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Abstract. We have calculated the distribution of work W done on a 1-d harmonic oscillator
that is initially in canonical equilibrium at temperature T , then thermally isolated and driven
by an arbitrary time-dependent cyclic spring constant κ(t), and demonstrated that it satisfies
P(W ) = exp(βW )P(−W ), where β = 1/kBT , in both classical and quantum dynamics. This
differs from the celebrated Crooks relation of nonequilibrium thermodynamics, since the latter
relates distributions for forward and backward protocols of driving. We show that it is a special
case of a symmetry that holds for non-cyclic work processes on the isolated oscillator, and that
consideration of time reversal invariance shows it to be consistent with the Crooks relation. We
have verified that the symmetry holds in both classical and quantum treatments of the dynamics,
but that inherent uncertainty in the latter case leads to greater fluctuations in work performed for
a given process.
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1. Introduction

The Crooks relation [1] states that the outcome of the mechanical processing of a system
according to a prescribed sequence of actions is related to the outcome of a process consisting
of the reversed sequence. It is a connection between the probability distributions of the amount
of work W performed on the system in the course of such forward and backward processes,
PF(W ) and PB(W ), respectively. A forward process might consist of the movement of a piston
to compress a gas in a cylinder, while the backward process would be the opposite movement to
expand the gas [2]. The validity of the Crooks relation requires that the system should start out in
canonical equilibrium at the same temperature T for both processes. The system might maintain
contact with a heat bath at that temperature during the processing or it could be isolated. The
relation reads

PF(W ) = exp(β (W −∆F))PB(−W ), (1)

where β = 1/kBT and ∆F is the change in free energy of the system associated with the forward
process, evaluated for example on the basis of the isothermal change in volume of the expanded
gas. Equation (1) states that the probability that the forward process should require an input of
work W , and the probability of requiring work −W (in other words receiving work from the
system) during the backward process, are related to each other, but are not in general equal.
The relation has been shown to hold for a variety of choices of dynamics, though studies
reveal that it is important to define carefully what is meant by work, particularly for strong
coupling between a system and its environment [3, 4]. It implies [5] the Jarzynski equality
⟨exp(−β (W −∆F))⟩ = 1, which in turn leads to ⟨W ⟩ ≥ ∆F for a forward process starting in
equilibrium, where the brackets indicate an average taken over the probability distribution of
work done. This, of course, is a statement of the second law of thermodynamics, and the Crooks
relation, Jarzynski equality and the associated fluctuation relations have received a great deal of
attention as a result (see, for example [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 18]).

It has proved valuable to study the Crooks relation in the context of simple examples
[19, 2, 20, 21, 22, 23, 24] in order to gain insight into its operation in more complex cases,
and the 1-d harmonic oscillator has proved to be a popular system. The main purpose of this
paper is to calculate work distributions for an isolated oscillator using a geometric and pictorial
approach that has, we believe, some intuitive pedagogical value. In doing so, we expose a
broader symmetry of the distribution of work for such a forward process, which has its origin
in the simplicity of the dynamics of the harmonic oscillator, and which demonstrates the rather
special character of this system with regard to its fluctuation behaviour.

Work is performed by prescribing a time-dependent spring constant κ(t) during the process.
If the spring constant varies cyclically in an interval 0 ≤ t ≤ τ such that κ(τ) = κ(0), then
∆F = 0, and moreover if the process takes place under conditions of thermal isolation, then
no heat is exchanged during the cycle and W = ∆E, the change in system energy. The Crooks
relation reduces to PF(∆E) = exp(β∆E)PB(−∆E): a result verified, for example, by Deffner
and Lutz [21, 25]. But our approach to solving the classical evolution demonstrates that a
relation PF(∆E) = exp(βL∆E)PF(−∆E) also holds for a class of forward processes, with the
parameter L depending on the nature of the process, and with PF(∆E) taking a specified analytic
form. It is quite compatible with the Crooks relation for a cyclic forward process and its
backward counterpart, for which L = 1 and PF(∆E) = PB(∆E), as we shall show. We also
compare the continuous distribution of work arising from a classical treatment with the discrete
distribution of work that emerges from the quantum treatment of a cyclic process to show that
these properties are preserved. Fluctuations in the quantum case are broader, as a result of the
wider range of possible outcomes made possible by the dynamics.

