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Continuous Equilibrium in Affine and
Information-Based Capital Asset Pricing Models
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We consider a class of generalized capital asset pricingefaad continuous time with a
finite number of agents and tradable securities. The séuuritay not be sufficient to span
all sources of uncertainty. If the agents have exponentittlyufunctions and the individ-
ual endowments are spanned by the securities, an equililaxists and the agents’ optimal
trading strategies are constant. Affine processes, andhéoeyt of information-based asset
pricing are used to model the endogenous asset price dysamicthe terminal payoff. The
derived semi-explicit pricing formulae are applied to nuizedly analyze the impact of the
agents’ risk aversion on the implied volatility of simuleously-traded European-style op-
tion
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Introduction
In this paper we propose an analytically-tractable equilib model in continuous time, within which
financial securities are priced in a generalized capitatgsscing model (CAPM).

It is well known that when markets are incomplete, compegiquilibria may fail to exist. Even if they
exist, they may not be Pareto optimal, nor supportable a8iiledga of a suitable representative agent
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economy. The equilibrium analysis of incomplete marketbésefore always confined to special cases,
for instance to single agent modéE[EL 15], multiple ageotiels where markets are complete in equi-
librium [IE,], or models with particular classes obde @)] or preferenceE| [5].

In [|a], the authors recently established existence anduamgss of equilibrium results for incomplete
financial market models in discrete time when agents’ pegfegs are translation invariEntn the sit-
uation where uncertainty is spanned by finitely many randatksy they showed that the equilibrium
dynamics can be described as the solution to a coupled systiemward-backward stochastic difference
equations. The system is usually high-dimensional becanseobtains one equation per security and
market participant. This renders simulations and calibnatof the model cumbersome, if not impossi-
ble. Within the framework of generalized CAPMs, that is |igents share the same base preferences (as
in the case of exponential utility functions) and the end@ais lie in the span of the tradable assets, the
system simplifies to a single equation representing thelibgum utility of some representative agent.
Furthermore, the equilibrium price process depends onltheraggregated endowment, the market risk
aversion, and the flow of market information. It is in this serthat these three items fully characterize
equilibrium prices in generalized CAPMs.

In this paper we extend the generalized CAPM analyzeainq&]dntinuous time when agents’ pref-
erences are of the expected exponential type. In partictiaradvantage of the herewith presented
continuous-time framework is that we obtain (semi-)expfarmulae for equilibrium prices. If not ex-
plicitly computable, key equilibrium quantities can be garted using numerical integration only—no
Monte Carlo methods are needed. We consider a model withta finmber of agents, which are initially
endowed with an attainable random payoff. They trade a finit@ber of securities so as to maximize
expected exponential utility from terminal wealth. The fin&l securities are characterized by their ter-
minal payoffs, which we assume to be functions of finitely snararket factors. The market factors may
or may not be observable to the agents. Affine processeshartbeory of information-based asset pric-
ing are used to model the endogenous asset price dynamitsetetminal payoff.

Within our first approach, the dynamics of the market facfot®®ws an affine process that generates
the market filtration. Affine processes are extensively usechathematical finance (see for instance
,,] and references therein), as they lend themséiva transparent mathematical analysis and
to the application of efficient numerical methods. We shoat thithin an affine framework, equilibrium
securities prices are given by the quotient of two integr&leth integrals are the product of an expo-
nential function evaluated at the current state of the fagmtocess and the Fourier transform of a smooth
function. Representing equilibrium prices in terms of detaistic integrals allows for a fast and effi-
cient numerical analysis of other equilibrium quantitisch as option implied volatilities. We analyze
implied volatilities for two single-security benchmark deds: (i) an additive Heston stochastic volatility
model, and (ii) a pure jump Ornstein-Uhlenbeck model. Botidels reproduce the well-documented
smile-effect of implied volatilities and identify investoisk aversion as a key determinant of implied
volatilities.

The second approach to continuous equilibrium presentéusrpaper is based on the theory of infor-
mation-based asset pricing, sEIe [4] dﬂ [19]. Within thisrapch, the asset price dynamics is explicitly
generated by taking the conditional expectation of ther&utash flows, which are multiplied by the
pricing rule, given the partial information about the marfaetors that is available to the agents. The
filtration is modeled by stochastic processes, which (ijycarformation about the a priori distribution
of the market factors, and (ii) embody pure noise preventivagket participants from accessing full

2Exponential utility functions, for instance, are tranislatinvariant after a logarithmic transformation.



knowledge as to what is the “true” value of the asset at ang tiefore the cash flows occur. We use the
information-based framework to show the dependence ofghgilerium prices of credit-risky securities
on information about the financial standing of a company.

The paper is structured as follows. A general existencdtrakung with a discussion on the information-
generating processes is given in Secfibn 1. In Sefion Zlang $resent affine and information-based
equilibrium pricing models, respectively. Proofs to thedtems are collected in the appendix.

1. A Generalized Capital Asset Pricing Model

We consider an equilibrium model in continuous time with @&disetA of economic agents. Uncertainty
is modeled by a probability spa¢e, 7, P) carrying a filtration(F; ),cjo,7). The filtration captures the
flow of information that is available to the agents over tleling period0, 7], and is assumed to satisfy
the usual assumptions of completion and right-contintiityvhat follows, all equalities and inequalities
are to be understood in the-almost sure sense.

1.1. Existence of Equilibrium

The agents can lend to and borrow from the money market atedsome exogenously given interest
rate, and they can trad& securities. The securities are in net supply= (n!,...,n%) ¢ RX and
characterized by their terminal payoffs: = (S, ..., SX), which we assume to b&r-measurable
random variables. Securities are priced to match demandsapply. Each agent € A is initially
endowed with som&-measurable random paydif® of the form

Ha:ca+77a.ST,

for constants® € R andn® € RX. Furthermore, at each timtec [0, 7] the agent’s preferences can be
described by the utility functional

UMX) = f% log (E [e*'yax |]~'t]) ,

wherey® > 0 is the risk aversion parameter. Thus at titne [0, 7], the agent faces the optimization

problem
T

sup U} H“+/19ud5u ,
vEO y

where the set of admissible trading strate@eis given by
0= {19 € L(S) : G(v)is aQ-supermartingale, for alp) € P} .

Here, L(S) andG.(9) := fot 9,dS,, denote the set af-integrable predictable processes and the gains
process, respectively, whereaslenotes the set of all equivalent martingale measures (EMMy

The goal is now to establish existence of a (discounted)ibguim price procesﬁSt)te[QT]E Since all

3Note that in equilibrium, there is an EMAQ, that is, an equivalent probability measdpeunder which the price processwill
be a true martingale. In particula®,will be a P-semimartingale. For related discussions on suitablec$eidmissible strategies
see for instanceﬂ[?]DS], 0E|[2].

