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TOWARD A GENERAL FRAMEWORK FOR
DYNAMIC ROAD PRICING

Andy H.F. Chow, Centre for Transport Studies, University College London.

ABSTRACT

This paper develops a general framework for analysing aodlathg dynamic road toll. The
optimal network flow is first determined by solving anioyatl control problem with state-
dependent responses such that the overall benefit ofeiveork system is maximized. An
optimal toll is then sought to decentralise this optiffat. This control theoretic formulation

can work with general travel time models and cost fonsti Deterministic queue is
predominantly used in dynamic network models. The anaiydiBis paper is more general
and is applied to calculate the optimal flow and toll Friesz’'s whole link traffic model.

Numerical examples are provided for illustration and disioms Finally, some concluding
remarks are given.

1. INTRODUCTION

To capture the transient nature of traffic congestioth the so-called “peak spreading” effect
(Small, 1992), dynamic network models have been developetiichwhe traffic flows in a
network and the consequent travel costs are considefegl varying over time. A dynamic
network model comprises three interacting componemsgtwaork loading model, an elastic
travel demand function, and a traffic assignment mdided. network loading model captures
the propagation of traffic and determines the costs afetr The travel demand function
specifies the amount of traffic generated between edgin-destination pair in the network
within a fixed time horizon according to the travel sosthe assignment model determines
the network flows given the travel costs that thevellers encounter. We consider two
assignment principles: dynamic equilibrium and syst@tm@al assignments. In equilibrium,
the total travel costs experienced by travellers are egodl minimal for each origin-
destination in the network. In system optimal, travell@rs assigned such that the total
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travellers’ surplus in the network is maximized. The lt@@sts incurred differ between
travellers at system optimal. A dynamic toll is themught to complement the private costs
incurred by the travellers so that the system convextk to an equilibrium state.

The seminal work on modelling and managing dynamic traféis Wy Vickrey (1969). This
paper extends Vickrey’'s model to a general frameworlaf@alysing and calculating optimal
time-varying toll. In the next section, we start wiéviewing various network loading models
and travel cost functions. In section three, we habeef discussion on dynamic equilibrium
assignment. To derive the optimal toll, we need to fdateua system optimization problem.
In section four, we formulate this as an optimal agnproblem with state-dependent
response. We derive the optimality conditions for fpecial kind of control problem using
calculus of variations. At optimality, traffic issigned such that the total travellers’ surplus in
the network is maximized. It is then solved by a dynamics@imme solution algorithm. It
should be noted that the total costs incurred diffewvéen travellers at optimality and hence
the system is not in equilibrium. A dynamic toll leh sought to complement the private
costs incurred by the travellers so that the systemettsto an equilibrium state. Numerical
examples are presented for illustration in section faneally, concluding remarks are given
in section six.

2. NETWORK LOADING MODELSAND COST FUNCTIONS

The network loading model determines the correspondimgrviarying flows and travel times
given the network inflow. The model is considered to laeigble if it satisfies: positivity of
flows; First-in-first-out (FIFO) principle; flow caervation principle; flow propagation
principle and causality. Detailed discussions on theseederred to Carey (2004). To ensure
FIFO, Daganzo (1995) concluded that the model should only depetite traffic on link.
The remaining possibilities can then be divided into tabegories: outflow models and
travel time model. However, outflow models have beeteresively criticized for their
implausible traffic propagation behaviour and violation adusality (Astarita, 1996;
Heydecker and Addison, 1998). Astarita (1996) and Mun (2002) ahdrsotfurther
demonstrated that FIFO cannot be guaranteed if the tiav@lmhodel is non-linear in link.
Consequently, this paper only considers linear travel toeels.

2.1 A class of linear travel time models

We consider that each lirks which has a flow-invariant travel timg, and a link capacity
Q,, comprises two parts as shown in Figure 1. The podipmepresents the “congestible”

part of the link and hencey, —a, is the “free flow” part. A general form for this ctasf
linear link travel time models can be written as:

Ta(s)=S+¢a+xa(8+¢a_aa)/Qa’ (1)
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wheres represents the time of entry to the link ands is Xhe corresponding time of exit.
The amount of link traffic in the congestible part is esgnted byx, (s .)

