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Dopamine protects neurons against glutamate-induced
excitotoxicity

A Vaarmann'?®, S Kovac'?, KM Holmstrom'?, S Gandhi' and AY Abramov*’

Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma
and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The
neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to
physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at
pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation
in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by
DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate
excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict

the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.
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Signal transduction within the central nervous system (CNS)
is mediated by specific neurotransmitters, whose properties
have been studied in detail for several decades. Besides their
role in signal transduction, neurotransmitters have been
implicated in neurotoxicity.

Neurotoxicity in the mammalian CNS has been linked to
glutamate (e.g. see review by Choi'). Glutamate-induced excito-
toxicity has been implicated in neuronal cell death that follows
periods of acute neuronal injury as anoxia and reperfusion, and it
has been proposed that similar processes may contribute to the
neuronal injury in neurodegenerative diseases such as motor
neuron disease (for review, see Shaw et al?) and Alzheimers
disease (e.g. see Schubert and Piasecki®).

Neuronal delayed Ca®* accumulation (delayed calcium
deregulation, DCD) and mitochondrial membrane depolariza-
tion in response to glutamate is a requirement for the
progression to cell death’*®. Exposure of neurons in culture
to excitotoxic levels of glutamate results in an initial transient
increase in cytosolic calcium concentration [Ca® "], followed
by a delayed sustained rise in [Ca®* ], (DCD), which coincides
with a profound collapse of mitochondrial membrane potential
and is believed to be an initial trigger for neuronal death.”®
Exposure of neurons in culture to glutamate causes selective
neuronal cell death that can be effectively blocked by
application of inhibitors of glutamate receptors.® However,
glutamate antagonists are significantly less effective against
neuronal death in vivo when applied to brain following periods
of anoxia and reperfusion and clinical trials of N-methyl-p-
aspartic acid (NMDA) receptor antagonists remained

unsuccessful, suggesting some additional mechanisms
apply in the whole brain compared with primary neuronal
cultures.’®'" A possible explanation for this might be an
interaction with other neurotransmitters in the brain, modulat-
ing glutamate toxicity in vivo.

One of the major emerging functions of dopamine (DA) is its
role in modulating plasticity in the striatum, cortex and
hippocampus. In these regions, a significant subpopulation
of spines of neurons are simultaneously contacted by both
dopaminergic and glutamatergic inputs.'? Although NMDA
receptors respond specifically to glutamate, there is much
evidence to suggest an interaction between NMDA signalling
and DA. Thus, it was demonstrated that DA and D2 or D4
receptor activators significantly depressed NMDA receptor
currents.'' It remains to be clarified how this translates to
glutamate toxicity and neuronal intracellular calcium changes.

In this study we investigate the interplay between glutamate
and DA on calcium regulation in primary neurons from
different brain regions. We propose that dopaminergic and
glutamatergic neurotransmission may interact, and more
specifically, that DA may have the role of ‘safety catch’ in
order to protect neurons from glutamate excitotoxicity.

Results

DA modulates the effect of low physiological
concentrations of glutamate on cytosolic calcium. Appli-
cation of physiological concentrations of glutamate (5 M)
induced a transient increase in cytosolic calcium [Ca? "], in
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hippocampal neurons, as measured by fura-2. Removal of
glutamate from the media induced recovery of the calcium
to basal levels (Figure 1a, n=67). Application of 5 uM DA to
hippocampal neurons also induced a small increase in the
basal level of [Ca®"], in primary neurons (as previously
reported by us and others.''® Interestingly, further applica-
tion of 5 uM glutamate induced a significantly smaller rise in
the [Ca® ], than that seen with glutamate alone (Figures 1b
and c¢; n=87, P<0.001). Importantly, there is a dose
response effect of the concentration of DA on the modulation
of the glutamate-induced calcium response. Lower concen-
trations of DA in the 0.5-1 uM range, attenuated the calcium
signal more significantly than higher concentrations of DA
(5 uM) (Figure 1c). The reducing effect of higher concentra-
tions of DA on glutamate-induced calcium signalling may be
masked by the induction of a DA-induced calcium
increase.'s"”

