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Power-law distribution of phase-locking intervals does not imply critical interaction
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Neural synchronization plays a critical role in information processing, storage, and transmission. Characterizing
the pattern of synchronization is therefore of great interest. It has recently been suggested that the brain displays
broadband criticality based on two measures of synchronization, phase-locking intervals and global lability of
synchronization, showing power-law statistics at the critical threshold in a classical model of synchronization.
In this paper, we provide evidence that, within the limits of the model selection approach used to ascertain the
presence of power-law statistics, the pooling of pairwise phase-locking intervals from a noncritically interacting
system can produce a distribution that is similarly assessed as being power law. In contrast, the global lability of
synchronization measure is shown to better discriminate critical from noncritical interaction.

DOI: 10.1103/PhysRevE.86.051920 PACS number(s): 87.19.lm, 05.45.Xt, 05.65.+b, 87.19.ln

I. INTRODUCTION

The notion of criticality has been hotly discussed in relation
to its presence in the human brain [1–5]. Support for the
concept of a critical brain has emerged from comparing brain
dynamics at various scales with the dynamics of physical
systems at criticality. Much impetus for this line of work
has come from the observation of power laws, a necessary
but insufficient condition for criticality, in distributions asso-
ciated with neuronal avalanches [6,7], but further evidence
has come from the application of methods from statistical
physics for identifying spatiotemporal scaling functions in
fMRI [8,9], long-range temporal correlations in amplitude
fluctuations of bandpass filtered electroencephalogram and
magnetoencephalogram (M/EEG) [10,11] as well as universal
scaling functions in the activity of individual neurons [12,13].
Functionally, it has been difficult to attribute relevance to
these findings other than by making observations of difference
in some scaling parameter between different human subject
populations or with the subject’s age. It would therefore
be of great interest to find evidence of criticality in the
synchronization of activity between different brain areas, i.e.,
a parameter that has been directly linked with information
processing, storage, and transmission [14,15].

A system at, or close to, a critical phase transition has
been associated with the possibility of rapid reconfigurations
in response to external stimuli [7,16]. Kitzbichler et al.
[17,18] argue that rapid state changes are crucial for the brain
to deal with the environment it meets. They suggest that in
some situations, an extensive cognitive effort is required and
information transfer needs to be maximized between brain
regions, and at other, relatively quiescent periods, the greater
concern is minimizing neuronal wiring costs [18]. A brain
at criticality might allow the necessary rapid transitions in
functional connectivity to occur quickly [19]. Werner [16]
indicates that a neurophysiological system in a critical state
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is best able to learn and remember complex logical rules, by
adapting its synaptic weights quickly. Meisel et al. [20] suggest
that local events can spread rapidly through a system in such
a state, and that remaining at criticality prevents the spread
both from becoming uncontrollably large, or from dying away
without effect. A single element hence has the ability to affect
the entire system, which may be crucial to processing external
stimuli efficiently [21].

To assess criticality of synchronization, Kitzbichler et al.
[17] proposed two measures characterizing the pattern of
synchronization in a complex system. The first measure is the
frequency density of phase-locking intervals (PLI), which are
defined as the periods of time for which two oscillators differ in
their phase by less than a value of π/4 in modulus. The phase,
here, describes where an oscillator is in its cycle, relative to
the origin. It evolves in the interval [−π,π ] as the oscillator
completes an oscillation. The second measure is the frequency
density of the change in number of phase-locked pairs between
successive time points (global lability of synchronization
or GLS). Both measures are derived from a thresholded
wavelet-transformed instantaneous phase difference (further
introduced in Secs. II E and II F). Kitzbichler et al. validated
the PLI and GLS results by showing that in two known models
of critical interaction, namely, the Ising model [22,23] and
the Kuramoto model [24–26] (further discussed in Sec. II A),
these measures display power-law distributions at the critical
threshold but not in a decoupled system [17]. The presence of
this power law in the PLI and GLS was determined using a
model selection approach [27,28] whereby both the power-law
and alternative models (log-normal and exponential) are fitted
and the best model is decided on the basis of the Akaike
information criterion (formally introduced in Sec. II G).

While it is true that power-law statistics of some observable
of the system should be evident in a system at criticality
[2,29–31], the point has been made that power laws could result
from the superposition of multiple processes each with their
own characteristic time scale [32] or from the use of thresholds
[33]. Given this, we ask whether power-law distributions in
the PLI and GLS measures introduced in [17] are uniquely
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indicative of a system in a critical state. Our approach is
to pool the phase-locked intervals (respectively, the number
of phase-locked pairs between successive time points) of a
noncritically interacting system of Kuramoto oscillators and
compare the resulting distributions with those derived from a
critically coupled system. If this pooling produces distributions
that, within the limits of a model selection approach, can not
be distinguished from those of a critically coupled system,
then we suggest that this approach to inferring criticality
is suspect. To do so, we consider a system formed from a
collection of independent paired oscillators, which we refer to
as the independent pairs model. The two oscillators making
up a pair are coupled, having phases evolving according to
the Kuramoto differential equations (formally introduced in
Sec. II A), but there is no connection between pairs. Each pair
can snap into synchronization at a coupling value unique to
itself, however, there is no collective order parameter to unite
their progressive synchronization, i.e., this system can have no
critical coupling value.

