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Abstract

A class of dual-system theories of categorization assumes a categorization system based on

actively-formed prototypes in addition to a separate instance memory system. It has been

suggested that, because they have used poorly differentiated category structures (such as the

influential ‘5-4’ structure), studies supporting the alternative exemplar theory reveal little

about the properties of the categorization system. Dual-system theories assume that the

instance memory system only influences categorization behaviour via similarity to single

isolated instances, without generalization across instances. However, we present the results of

two experiments employing the 5-4 structure to argue against this. Experiment 1 contrasted

learning in the standard 5-4 structure with learning in an even more poorly differentiated 5-4

structure. In Experiment 2 participants memorized the 5-4 structure based on a 5 minute

simultaneous presentation of all nine category instances. Both experiments revealed category

influences as reflected by differences in instance learnability and generalization, at variance

with the dual-system prediction. These results have implications for the exemplars versus

prototypes debate and the nature of human categorization mechanisms.
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Instance Memorization and Category Influence: Challenging the Evidence for Multiple

Systems in Category Learning

The ability to categorize objects and events and to form conceptual representations of

those categories is a core cognitive capacity. Research on categorization in both psychology

and neuroscience has been heavily influenced in recent years by attempts to evaluate various

‘dichotomy’ frameworks such as the distinctions between implicit/explicit learning and rule-

based/similarity-based category learning (Ashby & Maddox, 2005; Seger & Miller, 2010).

Particularly prominent amongst these distinctions is that between exemplar versus prototype

representation of categories, and debate over this distinction continues to be a core research

issue in categorization and learning. While at least initially exemplar and prototype theories

seem conceptually well differentiated, specifying what the debate is truly about has been

more difficult, especially in the broadening context of multisystem models where for some

the abstraction-based subsystem uses rules rather than prototypes (e.g., ATRIUM, Erickson

& Kruschke, 1998).

Exemplar theory (e.g., Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1984;

1986) assumes that people represent categories during learning by storing the experienced

instances of the categories in memory. This representation can still reflect some abstraction—

for instance, selective attention can moderate similarity to make within-category instances

more similar than between-category instances (Kruschke, 1992; Nosofsky, 1986)—but the

representation is relatively unintegrated and unabstracted in that the individual exemplars are

assumed to be separately encoded. The probability of a new instance being classified into a

particular category is the sum of its similarities to the stored category instances relative to the

corresponding summed similarities for other categories. So the greater the overall similarity

to the instances of the category, the more likely a new case is to be classified into that
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category. In brief, memory for instances is crucial and the formation of new abstractions is, at

most, limited in the context of adaptive categorization.

In contrast, prototype theory (e.g., Blair & Homa, 2001; Homa, Rhoads & Chambliss,

1979; Homa, Sterling & Trepel, 1981; Posner & Keele, 1968; Smith & Minda, 1998; 2000)

assumes that categories are represented during learning by an actively integrated average or

central tendency of the observed instances, the category prototype. New instances are

categorized at test based on their similarity to various category prototypes, where the

probability of a particular categorization is proportional to the similarity of the instance to the

category prototype relative to other category prototypes. Hence the greater the overall

similarity to a category prototype, the more likely a new case is to be classified into that

category. In brief, long-term memory for specific instances is not required while formation of

new abstractions, that is actively integrated prototypes, is crucial for adaptive categorization.

Importantly, the exemplars versus prototypes debate is not about whether

prototypicality effects occur. Virtually everyone now agrees that a fundamental property of

most real world categories is that some instances are better, more typical, members than other

instances. Moreover, exemplar models would not be nearly as successful as they have been if

they could not provide some account of such effects (e.g., Nosofsky & Kruschke, 1992; but

also see the recent debate about potential prediction differences in typicality gradients in the

dot-distortion paradigm: Homa, Hout, Milliken, & Millikin, 2011; Smith, 2002, 2005; Zaki &

Nosofsky, 2004, 2007). Nor does anyone dispute that participants can remember particular

instances of categories or that these can influence categorization as demonstrated by the large

body of evidence for exemplar effects, which most notably occur even in the presence of

explicit and perfectly diagnostic rules (e.g., Allen & Brooks, 1991; Hahn, Prat-Sala, Pothos &

Brumby, 2010). In particular, it is worth emphasizing in advance that prototype theory does

not preclude the influence of instance memory on categorization or even categorization
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behaviour based solely on instance memory in some cases, as we describe below. Needless to

say, these complicating facts emphasize the importance of being clear about the key aspects

of the debate.

To be useful, categories have to add something; category membership knowledge

needs to improve adaptive functionality. Knowing that a particular animal is in the category

dog is not very useful if it does not help predict unseen properties. This “category influence”

can take many forms, for instance, it can influence the learnability of category instances as

shown in the experiments reported below. And there are a variety of perspectives in the

literature about what categories do; for example, the perspective embodied in Anderson’s

(1990; 1991) Rational Model is that categories are for optimized feature inference whereas

the emphasis in Pothos and Chater’s (2002) simplicity model is on representing information

efficiently. But most fundamentally category influence involves integration of information

from across the experienced instances of the categories in a way that improves prediction and

control. The particular entity nearby is apparently a dog. Dogs tend to be territorial and

protective as indicated by growling, in which case approach is inadvisable, but a wagging tail

can indicate they are friendly and that approach is safe. Not only do exemplar and prototype

theories make different predictions about how category integration occurs, but this difference

in proposed mechanisms for category influence is the fundamental difference between them.

The crux of the difference between prototype and exemplar theories is whether or not

category influence is the result of a separate, abstraction-generating, cognitive system distinct

from instance memory (Blair & Homa, 2001, 2003; Nosofsky, 2000; Smith & Minda, 2000,

2002). Specifically, does category integration as measured particularly by prototypicality

effects occur in a separate system from instance memory via an active process resulting in an

abstracted category prototype? Or is category integration fundamentally a passive process
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resulting from similarity to the category instances stored in a single memory system—

possibly moderated by selective attention, forgetting, and interference?

Once prototypicality and exemplar effects in categorization are both acknowledged to

occur, distinguishing prototype from exemplar representation can be conceptually, not to

mention pragmatically, quite difficult. However, one useful difference between the theories

follows from the conceptual distinction between a single system mediating categorization and

instance memory (exemplar theory) versus separate systems for categorization and instance

memory (prototype theory) and leads to the following crucial question: Does more than one

category instance influence a given categorization decision? Or does memory for instances

influence categorization only via a single nearest exemplar? Both Smith (2005) and Nosofsky

(2000) have specified this as a key issue while arguing from opposite theoretical positions. In

particular, Smith (2005, p. 47) specifies the theoretical distinction in terms of “...whether

exemplar generalization in memory and categorization is broad and collective – extending to

many related exemplars stored in memory – or whether it is focused and singular – extending

only to highly similar (nearly identical) exemplars.”

The view that the true (i.e., abstraction-generating) categorization system is mentally

separate from the instance memory system suggests the prediction that there should be a lack

of generalization between category instances when a new instance that needs to be

categorized queries the instance memory store. Obviously, specific category instances can be

memorized, and these instance-category pairings could be stored in an instance memory

system quite distinct from the prototype formed in a separate categorization system. So this

suggests a conceptually precise way in which exemplar and prototype theory can be

systematically specified and differentiated, especially in the historically popular binary

featured category structures: on the prototype theory, a response determined by the memory
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system, as distinct from the categorization system, should be the result of similarity to only a

single memorized category instance.