4For simplicity, we assume that the trading horiZBris short so that interest rate risk can be ignored.



agents share the same base preferences, and because #d limjrothe span of the tradable assets, our
model can be viewed as a generalized CAPM. Just like in thesiclal CAPM, in our incomplete market
model existence of an equilibrium can be established usiagtandard representative agent approach
that underlies equilibrium models of complete marketstti@rmore, all agents share the market portfolio
according to their risk aversion in equilibrium. The eduilum pricing kernel depends on the agents’
preferences and endowments, however only through the endotv and supply-adjusted risk aversion

7 :=v(n+n) € RE. (1.1)

Here,n := 7" denotes the aggregate endowmentand := >~ ., ' can be viewed as the market
risk aversion. The following result can be proved by staddhality results for entropic utility functions;
see [[__b Theorem 5.1] for a related result in discrete time.

Theorem 1.1. Suppose that the following integrability conditions hold:
exp(—7-Sr) € LY(P) and Sr e L' (Q)¥, (1.2)
where( is an equivalent probability measure with density

dQ _ exp(—7-Sr)

dP  Elexp(—7-S7)]’ (1.3)

Then, the price process defined by
Sy =Eq[Sr|F], te€l0,T], (1.4)

together with the constant trading strategies

v

ﬂfzw

(n+77)777a7 aEAa

constitutes an equilibrium.

We notice that the equilibrium pricing kern@l depends only on the terminal payoffs weighted by the
endowment- and supply-adjusted risk aversion. In padicifl the k-th security is in zero endowment-
adjusted supply, that is, if* + n* = 0, then its payoff does not affect the equilibrium pricingrieic

Furthermore, the integrability assumption Smunder the pricing measurg guarantees that equilibrium
prices arel-martingales. Hence they are, iy (1.2) dndl(13%semimartingales and thus well defined as
an integrator in the sense EZG, Chapter Il and 1V].

1.2. The Market Filtration

The previous theorem established existence of a continequiibrium under no assumptions on the
underlying filtration(F;). We emphasize that the construction of the filtration chtaraes the dynamics
of the derived price processes. In order to obtain (senpli@kequilibrium price processes, we assume
that the terminal payoffs depend in a functional form on awme& of market factors the distribution of
which is known to the agents. We define the following:

St = fH(X).

We assume that the market filtratiQ#; ) ;< (o, 7, to which the equilibrium prices will be adapted, is gen-
erated by an observable stochastic pro¢égssuch that, possibly up to a constafit,= X . Equilibrium



dynamics are then studied within an affine and an informaiased framework. The first approach
assumes that the dynamics of the market factors follow amegffiocess; in the second approach the ob-
servables generating the market filtration are modeled bwBian random bridges with drift from zero
to X.

2. Affine Equilibrium Framework

In this section, we assume that the dynamics of the mark&iria¢ are observable and that they follow
an affine proces¥, that is¢ = Y. After specifying the setup and following a brief introdiact into the
theory of affine processes, the results in Sedilon 1 are vsgerive equilibrium pricing formulae in Sec-
tion[2.1. This is followed by an analysis of equilibrium agptiprices in Section 2.2 and equilibrium asset
prices in a Heston stochastic volatility framework and ansdgin-Uhlenbeck jump model in Sections
2.3 and 24, respectively. Since we consider a linear payaftture of the underlying assét = Xr
from Sectio 2. onwards, negative equilibrium prices catbe excluded a priori. However, this can be
avoided by either directly modeling the log-payoff of thalerlying, that isS; = exp(Xr), or, as in the
present work, considering only short trading horiz@hén this case, option prices obtained from a model
and its “logarithmic counterpart" are quite close, comgarénstance the discussion 28]. We choose
the first approach, since the verification of the integrgbdonditions in Theorem 212 is more involved
in the case of a log-payoff. The additional challenge is duthé “double exponential” structure. We
emphasize however that, once this is achieved, all ourteesah be adapted and hence extended also to
longer trading horizons.

2.1. Setup and Equilibrium Pricing Formulae

In this section, we consider the case where the paygffs a functional of an observable affine factor
process. To this end, we assume that the underlying pratyagphce((2, 7, P) is rich enough to support
an affine Markov procesg taking values in the state spate:= R’ x R".

We setd = m + n and writeY = (V, X). We interpretX € R" as the factor process that determines
the payoff and/ € R as a process driving it; a typical example would be a stoaheslatility model.
We assume that'”, the Markov process stopped at tirifig is conservative, meaning that there are no
explosions or absorbing states up to tieThe market filtratior{.7; ), (o, is then chosen to be the one
generated by:

Fi=0Ys,s<t), tel0,T].

Usually, one associates willh a family of probability measure&”?), < p, which represents the law of
the procesd” starting aty € D. Since every affine process is a Feller process, the filtrdffg) can be
completed with respect to the family?¥), < p so that the filtration is automatically right—continuo@{z
Section I11.2].

2.1.1. Affine processes

Before turning to the problem of equilibrium pricing, we aicsome useful results on affine processes,
the details of which can be found 12] or 22].



Definition 2.1. An affine process is a stochastically contimﬁ)aﬁne-homogeneous Markov process
(Y, PY) with state-spacé, of which log-characteristic function is an affine functiohthe state vec-
tor. That is, there exist functions: R, x iR? — C andy : R, x iR¢ — C? such that

EY[exp (u-Y;)] = exp [@(t,u) +(t,u) -y , (2.1)

forally € D and(t,u) € R, x iR%. An affine proces¥’ is called regular, if the derivatives
F(u) := 0ip(t,u)|,_or , R(u):=0pp(t,u)],_o+

exist for allu € U := {u = (uy,uy) € C™ x C" : Re(u,) <0, Re(u,) = 0} and are continuous in
u =0

The definition of an affine proce¥simplies that theF;-conditional characteristic function &% (7" > ¢)
is an affine function ot;:

Elexp (u-Yr) | Ft] = exp [od(r,u) + (7,u) - Yi] (2.2)

for all (1,u) € Ry x iR?, wherer := T — t. The affine property will be used in this form throughout.
The admissible parameters associated with an affine prdtdssermine its generator and its functional
characteristicd” and R. The functional characteristics completely determineguia affine process,
since the functions ands satisfy generalized Riccati equations of the faim(¢, u) = F (v (¢, u)) and
Op(t,u) = R(Y(t,u)); see AppendikB for further details.

Although the special form of the log-characteristic funntiof an affine process perfectly lends itself
to tractable computations, we need to consider a class aepses for which formulag(2.1) dr (R.2)
extend to a broader subspac&(ﬁftham‘Rdﬂ Itis shown in I@Z Chapter 3] that the functionsandy
characterizing the proce¥shave unique extensions to analytic functions on the intémc of the tube
domainc := {(t,u) € Ry x C?: (t,Re(u)) € £}, where€ := {(t,v) € Ry xR?: v € Dyy } and the
setD;, is defined byD, | := J,.,{z € R? : supy<,<, EY [exp(z - Y;)] < oo, forall y € D}. The
extensions still satisfy the aforementioned Riccati e_i(wmtandIIle) and(2.2) extendd:‘@ﬁ Recently,
an alternative characterization of the extensibility & #ffine transform formuld(2.2) has been given in

[25).

