-mediated relaxatory response (EFS-relaxation in strips 

precontracted with 15 µM vs. 1.5 µM PE). In a similar manner to nerve-mediated contraction, the 

augmentation of relaxatory responses seen during intracellular acidification persisted in the 

presence of substrate depletion. 

 

The effect of simulated ischaemia on nerve-mediated relaxation in CSM is summarised in Table 

3.44. Following this the effect of ischaemia on agonist-induced relaxation was examined. 
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Table 3.44 - Effect of components of ischaemia applied in various combinations on nerve-

mediated relaxation in CSM 

Intervention Nerve-mediated contraction Nerve-mediated relaxation 

HIAS suppressed, irreversible suppressed, reversible 

Rapid detrimental effect. Irreversible in nerve contraction, reversible in nerve relaxation 

HS suppressed, irreversible suppressed, reversible 

HAS suppressed, irreversible suppressed, reversible 

HIS suppressed, irreversible suppressed, reversible 

Detrimental effect of HIAS due to combined effect of hypoxia and substrate depletion (HS). Effect 

on nerve-mediated relaxation reversible 

IA no effect no effect 

A suppressed, irreversible no effect 

I augmented, reversible augmented, reversible 

Intracellular acidification reversibly augments nerve-mediated responses. Extracellular acidosis 

irreversibly inhibits nerve-mediated contraction   

S suppressed, irreversible no effect 

Substrate depletion caused an irreversible reduction in nerve-mediated contraction 

IAS suppression at low frequency, 

reversible 

suppression at low frequency, 

reversible 

AS suppression, reversible ? augmented,? no effect 

Extracellular acidosis and substrate depletion suppressed nerve-mediated contraction 

IS augmented, reversible augmented, reversible 

Intracellular acidification limited detrimental effect of substrate depletion. Mechanism of 

augmentation not sensitive to substrate depletion  

H no effect abolished, reversible 

Hypoxia had marked reversible effect on relaxation 

HIA suppressed, reversible suppressed, reversible 

HA suppressed, reversible suppressed, reversible 

HI no effect suppressed, reversible 

Augmentation of nerve-mediated function by intracellular acidification is sensitive to hypoxia.  
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3.5 Results V – The effect of ischaemia on agonist-induced relaxation 

 

3.5.1 Effect of simulated ischaemia on agonist-induced relaxation 

 

Isometric relaxation in response to 1 µM carbachol (C) muscle strips pre-contracted with 15 µM 

phenylephrine (PE) were recorded as described in section 2.3.5. Preparations equilibrated in 

Tyrode’s solution for 60 min. at 37 °C. At the end of this period, PE was added to the superfusing 

solution and the resulting contracture recorded. Once this had reached a plateau, relaxation in 

response to carbachol was examined. The effect of 60 min. of simulated ischaemia was 

examined on both the nadir and plateau C relaxation. The plateau PE contracture was 

significantly reduced during the intervention (plateau PE30 min 36±35 % and plateau PE60 min 

29±16 % of control). Tension was derived from height above baseline of the contracture 

remaining after the intervention (table 3.45 and fig. 3.45).  
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Fig. 3.45 – The effect of simulated ischaemia (HIAS) on carbachol-induced relaxation in CSM 

       nadir carbachol relaxation,         plateau carbachol relaxation,  

* significant increase compared to control 

*    *   *    *  
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Table 3.45 - Effect of simulated ischaemia (HIAS) on agonist-induced relaxation 

# = p<0.05 compared to control 

Simulated ischaemia (HIAS) abolished the relaxatory effect of carbachol. This effect recovered 

completely upon reperfusion. 

N=6, n=6 Control  30 min HIAS 60 min HIAS Reperfusion 

Plateau PE contracture 

(mN.mm-2)  

0.70±0.53 0.18±0.17* 0.16±0.08* 0.60±0.43 

Nadir C relaxation (mN.mm-2) 0.45±0.41 0.16±0.14 0.15±0.08 0.30±0.22 

Nadir C relaxation as % of 

preceding PE contracture 

64±25 93±7# 92±10# 55±27 

Plateau C relaxation 

(mN.mm-2) 

0.52±0.43 0.18±0.13 0.16±0.09 0.37±0.25 

Plateau C relaxation as % of 

preceding PE contracture 

74±16 91±6# 96±10# 63±20 

 

In a similar manner to preceding experiments, the effects of the individual components of 

ischaemia on agonist-induced relaxation were examined. 
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3.5.2 Effect of isolated components of ischaemia on agonist-induced relaxation 

 

The effects of the components of simulated ischaemia for 120 min. were recorded on both the 

nadir and plateau C relaxation.  

 

3.5.2.1 Effect of substrate depletion (S) on agonist-induced relaxation in CSM 

The plateau PE contracture was stable during the intervention. Substrate depletion had no effect 

on the agonist-induced relaxation (table 3.46 and fig. 3.47a). 

 

3.5.3.1 Effect of hypoxia (H) on agonist-induced relaxation in CSM 

The plateau PE contracture was significantly ameliorated during the intervention. 30 min. of 

hypoxia abolished agonist-induced relaxation. This effect persisted at 120 min. of the intervention. 

Carbachol-induced relaxation recovered completely upon reperfusion (table 3.46 and fig. 3.46). 
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Fig. 3.46 – The effect of hypoxia (H) on carbachol-induced relaxation in CSM 

        nadir C relaxation,        plateau C relaxation 

* significant increase compared to control 

*    *  *    *  *    *  
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3.5.2.2 Effect of acidosis (IA) on agonist-induced relaxation in CSM 

 

The plateau PE contracture was stable during the intervention. Combined intra- and extracellular 

acidosis had no effect on agonist-induced relaxation (table 3.46 and fig. 3.47b). 

 

3.5.2.3 Effect of extracellular acidosis (A) on agonist-induced relaxation in CSM 

 

The plateau PE contracture was stable during the intervention. Extracellular acidosis had no 

effect on agonist-induced relaxation (table 3.46 and fig. 3.47c). 

 

3.5.2.4 Effect of intracellular acidification (I) on agonist-induced relaxation in CSM 

 

The plateau PE contracture was significantly augmented at 30 min. but not at 60 or 120 min. 

Intracellular acidification had no effect on agonist-induced relaxation (table 3.46 and fig. 3.47d). 
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Figure 3.47 – Components of ischaemia on carbachol relaxation 
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Table 3.46 - Components of ischaemia on carbachol relaxation 
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3.5.3 Effect of combinations of components of ischaemia on agonist-induced relaxation 

 

The effects of ischaemia component combinations for 60 min. were recorded on both the nadir 

and plateau C relaxation. 

 

3.5.3.1 Effect of hypoxia and substrate depletion on agonist-induced relaxation in CSM 

 

The plateau PE contracture was significantly ameliorated during the intervention. Hypoxia and 

substrate depletion ameliorated agonist-induced relaxation at 30 min. although this effect was not 

significant. At 60 min. relaxation was abolished under these conditions. Responses returned to 

normal upon reperfusion (table 3.47 and fig. 3.48a). 

 

3.5.3.2 Effect of hypoxia, extracellular acidosis and substrate depletion on agonist-relaxation 

 

The plateau PE contracture was significantly ameliorated during the intervention. The 

combination of hypoxia, extracellular acidosis and substrate depletion abolished agonist-induced 

relaxation at 30 min. and 60 min. Responses recovered completely upon reperfusion (table 3.47 

and fig. 3.48b). 

 

3.5.3.3 Effect of hypoxia, intracellular acidification and substrate depletion on agonist-relaxation 

 

The plateau PE contracture was significantly ameliorated during the intervention. Hypoxia, 

intracellular acidification and substrate depletion ameliorated agonist-induced relaxation during 

the intervention. This effect was not significant (table 3.47 and fig. 3.48c). 
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Figure 3.48 – Combination of components of ischaemia on carbachol relaxation 
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Table 3.47 - Combination of components of ischaemia on carbachol relaxation 
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3.5.4 Combinations of acidosis and substrate depletion on agonist-induced relaxation 

 

The effects of combinations of acidosis and substrate depletion for 60 min. were recorded on both 

the nadir and plateau C relaxation. 

 

3.5.4.1 Effect of acidosis and substrate depletion (IAS) 

The plateau PE contracture was stable during the intervention. 60 min. of simultaneous intra- and 

extracellular acidosis with substrate depletion had no effect on agonist-induced relaxation (table 

3.48 and fig. 3.49a). 

 

3.5.4.2 Effect of extracellular acidosis and substrate depletion (AS) 

The plateau PE contracture was stable during the intervention. Extracellular acidosis and 

substrate depletion had no effect on agonist-induced relaxation (table 3.48 and fig. 3.49b). 

 

3.5.4.3 Effect of intracellular acidification and substrate depletion (IS) 

The plateau PE contracture was stable during the intervention and demonstrated a significant 

increase upon reperfusion. Intracellular acidification and substrate depletion had no effect upon 

agonist-induced relaxation (table 3.48 and fig. 3.49c). 
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Figure 3.49 – Acidosis and substrate depletion on carbachol relaxation 
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Table 3.48 - Acidosis and substrate depletion on carbachol relaxation 
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3.5.5 Effect of combinations of hypoxia and acidosis on agonist relaxation in CSM 

 

The effects of combinations of hypoxia and acidosis for 60 min. were recorded on both the nadir 

and plateau C relaxation. 