Onset of glutamate-induced DCD differs between
different brain regions. It is well established that glutamate
toxicity is induced by simultaneously DCD and mitochondrial
depolarization, which can be detected only using low-affinity
calcium indicators. We therefore measured the appearance
of the glutamate-induced DCD in cortical, hippocampal
and midbrain neurons using the low-affinity calcium indicator
fura-FF. The appearance of DCD in response to 100 uM
glutamate in midbrain neurons (Figures 2a and d, n=99)
was significantly delayed compared with the appearance of
DCD in cortical neurons (3.7+0.7min compared with
11.4+£1.1min in midbrain neurons; Figures 2b and d,
n=74) and hippocampal neurons (4.1 £ 0.3 min; Figure 2d,
see also Figure 4a; n=101). The time of onset of DCD in
cells from different brain regions is shown in the histogram
(Figure 2d). It is not yet known whether this difference in
DCD is due to the regional difference in expression of the
NMDA receptor, or whether it is related to the presence of
other neurotransmitters such as DA.
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Figure 1 DA modulates the effect of low physiological concentrations of
glutamate on [Ca2* .. Short application of 5 uM glutamate to hippocampal neurons
induced a rise in [Ca® ], (Fura-2 ratio) (a). (b) 5xM DA significantly reduced
glutamate-induced calcium signal. (c) Effect of different concentrations of DA on the
glutamate induced Ca® ™ rise in hippocampal neurons. *P<0.05, **P<0.001
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DA is able to abolish glutamate-induced DCD. We found
that at least in vitro DA was able to not only modulate
glutamate-induced [Ca®* ], increase but also attenuate DCD.
A very low concentration of 0.5 uM DA was established to be
the most effective at attenuating the glutamate-induced
calcium signal, significantly delaying the onset of DCD in all
neurons from all brain regions tested (Figures 2c and d). At
such low concentrations, DA is likely to be rapidly metabo-
lized by the enzyme monoamine oxidase (MAO). Therefore,
we pretreated the cells with 20 uM selegiline in order to inhibit
both isoforms of MAO (A and B) in neurons and astrocytes.
Under these conditions, addition of 0.5 M DA was able to
completely abolish the appearance of glutamate-induced
DCD (Figure 2e). The initial peak of glutamate-induced
increase in [Ca® "], can still be seen, suggesting that DA is
only limiting but does not block the calcium influx through the
NMDA receptor. Incubation with selegiline alone, had no
effect on the glutamate-induced DCD in the absence of DA
(Figure 2f). Higher concentrations of DA (5 and 20 uM) were
less effective at inhibiting the DCD than lower concentrations
(Figure 2d).

DA modulation of glutamate is D2 receptor-mediated. In
order to understand the mechanism of DA modulation of the
glutamate signal, we used D1-like and D2-like receptor
antagonists. The protective effect of DA on DCD was
completely abolished in the presence of the D2-like receptor
antagonist (20 uM sulpiride) (Figure 3b compared with
Figure 3a, n=122). The appearance of glutamate-induced
DCD in midbrain neurons after application of sulpiride and
DA was even earlier than after glutamate alone (Figures 3b
and d compared with Figure 2b). Similarly, the effect of DA
on DCD was significantly reduced in the presence of the
D1/D5 antagonist 20 uM SCH-23390 (Figure 3c, n=75).
The effect of D-receptor antagonists on DCD was observed
in hippocampal, cortical and midbrain neurons (Figure 3d). It
should be noted that lower concentrations of antagonists
(100 nM) did not have an effect on glutamate-induced DCD
(n=237 for 100 nM SCH-23390; n=>51 for 100 nM sulpiride).

To further confirm a receptor-mediated mechanism of DA-
mediated DCD modulation we used specific agonists for D1
and D2 receptors. Preincubation of hippocampal neurons with
specific D2 agonist quinpirole (10 xM) significantly delayed
the appearance of glutamate-induced DCD (Figure 4b,
n=161, compared with glutamate alone Figure 4a;
n=101). The effect of D1-specific agonists 6-chloro-APB
(10 uM) on DCD was also significant (Figure 4c, n=187) but
smaller than the effect of D2 agonist. Using lower concentra-
tions of DA agonists (10 nM 6-chloro-APB or 10 nM quinpirole)
did not significantly alter the effect of the glutamate-induced
DCD, suggesting that in cellular experiments the concentra-
tion necessary for effective signalling is in a 10 uM range
(Supplementary Figure S1).