2.1.2. Equilibrium pricing formulae

We are now ready to state the main result of this sectionjsfeesemi-explicit formula for the equilibrium
price processes in an affine framework. For simplicity, wstriet the analysis to processgs= (V, X)
with state spacé = R, x R, and we assume that the agents can tr&dgecuritiess’, . .., S with
terminal payoffs

St = fH(Xr), (2.3)

for payoff functionsf” : R — R. Under suitable integrability conditions our results gasver to more
general payoff functions of the forgf*(Yz) and to affine processes on multi-dimensional state spaces.

5A stochastic procesE is stochastically continuous, if for any sequeritg ) — ¢ in R4, Yz, converges td; in probability.

6In the recent Work]EC%], the authors actually show that edfiheaprocess as defined above is regular, wheredsin [12]22]d [
regularity is still an assumption ori.

"By extension it is meant that the functiopsands/ can be uniquely analytically extended to a suitable sutespéR ; x C?.

8More precisely,|E2, Lemma 3.12] states that this holds ersét{ (¢, u) € & : |E0 [exp(u-Ys)]| #0, foralls €[0,t)},
whereas@Z, Lemma 3.19] then yields that both sets coincide



However, the resulting pricing formulae would be quite censome and the Riccati equations that de-
termine the processes’ functional characteristics wooldbnger be solvable in closed form (the semi-
explicit structure of the solution would be preserved, gitouWe definef (z) := (f*(z),. .., fX(x)).

Theorem 2.2. LetY = (V, X) be an affine process d; x R, and suppose that the terminal payoffs of
the securities are of the forfi (2.3). Suppose furthermatttiere exists a vector of damping parameters
(at,..., o B) € RE+! such that the functions

9¢ (2) = exp (a*z) f*(z) exp (—C - f(2)) (2.4)
h¢(z) = exp (Bz) exp (=C - f(2)) , (2.5)
and their respective Fourier transforms,
Q’E(S):/e’”yg’f(y)dy and hc(S):/e’”yhc(y)dy,

R R
are integrable for all¢ in some neighbourhood 6f and that

(T,(0,—a*)) e &, forallk, and (T,(0,—p))€ €. (2.6)
Then, withg*(s) = g’;(s) andh(s) = iz@(s), the following holds:

(i) The equilibrium price of5 attimet is a function ofr := 7" — t and the current state of the process
Y, and the price of thé-th security at time € [0, T is given by

Jrexp [¢(7, (0, —aF +is)) + (7, (0, —aF +is)) - Y] gF(s)ds

SF = , - - (2.7
Jpexp [6(7, (0, =B +is)) + ¥ (7, (0, =B +is)) - Y| h(s)ds
Here,¢ and+/ denote the analytic extensions of the functions introdurc&xkfinition[2.1..
(ii) The equilibrium price process df at timet can alternatively be computed by
, 0 -
St = ~ e HO/HE)| @8)
o (=%

Here, the functiorf : RX — R is given by

H(C) = %/exp {(b(’r, (O,fﬂ+is))+ 1/)(7‘, (0,—ﬂ+is)) Yt} he(s) ds.
R

The benchmark case where only one security is in non-zerovemeént-ad-justed supply and its payoff
function s linear, and all other securities are in zero endent-adjusted supply, does not require Fourier
transform methods, as shown by the following corollary.

Corollary 2.3. Let the procesy” and the functiong”(s) be as in Theorefn 2.2. Let us further assume
that there is only one security, denoted$®); in non-zero endowment-adjusted supply, that is

v = (V(nl—l—nl),o,...,O) .

If furthermoreS}. = X and#¥ satisfies(T, (0, —7')) € &, then the equilibrium price process 6t is
given by

St = [Ou,d(T,u) + 8y, ¥(7,u) - Yy] | tel0,T], (2.9)

u=(0,-31) ’



wherer := T'—t andd,,, denotes the partial derivative with respect to the secogdiarent of the vector
u = (uy,u,). Furthermore, whenever the remaining securiti€s, . . ., S¥) satisfy the assumptions of
Theoreni 2P, their price processes equal

k z1

St =g [ew (87 (0) + 877 W) ¥ () . (2.10)
R

fork =2,..., K, and each € [0, T]. The shift operatoi\;”* () in (Z10)is defined by

APZ(p) = o(t, (0, —w + is)) — p(t, (0, —2)).

2.2. Pricing of Call Options

We are now going to establish semi-explicit pricing forneufar European call options. The main chal-
lenge will be to find suitable “damping” functions such tHae fFourier methods of Theordm .2 can be
applied. Specifically, we consider a market model with alsirsgock with terminal payofbr = Xr
and N call options on the stock with payoffst. = (Sr — K;)*, fori = 1,..., N, and strike prices
K, < ... < Ky. The stock and the options are traded simultaneously ancehenilectively influence
the equilibrium pricing kernel. The flattening functions fbandC* are denoted anda*, respectively;
the corresponding weighted payoff functions are dengtanaldg®, respectively. We first state the pricing
formula for the most general case of multiple simultaneptisided options in non-zero endowment-
adjusted supply. The formulae are a direct application aforen{Z.2. Subsequently, we consider the
cases where either a single option in non-zero endowmgustad supply is traded, or multiple options
in zero endowment-adjusted supply are traded.

2.2.1. Multiple, simultaneously traded options

Let us first consider the general case whare> 0 call options and one stock in non-zero endowment-
adjusted supply are traded. As an illustration, we assumetltiioughout Sectiorls 2.2.1 apd 2]2.2 alll
supply-adjusted risk aversion parameters satisfy

<1 _ AN+1
=7

The pricing measure is then given by

aQ _ &P (_7 (ST + i, (St - Ki)Jr))
P~ B exp (< (S5 + o (51— Ko

and the following result is an immediate consequence of férel@.2.

, (2.11)

Theorem 2.4. Given thate and 8 satisfyy < «, 8 < (N + 1)y and (2.6), the equilibrium price of the
underlying securitys at timet € [0, T is given by
_ fR exp [gb(T, 0,—a+ zs)) + 1/)(7', 0, —a+ zs)) . Yt] g(s)ds
t Jeexp [6(7,(0,=B +is)) + (7, (0, =B +is)) - Y] h(s)ds
and the price of thé&-th call option is given by
- Jrexp [¢(7,(0,is)) + (7, (0,is)) - Y¢| g¥(s)ds
‘ Joexp [6(7, (0, =B +1is)) + (7, (0, =B +is)) - Yy] h(s)ds

)

)



for k =1,..., N. Here the functiong, §* andh are given by

g(s) = 3 ex S expl(—ts+a—7 j —
9(5)—; p<7;K’C> p[(~is + JV)KJ][((ieraj'y)(ierOé(j+1)7>)

(g mrer))

P(e) — NeX S exp [(—is -7 j —
o =3 p<7,;K’C> Pl ”)K”Lismm(isw(j+1>v>}’

k—1
" (s) = ex exp [(—is — L

N Jj—1
X exp [(—is —j j — — K
+ ) exp <7};Kh> pl(=is —jv)K;) K(zs — N (=is— (G + 1)7))

j=k+1

(e m)]

The assumption < «a, 8 < (N + 1)y imposed on the damping factors ensures that the funcigyts 4
of (2.4) and[(Z.b) allow for an integrable Fourier transfotmwhat follows, all model parameters have
to be chosen such that (2.6) is satisfied and hdnck (2.2eapplirther details are discussed below.