As a preview, the purpose of the present research was to evaluate this key issue of

lack of exemplar generalization in instance memory as distinct from generalization in a

putative categorization system. While the exemplars versus prototypes debate has usually

involved contrasting exemplar and prototype model accounts of a given data set and picking a

winner, such an approach does not directly address the key generalization issue, which is

fundamentally about the behaviour of the exemplar model. So rather than contrasting

exemplar and prototype models (as has been done numerous times in the past), we have

operationally evaluated exemplar generalization, exemplar “crosstalk”, by unpacking the

exemplar model’s behaviour. To emphasize, our focus is not on whether the exemplar model

can account for the data we present but rather on how it accounts for that data. When the

exemplar model determines the probability that a test case belongs in a particular category, it

calculates the overall similarity of the test case to the category exemplars (in contrast to

exemplars of other categories; the Appendix presents a formalization of this account). So the

issue of exemplar generalization/crosstalk reduces to looking at the exemplar similarity

components of the overall category similarity, specifically the proportion of overall category

similarity that is not due to the single nearest instance as the exemplar model is at least

conceptually compatible with wide or narrow generalization. If test item category assignment

is determined by similarity to a single nearest exemplar, then overall category similarity

should be only negligibly greater than the similarity to the single exemplar. On the other

hand, if multiple exemplars are contributing to overall category similarity when determining

test item categorization, then this exemplar crosstalk should be apparent in terms of more

than one exemplar contributing nontrivially to the overall category similarity. Before

discussing the critical problem of how to evaluate instance memory generalization in
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isolation from generalization in a categorization system, we need to make clear that the

hypothesis of nongeneralizing instance memory is not simply a straw man.

This position is most closely implied by the conclusions of Blair and Homa (2003) but

is also related to the narrow exemplar generalization argued for by Smith (2005) and others:

“Researchers have raised the possibility that participants learning categories based on binary-

valued dimensions (BVD) may simply memorize each member, rather than generalize across

members (Blair & Homa, 2001; Smith & Minda, 2000)” (Blair & Homa, 2003, p. 1293). If a

response is based on more than one instance in the memory system, then this system would

be likely to generate prototypicality effects, typicality gradients, etc., and the theoretical value

of a separate prototype-based categorization system would be much reduced both on the

grounds of parsimony and on the grounds of pragmatically differentiating the theories. In

effect, prototype theory’s separate memory store for instances would be generating

categorization behaviour in a similar way to exemplar theory’s single system thus calling into

question the conceptual and practical utility of a separate categorization system based on

prototypes.

Additionally, the recent debate about predicted differences in typicality gradients for

exemplars versus prototypes in the dot-distortion category learning paradigm has done little

to reduce the conceptual importance of non-generalizing exemplars to differentiating the

theories (Homa, Hout, Milliken, & Milliken, 2011; Smith, 2002, 2005; Zaki & Nosofsky,

2004, 2007). In this paradigm, participants make category endorsement judgments for

prototypes and for low, medium, and high distortions of a prototype. Smith (2002) argued

that exemplar theory necessarily predicts a flatter typicality gradient around the prototype

than prototype theory and that prototypes better account for the observed pattern of

responding. The intuitive argument for this (Smith, 2002) is to imagine a ring of exemplars

with an untrained prototype at the centre. Consider test items which approach the prototype
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along a straight line. As test items get progressively closer to the ring of exemplars, there

should be a sharp rise in category endorsement, but this typicality gradient should flatten out

for items within the exemplar ring because as the test item is getting closer to items on the far

side of the ring it is getting farther from exemplars on the near side of the ring. Zaki and

Nosofsky (2004) agree that this prediction is to some degree correct but argue that the data in

this paradigm are misleading due to methodological problems, for example test phase stimuli,

especially prototypes, being incorporated into the representation. Zaki and Nosofsky (2007)

further support this argument by providing evidence of higher rates of endorsement for high

distortions than for prototypes by simply including many high distortions in the test phase. In

response, Homa et al. (2011) argue that the conclusions of Zaki and Nosofsky (2004, 2007)

are in turn based on an artifact deriving from use of the single category endorsement

paradigm, and that false prototype enhancement effects largely disappear in a multi-category

paradigm. However, examination of the typicality gradients obtained by Homa et al. (2011)

suggests that they look rather more like the flat gradients that Smith (2002) ascribes to the

exemplar model than the steep gradients typical of the prototype, and in addition Homa et al.

did not report exemplar and prototype model fits to their results.

As is not uncommon in the exemplar versus prototype debate, the arguments are

becoming more and more complex, and there does not (at least yet) seem to be a clear winner

in the dot-distortion paradigm. Nor, in our opinion, is there likely to be one in the near future

as some of the key things that make the dot distortion paradigm interesting, such as the

complexity and apparent ecological plausibility of the stimuli, also make clear assessment of

the precise similarity relationships between the instances in individual participants difficult.

In addition, the complex nature of the stimuli seems likely to induce highly idiosyncratic

representations in different participants in part from large differences in selective attention as
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well as complex interactions with prior representations along the lines of the different

patterns people see when looking at the stars.

A priori, establishing differences between typicality gradients seems likely to

correspond to a considerably weaker theoretical contrast than to argue for the presence versus

absence of generalization across instances. Hence, the present research focuses on contrasting

exemplar theory with a dual-system prototype theory: In addition to specifying the behaviour

of the separate, prototype-based categorization system, this dual-system theory makes a clear

prediction for how the instance memory system should behave in a category learning task;

namely it computes similarity to only a single category instance without generalization across

category instances. This is the position strongly espoused by Blair and Homa (2003) and at

least partly espoused by Smith (2005). In addition, it makes clear, falsifiable predictions

about whether multiple instances influence categorization, as will be detailed below. To

evaluate these predictions behaviourally, there must be some way of separately detecting the

influence of both of these two systems on responding. In particular, there needs to be a way

of testing the hypothesized instance memory system, preferably uncontaminated by the

prototype-based categorization system, to see if only a single stored instance influences

categorization responding without generalization across instances.

Applying a classic neuropsychological methodology to a cognitive problem, Blair and

Homa (2003; also see Smith, 2005; Smith & Minda, 2000, 2002) not only proposed that the

prototype-based categorization system can be effectively ablated but argued that this is in fact

what has happened in many categorization studies supporting exemplar theory because they

have used ecologically implausible category structures. Specifically, a lot of support for

exemplar theory has come from studies using two categories composed of a small number of

poorly differentiated instances with features that are only binary-valued across instances (e.g.,

the 5-4 structure from Medin & Schaffer, 1978). In this context, “poorly differentiated”
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means that the prototypical features of one category occur quite frequently in instances of the

other category and vice versa. These structures are argued to be ecologically invalid because

most real word categories putatively have well-differentiated prototypes generated from

many instances composed of numerous features and are learned in contrast to far more than a

single other category. So binary-valued category structures with few instances do not

represent a reasonable simplification of the vast majority of categories which occur in the real

world, and as such, categorization performance on these categories tells us little if anything

about how the mind actually generates adaptive category-based behaviour.

From this dual system perspective, requiring people to memorize poorly differentiated

categories composed of binary-valued stimuli should have the useful consequence of

resulting in a failure of the categorization system to abstract category prototypes. This leaves

responding to be based solely on single memorized instances retrieved from the separate

memory system and so allows the influence of that system on responding to be directly

evaluated, uncontaminated by the prototype-based categorization system which has been

ablated and rendered irrelevant. Effectively, the argument is that the mind does not treat this

as a categorization task at all and so just deals with it as an instance memorization task where

some of the instances happen to share common labels.

Of all these problematic binary-valued category structures, arguably the most

influential is the widely employed 5-4 category structure from Medin and Schaffer (1978).