The paper is organized as follows. After a brief review of
the Kuramoto oscillators (Sec. II A), we derive analytically the
phase difference between two sine-phase coupled oscillators,
which makes it possible to generate a large number of
independent pairs, with natural frequencies drawn from a
normal distribution and pairwise coupling a free parameter
(Sec. II B). After summarizing the methodology of Kitzbichler
et al. (Secs. II C–II G), we compare its application to both the
Kuramoto model and our independent pairs model (Secs. III B
and III C), revealing the coupling parameters under which PLIs
and GLSs may give rise to power laws within a model selection
approach.

II. METHODS AND MATERIALS

A. The Kuramoto model

The Kuramoto model is a classical model of synchro-
nization [34,35]. It has been widely used to study the
oscillatory behavior of biological systems such as the sleep and
body temperature cycles in humans [36,37], heart pacemaker
cell firing [34,36,37], neuronal firing [17,36,38], and firefly
flashing [34,36,37,39].

The Kuramoto model describes the phase behavior of a
system of mutually coupled oscillators with a set of differential
equations. Each of N oscillators in the system rotates at its
own natural frequency {ωi,i = 1, . . . ,N}, drawn from some
distribution g(ω). However, it is attracted out of this cycle
through coupling K , which is globally applied to the system.
The differential equation to describe the time evolution of the
phase θi of oscillator i in such a system is given by [24–26]

θ̇i = ωi + K

N
�N

j=1sin(θj − θi). (1)

Kuramoto [24] showed that the evolution of any phase θi

can be reexpressed using two mean field parameters, which
result from the combined effect of all oscillators in the system.
Namely, we may say

θ̇i = ωi + Kr sin(ψ − θi), (2)

where ψ is the mean phase of the oscillators, and r is their
phase coherence, so that

reiψ = 1

N

N∑
j=1

eiθj . (3)

This crucially indicates that each oscillator is coupled to the
others through its relationship with mean field parameters r

and ψ , so that no single oscillator, or oscillator pair, drives
the process on their own. The oscillators synchronize at a
phase equal to the mean field ψ , and r describes the strength
of synchronization, sometimes referred to as the extent of
order in the system [40,41]. When r = 0, no oscillators are
synchronized with each other. When r = 1, all oscillators are
entrained with each other.

It is easy to see that one solution to Eq (2) is r ≡ 0
for all time and coupling, leaving each oscillator to evolve
independently at its own natural frequency. Using a limit of
N → ∞, some further deductions can be made, including
the fact that when the natural frequency distribution g(ω) is
unimodal and symmetric, another solution can be found for θi ,
with r not equivalent to 0 [24]. A critical bifurcation occurs
for sufficiently high coupling, resembling a second-order
phase transition [42] in which the order parameter (here, r)
leaves zero and grows continuously with coupling [40,43].
The coupling at the bifurcation is referred to as the critical
coupling Kc [43]. While the above definition holds for a system
of infinite size, for a finite system such as that considered in this
paper, the critical coupling can only be approximated by this
theoretical value. In Sec. II D, we will provide an operational
definition of critical coupling in a finite size system.

B. Analytic phase difference for the independent pairs model

An independent pair is defined as two coupled oscillators i

and j whose phases evolve according to Eq. (1), namely,

θ̇i − θ̇j = (ωi − ωj ) + K

2
[sin(θj − θi) − sin(θi − θj )]

= (ωi − ωj ) − K[sin(θi − θj )]. (4)

Letting �ij = θi − θj yields

�̇ij = (ωi − ωj ) − Ksin(�ij ). (5)

This equation has two solutions depending on whether K <

|ωi − ωj | or K > |ωi − ωj |. If we let C = K
(ωi−ωj ) , and D is

an integrating constant, then the solution for K < |ωi − ωj | is

�ij = 2 tan−1

[
(
√

1 − C2)

× tan

(
(t − D)(ωi − ωj )

√
(1 − C2)

2

)
+ C

]
. (6)

The solution for K > |ωi − ωj | is

�ij = 2 tan−1

[√
C2 − 1

(
e−t(ωi−ωj )

√
(C2−1) − A

A + e−t(ωi−ωj )
√

(C2−1)

)
+ C

]

(7)

with A an integrating constant. A full derivation is provided
in the Appendix. After deriving this, the authors were made
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aware that the dynamics of a single pair from this model has
previously been described in [44] in relation to the interaction
between a pendulum suspended in a viscous fluid inside a
rotating container, and used in [45] as a basis for constructing
a Lyapunov function.

The time evolution of �ij is dependent on two parameters:
the coupling K , and the difference between the natural
frequencies of rotation ωi − ωj of the two oscillators. The
selection of these two quantities is crucial to further analysis
and we look at each in turn.

C. Natural frequencies

The natural frequencies of oscillators in the Kuramoto sys-
tem considered in [17] were drawn from a normal distribution
N (0,1). As any normal distribution may be scaled and shifted
so that it is equivalent to one with a mean of 0 and a standard
deviation of 1, we consider that our natural frequencies are also
distributed with ωi ∼ N (0,1) without loss of generality. If
both natural frequencies ωi and ωj are drawn in this way, then
by laws of normal distributions, ωi − ωj ∼ N (0,2). As the
quantity ωi − ωj only is of interest to us in order to calculate
�ij [Eqs. (6) and (7)], we draw values from a distribution of
N (0,2) for the independent pairs model.