2.2.2. Assingle option model

The pricing kernelZ111) and the Fourier transforms fronedeniZ.% simplify considerably when only
one option with strikeX’ > 0 is traded. In this case the price processgs and(C;) can be computed
as in Theorerh 214 by

~ K~
(—is—v+ a)(—is— 27+ «)
1 1
(em )

h(s) =exp[(8 — v — is)K] ((ﬂyis)_(’;QWis)) '

§(s) = exp(a — v — i)K] [

9'(s) = exp [~ (is + 7) K] (=TT SER

2.2.3. Options in zero-endowment-adjusted supply

Let us finally consider the simplest situation in which altiops are in zero endowment-adjusted supply.
In this case, the equilibrium pricing kernel is independ#raption payoffs and one only needs to find a
suitablex corresponding to the weighted payoff functibn {2.4) in Tieed2.2. The simple choice = 0
already guarantees that the Fourier-transform

1

9'(s) = exp [~ (is + ¥") K] G513



of the functiong’ (z) := e~V *(z — K)7 is integrable. The price processis then given by[{2]9), and
the price of the call option at timee [0, T is given by

1 <1 <1 ~1 R
Ci= e [ exp[A27(6) + AT ()Vi + 407 (2) X,] 9 (5)ds.
R
with 7 := T — ¢t andA%7" defined in Corollarf2]3.

2.3. Equilibrium Dynamics in a Stochastic Volatility Model

By choosing the dynamics af according to the Heston stochastic volatility mo@ [1¥isipossible to
derive explicit equilibrium stock price formulae. L¥t= (V, X) be determined by

dVi = (k — A\V;)dt + o/ V;dW}! Vo = o,
dXy = pdt + /VidW? Xo = x0, (2.12)

where (9, F, P) is assumed to be rich enough to support the two-dimensiomaldan motionl =
(W1 W?)§ The market filtration is the augmentation of the filtratiomgeated byY". The parameters
w, Kk, A, o > 0 will be chosen appropriately later on. We initially assurhattthe agents are trading a
single securityS in unit endowment-adjusted supply with pay6ff = Xr. We note that, unlike in the
original model proposed by Heston, we do not model the logpffdy (Z12). However, our approach
is justified by considering only short time horizons. Sinte &bove additive Heston model is affine and
allows for explicit solutions of the functions and+, we apply the results obtained in Secti@hs 1 @nd 2
to compute the equilibrium pricg; at time¢ € [0, 7] in closed form as a function df;.

Theorem 2.5. Letd() be defined by

A2 —0242 i v <
9(7)={i S i

Vo2 =2 if v >

Q> >

Suppose that is such thatl” satisfies

(2.13)

Q> al>

400 v <
T<qy ()]
W (arctani—/\ + 7T) Yy >

Then we have that, with := T — ¢, 6 := 0(v) and ¢’ := %9(7), the equilibrium price procesS is
given by

Sy =T(r,v) =L (7,7) Vi + X, (2.14)
fort € [0, 7], and where
2k -1 1
T(r,7) = —35 | 00" + 1) + A" = 1)} [(H(e“ +1) + A = 1)) (0 = 50%7)

—0(0/(e7 + 1) + e (A 7"2))} ’

9The more general case of correlated Brownian motions caulddiuded in[Z-1R) by consideriig® := pW! + /1 — p2W?
instead ofi¥’2. We choose zero correlation in order to keep the notatioplsim

10



I(rv) = {9 (eGT +1)+A (eeT —1) } B [(2 (7 —1) — WTH’eHT)
+7 (e’ 1) (9’ (% + 1) + 7€’ (N’ + y0?) ) (0 (¥ 4 1) + A (7 — 1) )_1} '

We note that{Z.13) ensures thaf{2.6) in Thedrerh 2.2 isfigatjsvhich, in combination with the discus-
sion in Sectioh 2]2, allows us to study the impact of the mpaeameters in a framework comprising
European-style options. In particular, we illustrate witthe Heston framework the effect of the parame-
tersy ando on implied volatilities using the formulae obtained in The[2.4. To this end, we consider a
setting with one underlying asset and fifteen simultangaustied call options written on it, all affecting
the pricing density. In Figuild 1, four different implied watility curves are shown, corresponding to four
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Implied Volatility
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Figure 1:Implied volatility curves with varying risk aversion ~
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Figure 2:Implied volatility curves with varying vol-of-vol o

different values of the risk aversion We see that, especially for in-the-money options, higis&raver-
sion yields a higher level of implied volatility. The moreskiaverse the representative agent is, the more
in-the-money options are appreciated as good hedges &gassbly low values of the underlying. In
the recent work [29] the impact of market risk aversion ongqtton implied volatilities is investigated
by means of indifference pricing by dynamic convex risk nueas and asymptotic methods.

The implied volatility curves for two different choices dfe vol-of-vol parametes in (2.12) are shown
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in Figure[2. We observe a significant increase in implied tl@lawhen changing from the low value
(blue curve) to the higher one (red curve). That is due todbethat a high value af increases the prob-
ability of S taking on extreme tail values and hence rendering evenfetlteemoney options attractive
instrument

2.4. Equilibrium Dynamics in a Pure Jump Ornstein-Uhlenbek Setting

In order to include the presence of jumps into the discussfaequilibrium prices, we consider now a
single stock with terminal payofi; = X1 whereX is an Ornstein-Uhlenbeck process with a pure jump
component as Lévy p

dX: = - MNXy —p)dt+dJ; , Xo=up.

Here, J is an adapted compound Poisson process with intersity0 and jump distribution/(dz) =

10 exp(—0 |z|)dz X4 The parameters and A describe the long term mean and the mean reversion rate,
respectively. In this one-dimensional setting the equatior the functional characteristié¢sand R are
given by

2

F(u) = Apu + and  R(u) = —)u, (2.15)

K
02 — 42

see[([B.1) and(B]2). Combining(2]15) with (B.4) ahd (B.5¢ deduce that the functiorsands) satisfy

the following system of Riccati equations

2
Oed(t,u) = Au(t,u) + #(j,(;ﬁ)’u) , »(0,u) =0

Op(t,u) = =\t u) , P(0,u) =u,
which allows for the explicit solutions

2 2,—2\t
ot 1) = 2 log (HL

—Xt -
) PR )—i—,uu(l—e ) and  ¢(t,u) = ue™ .