In the next section we analyse a general work process performed on a classical harmonic
oscillator, represented in terms of a matrix operation on a system phasor. We evaluate
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the probability distribution function (pdf) of system energy change for M ≥ 1 independent
oscillators. We go on to treat the system quantum mechanically in section 3, particularly to
contrast the widths of the classical and quantum pdfs for cyclic processes. Our conclusions are
given in section 4.

2. Classical treatment

2.1. System phasor and process matrix

It is convenient to convert the time-dependent spring constant κ(t) into a time-dependent natural
frequency ω(t), so that the Hamiltonian at time t is

H(t) = p2/2m+mω2(t)x2/2, (2)

and the equation of motion is ẍ = −ω2x, where p and x are the momentum and position of the
oscillator, and m is its mass. The response of the system may be illustrated using pictures of
phase space orbits. An isolated system with constant frequency ω0 performs clockwise circular
orbits in a phase space where momentum is normalised by dividing by mω0. The square of the
radius of the orbit is proportional to the initial energy of the oscillator. If the spring constant is
changed at time ti, altering ω and the energy, then the system moves onto an elliptical orbit. A
process consisting of a sequence of shifts in spring constant without contact with a heat bath can
therefore be visualised as transitions to, and movement along, a set of elliptical orbits in phase
space. But if the process is cyclic, characterised by a return to the original spring constant,
the final orbit will be circular. Whether the energy of the system has increased or decreased as
a result of the process then depends on whether the radius of the final orbit is greater than or
less than the initial radius, respectively. This is illustrated in Figure 1 for a process consisting
of a shift down and up in spring constant. The implication is that both upward and downward
changes in energy can be generated. With the exception of some special cases, where motion
on the intermediate orbit consists of one complete circuit for example, in which case ∆E = 0
always, a cyclic process clearly produces a pdf that describes both positive and negative ∆E.

Let us consider a general variation in ω(t) in the interval 0≤ t ≤ τ , with ω =ω0 =ω(0) for t < 0
and ω =ωN =ω(τ) for t > τ . In the initial and final situations the motion will be sinusoidal, but
with differing phases and amplitudes in general. We write x(t) = Aexp(iω0t)+A∗ exp(−iω0t),
where A is a complex phasor representing the phase and amplitude. The process in the interval
0 ≤ t ≤ τ will then map an initial phasor A onto a final phasor A′ = SA, with a matrix
representation (

A′
r

A′
i

)
=

(
a b
c d

)(
Ar
Ai

)
, (3)

where Ar and Ai are the real and imaginary parts of the phasor A. We shall call S the process
matrix.

The energy of an oscillation with phasor A and angular frequency ω can be written as 2mω2AT A,
so the change in energy brought about by the process is

∆E = 2mω2
0 AT (D2ST S− I

)
A, (4)

where D = ωN/ω0 and I is the unit 2 × 2 matrix. In terms of magnitude | A | and phase
θ = tan−1(ẋ(0)/ω0x(0)):

A =| A |
(

cosθ
sinθ

)
(5)
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Figure 1. The system moves clockwise on a circular orbit in phase space until the spring constant
changes at t = ti and it moves onto an elliptical orbit. The cycle is completed by a change in spring
constant at t = t f to return the system to a circular orbit. Depending on the initial location of the
system on its orbit, and the duration of the process, the radius of the final orbit could be (a) greater
than or (b) less than the initial radius, illustrating how the energy change can be both positive or
negative.

we find that

∆E = E (C1 +C2 cos2θ +C3 sin2θ) , (6)

where E = 2mω2
0 |A|2 is the initial energy of the oscillator, and the constants C1, C2 and C3 can

be expressed in terms of the elements of S:

C1 =
D2

2
(
a2 +b2 + c2 +d2)−1 (7)

C2 =
D2

2
(
a2 −b2 + c2 −d2) (8)

C3 = D2(ab+ cd). (9)

Let us consider a sequence of step changes in frequency from ωn−1 to ωn at times tn = nδ t, such
that in the interval tn ≤ t ≤ tn+1 the displacement is represented by

x(t) = An exp(iωn (t − tn))+A∗
n exp(−iωn (t − tn)) . (10)
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Imposing continuity requirements for x and ẋ at t = tn, we express An in terms of An−1:

