Longitudinal Voxel-Based Morphometry with
Unified Segmentation: Evaluation on
Simulated Alzheimer’s Disease

Gerard R. Ridgwa% Oscar CamafaRachael I. Scahftl William R. Crun#®,
Brandon Whitchét, Nick C. Fo®, and Derek L. G. Hift*

aCentre for Medical Image Computing, University College London.
bDementia Research Centre, UCGlaxoSmithKline.

Abstract. The goal of this work is to evaluate Voxel-Based Morphometry and three longitudinally-tailored methods
of VBM. We use a cohort of simulated images produced by deforming original scans using a Finite Element Method,
guided to emulate Alzheimer-like changes. The simulated images provide quite realistic data with a known pattern of
spatial atrophy, with which VBM's findings can be meaningfully compared. We believe this is the first evaluation of
VBM for which anatomically-plausible ‘gold-standard’ results are available. The three longitudinal VBM methods
have been implemented within the unified segmentation framework of SPM5; one of the techniques is a newly
developed procedure, which shows promising potential.

1 Introduction

Voxel-Based Morphometry [1] is a method for automated whole-brain analysis of local structural differences, using
Statistical Parametric Mappindntfp://www.fil.ion.ucl.ac.uk/spm/ ); Longitudinal variants have been
developed for application to cohorts with serial imaging [2, 3]. VBM necessitates preprocessing of the images, in-
cluding spatial normalisation and tissue-segmentation. There is great difficulty in evaluating the performance of VBM
methods due to the lack of ground truth. To the best of our knowledge, no previously published VBM studies of
realistically complex data have had gold-standard maps of the regions that should be detected.

We have developed Finite Element Methods (FEM) which can structurally alter images, producing finely-controllable,
clinically realistic changes [4]. Such simulated images have known underlying deformation fields and volume changes,
which can form a gold standard for evaluating atrophy-measurement techniques.

Alzheimer’s Disease is a progressive neurodegenerative disorder, of great clinical and socio-economic importance. AD
causes a loss of brain tissue which can be visualised and quantified using serial Magnetic Resonance Imaging [5].
Using a cohort of AD patients with MR images at baseline and one year later, we simulated new approximate year-on
scans from the original baselines, guided by semi-automated measures of whole-brain, hippocampal, and ventricular
volume changes [6]. The original baseline and simulated follow-up images then constitute a data-set with known FEM
ground truth; we use this to derive a gold standard suitable for evaluating longitudinal VBM, and compare four such
techniques, one of which is novel.

2 Methods

2.1 Voxel-Based Morphometry and Longitudinal VBM

VBM in SPM5 involves unified tissue-segmentation and spatial normalisation [7], followed by spatial smoothing and
voxel-wise statistical testing. With serial data, statistical analysis can take advantage of reduced within-subject vari-
ability. To capitalise on the longitudinal information, changes should also be made to the VBM preprocessing methods.
In this work, we evaluate standard VBM against two longitudinal methods from the literature (which we have adapted
to be compatible with the unified segmentation framework) and our own newly developed SPM5 method.

All SPM analyses were performed within an explicit mask derived from the smoothed ground-truth grey-matter seg-
mentation. All smoothing was done with an 8mm FWHM Gaussian kernel. A one-sartggewas performed on
subtraction images; single-tailed contrasts for atrophy (incke@pand ‘reverse contrast’ of tissue-gain (increag

were evaluated and thresholded with multiple comparison correction using Random Field Thepgy € 0.01).
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2.1.1 Standard VBM

Here, ‘Standard’ VBM refers to simple application of unified preprocessing independently to each scan of each subject;
only the statistics differ from the non-serial case. ‘Standard’ should not be contrasted here to ‘optimised’ VBM [8],
which the unified segmentation model aims to supersede [7].

2.1.2 Tied-normalisation

The preprocessing step of spatial normalisation should take advantage of the fact that multiple time-points for a single
subject can be registered much more accurately than scans of different subjects, and that initial rigid alignment already
reveals a great deal about within-subject change [5]. Using the non-unified model of SPM2, Gaser (in Draganski et
al. [2]) developed a method with longitudinally tied spatial normalisation, in which repeat scans are transformed using
the parameters determined for their corresponding baselines, then independently segmented.

Following the introduction of SPM5’s unified framework, an extended generative model for unified longitudinal seg-
mentation and normalisation should ideally be developed. As a simpler alternative, we have implemented an approach
which applies the baseline normalisation parameters to the native-space baseline and follow-up grey matter images
from separate unified segmentations.