Thus, [2.2) holds, as long ase R\{—60,0} andT < ¢*(u), with

+00 lul <0
t* = 2 . 2.16
(u) { filog(%) |u| > 6 ( )

This, together with Corollafy 2l 3, allows us to formulate fbllowing:

Proposition 2.6. If |§| # 6 andT < ¢*(—%), wheret* is as in (ZI8) then, witht := T — ¢, the
equilibrium price proces$ is given by

I<392’7 (6—2/\7 _ 1)

St = X602 — 32 (02 — u2e—2>7)

+u(l—e )| +e X, te[0,T].

In the following we illustrate the influence of the paramster x andf on option implied volatilities.
Figure[3 illustrates the dependence of implied volatsitia the jump parameters for fixed risk aversion.

The red curve corresponds to smaller jumps arriving at a frggiuency (, %) = (30, 3—10)), whereas

12
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the blue one was obtained considering higher jumps at a lreguency (s, 5) = (20, %)). Increasing
the mean jump height distinctly lifts the level of impliedlatlity, since the probability ofS taking
extreme values is higher that way. We further note that aneffiodel including jumps seems in general
more suitable to reproduce the right-hand side smile olesdrvreal market data. In Figuré 4 in turn, we
observe that an increase in implied volatility for in-themey call options is caused by increasing risk

aversion, similar to the stochastic volatility model dissed befor

10 For the FigureE]1 arld 2, the following parameters were usethéonumerical computationgt = 0.1, & = 0.006, A = 0.2,
T =0.5t=0, (z0,v0) = (1,0.03). In Figure[1, we set = 0.3, whereas in Figurgl2y = 0.2 was used.

1This is a specific subclass of basic affine processes, con@réection A.2].

12More preciselyJ; = Zf;‘o b; D;, whereN; is a Poisson process with intensity D; are exponentially distributed i.i.d. random
variables with jumps of meag > 0, andb; are i.i.d. Bernoulli random variables wifA[b; = 1] = P[by = —1] = 0.5.

13The remaining parameters in Figufds 3 Bhd 4 were chosép,as T',t,z0) = (1,2,0.1,0,1). In Figure[3 we sety = 0.2,
whereas the jump parameters were chosema%X = (30, 3—10)) in Figure[4. As before, we considered 15 simultaneously
traded call options.
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3. Information-Based Equilibrium Pricing

In this section, we propose another method to model the mltkation based on the information-based
asset pricing approach of [4] armlg]. This approach is dasethe modeling of cash flows and the
explicit construction of market filtrations, which can beurally embedded in the equilibrium pricing
model considered in the present paper. The key idea is tigigad of assuming from the outset some
abstract filtration representing the information avaietolthe market, processes carrying market-relevant
information are explicitly constructed, and a distinctmiween "genuine" information and market noise
is made. The equilibrium dynamics is then computed by udiegspecial form of the pricing measure
obtained in Sectionl1, by assuming an a priori distributibthe market factor determining the terminal
payoff, and by updating a posteriori distributions aboetdsets’ payoffs obtained by a version of Bayes
formula.

3.1. Setup and Equilibrium Pricing Formula

We assume that the probability spade, 7, P) supports aN-dimensional Brownian motioB to-
gether with N independent random market factdi®;)Y ;, all independent of3, and defineS% =
fF(X1,...,Xn). The agents know the a priori distribution$ of all X,;. With each market factor
X, we associate an observable procgss:c(o, 1), the so-called information process. The information
processes are defined by

& =0 Xit+ B, te[0,T], (3.1)

where the independent standard Brownian bridgiesn [0, 7] are defined in terms B as solutions to
the SDEs 8

% t
by = -7
fort € [0,7), and3;. = 0. Looking at the different components of the procesges (&a)identify the
parto; X;t containing real information about the realization of a nearfiactor revealed over time, and
the bridge part representing market noise. The speed ahwiiécoutcome o¥; is revealed is governed
by the information rater;. The information processes capture the flow of informatieailable to the
market agents, and thus generate the market filtration:

dt+dB}, Bi=0, (3.2)

‘Ft:O—(slv"'agéVaSSt)a tG[O,T]
By construction,St is Fr-measurable, and at each times [0,7], the equilibrium priceS; will be
determined using the results of Secfidn 1.

Theorem 3.1. Assume that all a priori distributions’ allow for a density with respect to the Lebesgue-
measure denoted by (z), respectively. If in addition the functiorig®)X_, and the a priori densities
(v )N, are such thal.2)is satisfied, then, for < T', the equilibrium price process of theth security

is given by

gk fRN 2(x1,. . on) fF (e, .. o) (1) - ~7r,fv(xN)d$1 ...dry (3.3)
¢ Jan 2(@1, . xn)mi (@) Y (e )dey o dey ’ '
where the function is defined by
K
2() = exp [ zwl(»] . (3.4)
=1

14



The regular conditional density functiorj associated with théth market factor is given by

(3.5)

i) v () exp {% (oixgf — %(in)%)}
T—t

- Ja v (y) exp [ (oiyéi — %(Jiy)Qt)} dy .

3.2. Innovation Processes and Equilibrium Market Price of Rsk

Let us considelk = N = 1, and in particular the caser = X with corresponding information process
& = oXt+ py, fort € [0, T]. We assume that the market facfoiis such that the conditions of Theorem
[3.7 are satisfied. Formula(3.3) now reduces to

g E [Stexp (—3ST) | Fi _ [ wexp (=) m(x)da
! E [exp (—=7S7) | Fi [ exp (=) m(x)dx

(3.6)

Results from general filtering theory guarantee the extgtesf a P-Brownian motionW on [0,7),
adapted to the market filtration generatedéoyDbserve to this end that rearrangifig{3.2) leads to the
following SDE satisfied by on[0,T")

g, = {T_t(JTX&)} dt+dB,, & =0.

Hence W is the innovations process associated with the informdtiginen by

tht/t{Tl_s(aTE[Xm]gs)} ds, t<T. (3.7)
0

Thus, instead of having to assume the existence of Brown@tions as drivers for the prices, they rather
emerge naturally from within the information-driven stiwre, as the following proposition shows.

Proposition 3.2. Assume thag(X ) and (X ) belong toL?(P) whereg(z) = x exp(—7x) andh(x) =
exp(—4x). Then the equilibrium dynamics ¢§;);-r are given by

T T
S, = ——Var®(X) | —=— (E[X | Fi] — ) dt + dW, (3.8)
Tt Tt
where
Varg (X) := Eq [X?| 7] — (Eq [X | F))’ (3.9)

is the conditional variance ok under the measur@ defined in1.3).

