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Abstract

Sliding-window analysis has widely been used to uncover synonymous (silent, dS) and nonsynonymous (replacement, dN)
rate variation along the protein sequence and to detect regions of a protein under selective constraint (indicated by dN,dS)
or positive selection (indicated by dN.dS). The approach compares two or more protein-coding genes and plots estimates
d̂S and d̂N from each sliding window along the sequence. Here we demonstrate that the approach produces artifactual
trends of synonymous and nonsynonymous rate variation, with greater variation in d̂S than in d̂N. Such trends are generated
even if the true dS and dN are constant along the whole protein and different codons are evolving independently. Many
published tests of negative and positive selection using sliding windows that we have examined appear to be invalid
because they fail to correct for multiple testing. Instead, likelihood ratio tests provide a more rigorous framework for
detecting signals of natural selection affecting protein evolution. We demonstrate that a previous finding that a particular
region of the BRCA1 gene experienced a synonymous rate reduction driven by purifying selection is likely an artifact of the
sliding window analysis. We evaluate various sliding-window analyses in molecular evolution, population genetics, and
comparative genomics, and argue that the approach is not generally valid if it is not known a priori that a trend exists and if
no correction for multiple testing is applied.
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Introduction

Sliding-window analysis is a popular graphical method for

visually revealing trends in synonymous and nonsynonymous rate

variation along a protein sequence, and for identifying protein

regions that are under functional constraint or positive selection

[e.g., 1,2–5]. It is implemented in several computer programs and

web servers [e.g., 6,7,8]. Because of its simplicity and intuitive

appeal, its legitimacy in such analyses was most often taken for

granted.

When applying the approach to compare various gene

sequences, we noted two features of the analysis: (i) the estimated

number of synonymous substitutions per synonymous site (d̂S) and

the number of nonsynonymous substitutions per nonsynonymous

site (d̂N) always showed clear trends along the protein sequence,

and (ii) d̂S was more variable than d̂N along the gene sequence. The

greater variation of d̂S than of d̂N is particularly surprising. Because

processes operating at the DNA level, such as local mutation rate

variation [9], should affect both dS and dN [10: p. 65] while natural

selection on the protein should affects dN but not dS, and because

protein-level selection is expected to vary across amino acid sites or

protein domains, we expect dN to be more variable than dS [see

also 3]. For dN to be less variable than dS, variation in selective

constraint on the protein will have to counterbalance variation in

mutation rate. Such a scenario appears to be too contrived to

apply to many genes. Further examinations, however, suggest that

the apparent trends in d̂S and d̂N revealed by sliding-window

analysis do not reflect variations in the true dS and dN, and are an

artifact of the procedure. The effect is inherent in the method and

affects many applications of sliding-window analysis.

Here we demonstrate the artifactual effect of sliding-window

analysis through a re-analysis of the breast-cancer gene BRCA1

from mammalian species. We also discusses similar problems when

sliding-window analysis is used in several other applications in

molecular evolutionary studies.

Results

Sliding-window analysis of mammalian BRCA1 genes
The breast-cancer gene BRCA1 is a well-known empirical case

of synonymous rate variation, since Hurst and Pál [3,9] conducted

a sliding-window analysis to compare the human with the dog and

the mouse with the rat genes. Here we reanalyze the data to show

that the apparent synonymous rate variation and the purifying

selection acting on silent sites in a particular region inferred by

those authors is likely an artifact. We follow the common practice

of conducting sliding-window analysis in pairwise sequence

comparisons but note that our conclusions apply also to

simultaneous comparison of multiple sequences. Besides the

mouse-rat and human-dog pairs, we also use the orangutan-cow

and orangutan-macaque pairs.

The results are presented in Figure 1. The window size is set to

100 codons, with an offset of one codon between successive

windows. In each window, the v ratio ( = dN/dS) as well as dS and
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dN were estimated using maximum likelihood (ML) under model

M0 (one-ratio), which assumes that the same v ratio applies to all

codons in the gene [11]. While the method for estimating dS and dN

may be important, the effects we demonstrate do not depend on

the estimation method; use of the approximate methods such as

YN00 [12] produced qualitatively identical results (not shown).

