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The initial stages of high-velocity droplet impact on a shallow water layer are
described, with special emphasis given to the spray jet mechanics. Four stages of
impact are delineated, with appropriate scalings, and the successively more important
influence of the base is analysed. In particular, there is a finite time before which part
of the water in the layer remains under the droplet and after which all of the layer is
ejected in the splash jet.

1. Introduction
Based on the ideas of Wagner (1932), there is a well-established theory for the

initial stages of the high-velocity impact between rigid bodies and half-spaces of
inviscid incompressible liquid; the resulting flow gives rise to a high pressure acting
on part of the impactor. One of the interesting predictions is that when the ‘deadrise
angle’ between the tangent to the impactor and the initial boundary of the half-space
is small, splash jets emerge from the perimeter of the high-pressure region which,
relative to the size of the impactor, are of thickness of the order of the deadrise
angle squared. This asymptotic scaling allows so-called ‘Wagner conditions’ to be
applied near the jet roots and these conditions then determine the evolution of the
free surfaces away from the jet roots. In Oliver (2002), Howison, Ockendon & Oliver
(2002, 2004) and Howison & Oliver (2004), the theory has been extended to the case
of impact on a confined layer of finite thickness, even to the stage where the layer
is a film whose thickness compared to the size of the impactor is of the order of the
deadrise angle, which was first studied by Korobkin (1995).

Less theory is available for analogous liquid–liquid impacts. However, the initial
impact between equal droplets is a trivial example of Wagner theory and, as explained
in Howison, Ockendon & Wilson (1991), some features of unequal droplet impact can
be discerned when Wagner theory is just taken to the lowest order in the deadrise
angle. In the presence of a base, the scenario that emerges when the droplet radius,
R, is much greater than the layer thickness, H , and when time t � R/U , where U is
the impact velocity, is that of figure 1. To lowest order as t → 0+ the splash jets are
horizontal and have thicknesses of O(t3/2) near the ‘turnover’ points, where the free
surfaces are vertical. This may be compared with the case of impact on a dry solid
base, which is also described by Wagner theory and leads to the flow in figure 2. In
both cases the inner regions containing the turnover points move in an outer region
of size of O(t1/2) in which the deadrise angle of the undisturbed droplet is of O(t1/2)
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Figure 1. Schematic of the normal impact of a two-dimensional cylindrical droplet on a thin
fluid layer (a) before impact t < 0 and (b) just after impact 0 < t � R/U .

(a) (b) Undisturbed droplet

Splash jet

U R

Figure 2. Schematic of the normal impact of a two-dimensional cylindrical droplet on a dry
base (a) before impact t < 0 and (b) just after impact 0 < t � R/U .

as t → 0+. Moreover both theories lead to the interesting prediction that the splash
jets extend instantaneously to infinity at t = 0+.

The study of aircraft icing by Gent, Dart & Cansdale (2000) motivates the
development of the theory to encompass the impact between a liquid drop and
a thin film on a solid base, with the thickness and velocity of the splash sheet
being of especial interest. Hence, in this paper, we present such a theory for the
case when the layer thickness is small compared with the droplet radius, thereby
unifying the scenarios of figures 1 and 2. Although there is only one important
geometric parameter in our theory, in § 3 we show that four distinguished limits
emerge as the impact evolves, and these are described sequentially in § 4–§ 6, with
some of the technical details relegated to the Appendices. The theoretical and physical
implications of our theory are reviewed in § 7. Although all the discussion in earlier
sections concerns two-dimensional flow, we show that the impact of an axisymmetric
drop can be analysed in exactly the same way; the only minor difference is that, in
the axisymmetric case, the solution of a particular boundary-value sub-problem that
arises in the asymptotic analysis cannot be found in a simple closed form. In § 7
we also discuss the practical relevance of the model. In particular, we give a scaling
argument from which it is possible to bound the time scales over which viscosity and
surface tension (both of which are neglected in our model) have a significant effect.
We also make a comparison with the experimental results of Thoroddsen (2002)
on the impact of a drop on a liquid half-space, showing that, with his set-up, our
model may be expected to be valid for all except extremely short times (at the most,
microseconds) from initial impact.
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Figure 3. Geometry of the dimensionless model problem for (a) t < 0 and (b) 0 < t � 1.
The points x = −d+(t) and x = d−(t) are not labelled.

2. Problem statement
We first consider the two-dimensional normal impact depicted in figure 1, where a

cylindrical water droplet whose radius is R impacts with speed U on a water layer
of thickness H . We only consider the case when ε = H/R is small and U is so large
that viscosity, gravity and surface tension effects are negligible. We also work on time
scales that are long compared to the acoustic time scale in the water and we neglect
the effect of the air trapped between the droplet and the layer.

When distances are made dimensionless with R and time with R/U , we obtain
the configuration in figure 3, with the nominal penetration depth (i.e. the ordinate of
the minimum of the unperturbed droplet boundary) being equal to −t . We denote the
perturbed droplet surface, including the upper side of the jets, by y = h+(x, t) and
the perturbed layer surface, including the lower side of the jets, by y = h−(x, t), both
of these being symmetric about x = 0 and multi-valued. We denote the x-coordinates
of the four turnover points, where the free surfaces are vertical, by x = ±d±(t) as
indicated in figure 3(b) and anticipate that except at the very end of the paper, in all
the flows we consider, the turnover points of the lower free surfaces are close (in a
sense to be made precise) to those of the upper free surface. In what follows, we use
x = ±d+(t) as reference points for the turnover regions.

Scaling the velocity potential with UR, the dimensionless model problem is

∂2φ

∂x2
+

∂2φ

∂y2
= 0, (2.1)

in the fluid region of figure 3(b), with

∂φ

∂y
= 0 on y = −ε, (2.2)

and

∂φ

∂t
+

1

2
|∇φ|2 = 0,

∂φ

∂n
= vn on y = h±(x, t), (2.3)

where ∂/∂n denotes the outward normal derivative to, and vn the normal velocity of,
the relevant free surface. Note that we have implicitly assumed that there is no vortex
sheet separating the water originally in the droplet from that originally in the layer;
this assumption might not be justified if the region of initial contact were a segment
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rather than a point. The initial and far field conditions are

φ(x, y, 0) =

{
−y, x2 + (y − 1)2 < 1,

0, −ε < y < 0;
(2.4)

x2 + (h+(x, 0) − 1)2 = 1, h−(x, 0) = 0; (2.5)

φ → 0, h− → 0 as |x| → ∞, −ε < y < 0. (2.6)

We shall from time to time write φ = Re{w(z, t)}, where w is the complex potential
and z = x + iy.