Blair and Homa (2003) proposed that this particular category structure, shown on the left in

Table 1, unduly favours exemplar representation because it encourages instance

memorization due to its small number of poorly differentiated instances (see also Smith &

Minda, 2000, for a similar line of reasoning). In this category structure there are five

instances of category A and four instances of category B, designated A1-A5 and B1-B4 at the

top left of Table 1. In addition, there are seven generalization test items, designated T1-T7 at
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the bottom of the Table. Each category instance is represented in a row of the Table and is

composed of one of two possible features on each of four feature dimensions.

In this context, Blair and Homa (2003) proposed a formal measure of a category

influence on category learning which they called “category advantage”. They had participants

learn the instances of the 5-4 category structure as an identification (rather than a

categorization) task over a series of trials with feedback where each of the nine instances was

assigned a unique label. Blair and Homa then compared performance in this identification

learning task with performance in a standard category learning task, where participants

learned to assign the instances to two categories. Category advantage is defined as higher

accuracy at a given point in learning for the categorization task compared to the identification

task once differences in guessing are controlled for, which is crucial because of the difference

in the number of responses in the two tasks (2 versus 9). So a significant category advantage

at any point in learning was argued to reflect a well-differentiated category structure having a

category influence on the speed of learning due to generalization between instances. In brief,

similarity among category instances influences their individual learnability. On the other

hand, the absence of a category advantage was argued to indicate little if any category

influence on learning due to generalization between instances. In that case, categorization

behaviour would simply be due to instance memorization just as in the identification learning

task.

Across several experiments with different stimulus sets, Blair and Homa (2003) found

no systematic category advantage for the 5-4 category structure as measured by accuracy in

the categorization task relative to the identification task. That is, participants were not able to

learn the 5-4 category structure in a categorization task any faster than they were able to learn

to assign the nine instances to nine unique outcomes, each with a different label, in an

identification task.
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Blair and Homa used this lack of a category advantage to argue that “the widely used

and influential 5-4 categories are learned chiefly by memorization, with no generalization

across category members” (p. 1300). More generally: “If one assumes that there is little or no

relationship between memorization and categorization, then the 5-4 category learning task

has little to do with categorization . . . .” (p. 1299). It follows that the enormous amount of

support that exemplar theory has received from binary-valued category structures is called

into question. Also, as we have argued above, this “generalization across category members”

is, indeed, important to systematically differentiate prototype and exemplar theory both

pragmatically and theoretically.

It is worth emphasizing that this is not just a minor methodological dispute over a

specific category structure, however influential that structure has been. Paradoxically the very

attributes of this structure which have been argued to be ecologically invalid, maybe even

eliminating much of the evidence for exemplar theory all at once, make it an ideal candidate

for evaluating the dual-system prototype theory described above: Categorization responding

in the absence of well-differentiated prototypes should exhibit no category influence but

rather be based solely on a single memorized exemplar retrieved from instance memory with

no generalization across category members. Experiments 1 and 2 were designed to

operationally evaluate this claim.

Experiment 1

The purpose of this experiment was to assess category influences on instance “memorization”

(Blair & Homa, 2003) using the poorly differentiated 5-4 category structure, shown on the

left in Table 1 (Medin & Schaffer, 1978). However, unlike Blair and Homa, we do not

contrast category and identification learning because we accept they have demonstrated an

absence of “category advantage” for this category structure (though we reconsider the

interpretation of this evidence in the General Discussion). It is worth noting that if we have
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been too quick to accept Blair and Homa’s evidence for the absence of a category advantage

for the 5-4 structure, then their argument is immediately invalidated. For instance,

identification learning of this structure may simply be harder than classification learning and

there may be a true category learning advantage which they did not detect. However, our

approach does not call into question their key empirical starting assumption, and it is also

worth noting that our evaluation of category influence and crosstalk similarity is relevant

even if this assumption is incorrect.

Rather than comparing categorization with identification learning, our approach was

to contrast instance memorization in the standard 5-4 category structure with instance

memorization in an even more poorly differentiated category structure. We generated this

low-differentiation category structure by swapping two of the instances in the standard

category A with two of the instances in the standard category B, as shown in the right-most

column of Table 1. It is not material that this low-differentiation structure is linearly

inseparable and accurate performance cannot be based on prototype representation: The

prototype-based system has been argued to already be uninvolved in learning the standard 5-4

structure anyway. Both conditions were otherwise identical.

(Table 1 about here)

A variety of different theoretical perspectives provide a practical rationale for

thinking that poorly differentiated category structures should be harder to learn than better

differentiated ones, including Pothos and Bailey’s (2009) concept of category intuitiveness

(see also Pothos et al., 2011, and Pothos, Edwards, & Perlman, 2011). Pothos and Bailey

used category intuitiveness framed in the context of unsupervised categorization and an

exemplar model to account for testing trial differences from standard feedback learning of the

5-4 structure. However, our specification of the low-differentiation condition was most
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closely dictated by the discussion of the relatively poor differentiation of the 5-4 category

structure itself as described in Smith and Minda’s (2000) consideration of thirty replications

of this category structure. Specifically, they evaluated the 5-4 categories in terms of structural

ratio as a measure of category differentiation (related to a similar concept from Homa,

Rhoads, & Chambliss, 1979), that is, the ratio of within category similarity (including self-

similarity) to between category similarity in terms of average numbers of features shared

between instances. The ratio for these categories is 2.4/1.6=1.5 where 1 represents a complete

lack of differentiation with identical instances in both categories. Hence these instances are

quite poorly differentiated1. However, our swapping the category assignment of two pairs of

instances from the standard to the low-differentiation condition (Table 1) resulted in even

poorer differentiation as measured by a structural ratio of 2.2/1.9=1.2, that is fewer shared

features within the same category and more shared features between categories. Before

moving on to why we were interested in learnability differences, it is worth emphasizing that,

while a variety of theoretical perspective predict these differences, our research does not

presuppose the truth of any of these perspectives. Rather our conclusions are based on the

learnability differences we observed as reported below.

The theoretical rationale for this instance swapping manipulation was simply that if

participants learn the standard 5-4 category task as an instance identification task, with no

category influence from other category members on responding, then it should not matter

how the instances are assigned to categories. The low-differentiation category structure

should be as easy to learn as the standard one and all the instances in both conditions should

be equally easy to learn because the participant is simply learning to assign a label to each

unique instance. On the other hand, if there is a category influence on learning, then the low-

differentiation 5-4 structure should be even harder to learn than the standard 5-4 structure,
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and differences in instance learnability should correspond to differences in similarity across

instances.

Specifically, the dual-system perspective of prototypes plus memory for single

instances predicts no category influence for either learning condition because these poorly

differentiated structures do not give the prototype-based categorization system anything to

work with, leaving responding to be based solely on memorized single instances without

generalization. This implies that test accuracies on the different training items (A1-B4 in

Table 1) should not be systematically different from each other and the resolution of

ambiguities in terms of nearest single category exemplars for the generalization test items,

T1-T7, should be arbitrary (e.g., for the standard condition on the left in Table 1, T5 2121

shares an equal number of features with A4 1121 and with B3 2221). Test items should not

reflect the influence of multiple instances or the number of prototypical features as the

prototype based categorization system should have been effectively ablated. Generalization

test items with many features typical of the prototype of one category (e.g., T3 1111 for the

standard condition in Table 1) which match many exemplar features of that category should

be no more likely to be categorized as members of that category than instances with fewer

features (e.g., T6 2211 for the standard condition in Table 1) because neither matches a

training exemplar exactly and both have multiple ambiguous matches based on subsets of

features.

