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Experimental Study

Glimepiride Treatment Facilitates
Ischemic Preconditioning
in the Diabetic Heart

Derek J. Hausenloy, FRCP, PhD1, Abigail M. Wynne, MPhil1,
Mihaela M. Mocanu, PhD1, and Derek M. Yellon, DSc1

Abstract
Aims: The diabetic heart is resistant to the myocardial infarct-limiting effects of ischemic preconditioning (IPC). This may be in
part due to the downregulation of the phosphatidylinositol 30-kinase-Akt pathway, an essential component of IPC protection. We
hypothesized that treating the diabetic heart with the sulfonylurea, glimepiride, which has been reported to activate Akt, may
lower the threshold required to protect the diabetic heart by IPC. Methods: Goto-Kakizaki rats (a type II lean model of diabetes)
received glimepiride (20 mg/kg per d, by oral gavage) or vehicle for (a) 3 months (chronic treatment) or (b) 24 hours (subacute
treatment). In the third group, glimepiride (10 mmol/L) was administered only to the isolated hearts on the Langendorff apparatus
(acute treatment). All hearts were subjected to 35 minutes ischemia and 120 minutes reperfusion ex vivo, at the end of which
infarct size was determined by tetrazolium staining. Preconditioning treatment comprised 1 (IPC-1) or 3 (IPC-3) cycles of 5
minutes global ischemia and 10 minutes reperfusion. Results: The diabetic heart was found to be resistant to IPC such that
3-IPC cycles, instead of the usual 1-IPC cycle, were required for cardioprotection. However, pretreatment with glimepiride
lowered the threshold for IPC such that both 1 and 3 cycles of IPC elicited cardioprotection: chronic glimepiride treatment
(IPC-1 31.9% + 3.8% and IPC-3 33.5% + 2.4% vs 43.9% + 1.4% control, P < .05; N > 6 per group); subacute glimepiride treat-
ment (IPC-1 31.1% + 3.0% and IPC-3 29.3% + 3.3% vs 42.2% + 2.3% control, P < .05 N > 6 per group); and acute glimepiride
treatment (IPC-1 28.2% + 3.7% and IPC-3 24.6% + 5.4% vs 41.9% + 5.4% control, P < .05; N > 6 per group). This effect of
glimepiride was independent of changes in blood glucose. Conclusions: We report for the first time that glimepiride treatment
facilitates the cardioprotective effect elicited by IPC in the diabetic heart.

Keywords
glimepiride, ischemic preconditioning, diabetes

Introduction

Coronary heart disease (CHD) is a leading cause of death in dia-

betic patients. The number of diabetic patients is increasing at an

alarming rate and is estimated to reach 300 million worldwide

according to the World Health Organization. Diabetic patients

are 2 to 3 times more likely to develop CHD, and experience

worse clinical outcomes following an acute myocardial infarc-

tion,1-3 coronary angioplasty,4 and cardiac bypass surgery.5-7

The reason for the worsened cardiovascular outcomes in diabetic

patients is currently unclear. Preclinical animal studies suggest

that there may be specific defects in diabetic cardiomyocytes

which may be responsible including increased mitochondrial

generation of reactive oxygen species, downregulation of the

PI3-Akt survival kinase pathway, and reduced rates of adenosine

triphosphate (ATP) synthesis (reviewed in refs 8-10).

One potential endogenous strategy for protecting the

diabetic heart against acute ischemia-reperfusion (I/R) injury

is ischemic preconditioning (IPC), a phenomenon which was

first described in 1986 by Murry and colleagues,11 as the

reduction in myocardial infarct size observed in canine hearts

pretreated with short bouts of nonlethal myocardial ischemia

and reperfusion. Whether the diabetic myocardium is amenable

to the cardioprotective effects of IPC has been debated with

reports of cardioprotection in some experimental studies.12-16

However, the vast majority of studies find that the diabetic

heart is resistant to the cardioprotection elicited by IPC.17-33

The fact that the diabetic heart may be resistant to IPC may

impact on the translation of novel cardioprotective strategies

into the clinical setting where about 15% to 20% of the patients

with CHD are also diabetic.34-36 Studies from our laboratory
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have also found that the diabetic heart is resistant to IPC, but this

