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Abstract

We study stably free modules over various group rings Z[G], using the method of

Milnor patching. In particular, we construct infinite sets of stably free modules

of rank one over various rings. Let Fn denote the free group on n generators. The

two classes of group rings under consideration are:

(i) Z[G×Fn], where G is finite nilpotent and of non square-free order,

and n ≥ 2;

(ii) Z[Q(12m) × C∞], where Q(12m) is the binary polyhedral group

of order 12m.

The modules in question are constructed as pullbacks arising from fibre square

decompositions of the group rings.

We also study the D(2)-problem of low-dimensional topology. We give

an affirmative answer to the D(2)-problem for the dihedral group of order 4n,

assuming the group ring Z[D4n] satisfies torsion free cancellation. By results of

Swan, Endo, and Miyata, this happens for a number of small primes n. Johnson

has shown that the groups D4n+2 satisfy the D(2)-property, but his result relies on

the fact that D4n+2 has periodic cohomology, a property not shared by D4n. This

forces us to introduce the torsion free cancellation hypothesis, and to explicitly

realize the group of k-invariants (Z/4n)∗.
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Chapter 1

Introduction

Let Λ be a ring; we say that a Λ-module P is stably free of rank m− n when

P ⊕ Λn ∼= Λm

for some n,m. We shall be interested in stably free modules over integral group

rings. Let Fn denote the free group on n generators. The main result of this

thesis is:

Theorem A. Let G be a finite nilpotent group of non square-free order, and let

F be a group which maps surjectively onto Fn for some n ≥ 2. Then Z[G × F ]

admits infinitely many isomorphically distinct stably free modules of rank 1.

In contrast Johnson [20] has shown that both Z[Cp × Fm] and Z[D2p × Fm]

admit no non-free stably free modules when p is prime, Cp is the cyclic group of

order p and D2p is the dihedral group of order 2p (p 6= 2). Johnson [21] has also

shown that k[G × Fm] admits no non-free stably free modules, where k is any

field and G is any finite group.

It is natural to ask whether the hypothesis that G be nilpotent can be

dropped from Theorem A. The smallest non square-free number for which there

exists a non nilpotent group of that order is 12. In the second part of this thesis

we show that the conclusion of Theorem A holds for D∗6, the dicyclic group of

order 12. In fact we shall show something stronger - let Q(4m) denote the group

with presentation

8



CHAPTER 1. INTRODUCTION 9

Q(4m) = 〈x, y | xm = y2, yx = x−1y〉,

so that D∗6
∼= Q(12). Then we shall prove:

Theorem B. Let F be a group which maps surjectively onto Fn for some n ≥ 1.

Then for every m ≥ 1, Z[Q(12m) × F ] admits infinitely many isomorphically

distinct stably free modules of rank 1.

Johnson [20] has previously shown that the conclusion of Theorem B holds

for the groups Q(8m)1; in light of this it seems likely that Theorem B holds for

the groups Q(4m), but the details for prime m ≥ 5 become intractable. Notice

that the hypothesis of Theorem B is satisfied when F is a finitely generated group

with H1(F ; Q) 6= 0; for then F ab/torsion ∼= Cn
∞ for some n and hence there is a

surjective mapping F → C∞ = F1.

The study of these modules is motivated by the D(2)-problem of low di-

mensional topology (see chapter 2). In the case where G = Cn × Fm we can,

by constructing an explicit free resolution of Z by Z[G]-modules, show that

Ω1(Z) = Ω3(Z). Let SF (Z[G]) denote the set of isomorphism classes of finitely

generated stably free modules over Z[G]. In many cases the structure of Ω1(Z)

is essentially determined by that of SF (Z[G]) (see [19], [20]). Unfortunately, the

techniques for parameterizing Ω1(Z) by the stably free modules over Z[G] do not

extend to the case G = Cn × Fm. Nevertheless Theorem A provides some hope

of interesting structure in Ω1(Z) = Ω3(Z) over Z[Cn×Fm], when n is not square-

free. Every group G for which the D(2)-problem has currently been confirmed

has the property that Z[G] has no non-trivial stably free modules.

If one could find an appropriate surjective correspondence between Ω1(Z)

and SF (Z[G]) in the case G = Cn×Fm for m ≥ 2 one would obtain an infinite col-

lection of pairwise homotopically distinct algebraic 2-complexes over Z[G] none of

which obviously arise from a geometric cell complex. In the case m = 1, Edwards

[15] has provided a parameterization of Ω1(Z) using matrices over (Z/n)[t, t−1].

Using this and the fact that Z[Cn×C∞] has no non-trivial stably free modules he

was able to solve the D(2)-problem in the affirmative for Cn×C∞. His techniques

1In his thesis [32], Kamali had previously shown that Z[Q(8m)×C∞] admits infinitely many
stably free modules when m is not a power of two.
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can be generalized to the case Cn × Fm (see [20]) to provide a parameterization

of Ω1(Z) by certain equivalence classes of matrices over (Z/n)[Fm]. However,

it has so far proved impossible to compute these equivalence classes and so the

parameterization in this case is of purely theoretical intrest.

We can place Theorem B in context by comparing it with Swan’s paper [34].

He shows that the rings Z[Q(4m)] have a finite number of non-trivial stably frees

except in a few exceptional cases. Despite the fact that Q(12) fails the Eichler

condition its integral group ring nevertheless has no non-trivial stably frees. The-

orem B says that although R[Q(12)] has no non-trivial stably frees for R = Z,

this breaks down when we take R = Z[t, t−1], the ring of Laurent polynomials

over Z. In fact, essentially the same proof as that of Theorem B shows that

R[Q(12)] has infinitely many isomorphically distinct stably free modules of rank

1 when R = Z[t], the ring of ordinary polynomials over Z. Combining results

of Johnson [20] with Theorem B shows that the minimal level of Ω1(Z), over

Z[Q(12m)× Fm], is infinite, but the structure of Ω3(Z) is not currently known.

Finally, we study the D(2)-problem for dihedral groups of order 4n. Say that

a group ring Z[G] satisfies torsion free cancellation when X ⊕N ∼= X ⊕M =⇒
N ∼= M for any Z[G]-modules X, N , M which are torsion free over Z. We shall

show:

Theorem C. Suppose that Z[D4n] satisfies torsion free cancellation. Then the

D(2)-property holds for D4n.

The calculations of Swan [35] and Endo and Miyata [13] show that torsion

free cancellation holds for Z[D4p] when p is prime and 2 ≤ p ≤ 31, p = 47, 179

or 19379. To date the only finite non-abelian, non-periodic groups for which the

D(2)-property is known to hold are those of the form D4p, where p is prime.

Mannan [29] has previously shown that Theorem C holds for n = 2. Johnson

[18] has shown that the D(2)-property holds for the groups D4n+2 for any n ≥
1; however his result relies on the fact that D4n+2 has periodic cohomology, a

property not shared by D4n .

Latiolais [27] has previously shown that the homotopy type of a CW-

complex with fundamental group D4n is determined by the Euler characteris-

tic. This result was extended by Hambleton and Kreck [16], to include those
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complexes whose fundamental groups are finite subgroups of SO(3). Latiolais

achieves this by realizing all values of the Browning obstruction group [5], [22],

[23]; as originally defined by Browning in his unpublished preprints [6], [7], [8],

this obstruction group classifies algebraic 2-complexes over certain finite groups.

However, Latiolais works in an entirely geometric context, reworking Browning’s

approach and only explicitly showing that his version of the obstruction group

classifies geometric 2-complexes. It is not clear that the approaches of Brown-

ing and Latiolais are compatible, but nevertheless it may be possible to give an

alternative proof of Theorem C, without the torsion free cancellation condition,

using this approach.

1.1 Structure of the thesis

The structure of this thesis is as follows: chapters 2 - 6 are mainly expositions

of standard material on rings and modules, with chapters 7, 8 and 9 containing

the original work. The main exception to this is 3.0.4, which could be considered

implicit in appendix A of [34], but does not appear explicitly in the literature.

Chapter 2 gives general background on the D(2)-problem needed to prove

theorem C - a general reference for this material is [18]. Chapter 3 shows how

to construct projective modules over various rings by decomposing them as fi-

bre products. Chapters 4 and 5 contain accounts of stably free cancellation and

weakly Euclidean rings, both of which prove useful concepts when analyzing pro-

jective modules over a fibre product ring in terms of projective modules over

its factors. Chapter 6 gives the necessary background for the calculation of the

various lower K-groups in chapter 8. The remaining chapters then proceed to

prove theorems A, B and C in sequence. The main technical result needed for

theorem A is 3.0.4, and theorem B is proved by relating the stably free modules

in question to the Johnson’s fibre square 3.2.1. Theorem C is independent from

the material in chapters 3-6.
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1.2 Conventions

Many of the statements in this thesis are stated for arbitrary rings; in practice

we shall only be concerned with quite well behaved rings (mainly group algebras

and their quotients). We can, therefore, make some simplifying assumptions. Say

that a ring Λ satisfies the invariant basis number property (abbreviated to IBN)

when, for integers n,m ≥ 1, Λn ∼= Λm ⇐⇒ n = m. Throughout this thesis we

shall assume that every ring under consideration has IBN.

Considering an isomorphism Λn ∼= Λm as an invertible m × n matrix, it is

clear that having IBN is equivalent to satisfying the condition:

If A ∈ Mn×m(Λ) and B ∈ Mm×n(Λ) are such that AB = In and

BA = Im then n = m.

Now suppose that f : Λ → Λ′ is a ring homomorphism and suppose that Λ

does not have IBN. Choose matrices A ∈ Mn×m(Λ) and B ∈ Mm×n(Λ) such

that AB = In and BA = Im with n 6= m. Applying f to A and B we have

f(A)f(B) = In and f(B)f(A) = Im and thus Λ′ does not have IBN either. In

contrapositive form this says:

If f : Λ → Λ′ is a ring homomorphism and Λ′ has IBN then so does

Λ.

The following argument, due to Cohn [11], shows that commutative rings have

IBN. Let Λ be commutative and suppose that A ∈ Mn×m(Λ) and B ∈ Mm×n(Λ)

are such that AB = In and BA = Im with n 6= m; say m < n. Extend A and

B by adjoining n − m columns of zeros to A and n − m rows of zeros to B as

follows:

Â =
(
A 0

)
B̂ =

(
B

0

)
Then clearly ÂB̂ = AB = In and thus det(Â) det(B̂) = 1. However the presence

of zero rows/columns implies that det(Â) = det(B̂) = 0 which is a contradiction.

Thus any commutative ring has IBN. For any group G the augmentation map
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provides a homomorphism from the group algebra Λ[G] to Λ. Therefore any

group algebra over a commutative ring has IBN.

Suppose that P is a stably free module over a ring Λ with P ⊕Λm ∼= Λn and

P ⊕Λr ∼= Λs. Adding r copies of Λ to the first equation we have Λr ⊕ P ⊕Λm ∼=
Λs ⊕ Λm ∼= Λr ⊕ Λn. Thus if Λ has IBN then n − m = s − r; in this case we

define the stably free rank of P to be the unique integer n −m. We denote the

set of isomorphism classes of rank n stably free modules over a ring Λ with IBN

by SFn(Λ).

All modules are right modules unless otherwise stated. For any ring Λ, Λ∗

will denote the group of units.



Chapter 2

The D(2)-problem

Let X be a finite connected CW-complex, with universal cover X̃. We say that

X is cohomologically 2-dimensional when H3(X̃; Z) = H3(X;B) = 0 for all coef-

ficient systems B on X. The D(2)-problem asks:

Let X be a finite connected CW complex of geometrical dimension 3

which is cohomologically 2-dimensional. Is X homotopy equivalent to

a finite CW complex of geometrical dimension 2?

The D(2)-problem was first posed by Wall [36], in connection with a general

attempt to formulate conditions on a space which guarantee that it is homotopy

equivalent to a space with given characteristics. In general, the D(n)-problem

asks if a cohomologically n-dimensional complex is homotopy equivalent to a finite

n-dimensional complex; Wall answered this in the affirmative for each n 6= 2.

Clearly the D(2)-problem is parameterized by the fundamental group: just

restrict the question to those cell complexes X with a particular fundamental

group π1(X). Results of Johnson and Mannan show that the D(2)-problem is

equivalent to another, the realization problem. Let X be a finite 2-dimensional

CW-complex with π1(X) = G. Consider the cellular 2-complex of X̃, the univer-

sal cover of X:

C2 → C1 → C0

where Cn = Hn(X̃n, X̃n−1; Z) is the free Z[G]-module on the basis consisting of

the n-cells of X. Since X̃ is simply-connected we have, by Hurewitz’s theorem,

14
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H2(X̃; Z) ∼= π2(X̃) ∼= π2(X). Also H1(X̃; Z) ∼= 0 and H0(X̃; Z) ∼= Z and so we

may extend the above chain complex to an exact sequence of finitely generated

Z[G]-modules

C∗(X) = (0→ π2(X)→ C2 → C1 → C0 → Z→ 0) (2.1)

in which each Ci is free. More generally define an algebraic 2-complex over Z[G]

to be an exact sequence of finitely generated Z[G]-modules

P = (0→ π2(P)→ P2 → P1 → P0 → Z→ 0) (2.2)

in which each Pi is stably free. The realization problem asks:

Is every algebraic 2-complex homotopy equivalent to a complex of the

form (2.1) arising from a 2-dimensional CW-complex?

The realization problem is obviously parameterized by the choice of group G.

Johnson [18] proved the following, subject to a mild technical condition on G,

later shown to be unnecessary by Mannan [30]:

Let G be a finitely presented group. Then the realization problem

holds for G if and only if the D(2)-problem holds for G.

A chain map f : P → Q, between two algebraic 2-complexes over Z[G], is said

to be a weak homotopy equivalence if the induced maps f∗ : π2(P) → π2(Q)

and f∗ : Z → Z are isomorphisms. Weak homotopy equivalence corresponds to

ordinary chain homotopy equivalence in the sense that f is a weak homotopy

equivalence if and only if the induced map

P2

f∗
��

// P1
//

f∗
��

P0

f∗
��

Q2
// Q1

// Q0

is a chain homotopy equivalence. Write AlgG for the set of weak homotopy classes

of algebraic 2-complexes over Z[G].
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Let f : X → Y be a homotopy equivalence between two CW-complexes with

π1(X) ∼= π1(Y ) ∼= G; it is well known that the induced map f∗ : C∗(X)→ C∗(Y )

is then a weak homotopy equivalence. Thus the correspondence X 7→ C∗(X)

gives a faithful representation of 2-dimensional homotopy theory in the algebraic

homotopy category determined by AlgG. The realization question asks if this

correspondence induces an equivalence of categories.