 

3.5.5.1 Effect of hypoxia and acidosis (HIA) 

The plateau PE contracture was stable during the intervention. Intra- and extracellular acidosis 

ameliorated the detrimental effect of hypoxia on agonist-induced relaxation (table 3.49 and fig. 

3.50a). 

 

3.5.5.2 Effect of hypoxia and extracellular acidosis (HA) 

The plateau PE contracture was significantly depressed during the intervention. Hypoxia and 

extracellular acidosis had no significant effect on agonist-induced relaxation (table 3.49 and fig. 

3.50b). 

 

3.5.5.3 Effect of hypoxia and intracellular acidification (HI) 

The plateau PE contracture was stable during the intervention. Intracellular acidification did not 

limit the detrimental effect of hypoxia; relaxation was abolished with this combination of 

interventions (table 3.49 and fig. 3.50c). 
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Figure 3.50 – Hypoxia and acidosis on carbachol relaxation 
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Table 3.49 - Hypoxia and acidosis on carbachol relaxation 
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3.5.6 Summary of the effect of ischaemia on CSM relaxation 

 

Simulated ischaemia (the combination of hypoxia, intra- and extracellular acidosis and substrate 

depletion - HIAS) markedly reduced EFS-mediated relaxation and abolished agonist-induced 

responses. These detrimental effects were completely reversible upon return to normoxic 

Tyrodes solution. The effect on nerve-mediated contraction was secondary to the combination of 

hypoxia and substrate depletion (HS). However, agonist-induced relaxation was initially 

preserved with HS depletion with only a trend towards reduced relaxation at 30 min. Relaxation 

was abolished at 60 min. of this intervention. Hypoxia, intracellular acidification and substrate 

depletion (HIS) again showed a trend towards reduction of the carbachol relaxation during the 

intervention which was not significant. When hypoxia and substrate depletion were combined with 

extracellular acidosis, similar observations were made to those during simulated ischaemia 

(HIAS) with relaxation reversibly abolished at 30 and 60 min. In summary, the combination of 

hypoxia and substrate depletion, with or without acidosis, markedly reduced the effect of nerve-

mediated relaxation. Agonist-induced relaxation was similarly affected by the combination of 

hypoxia, extracellular acidosis and substrate depletion.  

 

Combined intra- and extracellular acidosis had no effect on EFS-mediated relaxatory responses. 

Extracellular acidosis again had no effect. Intracellular acidification reversibly augmented the 

effect of nerve-mediated relaxation. None of these interventions had any effect on agonist-

induced relaxation.  

 
30 min. of hypoxia markedly reduced nerve-mediated relaxation. At 60 min., relaxatory responses 

were almost abolished with residual relaxation in response to EFS similar to that seen during EFS 

relaxation in the presence of the soluble guanyl cyclase inhibitor ODQ. Agonist-induced relaxation 

was abolished at 30 min. and 60 min. of hypoxia. Simultaneous acidosis (intra- and extracellular 
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acidosis in isolation and combination) did not ameliorate the inhibitory effect of hypoxia on nerve-

mediated relaxation. However, agonist-induced relaxation in the presence of similar interventions 

was affected. Simultaneous intra-and extracellular acidosis with hypoxia (HIA) ameliorated the 

effect of hypoxia on relaxatory responses. Carbachol relaxation during HIA depletion was similar 

to control. Experiments conducted in the presence of hypoxia and extracellular acidosis or 

intracellular acidification showed this preservation of relaxation in the presence of hypoxia to be 

secondary to a reduction of pH in the extracellular compartment.  

 

60 min. of substrate depletion had no effect on EFS-mediated or agonist-induced relaxation. In a 

similar manner to nerve-mediated contraction, the augmentation of nerve-mediated relaxatory 

responses seen during intracellular acidification persisted in the presence of substrate depletion. 

Simultaneous substrate depletion with intra- and/or extracellular acidosis had no effect on 

agonist-induced relaxation.  

 

The effect of simulated ischaemia on relaxation in CSM is summarised in table 3.50.   
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Table 3.50 - Effect of components of ischaemia applied in various combinations on CSM 

relaxation 

Intervention Nerve-mediated relaxation Agonist-induced relaxation 

HIAS suppressed, reversible abolished, reversible 

Rapid detrimental effect. Reversible upon reperfusion 

HS suppressed, reversible 30 min suppressed, 60 min abolished      

HAS suppressed, reversible abolished, reversible 

HIS suppressed, reversible suppressed, reversible 

Detrimental effect of HIAS due to combined effect of hypoxia, extracellular acidosis and substrate 

depletion (HAS). Effect reversible upon reperfusion 

IA no effect no effect 

A no effect no effect 

I augmented, reversible no effect 

Intracellular acidification reversibly augments nerve-mediated responses 

S no effect no effect 

IAS suppression at low frequency, 

reversible 

no effect 

AS ? augmented,? no effect no effect 

Extracellular acidosis and substrate depletion suppressed nerve-mediated contraction 

IS augmented, reversible no effect 

Intracellular acidification limited detrimental effect of substrate depletion on contraction. 

Mechanism of augmentation not sensitive to substrate depletion  

H abolished, reversible abolished, reversible 

Hypoxia had marked reversible effect on relaxation 

HIA suppressed, reversible no effect 

HA suppressed, reversible no effect 

HI suppressed, reversible abolished, reversible 

Extracellular acidosis limited effect of hypoxia on carbachol-induced relaxation  
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3.6 Results VI – The effect of low temperature on CSM contractile function 

 

3.6.1 Generation of low temperature solutions 

 

The effect on CSM contractile function of reducing the superfusing solution to 21±1.0 °C (room 

temperature Tyrode’s) or 10±3 °C (chilled Tyrode’s) was recorded (section 2.3.6). Tyrode’s 

solution at 37 °C was gassed with a 95% O2/5% CO2 mixture (pH 7.39±0.01). This solution at 

reduced temperature was acidotic (21 °C Tyrode’s – pH 7.20±0.01, 13 °C Tyrode’s pH 

6.95±0.04). Reduced temperature interventions were therefore compared to similar experiments 

at 37 °C in acidotic Tyrode’s solution (Tyrode’s gassed with a 90% O2/10% CO2 mixture - pH 

6.96±0.03). This was chosen as the comparator due to time constraints. The alternative would be 

to alter extracellular buffer concentration to compensate for increased CO2 solubility.   

 

3.6.2 Effect of low temperature on nerve-mediated contractions 

 

Isometric nerve-mediated contractions elicited by EFS (range 8-60 Hz) were recorded as 

described in section 2.3.4. Preparations were equilibrated in Tyrode’s solution for 60 min. at 

37°C. At the end of this period, the mean nerve-mediated tension at 32 Hz (EFS32Hz) was 

0.46±0.24 mN.mm-2 (N=6, n=10) and was 58±11% of the estimated maximal tension (Tmax) from 

the force-frequency curves. The mean half-maximal frequency (f½) under these control conditions 

was 27.7±8.3 Hz. The effect of temperature reduction to 21 °C on nerve-mediated contraction 

was examined (figs. 4.1 and 4.2 and table 4.1). For comparison, combined intra- and extracellular 

acidosis at 37 °C had no effect on the parameters measured during a similar time course (section 

3.2.2.3).   
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Table 4.1 - Effect of temperature reduction to 21 °C on nerve-mediated contraction  

* p<0.05 compared to control. 

Reduction of superfusate temperature to 21 °C for 30 min. significantly reduced both the mean 

EFS32Hz to 56±14% and f½ to 14.7±2.0 Hz. Parameters returned to control values upon 

reperfusion with Tyrode’s solution at 37 °C for 60 min.  

N=5, n=5 Control  30 min 21°C 60 min 21°C Reperfusion 

pH 7.39±0.01 7.20±0.01 7.39±0.01 

EFS32Hz 

(mN.mm-2) 

0.42±0.24 0.25±0.18 * 0.26±0.17 * 

 

0.40±0.24 

 

EFS32Hz 

As % control 

- 56±14 * 61±14 * 95±21 

EFSf½ as % of 

control (%) 

- 35 33 114 

f½ (Hz) 31.6±9.6 14.7±2.0 * 14.3±1.6 * 40.9±31.6  

 

    

 8  16 24 32 40 60            8  16 24 32 40 60           8  16 24 32 40 60            8  16 24 32 40 60  

   Control (37 °C)      30 min at 21°C       60 min 21°C        Reperfusion 

Fig. 4.1 - Typical experimental tracing temperature reduction to 21 °C on nerve-mediated 

contraction (EFS 8-60 Hz)                                                    

1 mN 

2 min 

     •    •   •    •   •    •              •   •   •   •    •   •              •   •    •   •    •   •              •    •   •    •    •   • 
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Fig. 4.2 – Effect of temperature reduction to 21 °C on nerve-mediated contraction 

○ – control, □ - 30 min 21 °C , ◊ – 60 min 21 °C , ∆ – reperfusion 

* significant reduction compared to control (p<0.05)   

When expressed as a percentage of EFSf½ under control conditions, EFSf½ after 30 min. of 

reduced temperature was significantly reduced at 21 °C to 35%. 

 

Similar experiments were carried out examining the effect of temperature reduction to 13 °C on 

nerve-mediated contraction (figs. 4.3 and 4.4 and table 4.2). 