The single-system exemplar theory, on the other hand, is consistent with differences

in accuracy for the training items corresponding to a category influence in terms of

differences in similarity to multiple category instances. That is, category instances that are

similar to many other category instances and correspondingly dissimilar to instances in the

other category should be easier to learn than category instances that are not similar to

multiple instances in the same category and that are rather similar to instances in a contrast
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category. Likewise since categorization and instance memory are assumed to be part of a

single system, the influence of multiple instances on responding is consistent with

prototypicality effects in the generalization test items: items with many typical features of a

given category should tend to have a higher proportion of responses for that category than

items with fewer typical features because they will tend to be similar to many instances of the

category. Lastly, exemplar theory is consistent with a category influence in terms of

differences in learning and generalization test performance between the standard and low-

differentiation conditions based on differences in similarity relations across instances for the

two conditions.

Method

Participants

There were 40 participants in the standard and 41 participants in the low-differentiation

conditions, all undergraduate psychology students at Cardiff University.

Materials

The abstract category structure for the standard condition on the left in Table 1 is the

5-4 structure from Medin and Schaffer (1978). There are five instances of category A, four

instances of category B (at the top left of the Table), as well as seven generalization test items

(at the bottom of the Table). Each category instance is represented in a row and was

composed of features from four binary-valued stimulus dimensions as indicated by 1’s and

2’s in the Table. The low-differentiation condition on the right of Table 1 was generated from

the standard condition by swapping the category assignment for two pairs of instances: A1

1112 was switched with B3 2221 in the standard structure to be A1 2221 and B3 1112 in the

low-differentiation condition, and A3 1211 was switched with B2 2112 to become A3 2112

and B2 1211. In Table 1, the switched items are in bold in the low-differentiation condition.

All other training and test items were the same in both conditions.
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The stimuli were the alien insects from Johansen and Kruschke (2005). Four binary-

valued stimulus dimensions were randomly assigned to the four abstract category dimensions

for each participant in the standard and low-differentiation conditions. These four stimulus

dimensions were randomly chosen from a set of five possible dimensions—shape of the head

(round or square), orientation of the nose (up or down), length of the tail (short or long),

shape of the antennae (curved or straight) and leg number (eight or four)—and the fifth

dimension had a fixed value across all the stimuli for a given participant. In addition, the

polarity of the assignment of stimuli within each stimulus dimension was also randomly

assigned between participants as was the assignment of the category labels LORK and THAB

to the abstract categories A and B in Table 1. Each stimulus was displayed on a computer

monitor, and participants indicated their response by mouse clicking in a box containing one

of the category labels.

Procedure

The procedure for both the standard and low-differentiation conditions was the same

as the classification condition in Johansen and Kruschke (2005). Participants from both

conditions were run simultaneously, half in one condition and half in the other based on even

or odd participant numbers, and the participant instructions were identical throughout. The

instructions told participants that they should learn to assign the instances to categories and

would receive feedback. They were also warned that there would be a test phase at the end of

the experiment to evaluate how much they had learned and that they would not receive

corrective feedback during this phase.

Each training trial displayed one of the nine category instances from either the

standard or low-differentiation conditions shown at the top of Table 1. After making their

response, participants received feedback, either CORRECT! or WRONG!, the correct

category label was displayed above the stimulus, and participants were given up to 30
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seconds to study the correct answer. The message FASTER was displayed if they did not

make their initial response within 20 seconds of the start of the trial. They started the next

trial by clicking the mouse on a box which had the message “After you have studied this case

(up to 30 seconds), click here to see the next one.” If they did not start the next trial within

30 seconds of their initial response, the message FASTER appeared and then the next trial

started automatically.

In the training phase, the nine training instances in each of the two conditions were

presented in 25 randomly ordered blocks for a total of 225 training trials. After the training

phase, participants were instructed that they would be tested without feedback but that they

should base their responses on what they learned when feedback was being given. During the

test block, the nine training items and seven test items for the standard and low-

differentiation conditions (Table 1) were presented in random order. Participants were given

no feedback on each trial other than that their response had been recorded.

Results and Discussion

The averaged learning curves for all participants by condition, standard or low-

differentiation, are in the top panel of Figure 1 which shows a systematic difference between

conditions throughout the course of learning: the low-differentiation structure was

considerably harder to learn than the standard structure as measured by average accuracy

across sets of 5 blocks (F(1,79) = 35.053, MSE = 0.028, p < 0.001, in an ANOVA with

training condition and training block set as factors). In addition, the proportions of good

versus poor learners in reference to a learning criterion (≥ 0.75 in the last two blocks of 

training, as in Johansen and Palmeri, 2002), was much higher in the standard condition

(17/40 good learners) than in the low-differentiation condition (3/41) (2(1) = 13.48, p <

0.001). (Figure 1 about here) In fact, the differences in performance for the two learning

conditions occurred across the course of learning even in the relatively poor learners who did
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not ultimately achieve the ≥ 0.75 criterion as shown in the bottom panel of Figure 1. (We do 

not report the results for the best learners in this way as there were only three good learners in

the low-differentiation condition). Overall the standard category structure was easier to learn

throughout and resulted in higher performance at the end of learning compared to the low-

differentiation structure.

However, overall average accuracy does not tell the complete story. Importantly, we

need to ask whether there were response differences between category instances, and we need

to examine test generalization to new instances. In their study, Blair and Homa (2003)

reported neither of these analyses, but they are crucial for differentiating the dual-system

theory (a prototype-based categorization system plus a nongeneralizing memory for instances

system) from the single-system exemplar theory, particularly in the context of assessing

category influence.

Figure 2 shows the category A response proportions from the test phase for the nine

training and seven generalization test items in each training condition (Table 1) based on all

participants in both conditions. The dashed lines are the approximate 95% binomial

confidence interval around 0.5 and provide a useful reference for the amount of learning at

the end of training: All but one of the training items fell outside this interval in the standard

condition whereas all but two of the training items fell within this interval in the low-

differentiation condition. Thus the test phase results also show that accuracy on the individual

test items was generally higher in the standard condition than the low-differentiation

condition. (Figure 2 about here)

Further, there were systematic and stable differences in test trial performance within

the standard condition. Figure 3 shows performance by condition for good versus poor

learners, i.e., high versus low end of training accuracy, as specified in reference to the

learning criterion. For the standard condition, similar qualitative patterns of responding
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occurred in the good versus poor learners, e.g., A1, A2, and A3 (labels from the standard

condition in Table 1) were the best learned instances from category A and B3 and B4 from

category B. Also the generalization test item corresponding to the prototype of A, T3 1111,

was strongly assigned to category A while T7 2212 was quite strongly assigned to category B

in both. Importantly, these patterns of responding also correlate closely with the data from

Medin and Schaffer (1978), shown at the bottom of Figure 3, r = 0.94 for the good learners.

The contrast between good and poor learners in the low-differentiation condition is not

informative because there were so few good learners, and there was only weak evidence for

differences between the test items in the low-differentiation condition, though by no means

completely absent. (Figure 3 about here)

In addition, the differences in training trial performance in the standard condition’s

test block were quite stable because they correspond to similar differences throughout the

course of learning. Figure 4 shows learning curves for different training trial types by

condition (Table 1) in terms of proportions of category A responses averaged into sets of 5

training blocks and based on all participants. As in the test data in Figure 2, exemplars A1,

A2, and A3 as well as B3 and B4 were the easiest to learn in the standard condition and this

pattern persisted throughout learning. On the other hand, the training items were only weakly

different from each other in the low-differentiation condition (on the right in Figure 4) as

emphasized by the fact that some category A items were not even systematically

differentiated from the category B items. (Figure 4 about here)

The most compelling evidence for category influences on learning in the standard

condition comes from a comparison of individual category instances that had the same

category assignment in both the standard and low-differentiation conditions and were learned

well in the standard task. Consider A2 1212 (shown by squares connected with solid lines in

both conditions in Figure 4). There were systematic differences between conditions
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throughout learning for this item with strong assignment to category A in the standard

condition and weak assignment to category B in the low-differentiation condition (despite the

feedback to the contrary in the low-differentiation condition). Likewise, B4 2222 (shown by

circles connected by dashed lines in both conditions in Figure 4) was quite strongly assigned

to category B in the standard condition throughout learning, but weakly assigned to A

throughout most of learning in the low-differentiation condition. The remaining category

instances were not as clearly differentiated between the conditions, but these instances were

not learned particularly well in the standard condition in the first place.