3. Asymptotic development
The dimensionless model problem (2.1)–(2.6) is characterized by three length scales:

the initial droplet radius, 1, the initial layer thickness, ε, and the nominal penetration
depth, t . The lower unperturbed droplet surface is given by

y = f (x) − t + O(t2) as t → 0+ for x, y = O(1),

where f (x) = x2/2, so the horizontal extent of the nominal penetration region is of
O(t1/2) as t → 0+. Hence, at times sufficiently short that this length is much smaller
than the layer depth, i.e. for t1/2 � ε or t � ε2, the effect of the base is negligible
and we may apply the Wagner theory for unequal droplet impact as in Howison et al.
(1991). This theory implies that, to lowest order, d− = d+ = O(t1/2) as t → 0+ and
that the splash jet thickness as it leaves the jet root region, HJ (t), is of O(t3/2) as
t → 0+. Now let us assume that for all t � 1, the splash jet thickness, of O(t3/2), is
much smaller than the nominal penetration depth, t , which is in turn much smaller
than the ‘contact length’, i.e. the distance 2d+(t) between the jet roots, of O(t1/2).
We can build a self-consistent theory based on this assumption by identifying four
distinguished limits as follows:

(i) t = O(ε2), when the contact length is comparable with the layer depth;
(ii) t = O(ε), when the nominal penetration depth is comparable with the layer

depth;
(iii) t = O(ε2/3), when the jet thickness is comparable with the layer depth;
(iv) t = O(1), when the penetration depth is comparable with the initial droplet

radius.
In this paper we describe the asymptotic solution in stages (i)–(iii), thereby identify-

ing the mechanics of the formation of the splash jet before the droplet undergoes
global deformation in stage (iv), which must inevitably be treated numerically as
described in Josserand & Zaleski (2003), Purvis & Smith (2004, 2005), Weiss & Yarin
(1999) and references therein. We find that stage (ii) is in fact a special case of a bona
fide temporal intermediate regime between stages (i) and (iii), which is valid for all
times t such that ε2 � t � ε2/3.

4. Splash jet initiation, stage (i): t = O(ε2)

4.1. Asymptotic structure

For dimensionless times t = ε2t1, with t1 of O(1), the nominal penetration depth is
much less than the layer depth of O(ε), which is itself comparable with the contact
length, which also is of O(ε). We therefore set d+ = εd1(t1), with d1 of O(1). The
lowest-order solution is thus a generalization of the unequal droplet impact theory
described in Howison et al. (1991), the only modification being the presence of the
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Figure 4. The asymptotic structure for t of O(ε2).
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Figure 5. The leading-order outer problem for t = O(ε2). In addition, the initial conditions
at t1 = 0 are φ1 = 0 for −1 < y1 < 0, φ1 = −y1 for y1 > 0, h−

1 = 0, h+
1 = f (x1) and d1 = 0;

the far-field conditions are φ1 → 0 as |x| → ∞ for −1 < y1 < 0, φ1 ∼ −y1 as y1 → ∞, h+
1 →

f (x1) − t1 and h−
1 → 0 as |x1| → ∞; at the free points, φ1 ∼ Re{−iS1(z1 ∓ d1(t1))

1/2} as
z1 = x1 + iy1 → ±d1(t1), where S1 = O(1) is defined in the text, and the Wagner conditions are
h+

1 (±d1(t1), t1) = h−
1 (±d1(t1), t1).

base. The asymptotic structure is depicted in figure 4. In the ‘outer-outer’ region, for
which z = x + iy is of O(1), there is an impulsive flow in the droplet as it reacts to
an effective point force in the y-direction at the origin as described in Appendix A;
meanwhile the splash jet mechanics are governed by the interaction between an outer
flow region, in which z is of O(ε), and inner jet root regions of size of O(ε3) near the
turnover points. These regions are joined by intermediate regions of size of O(ε2) as
shown in figure 4.

In the outer problem in figure 4 the appropriate scalings are

z = εz1, φ = εφ1, h± = ε2h
±
1 .

Expanding the potential, φ1, and free surfaces, h
±
1 , as asymptotic series in powers of ε,

we obtain the leading-order problem in figure 5 in which the inner jet root regions and
the jets are all collapsed into the branch cuts along the x-axis. The far-field conditions
are deduced by matching with the leading-order (uniform) flow in the outer-outer
region obtained in Appendix A. The 1/2-power singularities in the potential and the
Wagner conditions that the free surfaces effectively meet each other at the free points,
i.e.

h+
1 (±d1(t1), t1) = h−

1 (±d1(t1), t1), (4.1)
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are derived by matching with the intermediate and jet root regions. These regions
are sufficiently small that they only feel the effect of the base through their far-field
matching conditions and, in particular, through the coefficient of the square root in
the potential at the free points, denoted by S1 in the caption to figure 5. Hence,
they are symmetric about their respective horizontal dividing streamlines and have
the same structure as in solid–fluid impact at small deadrise angles, described in
Howison et al. (2002). This symmetry immediately implies that, at leading order
in ε, the droplet and layer contribute equally to the flux ejected into a splash jet.
We omit the technical details except to note two points. First, matching with the jet
root solution as in Appendix B implies that the ejected splash jet thickness, scaled
with ε3, is

HJ1 =
πS2

1

8ḋ2
1

, (4.2)

where the overdot denotes the time derivative. Second, the far-field analysis of the
jet root solution in Appendix B reveals that the coefficient of the logarithmic term in
the far field is −ḋ1HJ1/π, which corresponds to the flux, 2ḋ1HJ1, ejected into the jet
relative to the stationary frame, rather than to the the flux, ḋ1HJ1, ejected into the jet
relative to the moving frame. We see a similar situation in the analysis of later stages
of the flow below.

The evolution of the splash jet away from its root is described by the zero-gravity
shallow-water equations. The theory of unequal droplet impact in Howison et al.
(1991) reveals that, at leading order in ε, the centreline of the jet is horizontal and
extends to infinity; as shown in Oliver (2002), the small-time analysis in § 4.2.1 implies
that the jet thickness is of O(ε3t4

1/|x1|5) as t1 → 0+ and |x1| → ∞.

4.2. Analytic results for the outer problem

Although it is possible to find the potential φ1 for the outer problem of figure 5, the
presence of two free surfaces y1 = h

±
1 (x1, t1), coupled by the Wagner conditions at

x1 = ±d1(t1), makes the problem non-local in the sense that there is no uncoupled
equation for d1(t1). Less analytic progress is possible than for impact of a solid body
of small deadrise angle on a thin fluid layer as described in Howison et al. (2004),
where the corresponding codimension-two free boundary problem has only one free
surface, leading to an explicit equation for the turnover point.†

To find d1(t1), we map the z1 = x1 + iy1 plane onto the upper-half of the ζ = ξ + iη
plane and thereby find

φ1 = Re

{
2
√

1 − ζ 2

π(α2 − 1)

}
, πz1 =

2ζ

α2 − 1
− log

(
ζ − 1

ζ + 1

)
. (4.3a, b)

Here, |ξ | > 1 corresponds to the free surfaces, and z1 = ±d1(t1) corresponds to ζ =
±α(t1), i.e.

πd1(t1) =
2α(t1)

α(t1)2 − 1
− log

(
α(t1) − 1

α(t1) + 1

)
; (4.4)

d1 decreases with α, with d1 → ∞ as α → 1+ and d1 → 0+ as α → ∞.