 

 

 

 

 

 

 

* * * * 



 223 

Table 4.2 - Effect of temperature reduction to 13 °C on nerve-mediated contraction 

* = p<0.05 compared to control 

Reduction of superfusate temperature to 13 °C for 30 min. significantly reduced both the mean 

EFS32Hz to 52±6% and f½ to 10.5±2.4 Hz. Parameters returned to control values upon reperfusion 

with Tyrode’s solution at 37 °C for 60 min.  

N=5, n=5 Control  30 min 13°C 60 min 13°C Reperfusion 

pH 7.38±0.01 6.95±0.04 7.38±0.01 

EFS32Hz 

(mN.mm-2) 

0.50±0.27 0.26±0.15 * 0.25±0.17 * 

 

0.49±0.29 

 

EFS32Hz 

As % control 

- 52±6 * 51±9 * 99±15 

EFSf½ as % of 

control (%) 

- 

 

38 35 98 

f½ (Hz) 23.8±4.9 10.5±2.4 * 11.2±2.7 * 23.5±8.0  

     

   8 16 24 32 40 60           8  16 24 32 40 60           8  16 24 32 40 60            8  16 24 32 40 60  

   Control (37 °C)      30 min at 13°C       60 min 13°C        Reperfusion 

Fig. 4.3 – Typical experimental tracing of effect of temperature reduction to 13 °C on nerve-

mediated contraction (EFS 8-60 Hz)                                              

1 mN 

2 min 

   •    •   •    •   •    •              •   •   •   •    •   •              •   •    •   •    •   •              •    •   •    •    •   • 
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Fig. 4.4 – Effect of temperature reduction to 13 °C on nerve-mediated contraction 

○ – control, □ - 30 min 13 °C , ◊ – 60 min 13 °C , ∆ – reperfusion 

* significant reduction compared to control (p<0.05) 

When expressed as a percentage of EFSf½ under control conditions, EFSf½ after 30 min. of 

reduced temperature was significantly reduced at 13 °C to 38%. 

   

 

 

 

 

 

 

 

 

 

* * * * 
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It was postulated that the amelioration of tension generated in response to EFS at reduced 

temperature could be secondary to reduced motor nerve recruitment. To investigate this 

possibility the effect of increasing voltage on EFS contractions was recorded. At 37 °C, 

increasing voltage (40-80 V) increased force of TTX-sensitive contraction. However, above 50 V, 

this increase in contractile force was not significant (section 3.1.1.3). 
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Fig. 4.5 – Effect of reduced temperature to 21°C on EFS32Hz contraction at differing voltages 

(N=4, n=6), Voltage range 40-80 V.   

A reduction to 21 °C for 30 min. depressed the EFS response (8-60 Hz) in a consistent manner 

from 40 V to 80 V. EFS32Hz at 40 V were significantly reduced to 69±17% of control, at 50 V to 

68±18% of control with EFS returning to normal upon reperfusion. Recordings were similar 

throughout the frequency range at 60 V, 70 V and 80 V. These findings are consistent with nerve 

recruitment not contributing to the reduced magnitude of EFS contractions at 21 °C.   

 

Experiments were repeated at 13 °C. 
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Fig. 4.6 – Effect of reduced temperature to 13°C on EFS32 Hz contraction at differing voltages 

(N=4, n=6), Voltage range 50-70 V. 

13 °C for 30 min. consistently reduced the EFS response between 50 V and 70 V. EFS32Hz at 50 

V were significantly reduced to 35.4±13.5% of control with similar results recorded at 60 V and 70 

V. All responses returned to normal upon reperfusion with Tyrode’s at 37 °C. These findings are 

consistent with nerve recruitment not contributing to the reduced magnitude of EFS contractions 

at 13 °C. 

 

To assess whether low temperature affected the time course of the phasic contraction, the paper 

speed was increased to 25 mm.s-1 for the final 60 Hz stimulation of each force-frequency 

estimation in these voltage experiments. The time-constant (τ) was measured as described in 

section 2.3.4 (Table 4.3). 
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Table 4.3 - Effect of reduced temperature to 13°C on time constants of nerve-mediated 

contraction  

* p<0.05 compared to control 

At 50 V, the time-constant of the relaxatory phase (τrelaxation) at 13°C almost doubled.  significantly 

prolonged from 5.5±0.7 s to 9.9±3.0 s. At 60 V and 70 V both the time-constant of the contractile 

phase (τcontraction) and τrelaxation were significantly prolonged. The time-constant of the relaxatory 

phase was proportionately more prolonged compared to that of the contractile phase (60 V 

τcontraction 130±11% control, τrelaxation 173±53% control). All responses returned to control values 

upon reperfusion.  

N=5, n=5 Control 

37 °C 

Intervention 

13 °C 

Reperfusion 

37 °C 

τcontraction (s) 2.6±0.4 2.7±0.6 2.3±0.2 50 V 

τrelaxation (s) 5.5±0.7 9.9±3.0 * 5.9±1.0 

τcontraction (s) 2.3±0.2 3.0±0.4 * 2.3±0.2 60 V 

τrelaxation (s) 6.0±0.7 10.3±2.8 * 6.5±0.8 

τcontraction (s) 2.4±0.4 3.3±0.5 * 2.4±0.4 70 V 

τrelaxation (s) 6.6±0.6 10.1±2.5 * 6.8±0.8 

 

These findings may be due to changes in the biomechanical properties of the tissue and/or 

molecular mechanisms mediating contraction and relaxation. This was further explored in section 

3.6.6. Subsequent experiments examined the effect of reduced temperature on nerve-mediated 

relaxation. 
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3.6.3 Effect of low temperature on nerve-mediated relaxation 

 

Isometric nerve-mediated relaxations were elicited in response to EFS (range 4-24 Hz) in pre-

contracted muscle strips as described in section 2.3.4. Preparations equilibrated in Tyrode’s 

solution for 60 min. at 37 °C. At the end of this equilibration period, the mean plateau PE 

response was 0.44±0.20 mN.mm-2. The plateau PE contracture was stable during the 

intervention. Tension remaining after nerve-mediated relaxation at 24 Hz (EFS24Hz) was 

0.26±0.15 mN.mm-2 (58±21 % of the preceding PE contracture). Reduction in superfusate 

temperature to 21°C on nerve-mediated relaxation was examined (table 4.4 and fig. 4.7).   
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Fig. 4.7 – Effect of reduced temperature to 21 °C on nerve-mediated relaxation 

○ – control, □ - 30 min 21 °C , ◊ – 60 min 21 °C , ∆ – reperfusion 

The trend for nerve-mediated relaxation was to increase in magnitude with time (section 3.1.3.1). 

Reduction in superfusate temperature to 21 °C suppressed this trend; relaxatory responses 

remained at control values for the duration of the intervention. Return to 37 °C brought about a 

return to the normal trend. 
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Table 4.4 - Effect of reduced temperature to 21°C on nerve-mediated relaxation 

N=7, n=8 Control 

37 °C 

30 min 

21 °C 

60 min 

21°C 

Reperfusion 

37 °C 

Plateau PE contracture 

(mN.mm-2) 

0.44±0.20 0.50±0.24 0.42±0.20 0.47±0.24 

Tension remaining after EFS24Hz 

(mN.mm-2) 

0.26±0.15 0.29±0.16 0.25±0.14 0.23±0.17 

EFS24Hz as % preceding PE 

plateau contracture 

58±21 56±24 57±26 46±24 

 

A reduction of superfusate temperature to 13°C was subsequently examined (fig. 4.8 and table 

4.5).  

 

Preparations were equilibrated in Tyrode’s solution for 60 min. at 37 °C. At the end of this 

equilibration period, the mean plateau PE response was 0.64±0.28 mN.mm-2. The plateau PE 

contracture was stable during the intervention. Tension remaining after nerve-mediated relaxation 

at 24 Hz (EFS24Hz) was 0.41±0.16 mN.mm-2 (65±7 % of the preceding PE contracture). The 

effect of reduction to 13°C on nerve-mediated relaxation was recorded. In comparison, 60 min of 

intra- and extracellular acidosis (IA) had no effect on nerve-mediated relaxation (section 3.4.2.3, 

page 171).  
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Table 4.5 - Effect of reduction to 13°C on nerve-mediated relaxation 

Amelioration of EFS relaxation was more marked than that noted during a reduction of Tyrode’s 

to 21°C.   

N=7, n=8 Control 

37 °C 

30 min 

13 °C 

60 min 

13°C 

Reperfusion 

37 °C 

Plateau PE contracture 

(mN.mm-2) 

0.64±0.28 0.66±0.35 0.59±0.34 0.67±0.29 

Tension remaining after EFS24Hz 

(mN.mm-2) 

0.41±0.16 0.50±0.25 0.44±0.22 0.39±0.18 

EFS24Hz as % preceding PE 

plateau contracture 

65±7 77±10 77±9 58±11 
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Fig. 4.8 – Effect of reduced temperature to 13°C on nerve-mediated relaxation 

○ – control, □ - 30 min 13 °C , ◊ – 60 min 13 °C , ∆ – reperfusion 
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Reduction in superfusate temperature to 13 °C significantly depressed nerve-mediated 

relaxation. Responses returned to normal upon reperfusion at 37 °C. 

Low temperature superfusate reduced the magnitude of nerve-mediated relaxation in CSM. In 

addition, the time course of EFS relaxation appeared to be markedly affected at these reduced 

temperatures. To examine this, a similar set of experiments were conducted as described in 

section 2.3.4. These also involved pre-contracting the tissue with 15 µM PE after a period 

equilibration in Tyrode’s solution at 37 °C. Once the contracture had reached a plateau, a single 

pulse train of EFS at 16 Hz was used to elicit a relaxation (EFS16Hz). This protocol was repeated 

at low temperature and upon reperfusion (table 4.6).  