An =
1
2

(
An−1 exp(iωn−1δ t)

(
1+

ωn−1

ωn

)
+A∗

n−1 exp(−iωn−1δ t)
(

1− ωn−1

ωn

))
. (11)

The step matrix Sn, representing the transformation from An−1 to An through the relation
An = SnAn−1, has the following structure:(

cn−1 −sn−1
ωn−1

ωn
sn−1

ωn−1
ωn

cn−1

)
=

(
1 0
0 ωn−1

ωn

)(
cn−1 −sn−1
sn−1 cn−1

)
, (12)

where cn−1 = cos(ωn−1δ t) and sn−1 = sin(ωn−1δ t), corresponding to a rotation through phase
angle ωn−1δ t, followed by a rescaling of the imaginary part of the phasor. The process matrix S
may then be constructed from the step matrices as S = SNSN−1...S1. Note that detSn = ωn−1/ωn
so that detS=(ωN−1/ωN) · · ·(ω0/ω1)=ω0/ωN =D−1 = ad−bc and this is unity if the process
is cyclic with ωN = ω0. By introducing small step changes in ω , we can consider processes
consisting of a continuous variation in spring constant.

2.2. Construction of P(△E)

Consideration of all possible initial conditions establishes the pdf of energy change P(∆E) due
to the process. We assume a canonical distribution over points Γ in phase space now labelled by
initial energy E and phase angle θ :

P(Γ)dΓ = P(θ |E)P(E)dE dθ =
1

2π
βe−βEdE dθ , (13)

and hence the average of ∆E is

⟨∆E⟩=
∫ 2π

0

∫ ∞

0

β
2π

e−βEE(C1 +C2 cos2θ +C3 sin2θ)dEdθ

=C1/β , (14)

which, through (9), establishes a connection between ⟨∆E⟩ and the elements of the process
matrix S.

Consider next the pdf Φ of energy change ∆E for an oscillator with a given initial energy E. It
is straightforward to write

Φ(∆E,E) =
k

∑
j=1

P(θ j|E)
∣∣∣∣ ∂θ
∂∆E

∣∣∣∣
θ j

, (15)

where θ1...θk are the values of θ that satisfy (6). We employ ∆E from (6) in the following form:

△E = E
(

C1 +
(
C2

2 +C2
3
)1/2

cos2(θ +θ0)
)
, (16)

where cos2θ0 =C2/
(
C2

2 +C2
3
)1/2. Noting that, in non-exceptional cases, k = 4 we write:

Φ(∆E,E) =
4

2π

∣∣∣∣ ∂θ
∂∆E

∣∣∣∣= 1

π
∣∣∣E (C2

2 +C2
3

)1/2 sin2ϕ
∣∣∣ , (17)



Symmetries of cyclic work distributions for an isolated harmonic oscillator 6
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Figure 2. The pdf of energy change △E for an initial energy E, as specified in (18).

where ϕ = θ +θ0, and obtain

Φ(△E,E) = π−1 (E2(C2
2 +C2

3)− (△E −EC1)
2)−1/2

=
1

π [(△E −∆E−)(△E+−∆E)]1/2 . (18)

This is valid for △E− ≤ ∆E ≤△E+, where △E± = E
(

C1 ±
(
C2

2 +C2
3
)1/2

)
. Φ is zero outside

this range, is symmetric about △E = EC1, and diverges at △E =△E±, as illustrated in Figure
2.

Now we include the distribution of initial energies E. We write

P(△E) ∝
∫ ∞

0
Φ(△E,E)exp(−βE)dE, (19)

which for ∆E ≥ 0 may be cast more explicitly as

P(△E) ∝
∫ ∞

∆EL+
Φ(△E,E)exp(−βE)dE, (20)

while for ∆E < 0 we use

P(△E) ∝
∫ ∞

∆EL−
Φ(△E,E)exp(−βE)dE, (21)

where L± =
(

C1 ±
(
C2

2 +C2
3
)1/2

)−1
. We have assumed C2

2 +C2
3 > C2

1 to ensure that both
positive and negative ∆E are generated by the process: as we saw earlier this is almost always the
case for a cyclic process. The integration limits are best understood by consideration of Figure
3. The lower integration limit ∆EL+ for the ∆E ≥ 0 case is the energy for which ∆E+(E), the
upper boundary of the range for which Φ(△E,E) is non-zero, is equal to the given ∆E (shown
as the dotted line). Similarly, the lower integration limit ∆EL− for the ∆E < 0 case is the energy
such that ∆E−(E) =−∆E.