From Figure 1, the following patterns are apparent: (i) both d̂S and

d̂N show smooth trends of fluctuation along the sequence; (ii) d̂S

fluctuates more wildly along the sequence than d̂N; and (iii) in some

regions, the estimated rate ratio v̂.1, which could naı̈vely be

interpreted as indicating positive selection.

As discussed by Hurst and Pál [3], there is a striking plummet in

d̂S around codon 250 in the comparisons between the mouse and

the rat and between the human and the dog (Figure 1A&B). Hurst

and Pál referred to this region as the ‘critical region’ and their test

suggested that the v ratio was significantly greater than 1 in the

Figure 1. Sliding-window plots of d̂S, d̂N and v̂ = d̂N/d̂S in pairwise comparisons of the BRCA1 genes from mammalian species. The
window size is 100 codons, and the offset between windows is one codon.
doi:10.1371/journal.pone.0003746.g001
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human-dog pair and significantly higher than the average for the

whole gene in the mouse-rat pair. The authors suggested purifying

selection at silent sites as the most likely mechanism for the

reduced d̂S and for the elevated v̂ for the region. Nevertheless, the

authors’ tests do not appear to be valid, because the ‘critical

region’ was identified by analyzing the data and not specified a

priori, and because no correction for multiple testing was applied

(see below). The orangutan-macaque comparison (Figure 1D) is

largely independent phylogenetically of the mouse-rat and human-

dog comparisons, and does not show a dip in d̂S in the critical

region. The orangutan-cow comparison (Figure 1C) overlaps

somewhat with the human-dog comparison, and shows a small dip

in d̂S in the critical region, but is by no means out of the ordinary.

It is noteworthy that even between the mouse-rat and human-dog

comparisons, the peaks and valleys in d̂S and d̂N do not occur at

similar locations except for the dip in d̂S in the critical region.

Sliding-window analysis of simulated data
To examine whether the patterns of Figure 1 are statistically

significant and may thus reflect real biological processes, we apply

the sliding-window analysis to data sets simulated under model M0

(one-ratio), which assumes the same dS, dN, and v across the whole

sequence and independent evolution among codons. The ML

estimates of parameters under M0 from the original pair of real

sequences [11] were used to simulate replicate data sets using

program EVOLVER in the PAML package [13]. The results obtained

from simulations based on the four pairs of sequences are

qualitatively similar, so we present in Figure 2 only those for the

first two replicate data sets based on the mouse-rat comparison.

The original parameter estimates for this pair are t̂ = 0.391,

k̂ = 3.304, and v̂ = 0.504, with d̂S = 0.204 and d̂N = 0.103.

Simply from visual inspection, we were unable to distinguish the

plots in Figure 1A for the real data from those in Figure 2A&B for

the simulated data. The peaks and valleys in d̂S and d̂N in Figure 2

are random and differ between simulated replicates. However, like

the real data, the simulated data show considerable and smooth

fluctuations in d̂S and d̂N, greater fluctuations in d̂S than in d̂N, and

also windows with v̂.1. All those features are artifactual.

We suggest that the following reasons may explain the features.

First, d̂S and d̂N calculated from the sliding windows will fluctuate

due to chance effects in a small window. Because two neighboring

windows share many codons, d̂S and d̂N will change smoothly when

plotted against the sequence. Of course the amount of smoothing

depends on the window size and the offset between consecutive

windows. Second, the fluctuations in d̂S and d̂N are due to

fluctuations in the estimated numbers of synonymous (Sd) and

nonsynonymous (Nd) substitutions and in the numbers of

synonymous (S) and nonsynonymous (N) sites. Consider the

numbers of sites S and N in a window. Their sum is 3w, where

w is the number of codons in each window. Random fluctuations

in amino acid composition or codon usage will generate

fluctuations in S and N. Because N is about three times as large

as S, the same amount of change will proportionally affect S much

more than it affects N. As a result, d̂S tends to fluctuate more than

d̂N. Because the data of Figure 2 are generated under model M0

(one-ratio), with constant dS and dN along the sequence and with

independent evolution among codons, the apparent variation and

trends in d̂S and d̂N are artifacts.