DA is neuroprotective for glutamate-induced cell death.
To investigate long-term effects of DA modulation of
glutamate signalling, we measured neuronal death 24 h after
treating cells for 15min with 100uM glutamate. Low
concentrations of DA (0.1-5 uM) were significantly protective
against glutamate excitotoxicity in primary neurons.
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Figure 2 Changes in the [Ca® "] response to toxic concentrations of glutamate. Kinetic measurements of changes in [Ca? "], (Fura-FF ratio) from single neurons in
response to 100 uM glutamate in midbrain (a) and cortical (b) cultures. Glutamate (100 M) and glycine (10 uM) were applied in a Mg? * -free solution. (c) Pretreatment (5 min)
of cortical neurons with 0.5 M DA inhibits appearance of DCD in response to glutamate. Histogram showing the time from the application of glutamate until the start of the
appearance of DCD in neurons from different brain regions in response to 100 uM glutamate ( + 10 uM glycine in Mg? " -free) with varying concentrations of DA (d). *P< 0.05,
**P<0.001. () Co-application of 20 M selegiline and 0.5 M DA 5 min before the experiment completely inhibited the glutamate-induced DCD. (f) Preincubation (5 min) with

selegiline did not prevent the glutamate-induced DCD

Exposure of cells for 15min to 100 uM glutamate-induced
neuronal death in 83.9+6.4% of cortical neurons, n=4
experiments. Co-application of 1-2M DA with glutamate
reduced the number of dead neurons in cortical culture to
26.4+1.4% (n=4; P<0.001; Figure 5a). Of note, midbrain
neurons are inherently less vulnerable to glutamate-induced
cell death than cortical neurons, and the addition of DA also
significantly attenuated cell death from 51.1+1.7% of
midbrain neurons to 11.7+24% (n=4; P<0.001;
Figure 5a). Interestingly, higher concentrations of DA (10
and 20 uM) were less effective than 1 uM (n=>5 experiments
for both 10 and 20 uM DA; Figure 5a) correlating with our
experiments on the effect of DA on glutamate-induced
calcium deregulation. It should be noted that selegiline
(20 uM, n=4) alone was not protective against glutamate-
induced excitotoxicity (76 + 4.7% compared with 83.9 + 6.4%
in glutamate only for cortical neurons).

The protective effect of DA on glutamate-induced cell death
was mediated to various degrees through both D1- and
D2-like receptors in cortical neurons. The D1/D5 receptor

antagonist SCH-23390 (20 uM) blocked the protective effect
of DA on cell death, while there was no statistically significant
inhibition by the D2-like receptor antagonist sulpiride (20 uM)
(from 26.4+1.4% to 41.4+23 for SCH-23390, n=5;
P<0.05 and to 37.2+2.7 for sulpiride, n=5; Figure 5b).
These data strongly indicate that DA protects neurons against
glutamate-induced cell death through a receptor-operated
mechanism.

Disscussion

We report for the first time that DA is able to inhibit glutamate
excitotoxicity and neuronal death by preventing the onset of
DCD. As glutamate and DA frequently work together in signal
transmission in the brain, this new role for DA has implications
for health and disease.

Glutamate is the major excitatory neurotransmitter in the
mammalian CNS. Neurons respond to excitatory stimuli by
initiating calcium entry through plasma membrane channels.
Glutamate induces a calcium signal to a varying degree

w
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Figure 3 Effect of DA and DA antagonists on glutamate-induced [Ca2 ], changes in primary neurons. (a) 0.5 M DA inhibits appearance of DCD in midbrain neurons in
response to 100 uM glutamate( + 10 uM glycine in Mg? * -free). Preincubation (5 min) of 20 M sulpiride (b) or 20 uM SCH-23390 (c) eliminates protective effect of DA
against DCD. (d) The effect of 0.5 «M DA alone and in combination with 20 1M sulpiride or 20 M SCH-23390 on time of appearance of glutamate-induced DCD. Histogram
represent the time taken from application of 100 M glutamate to the beginning of the DCD in neurons from the different brain region. **P<0.001

