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Summary We propose a novel estimation method for dynamic latent variable
(DLV) models that combines simulations and nonparametric kernel smoothing tech-
niques to obtain a GMM estimator based on a set of conditional moments. As such it
extends the simulated method of moments (SMM) of Duffie and Singleton (1993, Econo-
metrica) to allow for the use of conditional moments, instead of unconditional ones. It
can also be seen as a generalization of the SMM for static models as proposed in McFad-
den (1989, Econometrica). It is shown that, as the number of simulations diverges and
the bandwidth used in the kernel smoothing shrinks, the estimator is consistent and
a higher-order expansion reveals the stochastic difference between the infeasible GMM
estimator based on exact computation of the conditional moment conditions and the
simulated version. In particular, the expansion demonstrates how simulations impact
the bias and variance of the proposed estimator. Extensive Monte Carlo results show
how the estimator may be applied to a range of DLV models, and that it performs well
in comparison to several other estimators that have been proposed in the literature.
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2 Creel and Kristensen

1. INTRODUCTION

Dynamic latent variables (DLV’s) are present in many economic models such as in dy-
namic stochastic general equilibrium (DSGE), stochastic volatility, and yield curve mod-
els. The presence of latent variables complicates the estimation of model parameters, and
most existing methods can be quite cumbersome to implement or are model-specific.

We propose a novel, easy-to-implement class of GMM estimators of general DLV mod-
els based on conditional moment restrictions implied by the parametric model: For a
given candidate value of the parameter of interest, we first simulate a long trajectory
of observations from the model. We feed those into a nonparametric kernel regression
smoother to obtain an estimate of the conditional mean operator given a set of condi-
tioning variables chosen by the econometrician. Once this simulated estimator of any
given set of conditional moment restrictions is available, we can proceed to estimate the
parameter using standard GMM methods. The estimator is referred to as the simulated
nonparametric moments (SNM) estimator.

Under regularity conditions, we derive the convergence rate of the SNM estimator
and establish a higher-order expansion of the estimator relative to the infeasible GMM
estimator assuming that the conditional moments can be evaluated exactly. The expan-
sion reveals that the SNM estimator contains additional bias and variance components
due to the use of kernel smoothing and simulations. At the same time, the expansion
also demonstrates that the SNM estimator does not suffer from the so-called curse of
dimensionality normally associated with kernel regression estimators: The order of the
variance of a kernel regression estimator in general increases with the dimension of the
conditioning variables. However, due to the SNM estimator involving summation over the
individual kernel estimates, the resulting variance of the SNM estimator is in contrast
invariant to the dimension of the conditioning variables. In particular, it is of the same
rate as for unconditional simulated method of moments (SMM). As such we pay no price
in terms of first-order variance for using kernel smoothers in our estimation procedure.

Extensive Monte Carlo studies investigate the finite-sample performance of the SNM
estimator relative to existing methods across a range of different DLV models, and it is
found to perform as well, if not better, compared to competing estimators. An important
part of the implementation of the SNM estimator is the choice of bandwidth. We propose
a very simple bandwidth selection rule, and find in the Monte Carlo studies that it does
well. We also do some limited exploration of the the sensitivity of the estimator to
the choice of conditioning variables and to the choice of smoother (instead of kernel
regression, any other type of nonparametric regression technique can be employed).

The SNM estimator can be seen as a fairly obvious extension of the SMM method as
developed in McFadden (1989) for static models and Duffie and Singleton (1993) for dy-
namic models. McFadden (1989) shows how one can obtain conditional moments through
simulations in static models where the unobserved variables contain no dynamics. His
method requires one to be able to directly simulate the dependent variables conditional
on the chosen set of conditioning varibles. This is in general not feasible in DLV models
since, due to the dynamics in the latent variables, the conditioning variables will be corre-
lated with all past realizations of the latent variables. Duffie and Singleton (1993) develop
a SMM estimator for DLV models by also simulating a long trajectory from the model
but instead use these to construct unconditional moments. But foregoing conditioning
information may limit the estimator’s ability to capture the dynamics of the model, and
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Simulated Nonparametric Moments 3

can result in poor efficiency (Andersen, Chung and Sørensen, 1999; Michaelides and Ng,
2000; Billio and Monfort, 2003).

Given our focus is on fully specified models, efficient estimation of parameters could in
principle be done by maximum-likelihood. However, calculation of the likelihood function
requires integrating out the DLV’s; this involves calculating high-dimensional integrals
of the same order as the number of observations. A number of methods to handle com-
putation of these integrals have been developed in recent years, including Expectation-
Maximization (EM) algorithms (Fiorentini, Sentana and Shephard, 2004), Markov Chain
Monte Carlo (MCMC) methods (Jacquier et al, 2007) and particle filtering (Brownlees,
Kristensen and Shin, 2011; Johansen, Doucet and Davy, 2008). However, they are com-
putationally demanding, and their implementation can be quite delicate and require
substantial fine-tuning.

Moreover, as is well-known, the likelihood principle is in general quite sensitive to
misspecification. So in many applications it is desirable to trade efficiency for robustness
and instead calibrate/estimate the model by matching an intelligently selected subset
of features of the model with those of the data. The SNM estimator does exactly this
and so will in many situations be robust towards misspecifications: It is well-known that
GMM estimators often remain consistent under departures in certain directions from
a given fully specified model (in particular, in terms of the distribution of the errors)
while the MLE in contrast becomes inconsistent. Examples of DLV models where GMM-
type estimators have proved robust are stochastic volatility (SV) models (Harvey et al,
1994; Ruiz, 1994), DSGE models (Ruge-Murcia, 2007), and diffusion models (Bibby and
Sørensen, 1995). This issue is particularly important if the main goal with estimating the
DLV model is to use it for forecasting, as briefly discussed in Section 4. In this setting,
if the DLV model is misspecified, our SNM estimator will often be the better vehicle
since it finds the parameter estimates that minimize the forecasting error. In particular,
forecasts based on suitably chosen SNM estimates will in general dominate those based
on MLE’s. For a formal argument of this point, we refer to Weiss (1996).

A number of other non-likelihood based estimation methods for DLV models exist
such as indirect inference (Gouriéroux, Monfort and Renault, 1993; Smith, 1993), effi-
cient method of moments (Gallant and Tauchen, 1996), and simulated quasi-likelihood
estimators (Altissimo and Mele, 2009; Kristensen and Shin, 2012). In its most general
form, indirect inference (II) matches a sample statistic with its model-implied moment -
a standard choice of this statistic is an estimator from a so-called auxiliary model. The
efficient method of moments (EMM) is closely related to II and also uses an auxiliary
model to construct an estimator. Similar to II and EMM, our method relies on choosing
an informative set of conditional moments to guarantee identification and efficient esti-
mation of the parameters. In particular, the SNM estimator falls within the framework of
II with the statistic chosen as the set of moments generated from the conditional moment
restrictions. However, our method does not involve a nested optimization problem which
is often the case with II.

Finally, the simulated quasi-maximum likelihood methods of Altissimo and Mele (2009)
and Kristensen and Shin (2012) are similar to the SNM except that the simulated data
is fed into a kernel density estimate instead of the kernel regression estimator used here.

The remainder of the paper is organized as follows: The next section defines the esti-
mator and discusses its properties and usage. The third section presents several examples
that compare the SNM estimator to other methods, using Monte Carlo. Section 4 dis-
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4 Creel and Kristensen

cusses some extensions, including forecasting and non-stationary models, while Section
5 concludes. All proofs and lemmas have been relegated to the Appendix.

2. THE SNM ESTIMATOR

2.1. Definition of the estimator

Suppose we have observed yt, t = 1, ..., n, from the following dynamic model:

DLV:

{
yt = ry

(
yt−1, wt−1, ut; θ

)
wt = rw

(
yt−1, wt−1, ut; θ

) , (2.1)

where wt is a vector of dynamic latent variables, and ut is a vector of independent
white noise shocks with known distribution. Superscript notation is used to indicate a
vector of lagged variables up to the time indicated, yt−1 ≡

(
y′1, ..., y

′
t−1

)′
, and wt−1 ≡(

w′1, ..., w
′
t−1

)′
. The two functions, ry and rw are known up to some parameter θ ∈ Θ;

let θ0 ∈ Θ denote the true data-generating parameter value. Note that ut enters the
equations for both the observable and latent variables, to allow for potential correlations
in the innovations of the two sets of variables.

We first choose a set of “conditioning variables” xt = (xt,1, ..., xt,dx)
′ ∈ Rdx that are

functions of leads and lags of yt; say, xt = x (yt−q:t+q) for some q ≥ 1 where ys:t :=
(ys, ...., yt) for any s ≤ t. A natural choice in many situations would be to use the first
q lags of yt, that is, xt = (yt−1, ..., yt−q), but we here allow for more flexibility in their
selection. Likewise, we choose a collection of “test variables”, φt = (φt,1, ..., φt,L)

′ ∈ RL,
which are functions of leads and lags of the observations; for example, φt=φ (yt−p:t+p)
for some p ≥ 1. There are no restrictions on how φt is chosen in conjunction with xt,
except that the two variables together should identify the parameter of interest through
the corresponding generalized residual functions defined as:

εt(θ) = φt − T (φ) (xt; θ) ∈ RL, T (φ) (x; θ) = Eθ [φt|xt = x] , (2.2)

where Eθ [·|xt] denotes conditional expectations taken under the model evaluated at
θ, Eθ [φt|xt] =

∫
φ (yt, yt−1, ...) dPθ (yt, yt−1, ...|xt). By construction, the residual vector

satisfies

Eθ [εt (θ) |xt] = 0. (2.3)

For a set of instruments chosen as functions of the conditioning variables, zt = z (xt) ∈
RL×M , moment conditions are now defined by interacting instruments with residuals,

gt (θ) := z′tεt (θ) ∈ RM , (2.4)

such that Eθ [gt (θ)] = 0. For these to identify θ0, we require that Eθ0 [gt (θ)] = 0 if and
only if θ = θ0. In the following, for notational simplicity, we write E [·] for Eθ0 [·].