It is possible to reduce P(∆E) to a simple analytic form for this situation. For positive ∆E we
write

P(∆E) ∝
∫ ∞

0
Φ(△E,E +△EL+)e−β (E+∆EL+) dE

∝ e−β∆EL+
∫ ∞

0

exp(−βE)dE

((∆E(L−−L+)−E)E)1/2

∝ e−β∆E(L++L−)/2K0

(
β∆E

2
(L+−L−)

)
, (22)
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Figure 3. Indication of the domain of integration over the pdf Φ(∆E,E) for the case C1 > 0. The
function itself is sketched by curves similar to Figure 2 for two values of E.

where K0 is a modified Bessel function of the second kind. The pdf for ∆E < 0 may be
constructed in a similar way:

P(∆E) ∝
∫ ∞

0
Φ(△E;E +△EL−)e−β (E+∆EL−) dE

∝ e−β∆EL−
∫ ∞

0

exp(−βE)dE

(−E (E −∆E(L+−L−)))
1/2

∝ e−β∆E(L++L−)/2K0

(
−β∆E

2
(L+−L−)

)
. (23)

We immediately notice a symmetry of the pdf of energy change:

P(∆E) = exp(βL∆E)P(−∆E), (24)

where L =−(L++L−). This is reminiscent of the Crooks relation, but the distribution on both
sides describes a forward process, whereas the Crooks relation concerns forward and reverse
processes. A consequence is

⟨exp(−βL∆E)⟩=
∫ ∞

−∞
P(∆E)exp(−βL∆E)d∆E

=
∫ ∞

−∞
P(−∆E)d∆E = 1, (25)

and by Jensen’s inequality we deduce that L⟨∆E⟩ ≥ 0.

We can express P(∆E) in terms of process parameters C1 and D since C2
2 +C2

3 −C2
1 =

2C1 +1−D2 such that

L+−L− =
−2
(
C2

2 +C2
3
)1/2

C2
1 −C2

2 −C2
3

=
2
(
C2

1 +2C1 +1−D2
)1/2

2C1 +1−D2 , (26)

and

L++L− =
2C1

C2
1 −C2

2 −C2
3
=− 2C1

2C1 +1−D2 , (27)
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Figure 4. Distributions of energy change ∆E produced by a step up and step down in ω , generated
from Monte Carlo (line) and (28) and (30) (points) with ω1 = 2ω0, ω1τ = π/2 and β = 1.

implying that the pdf has a form that depends only on the mean energy change ⟨∆E⟩ = C1/β
and the ratio D = ω0/ωN , as long as C2

2 +C2
3 −C2

1 = 2C1 +1−D2 > 0.

For simplicity let us now focus our attention on a cyclic process with ωN = ω0 and hence D = 1,
L =−(L++L−) = 1 and L+−L− = (1+2/C1)

1/2. The earlier inequality implies that ⟨∆E⟩ ≥ 0
and C1 ≥ 0. The pdf takes the form

P(∆E) =
β exp(β∆E/2)

π
√

2β ⟨∆E⟩
K0

(
β |∆E|

2

[
1+

2
β ⟨∆E⟩

]1/2
)
, (28)

where a normalisation constant has been inserted. This form is consistent with ⟨∆E⟩ =∫ ∞
−∞ ∆E P(∆E)d∆E. It is also consistent with the classical limit of the work distribution of a

quantum harmonic oscillator for a cyclic process obtained by Deffner and Lutz [21].