† Unfortunately, the “displacement potential” approach of Korobkin & Pukhnachov (1988),
which uses the time integral of the velocity potential, suffers the same disadvantages.
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1 ξ

ξ = α(t1)

t1

ξ0 H–
1 (ξ, 0) = 0, ξ > 1

H +
1 (ξ, t1) → f (x1(ξ, t1)) –t1

as ξ → ∞

x1(ξ, t1) = x1(ξ0, 0)

Figure 6. Schematic of the characteristic diagram for (4.6). The arrows indicate the direc-
tion of information flow. By (4.7), the characteristics are horizontal on the free boundary
ξ = α(t1).

Since the x1- and ξ -coordinates parameterizing the right-hand free surfaces are
related by (4.3b) through

πx1(ξ ; α) =
2ξ

α2 − 1
− log

(
ξ − 1

ξ + 1

)
, ξ > 1, (4.5)

the kinematic conditions on y1 = 0±, x1 > d1 in figure 5 imply the equations

∂x1

∂ξ

∂H
±
1

∂t1
− ∂x1

∂t1

∂H
±
1

∂ξ
=

∂φ1

∂η
on ξ > 1, η = 0, (4.6)

where h
±
1 (x1, t1) = H

±
1 (ξ, t1) and, by (4.3a) and (4.5),

∂x1

∂ξ
=

2

π(α2 − 1)

(
ξ 2 − α2

ξ 2 − 1

)
,

∂x1

∂t1
=

4αα̇ξ

π(ξ 2 − 1)2
,

∂φ1

∂η
= − 2ξ

π(α2 − 1)(ξ 2 − 1)1/2
.

(4.7)

The original kinematic conditions in figure 5, and therefore the quasi-linear first-order
partial differential equations (4.6), have characteristics on which x1(ξ, t1) = constant.
As illustrated in figure 6 and recalling that α(0) = ∞ as d1(0) = 0, we expect to solve
(4.6) with the initial condition

H −
1 (ξ, 0) = 0 for ξ > 1, (4.8)

and the far-field matching condition

H+
1 ∼ f (x(ξ, t1)) − t1 as ξ → ∞. (4.9)

Lastly, the Wagner condition is

H −
1 = H+

1 on ξ = α(t1), (4.10)

where the codimension-one free boundary, ξ = α(t1), is determined as part of the
solution. This problem is ‘non-local’ because the characteristic equations have a non-
local dependence on the a priori unknown location of ξ = α(t1). A numerical solution
of the potential problem in figure 5 is given in Purvis & Smith (2005).

4.2.1. Small- and large-time limits

In Appendix C we show that, as t1 → 0+, the base has no leading-order effect in
a region of size O(t1

1/2) near the point of impact in figure 5. In particular, we show
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that in this region the leading-order flow evolves according to the theory of unequal
droplet impact described in Howison et al. (1991) and deduce that for f (x1) = x2

1/2
the leading-order location of the free point is given by

d1 ∼ 2t1
1/2 as t1 → 0+, (4.11)

with α ∼ 4/πd1 as d1 → 0+. We note that at leading order the analysis in Appendix C
also implies that

h
±
1 (d1(t1), t1) ∼ 1

2
(f (d1(t1)) − t1) as t1 → 0+.

Hence, the vertical distance between a jet root near x1 = ±d1(t1) and the unperturbed
layer surface (y1 = 0) is equal, to lowest order, to the vertical distance between the jet
root and the unperturbed droplet surface (y1 = ε(f (x1) − t1)) as t1 → 0+. Because the
jet roots do not lie on the unperturbed layer surface to lowest order, it is necessary to
account for the first-order correction to the (vertical) location of the turnover points
by introducing intermediate regions as in § 4.1.

In Appendix D we show that, as t1 → ∞, the fluid layer has no leading-order effect
in a region of size of O(t1

1/2) containing both jet roots in figure 5, in the sense that the
leading-order flow is the same as if the base were dry, with the leading-order location
of the free point being given by

d1 ∼ 2t1
1/2 as t1 → ∞, (4.12)

with α ∼ 1+1/πd1 as d1 → ∞. Moreover, we show in Appendix D that the large-time
limit of stage (i) matches with the small-time limit of stage (ii), which we describe
below.

4.3. The flux into the jet

The coefficient of the square root in the potential in the caption to figure 5 is given
by

S1 =

(
2α

π(α2 − 1)

)1/2

∼
{

(d1/2)1/2 as d1 → 0+ (α → ∞),

(d1)
1/2 as d1 → ∞ (α → 1+),

(4.13)

in terms of which the jet thickness (scaled with ε3) is given by πS2
1/8ḋ2

1. The speed of
the fluid entering the jet (scaled with ε−1) is 2ḋ1 in the stationary frame. Hence, in
this frame, the leading-order flux into the jet (scaled with ε2) is

Q1 = 2ḋ1HJ1 =
α

2(α2 − 1)ḋ1

, (4.14)

with the small- and large-time behaviour being given by

Q1 ∼
{

πt1/4 as t1 → 0+,

πt1/2 as t1 → ∞.
(4.15)

The coefficient, S1, and therefore the flux into a jet, Q1, are greater than if there were
no base and less than if there were no layer. As the effect of the base becomes more
prominent at large times, the flux into a jet tends from below to the value it would
have if the base were dry.

5. Splash jet growth, stage (ii): ε2 � t � ε2/3

5.1. Asymptotic structure

As time increases from t = O(ε2), the geometry of figure 4 stretches in the x-direction,
the contact region becoming long relative to the layer depth until the effect of one
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Figure 7. The asymptotic structure for t of O(δ), where ε2 � δ � ε2/3.
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φ2 = 0,
∂φ2
∂y2

∂φ2
∂y2

=

x2 = d2 (t2)x2 = –d2(t2)

= 0

+ = 0
∂x2

2

∂2φ1

∂y2
2

∂2φ2

∂t2

∂h2
+

φ2 = 0,
∂φ2
∂y2

= ∂t2

∂h2
+

Figure 8. The leading-order problem in outer region I for t = O(δ), where ε2 � δ � ε2/3.
In addition, the initial conditions at t2 = 0 are φ2 = −y1, h+

1 = f (x2) and d2 = 0; the

far-field conditions are φ2 ∼ −y2 as y2 → ∞, h+
2 → f (x2) − t2 as |x2| → ∞; at the free points,

φ2 ∼ Re{−iS2(z2 ∓ d2(t2))
1/2} as z2 = x2 + iy2 → ±d2(t2), where S2 = O(1) is defined in the

text, and the Wagner conditions are h+
2 (±d2(t2), t2) = 0.

jet root is not felt by the other. For intermediate times t = δt2, where ε2 � δ � ε2/3,
the asymptotic structure may therefore be deduced directly from the large-time limit
of the codimension-two free boundary problem in figure 5, although, as described in
Appendix D, it is in practice quicker to proceed as for the solid-fluid impact described
in Howison et al. (2002).