If the conditional moments T (φ) (xt; θ) in equation (??) have a known functional form,
estimation may proceed using the standard generalized method of moments (GMM):
For some sequence of weighting matrices, Wn ∈ RM×M , we would compute the GMM
estimator as

θ̂n = arg min
θ∈Θ

Gn (θ)
′
WnGn (θ) , Gn (θ) =

1

n

n∑
t=1

gt (θ) .

In general, due to the latent dynamic variables, no closed-form functional form of
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T (φ) (xt; θ) is available, and we instead propose to approximate the conditional moments
by feeding simulations into a nonparametric kernel regression smoother (Li and Racine,
2007, Ch. 2). In the following, capital letters will be used to indicate simulated data or
elements that depend upon simulated data. Let {Ys (θ) , s = 1, ...., S} be a time series
trajectory of S simulations of generated by Eq. (??) at the trial parameter value θ:{

Ys (θ) = ry
(
Y s−1 (θ) ,W s−1 (θ) , Us; θ

)
Ws (θ) = rw

(
Y s−1 (θ) ,W s−1 (θ) , Us; θ

) , (2.5)

for s = 1, ....S, where the simulations are initialized at some values
(
Y −1 (θ) ,W−1 (θ)

)
(for example, the final value of a burn-in period of simulations). Given the simulated
values, first compute the corresponding conditioning and test variables, say, Xs (θ) =
x (Ys−q:s+q (θ)) and Φs (θ) =φ (Ys−p:s+p (θ)) , and then use these to obtain the following
kernel estimator of T (φ) (xt; θ):

T̂S (φ) (x; θ) =

∑S
s=1 Φs (θ)Kh (Xs (θ)− x)∑S

s=1Kh (Xs (θ)− x)
, (2.6)

where Kh (z) = K (z/h) /h, K : Rdx 7→ R is a kernel function, and h > 0 is a bandwidth.
To speed up computations, one should not separately fit each of the L test variables,
but rather employ a specialized kernel fitting algorithm that saves the weights across
variables. Since dx = dim(Xs (θ)) is usually greater than one, the kernel function K(·)
is in general multivariate. For notational ease, we use the same bandwidth across all
variables. In practice, if the individual variables contained in Xs (θ) are not on the same
scale, one should either use different bandwidths for the invidual variables, or rescale
Xs (θ) before implementing the kernel smoother.

A simulated version of the GMM estimator is now obtained by replacing the unknown
expectations operator T with its kernel fit T̂S . To be explicit, we first compute the
simulated version of the moment functions,

ĝt,S (θ) := z′tε̂t,S (θ) ∈ RM , ε̂t,S (θ) = φt − T̂S (φ) (xt; θ) (2.7)

where we use the observed instruments. The SNM estimator is then defined as

θ̂n,S = arg min
θ∈Θ

Ĝn,S (θ)
′
WnĜn,S (θ) , Ĝn,S (θ) =

1

n

n∑
t=1

ĝt,S (θ) , (2.8)

The above algorithm is very similar to existing SMM estimators as first proposed in
McFadden (1989) for static models and Duffie and Singleton (1993) for dynamic models.
The only difference is that we employ kernel smoothers. Duffie and Singleton (1993) also
simulate long trajectories, but use these to obtain unconditional moments, say Φ̂S (θ) =∑S
s=1 Φs (θ) /S. McFadden (1989), as we do, proposes to base the GMM estimator on

simulated versions of conditional moments, but his method only applies to static models
where it is possible to simulate the dependent variable conditional on past observed
conditioning variables. This is not feasible in our setting due to the dynamic nature of the
latent variable, wt−1, as we in general do not know the conditional distribution of wt−1|xt.
We overcome this issue by relying on nonparametric kernel estimation techniques.

Finally, it is worth pointing out that the kernel smoother could be replaced by other
nonparametric regression techniques such as local linear kernel, nearest neighbours or
series estimators (Li and Racine, 2007, Ch. 14-15). This should not change the asymptotic
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properties of the SNM estimator. As part of the Monte Carlo study (below), we implement
a series-based version of it.

2.2. Properties of the SNM estimator

This section deals with the asymptotic properties of the SNM estimator. The results of-
fered here are high level, in the sense that they are based on general assumptions imposed
on the DLV model in Eq. (??). Given a more concrete formulation of the DLV model, one
could provide more primitive conditions that would imply our general assumptions. To
demonstrate how the conditions can be verified, we discuss in more detail one particular
DLV model.

We will throughout assume that the exact GMM estimator, θ̂n, is well-behaved. In
particular, we impose the following high-level assumption ensuring identification:

Assumption 2.1. The moment function G (θ) = E [z′tεt (θ)] satisfies G (θ) = 0 if and
only if θ = θ0, where θ0 ∈ Θ ⊆ Rdθ and Θ is compact. Moreover, the weighting matrix
satisfies Wn →P W0 > 0.

The above conditions are standard for general GMM estimators, see e.g. Newey and
McFadden (1994, Section 2) who also give more primitive conditions for them to hold for
particular models. Below, we impose additional conditions on the DLV model ensuring
that supθ∈Θ ‖Gn (θ)−G (θ)‖ →P 0. This property together with Assumption ?? implies

that the infeasible GMM estimator is consistent, θ̂n →P θ0; see Newey and McFadden
(1994, Theorem 2.6).

The goal is now to analyze the simulated version, θ̂n,S , relative to the exact estimator,

θ̂n. As a first step towards such a result, we have to ensure that T̂S (φ) (xt; θ) is con-
sistent uniformly over (x, θ). This is done by verifying the general conditions stated in
Kristensen (2009) where uniform convergence results are obtained for kernel estimators
using parameter-dependent data. We will impose some fairly high-level assumptions on
the DLV model that imply the conditions in Kristensen (2009). In order to state these
assumptions, we first introduce some additional notation. Let Zs (θ) = z (Xt (θ)) denote
the simulated version of the instruments. Also, let f (x; θ) and ft0 (x, x′; θ) denote the
stationary densities of the simulated random variables X0 (θ) and (X0 (θ) , Xt0 (θ)), for
some t0 ≥ 1, respectively. We then define for any random sequence Vs (θ), s = 1, ..., t0,
and for some λ ≥ 2 the following bounds,

B0 = sup
x∈Rdx

sup
θ∈Θ

f (x; θ) , BV,1 = sup
x

sup
θ∈Θ
‖x‖λE [‖V0 (θ)‖ |X0 (θ) = x] f (x; θ) , (2.9)

BV,2 = sup
x,x′∈Rdx

sup
θ∈Θ

E [‖V0 (θ)‖ ‖Vt0 (θ)‖ |X0 (θ) = x,Xt0 (θ) = x′] ft0 (x, x′; θ) . (2.10)

Assumption 2.2. The processes {Xs (θ)}, {Φs (θ)} and {Zs (θ)} satisfy:

1 For all θ ∈ Θ, {(Φs (θ) , Xs (θ) , Zs (θ))} is stationary with mixing coefficients αs (θ)
satisfying αs (θ) ≤ As−β for some 0 < A, β <∞.

2 The random variables Φs (θ) and Xs (θ) are differentiable w.r.t. θ almost surely with
derivatives Φ̇s (θ) and Ẋs (θ).
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3 For some µ ≥ 2 and all θ ∈ Θ: E [‖Φs (θ)‖µ] < ∞, E[||Φs (θ) ||µ||Φ̇s (θ) ||µ] < ∞,
and E[‖Φs (θ)‖µ ||Ẋs (θ) ||µ] <∞.

4 For some λ ≥ 2 and t0 ≥ 1, the bounds in Eqs. (??)-(??) are finite for Vs (θ) =
Φs (θ), Vs (θ) = Φ̇s (θ) and Vs (θ) = Φs (θ) Ẋs (θ).

5 The functions x 7→ T (φ) (x; θ) and f (x; θ) are m ≥ 2 times continuously differen-
tiable w.r.t. x.

6 With d = dx + dθ, µ and λ given in Assumptions ??(3) and ??(4), the mixing

exponent β satisfies β > 1+(µ−1)(1+d/λ+d)
µ−2 .

7 For some q > 0, E
[
supθ∈Θ f (xt; θ)

−q ‖T (φ) (xt; θ)‖ ‖zt‖
]
<∞.

While Assumption ??(1) assumes that (Φs (θ) , Xs (θ) , Zs (θ)) is a stationary process,
it does not necessarily require Ys (θ) = (Ys (θ) ,Ws (θ)) generated from Eq. (??) to
be stationary. For example, in case of unit root type behaviour, one could choose the
testing functions, conditioning variables and instruments as functions of the differenced
process; see Gorodnichenko, Mikusheva and Ng (2012) for more details. We do how-
ever implicitly assume that we are able to initialize the simulated processes such that
(Φs (θ) , Xs (θ) , Zs (θ)) is stationary. In practice this is not always possible but due to
the assumption of α-mixing, we know that (Φs (θ) , Xs (θ) , Zs (θ)) will converge towards
their stationary solutions as s → ∞. A complete analysis, taking into account incorrect
initalization will however not be given here since it will involve longer proofs. For an
analysis in the case of unconditional SMM, we refer to Duffie and Singleton (1993) while
Kristensen (2009, Theorem 3) give results on kernel estimators when data is not initial-
ized at the stationary distribution. In Section 4.1, we discuss in more detail how our the
SNM estimator can be adjusted to handle non-stationary models when it is not obvious
how to choose testing, conditioning and instrumental variables that are stationary and
at the same time identifies θ.