D. Coupling parameter

The critical coupling parameter was calculated analytically
by Kuramoto under a certain set of assumptions [24]. Namely,
if the probability distribution of the natural frequencies g(ω)
is unimodal and symmetric, and the number of oscillators
is infinite (N → ∞), then the analytic critical coupling
parameter Kc is

Kc = 2

πg(0)
. (8)

And, in the case of g(ω) = N (0,1),

Kc = 2
√

2√
π

� 1.596. (9)

In any feasible realization of the Kuramoto model, the
assumption N → ∞ is not realistic. This means that the
theoretical value of Kc � 1.596 is not necessarily the precise
coupling parameter for which the system reaches critical be-
havior. Kitzbichler and colleagues [17] describe two practical
measures characterizing the onset of synchronization with
increasing coupling. The first is the change in the “effective
mean-field coupling strength” �(Kr). If the value of Kr

exceeds the difference between the natural frequency and the
mean phase ωi − ψ (in modulus), i.e., |ωi − ψ | < Kr , then
oscillator i will synchronize to the mean field [46]. Thus, the
value of K at which Kr increases maximally is the coupling
value at which the greatest number of oscillators are drawn into
the mean field, i.e., a defining feature of the critical point in the
system. The second measure is the change in the time-averaged
number of synchronized pairs NSP as the coupling increases,
�NSP . Again, this describes the point at which the greatest
change in synchronization occurs, i.e., the critical point. The
two measures �(Kr) and �NSP peak at the same point. We
shall call the coupling value at this point the effective critical
coupling value for our system.

In contrast, in our independent pairs model, there is no
longer a global critical coupling parameter Kc since there can
be no mean field. From the two distinct analytical solutions
for �ij [Eqs. (6) and (7)], we see that each pair of oscillators
will synchronize independently when K exceeds |ωi − ωj |
for that pair. Some insight can nevertheless be gained by
calculating the measures derived from a standard Kuramoto
model, namely, r , NSP , �(Kr), and �NSP .

As shown by Fig. 1(a), there is a clear growth in order in the
Kuramoto model, with the parameter beginning near 0 for low
coupling, and increasing to nearly 1 after the coupling value
exceeds K = 3. The maximum rise in Kr occurs at around
K = 2, which is therefore the effective critical coupling for this
system. A similar pattern is traced by NSP , with �NSP peaking
at around K = 2. In this paper, we will provide results for the
theoretical critical value Kc � 1.596 (occasionally referred
to as Kc � 1.6), as well as for the (above defined) effective
critical coupling for our finite system K = 2. This latter value
is where we might expect power-law statistics to be present in
the Kuramoto model. The authors have empirically confirmed
that as N increases, the effective critical coupling K converges
to the theoretical critical coupling Kc (results not shown, but
the effective critical coupling is K = 1.8 for N = 1000, for
example). It should be noted that although the number of
oscillators considered here is limited, 44 oscillators as in [17],
this system still gives rise to 946 pairwise interactions, which
is more substantial. From a neuroscience viewpoint, it could
be argued that 44 oscillators are sufficient for drawing useful
conclusions about a neuronal system. For example, the use of a
Kuramoto model of 66 phase oscillators by the authors of [47]
led to the emergence of slow activity fluctuations consistent
with empirically measured functional neural connectivity.
Nevertheless, in order to verify our conclusions, we replicated
our analysis with N = 1000 oscillators yielding similar results
(not shown but available upon request from the corresponding
author).

With independent pairs, on the other hand, both the order
parameter and the number of synchronized pairs remain
unchanged across all coupling values, at the values observed
for K = 0 in the Kuramoto model [see Fig. 1(b)]. This is
because, although the pairs individually synchronize with each
other, the frequencies at which they synchronize are distributed
across the whole range of possible frequencies.

E. Frequency scales

An important feature of the findings in [17] is that the
critical behavior of neural activity extends across a number
of frequency scales, so that criticality is referred to as being
broadband. The decomposition of the phase difference data
into several frequency scales is done using a Hilbert wavelet
transform, and was implemented computationally here using
the algorithms from [48–50]. Specifically, wavelet scales 3–11
were used, corresponding to frequencies of 125–62.5, 62.5–31,
31–15.5, 15.5–8, 8–4, 4–2, 2–1, 1–0.5, and 0.5–0.25 Hz.

First, Kitzbichler et al. [17] construct two signals denoted
si and sj hereafter by taking the cosine of phases θi and θj ,
respectively. They then take the kth scale wavelet transforms
of si and sj to obtain Wk(si) and Wk(sj ), which are time-
varying complex vectors of wavelet coefficients. Each set of
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FIG. 1. (Color online) Plot (a) shows the evolution of order parameter r for the Kuramoto model with cyan solid circles (error bars show
standard deviations). The coupling parameter K increases along the x axis. The hollow purple diamonds show �Kr , the change in order
parameter multiplied by coupling (error bars not shown for readability). The time-averaged number of synchronized pairs NSP is shown with
hollow green squares (error bars show standard deviations), and the difference in NSP , �NSP , is indicated by solid blue triangles (error bars
not shown for readability). The peaks in �Kr and �NSP can be used to indicate the location of the critical point for a specific system, which
for this selection of natural frequencies occurs at around K = 2. This effective coupling value of K = 2 will be used throughout the paper.
Note that, for the Kuramoto model, the order increases with rising coupling. Plot (b) displays the corresponding measures r , �Kr , NSP , and
�NSP for the independent pairs model. There is no change in order parameter with coupling, indicating that the oscillators are not critically
coupled to a mean field.