Multiple testing in sliding-window analysis and likelihood
ratio test of positive selection

We examined the validity of previous uses of sliding-window

analysis to test for regions of a protein under selective constraint or

Figure 2. Sliding window plots of d̂S, d̂N and v̂ = d̂N/d̂S from two simulated data sets, generated under model M0 (one-ratio) using
parameter estimates obtained from the comparison of the mouse and rat BRCA1 genes. The window size is 100 codons, and the offset
between windows is one codon.
doi:10.1371/journal.pone.0003746.g002
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positive selection [e.g., 1,4,7,8,14]. Most such studies used

simplistic methods to estimate dS and dN, ignoring major features

of DNA sequence evolution such as unequal codon frequencies or

different transition and transversion rates. Here we claim that

most such tests we have examined appear to be invalid, partly

because they did not correct for multiple testing. If one conducts

100 independent tests at the 5% significance level, one is expected

on average to reject falsely the null hypothesis by chance in 5 tests.

Here the tests are not independent because the windows overlap,

but the problem of multiple testing exists. The overall false-positive

rate or the family-wise error rate refers to rejection of at least one

true null hypothesis when multiple null hypotheses are tested. This

error rate can be much higher than the significance level if no

correction for multiple testing is applied.

Figure 3A shows the relationship between the overall false-

positive rate and the size of the sliding window, when a pair of

sequences is simulated under a model of no positive selection and

then analyzed using sliding windows to test for positive selection. We

used two null models to simulate the data. The first is model M0

(one-ratio) with the single v ratio fixed at 1. The second is the site

model M1a (neutral), which assumes two site classes with v0 = 0 and

v1 = 1, in proportions p0 = p1 = K. Each simulated data set is

analyzed using a sliding window, using an LRT to test whether v̂ for

that window is significantly greater than 1. A false positive is

recorded if the test is significant in at least one window. The error

rate rises quickly with the increase of the window size, peaks at an

intermediate window size of between 5 and 10 codons, and then

drops with the further increase of the window size. The false positive

rates are unacceptably high at low and intermediate window sizes.

Note that in datasets simulated under M1a, the overall error rate is

nearly zero in large windows, because the test based on M0 (one-

ratio), which requires the average v ratio for the whole sequence to

be .1, is very stringent. The effect of the offset is examined in

Figure 3B, which shows that for a fixed window size (20 codons), the

error rate drops when the offset increases.

A simulation approach may be used to correct for multiple

testing. One may use the number of windows in which v̂.1 as the

test statistic; let this be W. The null distribution can be generated

by simulating under a null model of no positive selection. An

appropriate null model is the site model M1a (neutral), which

assumes two site classes with v0,1 and v1 = 1 [15]. We applied

this test to the four pairs of BRCA1 genes. For each pair, we

calculated the test statistic from the original data, W. The original

data were then used to estimate parameters under M1a (neutral),

and the estimates were used to simulate 1000 datasets under M1a.

Each dataset i was then analyzed using a sliding window to

calculate the number of windows in which v̂ under M0 is .1, W(i).

The p value is the proportion of simulated datasets in which

W(i)$W. We used the window size of 100 codons, with an offset of

10 codons to analyze the BRCA1 genes. The results are shown in

table 1. The test is significant in the human-dog (p,1%) and

orangutan-cow (p,5%) pairs, but not in the mouse-rat and

orangutan-macaque pairs.

For comparison, we applied two likelihood ratio tests of positive

selection to the same data, comparing the site models M1a

(neutral) against M2a (selection) and M7 (beta) against M8

(beta&v). Both LRTs are significant in the human-dog compar-

ison and not significant in all other pairs (table 1). We note that the

test based on sliding windows is a goodness of fit test, although the

test statistic is designed such that rejection of the null indicates

positive selection.