The moment and smoothness conditions stated in Assumptions ??(2) and ??(3) implic-
itly impose restrictions on the functions r = (ry, rw), φ and x. If these three functions
are smooth, then the derivative processes are quite easily derived: First, we write the
model in Eq. (??) more compactly as

Ys (θ) = r
(
Ys−1 (θ) ,Us; θ

)
, (2.11)

and then define the differentiated process Ẏs (θ) =
(
Ẏs (θ) , Ẇs (θ)

)
as

Ẏs (θ) =
∂r
(
Ys−1 (θ) ,Us; θ

)
∂Ys−1 (θ)

′ Ẏs−1 (θ) +
∂r
(
Ys−1 (θ) ,Us; θ

)
∂θ

. (2.12)

The derivative processes of the conditioning variables and the testing functions are then
given as Ẋs (θ) = x′ (Ys−q:s+q (θ)) Ẏs−q:s+q (θ) and Φ̇s (θ) =φ′ (Ys−p:s+p (θ)) Ẏs−p:s+p (θ).

The derivative process Ẏs (θ) is well-defined if r is differentiable. This rules out discontin-
uous models such as threshold models. The smoothness restriction on r is however only
imposed for technical convenience, and we conjecture that our results also go through
for models with discontinuous dynamics by adapting the techniques developed in, e.g.,
Pakes and Pollard (1989) to our setting.

Assumptions ??(4)-??(6) are of a more technical nature, and used to verify the condi-
tions in Kristensen (2009); we refer to this paper for further discussion of these assump-
tions. Finally, the moment condition in Assumption ??(7) is used to control the impact
of the trimming introduced below. It restricts the tail thickness of the distribution of xt.
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8 Creel and Kristensen

To show how the conditions can be verified for specific models, consider, as an example,
the linear model Ys (θ) = A (θ)Ys−1 (θ) + B (θ)Us, where A (θ) and B (θ) are smooth
functions of θ while the error term Us is i.i.d. with a continuous distribution. This
model includes for example the SV model considered in the simulation study by setting
Ys =

(
log
(
y2
s

)
, ws

)
and Us =

(
log
(
u2
s,1

)
, u2
s,2

)
, c.f. Eq. (??). The linear process {Ys (θ)}

is stationary and geometrically mixing if the eigenvalues of A (θ) all lie inside the unit
circle. The first-order derivative process, Ẏs (θ), solves

Ẏs (θ) = Ȧ (θ)Ys−1 (θ) + A (θ) Ẏs−1 (θ) + Ḃ (θ)Us,

where Ȧ (θ) and Ḃ (θ) are derivatives w.r.t. θ. Since Ys (θ) is stationary and mixing
and A (θ) has eigenvalues inside the unit circle, Ẏs (θ) will also be stationary and mix-
ing. Furthermore, if E [‖Us‖p] < ∞ for some p ≥ 1, then E [‖Ys (θ)‖p] < ∞ and

E
[∥∥∥Ẏs (θ)

∥∥∥p] < ∞. So, for example, by choosing xt as lagged values of yt, and the

test function as bounded by polynomials of an appropriate order, Assumption ?? will
hold for this model. Note that even if some of the eigenvalues of A (θ) lie outside the
unit circle, we can still generate stationary test functions and conditioning variables by
taking differences.

We impose the following regularity conditions on the kernel function K:

Assumption 2.3. The kernel K : Rdx 7→ R satisfies:

1 supu∈Rdx |K (u)| <∞ and
∫
|K (u)| du <∞. There exist Λ, L <∞ such that either

(i) K (u) = 0 for ‖u‖ > L and |K (u)−K (u′)| ≤ Λ ‖u− u′‖, or (ii) K (u) is
differentiable with |∂K (u) /∂u| ≤ Λ. For some a > 1, |∂rK (u) /∂ur| ≤ Λ ‖u‖−a
for ‖u‖ ≥ L and r = 0, 1.

2 For some m ≥ 1:
∫
K (u)uαdu = 0 for all α ∈ {0, 1}dx with |α| = 1, ...,m− 1, and∫

K (u) ‖u‖m du <∞.

This class of kernel allows for higher-order kernels (m > 2) and standard kernels
(m = 2) such as the Gaussian one.

Finally, we need to redefine the moment conditions that our SNM estimator is based
on by trimming away observed values for which f (xt; θ) < a:

ĝt,S (θ) = τa,t (θ) z′tε̂t (θ) ,

where τa,t (θ) = τa(f̂ (xt; θ)) is a trimming function and f̂ (x; θ) =
∑S
s=1Kh (Xs (θ)− x) /S

is the simulated kernel estimator of f (x; θ). Replacing ĝt,S (θ) with the above new defini-
tion, the SNM estimator is still given by Eq. (??). The trimming function is chosen such

that τa,t (θ) = 0 when f̂ (xt; θ) < a where a is a trimming parameter and so allows us

to control the behaviour of f̂ (xt; θ) which appears in the denominator of T̂S (φ) (xt; θ).
Trimming obviously imparts a loss of efficiency so, as S → ∞, we will let a → 0 such
that asymptotically it has no impact. We impose the following regularity conditions on
τa (v):

Assumption 2.4. The trimming function τa : R 7→ [0, 1], a > 0, satisfies τa (v) = 1 for
v ≥ 2a and τa (v) = 0 for v ≤ a. It is continuously differentiable with |τ ′a (v) | = O (a).

We here use a smooth trimming function such that the trimmed GMM objective func-
tion remains smooth in θ. A simple way of constructing τa (v) is to choose a cdf F with
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support [0, 1], and define τa (v) = F ((v − a) /a) which then in great generality will sat-
isfy Assumption ??; see also Andrews (1995). We are now ready to state the first main
result:

Theorem 2.1. Under Assumptions ??-?? with q > 0 given in Assumption ??.7:∥∥∥θ̂n,S − θ̂n∥∥∥ = OP
(
a−1hm

)
+OP

(
a−1

√
log (S) / (Shdx)

)
+OP (aq) .

In particular, as
√
na−1hm → 0,

√
na−1

√
log (S) / (Shdx) → 0 and

√
naq → 0, θ̂n,S is

first-order equivalent to θ̂n.

The above theorem provides an error bound between the SNM and exact estima-
tor. Three errors appear: OP

(
a−1hm

)
is the bias component due to kernel smoothing,

OP

(
a−1

√
log (S) / (Shdx)

)
is the variance component from the simulations, and OP (aq)

is caused by the trimming. The result shows that as a, h→ 0 and Shd/ log (S)→∞ suf-
ficiently fast, the error due to simulations, kernel smoothing and trimming can be made
arbitrarily small and so the SNM estimator essentially is the infeasible GMM estimator.

Theorem ?? is not completely satisfactory for two reasons: First, as we shall see in the
following, the rate of the variance component is not sharp; in particular, the theorem
seems to indicate that the SNM estimator suffers from a curse of dimensionality with
the variance growing exponentially with dx = dim (xt) . We will improve on the above
result and show that in fact no curse of dimensionality is present and rather the first-

order variance component is of order OP

(
1/
√
S
)

. Second, one will normally only use

a moderate number of simulations and so it is of interest to have a measure of the
approximation error incurred by using the SNM estimator for a given choice of S.

To this end, we will now analyze in further detail the stochastic difference between
the exact and simulated GMM estimator. We follow the same strategy as in Kristensen
and Salanié (2010) and use a functional Taylor expansion of Ĝn,S (θ) w.r.t. T̂ to evaluate
the higher-order properties of the SNM estimator. For this higher-order analysis to be
formally correct, we need to strengthen our assumptions:

Assumption 2.5. Φs (θ) and Xs (θ) satisfy:

1 The two processes Φs (θ) and Xs (θ) are twice continuously differentiable w.r.t. θ.
Their second order derivatives, Ẍs (θ) and Φ̈s (θ), satisfy the same mixing and
moment conditions as imposed on Ẋs (θ) and Φ̇s (θ) in Assumption ??.

2 With V (θ) defined in Assumption ??(3), its first derivative w.r.t. θ also satisfies
Eqs. (??)-(??).

3 The functions x 7→ T (φ) (x; θ) and f (x; θ) are continuously differentiable w.r.t θ,
and their derivatives are m ≥ 2 times continuously differentiable w.r.t. x.

4 E
[
supθ∈Θ f (xt; θ)

−q ‖∂T (φ) (xt; θ)/ (∂θ)‖ ‖zt‖
]
<∞ for some q > 0.

Assumption 2.6. The kernel K is differentiable and its derivative satisfies the same
conditions as imposed on K in Assumption ??.

As with Assumption ??, the above conditions are quite high-level, but they are nor-
mally easy to verify in specific models. In particular, Assumption ?? holds for the linear
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10 Creel and Kristensen

model considered earlier under weak moment conditions on the errors. The additional
assumptions are used to establish uniform consistency of ∂T̂S (φ) (x; θ) / (∂θ). Moreover,
together with the mixing conditions imposed earlier, they imply that the exact set of
sample moments satisfy a central limit theorem,

√
nGn (θ0)→d N (0,Ω0) where

Ω0 =

∞∑
t=−∞

E
[
g0 (θ0) gt (θ0)

′]
, (2.13)

and that the derivatives of the exact sample moments,

Hn (θ) =
1

n

n∑
t=1

ht (θ) , ht (θ) = −z′t
∂T (φi) (xt; θ)

∂θ
∈ RM×dθ , (2.14)

are well-defined and satisfy sup‖θ−θ0‖<δ ‖Hn (θ)−H (θ)‖ →P 0 where H (θ) = E [ht (θ)].
As a final condition needed for the exact GMM estimator to be asymptotically normally
distributed, we impose the following rank condition which is closely related to the iden-
tification condition in Assumption ??:

Assumption 2.7. With H0 = H (θ0), the matrix H ′0W0H0 is non-singular.