 

Table 4.6 - Effect of reduced temperature to 13°C on time constants of EFS16 Hz relaxations  

* p<0.05 compared to control 

The time-constant of relaxation (τrelaxation) was unaffected by low temperature superfusion fluids. 

However, contraction following EFS mediated relaxation was significantly prolonged at 13 °C and 

returned to control values upon reperfusion. 

N=4, n=6 Control  

37 °C 

Intervention 

13 °C 

Reperfusion 

37 °C 

τrelaxation (s) 11.0±1.1 16.0±7.7 12.7±3.7 

τcontraction (s) 64.7±14.2 125.3±33.4 * 54.0±12.8 

 

3.6.4 Effect of low temperature on agonist-induced contractures 

 

Isometric agonist-induced contractures were recorded as described in section 2.3.5. At the end of 

the equilibration period, mean peak tension achieved was 0.57±0.22 mN.mm-2 and mean plateau 

tension was 0.48±0.18 mN.mm-2 (N=6, n=6). The effect of a reduction in superfusate temperature 
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to 21 °C for 60 min was recorded (table 4.7). In comparison up to 120 min. of intra- and 

extracellular acidosis on PE-contractures had no effect on the magnitude of PE contractures 

(section 3.3.4.4 - page 165 and table 3.32 - page 166).  

 

Table 4.7 - Effect of reduction of temperature to 21°C on agonist-induced contractures 

A reduction of temperature to 21°C had no effect on the magnitude of the PE contracture.   

Intervention Peak tension (mN.mm-2) Plateau tension (mN.mm-2) 

60 min 37 °C Tyrodes 0.57±0.22 0.48±0.18 

30 min 21 °C Tyrodes 0.59±0.23 0.54±0.24 

60 min 21 °C Tyrodes 0.52±0.21 0.51±0.22 

Reperfusion at 37 °C 0.58±0.21 0.52±0.20 

 

The effect of a reduction to 13 °C was also examined. The mean peak tension achieved after 

equilibration was 0.59±0.21 mN.mm-2 (N=5, n=5) and mean plateau tension was 0.51±0.21 

mN.mm-2 (table 4.8). 

 

Table 4.8 - Effect of reduction of temperature to 13°C on agonist-induced contractures 

A reduction to 13 °C for 60 min had no effect on the magnitude of the PE contracture.   

Intervention Peak tension (mN.mm-2) Plateau tension (mN.mm-2) 

60 min 37 °C Tyrodes 0.59±0.21 0.51±0.21 

30 min 21 °C Tyrodes 0.64±0.25 0.58±0.27 

60 min 21 °C Tyrodes 0.56±0.27 0.55±0.27 

Reperfusion at 37 °C 0.70±0.27 0.58±0.26 
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To examine whether low temperature had an effect on the duration of these agonist-induced 

contractures, the time-constants were measured as shown in section 2.3.5 and fig. 2.9 (page 80).                                                                                   

 

Table 4.9 - Effect of reduction of temperature to 21 °C on tonic contracture time-constants 

* p<0.05 compared to control 

Both the time-constant of the contractile phase (τcontraction) and that of the relaxatory phase 

(τrelaxation) were significantly prolonged during superfusion with Tyrode’s solution at 21 °C with the 

former parameter more severely affected. Time-constants of agonist-induced contractures during 

simultaneous intra- and extracellular acidosis were unaffected. 

N=5, n=5 37 °C 30 min 21 °C 60 min 21 °C reperfusion 

τcontraction (s) 83±41 120±41 * 195±62 * 173±218 

τrelaxation (s) 270±56 413±135 * 405±97 * 263±113 

 

Table 4.10 - Effect of reduction of temperature to 13 °C on tonic contracture time-constants 

* p<0.05 compared to control 

Again both the time-constant of the contractile phase (τcontraction) and that of the relaxatory phase 

(τrelaxation) were significantly prolonged during superfusion with reduced temperature Tyrode’s 

solution with the former parameter more severely affected.  

N=5, n=5 37 °C 30 min 13 °C 60 min 13 °C 37 °C 

τcontraction (s) 68±31 105±17 * 165±57 * 68±31 

τrelaxation (s) 270±41 420±81 * 435±98 * 263±53 
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3.6.5 Effect of low temperature on agonist-induced relaxation 

 

Isometric relaxation in response to 1 µM carbachol (C) muscle strips pre-contracted with 15 µM 

phenylephrine (PE) were recorded as described in section 2.3.5. Preparations equilibrated in 

Tyrode’s solution for 60 min. at 37 °C. At the end of this period, PE was added to the superfusing 

solution and the resulting contracture recorded. Once this had reached a plateau, relaxation in 

response to carbachol was recorded. The effect of 60 min. of reduction to 21 °C and 13 °C was 

examined on both the nadir and plateau C relaxation (tables 4.11 and 4.12). For comparison, 

simultaneous intra- and extracellular acidosis at 37 °C had no effect on carbachol relaxation 

(section 3.5.2.3 and table 3.46 – page 207).  

 

Table 4.11 – Effect of reduced temperature to 21°C on agonist-induced relaxation 

The plateau PE contracture was stable during the intervention. No change in agonist-induced 

relaxation was observed during reduction of superfusate temperature to 21 °C. 

N=6, n=6 Control  

37 °C 

30 min 

21 °C 

60 min 

21 °C 

Reperfusion 

37 °C 

Plateau PE contracture 

(mN.mm-2)  

0.48±0.18 0.54±0.24 
 
 

0.51±0.22 0.52±0.20 

Nadir C relaxation (mN.mm-2) 0.30±0.14 0.29±0.13 0.30±0.14 0.29±0.15 

Nadir C relaxation as % of 

preceding PE contracture 

63±22 56±18 62±23 57±24 

Plateau C relaxation  

(mN.mm-2) 

0.33±0.15 0.29±0.13 0.30±0.14 0.31±0.15 

Plateau C relaxation as % of 

preceding PE contracture 

69±19 57±19 63±24 63±23 
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Table 4.12 – Effect of reduced temperature to 13°C on agonist-induced relaxation 

The plateau PE contracture was stable during the intervention. No change in agonist-induced 

relaxation was observed during reduction of superfusate temperature to 13 °C.  

N=5, n=5 Control  

37 °C 

30 min 

13 °C 

60 min 

13 °C 

Reperfusion 

37 °C 

Plateau PE contracture (mN.mm-2)  0.59±0.21 0.64±0.25 0.56±0.27 0.70±0.27 

Nadir C relaxation (mN.mm-2) 0.34±0.17 0.34±0.22 0.34±0.23 0.30±0.19 

Nadir C relaxation as % of preceding 

PE contracture 

65±15 57±18 57±21 49±19 

Plateau C relaxation (mN.mm-2) 0.34±0.17 0.35±0.21 0.34±0.23 0.33±0.19 

Plateau C relaxation as % of 

preceding PE contracture 

66±16 58±18 58±23 54±18 

 

3.6.6 Effect of low temperature on stiffness of CSM 

 

In order to examine whether the changes in CSM function identified were due to changes in the 

biomechanical properties of the tissue at low temperature, the stress / strain characteristics in 

chilled Tyrode’s were compared as described in section 2.4.2.  

 

Strips were placed under similar strains during control, intervention and reperfusion phases of the 

experiments (0.5±0.8 %, 0.5±0.7 % and 0.6±0.9 % respectively). During each phase of the 

experiment a linear relationship between stress and strain was confirmed as described in section 

2.4.2. A diagrammatic representation of a typical strip response to an instantaneous stress is 

shown in fig. 4.9. 
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The viscous component of instantaneous stress (fig. 4.9 – A) was significantly reduced at low 

temperature (control 37 °C, 26.9±10.4 kPa/mm vs. intervention 13 °C, 24.7±9.9 kPa/mm) 

returning to control values upon reperfusion (table 4.13). The time-constant of the relaxation to 

steady-state stress (fig. 4.9 – k) was unaffected by low temperature and remained at control 

values upon reperfusion.  

 

The steady-state component of stress (fig. 4.9 – C) was significantly increased at low temperature 

(control 37 °C, 47.8±38.5 kPa/mm vs. intervention 13 °C, 53.4±43.5 kPa/mm) returning to control 

values upon reperfusion. 

 

When A was expressed as a percentage of the total instantaneous stress (A+C), no difference 

was seen during intervention or upon reperfusion (table 4.13). 

 

C 

A 

Fig. 4.9 – Diagram of typical strip response to instantaneous stress 
A – Magnitude of viscous component of strain. C – Magnitude of steady-state component of 

strain. k – time-constant of relaxation following instantaneous stress. 

2 kPa 

30 s 

k 
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Young’s modulus (e) was increased at cold temperature and returned towards control values 

upon reperfusion. However these changes were not statistically significant (control 37 °C, 

57.0±6.4, intervention 13 °C, 71.6±17.2, reperfusion 37 °C, 45.4±20.2). 