Free flow @ —a

O »O—»@
X, (9)

Figure 1 Representation of a travel link

2.1.1 Deterministic queuing model

Vickrey (1969) considered each link corresponds to a freelyirdly link with a flow-
invariant travel timeg, (i.e. a, = 0) with a deterministic queue at its downstream end with a

maximum service rat®,. We name this travel time model as “deterministic qugumodel.
The state equation of, (s) of this model is given by

dx, (S)

& =e,(s— @)~ 9.(9). (2)

Whenever a queue exists, the link outflow is equal to #paaty and all travellers arrive
before the queue dissipates will incur travel delay. Qtiser; if the queue length is zero, the
outflow is taken as the inflow at the time of entngldhe travellers are unimpeded. i.e.:

: 3)

Q, otherwise

o 9-{678) (9=0e-a)<)

2.1.2 Whole-link traffic model

Friesz et al. (1993) proposed a linear travel time moaeldbnsiders the whole travel link to
be congestible, i.ea, = ¢, . We regard this travel time model as “whole-link” traffnodel.

The state equation of, (s 9f this model is given by

B -, (9-0,09). @

Rl

The outflow experienced by traffic that enters at tgswan be established according to correct
flow propagation (Heydecker and Addison, 1998) as

Q.6.(9)
Qe (9-9.(9

9.[r(9)] = (5)

which depends on outflows at time&nd hence on inflows at earlier times.
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2.1.3 Divided linear travd time model

Mun (2002) proposed another linear travel time called “diviileear travel time” model by
letting a, be the size of the time incremental si&p in discretization. The model has been

shown to be able to give plausible traffic behaviour. lgyla detailed discussion of this travel
time model is beyond the scope of the present paper.

2.2 Numerical comparisons of thetravel time models

Although the functional forms of the two travel timedels look very much similar, they
behave quite differently. Figure 2 compares the traimkd and the outflow profiles
calculated by these two models. We load a parabolioviniihto a travel link with free flow
travel time ¢, equals to 2mins and capaciy, equals to 30 veh/min. Contrast with the

deterministic queue, the outflow varies continuously i inflow over time for the whole-
link traffic model. The outflow will approach to, but nexceed, the link capacity for a high
inflow rate. Moreover, the travel time estimated byoleklink traffic model is substantially
higher as the whole-link model considers the whole tilaneto be congestible.

60 60 = nflow =,

= Inflow
50 —— Capacity 50 ﬁ +Travel_time i
0 /\ —— Outflow (Queuing) m \ (Queuing ||
/ \ —=— Outflow (Whole-link) 40 / .’;’ : +(T\;Va;2'|:|rl"ni) 1
/f L [ 72\ \
T\ \ j\ /f’ / \ \
10 \ \ \ 10 \ =
- 0
0 10 20 30 40 50 60 70 30 50 60 70
time (min) time (mln)

a) Link outflow profiles b) Links travel times
Figure 2 Numerical comparisons of the travel time models
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2.3 Travel cost functions

We suppose that travel behaviour can be represented rasponse to the various costs
associated with travel. We consider the travel cosbwmtered by each traveller has three
distinct components. The first component is theetrdivne which is determined by the travel
time model as discussed previously. In addition to @neetrtime, we add a time-specific cost
f7,(s)] associated with arrival time, (s) at the destination. Finally, we add a time-specific

cost h(s) associated with departure from the origin at tsmBossible choices of these time-
specific cost functions are investigated by Heyadeand Addison (2005). Following these
specifications, the total travel co@tp(s) associated with departure on royteat time s is

defined as a linear combination of these costs as
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C,(s) = h(s)+[r,(s)=s1+ f[7,(s)]. (6)

3. DYNAMIC EQUILIBRIUM CONDITION

Hendrickson and Kocur (1981) showed that if departure tinoécehs considered together
with route choice, then the total travel caj(s) incurred will take a single value for each

origin-destination pair in the network in equilibrium. Th&sn be stated as a complementary
inequality for the inflowey(s) :

G@Tch Dei[Ews (M)
0=C,(s) 2 D[E,(T)]

} ,Op0OP,,0od,Os, (7)

where P, is the set of all routes froro to d and D;dl[EOd (T)] is the total cost at which
travel takes place from to d, given the total throughpug , (T . Jsing the first case in (7)
and differentiating both sides with respect todbparture time, we have:

e,(s)>0 = Q,(s=h(s)+7,(s)-1+ f|r,(s))r,(s)=0 . (8)

Hence, solving the equilibrium assignment is edema to solving the set of
simultaneous equatior@ ,(s)= 0 for all routesp in use.