2.1 Realizing algebraic complexes

Evidently the realization problem is parameterized by the isomorphism class of

the module π2(P) appearing in (2.2). Thus a first step in solving the realization

problem for G is determining which Z[G]-modules π2(P) may occur in a sequence

of the form (2.2). Let Λ be a ring and suppose we are given two exact sequences

of Λ-modules:

0→ I → Λn →M → 0 ; 0→ I ′ → Λm →M → 0.

Recall Schanuel’s lemma which states that I ⊕ Λm ∼= I ′ ⊕ Λn. We say that Λ-

modules I, I ′ are stably equivalent if I ⊕Λm ∼= I ′⊕Λn for some n,m. Given two

exact sequences

0→ J → Fn → . . .→ F1 → F0 →M → 0;

0→ J ′ → F ′n → . . .→ F ′1 → F ′0 →M → 0

where each Fi is finitely generated free, then iteratively applying Schanuel’s

lemma shows that J and J ′ are stably equivalent; write Ωn+1(M) for the class

of modules stably equivalent to J . We call Ωn(M) the nth syzygy of M over Λ.

Therefore, a first step in solving the realization problem for G is to determine

Ω3(Z) over Z[G].

Given a finite presentation G of a group G, the presentation complex X(G)

associated to G is a 2-dimensional CW complex, with a single vertex, one loop at

the vertex for each generator, and one 2-cell for each relator in G, with the bound-

ary of the 2-cell attached along the appropriate word. Applying the functor C∗(−)



CHAPTER 2. THE D(2)-PROBLEM 17

to X(G) now gives a representative of Ω3(Z) over Z[G], namely π2(C∗(X(G))).

For any group G we can define an augmentation homomorphism ε : Z[G] → Z

by setting ε(g) = 1 for each g ∈ G. We have an exact sequence

0→ I → Z[G]
ε−→ Z→ 0

in which I = ker(ε) is the augmentation ideal, and so Ω1(Z) is just the stable

class of I.

The next step in solving the D(2)-problem for G is to describe the fibres

of the map AlgG → Ω3(Z) given by P 7→ π2(P). For finite groups G, this is

achieved via the Swan map [18]. Fix a finite group G and put Λ = Z[G]. Let

P = (0→ π2(P)→ P2 → P1 → P0 → Z→ 0) be an algebraic 2-complex over G

and let E = (0 → π2(P) → E2 → E1 → E0 → Z → 0) ∈ Ext3
Λ(Z, π2(P)) be an

arbitrary extension of Z by π2(P). Then by the universal property of projective

modules, there exists a commutative diagram

P

α

��

= (0 // π2(P) //

α+

��

P2

α2

��

// P1
//

α1

��

P0
//

α0

��

Z

Id
��

// 0)

E = (0 // π2(P) // E2
// E1

// E0
// Z // 0)

We may extend α+ thus:

0 // π2(P) //

α+

��

P2

α′2
��

// P1
//

α′1
��

P0
//

α′0
��

Z

α̃

��

// 0

0 // π2(P) // P2
// P1

// P0
// Z // 0

Then α̃ is unique up to congruence modulo |G| and we have a well-defined map

κ : EndΛ(π2(P))→ Z/|G| given by κ(α+) = α̃. The k-invariant of the transition

α : P → E is defined to be k(P → E) = κ(α+). Given α ∈ EndΛ(π2(P)) we

have a k-invariant k(P → α∗(P)) = κ(α)k(P → P) = κ(α), where α∗(P) is the

pushout extension. Since κ(α) is a unit if α is an isomorphism, this induces a

mapping

AutΛ(π2(P))→ (Z/|G|)∗
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called the Swan map, which is independent of the choice of algebraic complex P

in which π2(P) appears. We have (see [20], Theorems 54.6 and 54.7):

Theorem 2.1.1. Fix a module π2(P) ∈ Ω3(Z), and suppose that the Swan map

Aut(π2(P)) → (Z/|G|)∗ is surjective. Then for each n ≥ 0 there is, up to chain

homotopy equivalence, a unique algebraic 2-complex of the form

0→ π2(P)⊕ Λn → F2 → F1 → F0 → Z→ 0.



Chapter 3

Projective modules over fibre

products

In [31], Milnor introduced techniques for analysing the structure of projective

modules over a fibre product ring in terms of its factors. These techniques were

further developed by Swan in [34] to investigate the structure of stably free mod-

ules over various group rings. Suppose we are given two ring homomorphisms

ψ+ : A+ → A0 and ψ− : A− → A0. The fibre product of A+ and A− over A0 is

the ring

A+ ×A0 A− = {(a+, a−) ∈ A+ × A− | ψ+(a+) = ψ−(a−)},

where addition and multiplication are defined component wise. If A = A+×A0A−

we often represent this situation as a fibre square:

A =


A

π−
//

π+

��

A−

ψ−
��

A+
ψ+
// A0

(3.1)

where π+ and π− are the projections from A to A+ and A− respectively. It is

easy to show that the condition A = A+ ×A0 A− is equivalent to requiring that

19
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the following is an exact sequence (of additive groups):

0→ A

 π+

π−


−−−−−→ A+ ⊕ A−

(ψ+,−ψ−)−−−−−−→ A0.

Let M be a right module over A; then M determines a triple

(M+,M−;α(M))

where Mσ = M ⊗πσ Aσ for σ = +,− and α(M) is the canonical A0-isomorphism

making the following commute:

(M ⊗π+ A+)⊗ψ+ A0

��

α(M)
// (M ⊗π− A−)⊗ψ− A0

��

M ⊗ψ+π+ A0
Id //M ⊗ψ−π− A0

where the vertical maps are the canonical isomorphisms. Conversely, suppose

we are given a triple (M+,M−;α), where Mσ is a right module over Aσ and

α : M+ ⊗ψ+ A0 →M− ⊗ψ+ A0 is an A0-module isomorphism. Then we obtain an

A-module 〈M+,M−;α〉 given by

〈M+,M−;α〉 = {(m+,m−) ∈M+ ×M− | α(m+ ⊗ 1) = m− ⊗ 1}

with A-action given by (m+,m−) · a = (m+ · π+(a),m− · π−(a)). To see that

(m+,m−) · a ∈ 〈M+,M−;α〉, note that

α(m+ · π+(a)⊗ 1) = α(m+ ⊗ ψ+π+(a)) = m− ⊗ ψ+π+(a)

= m− ⊗ ψ−π−(a)

= m− · π−(a)⊗ 1.

The following shows that every finitely generated projective A-module arises in

this way.

Proposition 3.0.1. Let P be a finitely generated projective A-module. Then
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P ∼= 〈P+, P−;α(P )〉.

Proof. Given anA-moduleM , define a homomorphism δM : M → 〈M+,M−;α(M)〉
by δM(x) = (x ⊗π+ 1, x ⊗π− 1). Since A is the fibre product of A+ and A− over

A0, then δA is an isomorphism. Suppose that P ⊕Q ∼= An; then clearly

δP⊕Q =

(
δP 0

0 δQ

)

and since δP⊕Q = δAn = δA ⊕ . . . ⊕ δA is an isomorphism, so are δP and δQ.

Alternatively, we could apply the exact functor P ⊗− to the exact sequence

0→ A

 π+

π−


−−−−−→ A+ ⊕ A−

(ψ+,−ψ−)−−−−−−→ A0

and observe that 〈P+, P−;α(P )〉 = Ker(Id⊗ (ψ+,−ψ−)).

An A-module M is said to be locally projective (resp. locally free) if Mσ is

projective (resp. free) for σ = +,−. Clearly every projective A-module is locally

projective. Under certain conditions the converse is true.

The stable linear group GL(R) of a ring R is the direct limit of the inclusions

GLn(R) → GLn+1(R) as the upper left block matrix. The stable elementary

subgroup E(R) ⊂ GL(R) is defined as the direct limit of the groups En(R),

where En(R) ⊂ GLn(R) is the subgroup of n × n elementary matrices over R.

It is a consequence of Whitehead’s lemma that E(R) = [GL(R), GL(R)]. Let

A be a fibre square as in (3.1). Say that A is E-surjective if the double coset

ψ−(E(A−))\E(A0)/ψ+(E(A+)) consists of a single point; that is, if every [N ] ∈
E(A0) can be written as a product [N ] = [ψ−(N−)][ψ+(N+)] for some N− ∈
En(A−) and N+ ∈ Em(A+) for some n,m.

Lemma 3.0.2. Let A be a fibre square as in (3.1). If A is E-surjective then, for

each integer n ≥ 1 and each α ∈ GLn(A0), there exists m ≥ 1 and β ∈ GLm(A0)

such that α ⊕ β = [h+][h−] for some h+ ∈ GLn+m(A+), h− ∈ GLn+m(A−). Here

[hσ] = hσ ⊗ IdA0 .
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Proof. Let α ∈ GLn(A0). Then by Whitehead’s lemma

(
α 0

0 α−1

)
∈ E2n(A0).

Since A is E-surjective, we may choose an integer m such that[
α 0

0 α−1

]
⊕ [Im] = [I2n+m] ∈ ψ−(E(A−))\E(A0)/ψ+(E(A+)).

Therefore α⊕(α−1⊕Im) = [h+][h−] for some hσ ∈ E2n+m(Aσ) ⊂ GL2n+m(Aσ).

The following is essentially proved in [31]:

Theorem 3.0.3. Let A be a fibre square as in (3.1). Suppose that A is E-

surjective; then a finitely generated A-module 〈P+, P−;α〉 is projective if and

only if it is locally projective.

Proof. Clearly a projective A-module is locally projective. Suppose that P =

〈P+, P−;α〉 is locally projective over

A =


A

π−
//

π+

��

A−

ψ−
��

A+
ψ+
// A0

Then we may choose Q+, Q− such that P+ ⊕Q+
∼= An+, P− ⊕Q− ∼= An− for some

n. Set Kσ = Qσ ⊕ Anσ. We have exact sequences

0→ Q+ ⊗ A0 → (Q+ ⊗ A0)⊕ (P+ ⊗ A0)→ P+ ⊗ A0 → 0;

0→ Q− ⊗ A0 → (Q− ⊗ A0)⊕ (P− ⊗ A0)→ P− ⊗ A0 → 0.

Observing that P+ ⊗A0
∼= P− ⊗A0, and (Qσ ⊗A0)⊕ (Pσ ⊗A0) ∼= An0 , we see by

Schanuel’s lemma that (Q+⊗A0)⊕An0 ∼= (Q−⊗A0)⊕An0 =⇒ K+⊗A0
∼= K−⊗A0.

Choose an isomorphism β : K+ ⊗ A0 → K− ⊗ A0; then the module

〈P+ ⊕K+, P− ⊕K−;α⊕ β〉

is locally free. Therefore α ⊕ β ∈ GL2n(A0) and by (3.0.2) we may choose
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γ ∈ GLm(A0) and hσ ∈ GLm(Aσ) such that α⊕ β ⊕ γ = [h+][h−]. Define a map

f : 〈P+ ⊕K+ ⊕ Am+ , P− ⊕K− ⊕ Am− ;α⊕ β ⊕ γ〉 → 〈A2n+m
+ , A2n+m

− ; I2n+m〉

by f(x, y) = (h+(x), h−1
− (y)). To see that f(x, y) ∈ 〈A2n+m

+ , A2n+m
− ; I2n+m〉, note

that

(α⊕ β ⊕ γ)(x⊗ 1) = [h+][h−](x⊗ 1) = y ⊗ 1

which is true if and only if h+(x)⊗1 = h−1
− (y)⊗1. Since h+, h− are isomorphisms,

so is f . By (3.0.1) 〈A2n+m
+ , A2n+m

− ; I2n+m〉 ∼= A2n+m and hence

〈P+, P−;α〉 ⊕ 〈K+ ⊕ Am+ , K− ⊕ Am− ; β ⊕ γ〉 ∼= A2n+m

as required.

Now suppose we are given an E-surjective fibre squareA. Then a locally free

module over A is automatically projective; the question of when it is stably free is

rather more delicate. Denote the set of isomorphism classes of finitely generated

locally free modules of rank n over A by LFn(A). Let P be a locally free A-module;

the isomorphism α(P ) in the triple (An+, A
n
−;α(P )) associated to P is not uniquely

determined by the isomorphism class of P . Since α(P ) : An+⊗ψ+A0 → An−⊗ψ−A0,

and Anσ ⊗ψ+ A0
∼= An0 (σ = +,−), we may regard α(P ) as belonging to GLn(A0)

for some n. However, if β ∈ GLn(A+) and γ ∈ GLn(A−), we may define an

isomorphism of A-modules

f : 〈An+, An−;α(P )〉 → 〈An+, An−; [γ] ◦ α(P ) ◦ [β]〉

by setting f(m+,m−) = (β−1(m+), γ(m−)), where [β] = β⊗ψ+ Id and [γ] = γ⊗ψ−
Id. Conversely, suppose that f : 〈An+, An−;α〉 → 〈An+, An−; β〉 is an isomorphism.

If we define

f+ =f ⊗ψ+ Id : 〈An+, An−;α〉 ⊗ψ+ A+ → 〈An+, An−; β〉 ⊗ψ+ A+;

f− =f ⊗ψ− Id : 〈An+, An−;α〉 ⊗ψ− A− → 〈An+, An−; β〉 ⊗ψ− A−

then it is clear that fσ ∈ GLn(Aσ) for σ = +,− and β = [f−]◦α◦[f−1
+ ]. Therefore
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there exists a bijection

LFn(A)↔ ψ−(GLn(A−))\GLn(A0)/ψ+(GLn(A+)) (3.2)

Abbreviate the double coset on the right to GLn(A). For each pair of integers

n, k ≥ 1 define a stabilization map

sn,k : GLn(A)→ GLn+k(A)

[α] 7→ [α⊕ Ik]

Then, since the free module An determines the triple (An+, A
n
−; In), we have:

If a locally freeA-moduleM of rank n determines the triple (M+,M−;α),

then M is stably free if and only if sn,k[α] = [In+k] for some k.

