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Abstract. The evolution and growth of networks has made the personal data of 

the users available to many applications. In this direction, one of the main 

concerns is to protect the sensitive personal information, while at the same time 

avoid delays in the provision of services like healthcare to the general public. 

An extension of TCP, the Tcpcrypt, is a promising technology that can be used 

on this field. Tcpcrypt is designed to provide end-to-end encryption in the 

transport layer with low overhead, rendering it a very promising solution in 

order to protect medical data that are often handled by devices with limited 

resources. In this paper Tcpcrypt performance is evaluated against TCP, in 

terms of additional overhead incurred in the total size of the transmitted data 

and the total number of CPU instructions that are executed. Moreover, a 

solution for reducing overhead through fine-grained packet handling is 

proposed. 
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1   Introduction 

Preserving the privacy and the integrity of data transmitted over networks is a well 

established requirement and many solutions have been proposed and implemented 

towards this direction. Security and encryption mechanisms can be deployed in the 

upper layers of the network stack. Some of the most widely used solutions to provide 

authentication and encryption mechanisms are SSH (Secure Shell) and Https [1, 2] 

which are deployed in the application layer, TLS (Transport Layer Security) / SSL 

(Secure Sockets Layer) [3] are deployed in the transport layer and IPsec [4], is 

deployed in the Internet Layer. Tcpcrypt has emerged as an alternate solution in the 

transport layer that will address some of the shortcomings of the existing technologies 

[5]. 

Tcpcrypt enhances TCP by adding cryptographic capabilities. One of the key 

benefits of Tcpcrypt is transparency as it requires no configuration, no changes to 

applications and the network connections will continue to work even if the remote end 

does not support Tcpcrypt. In the latter case the connections will gracefully fall back 

to standard clear-text TCP. Tcpcrypt operates in the transport layer. In [6] a 



comparison of the performance of Tcpcrypt, TLS and SSL in terms of the number of 

connections a server can handle per second and the possible transfer rate was 

provided. In both metrics Tcpcrypt appears to have superior performance. One of the 

reasons Tcpcrypt is less demanding comparing to TLS/SSL is the fact that it does not 

utilize asymmetric cryptography mechanisms, which are computationally demanding 

operations. Moreover, the need of digital certificates and some form of PKI (Public 

Key Infrastructure) and CA (Certificate Authority) is essential for the use of SSL 

rendering its deployment cumbersome. The use of digital certificates enables SSL to 

perform strong authentication of the involved entities. Tcpcrypt authentication 

mechanisms cannot defend against active attacks. However Tcpcrypt can rely on 

application level authentication to ensure proper authentication and does not specify 

the means of the authentication e.g. certificates, passwords, tokens etc. Tcpcrypt is 

vulnerable to active attacks such as Man In the Middle Attacks (MIMA). For 

example, an attacker can modify a server's response to claim that Tcpcrypt is not 

supported (when in fact it is) so that all subsequent traffic will be transmitted in clear 

text and be susceptible to eavesdropping.  

Given the promising capabilities of Tcpcrypt it is worth-investigating the 

performance of Tcpcrypt in mobile healthcare applications. A widely adopted 

paradigm entails a WBAN (Wireless Body Area Network) which collects and 

transmits data to a mobile sink attached to the patient. The sink is usually a 

IEEE802.11 capable mobile device which handles the communication with a 

healthcare server or other sinks in an ad-hoc manner. The data transmitted by the sink 

should be protected from malicious attackers, but at the same time the sink has to 

maintain low power consumption to achieve the longest possible availability. 

Tcpcrypt can become a severe handicap for the expected battery lifetime. Until now 

there is no published attempt to characterize the overhead incurred by Tcpcrypt at the 

client side. In this paper, such an attempt is presented and the realistic conditions 

under which Tcpcrypt can be deployed on mobile resource-limited devices are 

provided. 

The paper is organized as follows: In Section 2.1, the comparison of transmitted 

bytes with the use of TCP and Tcpcrypt as the file size increases is presented. In 

Section 2.2, the CPU utilization and total duration for the transmission of data is 

depicted. In Section 2.3, the results of the previous sections are discussed. In Section 

2.4, the reducing overhead through fine-grained packet handling is suggested. Finally, 

in 3, conclusions are given and future work is discussed. 

2 Tcpcrypt Overhead Evaluation 

The performance of Tcpcrypt against TCP, in terms of additional overhead incurred in 

the total size of the transmitted data and the total number of CPU instructions 

executed, are evaluated and compared in this section. Currently there is no Tcpcrypt 

implementation for ARM architecture (Advanced RISC Machine), thus it is not 

possible to evaluate it on handheld devices (e.g. android or iphone smart phones). 

Therefore, the user-level implementation of Tcpcrypt protocol on a single-core Intel 

U3500 CPU (1.4 GHz) netbook with 2GB of RAM that operated over Ubuntu 10.04 



Linux distribution is adopted. The network measurements were collected through a 

Wireshark Network Protocol Analyzer. Hardware measurements were obtained by 

instrumenting Tcpcrypt using Intel's VTune Performance Analyzer. 

User-level Tcpcrypt exhibits slower performance than its kernel-level 

implementation [6] but it can be used in for hardware performance events 

measurement. Since native TCP is in the kernel-level, the performance comparisons 

are biased in favor of TCP. To remove this bias the case where both client and server 

communicate over Tcpcrypt against the case where the server communicates over 

TCP is compared. Also it is considered that the client communicates over Tcpcrypt 

having all the security functionality deactivated. 

