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Search for Nonstandard Higgs Bosons Using High Mass Photon Pairs
in pp — yy + 2Jetsaty/s = 1.8 TeV
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A search has been carried out for events in the chappel- yy + 2 jets. Such a signature can
characterize the production of a nonstandard Higgs boson together witloraZ boson. We refer to
this nonstandard Higgs, having standard model couplings to vector bosons but no coupling to fermions,
as a “bosonic Higgs.” With the requirement of two high transverse energy photons and two jets, the
diphoton mass$m,,,) distribution is consistent with expected background. A 90 (95)% confidence level
(C.L.) upper limit on the cross section as a function of mass is calculated, ranging from 0.60 (0.80) pb
for m,, = 65 GeV/c? to 0.26 (0.34) pb fom,, = 150 GeV/c?, corresponding to a 95% C.L. lower
limit on the mass of a bosonic Higgs 88.5 GeV/c?. [S0031-9007(99)08651-2]

PACS numbers: 13.85.Qk, 12.60.Fr, 14.80.Cp
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The Higgs sector of the standard model is poorly conbranching ratioH — yvy remains high and the falling
strained. Several extended Higgs models [1-6] allowHiggs production cross section 6f0.4 pb allows the pro-
a light neutral scalar Higgs with suppressed couplingsluction of tens of events. This Letter describes the first
to fermions. We refer to such a nonstandard Higgssearch for a bosonic Higgs at hadron colliders.
having standard model couplings to vector bosons but Experiments at the CERN Large Electron-Positron
zero couplings to fermions, as a “bosonic Higgs.” TheCollider (LEP) have previously set lower mass limits on
model of Refs. [1,2] provides a bosonic Higgs with- a bosonic Higgs. A limit of approximatelg0 GeV/c?
out requiring fine-tuning and maintains the relation=  was established [8,9] in data taken at th& a higher
Miy /M3 cos 6y = 1, consistent with present experimen- 95% confidence level (C.L.) limit set 6.5 GeV/c? in
tal limits [7]. 172 GeV collisions [10] at LEP2, and this limit extended
The decay channels of a bosonic Higgs differ fromto 90.0 GeV/c¢? in 183 GeV collisions [11].
those of the standard model Higgs as shown in Fig. 1. Data corresponding to an integrated luminosity of
Since the fermion decay channels are suppressed, the1.2 + 5.5 pb™!, recorded during 1992—1996 with the
decay of a bosonic Higgs with mass less tAafy, is not DO detector [12], are used for this analysis. Photons and
dominated byH — bb. At tree level the bosonic Higgs jets are identified using the uranium-liquid-argon sam-
decays only taVW®) andZZ" vector bosons (where the pling calorimeter, extending to a pseudorapidityl =
asterisks denote that one or both of the vector bosons MY Intan?| < 4.5, where ¢ is the polar angle. The
be off the2rna55 shell). For bosonic Higg_s masses less th%?ectromagnetic (EM) energy resolution isz/E =
90 GeV/c”, the one-loopW-boson-mediated? — yy 15%//E(GeV) ® 0.3%, and the jet energy resolution

channel becomes dominant. : _ T . .
A bosonic Higgs is most easily detected in the associlS aboutop/E = 80%/VE(GeV). The calorimeter is

ated production mode, where an off-mass-siéllor Z segmented transversely into towers in pseudorapidity

. ) . . and azimuthal angle of sizé\n X A¢ = 0.1 X 0.1
boson is produced and radiates a Higgs boson [8]. nggglnd further segmer?ted 05 X 07705 at ;ﬁe EM shower
production through vector boson fusion also contribute :

t0 the yy + 2 jets (yy,j) final state at the 15% level, ?naxmum. Drift chambers in front of the calorimeter are

. . used to distinquish photons from electrons. A three-level
The sum of theWH and ZH production cross sections _ - : : ) Lo
ranges from 1.8 pb foM, = 60 GeV/c? to 0.4 pb for triggering system is employed: level O uses scintillation

o .. counters near the beam pipe at each end of the detec-
My = 100 GeV/c2. We expect sensitivity in they jj . e .
final state up to a mass af ~ 85 GeV/c? for the de- tor to detect an inelastic interaction, level 1 sums the

. . EM and hadronic energy in calorimeter towers of size
cay modest! — yy andW/Z — jj, at which mass the An X A¢ =02 X 0.2, and level 2 is a software trigger

which forms clusters of calorimeter cells and applies loose
cuts on the shower shape.