In summary, category membership in the standard 5-4 structure has a pronounced but

differential influence on the learnability of exemplars both in reference to each other and to

members of a more poorly differentiated 5-4 structure. Further these differences are

conceptually not compatible with participants treating the standard task pragmatically as an

identification learning task with no generalization across instances and no category influences

on learning. Overall, these data indicate that there are category influences on learning of the

standard Medin and Schaffer (1978) 5-4 category structure despite a lack of category

advantage for that structure (Blair & Homa, 2003) and despite the difficulty of learning it. In

addition, exemplar modelling supports this category influence conclusion.

Exemplar Modelling of the Results

Results from the 5-4 category structure have been modelled and discussed many times

in the past (Medin & Schaffer, 1978; Nosofsky, 2000; Smith & Minda, 2000; etc.), so it will

come as no surprise that the exemplar model provides a good account of the results from the

present experiment as detailed below. However the deeper purpose of this modelling analysis

is to take a closer look at how the exemplar model accounts for the results in the context of

two contrasting conclusions: firstly, Blair and Homa’s (2003) no-category-advantage

conclusion that this category structure induces instance memorization with no generalization
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across instances and, secondly, the fact that there are clear category influences on learning for

this structure.

Category learning research has commonly instituted a learning criterion such that only

those participants who have learned the categories sufficiently well are included in the key

data set, which is then used to address primary research questions such as how participants

represent categories, use them, etc. Moreover the assessment of the participant proportions

who reach the various criteria for the 5-4 structure have lead Blair and Homa (2003) as well

as Smith and Minda (2002) to emphasize the relative difficulty of learning this structure, with

substantial proportions of participants not learning to criterion. However, we have focused on

modelling the results for all participants as conceptually a learning criterion has the potential

to compress or mask differences in instance learnability against a ceiling of perfect

performance.

Figure 5 shows the exemplar model’s best fit predictions plotted against the data from

the standard and low-differentiation conditions respectively. (The details of the model and the

maximum likelihood modelling procedure can be found in the Appendix.) The model does a

reasonable job of accounting for the data in both conditions with an overall fit of G2 =

10.270 corresponding to a Root Mean Squared Deviation (RMSD) of 0.053 for the standard

condition2 (with dimensional attention parameters of 0.369, 0.108, 0.297, and 0.227, for the

four dimensions respectively, and a similarity scaling parameter of c = 4.040) and with an

overall fit of G2 = 15.146 corresponding to RMSD = 0.073 for the low-differentiation

condition3 (with dimensional attention parameters of 0.406, 0.100, 0.339, and 0.155,

respectively, and a similarity scaling parameter of c = 2.746). (Figure 5 about here)

Tables 2 and 3 also show the exemplar model’s predictions for the standard and low-

differentiation conditions by trial type, where the data and model prediction values for each

trial type are the data points in the scatter plots shown in Figures 5. In particular, the column
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in Tables 2 and 3 labelled “SumSim A” has the sum of each test item’s similarities to all the

exemplars in category A, and “SumSim B” is the sum of the item’s similarities to all the

exemplars in category B. If a test item perfectly matches an exemplar in the category

representation, then its similarity to that exemplar is 1.0. Since the training items, A1-B4, all

exactly match one item, the extent to which the summed category similarities for these items

are greater than 1.0 partly indexes a category influence on responding, that is, the influence of

exemplars other than the perfectly matching memorized instance. As none of the training

items A1-B4 were members of both categories, a training item never perfectly matched an

exemplar in the opposite category, so the summed similarity to exemplars of the opposite can

be less than 1.0, but it doesn’t have to be as the cumulative similarity to multiple exemplars

has the potential to be greater than 1.0.

The training items from the standard condition can be divided into high accuracy

items—A1, A2, A3, B3, and B4—and low accuracy items--A4, A5, B1, and B2—in Figure 2.

It is important to emphasize that this is not just an arbitrary division, but one both strongly

suggested by the standard condition learning curves (Figure 4) and widely replicated. For

example, this pattern of testing trial accuracies occurred in Medin and Schaffer’s (1978)

Experiment 3 shown at the bottom of Figure 3, in the various additional data sets summarized

in Figure 7, and in the average data from 30 replications of this category structure reported by

Smith and Minda (2000).

For the high accuracy training items from the standard condition, the average of the

summed similarity to members of their own category in Table 2 is 1.92. If self-similarity is

removed from this by subtracting 1, then the proportion of category similarity due to other

exemplars is 0.92/1.93 = 0.48, or roughly half of the category similarity. In contrast, the

average summed similarity for low-accuracy training items was 1.36, so the proportion due to

other category exemplars is 0.36/1.36 = 0.26, or only about one quarter of the category
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similarity. Correspondingly, the average summed similarities of the high accuracy training

items (Table 2) to members of the opposite category was quite low, 0.40, while twice as high

for the low accuracy items, 0.80.

(Table 2 about here)

The division of the low-differentiation condition training items (Table 3) into a high

accuracy set—A1, A3, A5, B1, and B3—and a low accuracy set—A2, A4, B2, and B4—was

somewhat more arbitrary because this structure was much harder to learn and the specific

item learning curves in Figure 4 were more poorly differentiated. However, even in this very

poorly differentiated category structure, the average summed similarity for high accuracy

items to members of their own category in Table 3 was 2.02 versus 1.64 for the low accuracy

items. With self-similarity removed, the proportion of category similarity due to other

exemplars was 0.51 for high accuracy items and 0.39 for low-accuracy items. So even for this

poorly differentiated structure the amount of category influence was somewhat larger for high

than low accuracy items, though the difference was not as large as for the standard condition

data. But the key difference from this account of the standard condition was that for the low-

differentiation condition, average summed similarity to members of the contrast category for

high accuracy items was 1.13 and was 1.54 for low accuracy items. Hence contrast category

similarity was substantially higher in the model’s account of the low-differentiation condition

as would be expected from the poorer differentiation compared to the standard structure.

(Table 3 about here)
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In summary, the purpose of this assessment is not to argue that prior modelling

analysis of data from this category structure contrasting exemplar and prototype theory is

wrong. Rather the purpose has been to look at how the exemplar model accounts for the data

in the context of the claim that learning is based on instance memorization without

generalization between instances. The exemplar model explains the differences in training

item accuracy observed in the data in terms of differential category influences on learning

from both the member and contrast categories, that is differential generalization across

multiple instances. In fact, we propose it is the relatively poor differentiation of these

category structures that enhances differential item learnability and makes arguing for

nongeneralizing exemplars so implausible. While selective attention helps people and the

exemplar model to differentiate the categories and so achieve high training item accuracy in

the first place, differential within and between category similarity compellingly explains

differential learnability. The latter is very hard to explain, in contrast, if this categorization

task is equivalent to an identification learning task with no exemplar crosstalk.

Experiment 2

The basic claim we have critiqued in Experiment 1 is that learning of the 5-4 category

structure just invokes simple instance memorization with no generalization across instances.