wavelet coefficients quantifies the power of the signal in the
corresponding frequency band. These two sets of wavelet
coefficients are multiplied elementwise to form the vector
Wk(si)†Wk(sj ), where the symbol † indicates the complex
conjugate. This vector is then normalized by dividing it (again,
elementwise) by the elementwise product |Wk(si) || Wk(sj ) |
where operator | . . . | denotes the modulus. The result is an
instantaneous time-varying complex phase vector

Ck
ij = Wk(si)†Wk(sj )

|Wk(si) || Wk(sj ) | . (10)

To ensure a more robust and less noisy estimate of the
phase relation, the instantaneous phase vector is smoothed by
using a moving average of the numerator and the two vectors
contributing to the denominator of Ck

ij , yielding a new vector
C̄k

ij given by

C̄k
ij = 〈Wk(si)†Wk(sj )〉√〈|Wk(si) |2〉〈|Wk(sj ) |2〉 (11)

Here, the operator 〈. . .〉 denotes that a moving average is taken.
The length of the sliding window used for the moving average
is set to the number of time steps spanning eight oscillation
cycles at the highest frequency in that wavelet scale [17].
The argument of C̄k

ij is then taken as a measure of the phase
relationship of the two oscillators i and j corresponding to
wavelet scale k, so that �k

ij = arg(C̄k
ij ).

In the independent pairs model, the phase differences within
each pair are known analytically (see Sec. II B), however, they
are not associated with particular wavelet scales. To produce
probability distributions comparable to those in [17], surrogate
pairs of signals were created with the first signal evolving
constantly at a frequency given by a base value drawn from
the distribution of natural frequencies g(ω), and the second
signal phase shifted from the first by �k

ij .

F. PLI and GLS

In this section, we will use �k
ij (t) to denote the value of

�k
ij at time t . For phase difference �k

ij between two oscillators
i and j , the PLIs are defined as the duration (in seconds) for
which −α < �k

ij (t) < α, for some threshold α. This definition
was given by [17] with α = π/4.

The GLS was also defined in [17] and characterizes the
evolution of the number of synchronized pairs NSP to describe
the lability of synchronization. The number of synchronized
pairs at wavelet scale k is formally defined as

Nk
SP (t) =

∑
i<j

{
|�k

ij (t) |< α and
(
Mk

i,j

)2
(t) >

1

2

}
, (12)

where (Mk
i,j )2 =| C̄k

ij |2 is proposed as a measure of the signif-
icance of the phase difference estimate C̄k

ij , and α = π/4 as

above. It should be noted here that the condition (Mk
i,j )2(t) > 1

2
introduces an additional threshold. The use of thresholds on
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otherwise stochastic data has been shown by Touboul et al. [33]
to occasionally give rise to spurious power laws.

The GLS at scale k is then obtained by calculating the square
of the difference in the number of phase-locked pairs between
two successive points in time, |Nk

SP (t + δt) − Nk
SP (t) |2, where

δt is an increment in time and k denotes the wavelet scale.
From examination of our analytic equations for phase

difference [Eqs. (6) and (7)], we observe that the phase
difference �k

ij changes with time in a very structured way. For
K < |ωi − ωj |, �k

ij is a periodic function. For K > |ωi − ωj |,
there is a short-lived transient before �k

ij settles to a constant.
Before we proceed to pool our probability distributions

across many pairs of oscillators, we first consider what we
might expect from a single pair. For K < |ωi − ωj |, the lengths
of PLIs between two oscillators would be identical within
any given oscillation cycle, and the probability distribution
will only contain one value. If a given simulation is cut off
before a full cycle is complete, or more precisely, before
a phase-locked interval has come to an end, this may give
rise to a second phase-locked interval, and the probability
distribution may have more than one value in this case. For
K > |ωi − ωj |, the phase difference will be a single constant,
either occurring during the transient, or at the permanent value
to which the phase difference converges, depending on the
starting phase difference, and the value of the final constant.
Again, the probability distribution contains one value.

The GLS can either take the value 1 if the oscillators either
go from being non-phase-locked to phase locked, or the value
0 if no change occurs. This allows two possible values in the
probability distribution. For a single oscillator pair, we would
therefore not expect to find a valid probability distribution of
either PLIs of GLS for any coupling K .

This is a trivial but important point to make. If a single pair
of oscillators could give rise to a probability distribution which
appeared linear on a log-log plot (as a power law does) for some
pairwise coupling value that could be considered “critical”
over some small range of values, then the final, observed power
law created by pooling many pairs may be the result of a simple
superimposition of these smaller linear components. We now
demonstrate that the power law could result from a process
that does not involve critical interactions for any reasonable
definition of the term (even on a pairwise level), but through
completely independent systems evolving with no connections
between the elements that combine to produce the power
law.

G. Akaike information criterion

As in [17], the presence of power-law statistics is as-
sessed using a model selection approach whereby the Akaike
information criterion (AIC) [51] is used to compare the
goodness-of-fit of a power-law distribution with that of two
alternative distributions, namely, the exponential and log-
normal distributions. It is important to stress that the Akaike
information criterion only provides a means of comparing
models, but gives no information on how good the model
is objectively at fitting the data. This means that only the
relative values of this measure, for different models, are
important.

For a model using k parameters, with likelihood function
L, the Akaike information criterion is calculated using the
following expression:

AIC = 2k − 2 ln(L).