The following theorem allows us to construct the non-trivial stably free modules

of Theorem A.

Theorem 3.0.4. Let A be a fibre square as in (3.1). Suppose that A is E-

surjective and that ψ−(A∗−)\[A∗0, A∗0]/ψ+(A∗+) is infinite: then SF1(A) is infinite.

Proof. Let {ai}i∈I be an infinite set of coset representatives in ψ−(A∗−)\[A∗0, A∗0]/ψ+(A∗+).

For each i ∈ I form the locally free A-module Pi = (A+, A−; ai). Then by (3.2)

Pi ∼= Pj ⇐⇒ i = j. To see that each Pi is stably free, consider

s1,1[ai] =

[
ai 0

0 1

]
.

Each ai ∈ [A∗0, A
∗
0] and so by Whitehead’s lemma s1,1[ai] ∈ E2(A0) =⇒ s1,j[ai] ∈

E1+j(A0) for each j ≥ 1. SinceA is E-surjective, there exists k ≥ 2, X+ ∈ Ek(A+)

and X− ∈ Ek(A−) such that s1,k−1[ai] = [ψ−(X−)][ψ+(X+)] = [Ik] ∈ GLk(A) and

so Pi ⊕ Ak−1 ∼= Ak.

The following ‘Mayer - Vietoris’ type theorem is often useful when comput-

ing lower K-groups (see [28]):
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Theorem 3.0.5. Let A be a fibre square as in (3.1). If A is E-surjective then

there exists an exact sequence

K1(A)
f1−→ K1(A+)⊕K1(A−)

f2−→ K1(A0)
δ−→ K0(A)

f3−→ K0(A+)⊕K0(A−)
f4−→ K0(A0)

in which

f1[X] = ([(π+)∗(X)], [(π−)∗(X)]),

f2([X+], [X−]) = (ψ+)∗[X+]((ψ−)∗[X−])−1,

f3[P ] = ([(π+)∗(P )], [(π−)∗(P )]),

f4([P+], [P−]) = (ψ+)∗[P+]− (ψ+)∗[P+],

δ[α] = [〈An+, An−;α〉] (where α ∈ GLn(A0)).

3.1 Constructing fibre squares

The following construction provides a common source of fibre squares:

Proposition 3.1.1. Let I, J be ideals of a ring R. Then there is a fibre square

of canonical maps

R/(I ∩ J) //

��

R/I

��

R/J // R/(I + J)

Proof. The square is obviously commutative. If [r]I and [s]J have the same image

in R/(I + J) then r − s = x + y where x ∈ I, y ∈ J . Define t := r − x = s + y;

then [t]I∩J has image [r]I in R/I and image [s]J in R/J . However if [t′]I∩J has

the same images in R/I and R/J then t − t′ ∈ I and t − t′ ∈ J and hence

[t]I∩J = [t′]I∩J .

Clearly all of the maps in the above fibre square are surjective; in fact

any fibre square with all maps surjective is isomorphic to one of this form. Fibre

squares of this form are obviously E-surjective, since the induced map E(R/J)→
E(R/(I + J)) is surjective. Similarly:
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Proposition 3.1.2. Let

A =


A

π−
//

π+

��

A−

ψ−
��

A+
ψ+
// A0

be a fibre square in which either ψ+ or ψ− is surjective (such a square is called a

Milnor square). Then A is E-surjective.

Milnor [31] originally considered projective modules over these squares only,

but his techniques extend easily to the wider class of E-surjective squares.

Proposition 3.1.3. Let I be an ideal in R, and suppose that f : R → S is a

ring homomorphism such that f |I : I → f(I) is bijective. Then

R
[ ]
//

f

��

R/I

f∗
��

S
[ ]
// S/f(I)

is a Milnor square.

Proof. We must show that

0→ R

 [ ]

f


−−−−−→ R/I ⊕ S

(
f∗, −[ ]

)
−−−−−−−−−−→ S/I

is exact. Suppose that

(
[ ]

f

)
(r) = 0. Then [r] = 0 =⇒ r ∈ I =⇒

f(r) ∈ I and thus r = 0 since f is bijective on I and f(r) = 0. Therefore

the sequence is exact at R. Now, if r ∈ R, then
(
f∗, −[ ]

)( [ ]

f

)
(r) =

(
f∗, −[ ]

)( [r]

f(r)

)
= f∗[r] − [f(r)] = 0. Finally, if

(
f∗, −[ ]

)( [r]

s

)
=

0, then [f(r)] − [s] = 0 =⇒ f(r) − s ∈ f(I). Choose (unique) t ∈ I such that
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f(t) = f(r) − s. Then

(
[ ]

f

)
(r − t) =

(
[r − t]
f(r − t)

)
=

(
[r]

s

)
, and so the

sequence is exact.

Corollary 3.1.4. Let G be a finite group and let H be a normal subgroup of G.

Then the following is a Milnor square:

Z[G] //

��

Z[G]/(ΣH)

��

Z[G/H] // (Z/|H|)[G/H]

where ΣH =
∑

h∈H h.

Proof. Apply (3.1.3) with f : Z[G]→ Z[G/H] given by f(
∑

g∈G agg) =
∑

g∈G ag[g],

and I = (ΣH) · Z[G] (so that f(I) = |H| · Z[G/H]). We need to show that

f |I : I → f(I) is bijective. Clearly it is surjective; suppose that

f

(
ΣH ·

∑
g∈G

agg

)
= |H| ·

∑
g∈G

ag[g] = 0

Then
∑

g∈G agg ∈ ker(f). Since ker(f) = im(h1−1, . . . , hm−1), where h1, . . . , hm

generate H, we have∑
g∈G

agg = (h1 − 1)λ1 + . . .+ (hm − 1)λm

for some λ1, . . . , λm ∈ Z[G]. But this implies that ΣH ·
∑

g∈G agg = 0, and hence

f is bijective on I.

Another example of a fibre square is provided by Karoubi squares: let S

be a multiplicative submonoid of a ring R. Then S is said to be regular if it is

central in R and contains no zero divisors. When S is a regular submonoid of R

we may form the localization S−1R in the usual way.

Proposition 3.1.5. Let f : A → B be a ring homomorphism. Suppose that S

is a regular submonoid of A and that f(S) is a regular submonoid of B. Suppose
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also that, for each s ∈ S, the canonical mapping f∗ : A/sA → B/f(s)B is an

isomorphism. Then the following is a fibre square:

A
f

//

i
��

B

j
��

S−1A
f∗
// f(S)−1B

where i and j denote the canonical inclusions.

Such a fibre square is called a Karoubi square.

Theorem 3.1.6. Every Karoubi square is E-surjective.

For a proof see ([34], appendix A). More fibre squares may be generated by

applying left exact functors to existing squares:

Proposition 3.1.7. Let F : Rings → Rings be a left exact functor (that is, a

functor which is left exact when considered as a functor on the underlying abelian

groups). If A is a fibre square as in (3.1) then so is

F(A) =


F(A)

F(π−)
//

F(π+)
��

F(A−)

F(ψ−)
��

F(A+)
F(ψ+)

// F(A0)

For example, any group algebra Z[G] is free as an additive group; thus

− ⊗Z Z[G] is a functor Rings → Rings, which is left exact as a functor on the

underlying abelian groups. Hence:

Proposition 3.1.8. Let A be a fibre square as in (3.1). Then

A⊗ Z[G]
π−⊗Id

//

π+⊗Id
��

A− ⊗ Z[G]

ψ−⊗Id
��

A+ ⊗ Z[G]
ψ+⊗Id

// A0 ⊗ Z[G]

is also a fibre square.
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3.2 A fibre square calculation

In this section we present a fibre square calculation due to Johnson [20]. We will

explicitly construct an infinite class of rank 2 locally free modules over a certain

pullback ring. This calculation is the basis of the proof of Theorem B.

Let p be prime and let

Ẑ(p) = the ring of p-adic integers;

Q̂(p) = the ring of p-adic numbers, i.e. the field of fractions of Ẑ(p).

Consider the fibre square

T (p) =


X

��

// Ẑ(p)[t, t
−1]

j
��

Q̂(p)
i // Q̂(p)[t, t

−1]

with the obvious maps i, j and where X is defined to be the pullback

X = Q̂(p) ×Q̂(p)[t,t
−1] Ẑ(p)[t, t

−1].

We are interested in GL2(T (p)) = GL2(Q̂(p))\GL2(Q̂(p)[t, t
−1])/GL2(Ẑ(p)[t, t

−1]);

put

Z(n) =

(
1 tn

p

0 1

)
∈ GL2(Q̂(p)[t, t

−1]).

Theorem 3.2.1. (F. E. A. Johnson [20]) : The matrices Z(n) represent pairwise

distinct classes in GL2(T (p)).

Proof. Suppose for contradiction that [Z(n)] = [Z(m)] for n 6= m; write Z(n) =

XZ(m)Y for some X ∈ GL2(Q̂(p)) and some Y ∈ GL2(Ẑ(p)[t, t
−1]). Write

X−1 =

(
a b

c d

)
; Y =

(
e f

g h

)
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Then expanding we have: a b+ a t
n

p

c d+ c t
n

p

 =

 e+ g t
m

p
f + h t

m

p

g h


Equating entries in the (2, 1)-position we see that g = c is a constant polynomial.

From the (2, 2) and (1, 1)-entries we have

h =
c

p
tn + d ; e = a− g

p
tm

and hence from the (1, 2)-entry:

f = b+
a

p
tn − h

p
tm = b+

a

p
tn − d

p
tm − c

p2
tn+m.

Now, since Y ∈ GL2(Ẑ(p)[t, t
−1]), we have det(Y ) ∈ (Ẑ(p)[t, t

−1])∗. Since Ẑ(p)

is an integral domain, Ẑ(p)[t, t
−1] has only trivial units and hence det(Y ) = utr

for some r and some u ∈ Ẑ∗(p). Since det(Z(n)) = det(Z(m)) = 1, we have

det(Y ) = eh− fg = ad− bc.
However, since f ∈ Ẑ(p)[t, t

−1], from the above calculation we know that

b ∈ Ẑ(p), a/p ∈ Ẑ(p), d/p ∈ Ẑ(p) and c/p2 ∈ Ẑ(p). Write a = pα, c = p2γ and

d = pδ for α, γ, δ ∈ Ẑ(p); then

det(Y ) = p2αδ − p2bγ,

and therefore p divides det(Y ). This is a contradiction since p is not a unit in

Ẑ(p).



Chapter 4

Stably free cancellation

A ring Λ is said to have stably free cancellation (abbreviated to SFC) when every

stably free module over Λ is actually free. All principal ideal domains have SFC,

as do all local rings. It is a famous theorem of Quillen-Suslin that a polynomial

ring over a field has SFC (see Lam’s excellent account [26]). It is possible for a

ring to have SFC yet fail the IBN condition: Cohn [10] has constructed a ring

Λ over which every projective module is isomorphic to Λ. Rings with SFC are

sometimes called Hermite rings; however this term has been used in different

senses by some authors (see [26], p.37) and so we avoid it.

4.1 Cancellation over free algebras

For any ring Λ denote by rad(Λ) the Jacobson radical of Λ (so that rad(Λ) is the

intersection of all right ideals in Λ). Recall that an ideal m of Λ is said to be

radical when m ⊂ rad(Λ). The following is known as Nakayama’s lemma:

Proposition 4.1.1. Let M be a finitely generated Λ-module, N ⊂ M be a

submodule and let m be a radical ideal in Λ. Then

M = N +M ·m =⇒ M = N.

Proposition (Bass [2] Prop. 2.12) 4.1.2. Let m be a two sided radical ideal

in Λ and let P , Q be finitely generated projective modules over Λ. Set Λ̄ = Λ/m

31
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and write M̄ = M ⊗Λ (Λ/m) ∼= M/M ·m for Λ-modules M . If f̄ : P̄ → Q̄ is an

isomorphism, then there exists a Λ-isomorphism f : P → Q.

Proof. Let f̄ : P̄ → Q̄ be an isomorphism. Then we may choose f : P → Q such

that the following commutes

P
f
//

[ ]
��

Q

[ ]
��

P̄
f̄
// Q̄

This is because [ ] : Q→ Q̄ is surjective and P is projective. Now, f̄ [p] = [q] ⇐⇒
[f(p)] = [q] ⇐⇒ f(p)− q ∈ Q ·m. Therefore

Im(f̄) = (Im(f) +Q ·m)/Q ·m

and since f̄ is surjective, Im(f̄) = Q/Q ·m, and therefore Im(f)+Q ·m = Q =⇒
Im(f) = Q by (4.1.1). Since Q is projective, we have P ∼= ker(f)⊕Q, and hence

ker(f) is finitely generated. However, ker(f) = 0 as f̄ is injective, and so applying

(4.1.1) with M = ker(f), N = 0 shows that ker(f) = 0.

Corollary 4.1.3. Let m be a two sided radical ideal in Λ. Then

Λ/m has SFC =⇒ Λ has SFC.

Proof. Suppose that P ⊕ Λm ∼= Λn; then P̄ ⊕ Λ̄m ∼= Λ̄n and so P̄ ∼= Λ̄n−m by

hypothesis. Therefore by (4.1.2) P ∼= Λn−m.

The following is a result of Dicks-Sontag [14]:

Theorem 4.1.4. If D is a division ring then D[Fm] has SFC for every m ≥ 1.

Proposition 4.1.5. Let Λ be a ring with SFC. Then the full matrix ring Mn(Λ)

has SFC for each n.

Proof. If M is a Λ-module define
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Rn(Λ) = {(m1, . . . ,mn) | mi ∈M} ; Cn(Λ) = {


m1

...

mn

 | mi ∈M}.

Then Rn(M) becomes a Λ-Mn(Λ) bimodule and Cn(Λ) becomes a Mn(Λ)-Λ bi-

module via matrix multiplication. Define functors

F :ModΛ →ModMn(Λ) ; F (M) = Rn(M)

G :ModMn(Λ) →ModΛ ; G(N) = N ⊗Mn(Λ) Cn(Λ).

There is a natural isomorphism M ∼= G(F (M)) = Rn(M)⊗ Cn(Λ) given by

m 7→ (m, . . . ,m)⊗


1
...