The asymptotic structure is depicted in figure 7. The outer region (labelled with
“I” in this section) has now grown in size to be of O(δ1/2) rather than O(ε) although,
for x, y of O(1), which we term the outer-outer region, the bulk flow in the droplet
is again that of a response to a point force; this is equivalent to a dipole in the
potential, as described in Appendix A. However, when x ∓ d+(t) = O(ε), y = O(ε),
the perturbed droplet boundary and the perturbed layer elevation both effectively
collapse onto y = 0, |x| > d+, the base now only exerting a leading-order effect on
the flow in the outer regions II which are comparable in size to the layer thickness.
Two intermediate regions are again required to match systematically with the inner
jet root regions, both of which have the same leading-order structure and solution as
in the earlier stage (i), although they have now grown in size to be respectively of
O(ε1/2δ3/4) and of O(δ3/2), rather than O(ε2) and O(ε3).

In region I in figure 7 the appropriate scalings are

d+ = δ1/2d2, z = δ1/2z2, φ = δ1/2φ2, h+ = δh+
2 , (5.1)

with h−
2 being exponentially small. The resulting leading-order problem is depicted in

figure 8. Since the flow in the fluid layer is negligible to lowest order (with the layer
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ŷ2 = 0

φ̂2 = 0, = –d2

= 0

ŷ2 = –1

ˆ∂x2
2

+ = 0

x̂2 = 0

ˆ∂2φ2

ˆ∂y2
2

ˆ∂x2

ˆ∂2φ2

ˆ∂y2
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˙
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ˆ ˆ∂φ2 ∂h2
–

˙

Figure 9. The leading-order problem in the right-hand outer region II for t = O(δ), where

ε2 � δ � ε2/3. In addition, the far-field conditions are φ̂2 ∼ Re{−iS2ẑ2
1/2} as ŷ2 → ∞,

where S2 = O(1) is the same as in the caption to figure 8, ŵ2 → 0 as x̂2 → ∞ for

−1 < ŷ2 < 0, ĥ+
2 → (2d2x̂2)

1/2/ḋ2 and ĥ−
2 → 0 as x̂2 → ∞; at the origin, φ̂2 ∼ Re

{
− iŜ2ẑ2

1/2
}

as ẑ2 = x̂2 + iŷ2 → 0, where Ŝ2 = O(1) is defined in the text, and the Wagner conditions are

ĥ+
2 (0, t2) = ĥ−

2 (0, t2).

elevation being exponentially small), this leading-order flow is almost the same as the
corresponding outer problem for droplet impact on a dry base. The only difference is
that here the appropriate Wagner conditions, namely

h+
2 (±d2(t2), t2) = 0, (5.2)

are derived by matching with region II in figure 7, rather than by matching directly
into the jet root, which is the only inner region for dry impact.

In region II in figure 7 the appropriate scalings are

z2 = d2 + εδ−1/2ẑ2, φ2 = ε1/2δ−1/4φ̂2, h+
2 = ε1/2δ−1/4ĥ+

2 , h− = ε1/2δ3/4ĥ−
2 . (5.3)

The resulting leading-order problem is depicted in figure 9, in which the far-field,
near-field and appropriate Wagner conditions are derived as in stage (i); in particular

ĥ+
2 (0, t2) = ĥ−

2 (0, t2). (5.4)

Finally, matching region II with the inner regions exactly as in stage (i), we find
that the jet thickness (scaled with δ3/2) is

HJ2 =
πŜ2

2

8ḋ2
2

, (5.5)

where Ŝ2 is the coefficient of the square root in the potential in region II in figure 9. It
remains to solve the outer problems in regions I and II in figures 8 and 9, respectively,
in order to determine S2 and Ŝ2.

5.2. Solution of the outer problems

The unique solution to the potential problem in region I in figure 8 is given by

φ2 = Re
{(

d2
2 − z2

2

)1/2}
, h+

2 = f (x2) −
∫ t2

0

|x2| dτ(
x2

2 − d2(τ )2
)1/2

, (5.6)

so that the Wagner conditions (5.2) imply d2 = 2t2
1/2 for f (x2) = x2

2/2.
To find the unique travelling-wave solution of the potential problem in region II in

figure 9, we map the ẑ2 = x̂2 + iŷ2 plane onto the upper half of the ζ = ξ + iη plane
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to find

φ̂2 = Re

{
−i

(
2d2ζ

π

)1/2
}

where πẑ2 = −1 + ζ − log ζ. (5.7)

Integrating with respect to x̂2 the equations for ĥ
±
2 in figure 9, and applying the

Wagner condition (5.4), we find that the free surfaces are given by

ĥ−
2 (x) =

1

ḋ2

(
2d2ξ

π

)1/2

for 0 < ξ < 1, ĥ+
2 (x) =

1

ḋ2

(
2d2ξ

π

)1/2

for ξ > 1,

(5.8)

where, by (5.7), πx(ξ ) = −1 + ξ − log ξ .
In summary, the fluid layer only has a leading-order effect in region II, where its

presence modifies the coefficient of the square root in the potential from S2 = (2d2)
1/2

in the far field to Ŝ2 = d2
1/2 near the jet roots; by (5.5), it is the latter coefficient that

determines the flux ejected into a splash jet, as we now describe.

5.3. The flux into the jet

The ejected splash jet thickness, scaled with δ3/2, is given by (5.5) and so, substituting
d2 = 2t2

1/2 and Ŝ2 = d2
1/2, we find

HJ2 =
πt2

3/2

4
. (5.9)

In the stationary frame the fluid entering the jet root moves with speed 2ḋ2, scaled
with δ−1/2, so the flux into a jet in this frame, scaled with δ, is

Q2 = 2ḋ2HJ2 =
πt2

2
, (5.10)

with equal contributions from both the droplet and layer at leading order in ε by the
symmetry of the jet root regions, as in stage (i) and as described in Appendix B.

We conclude that at intermediate times t between ε2 and ε2/3, the flux ejected into a
splash jet is, to lowest order, exactly equal to that for impact on a dry base. Since the
inner regions grow with time, however, they must eventually be influenced directly by
the geometry of the base rather than solely through their far-field matching conditions.
This will occur when the ejected splash jet flux, of O(δ), becomes comparable with
the flux, of O(εδ−1/2), into region II from the layer, i.e. when δ is of O(ε2/3). This
corresponds to the asymptotic structure in figure 7 breaking down as region II, the
intermediate and jet root regions all merge simultaneously to form a jet root region
comparable in size to the layer depth, as we now describe.

6. Splash jet and layer interaction, stage (iii): t = O(ε2/3)

6.1. Asymptotic structure

When t = ε2/3t3, with t3 of O(1), the splash mechanism undergoes a fundamental
change, as the jet root region grows to be comparable in size to the layer depth.
Our analysis for stages (i) and (ii) reveals that stage (iii) is the earliest time at which
the jet root feels the asymmetry due to the base. The resulting asymptotic structure
is depicted in figure 10. Although it is simpler than in stages (i) and (ii), the local
solution in the jet root is more complicated and leads to some intriguing predictions
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x = 0 X3 = 0

Y3 = 0

Y3 = –1

HJ3

y = 0
y = –ε

Outer O(ε1/3) Inner O(ε)

Inner O(ε)

Figure 10. The asymptotic structure for t of O(ε2/3).

concerning the configuration of the relative stagnation points in the jet root region,†
and therefore concerning the contributions of the droplet and layer to the flux ejected
into a splash jet.