As in [17], this measure was adjusted to account for small
sample sizes, using the following:

AICc = AIC + 2k(k + 1)

n − k − 1
,

where n is the number of observations of the data. This is
especially relevant because all three models were fitted to the
binned histogram heights rather than the full data set. Since
the basis of the AIC is a log-likelihood function, it can be used
with binned data in this way [52]. The number of bins used
will affect the raw values of the AIC, but not the relative values
obtained for the models used, so that the best-fitting model will
pertain for the data analyzed.

III. RESULTS

A. Independent pair model simulation

We simulated pairs of Kuramoto-coupled oscillators along-
side our analytic solution. Both were calculated over 1000 s,
with an integration time step of δt = 2−11 for the simulated
oscillators. This provided a total of 1000 × 211 time steps. We
then down-sampled the resulting time series by a factor of 2 to
obtain a time series with sampling frequency of 210 Hz. The
analytic signal was also generated with a sampling frequency
of 210 Hz. The coupling K was incremented between 0 and 4,
in intervals of 0.2, and the two curves were compared.

The behavior of the phase difference is qualitatively differ-
ent in the cases C = K

(ωi−ωk) < 1 and C > 1. We demonstrate
the phase difference between two oscillators in Fig. 2 as
obtained with our analytic expressions alongside a simulation
of the Kuramoto model, using Euler’s method to iteratively
update the phase by Eq. (1). The two phase calculations are
perfectly superimposed.

Although the root mean square error (RMSE) varies for
different coupling values, the normalized RMSE is less than
0.1% for the range of coupling values considered in this
paper, demonstrating good agreement between simulated and
analytic results.

It is evident that when the coupling supersedes the dif-
ference in natural frequencies (C > 1), the two oscillators
synchronize in exponential time. When the coupling is small
(C < 1), however, the phase difference grows (or falls) at a
rate dictated by the frequency difference, but with increasingly
lengthy periods of constant phase difference, or synchroniza-
tion.

B. PLI and GLS of Kuramoto model

As a baseline for comparison, the results of Kitzbichler
et al. [17] on the Kuramoto model were replicated using
our own code in the MATLAB environment. A system of 44
Kuramoto oscillators, each with a natural frequency drawn
from a normal distribution N (60π,20π ), was simulated using
the same simulation parameters as in Sec. III A. We present
three different regimes (uncoupled, critically coupled, and
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FIG. 2. (Color online) The evolution of phase difference between
the oscillators in a two-oscillator Kuramoto system, plotted using our
analytic expression (blue), and a simulation of the Kuramoto model
by Euler’s method (red). The two phase calculations are perfectly
superimposed. The root mean square error (RMSE) is shown for
different coupling values, for a single simulation. Panels (a), (b),
(c) have C < 1 (where C is defined in Sec. II B), but coupling is
increased progressively. The phase evolves periodically. Panel (d) is
the same pair of oscillators, but for C > 1. There is a brief transient
before the oscillators fully synchronize with a constant level of phase
difference. The initial phase separation has been set to � = 0 without
loss of generality.

supercritically coupled), which yield the power spectra shown
in Fig. 3.

Next, using 44 oscillators whose natural frequencies
were drawn from a N (0,1) distribution, the PLI and GLS

probability distributions were calculated for the following
coupling values: K = 0, K = Kc = 1.596, K = 2, and K =
4. At t = 0, all oscillators had a phase θi = 0. The data
presented in Figs. 3, 4, and 5 were obtained from a single
run of the model, however, it was confirmed that the results
were not sensitive to the exact values of the natural frequencies.

A histogram for the PLI data was constructed using 20
logarithmically spaced bins, with the first bin beginning at a
single time step of 2−10 s, and the largest bin ending at the total
length of the data, of 1000 s. The histogram was then scaled so
that each bin count was divided by the total number of PLIs,
and then by the bin size that it represented.

For GLS, we took 1000 logarithmically spaced bins ranging
from a value of 1 to 104.5. The GLS histogram was also scaled.
Here, each bin count was divided by the total number of
counts (sum of all bin counts), and then by the bin size that it
represented.

The Akaike information criterion (AIC) was calculated for
both the PLI and GLS distributions for all studied coupling
values. Only PLI intervals of length 0.1 s or more were used
for model fitting, and these only are shown in Fig. 4. The
power-law model was fitted using the procedure described by
Clauset et al. [53], and implemented using their freely available
code, and a minimum data value of 0.1 s. The log-normal
and exponential distributions were both fitted using built-in
MATLAB functions.

The values obtained for the effective critical coupling K =
2 are shown in Table I for PLIs and in Table II for GLS. As
in [17], the power-law distribution was only found to be the
best fit at certain wavelet scales. The AIC values in Table I
of Kitzbichler et al. [17], stated as being at critically coupled
Kuramoto, favor a power-law model of the PLI frequency
distribution for 5 of 9 wavelet scales, although no value is
reported for wavelet scale 11.