1

 .

Therefore F is an equivalence of categories. If S is stably free over Mn(Λ) then

G(S) is stably free, and hence free, over Λ. Therefore S ∼= F (G(S)) ∼= F (Λr) ∼=
Mn(Λ)r for some r.

Wedderburn’s theorem now shows that Λ[Fm] has SFC for any right semi-

simple ring Λ. (Note that a product Λ = Λ1 × Λ2 has SFC if and only if both

Λ1 and Λ2 have SFC.) Now suppose that Λ is a right artinian ring. The canon-

ical mapping φ : Λ → Λ/rad(Λ) induces a surjective ring homomorphism φ∗ :

Λ[Fm]→ Λ/rad(Λ)[Fm] in which ker(φ∗) = rad(Λ)[Fm]. In general rad(Λ)[Fm] is

not a radical ideal in Λ[Fm]; however it is if rad(Λ) is nilpotent. This may be

seen by using the following characterization of rad(Λ): rad(Λ) is the set of all

elements x ∈ Λ such that, for all y ∈ Λ, 1− xy is a unit in Λ. If x ∈ rad(Λ)[Fm]

and rad(Λ) is nilpotent then it is easy to check that

(1− xy)−1 = 1 + xy − (xy)2 + . . .± (xy)n
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for any y ∈ Λ[Fm] and where (xy)n+1 = 0. Since Λ is right artinian, rad(Λ) is

nilpotent (see Lam [24], Theorem 4.12) and hence rad(Λ)[Fm] is a radical ideal

in Λ[Fm]. Applying (4.1.3) with m = rad(Λ)[Fm] now shows:

Corollary 4.1.6. Let Λ be a right artinian ring. Then Λ[Fm] has SFC.

A ring A is said to be a retract of a ring B when there exist homomorphisms

i : A → B and r : B → A such that r ◦ i = IdA. Given a ring homomorphism

f : R→ S and an R-module M , we can define an S-module M ⊗f S = M ⊗R S
by considering S as a left R module via the action r · s = f(r)s.

Let M be stably free over A; say M ⊕ An ∼= Am. Then (M ⊕ An) ⊗i B ∼=
Am ⊗i B and thus (M ⊗i B)⊕ Bn ∼= Bm, since A⊗i B ∼= B. Suppose now that

B has SFC; then necessarily M ⊗i B ∼= Bn−m. Applying the functor −⊗r A we

have (M ⊗i B)⊗r A ∼= An−m. The map

ψ : (M ⊗i B)⊗r A→M ⊗r◦i A

m⊗ b⊗ a 7→ m⊗ r(b)a

is an isomorphism; since r ◦ i = IdA we have M ⊗r◦iA ∼= M and thus M ∼= An−m.

We have shown:

Proposition 4.1.7. Let A be a retract of a ring B with SFC. Then A also has

SFC.

Suppose that S1 and S2 are two stably free module of rank n over A; say

S1 ⊕Am ∼= S2 ⊕Am ∼= An+m for some m. We obtain two stably free B-modules:

(S1⊗iB)⊕Bm ∼= (S2⊗iB)⊕Bm ∼= Bn+m. Suppose that (S1⊗iB) ∼= (S2⊗iB);

then

S1
∼= S1 ⊗r◦i A ∼= (S1 ⊗i B)⊗r A ∼= (S2 ⊗i B)⊗r A ∼= S1 ⊗r◦i A ∼= S2.

Therefore we have:

Proposition 4.1.8. Let A be a retract of B. Then for each n ≥ 1 there is an

injective map i∗ : SFn(A)→ SFn(B) given by i∗(S) = S ⊗B.



Chapter 5

Weakly Euclidean rings

For any ring Λ, let Mn(Λ) denote the ring of n×n matrices over Λ and let GLn(Λ)

denote the ring of invertible n× n matrices over Λ. If ε(i, j) denotes the matrix

whose entries are given by ε(i, j)r,s = δirδjs then for any λ ∈ Λ we may define an

elementary invertible matrix E(i, j;λ) by

E(i, j;λ) = In + λε(i, j).

En(Λ) will denote the subgroup of GLn(Λ) generated by the elementary matrices

E(i, j;λ) (λ ∈ Λ). Denote by Dn(Λ) the subgroup of GLn(Λ) consisting of all

diagonal matrices. Recall that, over a Euclidean domain Λ, any matrix M ∈
Mn(Λ) has a Smith normal form; that is, M may be written as a product M =

E1DE2, where D ∈ Dn(Λ) and E1, E2 ∈ En(Λ). Equivalently,

Mn(Λ) = En(Λ) ·Dn(Λ) · En(Λ).

If M is invertible then so is D; let D = Diag(δ1, . . . δn) for δ1, . . . δn ∈ Λ∗. Then

E(i, j;λ)D = DE(i, j; δ−1
i λδj).

and so En(Λ) ·∆n(Λ) = ∆n(Λ) · En(Λ), where ∆n(Λ) = Dn(Λ)∗. Therefore over

a Euclidean domain we have GLn(Λ) = En(Λ) · ∆n(Λ). Write GEn(Λ) for the

product En(Λ) ·∆n(Λ). More generally, we say that a ring Λ is weakly Euclidean

35
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if GLn(Λ) = GEn(Λ); in other words every invertible matrix over Λ is reducible

to a diagonal matrix by means of elementary row and column operations. Weakly

Euclidean rings have been extensively studied by Cohn [9]. Our notion of weakly

Euclidean rings coincides with Cohn’s generalized Euclidean rings; Johnson [20]

prefers to reserve the term generalized Euclidean for the wider class of rings for

which the equation Mn(Λ) = En(Λ) · Dn(Λ) · En(Λ) holds, and we adopt his

terminology here.

5.1 Weakly Euclidean free algebras

The following is due to Cohn [9]:

Theorem 5.1.1. Let k be a (possibly skew) field. Then k[Fm] is weakly Eu-

clidean.

We shall now give a useful lifting criterion due to Johnson [20]. We say that

a ring homomorphism ψ : A → B has the lifting property for the identity when

for all a ∈ A, ψ(a) = 1 =⇒ a ∈ A∗. First we need a lemma:

Lemma 5.1.2. Let ψ : A → B be a surjective ring homomorphism with the

lifting property for the identity. If X ∈ GLn(A) is such that ψ(X) = In then

X ∈ GEn(A).

Proof. The proof is by induction on n. First suppose that X ∈ GL2(A) is such

that ψ(X) = I2. Then clearly ψ(X12) = ψ(X21) = 0 and ψ(X22) = 1; therefore

by hypothesis X22 ∈ A∗. It is clear that

E(1, 2;−X12X
−1
22 )XE(2, 1;−X−1

22 X21) =

(
Y 0

0 X22

)

where Y ∈ A. Since X is invertible, Y ∈ A∗ and so X ∈ GE2(A). Now suppose

that, for each Y ∈ GLn−1(A) such that ψ(Y ) = In−1, we have Y ∈ GEn−1(A).

Let X ∈ GLn(A) be such that ψ(X) = In. Then Xnn ∈ A∗ and we have

n−1∏
i=1

E(i, n;−XinX
−1
nn ) ·X ·

n−1∏
i=1

E(n, i;−X−1
nnXni) =

(
X ′ 0

0 Xnn

)
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for some X ′ ∈ GLn(A). Applying ψ we have ψ(X ′) = In−1 since ψ(X) = In

and ψ(E(i, n;−XinX
−1
nn )) = ψ(E(n, i;−X−1

nnXni)) = 0 for each i. Therefore by

induction hypothesis X ′ ∈ GEn−1(A) and hence X ∈ GEn(A).

Proposition 5.1.3. Let ψ : A→ B be a surjective ring homomorphism with the

lifting property for the identity. If B is weakly Euclidean then so is A.

Proof. For any X ∈ GLn(A) we may write ψ(X) = ED for some E ∈ En(B)

and some D ∈ ∆n(B). Since ψ is surjective we may choose Ê ∈ En(A) and

D̂ ∈ Dn(A) such that ψ(Ê) = E−1 and ψ(D̂) = D−1. Therefore ψ(D̂ÊX) = In

and so by (5.1.2) D̂ÊX ∈ GEn(Λ). Since Ê and X are invertible so is D̂; therefore

D ∈ ∆(Λ) and X ∈ GEn(A).

Let Λ be weakly Euclidean and consider R = Mn(Λ). Any m ×m matrix

M over R may be considered as a matrix over Λ. Writing M = ED for some

E ∈ Enm(Λ) and D ∈ Dnm(Λ) and now viewing E and D as matrices in Mn(R) it

is clear that D is diagonal as matrix over R and that E is a product of elementary

matrices over R. Thus:

Proposition 5.1.4. Let Λ be weakly Euclidean. Then the full matrix ring Mn(Λ)

is weakly Euclidean.

Since weakly Euclidean rings are closed under products, then by Wedder-

burn’s theorem, (5.1.1) and (5.1.4) we have that Λ[Fm] is weakly Euclidean when-

ever Λ is right semi-simple.

Proposition 5.1.5. If Λ is a ring such that Λ/I is weakly Euclidean for some

two-sided radical ideal I, then Λ is also weakly Euclidean.

Proof. By (5.1.3), we must show that the canonical mapping f : Λ → Λ/I has

the lifting property for the identity. Suppose that f(λ) = [λ] = [1]. Then

1 − λ ∈ I ⊂ rad(Λ). Since rad(Λ) consists of those elements x such that, for all

y ∈ Λ, 1− xy is a unit, we have 1− (1− λ) = λ is a unit in Λ.

As noted above, rad(Λ)[Fm] is radical in Λ[Fm] whenever Λ is right artinian;

applying (5.1.5) with I = rad(Λ)[Fm] gives:

Corollary 5.1.6. Let Λ be a right artinian ring. Then Λ[Fm] is weakly Euclidean.
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5.2 Lifting stably free modules

Let A = A1 × A2 be a direct product of rings. The relationship between stably

free modules over the factors and those over A is straightforward: if S is stably

free of rank n over A1 then the A-module S × An2 (with the obvious A-action) is

stably free over A. For a fibre product A = A+ ×A0 A− the relationship is less

clear; consider an E-surjective fibre square

A =


A

π−
//

π+

��

A−

ψ−
��

A+
ψ+
// A0

Any ring homomorphism φ : Λ1 → Λ2 induces a mapping φ∗ : SFn(Λ1) →
SFn(Λ2) given by φ∗(S) = S ⊗φ Λ2. We would like to be able to assert that

(πσ)∗ : SFn(A) → SFn(Aσ) is surjective for σ = +,− but without some further

conditions on A0 this does not happen.

Let S+ be a stably free module over A+ of rank n; then S+ ⊗ A0 is stably

free of rank n over A0. Now suppose that A0 has SFC, so that S+ ⊗ A0
∼= An0 .

Then there exists an isomorphism

α : S+ ⊗ A0 → An− ⊗ A0

and so we may form the A-module P = 〈S+, A
n+m
− ;α〉. Choose an isomorphism

β : S+ ⊕ Am+ → An+m
+ for some m and define

f : P ⊕ Am = 〈S+ ⊕ Am+ , An+m
− ;α⊕ Im〉 → 〈An+m

+ , An+m
− ; (α⊕ Im) ◦ (β−1 ⊗ Id)〉

by f(m+,m−) = (β(m+),m−). Then f is an isomorphism of A-modules. There-

fore, up to isomorphism, P ⊕ Am is locally free for some m and since A is E-

surjective P ⊕Am is a locally free projective. However, without further assump-

tions on A0 we cannot guarantee that P ⊕ Am is stably free; that is, we cannot

guarantee that

[(α⊕ Im) ◦ (β−1 ⊗ Id)⊕ Ik] = [In+m+k] ∈ GLn+m+k(A) (5.1)
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for some k. The following is due to Johnson [20]:

Theorem 5.2.1. Let A be an E-surjective fibre square as above. If A0 has SFC

and is weakly Euclidean then the induced map π+ × π− : SF1(A) → SF1(A+) ×
SF1(A−) is surjective.

The condition that A0 be weakly Euclidean is not necessary however. Since

A is E-surjective we have GL(A−)\GL(A0)/GL(A+) = K1(A−)\K1(A0)/K1(A+)

and so stabilizing (5.1) gives:

Proposition 5.2.2. Let A be an E-surjective fibre square as above. If A0 has

SFC and K1(A−)\K1(A0)/K1(A+) consists of a single element then for each n

the induced map π+ × π− : SFn(A)→ SFn(A+)× SFn(A−) is surjective.



Chapter 6

Orders and algebras

Let R be a commutative integral domain of characteristic zero, with field of

fractions k. An R-order is an R-algebra whose underlying module is finitely

generated and free. We may embed any R-order Λ in k ⊗ Λ via

Λ→ k ⊗ Λ

λ 7→ 1⊗ λ

and thus speak of Λ as an R-order in the k-algebra k⊗Λ. To give some examples:

(i) The matrix ring Mn(R) is an R-order in Mn(k).

(ii) Let k be an algebraic number field (i.e. a finite extension of Q). Then

the ring of algebraic integers in k is a Z-order in k.

(iii) Let G be a finite group. Then Z[G] is a Z-order in Q[G].

An R-order Λ in A is said to be maximal if it is not properly contained in

another R-order in A. Maximal orders always exist, but may not be unique. A

ring Λ is said to be left (resp. right) hereditary if every left (resp. right) ideal of

Λ is projective. If Λ is Noetherian then Λ is left hereditary if and only if it is right

hereditary (see [1]). When this is the case we simply say that Λ is hereditary. We

note the following result, which will be useful in a later chapter (see [33] Theorem

21.4):

Proposition 6.0.1. Let Λ be a maximal R-order in A. Then Λ is hereditary.

As a consequence, when Λ is maximal all submodules of free Λ-modules

40
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are projective (see [33] Corollary 10.7), and hence Λ has global dimension 1. An

example of a maximal order in the real quaternions H is given by the Hurwitz

quaternions

H = {a+ bi+ cj + dk ∈ H | a, b, c, d ∈ Z or a, b, c, d ∈ Z +
1

2
} ⊂ H.

This shows that the set ordinary integral quaternions (or Lipschitz quaternions)

is not a maximal order in H.