resistance can be overcome when a stronger IPC stimulus is used

to elicit cardioprotection.16,37 Initial findings have suggested

that this abnormal response of the diabetic heart to IPC may

be due to impaired phosphatidylinositol 30-kinase (PI3K)-Akt

signaling.16 Previous studies have clearly established a role

for the PI3K-Akt pathway in the signal transduction pathway

underlying IPC-induced cardioprotection in the nondiabetic

heart.38,39

Importantly, the antidiabetic sulfonylurea, glibenclamide,

which is used less frequently nowadays, is known to block

the cardioprotective effects of IPC by acting as an antagonist

of the mitochondrial ATP-dependent potassium channel.40,41

Interestingly, the sulfonylurea, glimepiride, which does not

block IPC cardioprotection,42 has been reported to activate Akt

when administered to the endothelial cells,43 human umbilical

vein endothelial cells,44 and adipocytes.45 In the present study,

we investigate whether pretreatment with glimepiride can

facilitate IPC in the diabetic heart.

Materials and Methods

Animals and Materials

Adult Goto-Kakizaki rats, a rat model of type II diabetes

mellitus, were purchased from Denmark (Taconic, Den-

mark).46,47 Animals received humane care in accordance with

the United Kingdom Animal (Scientific Procedures) Act of

1986. For oral gavage, glimepiride (20 mg/kg/d) was dissolved

in methylcellulose. For the Langendorff perfusion, glimepiride

(10 mmol/L, Sigma, UK) dissolved in dimethyl sulfoxide

(DMSO) was further dissolved in Krebs-Henseleit buffer, giv-

ing a final DMSO concentration of <0.01%. All other reagents

were of standard analytical grade.

Glimepiride Pretreatment Protocols

Animals were randomized to receive 1 of the following 3

glimepiride treatment protocols:

Chronic glimepiride treatment. Rats received either glimepiride

(20 mg/kg per d) dissolved in methylcellulose or methylcellu-

lose vehicle control by oral gavage for 3 months, following

which the hearts were excised and mounted on the Langendorff

apparatus and subjected to the treatment protocols outlined in

Figure 1.

Subacute glimepiride treatment. Rats received either glime-

piride (20 mg/kg per d) dissolved in methylcellulose or

methylcellulose vehicle control by oral gavage for 24 hours,

following which the hearts were excised and mounted on

the Langendorrf-apparatus and subjected to the treatment

protocols outlined in Figure 1.

Acute glimepiride treatment. Hearts were excised from

untreated animals and mounted on the Langendorff apparatus,

and were perfused for 15 minutes with either glimepiride

(10 mmol/L) or vehicle control (DMSO, <0.01%) prior to the

treatment protocols outlined in Figure 1.

Figure 1. Experiment protocols. Hearts were randomized to receive 1 of the 3 different glimepiride treatment regimens depicted in the
scheme. Following pretreatment with glimepiride, all hearts were randomized to receive either control, 1 cycle of IPC (IPC-1) or 3 cycles of
IPC (IPC-1), with each cycle of IPC comprising 5 minutes of global myocardial ischemia followed by 10 minutes of myocardial reperfusion. IPC
indicates ischemic preconditioning.
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Myocardial Infarction Protocols

All hearts were subjected to 35 minutes of regional ischemia

followed by 120 minutes of reperfusion at the end of which

infarct size was determined by tetrazolium staining. Hearts were

randomized to the following treatment groups (see Figure 1):

1. Control. Hearts were subjected to the standard I/R protocol

as above.

2. IPC-1. Hearts were preconditioned with one 5-minute

episode of global myocardial ischemia followed by 10

minutes of reperfusion prior to the index ischemic period.

3. IPC-3. Hearts were preconditioned with three 5-minute

episodes of global myocardial ischemia with 10 minutes

of intervening reperfusion prior to the index ischemic

period.