Previous simulation studies suggest that the LRTs based on site

models may be more sensitive when multiple sequences are

compared jointly on a phylogenetic tree [16], so we applied the

LRTs to the dataset of nine mammalian species. The phylogeny is

shown in Figure 4. The results are summarized in table 2. M0

(one-ratio) has much lower log likelihood than the site models

which allow v to vary among sites, indicating highly variable

selective pressure along the protein. The M1a-M2a test gave

2D, = 1.3, and the difference was not significant. While the

parameter estimates under M2a suggested a small proportion of

sites with v.1, the BEB calculation [17] detected no sites with

high posterior probability of being under positive selection (P,0.6

for all sites). The M7-M8 comparison is significant, with

Figure 3. The overall false-positive rate of the sliding-window test of positive selection plotted against the window size. Data of a
pair of sequences are simulated under either model M0 (one-ratio) with v = 1 (N) or model M1a (neutral) with two site classes in proportions
p0 = p1 = K with v0 = 0 and v1 = 1 (#). An LRT is used to test for positive selection in each window, by fitting model M0 (one-ratio) to the data, either
with v$1 estimated or with v = 1 fixed, and by comparing twice the log likelihood difference between the two hypotheses with 2.71, at the 5% level.
If the test is significant in any window, positive selection is claimed to be detected for the replicate data set. The false-positive rate is calculated as the
proportion of replicate datasets in which the test is significant in at least one window. The sequence length is 300 codons. The impact of the window
size is examined in A, with the offset fixed at one codon, while the impact of the offset is examined in B, with the window size fixed at 20.
doi:10.1371/journal.pone.0003746.g003
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2D, = 11.32. The BEB calculation suggested three sites (897N,

914N, 919I) to be potentially under positive selection, with

0.80,P,0.86. Thus both models M2a and M8 provide some

evidence for presence of sites under positive selection, but the

disagreement between the two tests and the lower posterior

probabilities for sites indicate that the evidence is not strong.

A plausible explanation for the conflicts between the joint

analysis and the pairwise tests is that the selective pressure on the

protein has been variable among lineages, and the various tests

used here either average over sites or average across lineages,

leading to somewhat inconsistent results. Previously Huttley et al.

[2] detected positive selection in BRCA1 affecting the human and

chimpanzee lineages. Indeed estimates from the free-ratios model,

which assigns an v ratio to every branch on the tree [18],

suggested that the human and chimpanzee branches had the

highest average v ratios.

Discussion

A search in the literature reveals that sliding-window analysis is

widely used in molecular evolution, population genetics, and

comparative genomics. In between-species comparisons, it has

been used to detect regions of protein under selective constraint

[19] and to assess local variations in certain properties of a protein

such as solvent accessibility [20] and amino acid hydrophobicity

[21]. In population genetics, it has been used to identify variations

in synonymous and nonsynonymous polymorphisms within species

[22–28], to detect balanced selection [29], to detect recombination

in a gene sequence [30,31], and to detect associations between

SNPs and human diseases [32]. We do not claim that all those

analyses are invalid. Indeed, Andolfatto et al. [33] corrected for

multiple tests when they used a sliding window analysis to detect

recombination. Tajima [34] discussed determination of the

optimal window size. Furthermore, Ardell [35] wrote a program

for performing neutrality test in a sliding window analysis by

adjusting for multiple testing. Similarly Talbert et al. [36] used

Comeron’s [6] program K-ESTIMATOR to conduct a sliding-window

analysis of the gene sequences of the mammalian centromere

protein C (CENP-C) to detect regions under purifying and positive

selection. Comeron’s sliding-window approach does not correct

for multiple testing, but Talbert et al. used a trial-and-error

approach to decide empirically that positive selection was

supported only if v.1.5 and purifying selection was indicated

by v,0.67 in sliding windows of 33 codons. The trial-and-error

approach was an attempt to guide against the high false positives

of the sliding-window analysis.

We suggest that if a certain trend is known to exist along the

sequence, it is legitimate to use sliding windows to visually illustrate

it. Certain amino acid properties (such as hydrophobicity) may be

expected to vary gradually along the protein sequence, because

neighboring residues are often in the same secondary structural

categories or in the same protein fold. If such a trend is not known

to exist, it is in general invalid to use sliding windows to infer the

Table 1. Test of sites under positive selection by the sliding-
windows analysis and by the LRT.