4. SYSTEM OPTIMAL ASSIGNMENT AND EXTERNALITY

The system optimal assignment seeks an optimacbvhwfda;(s) that maximizes the total

travellers’ surplus in the network within a fixedapning periodT. The assignment is
formulated as the optimal control problem:

od(T) T
maxZ = ID (Wdw- > > ICp(s)ep (s)ds (9a)
€ (s) DodDOD Ood0OD OpRy
subject to:
& [r2 (9]=" e ( ) Oa, 0 A,,0p0P,,Ood, s (9b)
dx” (s
% =el (9-€ (s) Ha,0A,,Op0R,,0od,Ods (9¢)
dE, (s
» (9 =e,(s) ,OpOP,,0od,Os djo

ds
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> > E(9=E, ,Ood (9e)

Os OpOPyy

e,(s)=z0 ,OpOPR,,0od,Os (9f)

where A is the set of all links on roueand its cardinality is denoted I@\p‘ =M(p); a,
represents therth link on the route wherenll[1, M (p)]. The notationz, (s) denotes the

time of exit from link a,, for traffic which enters routp at its origin at times; and 7 (s) is
the corresponding first derivative with respectitiae.

Equations (9b) ensure the proper flow propagationgaeach route. Equations (9c) are the
state equations that govern the evolution of Inalfic. Equations (9d) define the relationship

between inflow rate and the cumulative infloi,(s) on each route and equations (9e)
specify the total throughpUE,, between each origin-destination pair. Conditidf énsure
the positivity of the control variable, (s) . The travel time model satisfies FIFO structurally

hence we do not need to add any explicit consttairthis. This control theoretic problem
involves state-dependent response. Its optimaditditions were first studied by Friesz et al.
(2001) for inelastic equilibrium assignment. As exiension to Friesz et al., we derive the
optimality conditions for elastic system optimasigsment as

E (T)

(s >0=C, () + A2 (9) - y2(s) = Doy
E.y (T)

=02 C(9)+ AL (9) - Vi (9) 2 D

I} ,Op0OP,,00d,0s.  (10a)

It should be noted that the total travel ccég;(s) is different from the oneC (s) in
equilibrium. The costate variabld? (s) comes from the state equation xf (s). For all
links a,, on routep, A7 (s) is governed by the following equation:

Pl s 1, 9)

e (s
p(p ) a, OA,OpOP,,0od,0s. (10b)

Q

m

In the optimal control problem, the costate vaeaBf (s) represents the sensitivity of the

optimal value of the objective function at and aftee times with respect to a perturbation in
the state variable; (s) (Dorfman, 1969). The second mulitpligf (s) comes from the flow

! Readers can refer to Friesz et al. (2001) for the dasivafithe optimality conditions of equilibrium
assignment; or Chow (2005) for system optimal assignment.
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propagation constraints (9bassociated with the outflow from each link. The cosjdtes)
can be solved by the following set of recursive equations

Aoulla, O —ya 12 (9= A [72 (9] -ya [72 (S]] ; (10c)

m+1 m+l

Z N L2 ©) S Z0 LE Ol I (10d)

We can also give an economic interpretation fordbstate variables. The costate variable
As (s) can be interpreted as the marginal cost of artiaddl traveller entering linka,, on

routep; while 2 (s) is the marginasavings from a traveller leaving the link. Furthermore,

subtracting the user equilibrium cost of a traveftem his/her marginal cost minus his/her
marginal saving will yield his/her externality imged to the system. This indeed is the
optimal toll that the traveller has to pay, accogdio the marginal cost pricing principle.