The purpose of Experiment 2 was to provide a methodological contrast to the standard

learning with feedback paradigm used in Experiment 1 and substantially emphasize

memorization by explicitly telling participants to memorize the category instances from a

simultaneously presented summary (Figure 6). The basic intent of this paradigm was to

induce participants to encode the category instances from the standard condition (on the left

in Table 1) into memory in as methodologically simple a way as possible. In the standard

category learning paradigm, participants learn a category structure by categorizing single

instances over a protracted series of trials with feedback where the resulting error drives
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selective attention and gradually improves associative performance. Conceptually, selective

attention driven by explicit feedback might operate to make cross-instance similarity more

differential than it might otherwise have been. In contrast, participants in this experiment

were simultaneously presented with the instances from the standard 5-4 structure (on the left

in Table 1) grouped with category labels (Figure 6) and explicitly instructed to memorize

them in a short interval. Thus participants received no feedback because there were no

responses and no trial structure. (Figure 6 about here)

Method

Participants

There were 30 participants, who were undergraduate students at University College London

or Cardiff University.

Materials and Procedure

Participants were instructed to memorize the instances from two categories on a category

summary sheet as shown in Figure 6. The category instances were described as being rocket

ships from Planets A and B. After being given 5 minutes to memorize these instances, the

summary sheet was removed, and participants were asked to assign each of the 16 cases from

the standard condition in Table 1 to one of the categories by circling one of the two possible

category labels below the instance (Planet A or Planet B). For methodological simplicity, the

presentation order of the test trials was the same for all participants—T1, T4, T2, T3, T5, T6,

T7, A1, B4, B1, A5, A3, A4, B3, A2, and B2—as was the assignment of abstract to physical

dimensions—Dimension 1 = wing width (1=narrow/2=wide), Dimension 2 = cone shape

(1=curved/2=pointed) dimension 3 = booster number(1/2) and Dimension 4 = portal

orientation (1=down/2=up).

Results and Discussion
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Overall categorization performance on the 9 category instances resulted in an average

accuracy of 0.73 based on all participants. Comparison with various published learning

results from the standard paradigm and different numbers of training blocks, on the right in

Figure 7, shows that this is similar to that observed in the learning results from after a full 16

blocks of training, 0.72 (Nosofsky, Palmeri & McKinley, 1994), where each block had all 9

category instances for a total of 144 trials. Thus the overall performance level obtained with

the present explicit memorization task is highly consistent with one aspect of Blair and

Homa’s (2003) argument, that participants in the standard paradigm memorize the instances

of the 5-4 category structure. (Figure 7 about here)

The left panel of Figure 7 shows that categorization performance on the 9 category

instances, A1-B4, was highly varied, ranging from almost chance accuracy (e.g., instance

B1), to more than 90% accuracy (instance B4). Importantly, this variation was not random

but rather was systematic and highly correlated with the published learning results based on

different amounts of training in the standard trial-by-trial learning with feedback paradigm

(the right panels of Figure 7), e.g. r = 0.92 with results from after 32 blocks of training

(Johansen & Palmeri, 2002; Nosofsky, Palmeri and McKinley, 1994; Palmeri & Nosofsky,

1995). In particular, these results duplicated the same differences in training item accuracy

observed in the standard condition of Experiment 1 both at the end of learning (Figure 2) and

over the course of learning (Figure 4), that is, higher accuracy on A1-A3, B3, and B4 than on

A4, A5, B1, and B2. And lastly, the generalization test results for T1-T7 showed a moderate

level of correspondence to those from the learning reference data, most notably in terms of a

large prototype effect for T3, the prototype of category B.

The comparability of these to prior results demonstrates that not only were there

differences in accuracy for the category members but that this methodologically simple

paradigm produced results that are surprisingly similar to those from the far more elaborate
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multi-trial learning with feedback paradigm. In the context of the dual-system prototype

theory being considered here, there are two contrasting interpretations that can be drawn from

these results depending on whether they are considered to represent the complete ablation or

the active facilitation of the mind’s categorization system, as distinct from the

nongeneralizing-exemplar-memorization system.

One perspective is to use the minimalist instance-memorization paradigm to argue

that the explicit memorization instructions should even more strongly invoke instance

memorization and hence even more completely ablate the categorization system. In addition,

the lack of feedback might further minimize the effects of selective attention and similarity,

also arguably key components of the categorization system, and leave responding to be firmly

based on the nongeneralizing instance memorization system. From this perspective, the fact

that the differences in training item accuracy in this experiment so closely replicate those

from the standard paradigm strongly argues against nongeneralizing exemplars in the dual-

system theory. So even when instances are encoded into memory in as simple a way as

possible there are still clear category influences, and it is not clear from the perspective of

parsimony what the dual-system account adds here.

However, an alternative perspective is that our instance-memorization paradigm had

the exact opposite of the desired effect; far from completely ablating the categorization

system, maybe this paradigm actively facilitated the categorization system by allowing

participants to more easily observe the commonalities and differences between instances,

both within and between categories. That is, the summary presentation methodology

effectively enhanced the perceived differentiation of the categories and thus actually

activated rather than ablated the categorization system. Probably the most compelling

evidence for this perspective is that the summary memorization paradigm produced a large

prototype effect during the testing phase (T3), as large as that in the extensive training
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condition from Johansen and Palmeri (2002). But if the summary memorization results

represent enhanced performance of the activated categorization system then that system

produced results that look remarkably similar to those from the standard task in Experiment 1

which are so well accounted for by the exemplar model in terms of generalizing across

multiple category instances. Thus from the perspective of parsimony, it is unclear what dual-

system prototype theory with nongeneralizing exemplar memory is adding in this alternative

interpretation.

General Discussion

The two experiments presented here evaluated category influences on instance

learnability in the 5-4 category structure (Medin & Schaffer, 1978) from two different

methodological perspectives. Experiment 1 contrasted feedback learning in the standard 5-4

structure with learning in an even more poorly differentiated category structure generated by

switching the category assignment of two pairs of instances. Blair and Homa (2003)

compared the standard category learning task with an identification learning task and argued

that the comparable learnability of the two tasks indicated a lack of “category advantage”,

which they took as evidence that responding was based on instance memorization with no

generalization across instances. However, the present results indicate that a more poorly

differentiated category structure was even harder to learn, a difficult result to explain if

multiple category instances are not influencing responding, particularly as there were

systematic differences in performance across category instances. Further, as would be

expected from the history of this category structure, the exemplar model provided a good

account of these data. In particular, it accounted for the differential learnability of the training

items in terms of differential similarity to multiple instances both within and between

categories. In essence, Experiment 1 uses a variation of Blair and Homa’s category advantage

methodology to show an advantage in learning some instances in the standard 5-4 structure
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compared to a less differentiated category structure. Pure instance memorization without

generalization cannot explain this observation.

Experiment 2 was a minimalist memorization task where participants were presented

with a simultaneous display of all the category instances (Figure 6) and given 5 minutes to

memorize them. The results of this task look strikingly like those from the standard category

learning paradigm (e.g., Johansen & Palmeri, 2002; Medin & Schaffer, 1978; Nosofsky,

Palmeri and McKinley, 1994; Palmeri & Nosofsky, 1995), despite the large differences in the

methodology. While this suggests that instance memorization is a fundamental part of that

paradigm–consistent with the claims of Blair and Homa (2003) and Smith and Minda (2000;

also Smith, 2005)–these findings also indicate that even this simple way of encoding

instances into memory resulted in a category influence on learning and generalization. This

category influence is based on comparison to more than one instance and yields clear

prototypicality effects, even though this poorly differentiated category structure putatively

does not lend itself to anything other than the memorization of specific instances with no

generalization across multiple instances: “The lack of a category advantage . . . strongly

suggests that participants who learn these categories learn them by memorization and receive

no benefit from generalizing among members of the same category” (Blair & Homa, 2003, p.

1298).