Under Assumptions ?? and ??, the exact GMM estimator is
√
n-asymptotically nor-

mally distributed,
√
n(θ̂n − θ0)→d N (0, V0), where

V0 = (H ′0W0H0)
−1
H ′0W0Ω0W0H0 (H ′0W0H0)

−1
, c.f. Newey and McFadden (1994, The-

orem 3.2). We are now ready to state the second main result evaluating the higher-order
impact of the simulations on the SNM estimator:

Theorem 2.2. Assume that Assumptions ??-?? hold, and that a−1hm → 0,
a−1

√
log (S) / (Shdx+4)→ 0 and a→ 0. Then the SNM estimator satisfies:

θ̂n,S − θ̂n = hmB +
1

S

S∑
s=1

Ds +OP (aq) +OP
(
a−1hm

)
+OP

(
1√

nShdx+δ

)
,

for some δ > 0 where

B = (H ′0W0H0)
−1
H ′0W0E

 z′t
f (xt; θ0)

∑
|α|=m

∂|α| [T (φ) (xt; θ0)f (xt; θ0)]

∂xα

 ,
Ds = (H ′0W0H0)

−1
H ′0W0

{
Zs (θ0)

′
Φs (θ0)− E

[
Zs (θ0)

′
Φs (θ0)

]}
.

In particular, if
√
na−1hm → 0,

√
naq → 0, Shd+δ →∞, and n/S → λ ≥ 0, then the

SNM estimator satisfies:

√
n(θ̂n,S − θ0)

d→ N
(

0, (H ′0W0H0)
−1
H ′0W0 {Ω0 + λΣ0}W0H0 (H ′0W0H0)

−1
)
, (2.15)

where Σ0 =
∑∞
s=−∞E [D0D

′
s].

The first part of the theorem gives a bias-variance expansion of the additional estima-
tion errors due to the simulations and kernel smoothing used in the computation of the
SNM relative to the exact GMM estimator. There are two leading terms in the expan-
sion: The first term, hmB, is the bias due to the use of kernel smoothers and the second
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term,
∑S
s=1Ds/S where E [Ds] = 0, is an additional variance component due to the use

of simulations. A number of points should be emphasized here:
First, in comparison to the NPSMLE of Fermanian and Salanié (2004) and Kristensen

and Shin (2012), the SNM suffers from fewer biases. For the NPSMLE, an additional
bias term of order 1/S appears due to the simulator entering the objective function
nonlinearly. This is not the case here, as in SMM, since T̂S (φ) (x; θ) enters Ĝn,S (θ)
linearly. This will in general imply that the SNM estimator will be less biased than the
NPSMLE.

Second, in comparison to standard SMM (McFadden, 1989; Duffie and Singleton; 1993),
we here have a bias component, hmB, due to the use of kernel smoothers. On the other
hand, there is no first-order curse of dimensionality: The pointwise variance of the kernel
regression estimator T̂S (φ) (x; θ) is of order 1/

(
Shd

)
. One could fear that this would lead

to a first-order variance component of the SNM of the same order. This is however not
the case; rather the first order variance component is of order 1/S. The intuition behind
this result is the same as for two-step semiparametric estimators (see e.g. Kristensen,

2008, 2010): The computation of θ̂n,S involves summation over T̂S (φ) (x; θ) which works
as a variance reduction device.

The second part of the result states how, under suitable choices of bandwidths and
trimming parameters, the simulations impact the standard errors of the SNM estimator:
As can be seen from Eq. (??), the SNM estimator has an additional variance term, λΣ0

where λ ≈ n/S, relative to the exact GMM estimator. This is akin to Duffie and Single-
ton (1993). It is possible to construct an estimator of Σ0, akin to a heteroscedasticity and
autocorrelation consistent covariance (HAC) estimator, and then adjust standard errors
to account for the use of simulations. However, because HAC estimators are often im-
precise in small and moderate samples, we advocate the simpler alternative of setting S
large enough in relation to n so that the Σ0 component will be of negligible importance
and can be ignored when drawing inference about parameters. That is, in practice, S
should be set as large as is computationally feasible so that standard inferential methods
for GMM estimators can be employed. In our simulation studies, we find that choosing
S to be 5,000-10,000 suffices.

2.3. Discussion

2.3.1. Choice of test functions and instruments An integral part of the proposed esti-
mation procedure is the choice of test functions, φt, and instruments, zt. We here discuss
in turn how these can be chosen.

Regarding the test functions, these can either be chosen in a model-specific manner or
in a non-model based way. In the model-specific procedure for choosing test functions, the
researcher chooses different test functions depending on the model. For a given model, one
chooses (a small number of) test functions that are believed to identify the parameters of
interest. In the non-model based method, the researcher uses (a relatively large number)
test functions that (approximately) span the unknown score function. Examples of test
functions within this approach are Hermite polynomials (Bansal et al, 1994) and Fourier
series (Carrasco et al, 2007). Our examples mix the approaches, using some test functions
motivated by the models, supplemented with Fourier-type terms.

A representation of optimal instruments within our setting can be found in Anatolyev
(2003) where it is shown that the optimal instruments solve a stochastic recursion equa-
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12 Creel and Kristensen

tion involving conditional means and variances of the residual function and its Jacobian.
However, solving this recursion equation is infeasible in practice, except in a few special
cases. A feasible method is either to (i) approximate the optimal instruments, or (ii)
restrict the instruments to belong to a smaller, tractable class of processes as done in
Christensen and Sørensen (2008, Section 4).

2.3.2. Optimal weight matrix In order to conduct any inference, we need estimators of
the asymptotic covariance matrices in Theorem ??, Ω0 and Σ0. Also, a consistent estima-
tor of these matrices are needed to obtain an efficient estimate either through two-step
GMM or continuous-updating estimation (CUE). In the ordinary GMM setting without
a fully simulable model, these covariance matrices must be estimated using only the sam-
ple data, which requires use of HAC estimators (e.g., that of Newey and West, 1987). It is
well-known that inferences based upon HAC estimators can be quite unreliable. However,
in the context of the SNM estimator, or any other moment-based estimator that relies on
a fully simulable model, it is possible to estimate Ω (θ) and Σ (θ) through Monte Carlo
which allows for the implementation of a CUE as advocated in Hansen, Heaton and Yaron
(1996). We here only discuss the simulation of Ω (θ) since Σ (θ) can be treated along the
same lines. We first note that Ω (θ) = limn→∞ nE

[
Gn (θ)Gn (θ)

′]
. Given that the model

is simulable, so is Gn (θ). Thus, we may generate R ≥ 1 such samples of size m ≥ 1, and
for each of them calculate simulated moment conditions as in Eq. (??). Given the rth

such replication of the test and conditioning variables, (Ŷ
(r)
t , X̂

(r)
t )}nt=1 (r = 1, 2, ..., R),

we then compute Ĝ
(r)
m,S (θ) in exactly the same way as Ĝn,S (θ) is computed in Eq. (??),

except that the simulated data of size m replaces the real sample data. We then define

vr (θ) = Ĝ
(r)
m,S (θ) − Ḡ (θ), where Ḡ (θ) = R−1

∑R
r=1 Ĝ

(r)
m,S (θ), and obtain the following

estimator, Ω̂ (θ) = m
R

∑R
r=1 vr (θ) vr (θ)

′
.

2.3.3. Choice of the kernel and the bandwidth To implement the SNM estimator, the
kernel function K(·) and the bandwidth h must be chosen. There is substantial theoretical
and empirical evidence that the choice of the particular kernel function has relatively little
effect on the results. For this reason, this paper uses radially symmetric Epanechnikov
product kernels exclusively, accompanied by prior rotation of the data to approximate
independence of the conditioning variables.

Given the kernel function, the bandwidth must be chosen. Too large a bandwidth
over-smooths the data, and induces a fit with low variance but high bias. Too small a
bandwidth has the opposite effect. This bias-variance trade-off is clear from Theorem
??, where we have a bias term of order hm and a second-order variance term of order
1/(nShdx). Many methods for choosing the bandwith have been suggested in the litera-
ture but these are designed to minimize the MSE of the kernel estimator and as such do
not necessarily minimize the MSE of θ̂n,S .

Instead, we treat the bandwidth as an additional parameter to be estimated together
with θ in the manner of Härdle, Hall and Ichimura (1993). The real sample data, yt, is
out-of-sample from the point of view of the simulated data, Ys (θ). By including h as
an additional parameter in the econometric objective function, we are effectively using
an out-of-sample cross validation procedure. Use of a single bandwidth that is chosen in
a data-dependent way gives a balance between computational convenience and reliable
nonparametric fit. The details of our implementation are clear in the example code that
is provided (see Creel and Kristensen, 2009a). This strategy has the important advantage
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that it is automatic, which frees the modeler’s attention to deal with more fundamental
issues such as choice of test variables, conditioning variables, and instruments. It is outside
the scope of this paper to derive the asymptotic properties of the SNM for this bandwidth
selection rule, but we conjecture that the arguments of Härdle, Hall and Ichimura (1993)
can be carried over to the SNM estimator to show that the selected bandwidth satisfies
the conditions of Theorems ??-??; this is supported by our Monte Carlo study which
shows that selection rule works very well in practice.

2.3.4. Computational issues Implementation of the SNM estimator can potentially be
computationally burdensome if not done carefully since it requires evaluation of long
strings of simulations which in turn has to be fed into a kernel regression estimator. How-
ever, various techniques for efficient computation of simulated values and corresponding
kernel regressions are available; see, e.g., Creel (2005, 2007), Racine (2002) and Yang,
Duraiswami, Gumerov and Davis (2003). Moreover, the kernel regression estimator can
be replaced by alternative, computationally more efficient, nonparametric methods such
as series regression.