2.1.3 Pre-averaged

More advanced techniques can combine inter-subject spatial normalisation with precise intra-subject registration using
High-Dimensional Warping (HDW). One such method (designed by Ashburner, and implemented in [3]), creates low-
noise averaged images of HDW-registered longitudinal sets, before inter-subject spatial normalisation and segmentation
in SPM2. (i.e. averaging is ‘pre’ segmentation.)

We have adapted this approach to the SPM5 framework, with unified segmentation and inter-subject normalisation
following the intra-subject warping and averaging. The intra-subject volume changes from HDW must be taken into
account to generate the follow-up data, which can be elegantly done by modulating the native-space segmented average-
images with the HDW Jacobian fields before applying the predetermined inter-subject transformations. This avoids the
interpolation error due to the transformation of the Jacobians in [3].

2.1.4 Post-averaged

We propose a technigue similar to pre-averaging, but novel, and well-suited to SPM5’s unified segmentation. The new
method should be better for subjects with large longitudinal change that might not be fully recovered by HDW, as in
this case, the pre-averaged images may be too blurred to segment well. Each time-point is first segmented, and SPM5'’s
bias-corrected version is saved; HDW transformations are then determined on the corrected images and applied to
their native-space segmentations. The warped segmentations are then averaged; i.e. averaging is ‘post’ segmentation
of sharp original images. Each average segmentation is modulated with the HDW volume changes to create follow-up
equivalents, then each set of original and modulated segmentations is spatially normalised with the baseline parameters.

2.2 Finite Element Modelling of Atrophy

The atrophy simulation process is based on that described in [4]. It consists of four main steps: (1) Generation of
a reference mesh; (2) Warping to a subject-specific mesh; (3) Deformation of the mesh using a FEM solver; (4)
Application of the deformations to the baseline image of each subject, to produce a new simulated follow-up image.
The reference mesh was built using the BrainWeb atlas labels of these structuregg@ww.bic.mni.
mcgill.ca/brainweb/ ). The adaptation of the reference mesh to each subject was achieved with a mesh warping
procedure guided by a fluid registration algorithm [10].

We used a cohort of 18 probable AD patients (7 female; ages from 55 to 86, mean 70) with baseline and 12-month
follow-up MRI scans [6]. The FEM simulation was driven using values of the subjects’ volume changes in the brain,
hippocampi, and ventricles (from semi-automated segmentation-based measurements). Simulated mean (standard de-
viation) percentage volume increases were: brain, -2.43 (1.18); hippocampi, -4.74 (3.24); ventricles, 11.49 (5.35). Fig-
ure 1(a-c) shows a single-subject example of atrophy simulation; ventricular expansion, cortical thinning, and opening

of CSF spaces can be observed.



Figure 1. Example case of simulated atrophy: (a) Original baseline; (b) Simulated +1yr follow-up; (c) Subtraction
image. The same subject’s gold-standard volume changes in BrainWeb space: (d) Volume gain (VG=1yr/orig); (e)
GM-increase = (GM*VG)-GM; and (f) Smoothed GM-increase, as entered into the analysis.

2.3 Generation of a Gold Standard

Because the same mesh is warped from the BrainWeb template to each individual patient, there is a known correspon-
dence between elements of the warped meshes for the different subjects; therefore the volume change of each element
can be mapped back to the common space. By converting the element-wise volume changes to a voxel-wise represen-
tation, an image of the ratio of follow-up to original volume is created. These volume gain ratio images can be used

to modulate the BrainWeb Grey Matter Segmentation, resulting in perfectly aligned effective follow-up segmentations,
similar to those in the two HDW-based longitudinal VBM methods. The original BrainWeb GM is then subtracted
from each follow-up and the result smoothed. Figure 1(d-f) illustrates this process for one subject. The gold-standard
smoothed subtraction images could be entered into an identical one-gategti@s the actual sets of VBM subtraction

images. For reasons discussed in section 4.1, we instead use contrast (negative mean) images, thresholded at different
values for visualisation purposes.
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Figure 2. Gold-standard average atrophy, Maximum Intensity Projections thresholded at: (a) 0, (b) 0.01, (c) 0.02, (d)
0.03.
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Figure 3. Maximum Intensity Projections of significant atrophy-(y z < 0.01) for VBM methods: (a) Standard; (b)
Tied-normalisation; (c) Pre-averaged; (d) Post-averaged.