At minimum, these results suggest that the conclusions from Blair and Homa’s (2003)

category advantage methodology should be viewed with caution. Their argument is that lack

of category advantage for category learning compared to identification learning indicates a

poorly differentiated category structure unrepresentative of real world categories which does

not invoke the brain’s categorization system and which is dealt with only by instance

memory. Our counterargument is that even for this poorly differentiated category structure,

there are still clear category influences.
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We suggest that the problem with Blair and Homa’s (2003) category advantage

argument is as follows: While categorization solely in reference to single memorized

instances certainly predicts a lack of a category advantage, a lack of category advantage does

not necessarily imply that categorization performance is based on memorized single instances

without a category influence of multiple instances. The lack of category advantage can arise

for other reasons in the presence of a category influence. For example, the crosstalk between

individual instances may be such that learning is facilitated for some and harmed for others

and thus average out to being comparable to identification learning, but this category

influence at the level of specific instances may not be apparent from looking at an overall

learning rate.

More generally, it thus seems that even an elaborated dual-system prototype theory

which has been paradoxically motivated to make predictions about instance memory fails. If

category decisions are based on more than one instance in the memorization system, as our

results suggest, then this system should generate prototype effects, typicality gradients, and

so on and the added theoretical value of a separate prototype-based ‘true’ categorization

system becomes unclear. In effect, prototype theory’s separate memory store for instances

would be generating categorization behaviour in a similar way to exemplar theory’s single

system, at which point it is reasonable to ask: what is the prototype-based categorization

system serving to explain?

There are several possible ripostes to this conclusion. One is to argue that the dual

system prototype plus nongeneralizing exemplar theory we have considered is effectively just

a straw man. However, given past criticisms of the 5-4 structure (Blair & Homa, 2003; Smith

& Minda, 2000; etc.) and the absence of a “category advantage” with this structure, the

theory is anything but a straw man. It is distinctly non-trivial, explains a range of findings,

and the experiments reported here could, in principle, have yielded further support. The
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following reasonably summarizes this dual-system position (Blair & Homa, 2003, p. 1299):

“Data from previous research using the 5-4 categories has been difficult for prototype models

to fit, and these data are generally seen as supporting exemplar theories. If one assumes a

strong relationship between memorization and categorization, then the failure of a prototype

model can be seen as a critical weakness of the theory. If one assumes that there is little or no

relationship between memorization and categorization, then the 5-4 category learning task

has little to do with categorization and is therefore an inappropriate test of prototype theory.”

Another possible riposte to our conclusions is that the theoretical debate has moved

on from the coarse distinction between exemplar generalization versus nongeneralization to

the more subtle distinctions between typicality gradients (e.g., Homa, et al. 2011). We have

summarized our reactions to the dot-distortion paradigm in the introduction. In addition, our

differences in instance and category learnability provide some converging support for recent

developments in theories of category intuitiveness involving assessments of what makes

categories hard or easy to learn (Pothos & Bailey, 2009; Pothos et al., 2011; Pothos, Edwards,

& Perlman. 2011). We would like to emphasize the overall logic and minimal conclusions of

our research. We take our results as evidence for exemplar theory and thus still consider it a

viable candidate to explain broad areas of categorization behaviour, perhaps even all

categorization behaviour (with suitable elaboration). However, we acknowledge that some

may consider research on the 5-4 category structure (Medin & Schaffer, 1978) to have

reached a state of theoretical sterility, perhaps because they believe that such binary-valued

category structures are unrepresentative of the real world or because they believe that

prototypes clearly provide a better account of typicality gradients, even when multiple

exemplars are allowed to generalize between each other. Nevertheless, even if both of these

are completely true, we believe that Blair and Homa’s (2003) antiexemplar category-
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advantage argument is not viable and at minimum this evidence against exemplar theory

should be discounted and future prototype theories suitably constrained.
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Footnote

1. Structural ratio as a measurement does not have a fixed upper bound corresponding to

perfect differentiation as, among other reasons, sharing zero features with instances of

a contrast category leaves the ratio undefined to avoid division by 0. But some

indication of a relevant upper bound can be had by making all of the instances of

category A identical to the category prototype, A 1111, and likewise the B instances

to B 2222 except for one B instance which shares a single feature with A, i.e. B2221.

In this case the structural ratio is 3.8/0.3 = 12.7, clearly a very long way from the 1.5

for the standard 5-4 structure.

2. Fitting the model with RMSD directly rather than G2 resulted in a virtually identical

fit and set of parameters as well as predicted values: RMSD = 0.053, with

dimensional attention parameters of 0.371, 0.102, 0.301, and 0.226, respectively, and

a similarity scaling parameter of c = 4.031. The (unreported) scatterplot of the

model’s predictions against the data was virtually identical to the left panel of Figure

5.

3. Fitting the model with RMSD directly rather than G2 also resulted in extremely

similar parameters, fit, and predictions for these data: with dimensional attention

parameters of 0.403, 0.126, 0.321, and 0.150, respectively, and a similarity scaling

parameter of c = 2.959). The (unreported) model predictions were also very similar to

those in the right panel of Figure 5.
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Appendix

Exemplar Model Specification and Modelling Procedure

The exemplar model applied to the results of Experiment 1 was the Generalized Context

Model (Nosofsky, 1986). In overview, the model calculates the total similarity of a test item

to all the instances in a category and then specifies a category response probability by

contrasting that category’s summed similarity with the total similarity to all categories. The

predictions from the model for these data were derived using the following two equations,

four free parameters, and a best fitting parameter procedure.

In detail, each category is represented in the model by the instances composing it, the

exemplars participants were told in the training phase were in that category (for example A1-

A5 for category A in Table 1), each composed of features on four binary-valued feature

dimensions. The model specifies the similarity of a given test item, i, to a given category

exemplar, j, using equation 1.









 

k
jkikkij xxwc

dim

||exp (1)

In this equation, ikx is the feature value of test item i on feature dimension k, and

correspondingly jkx is the feature value of exemplar j on the same feature dimension k. The

absolute value of the difference between these two features, || jkik xx  , is then multiplied by

the dimensional attention parameter for feature dimension k, kw ,which specifies how much a

feature difference on that dimension should matter in the similarity calculation. These

weighted differences are calculated for all four feature dimensions, summed and multiplied

by -c to yield the content of the parentheses in equation 1, where c is an overall scaling

parameter for similarity. This scaled sum of weighted feature difference values is then

exponentiated to give the similarity of test item i to exemplar j, ij .
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Using the similarities generated by equation 1, the category response probability that a test

item i will be from category A is determined by equation 2. Specifically, the model calculates












catBj
ij

catAj
ij

catAj
ij

icatAP




)|( (2)

the total similarity of a test item i to all the instances in category A by summing across its

similarity to each of the specific instances in that category as in the numerator of equation 2,


catAj

ij . This summed similarity to the representation for category A is divided by the

summed similarity to all the instances in both categories, category A on the left and category

B on the right in the denominator.

The model’s best fitting predictions for the data in a given condition of Experiment 1

were generated by adjusting the free parameters to minimize the maximum likelihood statistic

G2. We have not drawn any statistical conclusions about the goodness of fit of this model

because the data substantially violate independence. In practice, using G2 resulted in very

similar predictions to the more traditional procedure of minimizing root mean squared

deviation (RMSD), the discrepancy between the model’s predictions and the data. So even

though the fits used G2, we also report RMSD to be comparable to previously reported fits of

this model. Of the model’s four dimensional attention parameters, kw , in equation 1, three

are free parameters and the fourth is constrained such that the sum of the four attention

parameters is 1. The overall similarity scaling parameter c is a free parameter rather than

simply being redundant with the four attention parameters by the distributive rule. Various

sets of initial free parameter values were chosen and adjusted via a hill-climbing procedure.