6.1 The discriminant

Given an R-order Λ, and x ∈ Λ, denote by x̂ the homomorphism of right modules

x̂ : Λ→ Λ given by

x̂(y) = xy.

There is a symmetric bilinear form βΛ : Λ× Λ → R given by βΛ(x, y) = Tr(x̂ŷ).

Say that Λ is nondegenerate as an R-algebra when βΛ is nondegenerate as a

bilinear form; that is, when the map

β∗Λ : Λ→ Λ∗; β∗Λ(x)(y) = βΛ(x, y)

is injective, where Λ∗ = HomR(Λ, R) is the R-dual of Λ.

Proposition ([20] Corollary 5.5) 6.1.1. Let R be a commutative integral

domain with field of fractions k, and let Λ be an R-order in A = k ⊗ Λ. Then

Λ is nondegenerate ⇐⇒ A is semisimple.

Suppose that {ε1, . . . , εn} is anR-basis for Λ. The discriminant Disc(ε1, . . . , εn)

is defined by

Disc(ε1, . . . , εn) = det((βi,j)1≤i,j≤n)

where βi,j = βΛ(εi, εj). If {e1, . . . , en} is another R-basis for Λ, and if A =
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(αi,j)1≤i,j≤n is the change of basis matrix

εi =
n∑
j=1

αi,jej

then Disc(Λ) = det(A)2Disc(e1, . . . , en). It is now easy to see:

Proposition 6.1.2. The following conditions on an R-order Λ are equivalent:

(i) Λ is nondegenerate;

(ii) Disc(ε1, . . . , εn) 6= 0 for some R-basis {ε1, . . . , εn} of Λ;

(iii) Disc(ε1, . . . , εn) 6= 0 for all R-bases {ε1, . . . , εn} of Λ.

This now gives an invariant of R-orders as follows; if {ε1, . . . , εn} is an R-

basis for an R-order Λ, we define the discriminant Disc(Λ) to be the image of

Disc(ε1, . . . , εn) in the multiplicative monoid R/(R∗)2. Since Z∗ = {1,−1}, the

discriminant of a Z-order is a well-defined integer.

Now suppose that Λ is an R-order in a simple algebra A = k ⊗ Λ whose

centre is k (the field of fractions of R). Then we may make the identification

A⊗k k̄ ∼= Mn(k̄), where k̄ is the algebraic closure of k.

Proposition 6.1.3. Let x ∈ A. Then Tr(x̂) = Tr(x̂⊗ 1) = ntr(x ⊗ 1), where

tr(x⊗ 1) refers to the trace of the element x⊗ 1 ∈Mn(k̄).

Proof. Let {ε(1, 1), . . . , ε(1, n), ε(2, 1), . . . , ε(n, n)} be the standard basis forMn(k̄).

If x⊗ 1 = (xi,j)1≤i,j≤n, then we have

x̂⊗ 1(ε(i, j)) = x1,iε(1, j) + x2,iε(2, j) + . . .+ xn,iε(n, j)

and consequently the coefficient of the diagonal element (that is, the coefficient

of ε(i, j)) is xi,i. Therefore there are n diagonal entries of x̂⊗ 1 equal to xi,i, and

hence Tr(x̂⊗ 1) = nx1,1 + . . .+ nxn,n = ntr(x⊗ 1)

We may now define the reduced trace, tr(Λ) ∈ R/(R∗)2 of an R-order in a

central simple algebra A as follows: let {ε1, . . . , εn} be a basis for Λ over R and

put

disc(Λ) = det((bi,j)1≤i,j≤n),
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where bi,j = tr(εiεj⊗1). Then above proposition shows that Disc(Λ) = nn
2
disc(Λ),

where Λ = Rn as an R-module.

Proposition 6.1.4. Suppose that Λ and Γ are Z-orders in the same Q-algebra

A such that Λ ⊂ Γ. Then Disc(Γ) divides Disc(Λ), and Λ = Γ if and only if

Disc(Λ) = Disc(Γ). If A is central simple, the same statements hold for the

reduced discriminant disc.

Proof. Let {ε1 . . . εn} be a Z-basis for Λ and let {φ1 . . . , φn} be a Z-basis for Γ.

Write εi =
∑
αijφj for αij ∈ Z; then

Disc(Λ) = Disc(ε1, . . . , εn) = det(A)2Disc(φ1, . . . , φn) = det(A)2Disc(Γ)

and so Disc(Γ) | Disc(Λ). Clearly Disc(Γ) = Disc(Λ) ⇐⇒ det(A) = ±1 ⇐⇒
{ε1, . . . , εn} is also a basis for Γ.

6.2 Quaternion algebras

Let R be a (commutative) integral domain with characteristic 6= 2: given two

non-zero elements a, b ∈ R, the quaternion algebra determined by a and b,
(
a,b
R

)
,

is the free R-algebra on two generators i, j modulo the defining relations

i2 = a, j2 = b, ij = −ji.

For k := ij we have k2 = (ij)(ij) = −i2j2 = −ab. For example, Hamilton’s

quaternions are given by H =
(−1,−1

R

)
.

Proposition 6.2.1. Let R be a commutative ring in which 2a is invertible.

Suppose that there exists z, w ∈ R such that z2 − bw2 = a; then there is an

isomorphism of R algebras (
a, b

R

)
∼= M2(R)

Proof. It is easy to check that the R-linear map f :
(
a,b
R

)
→M2(R) defined by

f(1) =

(
1 0

0 1

)
, f(i) =

(
z w

−bw −z

)
, f(j) =

(
0 1

b 0

)



CHAPTER 6. ORDERS AND ALGEBRAS 44

is a ring homomorphism. To see that f is bijective when 2a is invertible note

that, if z2 − bw2 = a then

a

(
1 0

0 1

)
+ z

(
z w

−bw −z

)
+ w

(
0 1

b 0

)(
z w

−bw −z

)
=

(
2a 0

0 0

)
.

Quaternion algebras over a field are either division algebras or 2× 2 matrix

algebras (see [25], p.58):

Proposition 6.2.2. Let K be a field. Then
(
a,b
K

)
is a division algebra if and

only if the equation ax2 + by2 = 1 has no solution in K. If
(
a,b
K

)
is not a division

algebra then it is isomorphic to M2(K).

In a later chapter we shall need to consider the quaternion algebra
(
−1,−3

Q

)
,

which is a division algebra since the equation −x2 − 3y2 = 1 obviously has no

solution in Q.

Define a bi-pointed ring to be an ordered triple (R, a, b) where R is a ring and

a, b are two non-zero elements ofR. A morphism of bi-pointed rings f : (R, a, b)→
(S, c, d) is just a ring homomorphism f : R→ S such that f(a) = c, f(b) = d. The

quaternion algebra construction gives a functor from the category of bi-pointed

rings (R, a, b) with R a commutative integral domain with characteristic 6= 2 to

itself. It is clear that this functor is exact when considered as a functor on the

underlying additive groups. Thus by (3.1.7) we have:

Proposition 6.2.3. Suppose that

A
π−
//

π+

��

A−

ψ−
��

A+
ψ+
// A0

is a fibre square with A, A+, A− and A0 all commutative integral domains of

characteristic 6= 2. Denote aσ = πσ(a), bσ = π(bσ) for σ = +,− and a0 =

ψ+(π+(a)), b0 = ψ+(π+(b)). If a, b, a+, b+, a−, b+, a0, b0 6= 0 then the following is
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also a fibre square (
a,b
A

)
(π−)∗

//

(π+)∗
��

(
a−,b−
A−

)
(ψ−)∗
��(

a+,b+
A+

)
(ψ+)∗

//

(
a0,b0
A0

)
6.3 Cyclic algebras

Let R be a commutative ring and suppose that θ : R → R satisfies θn = Id for

some n. Choose an element a ∈ R such that θ(a) = a. We define the cyclic algebra

Cn(R, θ, a) to be the free two sided R-module of rank n with basis {1, y, . . . , yn−1}
and multiplication determined by the relations

yn = a, yr = θ(r)y for all r ∈ R.

Some group rings can occur as cyclic algebras over group rings of a normal sub-

group. For example, the group ring of the dihedral group of order 6 may be

written Z[D6] = C2(Z[C3], θ, 1), where θ is induced by the non-trivial element of

Aut(C3).

Define a pointed n-ring to be a triple (R, θ, a) where θ : R → R satisfies

θn = Id and a ∈ R is such that θ(a) = a. A morphism of pointed n-rings

f : (R, θ, a) → (S, ψ, b) is a ring homomorphism f : R → S such that f(a) = b

and f ◦θ = ψ ◦f . Then the cyclic algebra construction defines a functor from the

category of commutative pointed n-rings to the category of rings. This functor is

clearly exact when considered as a functor on the category of underlying additive

groups. Thus by (3.1.7) we have:

Proposition 6.3.1. Suppose that

(A, θ, a)
π−
//

π+

��

(A−, θ−, a−)

ψ−
��

(A+, θ+, a+)
ψ+

// (A0, θ0, a0)
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is a commutative square of pointed n-rings such that A = A+ ×A0 A−. Then

Cn(A, θ, a)
(π−)∗

//

(π+)∗
��

Cn(A−, θ−, a−)

(ψ−)∗
��

Cn(A+, θ+, a+)
(ψ+)∗

// Cn(A0, θ0, a0)

is also a fibre square.

6.4 The cyclic algebra C

Let ζ6 denote the sixth root of unity, and let θ : Z[ζ6] → Z[ζ6] denote the

homomorphism given by

θ(1) = 1; θ(ζ6) = ζ−1
6 = ζ5

6 .

Clearly −1 is a fixed point of θ; let C denote the cyclic algebra C2(Z[ζ6], θ,−1).

We shall embed C in the quaternion algebra
(
−1,−3

Q

)
. The cyclic algebra C has

two generators ζ6, y with defining relations

ζ2
6 − ζ6 + 1 = 0; y2 = −1; yζ6 = ζ−1

6 y = −ζ2
6y.

Define ψ : C →
(
−1,−3

Q

)
by ψ(y) = i, ψ(ζ6) = (j + 1)/2. It is easy to check that

(
j + 1

2

)2

−
(
j + 1

2

)
+ 1 = 0 and i

(
j + 1

2

)
= −

(
j + 1

2

)2

i

and so ψ is a well-defined ring homomorphism. Clearly we have

C ∼= ψ(C) = Z + Zi+ Z

(
j + 1

2

)
+ Zi

(
j + 1

2

)

which is a Z-order in
(
−1,−3

Q

)
. The following calculation is due to Swan [34].

Proposition 6.4.1. C is a maximal Z-order in
(
−1,−3

Q

)
.
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Proof. Take the basis E = {1, i, 1+j
2
, i+k

2
} for C over Z. Then Q(i) is a splitting

field for
(
−1,−3

Q

)
; we have

Q(i)⊗
(
−1,−3

Q

)
∼= M2(Q(i))

1⊗ 1 7→

(
1 0

0 1

)
, 1⊗ i 7→

(
0 1

−1 0

)
, 1⊗ j 7→

(
2i 1

1 −2i

)
Computing the reduced discriminant gives

disc(C) = det


2 0 1 0

0 −2 0 −1

1 0 −1 0

0 −1 0 −2

 = −9,

Suppose that C is properly contained in Γ, where Γ is another Z-order in
(
−1,−3

Q

)
.

Then we may choose a basis {φ1, . . . , φ4} for Γ such that 1 = α1φ1, i = α2φ2,
j+1

2
= α3φ3, i+k

2
= α4φ4 for some α1 . . . , α4 ∈ Z. By (6.1.4) we have −9 =

disc(C) = (α1α2α3α4)2disc(Γ) and so disc(Γ) = −1, and α1α2α3α4 = ±3. This

shows that 3C ⊂ 3Γ ⊂ C; let I be the two sided ideal in C/3C given by I = 3Γ/3C.
Then I is a vector space over F3, and since all but one of the αis are units,

dimF3(I) = 1. Moreover, if αi = ±3, then α2
i = 9 =⇒ α2

ix ∈ 3C if x ∈ Γ and so

I2 = 0.

In C/3C we have
(
j+1

2
+ 1
)2

= 0. Therefore, if we put J = F3

(
j+1

2
+ 1
)

+

F3i
(
j+1

2
+ 1
)

it is easy to check that J2 = 0. Also

(C/3C)/J ∼= F3[i] ∼= F9.

Let rad(Λ/3Λ) denote the Jacobson radical of (C/3C); then since J is nilpotent

we have J ⊂ rad(C/3C) and (C/3C)/rad(C/3C) ⊂ (C/3C)/J =⇒ J = rad(C/3C)
since F9 is simple. Therefore I ⊂ J as I is nilpotent. As a module clearly J ∼= F9;

therefore J is simple and we must have I = J or I = 0. However, dimF3(I) = 1

and so we have a contradiction. Therefore C is maximal.



Chapter 7

Stably free modules over Z[G×Fn]

Denote by SF1(Λ) the set of isomorphism classes of stably free modules of rank

1 over a ring Λ. Theorem A states that SF1(Z[G × F ]) is infinite when F maps

surjectively onto a non-abelian free group and where G is finite nilpotent of non

square-free order.

7.1 The prime squared case

Theorem A will be deduced from the following two special cases:

(I) SF1(Z[Cp2 × Fm]) is infinite for every prime p and m ≥ 2;

(II) SF1(Z[Cp × Cp × Fm]) is infinite for every prime p and m ≥ 2.