2.3. Example cases

The analysis may be illustrated for a cyclic process consisting of a step change in frequency
from ω0 to ω1 at t = 0, followed by another jump from ω1 to ω0 at t = τ . The process matrix S
takes the form

S =

(
1 0
0 ω1

ω0

)(
c1 −s1
s1 c1

)(
1 0
0 ω0

ω1

)
, (29)

where c1 = cosω1τ and s1 = sinω1τ which implies that

C1 = sin2 ω1τ

(
1
2

[(
ω0

ω1

)2

+

(
ω1

ω0

)2
]
−1

)
. (30)

The results of a Monte Carlo simulation of such a process with ω1 = 2ω0 and ω1τ = π/2,
with initial states selected from a canonical distribution with β = 1, are shown as a histogram
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Figure 5. Probability distribution functions of energy change ∆E for ten (solid curve in inset),
three (points), two (dotted) and a single oscillator (dashed), when driven by a work cycle with
mean energy change ⟨∆E⟩= 2/β per oscillator.

of energy changes ∆E (continuous line) in Figure 4. The points are obtained from (28) using
the appropriate value C1 = 9/8. The correspondence between the analytical results and the
simulation is apparent.

We next calculate PM(∆E), the pdf of energy change for M independent oscillators undergoing
a given cyclic process, using the iterated convolution operation PM(∆E) =

∫ ∞
−∞ P1(∆E −

x)PM−1(x)dx, where P1(x) is synonymous with P(x). Since P2(−∆E) =
∫ ∞
−∞ P1(−∆E −

x)P1(x)dx =
∫ ∞
−∞ P(−∆E + x)P(−x)dx =

∫ ∞
−∞ P(∆E − x)exp(β (−∆E + x))P(x)exp(−βx)dx =

exp(−β∆E)P2(∆E), the symmetry of the pdf for a single oscillator is retained for a system of
two oscillators. By iteration, it can be shown that

PM(∆E) = PM(−∆E)exp(β∆E). (31)

For a cyclic process with C1 = 2 we show numerically generated pdfs in Figure 5 for one, two,
three and ten oscillators. All of them satisfy (31) in spite of their varying shape as M increases.

These symmetries of the work distribution, however, are not immediately equivalent to the
Crooks relation, which refers to forward and backward processes. But it has been remarked
that the harmonic oscillator is rather special [15, 22] and that fluctuation relations of a specific
kind emerge. Since the Crooks relation states that PF(∆E) = PB(−∆E)exp(β∆E) for an isolated
cyclic process it must be the case that PF(∆E) = PB(∆E): the distribution of energy change for
the oscillator is the same whether we process the system according to a forward cyclic sequence
ω(t) or the reverse sequence ω̄(t) = ω(τ − t). The special nature of the oscillator allows us to
understand this in the following way.

The process matrices for the forward and backward cycles, SF and SB respectively, are related
by SFŜSBŜ = I where

Ŝ =

(
1 0
0 −1

)
(32)
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is a velocity inversion matrix since it transforms phasor A into A∗, and these represent oscillator
configurations with the same position but opposite velocities. The relation is simply the
statement that a deterministic forward process, followed by velocity inversion, the backward
process and another velocity inversion, should restore the initial state of the system in phase
space. Hence, if

SF =

(
a b
c d

)
then SB =

(
d b
c a

)
, (33)

and clearly, both matrices have the same value of C1 according to (9), in spite of corresponding
to quite different transformations of the initial phasor A. We showed in (28) that the distribution
of energy change is the same for two cyclic processes with equal values of C1 and ⟨∆E⟩, and
hence PF(∆E) = PB(∆E).

We noted with reference to Figure 2 that if C2
2 +C2

3 <C2
1 then a distribution with only positive

or negative values of ∆E emerges. For C1 > 0, we find ∆E− > 0 and the distribution would then
take the form

P(△E) ∝
∫ ∆EL−

∆EL+
Φ(△E,E)exp(−βE)dE, (34)

for positive ∆E and P(∆E) = 0 otherwise, which again can best be understood with reference to
Figure 3. However, this does not appear to reduce to a simple form in general and a symmetry
about the point ∆E = 0 is obviously absent. However, a special case for C2

2 +C2
3 = C2

1 does
simplify since it corresponds to L− → ∞ and L+ = 1/(2C1). We find that

P(∆E) ∝
∫ ∞

∆EL+

e−βEdE

(△E (E −∆EL+))
1/2

∝
e−β∆EL+

∆E1/2 =

(
β

2C1π∆E

)1/2

e−β∆E/(2C1). (35)