(2}
é 1 F bb ww Events used in this analysis have at least two pho-
S 0.8 T ton candidates and at least two jet candidates. Initially,
‘5 0.6 - the events are selected using a diphoton trigger that re-
£ o4 | (a) quires two EM showers with a transverse enefd)
EARARN greater than 12 GeV. The filter is fully efficient when
£02 ¢ N both photons hav&; > 15 GeV. The off-line event se-

0 s‘o‘ : ‘s‘o T STTREEEYTS 160 lection criteria are optimized by requiring one photon

to haveE; > 30 GeV and|n?| < 1.1 or 1.5 < |n?| <
2.0, and the other to havE; > 15 GeV and|n?| < 1.1
or 1.5 < |n”| < 2.25. Additionally, one hadronic jet is

required to have!?}et > 30 GeV andInJ:e‘I < 2.0, and the

other hadronic jet is required to hawig™ > 15 GeV and
[niet| < 2.25. For the two jets to be consistent with the
decay of aW or Z boson, the dijet mass is required

Higgs Mass (GeV/c?)

Branching Fractions
o
(o))

100

120

140

)
160

to be between 40 and50 GeV/c?. A photon candi-

date is rejected if there is either a reconstructed track or
Higgs Mass (GeV/<") a significant number of drift chamber hits in a tracking
FIG. 1. Decay branching fractions vs Higgs mass for (a)foad A8 X A¢ = 0.2 X 0.2 between the cluster in the
standard model Higgs and (b) bosonic Higgs. In (a), thecalorimeter and the interaction vertex. A photon candi-
diphoton branching fraction is less than 0.0@t;and 7"7~  date is required to have a shower shape consistent with
Higgs decay channels are not shown. In (b), the Higgs decaygat of a single EM shower, to have more than 96% of

to only VvV, whereV =+vy, W, or Z. There is a large . . . .
enhancement in the diphoton channel for the bosonic Higgéts energy in the EM section of the calorimeter, and to be

model: the absence of competing decay channels results in igolated [13]. Isolation requires that the transverse energy
dominantH — yy below My = 90 GeV/c>. in the annular region betweeR = \/An2 + A¢2 = 0.2
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andR = 0.4 around the cluster be less than 10% of themisidentified as photons. By rejecting events that have
total cluster transverse energy. In addition, each photon track or significant number of drift chamber hits inside
candidate must be separated hR, > 0.7 from every the tracking road, the expected electron background is
jet [14]. Each jet candidate is reconstructed from energyeduced to less than 0.01 events and is not considered
deposited in AR < 0.7 cone, must have less than 95% further.
of its energy in the EM section of the calorimeter, and The QCD multijet background teyj; events is esti-
must have no more than 40% of its energy in the outermated from the data. Starting with the same trigger and
most layer of the hadronic portion of the calorimeter. data set as the signal sample, a background sample is se-
These selection criteria yield four events, whosg, lected by requiring two EM clusters and jets satisfying the
distribution is shown in Fig. 2a. No events are observedame kinematic and fiducial criteria as the signal. Both
with m,, > 60 GeV/c2. The resolution of the detector EM clusters are required to have more than 90% of their
in m,, is about2.5 GeV/c* for diphoton final states energy in the EM section of the calorimeter and to have no
passing these kinematic cuts. The corresponding dijeteconstructed track associated with the cluster, but at least
mass distributions of data and expected background amne of the two EM clusters is required to fail the photon
shown in Fig. 2b. quality criteria (isolation, shower shape, or EM fraction).
The dominant background to the+y,jj channel is The resulting sample of 194 events is expected to be
production of QCD multijet events in which two jets dominated by QCD multijet events where two jets fluc-
are misidentified as photons. During the jet fragmentatuate into highly electromagnetic clusters. After sub-
tion process° and n mesons are produced and decaytracting the expected direct photon event contribution,
promptly into multiple photons. If ther® or » meson the QCD multijet background fom.,, > 60 GeV/c? is
carries a large fraction of the jet energy and has a moestimated by normalizing the cluster-pair mass distribu-
mentum greater than abou® GeV/c the decay photons tion to the signal sample over the mass ramgg, <
coalesce to mimic a single isolated photon in the calorime60 GeV/c?, where bosonic Higgs have been excluded by
ter. The depth development of multiple photons differsearlier searches f&f — Z*H at LEP [9,10].
from that of a single photon, and a fit to the longitudinal The direct photon background is calculated using the
shower shape for photon candidates yields the probabilitpyTHIA Monte Carlo program [15]. This background has
P(j — “y") for a jet to mimic an isolated photon candi- two sources: single direct photon production, where one
date, estimated to k@.3 + 1.0) X 10~4, with aweakE;  true photon is produced and one jet is misidentified as a
dependence [14]. photon, and double direct photon production, where two
Smaller sources of background are from double directrue photons are produced in addition to two highjets.
photon production, single direct photon production withThe Monte Carlo jet and photon energies are smeared to
one jet fluctuating into a photon candidate, and finalmatch the measured detector resolutions. The efficiency
states containing electrons in addition to two jets, such afor the events to pass the photon quality criteria (isolation,
(W — e*v)yjj, (Z—>e*e)jj, andtrt — eTe vvjj, shower shape, EM fraction, and tracking) are calculated
where the electrons fail track reconstruction and ardrom data using ouZ — e*e~ event sample. The single
direct photon events are weighted by the probability
P(j — “y"), since one of the jets must be misidentified