Another problem is multiple local minima. As is the case with normal GMM estimators,
the SNM objective function is in general not globally convex, so one needs to take care to
find the global minimum. Our experience is that gradient-based minimization algorithms
are not able to find the global minimum of the SNM objective function. The existence
of multiple local minima in a Monte Carlo context requires a means of finding the global
minimizer with a high degree of confidence, yet with minimal user intervention. Our
solution is to use a simulated annealing algorithm (Goffe et al., 1994). This is a heuristic
minimizer that searches over a parameter space defined by reasonable bounds (e.g., we
impose stationarity and non-negativity of variances), gradually contracting the region
of search. The starting point for each Monte Carlo replication is a random point drawn
from a uniform density over the parameter space, to avoid the possibility that over-rapid
contraction of the search region could bias the result towards the starting point.

All of the results reported in the next section of this paper were obtained on a compu-
tational cluster that provided a total of 32 CPU cores, running the PelicanHPC distribu-
tion of GNU/Linux. PelicanHPC (Creel, 2009) contains all software and scripts needed
to replicate the results reported in the next section, on a single computer or on a cluster.
Documentation for the SNM software is provided in Creel and Kristensen (2009a).

3. MONTE CARLO RESULTS

This section presents Monte Carlo results that compare the SNM estimator to other
estimators. The intention is to show that the SNM estimator can be used to successfully
estimate a variety of DLV models, and that the SNM estimator can perform well in
comparison to alternative estimators. To keep computation time at a reasonable level,
we do not attempt to use optimal instruments, and instead just use the conditioning
variables, augmented with a vector of ones. Nor do we attempt to use an optimal weight
matrix, and instead we just use an identity matrix as the weight. In all cases, we minimize
the objective function using simulated annealing, starting from a random point in the
parameter space. Except where otherwise noted, we use a simulation length of S =
10, 000, and in all cases, the 2 percent of observations with the lowest value of a kernel
density fit to the conditioning variable are trimmed. In all cases we generate 500 Monte
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14 Creel and Kristensen

Carlo replications. Other details are found in the computer code that we offer, as noted
above.

3.1. AR1

The first model we consider is a simple autoregressive model

yt = ρyt−1 + ut (3.1)

where ut ∼ N(0, 1). This allows us to compare the exact MLE (OLS) to SNM and
so gauge the impact of simulations and kernel smoothing from using SNM. We generate
samples using ρ ∼ U(0, 1). The single test function is φt = yt, and the single conditioning
variable is xt = yt−1. The single instrument is the conditioning variable. The GMM
estimator based on this set-up is simply the ordinary least squares (OLS) estimator,
ρ̂OLS . Pretending we cannot compute the conditional moment, we then implement the
corresponding SNM estimator yielding ρ̂SNM .

We first examine the stochastic difference between the OLS and SNM estimator. To
this end, we report the ratio of root mean squared error of the SNM estimator relative
to the OLS estimator in Table ??. According to Theorem ??, the variance ratio (denoted
V R) should satisfy V R ≈ 1 + Σ0/Ω0 × n/S. Based on the numbers reported in Table
??, we obtain the following linear fit: ˆV R = 1.16 + 1.55 × n/S with R2 = 55%. This
shows that indeed the asymptotic approximation of Theorem ?? does a reasonably good
job in describing the variance of the SNM estimator and that the impact of simulations
vanishes very quickly.

Next, we examine the distribution of the SNM estimator. For the OLS estimator,
we know that

√
n/(1− ρ2)(ρ̂OLS − ρ) →d N (0, 1). For the SNM estimator, if n/S is

sufficiently small so that the Σ0-term in Theorem ?? may be ignored, we also have√
n/(1− ρ2)(ρ̂SNM −ρ)→d N (0, 1). By testing the normality of this quantity using the

Kolmogorov-Smirnov test, we can explore the reliability of inference when the Σ0 term
is ignored. We do this for samples of size n ∈ {50, 100, 400, 800} and simulation lengths
S ∈ {1000, 10000, 50000}. Table ?? gives p-values for Kolmogorov-Smirnov tests, first of
the hypothesis that

√
n/(1− ρ2)(ρ̂SNM − ρ) ∼ N (0, 1), and secondly of the hypothesis

that ρ̂SNM and ρ̂OLS have the same distribution. The hypotheses are never rejected, and
the p-values are quite close to 1 when sample sizes and number of simulations are not
too small.

In conclusion, for this model, the finite sample distribution of the SNM estimator is
not far away from that of the exact GMM (OLS) estimator even for moderate number
of simulations. This indicates that, for reasonably large number of simulations, we most
likely do not have to take into account simulations when drawing inference based on
SNM.

3.2. Stochastic Volatility

This section presents Monte Carlo results for the logarithmic stochastic volatility model
of Jacquier, Polson and Rossi (1994) which can be written as:

SV:

{
yt = exp (wt/2)ut,1

wt = α+ βwt−1 + σut,2
(3.2)
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where the white noise ut = (ut,1, ut,2)
′

is distributed i.i.d. N(0, I2).
The Monte Carlo design proposed by Sandmann and Koopman (1998) has been adopted

in subsequent work by a number of authors, and we adhere to this trend to facilitate com-
parison with other estimators. Perhaps the most widely used design uses θ0 = (α, β, σ)

′
=

(−0.736, 0.9, 0.363)
′
, and n = 500 observations. We begin with this case.

We here choose the test variables as φt =
(
|yt| , y2

t , cos |yt| , sin |yt| , ..., cos 4 |yt| , sin 4 |yt|
)
.

The first two test variables are clearly related to the variance of yt, while the remaining
test variables are motivated by the characteristic function approach to defining moment
conditions. The single conditioning variable is xt = yt−1 +yt−2 +yt−3 +yt−4. This condi-
tioning variable is intended to capture the recent variability of the series in a parsimonious
way, to avoid needing to choose multiple bandwidths.

The SNM estimator as presented uses kernel regression, and this is somewhat computa-
tionally demanding. An alternative approach is to use a series regression. The advantage
of this idea is that the coefficients can be estimated very quickly by least squares1. We
implemented this idea using the Fourier flexible form (Gallant, 1981), setting A = 1 and
J = 1, 2 (see Gallant, 1981, page 216), using the same test variables and conditioning
variable as above.

Table ?? presents the results. In the first three rows we investigate how the size of
S affects the SNM estimator by reporting the RMSE for S = 1000, 5000 and 10000.
As expected, bias and RMSE decrease as S increases. To further investigate how large
the impact of simulations is, we obtain the following linear fits by regressing finite-
sample variances of the three parameter estimates on S−1: V̂α̂ = 0.04 + 15.91 × S−1,
V̂β̂ = 0.01+0.59×S−1 and V̂σ̂ = 0.02+4.76×S−1 and with high R2’s (60-70%) in all three

cases. This shows that even for moderate sample sizes (n = 500), we can expect that the
efficiency loss due to simulations is practically zero relative to the finite sample variation
for S = 10000. For example, for the case of the SNM estimator of α, the fitted contribution
of simulations to the over-all variance is {15.91/10000} / {0.04 + 15.91/10000} = 3.74%
and so can be safely ignored.

Focusing in the following on the results with S = 10000, we see that the SNM estimator
of α has a root mean squared error (RMSE) that is less than that of all alternatives except
quasi-maximum likelihood (QML) and the Monte Carlo Likelihood (MCL) estimator.
For β, the SNM estimator has RMSE equal to that of EMM, and higher than ML and
MCMC. For σ, the ML, MCMC and MCL estimators outperform SNM, which achieves
lower RMSE than EMM and QML. The series-based version of SNM does not perform
as well as the version that uses kernel regression. It is possible that a more careful choice
of basis functions could improve the results of the series-based version, and if this were
so it would be very useful, as the speedup compared to kernel regression is substantial.
Overall, it seems fair to say that the kernel regression version of SNM performs well in
general, and better than the only other general purpose estimator, EMM.

Fermanian and Salanié (2004) and Altissimo and Mele (2009) provide results for their
estimators with (σb, β, σ) = (0.025, 0.95, 0.260), where σb = exp(α/2), and n = 500. We
apply the SNM estimator design, using the same test variables, conditioning variables
and instruments as before. Table ?? provides the results, along with those of the two
cited papers for comparison. For σb, the estimators all have very good precision, with the
SNM estimator doing best. For β, the SNM estimator achieves an RMSE that is about

1We thank an anonymous reviewer for this suggestion
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20% lower than that of the alternatives. For σ, the SNM estimator suffers from more bias
than the alternatives, yet still achieves a relatively low RMSE.

3.3. Autoregressive Tobit

Fermanian and Salanié (2004) used an autoregressive Tobit model to illustrate the non-
parametric simulated maximum likelihood (NPSML) estimator. This model, with nota-
tion adapted to follow the general DLV model of Eq. (??), may be written as:

AR Tobit:


yt = max(0, wt)

wt = α+ βwt−1 + σut

ut ∼ IIN(0, 1)

(3.3)

This model has one observable variable, yt, a single latent variable, wt and a scalar
white noise ut. We use Fermanian and Salanié’s Monte Carlo design where (α, β, σ) =
(0.0, 0.5, 1.0) and n = 150. The SNM estimator is implemented the same way as for
the SV model with the exception that we no longer take absolute values of yt. Table
?? reports the results, along with Fermanian and Salanié’s results for comparison. The
SNM estimator has considerably lower RMSEs for the parameters α and σ, while for
β the RMSE of SNM is a little higher than that of NPSML. The SNM estimator is
considerably less biased for σ.

3.4. Factor ARCH

Billio and Monfort (2003) illustrate the kernel-based indirect inference (KBII) estimator
with several Monte Carlo examples, one of which is a simple factor ARCH model. The
model has a scalar common latent factor, wt, and two observed endogenous variables, yt =
(yt1, yt2)

′
. The two-dimensional parameter β has its first element set to 1 for identification.