The expressionB[X | F] andVartQ (X) can be worked out semi-explicitly by means[of{3.9), thegraé
formula [336), and the regular conditional densitfy) defined in [335). They are functions of the pair
(t,&:) and triplet(¢, &, 7), respectively, due td_(1.3) and the Markov property of thferimation pro-
cess. By an application of Lévy’s characterization of Br@awmmmotion, it can be shown that the process

(W), 1 defined by
ol

T—1

dWE = (E[X | Fi] — Sy) dt + dW,

is an((F:), Q)-Brownian motion. Thus[{3]8) confirms thi;): < is an((F), Q)-martingale.
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3.3. Pricing Credit-Risky Securities

In this section, we illustrate the impact of the “noisynessinformation and of the market risk aversion
on the equilibrium prices of a credit-sensitive securityhivi a simple benchmark model, SEE [3], where
the a-priori distribution oS = X is discrete:Sy € {z¢,z1} = {0, 1}. We denote by, := P[X = 0]

the probability of default. Due to the discrete payoff stane, formulal[3.B) simplifies and allows us to
examine the impact of model parameters, such as the infamébw rate or the risk aversion, on the
equilibrium price ofS. The price of the security threatened by default can be oéthin closed form
analogously to[(3]3) and is given by

P11 €Xp (75/%1 exp [TL (legt -3 O—zl)Qt)}
Sy = t<T.

Zi:O,l Di €xXp (7’7$Z) exp [Tl—t (O—xzft (U$Z)2t):| ,

Figure[® shows the impact of on the price of a defaultable bond, where the probability efadlt is
chosen to bgy = 0.2. In the upper graphic the bond does not default, whereaitother graphic we
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Figure 5:Defaultable bond prices: influence information rateo
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Figure 6:Defaultable bond prices: influence risk aversiony

considered the situation of a default. In both cases, a Iéwrimation flow rate (green curve, = 0.1)
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leads to a rather late adjustment of the equilibrium priceeess towards the prevailing terminal value,
while the red curved = 1) reacts earlier to the information about the outcomeofThe influence of
the risk aversiorny on defaultable bond prices is demonstrated in Figlire 6. dtvsident that a higher
risk aversion leads to a more careful evaluation of the beimtie the possibility of a default is taken
more into account. This effect occurs in both depicted stesavhere in the upper and lower figure the
information rater is chosen to be = 0.2 ando = 0.5, respectively. Note however that for the case of
a low information rate (upper graphic) the initial pricefdience turns out to be smaller, because both
agents, the more and less risk-averse one, consider thenation to be noisier, hence less valuable, and
thus give the bond a lower pri@.

3.4. One-Dimensional, Exponentially-Distributed Termiral Cash Flow

We illustrate how, for particular choicesofindf, the formulael(315) anf(3.6) can be worked out explic-
itly. We assumef (z) = z, corresponding to the assets payoff itself being the méal¢dr. Furthermore,
the a priori distribution ofS7, the cash flow at timé&’, is assumed to be exponential.

Corollary 3.3. Assume that the a-priori distribution dfr = X is of the exponential form, that is,
v(x) = (1{z>0y/K) exp (—x/k) for somex > 0. If ¥ > x — 1, then the equilibrium price at time< T'
is given by
—1B2/4
s, = exp( 2 Bi/ t) +& , (3.10)
V2rA N (B /A Ad

where - )
A= oT/(T—1t) , By—=oTé)(T—1t)— L1 (3.11)
K

andN (x) denotes the standard normal distribution function.

Since the pricing measure depends only on the terminal f@shas a consequence of the attainable
endowments, changing frof to ) could be interpreted as a different viévof the representative agent
on the a-priori-distribution obr. More precisely, undef) the cash-flowS is exponentially distributed
with new parameteyx + 1)/, also appearing i (3.11), which can be seen by working @iatjusted
density

- exp(ia))
W) = o))l (3.12)

A. Proofs

Proof of Theorem[1.1

Due to the time-consistency and strict monotonicity of thiga@pic preferences, it suffices to show that the
strategies)* are optimal for the utility maximization in= 0. Note first that[[TR) ensures thBE{1.3) and
(14) are well-defined. In particular, the price procéss a@Q-martingale, and thu® € P. Furthermore,
the constant strategie¥ lie in ©, since for anyQ € P, the processs; (J%) = 9 - (S, — S) is by
assumption &)-martingale, and hence in particula€asupermartingale.

We now show that the quantityintroduced in[(1.11) can be seen as the risk aversion of sopnegentative

14The following parameters were used for the simulations shiovFiguresb andl6P[X = 1] = 0.8, T' = 5. The price process
is shown for¢ € [0, 4.9]. In Figure$ we sef = 0.6.
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agent whose optimal utility is attained at the constantegad* = n + 7. Indeed, sinces is a Q-
martingale, andn + n) - St € L'(Q), the utility maximization of the representative agent can b
formulated as follows!:

sup {US(GT(ﬁ))}
V€O, EqQ[Gr (9)]<Eq((n+n)-ST]

< sup {U5 (Gr(9) — Eq[Gr(9)] + Eq [(n+n) - S7] ) }
= sup {U3(Gr(9)) — Eq [Gr(9)]} + Eq [(n+n) - St
< ~H(QIP) + Eq [(n +1) - 1] (A1)

The last inequality is derived from the dual representatibi), where the relative entropy is given by
H(Q|P) = E[% log(%)]. But G (9*) with 9* = n 4+ n plugged into the representative agent’s utility
Uy (+) yields
1
Uy ((n+mn)-Sr) = ;H(le) +Eq[(n+mn)-Sr].

Comparing this with[(All) shows that* = n + 7 is indeed optimal for the representative agent when
the price process is given by [1.4). Individual optimality of* for the single agents now follows by a
scaling argument and the specific form of the aggregatedveméat. Note that, for alk € A,
¥* = argmax {U] (Gr (V) }
9€O0

is equivalent to
laﬂ* = argmax {Ug (Gr(¥))} ,

9€0

which in turn is equivalent to
%19* —n®* =argmax {U§ (H* + Gr(9))} .
Y YEO

This shows that)® is the optimal strategy for ageate A. Since the strategie{§‘1)aeA add up ton, the

market clears at any time, and hence the @) (o, 7], (9*)aca) forms an equilibrium. O

Proof of Theorem[Z.2
Part 1: Pricing Formula@Z4). From Sectiof 2.1]1 it is known that = (V, X)) satisfies

Elexp (u-Yr) | Fi] = exp[p(r,u) + ¢(1,u) - 3] , (A.2)
for all u = (uy,u,) € C% suchtha(T,u) € Ec, since the latter implies thdf(2.1) and this12.2) hold for
allt € [0,T7.
Let us assume for the moment tHai{1.2) holds. This will béfieerlater. We then know froni (11.3) that

the equilibrium pricing measui@ is given by its Radon-Nikodym-density

dQ  exp(=7-S7)  exp(=7-f(Xr))

dP  Elexp(—7-Sr)] Elexp(—7- f(X7))]"

