
Towards Utilizing Tcpcrypt in Mobile Healthcare

Applications

Stefanos A. Nikolidakis, Vasileios Giotsas, Emmanouil Georgakakis, Dimitrios D.

Vergados and Christos Douligeris
Department of Informatics. University of Piraeus

80, Karaoli & Dimitriou St., GR-185 34, Piraeus, Greece
snikol@unipi.gr, giotsas@ieee.org, {egeo, vergados,

cdoulig}@unipi.gr

Abstract. The evolution and growth of networks has made the personal data of

the users available to many applications. In this direction, one of the main

concerns is to protect the sensitive personal information, while at the same time

avoid delays in the provision of services like healthcare to the general public.

An extension of TCP, the Tcpcrypt, is a promising technology that can be used

on this field. Tcpcrypt is designed to provide end-to-end encryption in the

transport layer with low overhead, rendering it a very promising solution in

order to protect medical data that are often handled by devices with limited

resources. In this paper Tcpcrypt performance is evaluated against TCP, in

terms of additional overhead incurred in the total size of the transmitted data

and the total number of CPU instructions that are executed. Moreover, a

solution for reducing overhead through fine-grained packet handling is

proposed.

Keywords: Tcpcrypt, SSL, Healthcare.

1 Introduction

Preserving the privacy and the integrity of data transmitted over networks is a well

established requirement and many solutions have been proposed and implemented

towards this direction. Security and encryption mechanisms can be deployed in the

upper layers of the network stack. Some of the most widely used solutions to provide

authentication and encryption mechanisms are SSH (Secure Shell) and Https [1, 2]

which are deployed in the application layer, TLS (Transport Layer Security) / SSL

(Secure Sockets Layer) [3] are deployed in the transport layer and IPsec [4], is

deployed in the Internet Layer. Tcpcrypt has emerged as an alternate solution in the

transport layer that will address some of the shortcomings of the existing technologies

[5].

Tcpcrypt enhances TCP by adding cryptographic capabilities. One of the key

benefits of Tcpcrypt is transparency as it requires no configuration, no changes to

applications and the network connections will continue to work even if the remote end

does not support Tcpcrypt. In the latter case the connections will gracefully fall back

to standard clear-text TCP. Tcpcrypt operates in the transport layer. In [6] a

comparison of the performance of Tcpcrypt, TLS and SSL in terms of the number of

connections a server can handle per second and the possible transfer rate was

provided. In both metrics Tcpcrypt appears to have superior performance. One of the

reasons Tcpcrypt is less demanding comparing to TLS/SSL is the fact that it does not

utilize asymmetric cryptography mechanisms, which are computationally demanding

operations. Moreover, the need of digital certificates and some form of PKI (Public

Key Infrastructure) and CA (Certificate Authority) is essential for the use of SSL

rendering its deployment cumbersome. The use of digital certificates enables SSL to

perform strong authentication of the involved entities. Tcpcrypt authentication

mechanisms cannot defend against active attacks. However Tcpcrypt can rely on

application level authentication to ensure proper authentication and does not specify

the means of the authentication e.g. certificates, passwords, tokens etc. Tcpcrypt is

vulnerable to active attacks such as Man In the Middle Attacks (MIMA). For

example, an attacker can modify a server's response to claim that Tcpcrypt is not

supported (when in fact it is) so that all subsequent traffic will be transmitted in clear

text and be susceptible to eavesdropping.

Given the promising capabilities of Tcpcrypt it is worth-investigating the

performance of Tcpcrypt in mobile healthcare applications. A widely adopted

paradigm entails a WBAN (Wireless Body Area Network) which collects and

transmits data to a mobile sink attached to the patient. The sink is usually a

IEEE802.11 capable mobile device which handles the communication with a

healthcare server or other sinks in an ad-hoc manner. The data transmitted by the sink

should be protected from malicious attackers, but at the same time the sink has to

maintain low power consumption to achieve the longest possible availability.

Tcpcrypt can become a severe handicap for the expected battery lifetime. Until now

there is no published attempt to characterize the overhead incurred by Tcpcrypt at the

client side. In this paper, such an attempt is presented and the realistic conditions

under which Tcpcrypt can be deployed on mobile resource-limited devices are

provided.

The paper is organized as follows: In Section 2.1, the comparison of transmitted

bytes with the use of TCP and Tcpcrypt as the file size increases is presented. In

Section 2.2, the CPU utilization and total duration for the transmission of data is

depicted. In Section 2.3, the results of the previous sections are discussed. In Section

2.4, the reducing overhead through fine-grained packet handling is suggested. Finally,

in 3, conclusions are given and future work is discussed.