An example process where this applies is a step up from ω0 to ω1 > ω0: S is simply the right
hand component matrix in (29) such that

2C1 =

(
ω1

ω0

)2
(

1+
(

ω0

ω1

)2
)
−2 =

(
ω1

ω0

)2

−1, (36)

and the condition C2
2 +C2

3 −C2
1 = 2C1 +1−D2 = 0 holds. Thus

PF(∆E) =

[
βω2

0

π
(
ω2

1 −ω2
0

)
∆E

]1/2

exp
(
−

βω2
0 ∆E

ω2
1 −ω2

0

)
, (37)

for ∆E > 0 and zero otherwise. For the reverse process consisting of a step down from ω1 to ω0
the pdf is

PB(∆E) =

[
− βω2

1

π
(
ω2

1 −ω2
0

)
∆E

]1/2

exp
(

βω2
1 ∆E

ω2
1 −ω2

0

)
, (38)

for ∆E < 0 and zero otherwise. The subscripts identify these as pdfs for a forward process and
its backward counterpart, and they satisfy

PF(∆E)
PB(−∆E)

=
ω0

ω1
exp
(
−

βω2
0 ∆E

ω2
1 −ω2

0

)
exp
(

βω2
1 ∆E

ω2
1 −ω2

0

)
= exp(β (∆E −∆F)), (39)

as required by the Crooks relation, where ∆F = β−1 ln(ω1/ω0) is the free energy change in
the forward process. They resemble the work distributions for a harmonic oscillator under
isothermal conditions for this process [18].
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Figure 6. Probabilities of energy change ∆E (in units of h̄ω0) for a step up-step down cyclic
work process. Grey bars represent Pq(∆E) in (42), derived from a quantum treatment, and black
bars correspond to the classical pdf (28), integrated over a range h̄ω0 each side of the allowed
quantised values of ∆E. The lower plot at β h̄ω = 1 illustrates the similarity of treatments at
high temperature in contrast to the upper plot at β h̄ω = 5 (or low temperature) where the range
of fluctuations is broader in the quantum treatment compared with the classical. The quantum
histograms satisfy Pq(∆E) = exp(β∆E)Pq(−∆E): the classical counterparts do not though they
are based on underlying continuous pdfs that do.

3. Quantum treatment

We expect the pdfs of energy change for a quantum treatment of forward and backward
processes for an isolated oscillator to satisfy the Crooks relation, as has been demonstrated by
Deffner et al [21, 25]. However, our interest in this section is in the symmetry in the distribution
of energy change for a forward cyclic process. We employ the treatment of a 1-d quantum
oscillator driven by an arbitrary ω(t) provided by Ji et al [26]. According to this approach, the
familiar eigenfunctions ψn(x) of a 1-d harmonic oscillator with frequency ω(0) = ω0 evolve
into

ψ̂n(x, t) =
1

2nn!

(
ω0

h̄πg−(t)

)1/4

exp
[
− (ω0 + ig0(t))

2h̄g−(t)
x2

−i
(

n+
1
2

)∫ t

0

ω0

mg−(t ′)
dt ′
]

Hn

(√
ω0

h̄g−(t)
x
)
, (40)

where the Hn are Hermite polynomials and the functions g−(t), g0(t) and g+(t) satisfy

ġ−(t) = −2g0(t)/m

ġ0(t) = mω2(t)g−(t)−g+(t)/m

ġ+(t) = 2mω2(t)g0(t), (41)

with initial conditions g−(0) = 1/m, g0(0) = 0 and g+(0) = mω2
0 . The pdf of energy change

Pq(∆E) for an arbitrary cyclic process is then straightforward to calculate. We write

Pq( jh̄ω0) =
∞

∑
n=0

∞

∑
k=0

|Tkn(t)|2 pnδk−n, j, (42)
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Figure 7. (a) The evolution of functions mg−(t) (thin solid curve), g0(t) (dashed) and g+(t)/mω2
0

(dotted) under time-dependent frequency driving ω(t)/ω0 =
(
1+ sin(2ω0t)+ sin2(ω0t)

)
(thick

solid curve). (b) The probability distribution Pq(∆E) of energy change ∆E (in units of h̄ω0) for
β h̄ω0 = 1 is plotted in the form f (∆E) = exp(−β∆E/2)Pq(∆E) to demonstrate the symmetry
f (∆E) = f (−∆E).

where pn ∝ exp(−(n+ 1/2) h̄ω0β ) is the initial canonical probability for state n, and Tkn(t) is
the transition amplitude, which up to an unimportant phase is given by

Tkn(t) =
∫ ∞

−∞
dx

1
2kk!