15Note that the first expression in(A.1) is equivalent to theresentative agent’s utility maximization of terminal Weaagainst
both, the aggregated initial endowmentand aggregated net supply over all admissible strategies.
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Hence, by applying Bayes formula and following{1.4), weabit

B [f*(Xr)exp (=7 - f(Xr)) | F]
Elexp (=7 f(X1)) | F]
for the equilibrium price of thé-th security. The Fourier transforng4 andh defined in [[2Zh) an 5),

respectively, exist and are integrable by assumption. el@reapply the Fourier inversion formufeo
obtain

St =Eq [St| F] = (A.3)

1 . 1 o

k . isx ~k _ 18T

9" (x) = —27T/e §"(s)ds and h(x) —27T/e h(s)ds,
R R

dxz-almost surely. With this at hand, (A.3) transforms to
ok _ E [exp (—akXT) g"(X7) |.7:t] _ E [fR exp [(—ozk + Z'S)XT] G*(s)ds| ]ﬂ (Ad)
© Blew(CBXMEI AL B[ el +is)Xrlh(s)ds| F]

Now we observe that

E |: ‘ /exp [(—Ozk +is)Xr] 9" (s)ds | | Fy
R

gk(s)|ds|.7:t < oo, (AbD)

<E |:exp (—akXT)/

since(T, (0, fo/“)) € £ C & andg” is integrable. The same holds analogously for the denowniiat
(A2). In particular, we have

0< Elexp(—7- f(X7)) | Fi] < oo, forall t€0,7T], (A.6)

since we required” to be conservative and’, (0, —3)) to lie in £. Thus, [A5) and{A»), in combina-
tion with (A.3), yield that[[T.R) is indeed satisfied. We maywnapply Fubini‘'s Theorem to exchange the
order of integration, and we get that

E [/ exp [(—a® +is)X1| §¥(s)ds | F

= /E [exp [(—a® +is)X7| | Fi] §"(s)ds
= /exp [6(7, (0, —a® +1is)) + (7, (0, —a* +is)) - Vi] §"(s)ds . (A7)

The affine transformation formula{A.2) holds, sincg, (0, —a*)) € &. Applying the same arguments
to the denominator i (Al4) combined wifi{A.7) yields thesded form ofS} in (2.7).

Part 2: Pricing Formula(Z.8). We outline the details foi = 1, the rest follows by repeating the
arguments for the partial derivative with respect to egfchSo we assume we only have one secusity
with corresponding € R affecting the density of the pricing measupelt follows that

dQ _ _exp(=35r) _ _exp(=7f(X7))

dP — Elexp(—3S7)]  E[exp(=7f(X7))]

16seelb, Theorem 9.5.4].
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and the equilibrium price of' at timet¢ can be obtained again by computing

E[f(Xr)exp(=7f(X7)) | Fi]
Elexp(—=7f(X7)) | F]

S, = (A.8)

Recall from Part 1 that
exp (=7 f(Xr)) € L'(P) and f(Xr)exp(—7f(Xr)) € L'(P), (A.9)

due to the assumption @f’, (0, —«)) and (7', (0, —3)) lying in £. Since the sefc is open, compare
[@, Lemmata 3.12 and 3.19], and due to the integrabilityaggions on the function@’g(s), the first
integrability in [A:9) even holds in some neighbourhoodjofallowing us to differentiate the function
¢ — Elexp(—Cf(X7))|Ft] at¢ = 7. Indeed, by the smoothness of the mappjng> exp(—(f(Xr))
and the integrability of the second term[in (A.9), we obtain

BIf(Xr)exp (-3£(X0) |7 = = LB lexp (/X)) | 7)| . (AL0

=5
as an application of the triangular inequality and domidatenvergence. On the other hand we know
from an analogue of (Al4) anf(A.7) that the denominatof irf8jA&an be computed by

Elexp (=7f(X1)) | F]
QL/eXp [6(r, (0, — + is)) +(r, (0,—f +is)) - Vi] his(s) ds, (A11)

™
R

where we need the dependencé¢f) = /5 (s) on4. Combining [AID) and (A1) yields

oC \ 2w
R

B7(X1) exp (-3 (X2)) | 7] =~ 2 (i e [o(r.0.-5 + i)

+ (7, (0, B+ is)) - Yt} izc(s) ds)

=5
Proof of Corollary .3

Expression[{Z]9) is an immediate consequencEQf (2.8) infEmd 2.2 withf (z) = =z, and the fact that
there is no need of Fourier methods to compute the denomif&t®) in the analogue td(Al8)

E [ X7 exp(—3'X7) | F¢
Elexp(—=y'X1)|F]

S} = (A.12)

since the affine transformation formula directly applieshte denominator in[(A2). We recall that
(T,(0,—7')) € £ Now we only need to computch [e=¢X7 | F], the actual derivative in formula
(2.8). However, from[{Z]2) it follows that

0
76_CE [eXp (7<XT) |‘Ft] = exp [(;5(7', u) + 1/}(7_7 u) . }/t} [auzd)(’rvu) + auz’l/)(Ta u) ' }/t} ‘u:(O,—O ’

Combining the above with {A12) yields

St = [0u, (7, u) + u, (7, u) - Yi] |

u=(0,-%1) °
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As to the remaining securities?, . . ., S, their price processes given [0 {2110) directly follow fréon-
mula [2.T) in Theorem 212 and the discussion above. O

Proof of Theorem[Z.3

An application of Theorei 2.2 with* = 0, for allk = 1,..., N, in addition to the observation that
the Fourier transforms are all integrable functions yidtus desired result. As to the second claim of
integrability, straightforward calculations show thagtté exist constant/, 2 > 0, just depending on the
model parameters, which give

N 1
max /|f(s)|ds<M/?ds<oo. O
SRR J sz

Proof of Theorem[Z.5

The process” = (V, X) belongs to a subclass of affine processes, namely t@®thealued affine
diffusion That is,Y is a solution to the stochastic differential equatity = p(Y:)dt + p(Y;)dWr,
with Yy = g0, for a continuous functioh: D — R? and a measurable functipn: D — R?*?2 such that

y — p(y)p(y)T is continuous. In particular, the sett Dy, from Sectio2.1]1 is non-empty and thus
the affine transorm formula can be extended. See for instdwgcdiscussion on explosion times of the
Heston model in|E4]. Furthermore, the proc&sss conservative and, hence, so is the stopped process
YT, Combining [B.3) with the fact that the generator(&f X) is determined by its diffusion matrix
pp’ and its drift vectorb, we identify the admissible parameters[in (B.1), {B.2) dBd), where the
parts connected with jumps do not play a role here. Hence welade that the conditional characteristic
function of Y allows a representation as follows