5. EXAMPLE CALCULATIONS

We consider a network with two parallel routes @mtimg a single origin-destination pair.
Route 1 has a free flow time 20 mins and a cap&tltyehs/min; while the free flow travel
time and the capacity of route 2 are 30 mins andeb@/min respectively. The origin-specific
cost is considered to be a monotone linear funaifoiime with a slope -0.5. The destination
cost function is piecewise linear which has no figriar arrivals before the preferred arrival
time 09:00, and increases with a rate 1.5 aftersvartle time incremental steks is set to be

1 min and the study horizof®,T] is long enough such that that all traffic can lBaed. An

elastic demand function is added to specify thaltdtroughputE_, generated, given the

average travel costC™ throughout the period. The demand function is rdefi as
E, =DexpE,C’), whereD and g, take the values of 6,190 (vehs) and -0.005 respéygt

5.1 Solution method for equilibrium assignment

Using (8), Mun (2002) proposed a solution methadtfie inelastic equilibrium assignment
with a divided linear travel time model. We modiffun’s algorithm for our travel time
models and the elastic travel demand as follows:

Sep O: Initialisation

0.1. Select an initial equilibrium cost”;
0.2. initialize the iteration counten:=1;

2 It should be noted that the costate variajbitﬂe(s) will vanish if the outflow rate is fixed (e.g. when
deterministic queuing model is adopted).
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0.3. initialize et(k) =0, for all routesp and all discretized time stepsfrom time 0 toK,

where K =T /As is total number of discretized time steps simulated;
0.4. initialise k:=0.

Sep 1: Network loading and _equilibration

1.1. ComputeC (k) for allp;
1.2. update the inflow profile asegﬂ(k) =e,(k)-d; with an approximate directionl ;

n

and step sizer. We adopt a second-order decent direction takem;asQ P/ .» Where
Q p

Q" =h (k) -1+ L+ £z, (0], (0

mn aQn 1 a 1
and Q" = aeg(i) = (1+ f [Tp(k)])za: or Q.

where the indicatod,; equal to one if linka lies on routep and zero otherwise. The
step sizen is determined by a linear interpolation.

Sep 2: Sopping criteria

2.1 If the convergence measure becomes sufflgismtall, go to step 2.2; otherwise set
n:=n+1 and go to step 1.2;

2.2. ifk=K goto step 2.3. Otherwise= k+ 1 and go to step 1.1;

2.3. check ifE, => > e (k) = Dexp,C’) . If yes, STOP; otherwise go to step 0.2 with

Op Ok

D exp,C) - E,
* dE '
&,D(C)——x
oD(C) ac

the updated equilibrium co§&” =C" -

whereg,D(C") = d[;g: ) ; and zi"j‘ is the sensitivity of total throughput with respec

to the equilibrium cost which can be calculatechaddeydecker (2002).

5.2 Solution method for system optimal assignment

The system optimal assignment can be solved as\fwill

Sep O: Initialisation

0.1. Initialise a cos€ at equilibrium;
0.2 initialise costatedl! (k) :=0 and y? (k) := 0 for all routesp and allk;

0.3 initialise e*lp(k) =0 for all routesp and allk;
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0.4 set iteration countem:=1;
0.5 initialise k:=0.

Sep 1: Network loading, optimization and equilibration

1.1. Computeép(k) + AP (k) = yP (k) for allp;
1.2. compute costate variabi (k) by solving equations (8b);
1.3. compute costate variab)e’ (k) by solving (8c) — (8d) frorvi(p) to 1 for allp;

1.4, update the control variabie s (k) = € (k) - 77°d"» with an approximate step size .

We adopt a second-order decent direction takeh' as e/e,n where
p

O =h'(k)~1+(L+ f'[7, ()], () + A(K) = 1K) 7, (K)

mn aen 1 a 1
and©" = o (i’() = (1+ f [Tp(k)])za: or Q.

The step sizer is determined by a linear interpolation.