Langendorff Perfusion of Rat Hearts

Rats were anesthetized with sodium pentobarbital (55 mg/kg

intraperitoneally) and heparin (300 IU). The hearts were

rapidly excised into ice-cold buffer and mounted on a constant

pressure (80 mm Hg) Langendorff perfusion apparatus and

perfused with modified Krebs-Henseleit bicarbonate buffer in

mmol/L: NaCl 118.5, NaHCO3 25.0, KCl 4.8, MgSO4 1.2,

KH2PO4 1.2, CaCl2 1.7, and glucose 11.0. The buffer was

gassed with 95%O2/5%CO2 and pH maintained at 7.35 to

7.45 at 37.0�C. A suture was placed around the left main cor-

onary artery and the ends were inserted into a pipette tip to

form a snare. A latex, fluid-filled balloon was placed in the left

ventricle through an incision in the left atrial appendage and

inflated to a pressure of 8 to 10 mm Hg. Left ventricular devel-

oped pressure, heart rate, and coronary flow were monitored at

regular intervals. Temperature was constantly measured via a

thermoprobe inserted into the pulmonary artery and maintained

at 37.0�C + 0.2�C.

Regional myocardial ischemia was induced by tightening the

suture placed around the left main coronary artery and reperfu-

sion initiated by releasing the snare. At the end of the reperfusion

period, the suture was tied and the heart was perfused with

0.25% Evans Blue in saline to delineate the area at risk. Hearts

were then frozen at �20�C for several hours before being sliced

into 2-mm thick transverse sections and incubated in triphenyl-

tetrazolium chloride solution (TTC; 1% in phosphate buffer).

The TTC reacts with intracellular dehydrogenases to stain viable

risk zone tissue red leaving the infarcted areas off-white. The

slices were then transferred and fixed in 10% formalin overnight.

The slices were drawn onto acetate and computerized planimetry

(Summa Sketch III, Summagraphics, Seymour, Connecticut)

was used to assess the percentage of infarcted tissue in the

myocardium risk zone area (I/R%).48

Blood Glucose and Glycated Hemoglobin Assessment

Samples for nonfasting blood glucose and glycated hemoglobin

(HbA1c) were taken at baseline and after 3 months treatment

with either glimepiride or methylcellulose control. Blood glu-

cose measurements (mmol/L) were determined using an ABL

700 series blood gas analyzer (Radiometer, Copenhagen) and

HbA1c measurements (%) were determined by an antibody-

colorimetric assay using a Cobas Mira Plus analyzer (Roche

Diagnostic Systems, Roche, UK).

Statistical Analysis

All values are expressed as mean + standard error of the mean.

Myocardial infarct size was analyzed by 1-way analysis of

variance and Fisher protected least significant difference test

for multiple comparisons. Differences were considered

significant when P < .05.

Results

The Threshold for IPC Is Elevated in Untreated Diabetic
Hearts

Diabetic untreated hearts were resistant to the cardioprotection

elicited by 1 cycle of IPC and required 3 cycles of IPC before a

reduction in myocardial infarct size was observed, whether the

heart had been subjected to pretreatment with chronic vehicle

control (IPC-3 27.1% + 3.5% vs control 38.4% + 5.1%,

P < .05; IPC-1 33.1% + 4.7% vs control 38.4% + 5.1%,

P ¼ not significant [NS]), subacute vehicle control (IPC-3

26.0% + 5.9% vs control 42.3% + 2.8%, P < .05; IPC-1

43.0% + 4.7% vs control 42.3% + 2.8%, P ¼ NS) or acute

vehicle control (IPC-3 28.6% + 6.0% vs control

42.6% + 5.3%, P < .05; IPC-1 36.8% + 4.5% vs control

42.6% + 5.3%, P ¼ NS; see Figures 2 to 4).