 

Table 4.13 – Stress/strain characteristics of CSM at low temperature, 13°C  

* p<0.05 compared to control 

These findings indicate that CSM becomes stiffer at low temperature and that this increase in 

stiffness is matched by a concurrent reduction in the viscous component of the tissue. The time-

constant of relaxation at reduced temperatures is unchanged; changes in contraction and 

relaxation characteristics seen in sections 3.6.2, 3.6.3 and 3.6.4 cannot be explained by changes 

in the biomechanical properties of the tissue at reduced temperatures. 

N=6, n=12 Control 

37 °C 

Intervention 

13 °C 

Reperfusion 

37 °C 

Strain (%) 0.5±0.8 0.5±0.7 0.6±0.9 

viscous component 

instantaneous stress - A 

(kPa/mm) 

26.9±10.4 24.7±9.9* 27.3±11.3 

steady-state component stress - 

C (kPa/mm) 

47.8±38.5 53.4±43.5* 43.4±36.4 

A / (A+C) (%)  26±10 23±9 29±12 

Young’s modulus – e  57.0±6.4 71.6±17.2 45.4±20.2 

Time-constant stress-relaxation 

– k (s) 

10.3±3.7 9.6±3.5 9.6±3.5 
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3.6.7      Effect of reduced temperature on CSM function – results summary 

 

Modification of the experimental set-up was straightforward and enabled low temperature 

solutions to be delivered to the superfusion chamber in a reliable and reproducible manner. A 

reduction in pH occurred because of the increased solubility of perfusing gas mixture CO2 in the 

reduced temperature superfusate. Low temperature interventions were therefore compared to the 

effect of acidosis on CSM. The findings summarised below were more marked at 13 °C when 

compared to 21 °C.  

 

Reduction in superfusate temperature significantly suppressed nerve-mediated contraction. This 

was not due to reduced recruitment of nerve fibres at low temperature. In addition, the time-

course of phasic nerve-mediated contractions was prolonged, slowing responses significantly. 

This was not due to changes in the biomechanical parameters measured at 21 °C or 13 °C. In 

contrast, the magnitude of agonist-induced contraction was unaltered by reduction in 

temperature. However, there was a significant reduction in the speed of the response with both 

the contractile and relaxatory components of the PE-contracture affected.  

 

Nerve-mediated relaxation was significantly ameliorated at low temperatures. The phasic 

relaxation was also prolonged with the ‘contractile’ aspect (the return to pre-contracted tension 

following EFS-mediated relaxation) slowed to a greater degree than the initial relaxatory 

response. No change in magnitude of agonist-induced relaxation was observed. 

 

This prolongation of responses at reduced temperature was not due to a change in the 

biomechanical properties of the tissue. The time-constant of the instantaneous stress/relaxation 

relationship remained constant at reduced temperatures. Although CSM became stiffer at low 
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temperature, this was matched by a concurrent reduction in the viscous component of the tissue. 

The effects of reduced temperature on CSM are summarised in table 4.14. 

 

Table 4.14 - The effect of reduced temperature on CSM 

Parameter Effect of reduced temperature 

Nerve-mediated contraction 

Force-frequency relationship Significant reversible depression of magnitude of 

nerve-mediated contraction. Reversible shift of f½ 

to the left. 

Force-voltage relationship Depression of nerve-mediated contraction not 

attributable to decreased nerve recruitment 

Time-constants Time-constants prolonged at low-temperature 

Nerve-mediated relaxation 

Force-frequency relationship Reversible depression of nerve-mediated 

relaxation  

Time-constants Time-constants prolonged at low-temperature 

Agonist-induced contraction 

Magnitude of peak and plateau responses No effect 

Time-constants Time-constants prolonged at low temperature 

Agonist-induced relaxation 

Magnitude of nadir and plateau responses No effect 

Stress/strain characteristics 

Viscous component  Reduced in magnitude, no change in stress-

relaxation time-constants 
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4.0 Discussion 

 

4.1 Experimental limitations 

 

Experiments utilising muscle strips used small tissue preparations of approximately 1 mm in width 

and 4-6 mm in length. Adequate superfusion of the tissue was ensured by using such small 

samples. This was particularly important when examining the effect of the elements of ischaemia 

as any inadvertent metabolic depletion secondary to suboptimal superfusion may have affected 

the results recorded. There was considerable variability in tension generated between muscle 

strips from the same animal. This may be a consequence of the amount of connective tissue in 

the sample(207, 208). However, tension generated during interventions was compared to control 

and reperfusion responses within the same muscle strip, utilising a method of internal control.  

 

Relaxatory responses were dependent upon the level of pre-contraction of the specimen(193). 

During interventions that affected this level of pre-contraction, changes to the relaxatory response 

had to be commented upon with care. During control experiments in unmodified Tyrode’s 

solution, carbachol-induced relaxation was stable in magnitude. EFS-mediated relaxation 

invariably demonstrated a shift to the left of the relaxation-frequency relationship with increasing 

time. Responses during interventions were therefore compared to the trends seen during control 

experiments. For example if an intervention abolished or ameliorated relaxation whereas during 

control experiments these relaxations were increased with time, this intervention was interpreted 

to have had an effect. Therefore, subtle changes to CSM relaxatory function were difficult to 

elucidate. Other researchers postulated that this shift to the left of the relaxation/frequency 

relationship may be secondary to inducible NOS (iNOS) production. However, in our own study 

this left shift was not seen with carbachol induced relaxation. The decision was therefore made to 
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use the methodology described rather than attempt to manipulate iNOS production. However 

future experiments may include investigation of the mechanism of this progressive augmentation 

of nerve-mediated relaxation (with the addition of aminoguanidine for example)(71).  

 

Several other researchers added additional chemicals to perfusing solutions to suppress aspects 

of contraction or relaxation that were not being examined. These include: 

 

• L-NAME and L-NOARG inhibit nitric oxide synthase   

• Indomethacin   inhibit cycloxygenase, preventing prostanoid production 

• Scopolamine   inhibit acetylcholine 

• Guanethidine   inhibit NA release from adrenergic nerves 

 

In these experiments the decision was made not to use these agents. The effect of ischaemia 

was examined on overall CSM function; blocking various mechanisms may have deleterious 

effects that were not translatable to the clinical condition.    

 

CSM cell isolation proved to be time-consuming. The technique in this type of smooth muscle had 

not been established and required attempts with various protocols before a consistently useful 

method was found. Functioning cell harvest was excellent with 20-30 cells per high-powered field 

being available for subsequent experiments. Unfortunately, proposed examination of the effect of 

interventions on intracellular pH (BCECF loading) and NADP+/NADPH ratios (autofluorescence) 

was not carried out due to time constraints.      

 

Isolated cell experiments were undertaken on a modified microscope stage with a warmed 

perfusion chamber. The surface area of the chamber was large and the depth of superfusing fluid 



 242 

thin. This raises the possibility of significant diffusion of room air into the superfusing solution 

during interventions. Hypoxic interventions on isolated cells may not be directly comparable to 

muscle strip experiments because of this. Due to the small amounts of fluid on the microscope at 

any one time, measurement of PO2 was not possible.  

 

4.2 Results overview 

 

The aim of this thesis was to ascertain the contribution of the various components of ischaemia to 

contractile failure in cavernosal smooth muscle and to characterise the cellular mechanisms 

underlying this failure. Observations made during these experiments were in five main areas: 

1. The use of this preparation to examine the effect of ischaemia 

2. The effect of simulated ischaemia on cavernosal smooth muscle and the components 

contributing to contractile failure 

3. The effect of hypoxia on relaxatory responses 

4. The effect of acidosis on contractile function 

5. The effect of reduced temperature on CSM function 

The following discussion will focus on each of these areas in turn. 

 

4.2.1 Validity of using guinea-pig CSM  

 

Initial experiments were to establish whether this preparation could be used to study the effects of 

ischaemia. In the first instance it was important to examine whether the preparation was stable 

over the time course of the experiments proposed.  
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For EFS-mediated isometric tension experiments, stimulation parameters used (preparations 

were stimulated every 90 s with a 3 s pulse train at 8-60 Hz, 0.1 ms pulse width and at 50 V) 

provided a stable preparation over 240 minutes. In addition, over 95% of the tension generated 

using these stimulation parameters was via embedded motor nerves rather than direct muscle 

stimulation. However, there were marked differences in absolute tension values generated by 

different muscle strips, even if they were from the same animal. This may have been due to 

differences in smooth muscle content or embedded nerve density(207, 208). The former is more 

likely as similar differences were noted during PE contracture experiments. Over 700 muscle strip 

experiments were carried out, the findings of which form the bulk of this body of work. Very little 

spontaneous activity was recorded in muscle strips during this time, a possible advantage over 

other animal models described(182).       

 

In order to contrast with experiments examining nerve-mediated contraction, direct muscle  the 

proposed duration of experiments (240 min). Responses consisted of an initial peak response 

followed by a plateau contracture, typically 85% of the initial peak recorded. The majority of this 

PE-induced contracture is postulated as utilising intracellular Ca2+ stores rather than influx of 

extracellular Ca2+ as demonstrated by the large proportion of nifedipine-resistant tension 

generated in response to PE. Both the peak and plateau response were ameliorated to a similar 

degree by nifedipine. This is similar to findings in rabbit and human CSM. Sparwasser et al. used 

CSM retrieved during penile implant insertion for erectile dysfunction(176, 177). After incubation 

in Ca2+-free solution, phenylephrine-induced contractures were reduced to 64±6 % of control. 