For any positive integer d let cd(x) denote the dth cyclotomic polynomial. From

the factorization (xp
2 − 1) = cp2(x)cp(x)c1(x) = cp2(x)(xp − 1) we obtain the

Milnor square

Z[x]/(xp
2 − 1) //

��

Z[x]/(cp2(x))

��

Z[x]/(xp − 1) // Z[x]/I

where I is the sum of the ideals (xp − 1) and (cp2(x)). However, since cp2(x) =

(xp(p−1) + xp(p−2) + . . .+ xp + 1), we have

p = cp2(x)− (xp(p−2) + 2xp(p−3) + . . .+ (p− 2)xp + (p− 1))(xp − 1),

48
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and hence I = (p, xp − 1). Therefore we may rewrite the above square as

Z[x]/(xp
2 − 1) //

��

Z[x]/(cp2(x))

��

Z[x]/(xp − 1) // Fp[x]/(xp − 1)

Applying the functor −⊗ Z[Fm] we obtain another Milnor square:

A =


Z[Cp2 × Fm] //

��

Z[ζp2 ][Fm]

ψ−
��

Z[Cp × Fm]
ψ+
// Fp[Cp × Fm]

where ζp2 is a primitive p2-th root of unity. Since Z[ζp2 ] is an integral domain,

Z[ζp2 ][Fm] has only trivial units; that is

Z[ζp2 ][Fm]∗ = (Z[ζp2 ])
∗ × Fm

Proposition 7.1.1. Z[Cp × Fm]∗ = (Z[Cp])
∗ × Fm

Proof. Consider the projections π− : Z[Cp × Fm]∗ → Z[ζp][Fm]∗ and π+ : Z[Cp ×
Fm]∗ → Z[Fm]∗ given by π−(x) = ζp and π+(x) = 1. Let u ∈ Z[Cp × Fm]∗. Then

π+(u) ∈ Z[Fm]∗ which has only trivial units; thus

u = aw +
∑

g∈Fm−{w}

agg

where a(1) = ±1, w ∈ Fm and ag ∈ Z[Cp] = Z[x]/(xp − 1). Each ag is divisible

by (x− 1) since ag ∈ ker(π+). Now

π−(u) = a(ζp)w +
∑

g∈Fm−{w}

ag(ζp)g

and since Z[ζp][Fm] has only trivial units we must have ag(ζp) = 0. (Note that

we cannot have a(ζp) = 0, for then a(x) = (1 + . . . + xp−1)b(x), and a(1) =

±1 =⇒ b(1) = ±1/p, contradicting the fact that a(x) ∈ Z[x].) Therefore both

(1 + x+ . . .+ xp−1) and (x− 1) divide each ag and so each ag = 0.
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Proposition 7.1.2. If m ≥ 2 then

X = Z[ζp2 ][Fm]∗\[Fp[Cp × Fm]∗,Fp[Cp × Fm]∗]/Z[Cp × Fm]∗

is infinite.

Proof. Define y = (1 − x) ∈ Fp[Cp]
∗; then yp = 0. Choose two generators t and

s of Fm and define

δn = (1 + yt)sn(1 + yt)−1s−n ∈ [Fp[Cp × Fm]∗,Fp[Cp × Fm]∗].

We claim that {δn | n ∈ N} are a set of distinct coset representatives in X.

Suppose that [δn] = [δm]; then there exists u ∈ Z[ζp2 ][Fm]∗ and u′ ∈ Z[Cp × Fm]∗

such that δn = ψ−(u)δmψ+(u′). In fact since u and u′ are necessarily trivial units

δn = ψ−(a)ψ+(b)wδmv

for some a ∈ Z[ζp2 ]
∗, b ∈ Z[Cp]

∗ and some w, v ∈ Fm. The units of Fp[Cp] are of

the form c + d where c ∈ F∗p and d ∈ (y), as Fp[Cp] is a local ring with maximal

ideal (y). Therefore

(∗) (1 + yt)sn(1 + yt)−1s−n = (c+ dy)w(1 + yt)sm(1 + yt)−1s−mv

Using the fact that

(∗∗) (1 + yt)sk(1 + yt)−1s−k = 1 + y(t− skts−k)− y2(tskts−k − skt2s−k) + . . .

. . .± yp−1(tsktp−2s−k − sktp−1s−k)

we can expand both sides (∗) to obtain

1 + e = cwv + dwv + cwfv + dwfv

where 1 + e is given by setting k = n in (∗∗) and 1 + f is given by setting

k = m in (∗∗) (so that e, f ∈ (y)). Every element of Fp[Cp × Fm] has a unique
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representation of the form

p−1∑
i=0

αiy
i (αi ∈ Fp[Fm]).

Therefore we may compare coefficients of y in (∗). The coefficient of y0 = 1 shows

that 1 = cwv =⇒ c = 1 and v = w−1. Writing d =
∑p−1

i=1 diy
i and comparing

coefficients of y gives d1 = 0 and

t− snts−n = wtw−1 − wsmts−mw−1

and so we must have

t = wtw−1 and snts−n = wsmts−mw−1

The first equation shows that w = 1 and the second shows that m = n.

(7.1.2) and (3.0.4) together prove (I):

Theorem 7.1.3. For every prime p and every m ≥ 2, SF1(Z[Cp2×Fm]) is infinite.

The proof of (II) is very similar. Let A be a ring and consider the Milnor

square

A[x]/(xp − 1)

��

// A[x]/(1 + x+ . . .+ xp−1)

��

A // A/p

(7.1)

Setting A = Z[y]/(yp − 1) we have

Z[x, y]/(xp − 1, yp − 1)

��

// Z[x, y]/(Σx, y
p − 1)

��

Z[y]/(yp − 1) // Fp[y]/(yp − 1)

Making the identifications Z[x, y]/(xp− 1, yp− 1) = Z[Cp×Cp], Z[x, y]/(Σx, y
p−
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1) = Z[ζp][Cp] and B[y]/(yp − 1) = B[Cp] and tensoring with Z[Fm] we have

B =


Z[Cp × Cp × Fm]

��

// Z[ζp][Cp × Fm]

��

Z[Cp × Fm] // Fp[Cp × Fm]

We first need to show that Z[ζp][Cp × Fm] has only trivial units:

Proposition 7.1.4. Z[ζp][Cp × Fm]∗ = (Z[ζp][Cp])
∗ × Fm.

Proof. Consider the Milnor square formed by setting A = Z[y]/(1 + y+ . . .+ yp)

in (7.1), tensoring with Z[Fm] and then taking unit groups:

Z[x, y]/(xp − 1,Σy)[Fm]∗

��

// Z[x, y]/(Σx,Σy)[Fm]∗

��

Z[y]/(Σy)[Fm]∗ // Fp[y]/(Σy)[Fm]∗

Since both Z[x, y]/(Σx,Σy) and Z[y]/(Σy) are integral domains the corresponding

corners have only trivial units. A similar proof to that of (7.1.1) now applies.

Essentially the same proof as that of (7.1.2) proves:

Proposition 7.1.5. Z[ζp][Cp × Fm]∗\[Fp[Cp × Fm]∗,Fp[Cp × Fm]∗]/Z[Cp × Fm]∗

is infinite.

Together (7.1.5) and (3.0.4) prove (II):

Theorem 7.1.6. For every prime p and every m ≥ 2, SF1(Z[Cp × Cp × Fm]) is

infinite.
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7.2 Proof of Theorem A

Let G be a finite group and let H be a normal subgroup of G. By (3.1.4), we

may form the Milnor square:

Z[G] //

��

Z[G]/(ΣH)

��

Z[G/H] // (Z/N)[G/H]

where ΣH =
∑

h∈H h and N = |H|. Tensoring with Z[Fm] we have:

Z[G× Fm] //

��

Z[G× Fm]/(ΣH)

��

Z[G/H × Fm] // (Z/N)[G/H × Fm]

Now by (4.1.6) and (5.1.6), (Z/N)[G/H ×Fm] has SFC and is weakly Euclidean.

Hence by (5.2.1) the induced map SF1(Z[G × Fm]) → SF1(Z[G/H × Fm]) ×
SF1(Z[G× Fm]/(Σ)) is surjective and thus:

Proposition 7.2.1. Let G be a finite group with normal subgroup H C G. If

SF1(Z[G/H × Fm]) is infinite then so is SF1(Z[G× Fm]).

Let G be a finite group of order pk where p is prime and k ≥ 2. Then there

exists a normal subgroup H C G such that |H| = pk−2 (see [17] p.24). Hence

either G/H ∼= Cp2 or G/H ∼= Cp × Cp; in either case by (7.1.3), (7.1.6) and

(7.2.1) SF1(Z[G× Fm]) is infinite.

Now let G be a finite nilpotent group of non square-free order. Since G

is nilpotent, G is the direct product of its Sylow subgroups (see [17], p.24) say

G ∼= H1× . . .×Hr. As |G| is non square-free we may choose a prime p such that

pk is the largest power of p dividing |G| and where k ≥ 2. Therefore at least one

of the Hi has order pk — assume without loss of generality that |H1| = pk. Then

|G/(H2 × . . .×Hr)| = pk and so we have:

Theorem 7.2.2. Let G be a finite nilpotent group of non square-free order and

let m ≥ 2. Then Z[G×Fm] admits infinitely many isomorphically distinct stably

free modules of rank 1.
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Now let F be a group and suppose there exists a surjective map f : F → Fn

for some n ≥ 2. Then if t1, . . . tn generate Fn choose x1, . . . , xn ∈ F such that

f(xi) = ti for each 1 ≤ i ≤ n. We may define a right inverse g : Fn → F by

g(ti) = xi for each i. For any group G we have homomorphisms f∗ : Z[G× F ]→
Z[G × Fm] and g∗ : Z[G × Fn] → Z[G × F ] such that f∗ ◦ g∗ = Id, and so

Z[G × Fn] is a retract of Z[G × F ]. Therefore by (4.1.8) there is an injective

mapping SF1(Z[G × Fn]) → SF1(Z[G × F ]). Together with (7.2.2) this proves

Theorem A of the introduction:

Theorem 7.2.3. Let G be a finite nilpotent group of non square-free order, and

let F be a group which maps surjectively onto F2 for some n ≥ 2. Then Z[G×F ]

admits infinitely many isomorphically distinct stably free modules of rank 1.



Chapter 8

Stably free modules over

Z[Q(12m)× C∞]

The question now arises: does the conclusion of Theorem A hold for any finite

group of non square-free order? The smallest groups for which this question arises

are those of order 12; then A4 the alternating group on 4 elements, D∗6 the dicyclic

group of order 12 and D12 the dihedral group of order 12 are all soluble but not

nilpotent.

In this chapter we shall show that the conclusion of Theorem A holds for

G = D∗6. In fact we shall show something stronger, namely:

There are infinitely many isomorphically distinct stably free modules

of rank 1 over the integral group ring Z[D∗6 × C∞].

Denote by Q(4m) the group

Q(4m) = 〈x, y | xm = y2, yx = x−1y〉.

Notice that Q(12) = D∗6. In [20], Johnson shows that, for even values of m, there

are infinitely many isomorphically distinct stably free modules of rank one over

Z[Q(4m) × C∞]. We shall obtain an analogous result for Z[Q(4m) × C∞] when

m is a multiple of 3.

From the factorization (x2m − 1) = (xm − 1)(xm + 1) and (3.1.1) we obtain

a fibre square:

55
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Z[C2m]

��

// Z[x]/(xm + 1)

��

Z[Cm] // F2[Cm]

(since F2[Cm] = Z[x]/((xm + 1) + (xm − 1))). The canonical involution θ :

Z[C2m]→ Z[C2m] given by θ(x) = x−1 induces involutions on each of the corners

of the above square (with fixed points equal to images of xm). So we may apply

the cyclic algebra construction to the above fibre square of involuted rings to

obtain another fibre square (see (6.3.1)):

Z[Q(4m)]

��

// C2(Z[x]/(1 + xm), θ,−1)

��

Z[D2m] // F2[D2m]

Applying the exact functor −⊗ Z[t, t−1] gives another fibre square:

Z[Q(4m)× C∞]

��

// C2(Z[x]/(1 + xm), θ,−1)[t, t−1]

��

Z[D2m × C∞] // F2[D2m × C∞]

We proceed to study stably free modules over C2(Z[x]/(1 + xm), θ,−1)[t, t−1] in

the case m = 3. From the factorization x3 + 1 = (x + 1)(x2 − x + 1) we obtain

the following fibre square:

Z[x]/(x3 + 1)

��

// Z[x]/(x2 − x+ 1)

��

Z[x]/(x+ 1) // F3[x]/(x+ 1)

The involution θ on R = Z[x]/(1 + x3) (θ(x) = x−1 = −x2 with fixed point

x3 = −1) induces involutions on the remaining corners of the above square;

applying the cyclic algebra construction to the fibre square of involuted rings
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gives another fibre square as follows

C2(Z[x]/(1 + x3), θ,−1)

��

// C2(Z[ζ6], θ,−1)

��

Z[i] // F3[i]

Here we are identifying Z[x]/(x2 − x + 1) = Z[ζ6]. Writing C = C(Z[ζ6], θ,−1)

and tensoring with Z[C∞] now gives another fibre square

C2(Z[x]/(1 + x3), θ,−1)[t, t−1]

��

// C[t, t−1]

��

Z[i][t, t−1] // F3[i][t, t−1]

In the next section we shall construct projective modules over a localization of

C[t, t−1].

8.1 Projective modules over C(p)[t, t
−1]

Choose an odd prime p and let C(p) denote the local ring obtained from C by

inverting all primes q 6= p. From section 6.4 we known that C can be expressed

as a Z-order in
(
−1,−3

Q

)
:

C = Z + Zi+ Z

(
1 + j

2

)
+ Z

(
i+ k

2

)
Since p is an odd prime, 2−1 ∈ C(p), and so we have

C(p) = Z(p) + Z(p)i+ Z(p)j + Z(p)k =

(
−1,−3

Z(p)

)
Let Ẑ(p) denote the ring of p-adic integers; then the canonical inclusion Z(p) → Ẑ(p)

induces an inclusion

C(p) =

(
−1,−3

Z(p)

)
→

(
−1,−3

Ẑ(p)

)
.
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Let S be the regular sub-monoid of C(p) given by S = {pr | r ≥ 0}. Then for all

pr ∈ S we have

C(p)/(p
r) ∼=

(
−1,−3

Z(p)

)
/(pr) ∼=

(
−1,−3

Z/pr

)
∼=

(
−1,−3

Ẑ(p)

)
/(pr).

Therefore by (3.1.5) we obtain a Karoubi square

A(p) =


C(p)

��

//

(
−1,−3

Ẑ(p)

)
��(

−1,−3
Q

)
//

(
−1,−3

Q̂(p)

)
where Q̂(p) is the field of p-adic numbers. Applying the exact functor −⊗Z[t, t−1]

gives another fibre square:

A(p)[t, t
−1] =


C(p)[t, t

−1]

��

//

(
−1,−3

Ẑ(p)[t,t
−1]

)
��(

−1,−3
Q[t,t−1]

)
//

(
−1,−3

Q̂(p)[t,t
−1]

)
We shall show that the two p-adic quaternion algebras in the above square are

isomorphic to rings 2×2 matrices. By (6.2.1) it suffices to show that the equation

z2 + w2 = −3 has a solution in both Ẑ(p)[t, t
−1] and Q̂(p)[t, t

−1]. We begin by

showing that it has a solution in Z/p.