Figure 2. Myocardial infarct size (expressed as a percentage of the
volume of myocardium at risk) in hearts excised from rats pretreated
with 3 months of either glimepiride (20 mg/kg/d) or methylcellulose
vehicle by oral gavage. The results demonstrate that diabetic hearts
are resistant to IPC such that 3 cycles (IPC-3) instead of the usual 1
cycle (IPC-1) of IPC are required to reduce myocardial infarct size.
However, glimepiride pretreatment facilitates IPC such that both 1
and 3 cycles of IPC elicit cardioprotection. Values are mean + SEM.
*P < .05. N > 6 per group. IPC indicates ischemic preconditioning;
SEM, standard error of the mean.
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Glimepiride Pretreatment Facilitates IPC in the
Diabetic Heart

Interestingly, pretreatment with glimepiride facilitated IPC such

that both 1 and 3 cycles of the IPC were able to elicit

cardioprotection, irrespective of whether the heart had been

subjected to pretreatment with chronic glimepiride (IPC-1

31.9% + 3.8% and IPC-3 33.5% + 2.4% vs 43.9% + 1.4%
control, P < .05), subacute glimepiride (IPC-1 31.1%+ 3.0% and

IPC-3 29.3%+3.3% vs 42.2%+ 2.3% control, P < .05), or acute

glimepiride (IPC-1 28.2% + 3.7% and IPC-3 24.6% + 5.4% vs

41.9% + 5.4% control, P < .05; see Figures 2 to 4).

Blood Glucose and HbA1c

Three months treatment of glimepiride or methylcellulose did

not affect nonfasting blood glucose (in mmol/L: 7.1 + 0.8 in

glimepiride-treated animals at baseline vs 5.9 + 0.9

glimepiride-treated animals after 3 months; 7.0 + 1.0 in

methylcellulose-treated animals at baseline vs 6.1 + 0.7

methylcellulose-treated animals after 3 months; P > .05). Nor

was there any change in HbA1c (from 4.0 + 0.2 at baseline

to 4.1% + 0.2% in glimepiride-treated animals after 3 months

vs 4.1 + 0.2 in methylcellulose-treated animals after 3 months;

P > .05). The HbA1c values were considered diabetic when

>3.45% using our assay.

Discussion

The main findings from the present study are as follows: (a) we

confirm that the diabetic heart is resistant to IPC such that 3

cycles of IPC instead of the usual 1 cycle are required to elicit

cardioprotection; (b) the resistance to IPC observed in the

diabetic heart can be overcome by pretreatment with the

sulfonylurea, glimepiride, such that both 1 and 3 cycles of IPC

confer cardioprotection in the diabetic heart; (c) this effect of

glimepiride in facilitating IPC appears to be independent of its

glucose-lowering effects, as evidenced by the lack of change in

fasting glucose levels of HbA1c over 3 months glimepiride

therapy.

The majority of previous experimental studies have demon-

strated the diabetic heart to be resistant to the cardioprotection

elicited by IPC,17-33 attributing the inability to precondition the

diabetic myocardium to hyperglycemia,19 impaired mitochon-

drial function,32 and sarcolemmal KATP function.23,28 In the

current study, we too find that the diabetic heart is resistant

to IPC, but that this can be overcome by increasing the IPC sti-

mulus or treating with glimepiride. Our previous study15

demonstrated that the diabetic heart was resistant to IPC,

although this could be overcome by applying 3 cycles of the

standard 1 IPC cycle. In the nondiabetic Wistar control rat, a

single cycle of IPC was sufficient to achieve cardioprotection.