In our system, at the effective critical coupling K = 2, the
power-law distribution was the best model for the data for 4
out of 9 wavelet scales for the PLI data. Note that the same
number of wavelet scales was also best fitted by a power-law
distribution for coupling values K = 1, K = 3, and K = 4. At
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FIG. 3. (Color online) Power spectra for a system of 44 Kuramoto oscillators, with natural frequencies drawn from a N (60π,20π )
distribution and three distinct levels of coupling: (a) K = 0, (b) K = 2, the effective critical coupling for this specific finite Kuramoto system,
as seen from Fig. 1(a), and (c) K = 4. The vertical numbered lines represent wavelet scales 3–11.
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FIG. 4. (Color online) Distribution of PLIs in a system of 44 Kuramoto oscillators, with natural frequencies drawn from a N (0,1)
distribution and four levels of coupling: K = 0, K = Kc � 1.6, K = 2, and K = 4 (from top left, clockwise). A power law of exponent −2 is
shown by a dotted black line. The colored lines represent wavelet scales 3–11 (see key).

coupling K = Kc = 1.596, 3 wavelet scales were best fitted
by a power law, and at no coupling, i.e., K = 0, only 2 wavelet
scales. The log-normal distribution was otherwise the best fit
at all coupling values and all other scales. The fact that less
than half of the wavelet scales were best fitted by a power-law
distribution at the critical coupling, combined with the fact
that noncritical coupling parameters (K = 1,3,4) resulted in
the same proportion of scales being best fitted by a power-law
distribution, leads us to conclude that the distribution of PLIs
is not a reliable measure of criticality in a finite size Kuramoto
system.

For the GLS probability distribution, the coupling values
giving greatest resemblance to power-law distributions were
K = Kc � 1.6 and also K = 3, both with 8 of 9 wavelet scales
best fitted by the power-law model. (The AIC values for the
GLS distribution were not included in [17].) In contrast, a
power-law model was best fitting for only 2 wavelet scales at
coupling value of K = 0. It was the best fit for 4 wavelet scales
at coupling K = 1, for 6 wavelet scales at coupling K = 2,
and for 3 wavelet scales at coupling K = 4. The remaining
wavelet scales for all coupling values were again best fitted by

a log-normal distribution. The prevalence of good power-law
fits in the GLS probability distribution across wavelet scales for
coupling values K = Kc, 2, and 3, and the fact that power-law
distributions were not a good fit for the data resulting from
coupling values K = 0 and 4, collectively suggest that the
GLS measure may be an acceptable but not very sensitive
indicator of the region of critical coupling for the finite size
Kuramoto system.

The probability distributions of PLIs and GLS in Figs. 4
and 5 are consistent with those shown in Fig. 3 of [17] for the
zero and critical coupling values. For K = 0, the probability
distribution of the PLIs has a dropoff for PLI values above 100.
However, our plot at this value differs from that in Kitzbichler
et al. [17], which shows that no intermediate length PLIs exist
for many of the scales. We observe PLIs of all lengths from 0.1
to over 100 s with nonzero probability. We suspect that their
data were truncated for display, but no detail is given in the
paper. The distributions at all wavelet scales appear linear in the
log-log space both at theoretical critical coupling of Kc � 1.6,
and at K = 2, the effective coupling parameter for this
simulation of the Kuramoto system. The range in which this
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FIG. 5. (Color online) Distribution of GLS in a system of 44 Kuramoto oscillators, with natural frequencies drawn from a N (0,1)
distribution and four levels of coupling: K = 0, K = Kc � 1.6, K = 2, and K = 4 (from top left, clockwise). A power law of exponent −1 is
shown by a dotted black line. The colored lines represent wavelet scales 3–11 (see key).

linearity holds is similar to that in [17], lying between 100 and
102. Our results for coupling values beyond criticality show
that the distributions remain power-law-like as the coupling
is increased to K = 3, suggesting that linearity in the log-log

TABLE I. Akaike information criterion values for various models
applied to the PLI distributions of the Kuramoto model at K = 2,
the effective critical coupling value for our system. Smaller values
indicate a better fit, but comparisons are only meaningful across rows.
The smallest value in each row is indicated with an asterisk.

Wavelet scale Power law Exponential Log-normal

3 251.04 288.75 116.26 ∗
4 253.87 289.35 123.10 ∗
5 257.03 316.55 157.24 ∗
6 258.62 370.14 218.44 ∗
7 254.59 396.20 252.47 ∗
8 245.74 ∗ 359.41 250.97
9 220.50 ∗ 343.30 227.93
10 224.56 ∗ 318.80 229.26
11 220.38 ∗ 306.27 223.93

space is not specific to K = Kc for this system. This linearity in
the log-log space vanishes for K = 4, where sufficiently many
oscillators have synchronized at the mean-field phase for the
system, which induces a particular interval of phase locking,

TABLE II. Akaike information criterion values for various mod-
els applied to the GLS distributions of the Kuramoto model at K = 2,
the effective critical coupling value for our system. Smaller values
indicate a better fit, but comparisons are only meaningful across rows.
The smallest value in each row is indicated with an asterisk.

Wavelet scale Power law Exponential Log-normal

3 −2533.43 ∗ −1019.49 −2478.83
4 −2531.41 ∗ −1296.02 −2484.28
5 −2540.75 ∗ −1351.52 −2490.46
6 −2520.30 ∗ −1304.60 −2473.17
7 −2439.44 −1293.77 −2465.53 ∗
8 −2415.82 −1163.59 −2426.63 ∗
9 −2000.55 ∗ −941.78 −1985.62
10 −1536.79 ∗ −686.48 −1515.75
11 −546.67 −239.38 −568.82 ∗
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FIG. 6. (Color online) Distribution of PLIs in the independent pairs model, with natural frequencies drawn from a N (0,1) distribution and
four levels of coupling: K = 0, K = Kc � 1.6, K = 2, and K = 4 (from top left, clockwise). A power law of exponent −2 is shown by a
dotted black line. The colored lines represent wavelet scales 3–11 (see key).

indicated by the peak in the distribution. Qualitatively similar
observations can be made regarding the GLS distributions.