The appropriate scalings in the outer region in figure 10 are

d+ = ε1/3d3, z = ε1/3z3, φ = ε1/3φ3, h+ = ε2/3h+
3 , (6.1)

while the layer elevation, h−, is exponentially small. The leading-order outer problem
is exactly as in figure 8, although the appropriate Wagner conditions,

h+
3 (±d3, t3) = 0, (6.2)

are now derived by matching directly with the jet root region in the same way as for
impact on a dry base. No intermediate regions are required to match the flows in the
outer and inner regions because the jet roots lie on y = 0 at leading order, in contrast
to stages (i) and (ii).

The appropriate scalings in the inner jet root region in figure 10 are

z3 = d3 + ε2/3Z3, φ3 = ε1/3(ḋ3x3 + Φ3), h+
3 = ε1/3H+

3 , h− = εH −
3 , (6.3)

the elevations of the layer and droplet free surface now being comparable. The
leading-order inner jet root problem is depicted in figure 11.

6.2. The outer solution

The outer solution is the same as in region I in stage (ii) in § 5.2, i.e. (5.6), with the
subscript 2 replaced by 3, and S3 = (2d3)

1/2; the Wagner conditions (6.2) then give
the same law of motion as in stage (ii), with d3 = 2t3

1/2 for f (x2) = x2
2/2.

6.3. The inner jet root region

The solution of the inner problem is less straightforward than before because the flow
in the jet root region no longer has the symmetry of figure 16 (in Appendix B), owing
to the presence of the base. Hitherto we have exploited this symmetry to solve for one
half of the flow only, obtaining the other by reflection. Although there is a stagnation
point in these ‘deep-layer’ flows, as shown in figure 16, it is on the line of symmetry
and so the potential for, say, the upper half of the flow can be found by standard
methods. Now, however, we must consider the location of any stagnation points
relative to the base, and the two principal configurations are shown in figure 12; one
has a single stagnation point within the fluid, while the other has two stagnation

† These are stagnation points for the flow in the moving frame, not in the stationary frame.
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|�Φ3| = d3,˙
∂N

= 0 on Y3 = H +
3 (X3, t3)

X3 = X *
3

= 0

∂3Φ3

∂X2
3

∂2Φ3

∂Φ3

|�Φ3| = d3,˙
∂N

= 0 on Y3 = H –
3 (X3, t3)

∂Φ3

∂Y2
3

∂Φ3
∂Y3

+ = 0

ḋ3

ḋ3
HJ3

Y3 = 0

Y3 = –1

Figure 11. The leading-order right-hand jet root problem for t = O(ε2/3); ∂/∂N denotes
the outward normal derivative. In addition, the far-field conditions are W3 ∼ − ḋ3Z3 +

iS3Z
1/2
3 + O(Z

1/2
3 ) as |Z3| → ∞, where S3 = (2d3)

1/2; H+
3 ∼ S3X

1/2
3 /ḋ3 and H −

3 → 0 as X3 → ∞.

A

B

B′

A′

C

A

A′

B

B′

C

C′C′

D S1 S2D

S

(a) (b)

Figure 12. Stagnation-point configurations.

points on the wall Y3 = −1. (A third configuration, with a double stagnation point on
the wall, occurs instantaneously in the transition from one stagnation point to two,
and we do not discuss it in detail.) For small times t3, matching back to the previous
solutions shows that we have one stagnation point and, as we show below, there is a
finite time t∗

3 at which this stagnation point ‘touches down’ on the wall Y3 = −1 and
splits into two. Until this happens, some of the fluid from the initial layer remains
under the impacting drop, but afterwards all the fluid from the layer is ejected in the
splash jet.

6.3.1. Flow with one stagnation point

We write W3 = Φ3 + iΨ3 for the complex potential of the flow, and take Ψ3 = 0
on the lower free surface A′B , whence Ψ3 = QJ3 = ḋ3HJ3 on the upper free surface
B ′C; note that this is the flux into the jet in the moving frame, while the flux in the
stationary frame is Q3 = 2QJ3. Also Ψ3 = QB3 = ḋ3 on the base C ′A. The plane of the
hodograph variable W ′

3 = dW3/dZ3 = U3 −iV3 is shown on figure 13(a); the point D is
where U3 achieves its minimum value Um

3 , say. The hodograph plane is mapped onto
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A

C B, U3 = d3̇D

S

–V3

U3 A
C BD

–V3

S2 U3

S1

(a) (b)

Figure 13. Hodograph planes with (a) one and (b) two stagnation points.

the upper half-ζ -plane by

ζ =

(
γ 2 −

(
ḋ3 + W ′

3

ḋ3 − W ′
3

)2
)1/2

, (6.4)

where

γ =
ḋ3 − Um

3

ḋ3 + Um
3

and the branch is defined such that ζ → −γ as W ′
3 → −ḋ3; γ lies between 0 and 1,

and γ = 1 corresponds to touchdown. In this mapping, the point B is mapped to
infinity, C to −γ , D to 0 and A to γ . Because W ′

3 = 0 at the stagnation point S, it is
mapped to the point ζS = i(1 − γ 2)1/2.

As the boundary of the flow domain in the potential plane (a two-sheeted Riemann
surface which is not shown here) is bounded by straight lines Ψ3 = constant, the
relation between W3 and ζ is found via the Schwarz–Christoffel formula

dW3

dζ
= K

(ζ − ζS)(ζ − ζ̄S)

(ζ + γ )2(ζ − γ )
= K

ζ 2 + |ζS |2

(ζ + γ )2(ζ − γ )
, (6.5)

where K is an unknown scaling constant; the zeros in the numerator of this expression
take account of the stagnation point and the denominator gives the correct behaviour
at A and C. This formula also gives the solution of the boundary-value problem in
figure 14(a), and consideration of the jumps in Ψ3 at ζ = γ and ζ = ∞ yields the two
relations

πK

4γ 2
= QB3, πK = QJ3,

respectively among the three unknowns K , γ and QJ3 (or HJ3); the jump at ζ = −γ

is consistent with these and provides no new information.
The final relation needed comes from matching with the outer flow. The inner limit

of the one-term outer solution, given in § 6.2 , is W3 ∼ −ḋ3Z3 + i(2d3)
1/2Z3

1/2, so that
the matching condition is

W ′
3 ∼ −ḋ3 + i(d3/2)1/2Z3

−1/2 + O
(
Z−1

3

)
, (6.6)

which is sufficient to specify W ′
3 uniquely. The local behaviour of the inner solution,

near the corresponding point ζ = −γ , is found by expanding (6.4) to give

W ′
3 ∼ −ḋ3 + (8γ )1/2ḋ3(ζ + γ )1/2 + O(ζ + γ ); (6.7)
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D

A

(a)

(b)

Figure 14. The ζ planes for (a) one and (b) two stagnation points.

then, writing dZ3/dζ = (dW3/dζ )/W ′
3, we use (6.5) to show that

Z3 ∼ − K

2γ ḋ3(ζ + γ )
+ O

(
(ζ + γ )−1/2

)
.