Data Sliding windows 2D, 2D,

Statistic a p-value (M1a-M2a) (M7-M8)

Mouse-rat 19 0.096 2.24 2.39

Human-dog 18 0.007** 8.18* 9.08*

Orangutan-cow 23 0.016* 0.35 0.40

Orangutan-macaque 16 0.762 0.00 0.00

aThe test statistic in the sliding window analysis is the number of windows in
which v̂.1. The window size is 100 codons, and the offset is 10 codons. In the
LRTs, the test statistic 2D, is the log likelihood difference between the null and
alternative models.

*: significance with p,5%.
**: significance with p,1%.
doi:10.1371/journal.pone.0003746.t001

Figure 4. The phylogeny for nine mammalian species. The branch lengths, in the expected number of nucleotide substitutions per codon, are
estimated under the free-ratios model [18] from analysis of the BRCA1 genes, while the estimated v ratios for branches are shown along the
branches.
doi:10.1371/journal.pone.0003746.g004
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trend, because the approach will always generate a trend whether

or not one exists. In addition, one has to correct for multiple

testing if sliding windows are used to detect significant departures

in a certain property of the molecule from null or neutral

expectations. Many studies, both early and recent, did not use

sliding-window analysis appropriately due to lack of an a priori

hypothesis to stipulate the existence of the trend and due to lack of

correction for multiple testing.

Materials and Methods

Mammalian BRCA1 genes
We retrieved from GenBank sequences for the breast-cancer

gene BRCA1 from nine mammalian species: human

(NM_007294), chimpanzee (AY365046), gorilla (AY5890), orang-

utan (AY589040), macaque (AY58904), cow (NM_178573), dog

(U50709), mouse (U35641) and rat (AF036760). The sequences

were aligned manually. Codons with alignment gaps were

removed from all species, with 1768 codons in every sequence.

Sliding-window analysis
The data in each sliding window were analyzed using the

CODEML program in the PAML package [13] to fit codon model M0

(one ratio). This model involves the following parameters:

sequence divergence t, measured in the number of nucleotide

substitutions per codon, the transition/transversion rate ratio k
and the rate ratio v = dN/dS. Codon frequencies were estimated

using the observed frequencies (the Fcodon model), while other

parameters were estimated by ML.

Likelihood ratio test under site models
Two likelihood ratio tests of positive selection were implement-

ed using the CODEML program [13,37,38]. The first test compares

M1a (neutral) against M2a (selection). M1a assumes two site

classes with 0#v0,1 (conserved sites) and v1 = 1 (neutral sites),

while M2a (selection) adds an extra class with v2$1. The second

test compares M7 (beta) against M8 (beta&v). M7 assumes a beta

distribution beta(p, q), while M8 adds an extra site class with vs$1.

In both tests, twice the log likelihood difference was compared

against x2
2 [13].

Simulation to evaluate the false positive rate of sliding-
window analysis

Data sets consisting of a pair of sequences were simulated under

a codon model of neutral evolution and analyzed using sliding

windows to test for positive selection. Two null models were

assumed to simulate datasets, with the number of replicates to be

1000. The first model was M0 (one-ratio) with v = 1. The second

was M1a (neutral) with p0 = p1 = K, v0 = 0 and v1 = 1. In both

models, the sequence distance was fixed at t = 1 nucleotide

substitution per codon, and the transition/transversion rate ratio

was fixed at k = 1. Codon frequencies were assumed to be equal

(1/61). Each simulated data set was analyzed using sliding

windows, with an LRT used to test whether the single v in M0

(one-ratio) is significantly greater than 1. The null distribution is

the 50:50 mixture of point mass 0 and x2
1 [39], with the critical

value to be 2.71 at the 5% level. Positive selection was claimed to

be detected for the replicate data set if the LRT was significant in

at least one window. The sequence length used was 300 codons.
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