a,, Glutamate b, quinpirole calcium channels inducing exogenous calcium influx.'® We
Glutamate demonstrate that preincubation with DA results in inhibition of
2 20 2 20 the glutamate-induced calcium signal. This appears to be
E 15 E 1.5 dose-dependent, and lower concentrations of DA inhibit the
£ 10 g 10 glutamate-induced calcium signal more significantly than
" o5 " o5 higher concentrations. This dopaminergic modulation of
00 ) 00 Hippocampal neurons physiological glutamate signalling is in agreement with
0 5 10 15 0 5 10 15 20 previous reports in the literature, and suggests that the
Time (min) Time (min) interaction of DA and glutamate has important functions in
calcium signalling.®'* The absence of DA caused by striatal

Cos ot DA depleti h as that ing in Parkinson’s d
pletion such as that occurring in Parkinson’s disease
. 20 Glutamate may therefore result in uninhibited glutamate-induced calcium
§1_5 signalling and this may underlie the clinical hyperkinetic
% 10 features such as tremor in the disease. Interestingly, we see
I os much delayed DCD in midbrain-derived neurons compared

Hippocampal neurons
0 5 10 15
Time (min)

0.0

Figure 4 Effect of DA agonists on glutamate-induced [Ca® "], changes in
primary neurons. (a) 100 uM glutamate increase [Ca* ] in primary hippocampal
neurons. Pretreatment (5 min) of hippocampal neurons with 10 «M quinprole (b) or
10 uM chloro-APB (c) changed the shape of the glutamate-induced Ca®* signal

through both NMDA-R channels and voltage-dependent
calcium channels in neuronal cultures.'®1°

DA itself is able to produce a calcium signal within cells that
may be receptor-mediated, causing release from intracellular
calcium stores (in neurons—'® or receptor-independent in
astrocytes,?° or possibly due to opening of voltage-dependent
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with hippocampal or cortical neurons. Our finding is in
agreement with previous report than DA depletion in
transgenic models with labelled medium spiny neurons
subpopulations results in a loss of glutamatergic synapses
and shrinking of the dendritic tree of striatopallidal neurons,
resulting in an overall reduction in glutamate input.?'%2

DCD describes the second phase of a typical biphasic
cytosolic calcium response to glutamate exposure. In chronic
glutamate exposure DCD is the point at which there is latent
loss of calcium homeostasis. The nature of the secondary rise
in calcium during DCD is either due to a reduction in the
capacity of the calcium efflux mechanisms or a latent
activation of plasma membrane ion channels or a combination
of both?® that lead to an energy collapse of the neuron.®2*

In this study we demonstrate a new role for DA in the DA/
glutamate crosstalk. We show that low concentrations of DA
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Figure5 Dependence of glutamate-induced neuronal cell death on the presence of DA. (a) The viability of primary cortical and midbrain neurons was measured 24 h after
a 15 min application of 100 uM glutamate in 10 M glycine, Mg? * -free medium, in the presence of either 0, 1, 10 or 20 M DA, using P! fluorescence. Dead cells were counted
with respect to total number of cells present, identified by staining nuclei with Hoechst 33342. (b) Cell death was further measured in cortical neurons after cells were pretreated
for 10 min with either DA (1 2M) alone or in combination with 20 .M SCH-23390 or 20 M sulpiride before application of 100 M glutamate. DA and the inhibitors were left in
the medium during the 15 min glutamate exposure. **P<0.05, *P<0.001; n.s., not significant

are able to effectively abolish the DCD induced by glutamate
excitotoxicity. Prevention of the loss of calcium homeostasis
seen in DCD is more effective at low concentrations of DA
rather than high concentrations of DA, possibly due to the
calcium increase activated by DA itself at higher concentra-
tions.”®™” It should be noted that the concentration of
intracellular calcium depends not only on calcium influx by
NMDARSs and voltage-dependent calcium channels but also
on efflux mechanisms such as Na*t/Ca®* exchangers.
Calcium may also gain access to the cytosol through release
from intracellular stores such as endoplasmic reticulum and
mitochondria. Therefore, it may be possible that DA exerts a
role in other calcium transport processes to protect
against DCD.