Elexp (u-Yr) | Fi] = exp[p(r,u) + ¢(r,u) - Yi] , (A.13)

whenevenT,u) = (T, (uy,uz)) € Ec, SO in particular for(T, (u,,u,)) € €. The functionsp and
satisfy the following system of Riccati equations

atd)(ta u) = le (tv ’LL) + l“/)2 (tv ’LL) ) ¢(0, ’LL) =0
Ouba(t,u) = 5P (t,0)* = M (t,0) + 3t ) 600 = u,
ath(ta u) = 05 "/)2(07 u) = Ug - (R)

A solution to the above system (R), evaluated at the vecter(0, u,), is given bE

2K

20(uy) exp Wt

0(uy)(efma)t + 1) + A(ef(ue)t — 1)

+ pugt,

ui(eﬁ(um)t o 1)
1/}1 (tv (0, Uz)) = H(UZ)(eO(uT)t + 1) + A(GG(um)t _ 1) ’

Vo (L, (0,uz)) = U -

1"We emphasize that we would not have needed the complete/thegeneral affine processes including various possiblavieh
of jumps, had we only considered pure diffusion processese & was shown ir{ﬂS, Theorem 10.1] that every diffusioarkbv
process with continuous diffusion matrix is affine, if andyoifithe functionsb andpp™ are affine in the state variable and the
solutions¢ andv of the Riccati equations satisBe(¢(t, u) + ¥(t,u) - y) < 0, forally € D and(t,u) € R4 x iR%. Our
equilibrium approach can cover more sophisticated motels pure diffusions though.

18Compare|_[_;l.|3, Lemma 10.12]. Far, = \/o we sety (¢, (0, g)) = t/(2 + At), resembling the limit and still satisfying
¥1(0, (0, \/0)) = 0.
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where
A2 — o2 u2 it Jug| <

O(ug) =4 . .
(uz) { in/oZuZ — \? it Jug| >
Following ] and recalling that > 0, we distinguish two different cases

t* (ua) - s
Uy ) = 0 (ug
m (arctan % + 7T) [ug| >

SEPSEIN

Q> Q>

such that(T', (0,uy)) € € C &, forall T < t*(uz) Hence, as long a8 < t*(u,), formula [A13)
holds for allu = (0, u,.), whereu,, € R. It now follows from [Z.9) in Corollar{2]3 that, for all€ [0, 77,

St = [8uz¢(7—; u) + augc "/)1 (Ta u)‘/t + aua: 1/}2 (7_7 u>Xt] } (A14)

u=(0,—7v) ’
Next we need to compute the derivatives¢gt, ) and (¢, u) with respect tou,. Of course we have
Ou, ¥2(T,u) = 1 and a straightforward calculation yields, with= 0(—~) and¢’ := [0, 0](—~),

Ou, ¢(1,(0,=7)) =T(r,7) and 9y, ¢1(7,(0—7)) = —L(1,7).
This, together with[{A14), i§(2.14), the proof is complete O

Proof of Theorem[3:1
By assumption, the conditions of TheoreEm] 1.1 are satisfiedaRthat the equilibrium price is obtained
by the change of measure frofhto @, that is:

dQ

St =Eq [St| 7] = Eq [f*(X1,....Xn) | Fi] = B |5

, dQ -

k —_
I (Xl,...,XN)|]-‘t} E {dP IJ‘}} .
By (I.3), we know tha%‘g is a function ofSr and hence of(, ..., X, which is given in[(34). Then
we compute the regular conditional distribution @X1, ..., Xx) given (&}, ..., &N). Using the inde-
pendence of the market factors, the Markov property,dhe Bayes formula, and observing that, given
(X1,...,XN) = (21,...,2N), & is Gaussian with meam;z;t and variancej%, yields [3.5). O

Proof of Proposition[3.2

The integrability assumptions o¥i together with , Theorem 7.17] yield that the innovatiaoBnian
motion W, in (B1) is well-defined fort < T. By the Fujisaki-Kallianpur-Kunita Theorem, se@ [1,
Proposition 2.31], both expressions appearindinl (3.@wafor a representation with respect ¥g.
Furthermore, we even know the structure of the integrangsci§cally, for every functionp : R — R
such thatp(X) € L?(P) and fort < T, we obtain that

ol
T—u

E [p(X) | F] = E[o(X)] + / VW, | (A.15)
0

whereV,”, the conditional covariance of the market factor with thediion, is given by

VP = E[p(X)X | F] - Elp(X) | R E[X | F], (A.16)

19Basically, this is exactly the time interval on which theugimins of the Riccati equations do not explode.
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as shown in|__[J4, Section V]. The dynami€s(3.8) then follow[ByIB) in combination with[[A.16) and an
application of the Ité product rule t6 (3.6). O

Proof of Corollary B3]
The relationy > x — 1 ensures that the assumptions of Thedrerh 1.1 are met. Itmeriwe@pply Theorem
[3:1 and explicitly work out the integrals in

IS @ (1/k) exp (—z/K) exp (—7x) exp [L_ (ox& — l(ox)zt)} dx

Jo (1/k) exp (—a/k) exp (—x) exp [ - (ow& — —(O',T)Qﬁ)} dz

which is done by combinin&[4, Section VII] arld (3112), remg in formulae[(3.I0) and (3.11). O

B. Addendum to Sectiorl2: Regular Affine Processes

This proposition concerning the characterization of a ine process by its admissible parameters
is stated without proof and we refer Etlz, Theorem 2.7] @r [theorem 2.6 and Equations (2.2a),(2.2b)]
for two different approaches to prove it.

Proposition B.1. LetY be a regular affine process with state spdgelLet /' and R be as in Definition
[271. Then there exists a set of admissible paramétérst’, b, b%, ¢, ¢', m, u?);=1,... 4 such thatF and R
are of the Lévy-Khintchine form.

7777

F(u) = %<U,Au> + (b,u) — ¢+ / <e<5’“> —1- <h(§),u>) m(d€) (B.1)
R\ {0}

(u, Alu) + (b, u) — ' + / (e =1 (' (&) w)) w'(de), (B-2)
R4\ {0}

Ri (u)

N)I»—l

whereA, A', ..., A? are positive semi-definite redlx d-matrices;b,b', ..., b? are R¢-valued vectors;
c,cl, ..., c? are positive non-negative numbers;andy, . .., u¢ are Lévy measures di?, and finally
handy!, ..., x? are suitably chosen truncation functions for the respedtiévy measures. Furthermore,
the generatord of Y is given by

1 & ) l

iel i€l

+ / (p(c+€) — o(x) — (h(E), V(w)ym(de)
D\{0}

+ 3 [ (pler 9 - ple) — (0. Vol et @9), 53)

ZGID\{O}

and ¢, v satisfy the following system of ODEs

at¢(ta u) - F(w(ta u)) ) ¢(0a u) =0 (B.4)
3t1/1(t, u) - R("/)(tv u)) ) "/)(07 u) =u. (B.5)
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