2 Tcpcrypt Overhead Evaluation

The performance of Tcpcrypt against TCP, in terms of additional overhead incurred in

the total size of the transmitted data and the total number of CPU instructions

executed, are evaluated and compared in this section. Currently there is no Tcpcrypt

implementation for ARM architecture (Advanced RISC Machine), thus it is not

possible to evaluate it on handheld devices (e.g. android or iphone smart phones).

Therefore, the user-level implementation of Tcpcrypt protocol on a single-core Intel

U3500 CPU (1.4 GHz) netbook with 2GB of RAM that operated over Ubuntu 10.04

Linux distribution is adopted. The network measurements were collected through a

Wireshark Network Protocol Analyzer. Hardware measurements were obtained by

instrumenting Tcpcrypt using Intel's VTune Performance Analyzer.

User-level Tcpcrypt exhibits slower performance than its kernel-level

implementation [6] but it can be used in for hardware performance events

measurement. Since native TCP is in the kernel-level, the performance comparisons

are biased in favor of TCP. To remove this bias the case where both client and server

communicate over Tcpcrypt against the case where the server communicates over

TCP is compared. Also it is considered that the client communicates over Tcpcrypt

having all the security functionality deactivated.

2.1 Overhead on transmitted data

A metric of particular interest for battery-powered mobile devices, whose energy

consumption depends on the amount of transmitted and received data, is the overhead

incurred by Tcpcrypt on the total volume of transmitted data. This overhead is due to

two factors, extra bytes in the header of the packets for Tcpcrypt options, or extra

bytes as a result of the encryption. In this evaluation the total transmission size in

bytes of a file uploaded from a client to a server is measured, using six different file

sizes. The data used for this evaluation were encapsulated in CDA (Clinical

Document Architecture) format [7]. For each file transmission 50 iterations were

executed and the average transmission size was calculated. The results are presented

in Fig. 1. The overhead varies between 12.8 – 17.5% with the exception of the case

where the file size is 897KB, for which the overhead is less than 1%. This overhead

may become larger in a noisy channel due to the increased number of retransmissions.

Fig. 1. Comparison of transmitted bytes with TCP and Tcpcrypt as the File Size increases

2.2 Overhead in CPU instructions

A second metric related to the performance of mobile devices is the number of CPU

instructions required. Given the limited resources of mobile clients, CPU utilization

ideally should remain low. When encryption is disabled, the transmission of a 9MB

file requires 1,036,000,000 instructions and spends 0.9 seconds of full CPU

utilization. When encryption is enabled the number of executed instructions increases

to 10,590,000,000, i.e. it requires an order of magnitude more instructions. The total

time of full utilization increases to 8.3 seconds
1
.

As shown in Fig. 2, the public-key connection initiation (the bursts during the first

seconds) incurs the biggest cost. Tcpcrypt performs this operation in the client-side to

reduce the stretch of the server’s performance. After this initial phase the keys are

cached and reused during further TCP communications, even for different TCP

sessions. Thus, for a long-lived communication it is preferable to study the CPU

utilization after the establishment of keys (second bursts in Fig. 2). When decryption

is deactivated the data transmission requires 154,000,000 instructions, while when

encryption is supported by both sides the number of instructions is increased to

1,036,000,000 (6.7 times more instructions). When a client communicates with only a

limited number of servers, this initial phase does not impose a significant overhead.

On the contrary, when the clients have to establish multiple connections with

numerous different machines, the key generation incurs a prohibited large overhead.

However, in a realistic scenario where a mobile device is engaged, in order to

exchange health care data, a limited number of connections is required, rendering the

use of Tcpcrypt an efficient solution. [8-10].

Fig. 2. CPU utilization and total duration for the transmission of data.

2.3 Reducing Overhead through Fine-Grained Packet Handling

Availability is a critical performance metric for healthcare applications thus a system

design that will enable a fine-grained handling of the TCP packets based on whether

1 The CPU time depends on the CPU architecture and type and it is expected to differ for

different processors.

the carried information is sensitive or not is proposed. Currently Tcpcrypt works as an

on/off switch. If both ends support Tcpcrypt, encryption is activated for all the

packets regardless of whether the information is confidential. This is unimportant for

clients with spare CPU cycles and energy; however it would be more desirable to

defer from encrypting packets with trivial information in resource-limited devices.

Fig. 3 describes this functionality.