Ryanodine further ameliorated PE-contractures to 30±6 % of control with the addition of caffeine 

further reducing contraction to 11 %. Further experiments on agonist-induced contraction in 

guinea-pig CSM could explore the following with a view to defining the underlying mechanisms of 

contraction: 
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1. Alternative routes of calcium entry 

a. Use of Ca2+-free superfusate 

b. Non-specific cation channel antagonists (flufenamic acid and ruthenium red) 

c. Na+/Ca2+ exchanger antagonists  

2. Calcium sensitisation 

a. Rho-kinase inhibitors 

3. Intracellular calcium stores 

a. Caffeine 

b. TMB-8, a putative intracellular Ca2+ release inhibitor(209). 

 

Nerve mediated relaxation was examined by subjecting pre-contracted muscle strips to EFS. 

Strips were periodically contracted as opposed to continuously superfused with phenylephrine in 

order to minimise fatigue in the strip due to prolonged periods in a maximally contracted state. 

Increasing frequency of stimulation elicited progressively larger relaxations in the pre-contracted 

strips. This relaxation was largely abolished in the presence of TTX indicating that the relaxation 

was nerve-mediated. In addition, ODQ produced a similar reduction in EFS-mediated relaxation 

indicating that the relaxation was mediated via nitric oxide. Interestingly there was a degree of 

relaxation that persisted in the presence of ODQ. The mechanism of this ODQ resistant 

relaxation was not elucidated. Sources of nitric oxide independent relaxation include the 

endothelial 15-lipoxygenase-1 (15-LO-1) metabolites of arachidonic acid(210).    

 

The force-frequency relationship was not stable over the time course of experiments examining 

EFS-mediated relaxation (240 min). The curve shifted to the left with time indicating that the 

relaxatory mechanisms became more sensitive to EFS over time. Inducible nitric oxide synthase 

(iNOS) has implicated in this augmentation of relaxation with time. However, Nangle et al. saw no 
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increase in the maximal EFS mediated relaxation in mice lacking the iNOS gene when compared 

to wild type(211). The magnitude of relaxation was dependent upon the level of pre-

contraction(212). Several interventions examined in these experiments augmented or suppressed 

this level of pre-contraction. Therefore interpretation of the effect of interventions on relaxatory 

responses was more complex than those made on nerve-mediated and agonist-induced 

contraction. Tension remaining after stimulation at 24 Hz was the most stable parameter and was 

therefore used in subsequent experiments to examine the effect of ischaemia on this aspect of 

CSM function. In addition, the effect of interventions were compared to the trend in EFS 

relaxation observed under normal conditions, i.e. that the frequency response relationship 

demonstrated a left shift and increase in maximal relaxation with time.   

 

Relaxation in cavernosal smooth muscle is mediated via both cavernosal nerves and the 

endothelium lining the lacunar spaces within the corporal bodies(86). To examine the effect of 

ischaemia on the overall relaxatory system, the cholinergic agonist carbachol was used. The 

response of pre-contracted strips was stable over the proposed time course of these experiments 

(240 min). Again responses were dependent upon the level of pre-contraction. As pre-contraction 

increased, carbachol relaxation was proportionately smaller in magnitude.  

 

Single cell harvest was satisfactory with over 90% of cells selected for intervention responding to 

agonists in a stable manner. As outlined in experimental limitations (section 4.1), hypoxia may not 

have been as reproducible as in muscle strip experiments due to diffusion of room air into the 

superfusing fluid on the microscope stage. 
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4.2.2 The effect of simulated ischaemia and the components contributing to contractile failure 

 

Simulated Ischaemia 

Simulated ischaemia (the combination of hypoxia, acidosis and substrate depletion - HIAS) 

significantly reduced the magnitude of both nerve-mediated and agonist-induced contraction. In 

addition, the effect on nerve-mediated contraction was irreversible upon reperfusion over the time 

course of the experimental protocol. 

 

The effect on nerve-mediated contraction was immediate (fig. 3.15, 30 min HIAS EFS32Hz - 

53±30% control) and increased with longer periods of ischaemia (60 min HIAS EFS32Hz - 20±13% 

control). This was similar to the significant effect of HIAS on the plateau agonist-induced 

contracture (tension generated 36±35% control after 30 min HIAS; 29±16% control after 60 min 

HIAS). By contrast, the peak agonist contracture was relatively preserved initially (tension 

generated 83±30% control after 30 min HIAS; 35±19% control after 60 min HIAS). This indicates 

that the muscle has, at least initially, some metabolic reserve and/or mechanism of limiting 

contractile failure secondary to simulated ischaemia. 

 

This concept was further explored by examining the effect of ischaemia on agonist-induced 

contraction in the presence of the L-type Ca2+-channel blocker nifedipine. Intracellular stores 

contributed to the majority of the PE contracture under normal conditions (peak PE response 

87±12% and plateau PE response 84±13% of control in the presence of nifedipine). Contractile 

responses were relatively preserved in the presence of nifedipine during the period of ischaemia 

(plateau PE response after 30 min HIAS 77±21% and plateau PE response after 60 min HIAS 

66±31% of control in the presence of nifedipine). This raises the possibility that dysfunction of the 

L-type Ca2+-channel contributes to the contractile failure seen during ischaemia. De Jongh et al. 
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postulated that receptor dysfunction was secondary to the production of reactive oxygen species 

(ROS) and showed that contraction in porcine detrusor strips was ameliorated in the presence of 

cumene hydroperoxide (CHP)(213). However, other researchers have shown that localised 

production of ROS may enhance L-type Ca2+-channel activity. Amberg et al. used cerebral artery 

myocytes and co-localised L-type Ca2+-channel sparklet activity with endogenous ROS 

production(214).   

 

The initial preservation of peak PE response during ischaemia (which was preserved in the 

presence of nifedipine) would infer a degree of metabolic reserve. The concentration of high-

energy phosphates (e.g. ATP) is reduced in CSM when compared to bladder detrusor for 

example(215). The normal cycle of penile erection and detumescence creates a closed 

compartment in the penis, CSM may be adapted to function more effectively whilst utilising 

anaerobic respiration than other smooth muscles. In addition, alternative mechanisms of 

increasing [Ca2+]i may be utilised by cavernosal smooth muscle, at least initially, as shown by 

preservation of the peak PE response(176, 177, 216, 217).  

 

At the end of 60 min reperfusion, nerve-mediated responses demonstrated no significant 

recovery in tension generated. In contrast, the agonist-induced response recovered completely 

after a similar period. This would infer that ischaemia induced some degree of nerve damage 

during the course of the experiment. It is difficult to say whether this was during the ischaemic 

episode or a reperfusion type injury. The fact that the peak-PE contracture was preserved at 30 

min HIAS whereas the nerve-mediated response was significantly impaired at this time point 

would infer that the damage occurs during the ischaemic episode (fig. 5.1). Pessina et al. 

examined the effect of combined hypoxia and substrate depletion of human, monkey and guinea-

pig detrusor strips(218, 219). Glycogen stores measured biochemically were reduced during 
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ischemic interventions. In addition, nerve-mediated contraction was irreversibly ameliorated 

during the course of experiments before any reduction in agonist-induced contraction was noted. 

The irreversible nerve damage was most marked in the guinea-pig model which had the lowest 

glycogen reserve of the three tissue sources studied. Glycogen stores were localised in the 

smooth muscle but not in intramural nerve ganglia. Juan et al. showed a significant reduction in 

nerve density following an ischaemic insult with some recovery noted 14 days post injury(220). 

Our own experimental findings support a differential effect of ischaemia, with nerves being the 

most susceptible initially with smooth muscle damage occurring later in the ischaemic episode.     

  

Simulated ischaemia had a similar deleterious effect on relaxatory responses. Nerve-mediated 

relaxation was significantly reduced during the ischaemic intervention (fig. 3.38). However, in 

contrast to nerve-mediated contraction, relaxation recovered completely upon reperfusion(71). 

This suggests that relaxatory nerves are more resistant to ischaemic damage, a finding which 

would contribute to the pathogenesis of ischaemic priapism and the contractile failure observed in 

this condition(71). These findings are similar to those of Muneer et al. using a rabbit model of 

priapism. Relaxatory mechanisms were more resistant to ischaemia than CSM contraction. 

Agonist relaxation was similarly affected with responses significantly and reversibly reduced 

during simulated ischaemia.  

 

Hypoxia and substrate depletion 

Identical responses to those outlined above were seen when muscle strips were subjected to the 

combination of hypoxia and substrate depletion (HS depletion). It appears that the ability of CSM 

to contract and relax is severely affected by hypoxia and absence of glucose and Na pyruvate 

from the superfusate(218, 221). The exception to this finding was agonist-induced relaxation, 

which was initially preserved in the presence of HS depletion. The combination of hypoxia, 
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substrate depletion and extracellular acidosis did mimic simulated ischaemia in this aspect of 

CSM function. The presence of these conditions in corporal blood aspirates from men with low-

flow priapism is well documented(35). However, they do not occur simultaneously during the 

ischaemic episode. Substrate depletion is a late finding, with undetectable blood glucose usually 

seen after 6-12 hours of priapism (fig. 5.2 - time course of blood gas changes in corporal 

aspirates during prolonged penile erection)(35). This would help to explain why response to 

current treatments for priapism are much improved early in the disease process prior to reduction 

in CSM response to PE and irreversible contractile nerve damage has occurred (usually during 

the first 6 hours)(222).  