C. PLI and GLS in the independent pairs model

PLI and GLS probability distributions were computed from
the phase difference of 1000 pairs of oscillators with ωi −
ωk ∼ N (0,2). The length of data and time steps used were
identical to those described in Sec. III A. The number of pairs
was set to a value close to that of the total number (946) of
pairings available in a system of 44 oscillators. We computed
all PLIs across these pairings, and the measures of GLS for
all consecutive time points. Histograms of PLI and GLS, and
AIC values were computed exactly as in the previous section
(see Figs. 6 and 7, and Tables III and IV).

1. PLI probability distribution

As indicated by Fig. 6, the structure of the probability
distribution alters as the coupling increases. For K = 0, there
is a dropoff below the power law of the distribution for
values of the PLI above 1 s. At or around the theoretical and
effective critical couplings, the log-log plot of the distribution

approaches the same power law with slope −2 as indicated by
[17]. For values up to K = 3, there is no significant difference
between the evolution of PLI probability distributions with
coupling in the independent pairs model and that of the
Kuramoto model. The main dissimilarity arises from the
continuing presence of an apparent power-law distribution in
the “supercritical” range of K = 4. In the independent pairs
model, the log-log plot of the distribution retains some of its
linearity, whereas there is synchronization to the mean field in
the Kuramoto model, as evidenced by a well-defined peak in
Fig. 4.

For the independent pairs model, the AIC indicated that
the power-law distribution best fitted the PLI probability
distribution for 4 of the 9 wavelet scales, at critical coupling
value K � 1.6, as well as for coupling values K = 1 and
4. Both the effective critical coupling value K = 2 (see
Table III) and K = 3 favored the power distribution for 5
wavelet scales in contrast to only 1 wavelet scale for coupling
K = 0. The remaining wavelet scales at all coupling values
were best fitted by a log-normal distribution. As there is little
difference between the numbers of wavelet scales best fitted
by a power-law distribution for corresponding coupling values
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FIG. 7. (Color online) Distribution of GLS in the independent pairs model, with natural frequencies drawn from a N (0,1) distribution and
four levels of coupling: K = 0, K = Kc � 1.6, K = 2, and K = 4 (from top left, clockwise). A power law of exponent −1 is shown by a
dotted black line. The colored lines represent wavelet scales 3–11 (see key).

of the Kuramoto and independent pairs models, we conclude
that the PLI measure is therefore unable to distinguish between
critically and noncritically coupled systems.

TABLE III. Akaike information criterion values for various
models applied to the PLI distributions of the independent pairs model
at K = 2, the effective critical coupling value for our system. Smaller
values indicate a better fit, but comparisons are only meaningful
across rows. The smallest value in each row is indicated with an
asterisk.

Wavelet scale Power law Exponential Log-normal

3 205.74 121.02 49.49 ∗
4 189.05 222.37 120.70 ∗
5 171.14 192.08 107.80 ∗
6 154.09 166.67 93.89 ∗
7 138.37 ∗ 241.74 139.03
8 122.33 ∗ 210.90 124.66
9 104.09 ∗ 174.94 109.51
10 88.21 ∗ 161.30 93.26
11 72.94 ∗ 129.74 80.59

2. GLS probability distribution

In contrast to the PLI results, the probability distribution
for the GLS of the independent pairs model remains largely

TABLE IV. Akaike information criterion values for various mod-
els applied to the GLS distributions of the independent pairs model at
K = 2, the effective critical coupling value for our system. Smaller
values indicate a better fit, but comparisons are only meaningful
across rows. The smallest value in each row is indicated with an
asterisk.

Wavelet scale Power law Exponential Log-normal

3 −297.16 42.78 −301.51 ∗
4 −379.92 8.93 −391.39 ∗
5 −591.87 −54.62 −596.56 ∗
6 −409.53 −38.71 −425.36 ∗
7 −227.94 −6.39 −251.63 ∗
8 −193.42 23.66 −204.54 ∗
9 −129.49 51.58 −132.82 ∗
10 −84.46 ∗ 57.75 −78.53
11 −63.34 ∗ 62.20 −51.41
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unaltered as coupling increases, as shown in Fig. 7. The GLS
distributions do not resemble those of the Kuramoto model.
The range in which the log-log plot of the distribution is
linear is narrower with a dropoff in the distribution for values
of GLS above 100 s, suggesting that the global lability of
synchronization measure may be more sensitive to the lack of
critical interaction in the system.

For GLS, only 2 wavelet scales were best modeled by the
power-law model at the effective critical coupling K = 2 (see
Table IV for K = Kc). 1 wavelet scale was best fitted by a
power law at coupling K = 0, 3 at K = 1, 2 at K = Kc, 4 at
K = 3, and 3 at K = 4. The remaining wavelet scales at all
coupling values were best fitted by a log-normal distribution.
There is no evident pattern of increasing similarity to a power
law of the GLS distribution, as the coupling increases.

IV. CONCLUSIONS

In this paper, we critically examined two measures, phase-
locking intervals (PLI) and global lability of synchronization
(GLS), proposed by Kitzbichler and colleagues [17] to charac-
terize the presence of critical synchronization in a system. We
did so by presenting those measures with two very different
models of synchronization. In the first (Kuramoto model), the
oscillators are coupled with increasing K to the mean field and
undergo a critical transition. In the second (independent pairs
model), the oscillators are only allowed to couple in a pairwise
manner. This latter model can not be formulated as a system at
criticality because there is no global coupling to associate the
pairs with one another, and so no possibility of a mean field.