When this is used to replace ζ + γ in (6.6) to give the far-field behaviour of the inner
solution,† and the result compared with (6.6), we find the third relation K = d3/8ḋ3,
from which we immediately deduce that

QJ3 =
πd3

8ḋ3

, γ 2 =
πd3

32ḋ2
3

.

Remarkably, even though there is a strong interaction between the jet root and the
base, the jet thickness, QJ3/ḋ3, is independent of the layer thickness. The total flux into
the jet is also determined by the outer solution, and has the same value as for dry
impact. However, the calculation below reveals that the proportions of fluid in the
jet that come from the drop and the layer, which are determined by the value of Ψ3

on the dividing streamline, vary as time increases. The value of γ increases from 0 at
t3 = 0 to 1 at touchdown, while the proportion from the layer is a decreasing function
of γ , starting at 1/2 when γ = 0, thereby matching back to the stage (ii) solution in
which the jet is composed equally of fluid from the drop and the layer. Moreover, as
γ → 1 (touchdown), this proportion tends to 1/4.

In order to show this, we integrate (6.6) (with K replaced by QJ3/π) to find

W3 = W30 +
QJ3

4πγ 2

(
log(ζ − γ ) + (4γ 2 − 1) log(ζ + γ ) +

2γ

ζ + γ

)
,

where W30 is a constant whose imaginary part, Ψ30, is the flux into the jet from the
layer. Setting Ψ3 = Q3B at ζ = 0 we find, after rearranging, that

Ψ30

QJ3

=

(
π

4
− θ

2

)
sec2 θ + θ − 1

2
tan θ,

† The inner solution W3 also has a logarithmic term in its far-field behaviour, whose strength is
determined by the other parameters of the inner flow. This term matches with the corresponding
term in the one-term inner expansion of the two-term outer expansion (not treated here), and the
coefficients of these terms, which match automatically, confirm the mass flux arguments below.
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where cos θ = γ . Standard arguments show that the right-hand side increases from
1/4 at θ = 0 (γ = 1) to 1/2 at θ = 1

2
π (γ = 0) as required.

When f (x) = x2/2, so that d3(t3) = 2t
1/2
3 , we have γ 2 = πt

3/2
3 /16, and the touchdown

of the stagnation point occurs at t3 = (16/π)2/3.
In summary, the flow near the jet root has one stagnation point until the finite time

at which touchdown occurs. As this flow evolves, the proportion of fluid entering
the jet from the layer drops from 1/2 for small times to 1/4 at touchdown. We now
briefly consider the flow after touchdown.

6.3.2. Flow with two stagnation points

With two stagnation points, as shown on figure 12(b), the procedure described
above is only slightly modified. The hodograph and ζ -planes are now as indicated in
figures 13(b) and 14(b), and now

γ =
ḋ3 + UM

3

ḋ3 − UM
3

> 1,

where UM
3 is the maximum wall speed between the two stagnation points S1 and S2.

These are mapped onto the real points ζ = ±ζS = ±(γ 2 − 1)1/2 and, apart from the
change that now

dW3

dζ
= K

ζ 2 − ζ 2
S

(ζ + γ )2(ζ − γ )
,

the matching and flux calculation go through exactly as before. The flux into the jet
is still the same as for dry impact, and the principal difference in the flow is that now
all the fluid from the layer is expelled via the jet. Finally, for large t3 (large γ ), we
show in Appendix E that the distance between the stagnation points increases, with
S2 tending to A in figure 12; the upper part of the free surface tends to a conventional
jet root as shown in the upper half of figure 16, while far downstream along the jet
(which is now much thicker than the layer), the lower part of the free surface forms
a much smaller jet root whose configuration is also as in the upper half of figure 16
but with the flow direction reversed.

7. Discussion
We have provided a comprehensive decomposition of the splash jet mechanisms

for the two-dimensional violent impact of an inviscid droplet on a base coated with a
thin inviscid layer. We are thus able to relate the jet structure for dry impact to that
for impact on an infinitely deep layer. This has enabled us to show how the fraction
of the thin liquid layer in the jet decreases as time increases. At leading order in the
dimensionless layer thickness, ε, we have shown that for times t such that t � ε2/3,
the layer and droplet contribute equally to the flux ejected into a splash jet, while for
ε2/3 � t � 1, the layer contribution is negligible. The fraction of the layer ejected
into a jet decreases from one-half to zero over times of O(ε2/3) as the result of an
interesting bifurcation in the location of the (relative) stagnation points in the jet
root.

Although the theory discussed above is two-dimensional, it can be extended with
very little difficulty to the impact of an axisymmetric drop. In the early stages (i)
and (ii), the jet root region is small compared with all other length scales so that,
as in the impact of a solid axisymmetric body (see Howison et al. 1991), the flow in
it is to leading order two-dimensional in radial planes. Hence the inner solution is
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the same as in two dimensions, with appropriate modification of the coefficient of
the square root of z in the far-field inner expansion of the potential. This coefficient
is determined by solving the axisymmetric versions of the relevant outer problems
solved above, namely that of figure 5 in stage (i) and figure 8 in stage (ii). The former
is not straightforward and the latter is a well-known problem equivalent to finding
the potential of a charged circular disk (see, for example, Oliver 2002; Schmieden
1953; Vorvich & Yudovich 1957). The latter solution can also be used in stage (iii)
where, although the jet root is of the same size as the layer depth, the lateral extent
of the contact set is so large that the jet root flow is again two-dimensional. The final
modification needed is to calculate the response of the drop (the outer-outer flow) in
the axisymmetric geometry rather than in two dimensions.

It is interesting to consider over what time scales the effects of surface tension or
viscosity may be important (the effects of a trapped air layer may also be significant
but we do not discuss them here). Consider first the effect of a non-zero surface
tension σ . The free-surface curvature is largest in the jet root, and we expect the
effect of surface tension to be characterized by the size of a local Weber number
Wej = ρrju

2
j /σ based on the radius of curvature rj in the jet root and the local fluid

velocity uj there. Provided that this local Weber number is large, our model should
be valid. Now in the two-dimensional configuration, for small dimensional time t the
effective penetration is O(Ut), the lateral extent of the contact set is O((RUt)1/2),
and the deadrise angle is therefore O(Ut/R)1/2). Bearing in mind that the size of the
jet root is the square of the deadrise angle times that of the contact set, we have
rj = O(U 3/2R−1/2t3/2) and uj = O((RU/t)1/2), giving

Wej = O

(
ρU 5/2R1/2t1/2

σ

)
.

Hence we expect the effects of surface tension to be negligible provided that

t 	 σ 2

ρ2U 5R
.

This result also applies to axisymmetric drop impact, as the hoop stress due to surface
tension is an order of magnitude smaller than that due to the curvature in radial
planes.