The model, referred to as FA, is

FA:


yt = βwt + u1t

wt =
√
htu2t

ht = α1 + α2 (wt−1)
2

(3.4)

t = 1, 2, ..., n, where u1t ∼ N(0, σ2I2) and u2t ∼ N(0, 1) . The parameter vector design is
(α1, α2, σ, β2) = (0.2, 0.7, 0.5,−0.5), and sample size is n = 500. The test variables used
are |yt|, (cos k |yt| , sin k |yt|), k = 1, ..., 4, and yt1yt2, while the conditioning variable is
yt−1,1 + yt−1,2 + yt−2,1 + yt−2,1. The motivation for summing over the two observable
variables is that variation in either of the two observable variables is an indication of
variation in the latent variable. This also keeps the dimensionality low, which helps to
avoid excessive computational time.

Table ?? reports the Monte Carlo results, together with the lowest RMSE that Billio
and Monfort obtain using several versions of kernel-based indirect inference, indirect
inference, and simulated method of moments (see Billio and Monfort, 2003, Table 5, page
317). For all four parameters, the SNM estimator outperforms the estimators considered
by Billio and Monfort, in terms of bias and RMSE.
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3.5. Latent network model

The previous examples all use fairly simple models that have application to financial time
series. In this section we consider a model that incorporates an unobserved network. Much
theoretical and empirical work is currently being done to incorporate network effects
into economic models (Jackson, 2006). In many cases where one would suspect that
network effects could be important, the actual network is not observed. For example,
the information flow through a network of financial agents no doubt affects the price
and volatility of financial assets, yet agents will certainly attempt to hide at least some
contacts. We investigate the possibility of learning about a latent network from observed
outcomes generated by the network. Here we do not observe the network, and attempt
to learn about its structure though an observed output.

Consider a latent random graph network, of the Bernoulli type, as described by Jackson
(2006, Section 3.1.1). There are N nodes. Connections between nodes are assumed to
be the outcome of independent Bernoulli trials. The probability that two nodes are
connected is pCON . The degree of a node is the number of links that it has. The frequency
distribution of the degrees of the nodes is known as the degree distribution of the network.
For the Bernoulli network, the degree distribution is binomial(N − 1, pCON ), and as N
becomes large, the degree distribution is approximately Poisson. Here, we work with
N = 500, and this is known to the modeler. The objective is to estimate pCON,without
directly observing the network.

Suppose that nodes can be in two states, A (e.g., “healthy”) and B (“ill”). The prob-
ability that a node switches states depends on the number of connections the node has,
and the states of the connected nodes. Let nit,(X) be the number of nodes connected
to node i that are in state X at time t, where X ∈ {A,B}. The probability that node i
switches from A to B at time t is

pit(A→ B) = 1− (1− pB)nit(B) + pSPON .

Here, pB is the probability that any connected node in state B “infects” the reference
node, which is in state A. The probability than none of the connected nodes transmits
is (1− pB)nit(B). The probability that at least one transmits is the complement of this.
Additionally, pSPON is the probability of a spontaneous “illness”. Analogously, the prob-
ability of a node in state B switching to state A is

pit(B → A) = 1− (1− pA)nit(A),

which is symmetric, except for the lack of a spontaneous switch.
We assume that pA = 0.01, pB = 0.02, pSPON = 0.01. For this example, these are

taken as known, and emphasis is placed on learning about the degree distribution of the
network, which depends on pCON . The observed variables are the total number of nodes
in state B (total number ill), and the total number of nodes that switch from state B to
state A (total number of recoveries), at each point in time. The states of the individual
nodes are not observed. Thus, there are two observed variables, and 500 latent variables
(the states of the nodes).

We simulate series of length n = 50, using univariate and bivariate models. The uni-
variate models use the total number of nodes in state B (illnesses) as yt in Eq. (??). The
bivariate models use this variable, plus the number of nodes that switch from state B
to state A (recoveries) as yt. The test functions are yt and corresponding sine and co-
sine transformations, as in previous examples. The conditioning variables are either one
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18 Creel and Kristensen

or two lags of yt, which is either univariate or bivariate. Thus, up to four conditioning
variables are used, while the previous examples used a single conditioning variable. This
feature of this example allows exploration of possible deterioration of performance of the
kernel regression estimator as the dimension of the conditioning vector increases. The
results are in Table ??. In this Table we refer to marginal bias and marginal root mean
squared error, because the true value of pCON is drawn from a distribution rather than
fixed at a given value. We see that is all cases bias and RMSE are small. The bivariate
model gives better results, and using two lags instead of one also improves performance2.

4. EXTENSIONS

A number of extensions of the proposed estimator are available. We here discuss how our
method can be adjusted to allow for non-stationarity and reduce biases, and can be used
for forecasting.

4.1. Non-Stationary Models

We have worked under the maintained assumption that the testing functions, condition-
ing variables and instruments all are stationary. If the data-generating process in question
is non-stationary, Φs (θ), Xs (θ), and Zs (θ) have to be chosen with great care to ensure
that these remain stationary. Suppose for example, we wish to base our estimation on
the following conditional moment, Eθ [yt|yt−1]. Under non-stationarity, the distribution
of (yt, yt−1) will in general change over time and so the conditional moment Eθ [yt|yt−1]
is no longer time-invariant (in contrast to the stationary case). One could in this situa-
tion instead use differenced moments, Eθ [∆yt|∆yt−1], or other transformations leading
to stationary test and conditioning variables; see, e.g., Gorodnichenko, Mikusheva and
Ng (2012).

Alternatively, one can use the following alternative simulation scheme that obtain
consistent simulated estimates of any given set of conditional moments under non-
stationarity: First, simulate S independent trajectories each of length n, Ys,t (θ), s =
1, ...., S and t = 1, ..., n, where the sth trajectory is computed as:{

Ys,t (θ) = ry
(
Y t−1
s (θ) ,W t−1

s (θ) , Us,t; θ
)

Ws,t (θ) = rw
(
Y t−1
s (θ) ,W t−1

s (θ) , Us,t; θ
) , t = 1, ..., n, (4.1)

where Us,t, s = 1, ..., S, t = 1, ..., n, are i.i.d. draws. We here assume that we have observed
the initial values (y0, w0) and then start the simulations there, (Ys,0 (θ) ,Ws,0 (θ)) =
(y0, w0).3 We then compute Xs,t (θ) = x (Ys,t−q:t+q (θ)), Φs,t (θ) =φ (Ys,t−p:t+p (θ)) , and

T̂t,S (φ) (x; θ) =

∑S
s=1 Φs,t (θ)Kh (Xs,t (θ)− x)∑S

s=1Kh (Xs,t (θ)− x)
, t = 1, ..., n. (4.2)

By construction, (Φs,t (θ) , Xs,t (θ)), s = 1, ..., S, are i.i.d. simulations from the target
distribution at time t, (Φs,t (θ) , Xs,t (θ)) ∼ ft (φ, x; θ), s = 1, ..., S. Thus, as h → 0

and Shdx → 0, T̂t,S (φ) (x; θ) →P Tt (φ) (x; θ). The estimation now proceeds as in the
stationary case.

2It is possible to plot the estimated versus true parameter values, and one sees that the result are points
close to the 45 degrees line, thoughout the range of true values. This figure is omitted to save space.
3Alternatively, one can impose a prior on w0 and simulate from this.
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Instead of simulating unconditionally from the model, one could design an iterative
procedure as employed in particle filtering (see e.g. Brownlees et al., 2011). These proce-
dures are however more complicated and are therefore more cumbersome to implement.

The asymptotic properties of the resulting estimator are not covered by Theorems ??-
??, since in general non-stationary sequences do not satisfy standard versions of the Law
of Large Numbers and Central Limit Theorem. Instead, one would need to combine ar-
guments as developed in, amongst others, Kristensen and Rahbek (2010) and Kristensen
and Shin (2012) where asymptotics of estimators in nonlinear, non-stationary models are
developed.

4.2. Unbiased Simulator

The current kernel estimator T̂S (φ) (xt; θ) in Eq. (??) has a bias of order hm. An alterna-
tive specification of the SNM estimator that leads to an unbiased simulator can be con-
structed by following the main idea of Altissimo and Mele (2009); see also Billio and Mon-
fort (2003). The estimator takes as starting point the following redefined residual func-
tions, εt,h (θ) = Rh (φ) (xt)−Rh (φ) (xt; θ), where Rh (φ) (xt; θ) := Eθ [φ (yt)Kh (xt − x)],
and Rh (φ) (xt) = Rh (φ) (xt; θ0). A simulated version can then be obtained as ε̂t (θ) =
R̃ (φ) (xt)− R̂ (φ) (xt; θ), where R̃ (φ) (x) and R̂ (φ) (x; θ) are kernel estimators using ac-
tual and simulated data respectively,

R̃ (φ) (x) =
1

n

n∑
t=1

φ (yt)Kh (xt − x) , R̂ (φ) (x; θ) =
1

S

S∑
s=1

φ (Ys (θ))Kh (Xs (θ)− x) .

R̂ (φ) (x; θ) is an unbiased estimator of R (φ) (x; θ) and we obtain consistency for fixed h
and S by the same arguments as used to prove Theorem 1 under the following identifica-
tion condition: For fixed h > 0, Rh (φ) (xt; θ0) = Rh (φ) (xt; θ) a.s. if and only if θ = θ0.
Furthermore, as h→ 0 and Shdx →∞, R̂ (φ) (x; θ)→P T (φ) (x; θ) f (x; θ) where f (x; θ)
is the density of f (x; θ). Thus, by choosing the instruments appropriately, the estimator
based on R̂ (φ) (x; θ) is equivalent to the SNM estimator as h→ 0.