The model’s best fitting parameter values and predictions for the two conditions of Table 1

are reported in the main text.
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Table 1. Standard 5-4 Category Structure (Medin & Schaffer, 1978), Low-differentiation 5-4

structure, and Test Cases Used in Experiment 1’s Standard and Low-differentiation

Conditions.

trial types standard low-differentiation

A1 A 1 1 1 2 A 2 2 2 1

A2 A 1 2 1 2 A 1 2 1 2

A3 A 1 2 1 1 A 2 1 1 2

A4 A 1 1 2 1 A 1 1 2 1

A5 A 2 1 1 1 A 2 1 1 1

B1 B 1 1 2 2 B 1 1 2 2

B2 B 2 1 1 2 B 1 2 1 1

B3 B 2 2 2 1 B 1 1 1 2

B4 B 2 2 2 2 B 2 2 2 2

T1 ? 1 2 2 1 ? 1 2 2 1

T2 ? 1 2 2 2 ? 1 2 2 2

T3 ? 1 1 1 1 ? 1 1 1 1

T4 ? 2 2 1 2 ? 2 2 1 2

T5 ? 2 1 2 1 ? 2 1 2 1

T6 ? 2 2 1 1 ? 2 2 1 1

T7 ? 2 1 2 2 ? 2 1 2 2

Note. In the test cases, ?’s indicate that there was no correct category as participants never

received feedback for these items. The category instance trial type labels A1-B4 are for

reference purposes only as are the generalization test trial labels T1-T7. The two bold

instances in each category of the low-differentiation condition were members of the other

category in the standard category structure in the middle column. Specifically, A1 and A3 in

the low-differentiation condition are B3 and B2, respectively, in the standard condition, and

B2 and B3 in the low-differentiation condition are A3 and A1, respectively, in the standard

condition.
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Table 2. Exemplar Model Predictions for the Standard Condition from Experiment 1.

trial types standard data model SumSim A SumSim B

A1 A 1 1 1 2 0.78 0.78 2.12 0.59

A2 A 1 2 1 2 0.83 0.83 2.18 0.44

A3 A 1 2 1 1 0.88 0.90 2.00 0.23

A4 A 1 1 2 1 0.68 0.70 1.46 0.63

A5 A 2 1 1 1 0.68 0.66 1.36 0.70

B1 B 1 1 2 2 0.33 0.44 1.00 1.27

B2 B 2 1 1 2 0.40 0.39 0.86 1.34

B3 B 2 2 2 1 0.30 0.23 0.45 1.54

B4 B 2 2 2 2 0.05 0.14 0.28 1.74

T1 ? 1 2 2 1 0.70 0.67 1.19 0.59

T2 ? 1 2 2 2 0.48 0.47 0.89 1.01

T3 ? 1 1 1 1 0.83 0.87 1.83 0.27

T4 ? 2 2 1 2 0.43 0.40 0.74 1.11

T5 ? 2 1 2 1 0.30 0.36 0.62 1.12

T6 ? 2 2 1 1 0.50 0.60 1.07 0.70

T7 ? 2 1 2 2 0.20 0.19 0.34 1.43

Note. Both the data and model predictions are in terms of category A response proportions.
SumSim A indicates each test item’s summed similarity to all the exemplars of category A,
and SumSim B to all the exemplars of category B.
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Table 3. Exemplar Model Predictions for the Low-differentiation Condition from Experiment

1.

trial types low-differentiation Data model SumSim A SumSim B

A1 A 2 2 2 1 0.61 0.64 1.83 1.01

A2 A 1 2 1 2 0.46 0.48 1.69 1.84

A3 A 2 1 1 2 0.63 0.70 2.18 0.92

A4 A 1 1 2 1 0.54 0.55 1.66 1.37

A5 A 2 1 1 1 0.63 0.75 2.25 0.74

B1 B 1 1 2 2 0.34 0.42 1.33 1.84

B2 B 1 2 1 1 0.37 0.46 1.49 1.78

B3 B 1 1 1 2 0.32 0.45 1.62 1.99

B4 B 2 2 2 2 0.39 0.50 1.44 1.43

T1 ? 1 2 2 1 0.51 0.54 1.51 1.30

T2 ? 1 2 2 2 0.37 0.44 1.27 1.64

T3 ? 1 1 1 1 0.39 0.47 1.53 1.73

T4 ? 2 2 1 2 0.68 0.67 1.91 0.96

T5 ? 2 1 2 1 0.61 0.67 1.80 0.89

T6 ? 2 2 1 1 0.68 0.71 1.96 0.81

T7 ? 2 1 2 2 0.61 0.53 1.46 1.28

Note. Both the data and model predictions are in terms of category A response proportions.
SumSim A indicates each test item’s summed similarity to all the exemplars of category A,
and SumSim B to all the exemplars of category B.
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Figure Captions

Figure 1. Experiment 1 training condition accuracy averaged across sets of five training

blocks for all participants (top panel) and for poorer learners (bottom panel) who did not

ultimately achieve the learning criterion of  ≥ 0.75 in the last two blocks of training (error 

bars are standard errors).

Figure 2. Experiment 1 test trial response proportions by training condition with an

approximate 95% binomial confidence interval on the population proportion of 0.5 (based on

n = 40 for simplicity).

Figure 3. Experiment 1 test trial response proportions by training condition separated for high

and low accuracy participants in reference to a learning criterion, ≥ 0.75 average accuracy in 

the last two training blocks. Data from Medin and Schaffer’s (1978) Experiment 3 are shown

for reference.

Figure 4. Experiment 1 category A response proportions by condition and with mean block

accuracy averaged across sets of five training blocks for all participants (errors bar are

standard errors).

Figure 5. Exemplar model best fit predictions for the standard and low-differentiation

conditions of Experiment 1.

Figure 6. Category summary sheet from Experiment 2 with instances from two categories

corresponding to the abstract category structure for the standard condition in Table 1.

Figure 7. Average data for the explicit memorization task from Experiment 2 in terms of

Category A response proportions, left panel. The last three panels are test results after 16

blocks, 25 blocks, and 32 blocks, respectively, of trial-by-trial feedback learning for the

standard 5-4 category structure shown on the left in Table 1 (Johansen & Palmeri, 2002;

Nosofsky et al., 1994; Palmeri & Nosofsky, 1995). The dashed line is the guessing

performance reference at 0.5 because there were two categories.
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Figure 1. Experiment 1 training condition accuracy averaged across sets of five training

blocks for all participants (top panel) and for poorer learners (bottom panel) who did not

ultimately achieve the learning criterion of  ≥ 0.75 in the last two blocks of training (error 

bars are standard errors).
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Figure 2. Experiment 1 test trial response proportions by training condition with an

approximate 95% binomial confidence interval on the population proportion of 0.5 (based on

n = 40 for simplicity).
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Figure 3. Experiment 1 test trial response proportions by training condition separated for high

and low accuracy participants in reference to a learning criterion, ≥ 0.75 average accuracy in 

the last two training blocks. Data from Medin and Schaffer’s (1978) Experiment 3 are shown

for reference.
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Figure 4. Experiment 1 category A response proportions by condition and with mean block

accuracy averaged across sets of five training blocks for all participants (errors bar are

standard errors).
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Figure 5. Exemplar model best fit predictions for the standard and low-differentiation

conditions of Experiment 1.
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Figure 6. Category summary sheet from Experiment 2 with instances from two categories

corresponding to the abstract category structure for the standard condition in Table 1.
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Figure 7. Average data for the explicit memorization task from Experiment 2 in terms of

Category A response proportions, left panel. The last three panels are test results after 16

blocks, 25 blocks, and 32 blocks, respectively, of trial-by-trial feedback learning for the

standard 5-4 category structure shown on the left in Table 1 (Johansen & Palmeri, 2002;

Nosofsky et al., 1994; Palmeri & Nosofsky, 1995). The dashed line is the guessing

performance reference at 0.5 because there were two categories.