A similar calculation for the effects of viscosity involves the local Reynolds number
Rej = ujrj/ν, where ν is the kinematic viscosity of the liquid. A similar calculation
to that above shows that, until the effect of the no-slip condition at the base becomes
felt, viscosity has a negligible effect provided that

t 	 ν

U 2
,

independently of R.
Concerning the temporal validity of our model, we can add that, before 2002, we

would have had to conclude our work by expressing the hope that solutions satisfying
our initial conditions could indeed be physically realistic. Fortunately, Thoroddsen
(2002) has reported experiments using ultra-high-speed photography in which a drop
impacted a deep layer of water. Although the layer was deep, the early stages of
this impact may be expected to be close to our situation. Figure 1(b) of that paper
shows the early-stage (a few microseconds) impact of a drop of water–glycerin with
a viscosity of 43 cP and surface tension of 73 dyn cm−1. The drop radius was 3mm,
with an impact velocity of 620 cm s−1. A splash jet of the kind we report can clearly
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be seen. For this situation, the time scales calculated above are 0.2 ns for surface
tension and 1.1 µs for viscosity. Hence we conclude that our model is valid in this
situation for all except a very small initial time interval, with the effects of surface
tension and viscosity on the flow instantaneously after contact being sufficiently small
that our initial condition may be applied. That is, the small-time limit of our stage
(i) is consistent with the full model incorporating the effects of viscosity and surface
tension as these latter effects for a while become insignificant with increasing time
from the instant of contact. Our model may therefore be useful in parameter ranges
inaccessible to numerical approaches such as that of Josserand & Zaleski (2003).
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Appendix A. The outer-outer region in stages (i)–(iii)
In stage (j ) (j = i, ii, iii) the far-field expansion of the complex potential wj (zj , tj )

of the leading-order outer solution is (corresponding to region I in stage (ii))

wj ∼ izj − iGj (tj )

zj

as |zj | → ∞, (A 1)

where the coefficients, Gj , of the dipole are given by

G1 =
4

π2(α2 − 1)
+

2

π2(α2 − 1)2
, G2 = d2

1/2/4, G3 = d3
1/2/4. (A 2)

For the purposes of this Appendix we take δ = ε2 in stage (i), ε2 � δ � ε2/3 in
stage (ii) and δ = ε2/3 in stage (iii), so that zj = δ−1/2z, wj = δ−1/2Wo in the stage
(j ) outer-outer region. Hence, the (two-term) matching condition near the point of
impact is

Wo ∼ iz − δ
iGj (tj )

z
as |z| → 0. (A 3)

We therefore expand the complex potential as a power series: W = Wo
0 +δWo

1 +O(δ2).
Introducing polar coordinates (r, θ) centred on the unperturbed droplet centre via

x = r sin θ, y = 1 + r cos θ − δtj ,

and denoting the perturbed droplet surface by r = R(θ, t), we also expand R =
R0 + δR1 + O(δ2). By (A 3), the leading-order solution is simply uniform motion of
the droplet, with Wo

0 = iz and R0 = 1, while the second-order potential problem for
Φo

1 = Re{Wo
1 } is depicted in figure 15; the flow correction is driven by its singularity

at the origin.
The unique solution to the potential problem in figure 15 is

Φo
1 =

Gj (tj )

2

(
x2 + (y − 1)2 − 1

x2 + y2

)
, (A 4)
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Figure 15. The second-order outer-outer problem in stage (j ). In addition, the initial condit-
ions are Φo

1 = 0, R1 = 0 at tj = 0; at the origin Φo
1 ∼ −Gj (tj )y/(x2 + y2) as x2 + y2 → 0.

so that on r = 1,

∂Φo
1

∂r
=

Gj (tj )

2(1 + sin θ)
.

Integrating the kinematic condition for R1 in figure 15 using the method of chara-
cteristics, we obtain the solution

R1(θ, tj ) =
1

4
Gj (s(θ)etj )

∫ tj

0


1 −

(
1 −

(
2s(θ)etj −τ

1 + s2(θ)e2(tj −τ )

)2
)1/2




−1

dτ, (A 5)

where s(θ) = tan( 1
2
θ + 1

4
π). Finally, we note that (A 5) implies that the droplet free

surface in the outer-outer and outer regions automatically match to two terms; the
far-field expansion of the one-term outer expansion is given by

hj ∼ f (xj ) − tj −

∫ tj

0

Gj (τ ) dτ

x2
j

as |xj | → ∞. (A 6)

Appendix B. The jet root region in stages (i) and (ii)
The jet roots have the same structure and solution in both stages (i) and (ii) and,

for ease of notation, we describe the former. In the right-hand jet root region in
figure 4, the appropriate scalings are (writing z = x + iy and Z1 = X1 + iY1)

z = εd1 + iε2h
±
1 (d1, t1) + ε3Z1, φ = ε2(ḋ1X1 + Φ1), h± = ε2h

±
1 (d1, t1) + ε3H ±, (B 1)

which lead at leading order to the Helmholtz cavity flow of figure 16. The far-
field conditions are obtained by matching with the right-hand intermediate region
in figure 4, in which the leading-order solution is simply the local travelling wave
solution of the outer problem translated vertically by a distance, ε2h

±
1 (d1, t1), so

that the location of the square-root in the potential coincides with the jet root near
z = εd1 + iε2h

±
1 (d1, t1).

The far-field conditions imply that the flow is symmetric about a dividing streamline,
say Y1 = Y ∗

1 ; this is true as time increases through stage (ii) until, in stage (iii), the
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* Stagnation point

X1 = X *
1

|�Φ1| = d1,˙
∂N

= 0
∂2Φ1

∂X2
1

∂2Φ3 ∂Φ1

|�Φ1| = d1,˙
∂N

= 0
∂Φ1

∂Y2
1

+ = 0

Figure 16. The leading-order right-hand jet root problem for t = O(ε2); ∂/∂N denotes the

outward normal derivative. In addition, the far-field conditions are W1 ∼ −ḋ1Z1 + iS1Z
1/2
1 as

|Z1| → ∞ and H
±
1 ∼ ±S1X

1/2
1 /ḋ1 as X1 → ∞, where S1 = O(1) is defined in the text.

jet root is large enough to be affected by the asymmetry caused by the base. The
solution in Y1 > Y ∗

1 and Y1 < Y ∗
1 is therefore exactly the same as in the jet root region

of Wagner theory for solid–fluid impact at small deadrise angles; see, for example,
Howison et al. (1991). There is a single stagnation point and the parametric solution
in Y1 > Y ∗

1 is obtained by mapping the fluid region in Y1 > Y ∗
1 to the upper half of

the ζ -plane. The result for the complex potential W1 = Φ1 + iΨ1 may be written (see,
for example, E. O. Tuck 1994, personal communication)

W1 =
ḋ1HJ1

2π
(ζ − ln ζ ) where Z1 − Z∗

1 = −HJ1

2π
(1 + ζ + 4ζ 1/2 + ln ζ ), (B 2)

and Z∗
1 = X∗

1 + iY ∗
1 is a complex constant left unspecified by the leading-order

matching, so that the solution is unique up to linear translations. In the far field (B 2)
implies

W1 ∼ −ḋ1Z1 − 4iḋ1

(
HJ1Z1

2π

)1/2

− ḋ1HJ1

π
log Z1 + O(1) as |Z1| → ∞, (B 3)

so that the far-field matching condition for the complex potential in figure 16 implies
that 4ḋ1(HJ1/2π)1/2 = S1. Thus, the ejected jet thickness is given by (4.2) (and, similarly,
by (5.5) in stage (ii)). This expression is consistent with the far-field matching condition
on the free surfaces in the caption to figure 16.