Sep 2: Sopping criterion

2.1 If the convergence measure becomes sufflgismtall, go to step 2.2; otherwise set
n:=n+1 and go to step 1.2;
2.2. Ifk=K; go to step 2.3. Otherwide= k + 1 and go to step 1.1;

2.3. check ifE,, => > e (k) = D exp,C’). If yes, STOP; otherwise go to step 0.2 with

Op Ok

D expe,C') - E,,

goD(G*) _zEé)?

the updated optimal co&€ :=C’ -

5.3 Reaults

Figure 3 shows the equilibrium assignments withedwrinistic queue and the whole-link
models. For deterministic queuing model, the tottaffic assigned to route 1 during times
07:52 and 08:57 is 2,358.5 vehs; while that toeduturing times 07:52 and 08:38 is 2,112.5
vehs. With the same link travel times, link capasitand demand function, we also calculate
the corresponding equilibrium flows for whole-limkodel. The traffic assigned to route 1
during times 06:50 and 09:00 is 2,167.26 vehs;evttiht to route 2 during times 07:10 and
08:03; and then from time 08:37 to 09:00 is 1,838/&hs. The traffic volume estimated by
whole-link model is lower than that estimated byedeinistic queue. This is due to the fact
that the whole-link model will estimate a higheaviel time and hence a higher total travel
cost. In addition, the inflow profile estimated twe whole-link model is also more spread.
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Figure 3 User equilibrium assignments
Figure 4 shows the system optimal assignments. For datstimqueue, the system optimal
traffic volume and assignment duration are just the sasni equilibrium. The inflow rate
equals to the associated link capacity for all timese €stimated travellers’ surplus is
increased by 830.44 veh-hr, from 15,623.96 veh-hr in user equiliboiuré,454.41 veh-hr in
system optimal. The system optimal solution can kl#erstood as in uncongested state, the
travel time remains constant for all inflow less tlmarequal to the link capacity. To maximise
the travellers’ surplus, we want to put as much waffias possible. In congested state, the
travel time will be strictly increasing with the inflowhile the outflow from the link is
restricted by the link capacity. Increasing inflow ratd willy cause unnecessary travel delay.
Therefore, the inflow rate keeps constant at the liplaciy.
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a) Deterministic queuing model b) WHmk traffic model
Figure 4 System optimal assignments

Contrast with deterministic queue, the period of assighnmesystem optimal is different
from that in equilibrium. With the same traffic volemas in equilibrium, the period of
assignment to route 1 shifts from [06:50, 09:00] to [07:11, 09:00]rdtae 2, the first period
of assignment shifts from [07:10, 08:03] to [07:41, 08:13]. Therskperiod of assignment
remains the same [08:37, 09:00] as before. It can be obs#maedhe system optimal
assignment, on the one hand, encourages late depafurdbe other hand, it also has to
maintain a certain amount of early departures to inducigh service rate for the departures
at later times. After optimization, the estimatedetkers’ surplus is increased by 508.11 veh-
hr, from 13,484.70 veh-hr in user equilibrium to 13,992.81 vah-system optimal.
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b) WHmk traffic model

We also plot the link traffic estimated by the whateeltraffic model in equilibrium and
system optimal in Figure 5. Interestingly, yet importgnthe results show that the optimal
assignment has to allow queuing. This implies that thi/sisebased on deterministic queue
does not apply in general. Finally, to decentralise tkeegy optimal flow, we need to impose
the optimal tolls to the system which are shown iguFé 6. The optimal tolls for the two
travel time models are substantially different. Intipafar, “negative toll” appears to
encourage late departures for the whole-link traffic moddwever, we will further
investigate the causes and implications of this negatiie t

6. CONCLUDING REMARKS

This paper proposed a general framework for managing dynaetiwork traffic with
plausible travel time models. The deterministic queuingleh has been predominantly used
in the literature for analysing dynamic road pricing. Thalygsis herein is more general and is
applied to calculate the optimal flow and toll foridsz’s whole-link travel time model. The
significant differences that are established here detvihe two travel time models show that
the analysis based on deterministic queue does not epgneral. This study provides the
flexibility for choosing an appropriate traffic model andst function. It also gives us a
deeper understanding of the nature of optimal time-vargetgvork flows and tolls. Future
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work will include analyzing different tolling regimes andtending the present analysis to
multi-destination networks with overlapping routes.
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