In that study, the resistance to IPC was attributed to impaired

signaling through the PI3K-Akt pathway, a key mediator of

IPC-induced cardioprotection.16 It has been well-established

that PI3K-Akt signaling is impaired in diabetic animals,8 and

that PI3K-Akt signaling in both the preischemic and the

postischemic reperfusion phases underlies the cardioprotection

elicited by IPC in nondiabetic animal hearts.38,39,49 However,

in some large animal studies the contribution of PI3K-Akt

signaling to reperfusion protection has been questioned with

Figure 3. Myocardial infarct size (expressed as a percentage of the
volume of myocardium at risk) in hearts excised from rats pretreated
with 24 hours of either glimepiride (20 mg/kg/d) or methylcellulose
vehicle by oral gavage. The results demonstrate that diabetic hearts
are resistant to IPC such that 2 cycles (IPC-3) instead of the usual 1
cycle (IPC-1) of IPC are required to reduce myocardial infarct size.
However, glimepiride pretreatment facilitates IPC such that both 1
and 3 cycles of IPC elicit cardioprotection. Values are mean + SEM.
P < .05. N > 6 per group. IPC indicates ischemic preconditioning; SEM,
standard error of the mean.

Figure 4. Myocardial infarct size (expressed as a percentage of the
volume of myocardium at risk) in rat hearts pretreated with either
glimepiride (10 mmol/L) or vehicle control (<0.01% DMSO) on the
Langendorff apparatus. The results demonstrate that diabetic hearts
are resistant to IPC such that 2 cycles (IPC-3) instead of the usual 1
cycle (IPC-1) of IPC are required to reduce myocardial infarct size.
However, glimepiride pretreatment facilitates IPC such that both 1
and 3 cycles of IPC elicit cardioprotection. Values are mean + SEM.
P < .05. N > 6 per group. DMSO indicates dimethyl sulfoxide; IPC,
ischemic preconditioning; SEM, standard error of the mean.
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the suggestion that the Survival Activator Factor Enhancement

pathway being more important in this setting.50-53 It would be

interesting to determine whether glimepiride facilitates IPC by

activating the PI3K-Akt pathway in the diabetic heart. In this

regard, glimepiride has been reported to activate Akt in both

coronary endothelial cells,43 human umbilical vein endothelial

cells,44 and adipocytes.45 Furthermore, it has been reported that

the peroxisome proliferator-activated receptor (PPAR)-g
agonist, rosiglitazone, also has the ability to cardioprotect the

diabetic rat heart through the activation of Akt.54 Whether rosi-

glitazone would also overcome the resistance for IPC in the

diabetic heart remains to be determined. One limitation of the

present study is that we did not investigate whether the effect of

glimepiride pretreatment on the threshold for IPC was

mediated through the activation of the PI3K-Akt pathway.

Whether antidiabetic therapy with glimepiride has the same

effect on the cardioprotective efficacy of IPC in the diabetic

patient is unknown given that the findings in our experimental

study were undertaken in the ex vivo perfused rat heart.

With respect to IPC, previous studies by our laboratory and

others have reported that the sulfonylurea glibenclamide but

not glimepiride42,55,56 or gliclazide57 has the ability to abolish

the cardioprotective effect elicited by IPC from its antagonistic

actions on the ATP-dependent potassium channels within

cardiac mitochondria, which are recognized to be pivotal to

IPC-induced cardioprotection.58 In the current study, we

demonstrate that the antidiabetic sulfonylurea, glimepiride, is

able to modify the response of the diabetic heart to IPC, but

does not elicit cardioprotection itself suggesting that glimepir-

ide is somehow potentiating the IPC signal. The mechanism

through which glimepiride actually lowers the threshold for

IPC in the diabetic heart is unclear, especially considering the

different regimens in which it was shown to be effective. We

speculate that glimepiride potentiates the PI3K-Akt signaling

pathway in the diabetic heart which upregulates downstream

signaling mechanistic pathways important in preconditioning.

Whether the effect of glimepiride in overcoming the resistance

of IPC in the diabetic heart is specific to this antidiabetic

medication is unknown. Interestingly, the other classes of

antidiabetic mediation such as PPAR-g agonists59 and metfor-

min60 have been demonstrated to confer cardioprotection in

their own right.

In conclusion, we demonstrate that the treatment with the

sulfonylurea glimepiride facilitates IPC such that the resistance

to IPC observed in the diabetic heart is overcome. Therefore,

certain types of antidiabetic medication may facilitate IPC and

permit diabetic patients with CHD to benefit from this

endogenous form of cardioprotection.
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