2.1 Overhead on transmitted data 

A metric of particular interest for battery-powered mobile devices, whose energy 

consumption depends on the amount of transmitted and received data, is the overhead 

incurred by Tcpcrypt on the total volume of transmitted data. This overhead is due to 

two factors, extra bytes in the header of the packets for Tcpcrypt options, or extra 

bytes as a result of the encryption. In this evaluation the total transmission size in 

bytes of a file uploaded from a client to a server is measured, using six different file 

sizes. The data used for this evaluation were encapsulated in CDA (Clinical 

Document Architecture) format [7]. For each file transmission 50 iterations were 

executed and the average transmission size was calculated. The results are presented 

in Fig. 1.  The overhead varies between 12.8 – 17.5% with the exception of the case 

where the file size is 897KB, for which the overhead is less than 1%. This overhead 

may become larger in a noisy channel due to the increased number of retransmissions. 

 

 

Fig. 1. Comparison of transmitted bytes with TCP and Tcpcrypt as the File Size increases 



2.2 Overhead in CPU instructions 

A second metric related to the performance of mobile devices is the number of CPU 

instructions required. Given the limited resources of mobile clients, CPU utilization 

ideally should remain low. When encryption is disabled, the transmission of a 9MB 

file requires 1,036,000,000 instructions and spends 0.9 seconds of full CPU 

utilization. When encryption is enabled the number of executed instructions increases 

to 10,590,000,000, i.e. it requires an order of magnitude more instructions. The total 

time of full utilization increases to 8.3 seconds
1
.  

As shown in Fig. 2, the public-key connection initiation (the bursts during the first 

seconds) incurs the biggest cost. Tcpcrypt performs this operation in the client-side to 

reduce the stretch of the server’s performance. After this initial phase the keys are 

cached and reused during further TCP communications, even for different TCP 

sessions. Thus, for a long-lived communication it is preferable to study the CPU 

utilization after the establishment of keys (second bursts in Fig. 2). When decryption 

is deactivated the data transmission requires 154,000,000 instructions, while when 

encryption is supported by both sides the number of instructions is increased to 

1,036,000,000 (6.7 times more instructions). When a client communicates with only a 

limited number of servers, this initial phase does not impose a significant overhead. 

On the contrary, when the clients have to establish multiple connections with 

numerous different machines, the key generation incurs a prohibited large overhead. 

However, in a realistic scenario where a mobile device is engaged, in order to 

exchange health care data, a limited number of connections is required, rendering the 

use of Tcpcrypt an efficient solution. [8-10]. 

 

 

Fig. 2. CPU utilization and total duration for the transmission of data. 

2.3 Reducing Overhead through Fine-Grained Packet Handling 

Availability is a critical performance metric for healthcare applications thus a system 

design that will enable a fine-grained handling of the TCP packets based on whether 

                                                           
1  The CPU time depends on the CPU architecture and type and it is expected to differ for 

different processors.  



the carried information is sensitive or not is proposed. Currently Tcpcrypt works as an 

on/off switch. If both ends support Tcpcrypt, encryption is activated for all the 

packets regardless of whether the information is confidential. This is unimportant for 

clients with spare CPU cycles and energy; however it would be more desirable to 

defer from encrypting packets with trivial information in resource-limited devices. 

Fig. 3 describes this functionality.  

An application-specific module characterizes the packets criticality depending on 

the origin and type of the data (e.g. physiological sensors are marked as a sensitive 

source, temperature sensors as trivial). Then it passes the packets to the dual-stack 

TCP (Tcpcrypt/TCP) which operates simultaneously. The “Characterizer” module 

assigns five different levels of criticality to packets, 0-4, where 0 is trivial and 4 is 

highest confidentiality. If there is adequate energy all data regardless to the level 

assigned to them are passed to Tcpcrypt. As the battery discharges, only packets of a 

higher criticality level are passed to Tcpcrypt. Although this approach does not 

mitigate the initiation overhead it ensures low-cost CPU operations for long-lived 

sessions.  

 

 

Fig. 3: The Characterizer addon to TCP dual stack. Only critical (red/dark) packets are passed 

to tcpcrypt. Two separate TCP sessions are maintained for each stack. 

3 Discussion and Conclusions 

When employing security mechanisms it is expected that certain overhead will be 

introduced. Although privacy and security requirements are of high importance it is 

imperative that they are used in a sensible manner especially in environments where 

resources are limited in terms of processing power, bandwidth, battery life etc. In 

such cases it may be preferable to downgrade security requirements in favor of the 

performance or the lifetime of the network.  

In this paper, a comparison of Tcpcrypt against TCP was presented with a focus on 

health care applications which are sensitive in terms of integrity and confidentiality. 

In particular the overhead introduced was examined in terms of:  

• increase in the volume of data to be transmitted  

• CPU instructions  

In the first case the increase occurred in different CDA file sizes was measured and 

was found roughly to be 12.8 – 17.5%. In the later case we have measured the CPU 

instructions and processing time overhead incurred. Enabling encryption results in an 

increase of CPU processing time approximately 9 times up. While the instructions 

required for full encryption increase in a magnitude of almost 7 times. 



As expected, Tcpcrypt is more demanding in both metrics and especially when it 

comes to CPU instructions. The increase in CPU operations results in increased power 

consumption that may have undesirable side effects in environments with limited 

resources. Furthermore non critical data may utilize Tcpcrypt depending on the 

availability of resources, and if for example a mobile device that is transmitting 

healthcare information of a patient and suffers from low battery situation TCP could 

be the most preferable solution. 

Towards this direction, a methodology for classifying data in terms of criticality 

has been proposed. The goal is to minimize the overhead introduced by consuming 

valuable resources only for information that is considered critical. The 

implementation of Tcpcrypt, either standalone or in combination with the proposed 

classification scheme, in mobile devices would be valuable as the benefits provided 

can be maximized in such environments. 
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