 

Simulated ischaemia had no effect on isolated CSM cells. However, the combination of hypoxia 

and substrate depletion significantly suppressed the second Ca2+ transient during the ischaemic 

intervention. The differences observed between muscle strip and single cell experiments may be 

secondary to the longer intervention time in the muscle strip vs. isolated cell experiments (20 min. 

vs. 60 min.). In addition, the degree of hypoxia may have been less in single cell experiments due 

to differences in the experimental set-up as previously discussed. The reduction in [Ca2+]i can 

also be attributed to utilisation of intracellular glycogen stores. Less ATP is liberated during 

anaerobic respiration which would reduce the amount of myosin-phosphorylation and therefore 

decrease force of contraction.     
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Fig. 5.1 – Response of cavernosal smooth muscle contractile function to simulated ischaemia 

Green arrows – no effect, red arrows – significant depression compared to control  

 

 

Fig. 5.2 - Blood gas changes in corporal aspirates during prolonged penile erection 

adapted from Muneer et al (71) 
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Substrate depletion 

60 min. of substrate depletion in isolation had no effect on EFS-mediated contraction with tension 

remaining at control levels upon reperfusion. 120 min. of the same intervention resulted in a 

significant reduction in higher frequency nerve-mediated contraction (significant suppression of 

tension generated in response to EFS40Hz and above). In addition, reperfusion resulted in a 

further deterioration in EFS mediated contractile function throughout the frequency range(221). 

Interestingly, a similar finding was not seen on agonist-induced contraction, with tension 

remaining at control levels during 120 min. of the intervention and upon reperfusion. This would 

infer that absence of glucose and Na pyruvate has a specific effect on contractile nerves rather 

than the smooth muscle itself. This effect is not immediate as shown by preservation of 

responses at 60 min. of intervention and after reperfusion. This would imply that this is a 

metabolic effect rather than disruption of excitation-contractile coupling due to the absence of 

glucose and Na pyruvate(223). No similar effect was noted on nerve-mediated relaxation 

although only 60 min. of this intervention was examined. 120 min. of substrate depletion had no 

effect on agonist-induced relaxation.  

 

Hypoxia 

120 min. of hypoxia had no effect on EFS-mediated contraction. A similar period of hypoxia had a 

significant reversible deleterious effect on the PE contracture (plateau PE contracture at 30 min. 

57±12%, 60 min. 55±15% and 120 min. 54±18% of control). In a similar manner to the effect of 

HIAS depletion, peak responses demonstrated some initial preservation of tension generated 

(peak PE contracture at 30 min. 89±20%, 60 min. 51±16% and 120 min. 55±27% of control). It is 

postulated that the agonist-induced contracture requires more energy than nerve-mediated 

phasic contractions (figs. 3.1 and 3.10)(133, 223).  
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When examining experimental recordings, with tension on the y axis and time along the x axis, it 

can be seen that the area under the experimental tracing would be a function of energy 

expenditure. Agonist-induced contractures are more expensive in terms of energy expenditure; 

this may explain the differential effect of hypoxia on nerve and agonist contraction. Metabolic 

reserves are depleted at a faster rate with agonist-induced contraction or are unable to be 

replenished at the same rate; hypoxia therefore exhibits its deleterious effects at an earlier stage 

than is observed in nerve-mediated contraction.  

 

It is hypothesised that the combination of hypoxia and substrate depletion exacerbates this 

depletion of metabolic reserves and therefore is the key change in the corporal micro-

environment contributing to contractile failure seen in ischaemic priapism(71, 218). These 

findings are similar to those reported by Kim et al. when examining the effect of hypoxia on CSM 

contractile responses (183). Noradrenaline- and endothelin-evoked contractions were significantly 

attenuated after 180 min of hypoxia. Responses returned to normal upon return to control 

conditions. Tone induced by a high-K solution was also measured, with a sustained relaxation of 

tone observed during up to 180 min of hypoxia. This was fully reversible on return to control 

conditions. It was hypothesised that contractile failure was a result of inhibition of oxidative 

phosphorylation (reduction in ATP/ADP ratio) resulting in loss of homeostasis of Ca2+(183). 

  

4.2.3 The effect of hypoxia on CSM relaxation 

 

Hypoxia reversibly abolished relaxation in CSM. When examining the effect on carbachol-induced 

relaxation, the deleterious effect was evident at both 30 min. and 60 min. of the intervention. 

Responses returned to control upon reperfusion. EFS-mediated relaxation demonstrated a 

significant reduction at 30 min. Nerve-mediated responses were abolished at 60 min. of EFS 
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stimulation in pre-contracted muscle strips demonstrating similar responses to those recorded in 

response to EFS-stimulation in the presence of ODQ. This compound is a highly selective and 

irreversible inhibitor of sGC. Soluble guanyl cyclase activated by NO, catalyses the production of 

cGMP from GTP. Inhibition of sGC (with ODQ) effectively blocks the action of nitric oxide. These 

findings show that hypoxia inhibits NO-mediated relaxation. A possible mechanism would be the 

fact that oxygen is a substrate in the production of nitric oxide from the semi-essential amino acid 

arginine (fig. 1.5). The fact there was some initial preservation of relaxation with nerve-mediated 

responses may indicate that this mechanism of relaxation is more efficient in terms of nitric oxide 

requirements.  

 

This hypothesis is supported by work by Kim et al (section 1.6.1)(122). In summary this group of 

investigators measured intracavernosal pO2 in both flaccid and the erect penis from human 

volunteers. Oxygen tension was similar to venous blood in the flaccid state (25-43 mmHg) and 

increased rapidly during penile erection to levels in excess of 100 mmHg. In vitro experiments on 

both rabbit and human CSM (from patients undergoing penile implant insertion for erectile 

dysfunction) showed a progressive inhibition of EFS-mediated and agonist-induced relaxation in 

the presence of decreasing pO2 levels. Relaxation in response to exogenous NO was preserved 

in the presence of hypoxia. In addition, NOS activity and production of cGMP was reduced in the 

presence of hypoxia.  

 

Simultaneous hypoxia and acidosis made no difference to the deleterious effect of hypoxia alone 

on nerve-mediated relaxation. However, the same combination ameliorated the deleterious effect 

of hypoxia on agonist-induced relaxation. This effect was attributable to the simultaneous 

presence of hypoxia and extracellular acidosis.  
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4.2.4 The effect of acidosis on CSM function 

 

Acidosis generated by changing the superfusate gas mixture to 10% CO2 rather than 5% CO2 

results in a reduction of pH in both the intra and extra-cellular compartments. 120 min of acidosis 

generated in this manner had no overall effect on nerve-mediated or peak/plateau agonist-

induced contraction. In addition no effect was observed on nerve-mediated or agonist induced 

relaxation. This lack of effect is in contrast to that reported by other investigators(71, 184, 188). 

On scrutinising experimental technique it became apparent that other researchers often 

generated either intracellular acidification or extracellular acidosis. The effects of these two 

conditions were therefore examined independently.  

 

Intracellular acidification was generated by again changing the superfusate gas mixture to 10% 

CO2 rather than 5% CO2 as well as increasing the amount of the extracellular buffer [HCO3
-](188). 

The [CaCl2] was adjusted appropriately to maintain Ca2+ activity. Intracellular acidification 

immediately and significantly increased tension in response to EFS (EFS32Hz at 30, 60 and 120 

min. to 116±5%, 115±6% and 107±7% respectively). In addition, this occurred throughout the 

frequency range with no change in the estimated frequency of contraction to achieve half 

maximal contraction (f½ at control, 30, 60, and 120 min. - 30±7Hz, 32±12Hz, 29±10Hz, 30±10Hz 

respectively). This represents a true increase in tension rather than a shift to the left of the force-

frequency relationship (figs. 3.17)(188, 195). Tension returned to control values upon reperfusion. 

Agonist-induced contraction was also augmented in the presence of intracellular acidification. At 

30 min. peak and plateau PE contracture significantly increased to 120±12% and 117±9% of 

control respectively. Similarly at 60 min. the plateau PE was significantly increased to 112±11% 

of control. This augmentation of contractile function was not sustained, peak 60 min. response 

and the 120 min. PE contracture were no different to control values. The similar effect on both 
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nerve and muscle implies that the augmentation of function is an effect on the muscle itself(188, 

195).    

 

A decrease of extracellular pH was achieved by reducing the [HCO3
-] of the superfusate(188). In 

contrast to intracellular acidification, extracellular acidosis significantly decreased the magnitude 

of nerve-mediated contraction (tension in response to EFS32Hz at 30, 60 and 120 min. of 

extracellular acidosis was significantly reduced to 62±19%, 58±18% and 52±23% of control 

respectively)(194). This change in tension during the intervention occurred throughout the 

frequency range with no change in f½ (f½ at control, 30, 60, and 120 min. - 39±21Hz, 39±12Hz, 

35±8Hz, 37±6Hz respectively). Some recovery was seen upon reperfusion with normal Tyrode’s 

with EFS32Hz increasing to 76±18% of control. However this was again significantly less than 

control levels. Extracellular acidosis had no effect on agonist-induced contraction. This differential 

effect of extracellular acidosis on nerve and muscle implies that the effect is on the nerve or on 

the neuro-muscular junction rather than the smooth muscle itself(188). 

 

In summary, intracellular acidification augmented contraction by an effect on the smooth muscle 

itself and extracellular acidosis depressed it, possibly by an effect on the nerve or neuro-muscular 

junction. The fact that these contrasting effects on CSM contractile function cancel each other out 

(the lack of effect seen with combined intra-and extracellular acidosis) implies that the underlying 

mechanisms are different. To further explore this, the effect of acidosis in either compartment 

combined with other components of simulated ischaemia was examined. 