4.3. Filtering and Forecasting

In many applications, it is of interest to compute predictions of some function of Yt =
(yt, wt), say f (Yt), at some value of θ (in most situations θ = θ̂, where θ̂ is an es-
timator). One leading example would be filtering of the latent variable, wt. A natural
filter/prediction would be

m (x, θ) := Eθ [f (Yt) |yt−1 = x1, ...., yt−q = xq] ,

for some q ≥ 1. One can use the SNM estimation techniques for this purpose. Let
(Ys (θ) ,Ws (θ)), s = 1, ...., S, be a time series of S simulations generated by Eq. (??)
at the parameter value of interest, θ. Given the simulated values, we can compute the
kernel regression estimator of m (x, θ),

m̂S (x, θ) =

∑S
s=1 f (Ys (θ))Kh (Xs (θ)− x)∑S

s=1Kh (Xs (θ)− x)
, Xs (θ) = Ys−q:s−1 (θ) ,
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where Kh (z) = K (z/h) /h, K : Rdx 7→ R is a kernel function, dx = dim (Xs), and h > 0
is a bandwidth. A further analysis of the performance of this filtering method in theory
and practice is left for future research.

5. CONCLUSION

This paper has proposed a simulated method of moments estimator that allows use of con-
ditional moments, in the case of general dynamic latent variable models. The estimator
is consistent and asymptotically normally distributed, with the same asymptotic distri-
bution as that of the infeasible GMM estimator defined by the same moment conditions.
The Monte Carlo results show that use of conditional moments allows the proposed sim-
ulated method of moments estimator to obtain efficiency that is competitive with other
estimation methods. We emphasize that the simulation length used in the Monte Carlo
work is shorter than would be desirable in empirical applications. When doing empirical
work, S should be set as large as is practical, because a larger S leads to a more efficient
estimator (see Table ??) and also because inference that ignores the Σ0 term will be
reliable only when n/S is small.

Topics for further research include methods to obtain a high precision fit to the con-
ditional moments that define the estimator while using less computational time. Possi-
bilities include the use of alternative nonparametric regression methods such as nearest
neighbors or series regression, and use of high performance algorithms for kernel smooth-
ing (see, e.g., Yang et al., 2003). The analysis of the proposed automated bandwidth
selection method would also be of interest. Another interesting possibility is to attempt
to use (approximately) optimal instruments and weighting matrices.

APPENDIX

Appendix A. Proofs

Proof of Theorem ??: We first note that supθ∈Θ ‖Gn (θ)−G (θ)‖ →P 0 under the
assumptions imposed. This follows by standard uniform Law of Large Numbers (LLN)
results for stationary and mixing sequences. This implies that the exact GMM estimator
is consistent. Theorem ?? will now follow by Kristensen and Shin (2012, Theorem A.5)
if we can show that:

sup
θ∈Θ

∣∣∣Ĝn,S (θ)
′
WnĜn,S (θ)−Gn (θ)

′
WnGn (θ)

∣∣∣ (A.1)

= OP
(
a−1hm

)
+OP

(
a−1

√
log (S) / (Shdx)

)
+OP (aq) .

To prove this claim, write

sup
θ∈Θ

∣∣∣Ĝn,S (θ)
′
WnĜn,S (θ)−Gn (θ)

′
WnGn (θ)

∣∣∣
= sup
θ∈Θ

∣∣∣∣[Ĝn,S (θ)−Gn (θ)
]′
Wn

[
Ĝn,S (θ) +Gn (θ)

]∣∣∣∣
≤ sup
θ∈Θ

∥∥∥Ĝn,S (θ)−Gn (θ)
∥∥∥× sup

θ∈Θ

{∥∥∥Ĝn,S (θ)
∥∥∥+ ‖Gn (θ)‖

}
× ‖Wn‖

≤ A2 × (A1 +A2)× ‖Wn‖ ,
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where A1 = 2 supθ∈Θ ‖Gn (θ)‖, and A2 = supθ∈Θ

∥∥∥Ĝn,S (θ)−Gn (θ)
∥∥∥. By Assumption

??, ‖Wn‖ = OP (1) while

A1 ≤ 2 sup
θ∈Θ
‖Gn (θ)−G (θ)‖+ 2 sup

θ∈Θ
‖G (θ)‖ = OP (1) ;

A2 ≤ sup
θ∈Θ

1

n

n∑
t=1

∥∥∥τa,t (θ) T̂ (φ) (xt; θ)− T (φ) (xt; θ)
∥∥∥ ‖zt‖

≤ 1

n

n∑
t=1

‖zt‖ × sup
θ∈Θ

sup
f̂(x;θ)≥a/2

∥∥∥T̂ (φ) (x; θ)− T (φ) (x; θ)
∥∥∥

+ sup
θ∈Θ

1

n

n∑
t=1

I
{
f̂ (xt; θ) < a/2

}
‖T (φ) (xt; θ)‖ ‖zt‖

= A2,1 +A2,2.

Here, A2,1 = OP
(
a−1hm

)
+OP (a−1

√
log (S) / (Shdx)) by Lemma ?? together with the

fact that n−1
∑n
t=1 ‖zt‖ = OP (1), while the second term satisfies:

A2,2 ≤ sup
θ∈Θ

1

n

n∑
t=1

I

{
1 <

aq

2q f̂ (xt; θ)
q

}
‖T (φ) (xt; θ)‖ ‖zt‖

≤ 2−qaq
1

n

n∑
t=1

sup
θ∈Θ

f (xt; θ)
−q ‖T (φ) (xt; θ)‖ ‖zt‖

= OP (aq) ,

where the last equality follows from Assumption ??(7) and the LLN. This shows Eq.
(??). 2

Proof of Theorem ??: Following standard arguments for GMM estimators,

√
n(θ̂n,S − θ0) =

[
Ĥn,S(θ̂n,S)′WnĤn,S

(
θ̄n,S

)]−1

Ĥn,S(θ̂n,S)′Wn

√
nĜn,S(θ0), (A.2)

for some θ̄n,S between θ̂n,S and θ0, where

Ĥn,S(θ)−Hn(θ) = − 1

n

n∑
t=1

τa,t (θ) z′t

[
∂T̂S (φ) (xt; θ)

∂θ
− ∂TS (φ) (xt; θ)

∂θ

]

+
1

n

n∑
t=1

(τa,t (θ)− 1) z′t
∂TS (φ) (xt; θ)

∂θ

+
1

n

n∑
t=1

∂τa,t (θ)

∂θ
z′t

[
φt − T̂S (φ) (xt; θ)

]
.

By the same arguments as in the proof of Theorem ?? combined with Lemmas ??-
??, we obtain that each of the right hand side terms converge to zero uniformly over
{θ : ‖θ − θ0‖ < δ} under the conditions given in the theorem. This combined with the

uniform LLN for stationary and mixing sequences, yields that Ĥn,S(θ̂n,S) and Ĥn,S

(
θ̄n,S

)
both converge in probability towards H0. Combining Eq. (??) with the following expan-
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sion of the exact GMM estimator,

√
n(θ̂n − θ0) =

[
Hn(θ̂n)′WnHn(θ̄n)

]−1

Hn(θ̂n)′Wn

√
nGn(θ0), (A.3)

we obtain

θ̂n,S − θ̂n =
(

[H ′0W0H0]
−1
H ′0W0 + oP (1)

) [
Ĝn,S(θ0)−Gn(θ0)

]
.

We now analyze Ĝn,S(θ0) − Gn(θ0) in further detail: Write Ĝn,S(θ0) = Ḡn(θ0) +

5Ḡn(θ0)
[
T̂S − T

]
, where Ḡn(θ0) =

∑n
t=1 τa,t (θ0)Z ′tT (φ) (xi; θ0)/n is the trimmed ver-

sion of the true moment conditions, and

5Ḡn(θ0)
[
T̂S − T

]
=

1

n

n∑
t=1

τa,t (θ0) z′t

[
T̂S (φ) (xi; θ0)− T (φ) (xi; θ0)

]
is an adjustment term measuring the impact of the simulations. As shown in the proof
of Theorem ??, Ḡn(θ0) = Gn(θ0) +OP (aq).

We further decompose the adjustment term into

5Ḡn(θ0)
[
T̂S − T

]
= 5Ḡn(θ0)

[
T̂S − E[T̂S ]

]
+5Ḡn(θ0)

[
E[T̂S ]− T

]
, (A.4)

where E[T̂S (φ) (x; θ0)] is the (conditional on x) expectation w.r.t. the simulations. By
standard results for bias of kernel regression estimators,

E[T̂S (φ) (x; θ0)] = T (φ) (x; θ0) + hm
1

f (x; θ0)

∑
|α|=m

∂|α| [T (φ) (x; θ0)f (x; θ0)]

∂xα
+ o (hm) ,

uniformly over x. Plugging this expression into the expression of 5Ḡn(θ0)
[
E
[
T̂S

]
− T

]
and appealing to the LLN,

5Ḡn(θ0)
[
E[T̂S ]− T

]
= hm

1

n

n∑
t=1

τa,t (θ0)
z′t

f (xt; θ0)

∑
|α|=m

∂|α| [T (φ) (xt; θ0)f (xt; θ0)]

∂xα
+ o (hm)

= hmE

 z′t
f (xt; θ0)

∑
|α|=m

∂|α| [T (φ) (xt; θ0)f (xt; θ0)]

∂xα

+ o (hm) .

Next, the first term in Eq. (??) can be written as

5Ḡn(θ0)
[
T̂S − E[T̂S ]

]
=

1

n

n∑
t=1

S∑
s=1

∆ (xt, zt, Vs) +Rn, (A.5)

where Vs = (Φs (θ0) , Xs (θ0)), ∆h (xt, zt, Vs) := z′tψh (xt, Vs) /f (xt; θ0), and

ψh (xt, Vs) := Φs (θ0)Kh (Xs (θ0)− xt)− E [Φs (θ0)Kh (Xs (θ0)− xt)] .