Proposition 8.1.1. Let k be a finite field. Then any element in k is expressible

as a sum of two squares in k.

Proof. Let k be a finite field with |k| = pn for some prime p. Define ψ : k∗ → k∗

by ψ(x) = x2. If p = 2 then, for a, b ∈ k, we have a2 = b2 ⇐⇒ (a− b)2 = 0 ⇐⇒
a = b. Therefore ψ is injective, and hence surjective, so that every element in k

is trivially expressible as a sum of itself and zero. If p 6= 2 then ker(ψ) = {1,−1}
and so |Im(ψ)| = (pn−1)/2. Let m = (pn−1)/2+1; then we may choose distinct

elements a2
1, . . . , a

2
m ∈ Im(ψ) ∪ {0} ⊂ k (taking a1 = 0). Let x ∈ k; then the
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elements x − a2
1, . . . , x − a2

m are obviously distinct, and since 2m > pn we have

x− a2
i = a2

j for some i, j and thus x = a2
i + a2

j .

Proposition 8.1.2. For every prime p 6= 2, 3 the equation z2 + w2 = −3 has a

solution in Ẑ(p).

Proof. By (8.1.1) z2 + w2 = −3 has a solution in Fp. Suppose that there exist

z ∈ Z/(pr), w ∈ (Z/(pr))∗ such that z2 + w2 = −3 and consider the canonical

mapping φr : Z/(pr+1) → Z/(pr). Clearly we may choose ẑ ∈ Z/(pr+1) and

w′ ∈ (Z/(pr+1))∗ such that φr(ẑ) = z and φr(w
′) = w. Therefore

φr(ẑ
2 + w′2 + 3) = 0

Define v = 1
2w′

(ẑ2+w′2+3); since v ∈ ker(φr) we have v2 = 0. Now put ŵ = w′−v.

Then

ẑ2 + ŵ2 + 3 = ẑ2 + w′2 − 2w′v + 3

= ẑ2 + w′2 − (ẑ2 + w′2 + 3) + 3

= 0.

Therefore, inductively, z2 + w2 = −3 has a solution in Z/(pr) for all r ≥ 1.

Since Ẑ(p) is the inverse limit lim←−(φr), it follows that z2 + w2 = −3 has a

solution in Ẑ(p).

Therefore by (6.2.1):

Corollary 8.1.3. There is an isomorphism
(
−1,−3

Ẑ(p)

)
∼= M2(Ẑ(p)).

Now, since A(p)[t, t
−1] is a Karoubi square, then by (3.2) the locally free

modules of rank 1 over C(p) are in one-to-one correspondence with the double

coset

GL1(A(p)[t, t
−1]) =

(
−1,−3

Ẑ(p)[t, t−1]

)∗
\

(
−1,−3

Q̂(p)[t, t−1]

)∗
/

(
−1,−3

Q[t, t−1]

)∗
.
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By (3.0.3) and (3.1.6) each locally free module over A(p)[t, t
−1] is projective. We

shall show that GL1(A(p)[t, t
−1]) is infinite by relating it to Johnson’s calculation

(3.2.1).

Proposition 8.1.4. When p 6= 2, 3 the double coset GL1(A(p)[t, t
−1]) is infinite.

Hence there are an infinite number of isomorphically distinct rank 1 projective

modules over C(p)[t, t
−1].

Proof. Notice that
(
−1,−3
Q[t,t−1]

)
∼=
(
−1,−3

Q

)
[t, t−1]. Since −z2 − 3w2 = 1 does not

have a solution in Q, then by (6.2.2)
(
−1,−3

Q

)
is a division ring. Therefore(

−1,−3
Q

)
[t, t−1] has only trivial units (that is, the only units are non-zero mono-

mials). However, each power tk ∈
(
−1,−3
Q[t,t−1]

)∗
commutes with each element of(

−1,−3

Q̂(p)[t,t
−1]

)∗
, and hence may be regarded as originating in

(
−1,−3

Ẑ(p)[t,t
−1]

)∗
. Thus

GL1(A(p)[t, t
−1]) =

(
−1,−3

Ẑ(p)[t, t−1]

)∗
\

(
−1,−3

Q̂(p)[t, t−1]

)∗
/

(
−1,−3

Q

)∗
.

By (8.1.2) we may choose z, w ∈ Ẑ(p) ⊂ Q̂(p) such that z2 + w2 = −3. Hence

by (8.1.1) we may choose an isomorphism f0 :
(
−1,−3

Q̂(p)[t,t
−1]

)
→ M2(Q̂(p)[t, t

−1]).

Then f0 induces homomorphisms f− :
(
−1,−3

Ẑ(p)[t,t
−1]

)
→ M2(Ẑ(p)[t, t

−1]) and f+ :(
−1,−3

Q

)
→M2(Q̂(p)). In (3.2.1) we saw that

GL2(T (p)) = GL2(Ẑ(p)[t, t
−1])\GL2(Q̂(p)[t, t

−1])/GL2(Q̂(p))

is infinite. Since f0 is an isomorphism the induced map f∗ : GL1(A(p)[t, t
−1]) →

GL2(T (p)) is surjective and so GL1(A(p)[t, t
−1]) is also infinite.

8.2 Computing K̃0(C(p)[t, t
−1])

In fact each of the projective modules constructed above are stably free; to see

this we must first compute K̃0(C(p)[t, t
−1]), the reduced projective class group of

C(p)[t, t
−1]. Recall the following theorem of Grothendieck (see [3]):
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Theorem 8.2.1. Let Λ be a left regular ring (i.e. a left Noetherian ring of finite

global dimension). Then there is an isomorphism

K̃0(Λ[t, t−1]) ∼= K̃0(Λ).

Proposition 8.2.2. C(p) is left regular for every odd prime p.

Proof. Every Z-order is a finitely generated over Z and hence both left and right

Noetherian. Therefore C is Noetherian and hence so is its localization C(p). By

(6.0.1), C is hereditary. Suppose that I is a left ideal of C(p); then since C(p) is

Noetherian, I is finitely generated by (say) x1, . . . , xn. Since C is a subring of C(p)

we can consider I as a C-module. Let Ĩ be the C-submodule of I generated by

x1, . . . , xn; then it is easy to see that Ĩ ⊗C C(p)
∼= I. Then as C is hereditary, Ĩ is

projective and hence so is I.

Thus every ideal in C(p) is projective and hence C(p) is hereditary. Every

hereditary ring has global dimension 1, and so C(p) is regular.

Corollary 8.2.3. For every prime p 6= 2, 3 there is an isomorphism

K̃0(C(p)[t, t
−1]) ∼= K̃0(C(p)).

Consider the fibre square

C(p)

��

//

(
−1,−3

Ẑ(p)

)
��(

−1,−3
Q

)
//

(
−1,−3

Q̂(p)

)
We shall calculate K̃0(C(p)) from the ‘Mayer - Vietoris’ exact sequence (3.0.5)

associated to the above square:
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K1(C(p)) K1

(
−1,−3

Ẑ(p)

)
⊕K1

(
−1,−3

Q

)
K1

(
−1,−3

Q̂(p)

)

K0(C(p)) K0

(
−1,−3

Ẑ(p)

)
⊕K0

(
−1,−3

Q

)
K0

(
−1,−3

Q̂(p)

)

f1 f2

δ

f3 f4

where the maps are as in (3.0.5). Let R denote either Ẑ(p) or Q̂(p); by Morita

equivalence we have

K0

(
−1,−3

R

)
∼= K0(M2(R)) ∼= K0(R) ∼= Z.

Since R is a principal ideal domain, there are no non-free projectives over R

and so K0

(−1,−3
R

) ∼= Z with generator given by the right module

(
R R

0 0

)
. As(

−1,−3
Q

)
is a division ring, it has no non-trivial projectives and thus the generator

of K0

(
−1,−3

Q

)
is
[
−1,−3

Q

]
. Clearly we have

f4

([
Ẑ(p) Ẑ(p)

0 0

]
, [0]

)
= (ψ+)∗

[
Ẑ(p) Ẑ(p)

0 0

]
=

[
Q̂(p) Q̂(p)

0 0

]
,

and

f4

(
[0],

[
−1,−3

Q

])
= −(ψ−)∗

[
−1,−3

Q

]
= −

[
−1,−3

Q̂(p)

]
.

Therefore ker(f4) is generated by

(
2

[
Ẑ(p) Ẑ(p)

0 0

]
,−
[
−1,−3

Q

])
and ker(f4) ∼= Z.

Therefore

K0(C(p))/Im(δ) = K0(C(p))/ ker(f3) ∼= Im(f3) = ker(f4) ∼= Z.

We now turn to the computation of the K1 groups.
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Proposition 8.2.4. For any prime p 6= 2, 3 the map

f2 : K1

(
−1,−3

Ẑ(p)

)
⊕K1

(
−1,−3

Q

)
→ K1

(
−1,−3

Q̂(p)

)

is surjective.

Proof. There is a commutative diagram

K1

(
−1,−3

Ẑ(p)

)
⊕K1

(
−1,−3

Q

)
f2

//

��

K1

(
−1,−3

Q̂(p)

)
��

K1(M2(Ẑ(p)))⊕K1

(
−1,−3

Q

)
��

K1(M2(Q̂(p)))

��

K1(Ẑ(p))⊕K1

(
−1,−3

Q

)
��

K1(Q̂(p))

��

(Ẑ(p))
∗ ⊕

((
−1,−3

Q

)∗)ab
��

(Q̂(p))
∗

��

(Ẑ(p))
∗ ⊕Q∗

f ′2 // (Q̂(p))
∗

in which all the vertical arrows are isomorphisms and f ′2 corresponds to canon-

ical inclusion followed by multiplication. Since each non-zero p-adic number is

expressible in the form a = p−nb for some n ∈ Z and some b ∈ (Ẑ(p))
∗, f ′2 is

surjective and hence so is f2.

Corollary 8.2.5. For any prime p 6= 2, 3 there are isomorphisms

K0(C(p)[t, t
−1]) ∼= K0(C(p)) ∼= Z

and

K̃0(C(p)[t, t
−1]) ∼= K̃0(C(p)) ∼= 0.

Proof. We know that K0(C(p))/Im(δ) ∼= Z. However, f2 is surjective and thus

Im(f2) = ker(δ) = K1

(
−1,−3

Q̂(p)

)
. Therefore Im(δ) = 0 and hence K0(C(p)) ∼= Z.
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Now let P be a projective module over C(p); then P is locally projective, say

P = 〈P+, P−;α〉 where P+ = P ⊗
(
−1,−3

Ẑ(p)

)
, P− = P ⊗

(
−1,−3

Q

)
, and

α : P+ ⊗

(
−1,−3

Q̂(p)

)
→ P− ⊗

(
−1,−3

Q̂(p)

)

is an isomorphism. We may choose n, m such that

[P+] =

[
Ẑ(p) Ẑ(p)

0 0

]n
and [P−] =

[
−1,−3

Q

]m
.

But now α is an isomorphism

α :

[
Q̂(p) Q̂(p)

0 0

]n
∼−→

[
−1,−3

Q̂(p)

]m
=

[
Q̂(p) Q̂(p)

0 0

]2m

and hence n = 2m. But now we have [P+] =

[
Ẑ(p) Ẑ(p)

0 0

]2m

=
[
−1,−3

Ẑ(p)

]m
and so

f3[P ] =

([
−1,−3

Ẑ(p)

]m
,

[
−1,−3

Q

]m)
= f3[Cm(p)].

Therefore f3([P ]− [Cm(p)]) = 0 and so

[P ]− [Cm(p)] ∈ ker(f3) = Im(δ) =⇒ [P ]− [Cm(p)] = 0 =⇒ [P ] = [Cm(p)]

and thus [P ] = 0 in K̃0(C(p)). The corresponding statements for C(p)[t, t
−1] now

follow by (8.2.3).

Since K̃0(C(p)[t, t
−1]) ∼= 0 every projective module over C(p)[t, t

−1] is stably

free and so by (8.1.4):

Corollary 8.2.6. Let p 6= 2, 3 be an odd prime. Then SF1(C(p)[t, t
−1]) is infinite.
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8.3 Proof of Theorem B

Let p be a prime and consider the Karoubi square

B =


C[t, t−1]

��

// C(p)[t, t
−1]

��

C[t, t−1]⊗ Z[1
p
] //

(
−1,−3
Q[t,t−1]

)
.

Here the uppermost map is the canonical inclusion and we are taking {pr |r ≥ 1}
as our multiplicative submonoid. Since

(
−1,−3

Q

)
is a division ring then

(
−1,−3
Q[t,t−1]

)
=(

−1,−3
Q

)
[t, t−1] has SFC by (4.1.4) and is weakly Euclidean by (5.1.1). Thus by

(5.2.1) the induced map

SF1(C[t, t−1])→ SF1(C(p)[t, t
−1])× SF1(C[t, t−1]⊗ Z[

1

p
])

is surjective. For p 6= 2, 3 we have:

Proposition 8.3.1. SF1(C[t, t−1]) is infinite.

Consider the fibre square

C2(Z[x]/(1 + x3), θ,−1)[t, t−1]

��

// C[t, t−1]

��

Z[i][t, t−1] // F3[i][t, t−1].

Since x2+1 is irreducible over F3 then F3[i] ∼= F9 and hence by (4.1.4) and (5.1.1)

F3[i][t, t−1] is weakly Euclidean and has SFC. Thus by (5.2.1), the mapping

SF1(C2(Z[x]/(1 + x3), θ,−1)[t, t−1])→ SF1(C[t, t−1])× SF1(Z[i][t, t−1])

is surjective. Thus:

Proposition 8.3.2. SF1(C2(Z[x]/(1 + x3), θ,−1)[t, t−1]) is infinite.

Now consider the fibre square
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Z[Q(12)× C∞]

��

// C2(Z[x]/(1 + x3), θ,−1)[t, t−1]

��

Z[D6 × C∞] // F2[D6 × C∞].