3 Results

Gold-standard maximum intensity projections, at varying thresholds, can be seen in figure 2. Statistical results from
the four VBM methods are presented in figure 3 as maximum intensity projections. In both cases thetatooyitast
(increase:0) is shown. For the ‘reverse contrast’ (i.e. gain of GM over time), none of the four methods detected any
voxels at the corrected level. Table 1 shows correlations between the ground truth contrast image and the contrast or
t-value images for the four methods:

Method || std | tied | pre | post
contrast|| 0.24| 0.17 | 0.63 | 0.65
t-values|| 0.16 | 0.10| 0.47 | 0.36
Table 1. Image-wise Spearman rank-correlations (over in-mask voxels).

4 Discussion

4.1 From Simulation Ground Truth to VBM Gold Standard

The atrophy simulation method gives the ground-truth volume change over the nodes of the deformed mesh. However,
several steps are required to convert this data into a gold standard for VBM. Following the obvious approach of per-
forming the same statistical analysis of the ground-truth GM-increase images as of the VBM subtraction images, we
obtained unrealistic-maps (not shown). Unreasonably largealues occur outside the regions in which FEM volume
changes were introduced. This may be due to the low spatial variance of the volume change maps outside these areas.
Inter-subject spatial variability is far lower for these images than it is for natural anatomical variation in real patient
images, even after spatial normalisation.

Instead, we threshold the ‘contrast image’ — the numerator of-gtatistic. The maximum intensity projections (see
figure 2) now look sensible, but this method leaves open the question of at what level the contrast image should be
thresholded. On the other hand, there is also a degree of arbitrariness in the choice of thresfmidtatistical

tests. The approach taken here of presenting differently-thresholded versions of the gold standard allows a multi-scale
evaluation of the pattern of atrophy. Note that the purpose of the gold standard is to indicate the spatial pattern of
simulated atrophy; its significance is not of innate interest.



4.2 Longitudinal VBM

The gold-standard results shown in figure 2 indicate the presence of diffuse global atrophy, with greater focus on the
temporal lobes and strongest change in the hippocampi; the cerebellum and brain-stem are spared. The key advance of
this work is that the VBM methods may be compared directly to this desired pattern, as well as to each other.

We first note that all four methods appear to perform better at detecting the hippocampal and temporal lobe atrophy
compared to the more diffuse cortical atrophy. This is probably due to the greater natural anatomical variation in the
pattern of cortical folding. Standard VBM detects the least atrophy of the four methods, though there are no obvious
false-positive regions. Longitudinally tied normalisation seems to give only minor improvements, though there is some
evidence that the less variable tied registration preserves more of the cortical atrophy. Intriguingly, the correlation
with ground truth (table 1) appears worse. Both HDW-based methods appear much more sensitive, though some of
the atrophy they report is not apparently well-matched to the gold standard (e.g. the insula). In addition, some areas
present in the gold standard appear to be missed despite the greater apparent sensitivity (e.g. temporal horns, and
the focal nature of the hippocampal atrophy). The correlations in table 1 reaffirm the superiority of the HDW-based
methods, but don't allow a clear preference for either.

The pre-averaging method [3] seems to produce false-positive results in the cerebellum and brainstem. Our new
post-averaging method appears to avoid this, at the expense of detecting less true cortical atrophy. Additionally, the
post-averaging method has better detected the hippocampal atrophy. Reasons for the differences are not entirely clear,
as both methods use the same HDW transformations. The pre-averaging method segments (and normalises) an image
with higher signal-to-noise ratio but potentially significant blurring; while post-averaging of original (lower SNR seg-
mentations) also improves the SNR of the results. The relative merits of the two alternatives need further investigation.

We note that there are statistical objections to the comparisenarfp-values, as a difference in significance is not
equivalent to a significant difference. However, with fundamentally different methods such as the standard and HDW-
based VBM evaluated here, there is a risk of registration problems if the ANOVA interactions between atrophy and
method are tested. The findings shown here are intended to allow comparison between distributions of detected atrophy
of the methods and gold standard, with the aims of informing choices between different VBM methods, and guiding
further comparative studies. In the future, we hope to perform more quantitative analysis, including a direct ground-
truth based investigation of segmentation performance. The evaluation may be complemented by testing the methods
on real data.
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