(
ω0

h̄πg−(t)

)1/4

× exp
[
(ig0(t)−ω0)

2h̄g−(t)
x2
]

Hk

(√
ω0

h̄g−(t)
x
)

× 1
2nn!

(mω0

h̄π

)1/4
exp
[
−mω0

2h̄
x2
]

Hn

(√
mω0

h̄
x
)
. (43)

Parity considerations dictate that Tkn is zero unless k and n differ by an even number, and hence
Pq( jh̄ω0) is zero unless j is even.

We study the step up and down process that was considered classically in section 2.3, namely
ω = ω0 for t < 0 and t > τ , and ω = ω1 = 2ω0 in the interval 0 ≤ t ≤ τ with ω1τ = π/2. The
pdfs of energy change under the quantum dynamics for cases where β h̄ω0 is equal to 1 and 5
are shown in Figure 6. Both pdfs satisfy the relationship Pq(∆E) = exp(β∆E)Pq(−∆E). The
quantum pdfs may be contrasted with the classical counterparts by integrating P(∆E) in (28)
over the range ( j−1)h̄ω0 ≤ ∆E ≤ ( j+1)h̄ω0 and comparing the result with Pq( jh̄ω0). We see
that the classical and quantum treatments coincide rather well for β h̄ω0 = 1, but that differences
emerge for β h̄ω0 = 5. The latter is evidently a low temperature regime and the energy change
brought about by the process is distributed more broadly due to the relatively more substantial
quantum fluctuations.

The step up-step down process has a very simple time-dependence of ω(t). We
investigate driving the system with the more complicated frequency history ω(t) =
ω0
(
1+ sin(2ω0t)+ sin2(ω0t)

)
over the interval 0 ≤ ω0t ≤ π such that the g-functions evolve

with time as in Figure 7(a). The resulting distribution Pq(∆E) for β h̄ω0 = 1 is shown in Figure
7(b) in a form that demonstrates the symmetry Pq(∆E) = exp(β∆E)Pq(−∆E).
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4. Conclusions

We have calculated the probability distribution function P(∆E) of energy change brought about
by taking a 1-d harmonic oscillator, initially in thermal equilibrium, through a process of
external work while isolated from the environment. If the process is cyclic, then the pdf
extends over positive and negative ∆E and exhibits a symmetry P(∆E) = exp(β∆E)P(−∆E)
with respect to the reversal of the sign of the energy change. This is reminiscent of the
Crooks relation, which is also satisfied by the system, but is distinct, since it involves a
forward process only and not its reverse. But the symmetry is also a special case of the
result P(∆E) = exp(βL∆E)P(−∆E) that is valid for a class of non-cyclic processes for this
system. These symmetries are a consequence of the simple dynamics of an oscillator. We have
demonstrated that the symmetry is retained if the system consists of M independent oscillators
subjected to the same process, even though the PM(∆E) take a variety of forms. The symmetry
is also retained when an oscillator undergoing a cyclic process is treated quantum mechanically.
At high temperatures the results of the classical and quantum treatments are similar, while at
low temperatures there is a relative broadening of the pdf in the quantum treatment, as would be
expected from the inclusion of quantum uncertainty in the dynamics.

The understanding of nonequilibrium thermodynamic processes has advanced tremendously
in the last decade or so as a result of the development of fluctuation relations and particular
identities such as the Crooks relation and the Jarzynski equality [15, 3]. The explicit calculation
of probability distribution functions satisfying these relations is a challenging task, but has
considerable pedagogical value. The harmonic oscillator has been a popular system for such
activity, but it is a rather special case in that further symmetries emerge that are not present
in general. Using an approach based on phasors and a geometrical consideration of phase
space trajectories and their weighting in canonical averages, we have demonstrated some of
this richness. It offers a contrast to approaches offered elsewhere [21, 22, 23, 24, 25] with the
intention that it might make an additional contribution to this understanding.