By (4.1.6), (5.1.6) and (5.2.1)

SF1(Z[Q(12)× C∞])→ SF1(C2(Z[x]/(1 + x3), θ,−1)[t, t−1])× SF1(Z[D6 × C∞])

is surjective. By a result of Johnson [20], Z[D6 × C∞] has no non-trivial stably

frees. However, since SF1(C2(Z[x]/(1 + x3), θ,−1)[t, t−1] is infinite we have:

Theorem 8.3.3. Z[Q(12)× C∞] admits infinitely many isomorphically distinct

stably free modules of rank 1.

We proceed to lift the stably free modules constructed in (8.3.3) to those

over Z[Q(12m) × C∞]. From the factorization (x6m − 1) = (x6 − 1)q(x), where

q(x) = x6(m−1) + x6(m−2) + . . .+ 1 we obtain the following Milnor square:

Z[x]/(x6m − 1)

��

// Z[x]/(q(x))

��

Z[x]/(x6 − 1) // (Z/m)[x]/(x6 − 1).

The canonical involution on Z[x]/(x6m− 1) given by θ(x) = x−1, with fixed point

x3m induces involutions on the other rings in the above fibre square. Applying

the cyclic algebra construction gives another fibre square:

Z[Q(12m)]

��

// C2(Z[x]/(q(x)), θ, x3m)

��

Z[Q(12)] // (Z/m)[Q(12)].
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Taking the tensor product with Z[t, t−1] gives another:

Z[Q(12m)× C∞]

��

// C2(Z[x]/(q(x)), θ, x3m)[t, t−1]

��

Z[Q(12)× C∞] // (Z/m)[Q(12)× C∞].

Now, by (4.1.6), (5.1.6) and (5.2.1), we have that the induced map

SF1(Z[Q(12m)×C∞]→ SF1(Z[Q(12)×C∞])×SF1(C2(Z[x]/(q(x)), θ, x3m)[t, t−1])

is surjective. Therefore:

Theorem 8.3.4. For each m ≥ 1 the integral group ring Z[Q(12m)×C∞] admits

infinitely many isomorphically distinct stably free modules of rank 1.

Now let F be a group and suppose there exists a surjective map f : F → Fn

for some n ≥ 1. Then if t1, . . . tn generate Fn choose x1, . . . , xn ∈ F such that

f(xi) = ti for each 1 ≤ i ≤ n. Define a right inverse g : Fn → F by g(ti) = xi for

each i. For any group G there are homomorphisms f∗ : Z[G × F ] → Z[G × Fm]

and g∗ : Z[G × Fn] → Z[G × F ] such that f∗ ◦ g∗ = Id, and so Z[G × Fn]

is a retract of Z[G × F ]. Therefore by (4.1.8) there is an injective mapping

SF1(Z[G× Fn])→ SF1(Z[G× F ]). Together with (8.3.4) this proves Theorem B

of the introduction:

Theorem 8.3.5. Let F be a group which maps surjectively onto Fn for some n ≥
1. Then for every m ≥ 1, Z[Q(12m)× F ] admits infinitely many isomorphically

distinct stably free modules of rank 1.



Chapter 9

The D(2)-problem for D4n

9.1 k-invariants over D2n

For any n the group D2n may be described by the presentation

〈x, y | xn, y2, y−1xyx〉.

Write Λ = Z[D2n] and Σ = 1 +x+x2 + . . .+xn−1. Applying the Cayley complex

construction to this presentation gives the following 2-complex:

0→ J → Λ3 ∂2−→ Λ2 ∂1−→ Λ
ε−→ Z→ 0, (9.1)

where ε is the augmentation map, ∂1 = (x−1, y−1) and ∂2 =

(
Σ 0 1 + yx

0 1 + y x− 1

)
.

The following proposition is easily verified:

Proposition 9.1.1. Fix n and let k be any odd integer with 3 ≤ k ≤ n − 1. If

we write m = (k − 1)/2 then the following diagram commutes

0 // J //

θ
��

Λ3 ∂2 //

α2

��

Λ2 ∂1 //

α1

��

Λ ε //

α0

��

Z

k
��

// 0

0 // J // Λ3 ∂2 // Λ2 ∂1 // Λ ε // Z // 0

68
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where ∂1 = (x− 1, y − 1), ∂2 =

(
Σ 0 1 + yx

0 1 + y x− 1

)
,

α0 = (1 + x−1 + . . .+ x−m + x−1y + . . .+ x−my),

α1 =

(
a 0

0 1

)
, α2 =

 a 0 0

0 1 0

0 0 1

 ,

a = 1 + x−1 . . .+ x−m − x−2y − . . .− x−m−1y and θ = α2|J .

Our aim is to show that, for k ∈ (Z/2n)∗, θ is an isomorphism, and thus

show that the Swan map Aut(J)→ (Z/2n)∗ is surjective (see section 2.1). Con-

sider the commutative diagram above as a diagram of (free) Z-modules and Z-

linear maps; taking determinants we have:

Proposition 9.1.2. k det(θ) det(α1) = det(α2) det(α0).

Proof. Let v denote the restriction of α0 to ker(ε) and let u denote the restriction

of α1 to ker(∂1). Then v(ker(ε)) ⊂ ker(ε), u(ker(∂1)) ⊂ ker(∂1) and we have an

commutative diagram

0 // ker(∂1) //

u

��

Λ2

α1

��

∂1 // ker(ε)

v

��

// 0

0 // ker(∂1) // Λ2 ∂1 // ker(ε) // 0

Considered as a diagram of (free) Z-modules, both exact sequences split, and so

there exist α′1, u′ and v′ such that

0 // ker(∂1) //

u′

��

ker(∂1)⊕ ker(ε)

α′1
��

// ker(ε)

v′

��

// 0

0 // ker(∂1) // ker(∂1)⊕ ker(ε) // ker(ε) // 0

commutes with the obvious maps, det(α′1) = det(α1), det(u′) = det(u) and

det(v′) = det(v). Therefore we have det(α′1) = det

(
u′ w

0 v′

)
= det(u) det(v).
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Similarly det(α2) = det(θ) det(u) and det(α0) = det(v) det(k) = k det(v). Thus

det(α2) det(α0) = det(θ) det(u) det(v)k = k det(θ) det(α1)

as required.

Now, any Λ-homomorphism is a Λ-isomorphism if and only if it is an iso-

morphism as a Z-linear map. Thus, in order to show that [k] is in the image of

the Swan map, it suffices to show that det(θ) = ±1.

Proposition 9.1.3. Suppose that k is coprime to n. Then det(α0) = ±k.

Proof. Considered as a sequence of Z-modules, the exact sequence

0→ ker(ε)→ Λ
ε−→ Z→ 0

splits, and so Λ ∼= Z ⊕ ker(ε) as a Z-module. Since ε ◦ α0 = k ◦ ε, we have

α0(ker(ε)) ⊂ ker(ε) and ε(α0) = k =⇒ α0 = k + p for some p ∈ ker(ε). Thus

det(α0) = k det(α0|ker(ε)
). We shall show that α0|ker(ε)

is an isomorphism, and

hence has determinant ±1.

First note that ker(ε) = (x− 1)Λ + (y − 1)Λ. We have

α0(y − 1) = (1 + x−1 + . . .+ x−m + x−1y + . . .+ x−my)(y − 1) = (y − 1),

and thus (y − 1) ∈ im(α0). Now,

α0(x− 1) = (1 + x−1 + . . .+ x−m + x−1y + . . .+ x−my)(x− 1)

= x+ x−m−1y − x−m − x−1y

and so

α0((x− 1)x−1) = 1 + x−my − x−m−1 − y = (1− x−m−1) + y(xm − 1).
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Therefore

α0([(x− 1)x−1) + (y − 1)(1− xm)]x−m) = 1− x−2m−1 = 1− xk.

Since k is coprime to n, we may choose r such that kr ≡ 1 (mod n). Then

(xk − 1)(1 + xk + . . . x(r−1)k) = xrk − 1 = x− 1 ∈ im(α0).

Thus α0|ker(ε)
is surjective. Therefore α0|ker(ε)

⊗Q : Q2n−1 → Q2n−1 is bijective

and hence α0|ker(ε)
is injective. Therefore det(α0|ker(ε)

) = ±1 and so det(α0) =

±k.

Proposition 9.1.4. det(α1) = det(α2) 6= 0.

Proof. The following commutes:

0 // J //

θ′

��

Λ3 ∂2 //

α′2
��

Λ2 ∂1 //

α1

��

Λ ε //

α0

��

Z

k
��

// 0

0 // J // Λ3 ∂2 // Λ2 ∂1 // Λ ε // Z // 0

where α′2 =

 m+ 1−my 0 0

0 1 0

0 0 1

 and θ′ is the restriction of α′2 to J . We

proceed to calculate det(α′2) = det(m + 1 −my). If we represent (m + 1 −my)

with respect to the basis {1, x, . . . , xn−1, y, . . . , xn−1y}, then we form the matrix

M =

(
A B

B A

)

Here A is diagonal with each diagonal entry equal to m+1, and B is equal to −m

times the permutation matrix associated to

(
1 2 3 . . . n

1 n n− 1 . . . 2

)
. Label the

rows of M by v1, . . . , v2n and let N be the matrix with rows v′1, . . . , v
′
2n, where

v′1 = v1 + vn+1, v′i = vi + v2n−i+2 for 2 ≤ i ≤ n, and v′i = vi for n + 1 ≤
i ≤ 2n. Now label the columns of M by w1, . . . , w2n and let L be the matrix

with columns w′1, . . . , w
′
2n where w′i = wi for 1 ≤ i ≤ n, w′n+1 = wn+1 − w1 and
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w′n+i = wn+1 − wn−i+2 for 2 ≤ i ≤ n. For example, if n = 4 and k = 3 (so that

m = 1) we have

N =



1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0

−1 0 0 0 2 0 0 0

0 0 0 −1 0 2 0 0

0 0 −1 0 0 0 2 0

0 −1 0 0 0 0 0 2



L =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 3 0 0 0

0 0 0 −1 0 3 0 0

0 0 −1 0 0 0 3 0

0 −1 0 0 0 0 0 3


It is easy to see that L is lower triangular with n diagonal entries equal to 1 and

n diagonal entries equal to 2m+ 1 = k. Therefore det(α′2) = det(m+ 1−my) =

det(L) = kn. Using the identity k det(θ′) det(α1) = det(α0) det(α′2) = ±kn+1 we

see that det(α1) = det(α2) 6= 0.

Therefore by (9.1.2), (9.1.3) and (9.1.4):

Proposition 9.1.5. If 3 ≤ k ≤ n− 1 is coprime to n then det(θ) = ±1 and so θ

is an isomorphism. Thus [k] is in the image of the Swan map.

Clearly [−1] is in the image of the Swan map and so:

Corollary 9.1.6. The Swan map Aut(J)→ (Z/2n)∗ is surjective for each D2n.

Mannan [29] has previously shown that the Swan map is surjective for D2n .
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9.2 Proof of Theorem C

We now restrict to the case D4n. Take J = ker(∂2) in (9.1); then by Mannan’s

calculation ([29] Proposition 3.2) we have:

Proposition 9.2.1. J has minimal Z-rank in Ω3(Z).

Let Γ be an order over a Dedekind domain R. We say that torsion free

cancellation holds for Γ if X ⊕M ∼= X ⊕N =⇒ M ∼= N for lattices X,M and

N over Γ (so that X,M and N are finitely generated as Γ-modules and torsion

free over R). There are very few finite groups G for which Γ = Z[G] has torsion

free cancellation; if G is non-abelian then the only possible candidates are A4,

A5, S4 and D2n for certain values of n. Clearly we have:

Proposition 9.2.2. Suppose that Z[D4n] has torsion free cancellation. Then

every J ′ ∈ Ω3(Z) is of the form J ′ ∼= J ⊕ Λm for some m ≥ 0.

For a finite groupG, the integral group ring Z[G] is a Z-order in the semisim-

ple algebra Q[G]; we may choose a maximal Z-order Γ in Q[G] containing Z[G],

and define D(Z[G]) = ker(K̃0(Z[G]) → K̃0(Γ)). A necessary condition for Z[G]

to possess torsion free cancellation is D(Z[G]) = 0. The following is due to Swan

[35]:

Theorem 9.2.3. Let p be a prime. Then D4p satisfies torsion free cancellation

if and only if D(Z[D4p]) = 0.

Endo and Miyata [13] calculate the order of D(Z[D2n]) for various values

of n. In particular they show D(Z[D4p]) = 0 for prime p when 3 ≤ p ≤ 31,

p = 47, 179 or 19379. However, there do exist values of n for whichD(Z[D4n]) 6= 0,

for example n = 37. Moreover, results of Swan show that D(Z[D4n]) = 0 is

not a sufficient condition for torsion free cancellation to hold. For example,

D(Z[D2n ]) = 0 for all n, yet torsion free cancellation fails when n ≥ 7 (see [35],

Theorem 8.1). Of course, although values of n exist for which Z[D4n] does not

have torsion free cancellation, it may still be the case that cancellation of finitely

generated free modules holds within Ω3(Z) for such n.
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If torsion free cancellation holds for D4n then, by (2.1.1), (9.1.6) and (9.2.2),

up to congruence, the only algebraic 2-complexes over D4n are of the form

Em = (0→ J ⊕ Λm → Λ3 ⊕ Λm ∂2π1−−→ Λ2 ∂1−→ Λ→ Z→ 0),

where π1 : Λ3 ⊕ Λm → Λ3 denotes projection onto the first factor. If a pair

of algebraic 2-complexes are congruent then they are homotopy equivalent (see

Johnson [20] p.182), and so the Em represent all homotopy classes of algebraic 2-

complexes over D4n. However, Em is geometrically realized by the Cayley complex

arising from the presentation

Gm = 〈x, y | x2n, y2, y−1xyx, 1, . . . , 1〉

where there are m trivial relators added to the standard presentation for D4n.

Therefore every homotopy class of algebraic 2-complex over D4n is geometrically

realized and hence we have proved Theorem C:

Theorem 9.2.4. Suppose that Z[D4n] satisfies torsion free cancellation. Then

the D(2)-property holds for D4n.

Combining this with (9.2.3) gives:

Corollary 9.2.5. Let p be a prime and suppose that D(Z[D4p]) = 0. Then the

D(2)-property holds for D4p.
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