When calculating the phase-locking intervals (PLI) follow-
ing the methodology of Kitzbichler et al. [17], we showed
that power laws were the best fit for a similar number of
wavelet scales when considering PLI distributions for the
critical (Kuramoto) model and the noncritical (independent
pairs) model. The power-law distribution and the slope found
for the PLIs of the noncritical system was closely similar
to that shown by the critical model. When further exploring
the PLI probability distribution for coupling parameter values
exceeding criticality, we found that the linearity of the log-log
plot of the distribution at a number of wavelet scales still led
to a best fit by a power law, suggesting that the observation
of power laws within this framework can be present in a wide
range of coupling values. We therefore conclude that the PLI
measure should not be used to infer criticality (broadband or
otherwise) in a system.

In our simulations, the GLS measure appeared better at
discriminating between the critical (Kuramoto) system and the
noncritical (independent pairs) model. We therefore conclude
that GLS is a better measure than PLI for identifying critical
systems, however, we believe that further work should be
done to ascertain more precisely where its strengths lie, and
compare it to other, non-threshold-based methods such as
proposed by Gong et al. [54]. In particular, we note that the
GLS measure relies on counting the number of synchronized
oscillators and that this depends crucially on how oscillators
are defined, and distinguished. In the Kuramoto model, the
number of oscillators is well defined, and each one is a discrete
entity. With recorded neural activity, however, distinguishing
multiple discrete oscillators is less straightforward. Kitzbichler

et al. have applied the GLS measure to fMRI and MEG signals,
but its interpretation was limited by finite size effects (see
loss of log-log linearity in the GLS distribution of MEG data
in their figures 5D and 7D). To our knowledge, the GLS
measure has not been applied again to human neural data.
Recently, Meisel et al. [20] have claimed to detect when
compared to seizure-free electrocorticogram (ECoG) data a
loss of adaptive self-organized criticality of the ECoG during
epileptic seizures. This conclusion was arrived at through
exploring power-law scaling of ECoG phase locking using the
PLI measure only. This is an exciting finding which received
support from analyzing the changes in PLI scaling seen
in a computational model of self-organized criticality [55].
However, our work indicates that interpreting the presence of
a power law in the PLI probability distribution as a marker of
criticality is problematic especially when a threshold has been
applied to detect PLIs and when there has been pooling across
many elements.
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APPENDIX: ANALYTIC DERIVATION OF �i j

The analytical solutions for �ij , the difference between
phases θi and θj of oscillators i and j , are distinct for the
two cases K

ωi−ωj
> 1 and K

ωi−ωj
< 1 where ωi and ωj are the

respective natural frequencies of oscillators i and j , and K is
the coupling added globally to the system. We can rearrange
Eq. (5) to obtain the following integral:∫

dt =
∫

d�
(ωi − ωj ) − K sin(�ij ),

where t denotes time. This integral can be solved using the
standard substitution of x = tan(�ij

2 ).
Doing so, and letting C = K

(ωi−ωj ) , we get
∫

dt = 2

(ωi − ωj )

∫
dx(

1 − C2 + (x − C)2
) . (A1)

There are two different scenarios for this integral, depend-
ing on whether C < 1 and

√
1 − C2 is a real or imaginary

number. We deal with each case in turn.

1. If C < 1, or when coupling is smaller than the difference
in natural frequency

We can rearrange (A1) in terms of
√

1 − C2 which is real
and ∫

dt = 2

(ωi − ωj )(1 − C2)

∫
dx[

1 + [
x−C√
1−C2

)2] .
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We can solve this integral using the fact that tan−1(z) = ∫
dz

1+z2

to get

t = 2

(ωi − ωj )
√

(1 − C2)

[
tan−1

(
tan

(�ij

2

) − C√
1 − C2

)

− tan−1

(
tan

(�0
ij

2

) − C√
1 − C2

)]
. (A2)

Here, �0
ij is the value of �ij at time t = 0, i.e., the initial

difference in phase between oscillators i and j .

Setting D = 2

(ωi−ωj )
√

(1−C2)
tan−1(

tan(
�0

ij

2 )−C√
1−C2 ) we can rear-

range Eq. (A2) to get

�ij = 2tan−1

[
(
√

1 − C2)

× tan

(
(t − D)(ωi − ωj )

√
(1 − C2)

2

)
+ C

]
.

2. If C > 1, or when coupling is larger than the difference in
natural frequency

Here,
√

1 − C2 is imaginary, so we rearrange (A1) in terms
of

√
C2 − 1:∫

dt = 2

(ωi − ωj )(1 − C2)

∫
dx[

1 − (
x−C√
C2−1

)2] .

We can solve this integral using the fact that
1
2

[
ln−1(−z − 1) − ln−1(z − 1)

] = ∫
dz

1−z2 :

t = −1

(ωi − ωj )
√

(C2 − 1)
ln

[
A

(
1 + y

1 − y

)]
,

where A = 1−y0

1+y0 and y0 is the value of y at time t = 0. This
can be rearranged to yield

�ij = 2 tan−1

[√
C2 − 1

(
e−t(ωi−ωj )

√
(C2−1) − A

A + e−t(ωi−ωj )
√

(C2−1)

)
+ C

]
.
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