Here, Rn,S is a higher-order term containing the effects of trimming which can be ig-
nored. We recognize the sum on right hand side of Eq. (??) as a two-sample U -statistic.

Define Dh (Vs) = E [∆h (xt, zt, Vs) |Vs], and Mt,S := 1
S

∑S
s=1 {∆h (xt, zt, Vs)−Dh (Vs)}.

Conditionally on the simulations which we collect in US = {U1, ..., US}, it is easily seen
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that {Mt,S} satisfies the conditions of Kristensen and Salanié (2010, Lemma 4) such that

E

[∥∥∥∥ 1

n

∑n

t=1
Mt,S

∥∥∥∥2

|US

]
≤ C (1, A)E

[
‖Mt,S‖2+δ |US

]
n−1,

where in turn

E
[
‖Mt,S‖2+δ

]
≤ 1

S1+δ/2
C (1, A)E

[∥∥∥∥τa,t (θ0) z′t
f (xt; θ0)

ψh (xt, Vs)

∥∥∥∥2+2δ
]
,

and, by standard arguments,

E

[∥∥∥∥τa,t (θ0) z′t
f (xt; θ0)

ψh (xt, Vs)

∥∥∥∥2+2δ
]

= O

(
1

hd+δ

)
.

We now have that

5Ḡn(θ0)
[
T̂S − E

[
T̂S

]]
=

1

S

S∑
s=1

Dh (Vs) +OP

(
1√

nShd+δ

)
,

where, leaving out higher order terms,

Dh (Vs) ' E
[

z′t
f (xt; θ0)

{Φs (θ0)Kh (Xs (θ0)− xt)− E [Φs (θ0)Kh (Xs (θ0)− xt)]} |Vs
]

'
∫

Z (x)
′

f (x; θ0)
Φs (θ0)Kh (Xs (θ0)− xt) f (x) dx−

∫
Z (x)

′
T (φ) (xt; θ0)f (x) dx

' Zs (θ0)
′
Φs (θ0)− E

[
Zs (θ0)

′
Φs (θ0)

]
.

This proves the first part of the theorem. The second part now follows from Eq. (??). 2

Appendix B. Lemmas

We state two lemmas without proofs; see Creel and Kristensen (2009b) for these.

Lemma B.1. Under Assumptions ??-??, the simulated conditional moment estimator
satisfies:

sup
θ∈Θ

sup
x:f̂(x;θ)≥a

∥∥∥T̂ (φ) (x; θ)− T (φ) (x; θ)
∥∥∥ = OP

(
a−1hr

)
+OP

(
a−1

√
log (S) / (Shdx)

)
.

Lemma B.2. Under Assumptions ??-?? and ??-??, the simulated conditional moment
estimator satisfies:

sup
θ∈Θ

sup
x:f̂(x;θ)≥a

∥∥∥∥∥∂T̂ (φ) (x; θ)

∂θ
− ∂T (φ) (x; θ)

∂θ

∥∥∥∥∥ = OP
(
a−1hm

)
+OP

(
a−1

√
log (S) / (Shdx+2)

)
,
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Kristensen, D. and B. Salanié (2010). Higher order improvements for approximate esti-
mators. CAM Working Papers 2010-04, University of Copenhagen.

Kristensen, D. and Y. Shin (2012). Estimation of dynamic models with nonparametric
simulated maximum likelihood. Journal of Econometrics 167 , 76–94.

Li, Q. and J. Racine (2007). Nonparametric econometrics. Princeton: Princeton Univer-
sity Press.

McFadden, D.F. (1989). A method of simulated moments for estimation of discrete re-
sponse models without numerical integration. Econometrica 57, 995-1026.

Michaelides, A. and S. Ng (2000). Estimating the rational expectations model of specu-
lative storage: A Monte Carlo comparison of three simulation estimators. Journal of
Econometrics 96, 231-66.

Newey, W. and D. McFadden (1994). Large sample estimation and hypothesis testing,
in Handbook of Econometrics, Vol IV, ed. R. Engle and D. McFadden, Amsterdam:
North-Holland, 2111-2245.

Newey, W.K. and K.D. West (1987). A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica 55, 703-08.

Pakes, A. and D. Pollard (1989). Simulation and the asymptotics of optimization esti-
mators. Econometrica 57, 1027-1057.

Racine, J. (2002). Parallel distributed kernel estimation. Computational Statistics & Data
Analysis 40, 293-302.

c© Royal Economic Society 2012



Simulated Nonparametric Moments 27

Ruge-Murcia, F.J. (2007). Methods to estimate dynamic stochastic general equilibrium
models. Journal of Economic Dynamics and Control 31,2599-2636.

Ruiz, E. (1994). Quasi-maximum likelihood estimation of stochastic volatility models.
Journal of Econometrics 63, 289-306.

Sandman, G. and Koopman, S. (1998). Estimation of stochastic volatility models via
Monte Carlo maximum likelihood. Journal of Econometrics 67, 271-301.

Smith, A. (1993). Estimating nonlinear time series models using simulated vector autore-
gressions. Journal of Applied Econometrics 8, S63-S84.

Weiss, A. (1996). Estimating time series models using the relevant cost function. Journal
of Applied Econometrics 11, 539-560.

Yang, C., R. Duraiswami, N. Gumerov and L. Davis (2003). Improved fast Gauss trans-
form and efficient kernel density estimation. Ninth IEEE International Conference on
Computer Vision (ICCV’03) 1, 464-471.

c© Royal Economic Society 2012



28 Creel and Kristensen

Table 1. Monte Carlo Results: AR1 model, relative RMSE:
RMSE(ρ̂SNM )/RMSE(ρ̂OLS)

n
S 50 100 400 800

1000 1.174 1.259 1.597 1.416
10000 1.072 1.034 1.070 1.053
50000 1.065 1.046 1.019 1.018

Table 2. Monte Carlo Results: AR1 model, Kolmogorov-Smirnov p-values
n

S 50 100 400 800

1000
0.28
0.46

0.54
0.77

0.59
1.00

0.41
1.00

10000
0.27
0.56

0.49
1.00

0.99
1.00

0.88
1.00

50000
0.27
0.37

0.30
1.00

0.96
1.00

0.88
1.00

Note: For a given S, the top p value is for test of normality of the SNM estimator, the bottom is for
the test of equality of SNM and OLS distributions.

Table 3. Monte Carlo Results: Stochastic volatility, SV1 model. n = 500. Mean and root
mean squared error (in parentheses).

Estimator α = −0.736 β = 0.9 σ = 0.363
SNM, S = 1000 -0.761 (0.238) 0.865 (0.101) 0.411 (0.150)
SNM, S = 5000 -0.744 (0.216) 0.868 (0.120) 0.385 (0.146)
SNM, S = 10000 -0.736 (0.201) 0.882 (0.080) 0.380 (0.128)

SNM series (J = 1) -1.02 (0.37) 0.96 (0.14) 0.09 (0.28)
SNM series (J = 2) -1.01 (0.36) 0.95 (0.15) 0.09 (0.28)

ML -0.87 (0.43) 0.88 (0.05) 0.37 (0.08)
EMM -0.91 (0.60) 0.88 (0.08) 0.38 (0.20)

MCMC -0.87 (0.34) 0.88 (0.046) 0.35 (0.067)
QML -0.736 (0.02) 0.845 (0.18) 0.417 (0.21)
MCL -0.745 (0.02) 0.897 (0.10) 0.325 (0.07)

Note: Sources for other estimators: ML - Fridman and Harris (1996); EMM - Andersen, et al. (1999);
MCMC - Jacquier et al. (1994); QML and MCL - Sandmann and Koopman (1998).

Table 4. Monte Carlo Results: Stochastic volatility SV2 model. n = 500. Mean and root
mean squared error (in parentheses).

Estimator σb = 0.025 β = 0.95 σ = 0.26
SNM 0.025 (0.003) 0.907 (0.079) 0.331 (0.135)

NPSML 0.022 (0.004) 0.913 (0.107) 0.318 (0.180)
CD-SNE 0.024 (0.003) 0.909 (0.110) 0.229 (0.134)
J-SNE 0.027 (0.005) 0.942 (0.095) 0.297 (0.149)

Note: Sources for other estimators: NPSML - Fermanian and Salanié (2004); CD-SNE and J-SNE -
Altissimo and Mele (2009).
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Table 5. Monte Carlo Results: AR Tobit model. n = 150. Mean and root mean squared
error (in parentheses).

Estimator α = 0.0 β = 0.5 σ = 1.0
SNM -0.001 (0.094) 0.523 (0.159) 0.966 (0.140)

NPSML -0.010 (0.215) 0.510 (0.151) 0.810 (0.264)
Note: Source for NPSML: Fermanian and Salanié (2004).

Table 6. Monte Carlo Results: Factor ARCH model. Mean and root mean squared error
(in parentheses).

Estimator α1 = 0.2 α2 = 0.7 σ0 = 0.5 β20 = −0.5
SNM 0.223 (0.069) 0.681 (0.192) 0.480 (0.048) -0.522 (0.069)
Other 0.244 (0.132) 0.659 (0.309) 0.461 (0.141) -0.445 (0.269)

Note: Source for Other estimator: Billio and Monfort (2003, Tables 3, 4 and 5, pp. 313-317). The Other
estimator is that with the lowest RMSE for the given parameter.

Table 7. Monte Carlo Results: Latent network model. Marginal bias and marginal root
mean squared error.

Marginal bias Marginal RMSE
Univariate, 1 lag -0.0008 0.0530
Univariate, 2 lags 0.0027 0.0514
Bivariate, 1 lag 0.0035 0.0187
Bivariate, 2 lags 0.0021 0.0153
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