An application-specific module characterizes the packets criticality depending on

the origin and type of the data (e.g. physiological sensors are marked as a sensitive

source, temperature sensors as trivial). Then it passes the packets to the dual-stack

TCP (Tcpcrypt/TCP) which operates simultaneously. The “Characterizer” module

assigns five different levels of criticality to packets, 0-4, where 0 is trivial and 4 is

highest confidentiality. If there is adequate energy all data regardless to the level

assigned to them are passed to Tcpcrypt. As the battery discharges, only packets of a

higher criticality level are passed to Tcpcrypt. Although this approach does not

mitigate the initiation overhead it ensures low-cost CPU operations for long-lived

sessions.

Fig. 3: The Characterizer addon to TCP dual stack. Only critical (red/dark) packets are passed

to tcpcrypt. Two separate TCP sessions are maintained for each stack.

3 Discussion and Conclusions

When employing security mechanisms it is expected that certain overhead will be

introduced. Although privacy and security requirements are of high importance it is

imperative that they are used in a sensible manner especially in environments where

resources are limited in terms of processing power, bandwidth, battery life etc. In

such cases it may be preferable to downgrade security requirements in favor of the

performance or the lifetime of the network.

In this paper, a comparison of Tcpcrypt against TCP was presented with a focus on

health care applications which are sensitive in terms of integrity and confidentiality.

In particular the overhead introduced was examined in terms of:

• increase in the volume of data to be transmitted

• CPU instructions

In the first case the increase occurred in different CDA file sizes was measured and

was found roughly to be 12.8 – 17.5%. In the later case we have measured the CPU

instructions and processing time overhead incurred. Enabling encryption results in an

increase of CPU processing time approximately 9 times up. While the instructions

required for full encryption increase in a magnitude of almost 7 times.

As expected, Tcpcrypt is more demanding in both metrics and especially when it

comes to CPU instructions. The increase in CPU operations results in increased power

consumption that may have undesirable side effects in environments with limited

resources. Furthermore non critical data may utilize Tcpcrypt depending on the

availability of resources, and if for example a mobile device that is transmitting

healthcare information of a patient and suffers from low battery situation TCP could

be the most preferable solution.

Towards this direction, a methodology for classifying data in terms of criticality

has been proposed. The goal is to minimize the overhead introduced by consuming

valuable resources only for information that is considered critical. The

implementation of Tcpcrypt, either standalone or in combination with the proposed

classification scheme, in mobile devices would be valuable as the benefits provided

can be maximized in such environments.

References

1. T. Ylonen, C. Lonvick, "The Secure Shell (SSH) Authentication Protocol", Network

Working Group of the IETF, RFC 4252, (2006)

2. E. Rescorla, "HTTP Over TLS", Network Working Group of the IETF, RFC 2818, (2000)

3. T. Dierks, E. Rescorla, "The Transport Layer Security (TLS) Protocol", Network Working

Group of the IETF RFC 5246, (2008)

4. S. Kent, K. Seo "Security Architecture for the Internet Protocol" Network Working Group of

the IETF, RFC 4301, (2005)

5. A. Bittau, D. Boneh, M. Hamburg, M. Handley, D. Mazieres, Q. Slack, "Cryptographic

Protection of TCP Streams (Tcpcrypt) draft-bittau-tcp-crypt-00.txt", (2011)

6. A. Bittau, M. Hamburg, M. Handley, D. Mazieres, D. Boneh, “The Case for Ubiquitous

Transport-Level Encryption” In USENIX Security Symposium, Washington, DC (2010)

7. L. Alschuler, RH Dolin, S. Boyer, C. Beebe. “HL7 Clinical Document Architecture

Framework”, Release 1.0.ANSI-approved HL7 Standard, (2000)

8. I. Widya, A. van Halteren, V. Jones, R. Bults, D. Konstantas, P. Vierhout, J. Peuscher,

"Telematic Requirements for a Mobile and Wireless Healthcare System Derived from

Enterprise Models", In the Proceedings of 7th International Conference on

Telecommunications, pp.527-534, Croatia (2003)

9. A. Boukerche, R. Yonglin, "A Secure Mobile Healthcare System using Trust-Based

Multicast Scheme", In IEEE Journal on Selected Areas in Communications, pp. 387-399,

(2009)

10.S. Nikolidakis, E. Georgakakis, V. Giotsas, D. D. Vergados, C. Douligeris, “A Secure

Ubiquitous Healthcare System Based on IMS and the HL7 Standards”, In the Proceedings of

the 3rd International Conference on Pervasive Technologies Related to Assistive

Environments, Samos (2010)