 

The combination of hypoxia and acidosis resulted in a significant reduction in nerve-mediated 

contraction whereas hypoxia or acidosis in isolation had no effect on nerve-mediated contraction 

(fig. 5.3a). Further examination of hypoxia in combination with either intra- or extracellular 
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acidosis demonstrated that the augmentation of CSM function seen with intracellular acidification 

was inactivated in the presence of hypoxia (figs. 5.3b and c). Experiments on the combination of 

acidosis and substrate depletion showed that the absence of glucose and sodium pyruvate from 

the superfusate did not ameliorate the augmentation in function seen with intracellular 

acidification. These findings mirrored those seen when examining the effect of hypoxia and 

acidosis on PE contractures. The augmentation of contraction seen with intracellular acidification 

was therefore an oxygen dependent mechanism.  

       

Fig. 5.3 – Response of CSM contractile function to the combination of hypoxia and acidosis 

arrows represent effect of intervention:  

blue - no effect, green – significant increase, red – significant decrease compared to control 

 

Baxter et al. demonstrated an increase in rat coronary artery contraction in response to a 

reduction in pHi without a concurrent increase in [Ca2+]i. An increase in myofilament sensitivity to 

Ca2+ was postulated as the underlying mechanism(224). Wu et al. found an increase in agonist 

evoked [Ca2+]i transients during a decrease in pHi in guinea-pig detrusor smooth muscle(188). 

They suggested that the increase in carbachol and caffeine induced Ca2+ transients was 

secondary to an enhancement of Ca2+ uptake into intracellular stores as a result of raised resting 
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[Ca2+]i. Althought this could certainly explain the increase in contraction noted in our own 

experiments, an increase in resting Ca2+ was not seen.    

 

4.2.5 The effect of reduced temperature on CSM function 

 

A recognised treatment of ischaemic priapism is the use of ice packs on the penis and washout of 

the corporal bodies with fluids used for intravenous infusion, typically normal saline (0.9% 

NaCl)(30, 60, 62). These fluids are invariably cold or at room temperature. There is no evidence 

within the literature to support the use of these measures. Cavernosal smooth muscle function 

was examined at low temperatures to test the hypothesis that these conditions are actually 

detrimental to CSM function.  

 

Carbon dioxide solubility is inversely related to temperature(225, 226). Cooled Tyrode’s solution 

resulted in an increase in dissolved CO2 and a reduction of solution pH. CSM responses at low 

temperature were compared to those in an acidotic Tyrode’s solution at 37 °C to ensure that any 

changes seen were not attributable to this reduction in pH. An alternative methodology would 

have been to adjust the pH of perfusing solutions at low temperature with NaOH using a pH 

meter.   

 

The magnitude of nerve-mediated contraction was almost immediately suppressed at both 21 °C 

and 13 °C as compared to responses at 37 °C. This effect was dependent upon the frequency of 

stimulation and was completely reversible on return to 37 °C. Ebong et al. reported a significant 

reduction in force of contraction in rat vas deferens at similar temperatures(227). Contractions 

were completely inhibited by the α-adrenergic antagonist phentolamine. In this same study, 

agonist-induced contraction was augmented at room temperature. It was postulated that 
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reduction in EFS-mediated contraction was via a pre-synaptic mechanism. Burdyga et al. 

reported the effect of cooling on both rat and guinea-pig ureter(202). Differences were noted in 

the response of ureteric cooling between species. In the rat a significant increase in force of 

contraction was secondary to an increase in the Ca2+ transient, in turn secondary to a 

prolongation of the action potential. Cooling in guinea-pig ureter significantly reduced force of 

contraction. Differences were attributed to discrepancies in ion channel distribution. In particular 

the Ca2+-activated Cl- current, present in rat but not guinea-pig, was affected by reduced 

temperature.       

 

In contrast to responses at 37°C, increasing frequency of stimulation did not produce an increase 

in nerve-mediated tension above f½ at 37°C(228). The inference is that reduction in nerve-

mediated contraction was not secondary to a reduction in nerve recruitment as shown by the 

effect of increasing voltage on tension generated. At 37°C, tension generated was found to be 

optimal at 50 V. At reduced temperatures, increasing the stimulation voltage above this level did 

not elicit any increased response to EFS at reduced temperature. Acidosis for a similar time 

period had no effect on the contractile response to EFS.  

 

At low temperatures, the time-course of nerve-mediated phasic contractions was prolonged. This 

effect was more marked during the return to baseline tension as opposed to the upstroke of the 

contractile response, although both were significantly increased. The duration of contractile 

responses returned to control values upon reperfusion with Tyrode’s at 37°C. Mitsui et al. showed 

that both myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activity 

was significantly reduced at low temperature; the latter being affected to a greater degree. This in 

turn resulted in a larger proportion of MLC phosphorylation and slowing of relaxation(229).            
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The trend measured for nerve-mediated relaxation under control conditions at 37°C was to 

increase in magnitude with time. Experiments conducted at low temperature suppressed this 

trend; nerve-mediated relaxation remained at control values throughout the low temperature 

intervention. As with nerve-mediated contraction, the effect was greater at 13°C as compared to 

21°C. Relaxatory responses to EFS at low temperatures were prolonged compared to those at 

37°C(230, 231). This effect was significant during the ‘contractile’ phase of relaxation, i.e. the 

return to the pre-contracted state of the muscle strip. Again, alterations in MLCK/MLCP kinetics 

could explain this change(202).    

 

In summary, a reduction in temperature reduced both the magnitude of nerve-mediated 

responses and increased the time course of these responses. These effects were greater during 

tissue contraction than relaxation. In order to examine whether these effects were mediated via 

the nerve or were a direct muscle effect, similar experiments at low temperature were conducted 

on the PE and carbachol induced contractures and relaxations respectively.  

 

A reduction to 21°C or 13°C had no effect on the magnitude of agonist-induced contraction. A 

reduction in temperature had no effect on the magnitude of agonist-induced relaxation. Due to 

experimental limitations it was not possible to accurately measure the time course of these 

relaxatory responses. These observations would imply that the significant reduction seen in 

nerve-mediated contraction is secondary to some action on the nerves themselves or the 

neuromuscular junction(232). This effect is not secondary to a reduction in nerve recruitment at 

low temperatures. 

 

The time course of PE-induced contractures was significantly prolonged at low temperature. Both 

the rise to peak tension and return to baseline upon washout of PE were significantly affected. 
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This is a similar finding to that during EFS contraction and would imply that this is an effect of low 

temperature on the muscle itself(233). To further explore this finding, experiments were 

conducted to examine the biomechanical properties of CSM at low temperature. These found that 

the viscous component of stress was reduced at low temperature for a given strain. In addition 

the steady state stress at low temperature was significantly increased, indicating that the tissue 

became stiffer at low temperature. However, the time course for the stress relaxation that 

occurred after an instantaneous strain was placed upon the muscle strip remained unchanged 

during the low temperature intervention, indicating that the mechanical ability of the tissue to relax 

was unaffected at low temperature(234). The slowing of both nerve-mediated function and 

agonist-induced contractures cannot be explained by changes in the biomechanical properties 

measured here. These may be due to alterations in CSM mechanism of contraction at low 

temperature(201, 202). 

 

4.3 Conclusions and further research 

 

Contractile failure in cavernosal smooth muscle during ischaemia is secondary to the combination 

of hypoxia and reduction in availability of the energy substrates glucose and sodium pyruvate. 

This depression of function is irreversible on the contractile nerves at an earlier stage than on 

relaxatory nerves and the smooth muscle itself and results in a decrease of [Ca2+]i. This would 

propagate any ischaemic priapic state. Reversal of these conditions should form part of any 

treatment regime for patients who have ischaemic priapism. 

  

Intracellular acidification augments CSM contractile function in an oxygen-dependent mechanism 

that results in an increase in [Ca2+]i. Extracellular acidosis depresses contractile function. The site 
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of action of this depression is the nerve or the neuromuscular junction. Hypoxia alone depresses 

relaxatory responses. This can be limited by simultaneous extracellular acidosis. 

 

Overall this thesis provides evidence for the two hypotheses proposed. Substrate depletion is 

central to the contractile failure seen in cavernosal smooth muscle during ischaemia. Prolonged 

ischaemia is detrimental to contractile function before relaxatory responses. In addition, nerve-

mediated contraction is irreversibly affected before a similar effect on relaxatory nerves.  

 

Low temperature interventions do not improve CSM function with nerve-mediated function 

significantly reduced at low temperature as well as slowing CSM contractile responses. It may be 

beneficial to use oxygenated washout fluids at body temperature which contain energy substrates 

such as glucose and Na pyruvate to treat ischaemic priapism. 

 

This is the first study to characterise the use of guinea-pig samples to study CSM function. Both 

the muscle strip and single cell models of ischaemic priapism can be used to further elucidate the 

mechanisms by which the combination of hypoxia and substrate depletion exerts its deleterious 

effects. The augmentation of contractile function by intracellular acidification is also extremely 

interesting and may yield a therapeutic target in the treatment of priapism should agents that 

mimic these effects be identified. In addition, the mechanism of ODQ resistant relaxation may 

provide a therapeutic target for men with erectile dysfunction.  
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