S o2k . » as a photon for a background event to be accepted. The
%1.75 - — 77jj dota (101.2 pb™) direct photon background is normalized to the signal
e 15k expected background sample using the calculated direct photon cross section.
521'2? 3 (a) The dominant systematic uncertainty in these sources
o5 E . of background then derives from the observed level of
§ 05 F '+'_ . agreement between the theoretical and experimental direct
mo.zg NN “+ e S photon cross sections and is estimated to be 40% for
0 20 40 60 80 100 120 140 160 180 200 double direct photon production and 20% for single direct
7 M(yy) (Gev/c?) photon production [13,16].
'/‘i 2 E — Yyij doto (101.2 pb™) Eigure 2 shows 'th'e totgl expected background, with
3175 F - ’ estimated uncertainties, in bins dfo GeV/c2. The
et ~4- expected background total background 06.0 + 1.6 events consists of.0 =
T _+_—4~— (b) 1.5 QCD multijet events an®.0 = 0.6 direct photon
075 i—_+_ _*_ | events. It agrees well with our observed number of four
a:a 0.5 T 1 —+—_+__+__+_ events. We find no evidence for nonstandard sources of
L.Jo‘zg e N . yyjj events. If we increase the photon pseudorapidity
40 60 80 100 120 140 coverage to|n”| < 2.5 and reduce the leading jet and
M(jj) (Gev/<?) photon transverse energy requirements to 15 GeV, the
FIG. 2. The data and expected background for (a) the diphoSame background estimation technique predigtst 10
ton mass and (b) the dijet mass distributions. events while 39 events are observed. TFhg, andmj;
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and includes both the associated production and vec-
tor boson fusion production processes, calculated using
PYTHIA with a QCD correction factor [8] of 1.25. This
factor agrees with the ratio between our measured cross
section for W boson production [17] and the calculated
cross section].23 * 0.08. We set lower limits on the
M(BH) > 78.5 GeV/c’ (95 % C.L.) bosonic Higgs mass &5.0 GeV/¢? at the 90% C.L. and
M(BH) > 85.0 GeV/c? (90 % C.L.) 78.5 GeV/c? at the 95% C.L.

In summary, we performed the first search for a
bosonic Higgs at hadron colliders, in the chanpgl —
vyjj. Four candidates pass the selection requirements,
with an expected background 6f0 = 2.1 events. No
candidate events are seen with a diphoton mass greater
than60 GeV/c2. A 95% C.L. bosonic Higgs lower mass

o L i R limit of 78.5 GeV/c? is set, assuming standard model
60 80 100 :”20 . Mc;:O(GeV/@)O couplings between the Higgs and the vector bosons. The
99 ¢ 95% C.L. upper limits on the bosonic Higgs production
FIG. 3. The solid curve represents the bosonic Higgs 95%ross section range from 0.80 pb far,, = 65 GeV/c?
C.L. exclusion contour, the dashed curve represents the 90%, g 34 pb form.,, = 150 GeV/c2.
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