In addition to modulating DCD, we further confirm that
abolishing glutamate-induced DCD by low concentrations of
DA, results in reduced glutamate-induced cell death mea-
sured at 24 h. To our knowledge, a neuroprotective action of
DA in preventing neuronal death induced by excessive
glutamate stimulation has not been shown before.

Our findings have major implications in disease. Massively
elevated levels of glutamate are seen in the ischaemic core
after stroke and this triggers overwhelming NMDA stimulation,
leading to loss of ion homeostasis, cell swelling and necrotic
death.2® Microdialysis of human brain tissue after traumatic
brain injury shows sustained (days to weeks) rise in glutamate
concentrations in the range of 50-100% increase.?® To date,
there has been little success with neuroprotective strategies in
preventing cell death following ischaemic stroke. In order
to rescue neurons in the penumbra of an acute stroke, it may
be worth considering the importance of DA in preventing
glutamate excitotoxicity.

Materials and Methods

Cell culture. Mixed cultures of hippocampal, cortical and midbrain neurons
and glial cells were prepared as described previously'® with modifications, from
Sprague-Dawley rat pups 2-4 days postpartum (UCL breeding colony).
Hippocampi, cortex and midbrain were removed into ice-cold HEPES-buffered
salt solution (HBSS) (Ca2 4, Mg2 + -free, Gibco-Invitrogen, Paisley, UK). The
tissue was minced and trypsinised (0.1% for 15 min at 37 °C), triturated and plated
on poly-p-lysine-coated coverslips and cultured in Neurobasal medium (Gibco-
Invitrogen) supplemented with B-27 (Gibco-Invitrogen) and 2mM L-glutamine.
Cultures were maintained at 37 °C in a humidified atmosphere of 5% CO, and
95% air, media changed twice a week. To avoid the age dependence of the DCD,®

we used cells after 12-15 days in vitro in all experiments. Neurons were easily
distinguishable from glia: they appeared phase bright, had small smooth rounded
somata and distinct processes, and lay just above the focal plane of the glial layer
(Supplementary Figure 2).

Imaging [Ca2 ™ ].. Hippocampal, cortical and midbrain neurons were loaded
for 30 min at room temperature with 5 uM fura-FF AM or 5 uM fura-2 AM and
0.005% Pluronic in HBSS composed of (mM): 156 NaCl, 3 KCl, 2 MgSQOy,, 1.25
KH,PO,, 2 CaCl,, 10 glucose and 10 HEPES, pH adjusted to 7.35 with NaOH.

Fluorescence measurements were obtained on an epifluorescence inverted
microscope equipped with a x 20 fluorite objective. [Ca® "], was monitored in
single cells using excitation light provided by a Xenon arc lamp, the beam passing
monochromator centred at 340 and 380 nm (Cairn Research, Kent, UK). Emitted
fluorescence light was reflected through a 515 nm long-pass filter to a cooled CCD
camera (Retiga, QImaging, Surrey, BC, Canada) and digitized to 12 bit resolution.
All imaging data were collected and analysed using software from Andor (Belfast,
UK). Traces, obtained using the cooled CCD imaging system, are presented as the
ratio of excitation at 340 and 380 nm, both with emission at >515nm. The time for
DCD was measured as the time taken from the addition of glutamate until the start of
the calcium increase.

Toxicity experiments. For toxicity assays cells were exposed to 20 uM
propidium iodide (Pl) and 4.5 M Hoechst 33342 (Molecular Probes, Eugene, OR,
USA) for 30 min before imaging. The Pl is excluded from viable cells and exhibits a
red fluorescence following a loss of membrane integrity, while the Hoechst 33342
labels all nuclei blue. This allows expression of the number of dead (red stained)
cells as a fraction of the total number of nuclei counted. Using phase contrast
optics, a bright field image allowed identification of neurons, which look quite
different to the flatter glial component and also lie in a different focal plane, above
the glial layer. A total number of 100-300 neurons were counted in 4-5 fields of
each coverslip. Each experiment was repeated four or more times using separate
cultures.

Statistical analysis. Statistical analysis was performed with the aid of
Origin 8 (Microcal Software Inc., Northampton, MA, USA) software. Means
expressed £ S.E.M.
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