Appendix C. The small-time limit of the outer solution in stage (i)
As described in § 3, for t � ε2 the contact length is small compared with the layer

depth, so in figure 5 we expect the effect of the base to be negligible in a region near
the point of impact of size of O(t1/2

1 ) as t1 → 0+. Together with the Wagner theory
of unequal droplet impact described in Howison et al. (1991), this suggests that the
relevant (similarity) scalings as t1 → 0+ are

d1 = d̂1t
1/2
1 + O(t1), z1 = t

1/2
1 ẑ1 + O(t1),

φ1 = t
1/2
1 φ̂1(x̂1, ŷ1) + O(t1), h

±
1 = t ĥ

±
1 (x̂1) + O

(
t
3/2
1

)
,

}
(C 1)
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where ẑ1 = x̂1 + iŷ1 and the constant d̂1 is to be determined. By (4.3) and (4.4) the
corresponding scalings for α and ζ are given by

α = α̂t
−1/2
1 + O(1), ζ = t

−1/2
1 ζ̂ + O(1), (C 2)

where, by (4.4), the constant α̂ = 4/πd̂1. Moreover, expanding (4.3) as t1 → 0+ we
find

φ̂1 = Re

{
2iζ̂

πα̂

}
, ẑ1 =

2

π

α̂2 + ζ̂ 2

α̂2ζ̂
, (C 3)

which imply

φ̂1 = Re

{
1

2

(
iẑ1 +

(
d̂2

1 − ẑ2
1

)1/2
)}

; (C 4)

hence, as anticipated, the leading-order flow for small t1 is governed by the potential
problem in figure 5 with the change that we replace the layer −1 < y1 < 0 with
the half-plane y1 < 0, along with the zero-flow boundary condition in the far field,
φ1 → 0 as y1 → −∞.

To find ĥ
±
1 , we expand the kinematic boundary conditions (4.6) and substitute the

first of (C3) to find for x̂1 > d̂1

ĥ
±
1 − x̂1

2

dĥ
±
1

dx̂1

= −1

2

(
1 ± x̂1(

x̂2
1 − d̂2

1

)1/2

)
; (C 5)

hence, applying the far-field conditions, ĥ+
1 ∼ x̂2

1/2 − 1 (for f (x1) = x2
1/2) and ĥ−

1 → 0
as x̂1 → ∞, we find

ĥ+
1 =

x̂2
1

2
− 1

2

(
1 +

2

d̂2
1

(
x̂2

1 − x̂1

(
x̂2

1 − d̂2
1

)1/2))
, (C 6)

ĥ−
1 = −1

2

(
1 − 2

d̂2
1

(
x̂2

1 − x̂1

(
x̂2

1 − d̂2
1

)1/2))
. (C 7)

To find d̂1, we simply expand the Wagner condition (4.1) to find ĥ+
1 (d̂1) = ĥ−

1 (d̂1),

and thus d̂1 = 2, i.e. (4.11) holds.

Appendix D. The large-time limit of the outer solution in stage (i)
At large times t1 we expect the layer to have a negligible effect on the potential

problem in figure 5 on length scales of O(t1/2
1 ), in the sense that the leading-order

fluid response is as if the base were dry. Together with the Wagner theory for dry
impact described in Howison et al. (1991), this suggests that the scalings (C 1) also
apply as t1 → ∞, with the change that ĥ− is now exponentially small (corresponding
to exponentially small flow in the fluid layer outside the contact set). By (4.3) and
(4.4) in the large-t1 limit, the corresponding scalings for α and ζ are given by

α = 1 + α̂t1
−1/2 + O

(
t1

−1
)
, ζ = t1

−1/2ζ̂ + O
(
t1

−1
)
, (D 1)

where, by (4.4), the constant α̂ is now equal to 1/πd̂1. Moreover, expanding (4.3) as
t1 → ∞ we find

φ̂1 = Re
{
d̂1(1 − ζ̂ 2)1/2

}
, ẑ1 = d̂1ζ̂ , (D 2)



22 S. D. Howison and others

and thus

φ̂1 = Re
{(

d̂2
1 − ẑ2

1

)1/2
}

; (D 3)

hence, as anticipated, the leading-order flow is exactly as if the base were dry.
To find the leading-order perturbation to the droplet free surface and the leading-

order locations of the free points we proceed as in Appendix C. This reveals that for
f (x1) = x2

1/2 and x̂1 > d̂1,

ĥ+
1 =

x̂2
1

2
− 2

d̂2
1

(
x̂2

1 − x̂1

(
x̂2

1 − d̂2
1

)1/2
)
, (D 4)

while the Wagner condition (4.1) implies that now ĥ+
1 (d̂1) = 0, so that again d̂1 = 2,

i.e. (4.12) holds.
To match the flow in this large outer region of size of O(t1

1/2) with the exponentially
small flow in the fluid layer outside the contact set (and concomitantly the free-surface
profiles ĥ±), it is necessary to determine the flow structure near to a turnover point
in a region comparable in size to the layer depth. To do so it is perhaps easier to
proceed directly as described in § 5, which motivates the following scalings:

d1 = d̂1t
1/2
1 + 1

2π
log t1 + d̂11 + O(1), z1 = d1 + Ẑ1 + O(1),

φ1 = t
1/4
1 Φ̂1(X̂1, Ŷ 1) + O

(
t
1/4
1

)
, h

±
1 = t

3/4
1 Ĥ

±
1 + O

(
t
3/4
1

)
,

α = 1 + α̂t
−1/2
1 + α̂1t1

−1 + O
(
t−1
1

)
, ζ = 1 + t

−1/2
1 α̂ζ̂ + O

(
t

−1/2
1

)
,


 (D 5)

where Ẑ1 = X̂1 + iŶ1 and we leave the order-unity constants d̂11 and α̂1 unspecified
except to note that substituting (D 5) into (4.3) and expanding we find that Φ̂1 is
given by (5.7) provided πd̂11 = α̂1/α̂ − α̂/2. We conclude that, as alluded to above,
the large-time limit of stage (i) matches with the small-time limit of stage (ii).

Appendix E. The large-time limit of the jet root solution in stage (iii)
By finding dZ3/dζ and integrating, we have that

Z3 = Z30 + K

(
log(ζ + γ ) +

1

4γ 2
log

(
ζ + γ

ζ − γ

)
− 1 − 4(γ 2 − ζ 2)1/2

2γ (ζ + γ )

)
,

where Z30 is a constant. The stagnation points correspond to ζ = ±(γ 2 − 1)1/2, and
their separation is

K

(
log

(
γ + (γ 2 − 1)1/2

γ − (γ 2 − 1)1/2

)
+

(γ 2 − 1)1/2

γ

)
.

As γ → ∞, this has asymptotic behaviour 2K log γ . If d3 = 2t3
1/2, we have K =

d3/(8ḋ3) = t3/4, γ = t
3/4
3

√
π/4, and so the separation has asymptotic behaviour

3/8t3 log t3. A similar calculation can be carried out for the separation of the points
of vertical tangency of the upper and lower free surfaces.
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