References

[1] G. E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy
differences. Phys. Rev. E, 60:2721–2726, 1999.

[2] G. E. Crooks and C. Jarzynski. Work distribution for the adiabatic compression of a dilute and interacting classical
gas. Phys. Rev. E, 75:021116, 2007.

[3] M. Campisi, P. Hänggi, and P. Talkner. Colloquium: Quantum fluctuation relations: Foundations and applications.
Rev. Mod. Phys., 83:771–791, 2011.

[4] C. Jarzynski. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat.
Mech. P09005, 2004.

[5] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78:2690–2693, 1997.
[6] D. J. Evans, E. G. D. Cohen, and G. P. Morriss. Probability of second law violations in shearing steady states.

Phys. Rev. Lett., 71:2401–2404, 1993.
[7] D. J. Evans and D. J. Searles. Equilibrium microstates which generate second law violating steady states. Phys.

Rev. E, 50:1645–1648, 1994.
[8] G.N. Bochkov and Yu.E. Kuzovlev. Nonlinear fluctuation-dissipation relations and stochastic models in

nonequilibrium thermodynamics: I. Generalized fluctuation-dissipation theorem. Physica A: Statistical
Mechanics and its Applications, 106:443 – 479, 1981.

[9] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett.,
74:2694–2697, 1995.

[10] C. Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: a master-equation
approach. Phys. Rev. E, 56:5018–5035, 1997.

[11] J. Kurchan. Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen., 31(16):3719–3729, 1998.
[12] J. L. Lebowitz and H. Spohn. A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic

dynamics. J. Stat. Phys., 95:333–365, 1999.
[13] D. J. Evans and D. J. Searles. The fluctuation theorem. Adv. Phys., 51:1529–1585, 2002.
[14] V. Y. Chernyak, M. Chertkov, and C. Jarzynski. Path-integral analysis of fluctuation theorems for general Langevin

processes. J. Stat. Mech. P08001, 2006.



Symmetries of cyclic work distributions for an isolated harmonic oscillator 14

[15] R. J. Harris and G. M. Schütz. Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020, 2007.
[16] G. E. Crooks. On the fluctuations of dissipation: an annotated bibliography.

http://threeplusone.com/pubs/technote/CrooksTN005-FluctuationTheoryBib.pdf, 2008.
[17] M. Esposito, U. Harbola, and S. Mukamel. Nonequilibrium fluctuations, fluctuation theorems, and counting

statistics in quantum systems. Rev. Mod. Phys., 81:1665–1702, 2009.
[18] R. E. Spinney and I. J. Ford. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and

Beyond, chapter 1. Fluctuation relations: a pedagogical overview, http://arXiv:1201.6381v1. Wiley-VCH,
Weinheim, ISBN 978-3-527-41094-1, 2012.

[19] A. Imparato and L. Peliti. Work-probability distribution in systems driven out of equilibrium. Phys. Rev. E,
72:046114, 2005.

[20] P. Talkner, P. S. Burada, and P. Hänggi. Statistics of work performed on a forced quantum oscillator. Phys. Rev.
E, 78:011115, 2008.

[21] S. Deffner and E. Lutz. Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E,
77:021128, 2008.

[22] A. Saha, S. Lahiri, and A. M. Jayannavar. Entropy production theorems and some consequences. Phys. Rev. E,
80:011117, 2009.

[23] R. van Zon, L. Hernández de la Peña, G. H. Peslherbe, and J. Schofield. Quantum free-energy differences from
nonequilibrium path integrals. I. Methods and numerical application. Phys. Rev. E, 78:041103, 2008.

[24] G. Huber, F. Schmidt-Kaler, S. Deffner, and E. Lutz. Employing trapped cold ions to verify the quantum Jarzynski
equality. Phys. Rev. Lett., 101:070403, 2008.

[25] S. Deffner, O. Abah, and E. Lutz. Quantum work statistics of linear and nonlinear parametric oscillators. Chem.
Phys., 375:200–208, 2010.

[26] J.-Y. Ji, J. K. Kim, S. P. Kim, and K.-S. Soh. Exact wave functions and nonadiabatic Berry phases of a time-
dependent harmonic oscillator. Phys. Rev. A, 52:3352–3355, 1995.


